Duration Dependence in Korean
Business Cycles: Evidence and Its
Implication Based on Gibbs Sampling
Approach to Regime-Switching Model
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The hypothesis of business cycle duration dependence is tested
by estimating the Hamilton regime-switching model with duration
dependence using the Gibbs sampler. Data are two versions of the
index of coincident indicators; (linear) dynamic factor index of Stock
and Watson (1989) and {nonlinear) dynamic Markov switching fac-
tor index of Diebold and Rudebusch (1994). When the Gibbs sam-
pler is applied to the duration dependent regime-switching model
using quarterly Korean business cycle indices for the 1977:1-
1994:4 period, this paper finds that the probability of a transition
into an recession increases as the expansion ages, and somewhat
weaker evidence for the reverse. Example of out-of-sample forecast
for business cycle turning points is also provided. (JEL Classsifica-
tions: C11, C51, E32})

I. Introduction

Whether the probability of a transition into an expansion increases
as the recession ages, or vice versa, has been an interesting empirical
question in economics. This problem has been referred to as ‘duration
dependence’ in the literature. For example, Diebold and Rudebusch
(1990) employed nonparametric hazard function and found only weak
evidence of positive duration dependence in postwar U.S. recessions
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but none for postwar expansion. To the contrary, they found strong evi-
dence of duration dependence in prewar expansions. Based on a parsi-
monious and flexible exponential-quadratic hazard model, Diebold,
Rudebusch and Sichel (1993) found strong evidence of positive dura-
tion dependence associated with postwar recessions.

In Korea, the National Statistical Office (NSO) publishes the official
business cycle dates. According to the NSO, there have been four
episodes of recessions since 1976. However, the previous literature
lacks the formal test for duration dependence for the Korean business
cycle data.

It is well-known that a discrete and yet parsimonious two-state
regime-switching model seems to well describe the business cycle data.
Hamilton (1989), for example, finds that two-state Markov switching
model] can capture asymmetry in the U.S. GNP growth rates and pro-
duces recessionary and expansionary periods which are remarkably
consistent with the NBER chronology of the business cycles.

In the context of test for duration dependence, Durland and McCurdy
(1994) extend the constant transition probability Hamilton model to
estimate jointly the phases and the parameters of the data generation.
These authors assume that state transition probabilities are functions
of the number of periods the process has been in that state. They
develop the quasi-maximum likelihood estimation (QMLE) for the prob-
lem. Kim and Kim (1995} examine the same problem, but estimate the
model using the gibbs sampler. The Gibbs sampler treats the Markov-
switching state variables as parameters to be estimated and is suitable
in assessing the uncertainty of the parameters. When these authors
applied their methods to postwar quarterly U.S. GNP data, they found
the evidence of positive duration dependence in contractions but none
for expansion periods.

The purpose of the paper is to test formally duration dependence in
Korean business cycles. This task is done in two steps: since the indi-
vidual data are often noisy and seasonal, this paper derives two mea-
sures for business cycle in the first step. One version is derived from
the probabilistic model of coincident indicators of Stock and Watson
(1989, 1991) and the other is from the dynamic Markov switching fac-
tor (MSF) model of Diebold and Rudebusch (1994}, the estimation of
which is made possible later by Kim and Yoo (1995). The second step is
to estimate the duration dependent regime-switching model using the
derived series. Note that the Stock-Watson index is essentially linear,
whereas the MSF index is nonlinear.
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This paper is organized as follows. Section II briefly discusses the
duration dependent regime-switching model. Section Il describes the
implementation of the Gibbs sampler that estimates the model and the
statistics that can assess convergence. Section IV discusses the deriva-
tion of two versions of Korean business cycle data and presents empiri-
cal results. Section V examines the issue of out-of-sample forecast.
Section VI provides a summary and conclusions.

II. Regime-Switching Model with Duration Dependence

In modeling intrinsic macroeconomic shifts between periods of reces-
sion and expansion, Hamilton (1989) considered the following Markov-
Switching model of business cycle:

ALy, — ps) = e, (1)

e, ~ iid. N(O, 03), 2

Hs, = Ho + th Sy 3)

where ¢(L) =1 - ¢, L - ¢ L? — ... - ¢, L, is a p-th order polynomial in the

lag operator with its characteristic roots lying outside the complex unit
circle. A variable y, is assumed to have state-dependent mean ug,
where a discrete-valued state variable S, evolves according to a first
order Markov-switching process with transition probabilities given by

q=Pr(St=0 | S[,1=O),

(4)
p=PrS,=118,,=1).

Ho and u, are parameters.

The extended Hamilton model that is considered in this paper allows
the state transitions to be duration dependent following Durland and
McCurdy (1994) and Kim and Kim {1995). Specifically, assuming that
the evolution of S, can be described by a simple profit model like
Filardo and Gordon (1993}, the transition probabilities can be specified
as follows:

Pr(S;=1) = Pr(S; = 0), (5)
where S, is a latent variable defined by

Si=0o+ G1Sc1 + Goll =S} Do 11 + g3 SiDy, o1 + Uy,
u, ~ i.i.d. N(O, 1),

where go, ..., gs are parameters, D, ., = {j: S;, 5 =0, S, =... = S5 =
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S;.; = 1} is the duration of state one, say, boom, up to time t — 1 after it
started at time t—j- land Dy 1, ={j: Syo = 1, Sy = ... = Sp9 =Sy =
0O} is the duration of state zero, say, recession, up to time t — 1 after it
started at time t — j — 1. They represent how long a recession or a boom
has lasted up to time t - 1. Hence, the transition probabilities can be
written

p=PriS;=11S,=1,D, )=Pru >-(go+9,+9gs Dy 1)l. (7)
g = P{S,=0 1S, =0, Dy ) = Piu, <~ {go + g2 Do 1)l 8

Durland and McCurdy (1994) consider the QMLE of the above model
with the transition probabilities p, and g, of (7) and (8) replaced by the
logistic functions of D; ., and D, ,_,. To make the QMLE feasible, maxi-
mum durations of recessions or booms, denoted D, and D, respectively,
need to be specified. Durland and McCurdy (1994}, for example, set D,
=D, = 9 quarters based on a grid search with the likelihood value as a
criterion. This paper adopts the Gibbs sampler approach used in Kim
and Kim (1995), which can address the uncertainty of the parameters,
and thus one can estimate the proper empirical distribution suitable
for statistical inferences. In addition, duration variables need not be
truncated and the procedure for computing the posterior distribution of
the out-of-sample forecast is straightforward.

II1. Estimation of Duration Dependent Regime-Switching
Model Using Gibbs Sampler
A. Background

Let the history of the sequence {y,} at time t be given by Y; = [y} (s =
1, ..., 9. A model refers to a sequence of probability density functions
(p.d.fs)

ﬁ(yt l le—l’ 6]'

in which 8 is a (k x 1) vector of unknown parameters. The p.d.f. of Yr,
conditional on the model and the parameter vector 6, is

p(Yy | O)fI] Fily, 1Y, 0).

The likelihood function is any function L{@: Y o p(Y; | 6).
The objective of Bayesian inference can in general, by Bayes theorem,
be expressed
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[, 9(OIL(6: Y1) p(6)de

E(g(8) | Yp) = [, g(6)p(6 | Y,)d8 =
g6)1Yr) = f,gl6)p(6 | Yy [, LO: Y7 )p(6)do

in which g(6) is a function of interest, p(6 | Y7 is the posterior density
of 8, and p(8) is the prior density of 6.

Bayesian methods are operational to the extent that posterior
moments can actually be computed. If the posterior distribution is suf-
ficiently simple, the posterior moment may be obtained analytically. If
the required integration takes place, however, in more than, say, five
dimensions then classical quadrature methods are not often practical.
As such, a class of posterior simulators have been suggested in recent
years and have become known as ‘Markov chain Monte Carlo.’ The idea
is to construct a Markov chain with state space © (¢ € 0) and invariant
distribution with p.d.f p(6 | Y7). Following an initial transient phase,
simulated values from the chain form a basis for approximating E(g(6) |
Y7. What is required is to construct an appropriate algorithm, like the
Gibbs sampler and the Metropolis-Hastings algorithm, and establish
that its invariant distribution is unique, with p.d.f. p(6é | Y,). The fol-
lowing section briefly summarizes the Gibbs sampler (see, Geweke
(1995) and Tanner (1993) for detailed discussions for the Metropolis-
Hastings algorithm).

B. The Gibbs Sampler

The Gibbs sampler provides a method for sampling from the posteri-
or density p(6 | Y7). As before, the k-element vector # contains quanti-
ties of interest and Y7 is the vector of observed data. Given the starting
point (6}, 63, ..., 69), this algorithm draws a sample from the condition-
al distributions by iterating the following loop:

esample 6{*" from the conditional distribution p{6, | &, ..., 88, Y);
ssample 6*V from p(6, | &V, 69, ..., &, Y}

g from p(6, | &Y, ..., 62D, Y.

Each of the k conditional sampling performed per iteration (i + 1) may
be referred to as a step. The completion of the first k steps, resulting in
the vector 6", may be referred to as the (i + 1)st pass through the vec-
tor 6.

The passes, 89, ¢, ..., €9, ¢¥V, .. are a realization of a Markov
chain, with transition probability from 6™ to ¢,
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T(O™, 67) = p(e{™ | &, ..., 6™, Y x P& | o, g™, ... 6™, Y x
- x plel® 1 e, 6, ..., &2, Y.

It has been shown that, under weak conditions, the joint distribution
of (60, 69, ..., ) converges geometrically to p(8,, 6,, ..., 6 | Y as |
tends to infinity (Geman and Geman 1984; Gelfand and Smith 1990;
Tierney 1991; Chan 1993). Further,

% fg(e“’)f [g(O)p(6 | Y7 )dv(8), as M — .
J=1

In words, given independent realizations of &9, E(g(6) | Y would be
approximated using the sample averages by invoking the strong law of
large numbers. It is noted, however, that when k steps are simulated
each pass, convergence of the Gibbs sampler can be quite slow if highly
correlated individual k components of the parameter 8 = (6,, ..., 6) are
treated individually (see Geweke 1992, 1995 and Tanner 1993 for more
details). Hence, for the Gibbs sampler to be practical, it is essential
that the blocking be chosen in such a way that one can make draw-
ings from the posterior distributions in an efficient manner.

The Gibbs sampler is an attractive solution of the Bayesian multiple
integration problem when the conditional densities are simple and easy
to obtain. Conditional densities of the block of parameters for the prob-
lem at hand, i.e., fi = (o, 1), = (61, 920 - 02 = ( Go. G1. Go, G)'» O
and for latent variables {S,, S;} (t = 1, 2, ..., T), are summarized in the
appendix 1 following Kim and Kim (1995) (see, also, Albert and Chib
1993 and Filardo and Gordon 1993).

C. Conwergence Diagnostic

The formulation of the convergence diagnostic (CD) is suggested by
Geweke (1992). The idea is that, given the sequence {8}, comparison of
values early in the sequence with those late in the sequence is likely to
reveal failure of convergence. Let

m, = M;‘Aﬁ‘e‘ﬂ,m,g =(M-Mg+1)"! fe“'.(j =1,...,M,,....Mg,...,.M)
J=1 J=Mp

are means of the subsample of the Gibbs sequences and let SD, and

SDg denote the corresponding consistent estimates for their standard

deviations. If the ratios M,/M and Mg/M are fixed, with (M, + Mg)/M <

1, thenas M — oo,
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m, — mg
—_— N(0,1 9
sb, +sp, VoD ©)
if the sequence {8V} is stationary. This paper uses the Newey-West
(1987) consistent estimator to compute SD’'s with lags equal to 100 and
M, =0.1Mand Mg = 0.5M.!

IV. Empirical Results

A. Data

This paper considers two measures for Korean business cycles.
These are two quarterly indices of coincident indicators from 1977:1 to
1994:4 estimated from using the dynamic factor index model of Stock
and Watson (1989, 1991) (Stock-Watson index hereafter) and the
dynamic Markov switching factor index model of Diebold and Rude-
busch (1994), later successfully estimated by Kim and Yoo (1995}
(MSF index hereatfter).? This paper chose these derived series because
the published raw data are quite noisy and often highly seasonal, mak-
ing it difficult to identify the business cycle turning points. Two models
mentioned above produce business cycle dates that reasonably approx-
imate the ones published by the National Statistical Office (NSO) in
Korea, who adopts more or less the NBER method. Next section briefly
describes methods that estimate two versions of quarterly business
cycle indices.

B. Estimation of Two Versions of Quarterly Korean Business Cycle
Indices

Following Kim and Yoo (1995), the dynamic Markov switching factor
model that derives quarterly business cycle index can be written as fol-
lows:

INote that SD's can be computed from the spectral densities of §'s, evaluated
at frequency zero as suggested by Geweke {(1992).

“The raw data that are used to construct quarterly indices consist of: (1) total
index of industrial production (IP) (monthly, SA, NSO), (2} utilization rate in
manufacturing (UTIL) (monthly, SA, NSO) (3) shipment in manufacturing (SHIP)
(monthly, SA, NSO) {4) gross domestic product (GDP) (quarterly, SA, Bank of
Korea). Monthly data begin from January of 1976. Quarterly series are comput-
ed as averages of monthly observations.
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Ye=r) n,+ Ly, (10)
o(L) n, = Bs + n. n, ~ iid. NO, 1), (11)
where ¢(L) = (1 - ¢,L - ... - ¢,'L7), and the boldface letter y, denotes (N x

1) vector of the growth rates of the coincident indicators. It is expressed
as deviation from its mean, divided by its standard deviation. r{L) is a
vector polynomial. An (N x 1) vector {, denotes the idiosyncratic com-
ponent of the coincident indicators, which is unrelated to the state of
the economy. That is,

A(L) L, =¢, & ~ MVN(O, 2},

where A(L) = (I - AL - ... - AL) and [, denotes an i dimensional
identity matrix. It is assumed, for identification of the model, that the
covariance matrix ¥ and (N X N) coefficient matrices A, i= 1, 2, ..., 1,
are diagonal. The variable representing the state of the economy (n) is
assumed to be common to N coincident indicators. n, follows a first-
order Markov process with transition probabilities given previously by
equation (4).

The MSF model given by equations (10)-(12) and (4) becomes the
Stock-Watson model if one assumes a single state. Test for adequacy of
the MSF model against the Stock-Watson model is a nonstandard
problem as the key parameters of the MSF model are not identified
under the null hypothesis (Hansen 1992, 1993). Furthermore, it is
computationally demanding in the multivariate model like the MSF
model. Therefore, This paper estimates both models without a formal
test for two states. The MSF model and the Stock-Watson model, can
be written in state-space form and be estimated by using the maximum
likelihood estimation via the Kalman filter (see Kim and Yoo 1995 for
detailed discussions of MLE).3

Table 1 reports the ML estimates for the Stock-Watson model and the
MSF model. Experiment with various AR lags for s and r suggests that
three lags for both are reasonable, yielding white noise innovations.
The log likelihood of the MSF model, with four additional parameters,
is -263.49 which is greater than the one of the Stock-Watson model.

3Kim and Nelson (1995) also estimate the similar model for the U.S. data
using the muilti-move Gibbs sampler proposed by Shephard (1994). Instead of
equation (11), they assume that ¢{L)(n, - fs) = 71,, When the multi-move Gibbs
sampler and the approximate MLE proposed by Kim and Yoo (1995) for these
specifications are applied to four U.S. coincident indicators, these research pro-
duces essentially the same results. This paper adopts the Kim and Yoo method.
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TABLE 1
ML ESTIMATION OF STOCK-WATSON MODEL AND DYNAMIC MARKOV SWITCHING FAC-
TOR MODEL OF KOREAN BUSINESS CYCLE INDICATORS

Parameter Stock-Watson Model MSF Model
p - 0.8532 (11.793)
q - 0.6181 {5.056)
Bo - -1.6227 (—4.106)
Bl - 0.7060 (2.888)
a -0.0573 (-0.283) -0.1288 (~-0.374)
a o -0.2024 (-1.078) 0.2975 (2.479)
a3 -0.2569 (-0.751) -0.1654 (-1.044)
a4 -0.3458 (-2.811) -0.3665 (-3.041)
ay ) 0.2646 (2.147) -0.1886 (-1.052)
a9 0.0593 (0.487) 0.0365 (0.308)
as 3 0.2765 (2.285) -0.3289 (-3.255)
a4 -0.0574 (-0.448) -0.0744 (-0.574)
ag ) -0.1844 (-1.196) -0.1573 (~0.681)
ag.a -0.3637 (-3.237) 0.2340 (1.987)
as 3 0.0185 (0.167) 0.0359 (0.344)
as 4 -0.0352 (-0.298) -0.0398 (-0.329)
Oc1 0.1680 (1.954) 0.1533 (1.819)
Ceo 0.5411 (10.727) 0.5525 (10.604)
O3 0.3093 (6.740) 0.3258 (7.372)
Ocq 0.8052 (11.550) 0.7996 (11.680)
h 0.8325 (11.198) 0.5770 (7.828)
% 0.7280 (8.073) 0.4979 (6.357)
Y3 0.7817 (10.812) 0.5364 (7.643)
Ya 0.4426 (5.412) 0.3071 (4.956)
i 0.4173 (3.497) 0.2330 (1.942)
& -0.0205 (-0.164) -0.0767 (-0.590)
s 0.1951 (1.636) 0.2628 (2.517)
Log likelihood -266.11 -263.49

Note: Data are standardized by subtracting the sample mean from each of four
growth rates of the coincident indicators (in order, IP, UTIL, SHIP and
GDP)} and dividing by its standard deviation. ﬂs: =fo (1 -S) + B, S; for the
MSF model. Data cover the 1976:2-1994.IV period. Approximate t-values
are in parentheses.

But these numbers are not directly comparable for the reason men-
tioned above. Estimates for p, g, and j are all significant.

Note that n, in equation (11) is demeaned growth rates of the coinci-
dent index. Figure 1A plots n, estimated from both models. Two series
are markedly close each other. In fact, the sample correlation was
0.999. Figure 1B plots the smoothed probability of recession computed
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FIGURE 1A
QUARTERLY GROWTH RATES OF COINCIDENT INDICES FROM MSF MODEL AND
STOCK-WATSON MODEL: 1977:1-1994:1V

from the MSF model (see Kim and Yoo 1995 for the expression for the
full sample smoother). The model identifies that there has been five
peaks (the official NSO dates are in parentheses), 79:1 {79:1), 81:3 (na),
84:2 (84:1), 88:1 (88:1), 91:4 (91:1) and five troughs, 80:3 (80:3), 82:2
(na), 85:2 (85:3), 89:2 (89:3), 93:1 (93:1). Note that the NSO did not
designate the 1981-82 period as a recession. Recall, however, that dur-
ing this period the Korea’s major trading partners, U.S. and Japan,
have experienced recessions. The call for the latest peak appears some-
what controversial. The NSO’s derived series, called the cyclical compo-
nent of coincident index, also suggests that a signal for recession in
early 1991 was rather weak.

To see two versions of coincident indices retain the same feature of
regime switches, the Hamilton model with constant transition probabil-
ities, equations (1)-(4), is estimated for each series. ML estimates are
reported in Table 2. It suggests that the two-state model is reasonable
description for both series. Smoothed probabilities, depicted in Figure
2 suggest that two measures perform likewise in terms of state identifi-
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FIGURE 1B
SMOOTHED PROBABILITY OF RECESSION FROM MSF MODEL

TABLE 2
THE HaMILTON MODEL OF THE INDICES OF KOREAN BUSINESS CYCLES:
ML ESTIMATION WITHOUT DURATION DEPENDENCE

Parameter Stock-Watson Index MSF Model
P 0.8716 (17.043) 0.8749 (17.675)
q 0.7103 (7.182) 0.7075 (7.112)
Ho -1.3941 (-5.812) -2.0569 (-5.977)
ny 0.3478 (1.644) 0.5011 (1.651)
s 0.6056 (10.367) 0.8640 (10.577)
N 0.1092 (0.929) 0.0980 (0.865)
¢ -0.0557 (-0.482) -0.0480 (-0.432)
¢ 0.5671 (5.024) 0.5758 (5.270)
Log likelihood -88.49 -112.96

Note: Data are estimated series based on estimates reported in Table 1. Effective
sample covers the 1977:1-1994.1V period. Asymptotic t-values are in
parentheses.
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cation.? First two AR lags were insignificant for both cases, and thus
constrained to zero in implementing the Gibbs sampler.

The MSF index is derived under the assumption of constant transi-
tion probabilities. Nevertheless, one can examine whether a particular
chronology of Korean business cycles contains predictable content, i.e.,
duration dependence. Since the Stock-Watson index does not assume
ar.ything about duration dependence, next section investigates two
measures for business cycle to test for duration dependence.

C. Test for Duration Dependence

Prior distributions are set similar in values to Albert and Chib (1993)
and Kim and Kim (1995). In particular, initial values of parameters for
two duration variables are set under the null hypothesis of no duration
dependence. First 5000 passes are discarded, i.e., an initial transient
or burn-in phase, and then every fifth draws out of additional 10000
passes are recorded in estimating the empirical distribution of the
parameters. Table 3 reports the posterior distributions as well as the
95 percent confidence intervals. Means of posterior distributions
resulted in reasonable figures with appropriate signs. To see whether
the proposed model is a reasonable description of the data, the Box-
Pierce Q statistics with twelve lags are computed. These are, p-values
in parentheses, 4.95 (0.960) and 5.84 (0.924) respectively for the
Stock-Watson index and the MSF index. In addition, the convergence
diagnostic (CD) reported in the last column suggests that the estimates
were calculated using the draws from the marginal distribution.

Inferred probability of contractionary states, Pr{S; = Ol yj, produced
from the Gibbs runs is plotted in Figure 3 (shaded bar refers to the
business cycle recessions from the MSF model, which is plotted in
Figure 1B). Smoothed probabilities resemble the ones of Figure 2, evi-
dencing further the appropriateness of the current model. Note that
inferred probability reflects the uncertainty of the parameters.

Primary interests of Table 3 are two coefficients, g, and g;. Positive
estimated posterior means were yielded for the parameter that indi-
cates the positive duration dependence in contractionary periods, i.e.,

“In comparison with Figure 1B and Figure 2, it appears that whether one
switches the unconditional mean (equation (1)) or just an intercept term (equa-
tion (11)) does not seem to matter much in practice, although there is slight dis-
agreement of business cycle dates between Figure 1B and Figure 2 as the
derived series are somewhat smoother than four component series.
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TABLE 3
THE EXTENDED HAMILTON MODEL OF THE INDICES OF KOREAN BUSINESS CYCLES:
DURATION DEPENDENCE MODEL WITH THE GIBBS SAMPLER

Prior Posterior
Parameter Mean SD Mean SD 95 percent interval CD
A. Stock-Watson Index
Ho -0.8 0.4 -1.232 0.246 (-1.688, —0.667) 0.018
o 1.5 0.4 1.674 0.169 (1.315, 1.975) -0.033
&3 0.0 0.3 0.441 0.134 (0.153, 0.688) -0.023
90 -1.0 04 -0.968 0.286 (-1.540,-0.407) -0.045
a1 2.4 0.4 2.547 0.345 (1.872, 3.238) 0.010
go 0.0 0.4 0.215 0.157 (-0.074, 0.559) -0.030
g3 0.0 0.4 -0.121 0.073 (-0.269, 0.017) 0.004
o - 0.463  0.112 (0.296,0.740)  0.016
B. MSF Index
1o -0.8 04 -1.648 0.376 (-2.263, -0.991) -0.018
Hy 1.5 0.4 2.568 0.355 (1.672, 2.664) 0.016
¢ 0.0 0.3 0.436 0.133 (0.165, 0.688) 0.014
do -1.0 0.4 0983 0.281 (-1.553, -0.452) 0.043
a1 2.4 0.4 2.568 0.355 (1.866, 3.277) -0.010
9o 0.0 0.4 0.236 0.159 (-0.060, 0.565) 0.010
ga 0.0 0.4 -0.120 0.072 (-0.270, 0.016) -0.003
a? - 0.995 0.265 (0.610, 1.652) -0.030

Note: Prior distribution of ¢® is improper. Results are based on 15,000 Gibbs
sampling draws and first 5,000 burn-in draws are discarded, i.e., | =
5,000, and M = 10,000 (see the text for notation). To reduce the correla-
tions between neighboring Gibbs runs, we recorded parameter estimates
every fifth runs following Albert and Chib (1993). CD is the convergence
diagnostic suggested by Geweke (1992). It is distributed as standard nor-
mal under the null hypothesis that the sampling technique has con-
verged.

g» = 0.215 with the corresponding standard deviation of 0.157 for the
Stock-Watson index. By conventional standards that invoke asymptotic
normality for statistical inferences, there appears to be only weak evi-
dence of increasing probability of exiting the recessionary period as it
ages. Since the Gibbs sampler produces empirical distribution of para-
meters of interest, the exact p-value can be computed. The probability
that g, is less than zero, one-sided p-value, was 0.086. However, the
negative parameter representing positive duration dependence in
expansionary periods (p-value in parenthesis) was —0.121 (0.041) with
standard deviation of 0.073. Therefore, the positive duration depen-
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FIGURE 3
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dence is supported by the data.

The results from using the MSF index suggest likewise: there is evi-
dence for positive duration dependence in expansions (g, = 0.236 with
p-value = 0.048) and marginal evidence for positive duration depen-
dence in recessions (g3 = -0.120 with p-value = 0.059). Hence, there is
the ample evidence that the Korean business cycles feature duration
dependence at least in expansions, and somewhat weaker evidence for
the reverse.

V. Out-of-Sample Forecast

How useful is the finding of duration dependence in Korean business
cycle data to policy makers? It is well-known that the regime switching
model tends to perform poorly for the long-term forecasting. Nonethe-
less, the empirical evidence of duration dependence suggests that the
probability of a transition from one state to another will increase as the
current business cycle phase progresses. To examine this issue, this
section performs exercise of computing out-of-sample forecast.

Let Sf = (S, .... SJ denote states starting at time t and ending at time
k, and @ is the vector of parameters. The Bayes prediction density,
fyr1 1Y), is then

SJYra ' Yr) = flyr, | YT'ST+1‘S$+1vp’DT'O)d(STH'S”II:H—p'DT'G 1Yz)
= If(UT+1 ! YT’ST+1’S1T"+1—p’DTve)d(STu 1S, Dr,0) (13)
d(S{,,_,.Dr.081Yy),

where, given S%. ,,;, the conditional density of yr,, is obtained from

_G—Z(yT-H - QT+1IT)2} (14)

JWYra 1 Y1, Sp4. Dy, 0) o< CXP{ 5

where Yr.117 = (1 - fL)yp,, + KAL) uSry,,. Hence, if Sy, is sampled from
Pr(Sr,, | S, Dy, 6), the future observation yr,; can be drawn from
N(Yr,1 1 09. Similarly, {Sr,;, Y}l > 2) can be drawn recursively.
Figure 4A depicts the out-of-sample forecast probability of recession
for the 1995:1-1996:1 period (based on 5000 burn-in phase and 10000
simulations). Since the results from using the MSF index and Stock-
Watson index are very similar, this paper reports only the one based on
the MSF index. The shaded area denotes the out-of-sample forecast
period. The duration dependent model signals a likely switch to reces-
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FIGURE 4A
OUT-OF-SAMPLE FORECAST PROBABILITY OF RECESSION FOR 1995:1-1996:1:
BASED ON DURATION DEPENDENT MODEL USING MSF INDEX AND GIBBS SAMPLER

sion around the turn of the year 1995. The forecast probabilities for the
1995:4 and 1996:1, for example, were 0.467 and 0.449, respectively.
On the other hand, the forecast probability based on the model without
duration dependence, depicted in Figure 4B, resulted in rather weak
warning: it rises only to 0.326 and 0.347 for the corresponding period.

VI. Summary and Conclusions

This paper tests for duration dependence in the Korean business
cycle data. The duration dependent regime-switching model, the MLE
of which was proposed by Durland and McCurdy (1994), is estimated
using the Gibbs sampler. The empirical model admits state transitions
that vary endogenously as functions of the number of periods that the
economy has stayed in a particular inferred state.

Data are two versions of quarterly Korean business cycle indices for
the 1976 to 1994 period, constructed from the Stock-Watson (1989,
1991) dynamic factor index model and from the dynamic Markov
switching factor model of Diebold and Rudebusch (1994). For the esti-
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mation of the latter, this paper adopts the Kim and Yoo’s (1995}
approximate MLE. These two probabilistic models appear to equally
well approximate the recent Korean business cycle chronology.

This paper found evidence of positive duration dependence in expan-
sions and somewhat weaker evidence for contractions: the probability
of a transition into the other stage of business cycle increases as the
current phase matures. This finding suggests that there possibly be the
endogenous force in economic activity that triggers the end of the cur-
rent phase of business cycle as it ages. This finding has some practical
implication to the policy makers and businessmen: it may help eco-
nomic agents to form their rational expectations about what is ahead,
and in particular when to intervene to policy makers. Furthermore, the
method in this paper can be extended to address the question like
whether exogenous monetary and fiscal policies have helped to end the
recessions (or the other way around), in addition to endogenous swit-
ches into the next regime, by modifying the transition probability equa-
tions. This exercise is left for a future extension.
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Appendix 1

Conditional Density of {S,, S} (t=1, 2, ..., T)

Let S, =1{S 1 <j<Tj=t Y, = (Y, Ys ..., Y), and 6 be all other
parameters of the model. Similar to Albert and Chib (1993) and Kim
and Kim (1995), the conditional distribution of the latent state variable
S, is given

Pr(S;1 Yy, S, 6) o< Pr(S; 1S, , Dy.y) X Pr(S,, 1S, DY)
X Priyp .o Ypl Y1, 8,) (A1)
X I8 Ay! Vi1, S, t< p

Pr{(S;1Yy, S, 6) o< Pr(S;|S.,, D.1) X Pr(S;, 1S, D)

¢ (A2)
X TIER flye! Yie1, S p+1 <t<T-p+1,

Pr{S,| Yy, 5, ) < Pr{S,|S,;, Di.y) X Pr{Sy, 1S, D)

T (A3)
X Iy i Y, Sy T-p <t < T,

where D_; = D; . if S¢; = J, j € {0, 1}. With transition probabilities
Pr(S,1 S.;. D.)) and Pr{S,,|S, D) given by equations (7) and (8) in the
text, the sequence of S, {S}, can be simulated from a Bernoulli distrib-
ution.

With simulations of {Sj}(t = 1, 2, ..., T}, the duration variables {D, . ,,
D, .}(t=1, 2, ..., T) can be constructed. Given {S;, Dy, D, .1} (t=1, 2,
..., Y and g = (go. 91 9o, g3)» the latent variable {S}} can also be simu-
lated from the following truncated standard normal distributions using
a rejection sampling:

N(gy + 9y + 93D, 1) when S, =1 and S, =1,

11S; 201
N(g, + g, + g3D1',_1,1)”sl.<0] when S, =1 and S, | =1
S, ~ (A4)
‘ N(g, + gzDO_I_l.l)”S[.w] when S, =1 and S, ;, =0,
N(g, + gzDo_,_l,l)I[S;20] when S, =1 and S, ; =0,

where the symbol I[S; > 0], for example, refers to the indicator function
that takes on value of one if S; > 0. {S} is stored to draw gin the later
step.

Conditional Distribution of § = (¢y, ¢g, ..., ¢’
Given ji (4o, #1)’ and {S}, equation (1) in the text can be written
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y; = ¢1y‘t—1 + ...+ ‘ppy‘t—p + € (A5)

where y; = y, - o — 1, S, Define ¥ to be the vector of y;’'s and W to be
the matrix of the right-hand side variables. The posterior distribution
of § = {¢,, ..., ¢,) has the following multivariate distribution:

¢ ~ N(IT + WW)(all + W'Y, 62 (IT+ WWYY, (A6)

where the conjugate prior distribution for ¢ has the multivariate nor-
mal form:

$ ~ N(z, ITY). (A7)

A rejection sampling can be used to simulate values of ¢ so that all
roots of zero of the determinant of ¢(L) in (1) lie outside the complex
unit circle.

Conditional Distribution of 2
The full conditional distribution of o2 is given by:

o2 ~ IG (A8)

v+ T 8+3 LMy - oy, ... - ¢py:‘p)2}
2 7 2 ’

where IG denotes the inverse gamma distribution and the prior distrib-
ution is given by IG(v/2, §/2), and the hyperparameters v and § are
known. v reflects the strength of the prior of o2.

Conditional Distribution of ji = (u,, 1)’
Given ¢ and {S)}, equation (1) can be written

(U= 01Ut — oo = Ople ) = Ho + 11(S;— ¢Sy — ... — 9,5 + e (A9)

where 5 = ol - ¢; — ... — ¢,). If we define Y™ to be the vector of left-
hand-side variables of the above equation and W™ to be the matrix of
right-hand side variables, the posterior distribution of 1 = (ug. ;)" has
the following truncated multivariate normal distribution:

i~ N(M+ WWYHmM+ W ¥™), 62 (M+ WW )y, 0. (A10)

where the conjugate prior distribution for i has the multivariate nor-
mal form

fi ~ Nim, M) (A11)

and the symbol [y, > O] is an indicator function on y; > 0. The value of
Lo is then computed as u;/(1 ~ Z2,¢).
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Conditional Distribution of g = (go, g;, G2, Gs)’

Define Xand &’ to be the right-hand-side variables in (6) and the vec-
tor of S;, respectively. g = [go. g1, g2, gsl’ can be simulated using the
following posterior distribution:

g~ NG+ XX)'(/G + X5)), (G + XX, (A12)

where the conjugate prior distribution for g has the multivariate normal
form:

g~ Ny, G). (A13)

(Received February, 1996; Revised September, 1996)
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