G-CSF protects human cerebral hybrid neurons against in vitro ischemia

Keun-Hwa Junga,b,1, Kon Chua,c,1, Soon-Tae Leea, Lami Kanga, Seung U. Kimd,e, Manho Kima, Jae-Kyu Roh,a,**

a Stroke & Neural Stem Cell Laboratory in Clinical Research Institute, Department of Neurology, Seoul National University Hospital, Seoul, South Korea
b Department of Disease Investigation and Surveillance, Korea Center for Disease Control and Prevention, Seoul, South Korea
c Center for Alcohol and Drug Addiction Research, Seoul National Hospital, Seoul, South Korea
d Brain Disease Research Center, Ajou University, Suwon, South Korea
e Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, Canada

Received 4 August 2005; received in revised form 8 October 2005; accepted 11 October 2005

Abstract

Granulocyte colony-stimulating factor (G-CSF) protects neurons against experimental focal cerebral ischemia. However, its neuroprotective effect on human brain is unknown. We sought to determine whether G-CSF can protect the human cerebral neurons in vitro. Human cerebral-neuroblastoma hybrid cell line (A1) was exposed to oxygen and glucose deprivation with or without G-CSF. G-CSF promoted cell survival and decreased cytotoxicity effectively at 25 ng/ml. G-CSF reduced early apoptotic (annexin V+/PI−), and late apoptotic or necrotic (annexin V+/PI+) cells, and decreased active caspase-3 immunoreactivity. G-CSF could protect human cerebral neurons following in vitro ischemia.

© 2005 Elsevier Ireland Ltd. All rights reserved.

Keywords: G-CSF; Ischemia; Neuronal death; Neuroprotection; G-CSFR; STAT3

Ischemic stroke is a consequence of impairment of the blood supply to the brain, which leads to tissue hypoxia and cell death [6]. The strategies that can preserve neurons and promote blood flow have been attempted, and neurotrophin families have shown protective effects on neurons from hypoxia or ischemic injury [1,8,13,14,21,23,24].

Granulocyte colony-stimulating factor (G-CSF), a 20 kDa protein, is a member of the cytokine family of growth factors. G-CSF induces hematopoietic stem cell mobilization [9,19], and activates endothelial cell proliferation [2]. G-CSF exerts its activity via a receptor (G-CSFR) of the hematopoietin receptor superfamily [3]. The binding of G-CSF to its receptor has been reported to evoke signal transduction by activating the receptor-associated Janus family tyrosine kinases (JAK) and signal transducer and activator of transcription (STAT) proteins in hematopoietic cells [10]. Activated STAT translocates to the nucleus and regulates specific target gene expression, which allows cells to proliferate, differentiate and mobilize or to obtain enough trophic support to survive [11]. G-CSFR is also expressed in neurons or glial cells [22], suggesting the possibility of broader physiological role in the nervous system. Recent studies showed that G-CSF could protect neurons against experimental focal cerebral ischemia and STAT3 is upregulated in neurons of the penumbra, which in turn may mediate antiapoptotic effects [22,23,25]. However, its neuroprotective effect on human brain is unknown. The current interest in G-CSF as one of the few growth factors approved for clinical use led us to investigate the possible role of G-CSF on the human brain. We determined whether G-CSF protected human cerebral neurons from in vitro ischemia.

All experimental procedures were approved by the Care of Experimental Committee of Seoul National University Hospital and by institutional review board for the human cell use. The human cerebral-neuroblastoma hybrid cell line (A1), provided by Seung U. Kim was generated by somatic fusion of human cerebral neurons isolated from a 14-week gestation fetus with neuroblastoma SK-SH-Sy5Y-TG4 cells. The A1 human hybrid cells express the morphological, immunochemical, physiological, and genetic features of the human cerebral neurons [8,15,18]. The parental human neuroblastoma cell line, SK-SH-Sy5Y was also tested in order to compare the A1 neuronal hybrid cells. The cultures were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal

**Corresponding author. Tel.: +82 2 2072 3265; fax: +82 2 3672 4949.
E-mail address: rohjk@nmu.ac.kr (J.-K. Roh).
These authors equally contributed to this study.
bovine serum (FBS), 100 U penicillin and 0.1 mg/ml streptomycin at 37 °C in 5% CO2/95% air. Fresh medium was supplied every 2 days.

All ischemia experiments were performed with the cells incubated in a humidified hypoxic chamber (Bactron 1.5, Sheldon Manufacturing Inc., Oregon, USA). A1 cells were dissociated by trypsinization, plated at a density of 1 × 10⁴ cells/ml in a 96-well plate or in a 100 mm culture plate, and incubated at 37 °C with 95% air/5% CO2 for 48 h. For ischemic injury, cells were washed three times with phosphate-buffered saline (PBS), supplemented with DMEM without glucose and sodium pyruvate, and incubated at 37 °C with humidified 1% room air/5% CO2/94% N2 (oxygen glucose deprivation: OGD). The cells were also tested in serum glucose free conditions or hypoxia alone. During OGD, the human recombinant G-CSF (Kirin pharmaceuticals, Tokyo, Japan) was added to cultures at various concentrations (0–100 ng/ml).

Cell viability was assayed by MTT absorbance and by counting cells on photomicrographs of 4′,6-diamidino-2-phenylindole (DAPI, Vector Laboratories). For MTT assays, cultures were incubated with a stock solution of MTT (5 mg/ml in PBS, pH 7.4, Sigma) at 37 °C for 4 h at a final concentration of 1 mg/ml, and absorbance at 570 nm was measured in solubilized cells on the ELISA reader. For cell counting, the number of intact DAPI-stained nuclei in five fields (100×) was counted per well (at the 3-, 6-, 9-, and 12 o’clock positions and in the center) was recorded. In both cases, results were expressed as a percentage of values obtained in control cultures not treated with G-CSF.

The media was also harvested for lactate dehydrogenase (LDH) release assay. LDH activity was measured by a Cytotox 96 non-radioactive cytotoxicity assay kit (Promega, Madison, USA), which is based on the enzymatic conversion of a tetrazolium salt into a red formazan product according to the manufacturer’s instructions, and absorbance was read at 490 nm immediately thereafter. The results were expressed as percentage of peak LDH release obtained on complete cell lysis by 0.9% Triton X-100.

To analyze the patterns of neuronal death or neuroprotection, flow cytometry using annexin V-FITC/propidium iodide (PI) labeling was used. For flow cytometry, floating and adherent cells were collected, washed, and resuspended in cold binding buffer (10 mM HEPES/NaOH, pH 7.4, 140 mM NaCl, and 2.5 mM CaCl2) to a final concentration of 1 × 10⁶/ml. Aliquots of 1 × 10⁵ cells were incubated with 5 μl of annexin V-FITC (Pharmingen) and 5 μg/ml of PI (Sigma). After 15 min at room temperature, 400 μl of binding buffer was added before flow cytometric analysis. For each sample, 10⁵ cells were analyzed on a FACSort flow cytometer (Becton Dickinson and Company, NY, USA). FITC and PI fluorescences were passed through 520 and 630 nm bandpass filters, respectively.

Cells (5 × 10⁵) were plated on 12-mm round Aclar plastic coverslips previously coated with 10 μg/ml polylysine and housed in 35-mm dishes. Cell cultures were processed for immunocytochemistry as described previously [4,12]. Anti-G-CSFR (1:500, BD Biosciences) and anti-active caspase-3 polyclonal antibodies (1:500, Pharmingen) were used for the primary antibodies. Cy3-conjugated anti-rabbit IgG antibody (1:300, Jackson Immunoresearch) was used for the secondary antibody. DAPI was used to counterstain nuclei in each experiment. The colocalization was analyzed using a laser scanning confocal microscopy with a Bio-Rad MRC 1024 (argon and krypton). Active caspase-3-positive cells in culture were counted in five fields per well (center and at 3, 6, 9, and 12 o’clock). Results were expressed as a percentage of the number of intact DAPI-stained nuclei obtained in the same fields.

Western blotting was used to determine the expression of G-CSFR on A1 cells and subsequent activation of STAT proteins following G-CSF treatment. The cells cultured on the 100 mm plate were washed with 4°C PBS and collected. They were homogenized in a lysis buffer (100 mM NaCl, 10 mM Tris (pH 7.5), 1 mM EDTA) to which the protease inhibitors (1 mM phenylmethylsulfonyl fluoride, 1 mM EDTA) were freshly added. The protein concentrations were determined using the Bradford method (Bio-Rad, Richmond, CA, USA).

The protein extracts (30 μg) were separated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to a nitrocellulose membrane. They were blocked in 5% non-fat dry milk in TBS (0.15 M NaCl, 25 mM Tris–HCl, 25 mM NaF) for 2 h and then incubated overnight at 4°C with anti-G-CSFR (1:500, BD Biosciences), anti-STAT3 (1:1000, Cell Signaling Technology), and anti-phospho-STAT3 (1:1000, Cell Signaling Technology) antibodies. After washing three times in TBST (TBS + 0.5% Tween-20), the membrane was incubated with the secondary antibody conjugated to horseradish peroxidase at a 1:5000 dilution for 1 h at room temperature. Chemiluminescence detection of β-actin (Santa Cruz, USA) was performed to ensure equal gel loading. The blots were developed with enhanced chemiluminescence (Pierce), digitally scanned (GS-700, Bio-Rad) and analyzed (Molecular analysis™, Bio-Rad).

All data in this study are presented as mean ± standard deviation. Data were analyzed using repeated measures of analysis of variance or Mann–Whitney U test. Two-tailed probability value of <0.05 was considered significant.

Exposure of A1 cells to OGD decreased neuronal viability over time. The A1 cells exhibited shrinkage with a loss of neurites from 3 h. Between 6 and 12 h, viability was reduced to 50% of control level (3 h: ~71%; 6 h: ~52%; 12 h: ~50%), and after 18 h, 85% of the cells were dead. Cells incubated under hypoxia or glucose deprivation alone did not show a similar extent of cell damage. The parental human neuroblastoma cell line, SK-SH-Sy5y did not show morphological evidence of ischemic damage until 12 h.

MTT and LDH outcomes were obtained from A1 cell cultures under OGD for 6 h with a various concentration of G-CSF. A G-CSF concentration of 25 ng/ml was maximally effective in reducing cell death, leading to an increase of approximately 20% in MTT absorbance, consistent with a significant increase in the number of viable cells in culture (Fig. 1D; E; p = 0.01, n = 3). At higher G-CSF concentrations, the protective effect tapered off. In addition, OGD induced a significant cytotoxicity from A1 cell cultures (48%), as measured in LDH release assay. G-CSF reduced the cytotoxicity, at optimal concentrations (5 ng/ml: 35%, 25 ng/ml: 28%; Fig. 1F; p = 0.002, n = 3).

The addition of G-CSF (25 ng/ml) also increased cell viability by...
170

Fig. 1. Protection of A1 cells against OGD by G-CSF. At 6 h after OGD, ∼50% of A1 cells appeared to be rounded and shrunken with retracted or beaded dystrophic neuritis (A and B). G-CSF increased A1 cell survival (C and D). Cell viability (E) and cytotoxicity (F) was determined by the MTT and LDH assay. Treatment of cultures with G-CSF increased cell viability and attenuated a cytotoxic effect under OGD. G-CSF also increased the cell viabilities after 12 h but not 18 h. Data are mean ± S.D. values of three independent experiments. *p < 0.05 compared with OGD-only group.

16% at 12 h, but not 18 h following ischemia (Fig. 1G; p = 0.001, n = 3).

To verify that OGD sensitizes A1 cells to apoptotic or necrotic cell death, cells were analyzed by annexin V-PI flow cytometry. OGD resulted in ∼43% apoptotic or necrotic cells (Fig. 2A; Annexin V+PI−: 7%, Annexin V+PI+: 36%). In the presence of G-CSF (25 ng/ml), only 21% cells underwent apoptosis or necrosis (Fig. 2C; Annexin V+PI−: 3%, Annexin V+PI+: 18%). Morphological evaluation of DAPI stained sections taken after 6 h of OGD revealed that some cells were necrotic. Many others, however, displayed extensive apoptotic body formation.

Caspase-3 was activated after OGD exposure. Upon G-CSF treatment, the active caspase-3 immunoreactivity was reduced in number (Fig. 2F; 8% versus 17%).

To identify the transcriptional mechanism involved in the neuroprotective effect of G-CSF, the cultures were immunostained with antibodies against G-CSFR, and total cell lysates were harvested and subjected to western blot analysis. G-CSFR was expressed in most cells (Fig. 3A–C), and its levels were not altered by OGD or G-CSF treatment (Fig. 3D). G-CSF induced phosphorylation of STAT3 proteins, while OGD led to a decrease of STAT3 and pSTAT3 (Fig. 3E). The optical density analysis (Fig. 3F) showed a 3.5-fold higher expression for pSTAT3 in the G-CSF-treated cultures compared with normal control or OGD alone ones.

Recent studies have shown G-CSF to have a direct neuroprotective effect on in vivo focal ischemia and in vitro glutamate induced excitotoxicity in cultured mice cerebellar granule neurons [22,23]. G-CSF could be considered as a potential treatment for stroke due to its angiogenic and direct neuroprotective action. The rationale for this study was that the effect of G-CSF on human brain is unknown and that we therefore sought to determine if G-CSF can protect human cerebral neurons in vitro ischemia. We report that cell death after OGD is a mixture of apoptotic and necrotic processes in human neurons, which is reduced after 6 h of treatment with G-CSF, via activation of G-CSF receptors and subsequent activation of the STAT pathway. The results extend the previously described positive effects of G-CSF in rodent neurons in vivo to human embryonic neurons in vitro.

Neuronal samples prepared from human brains have been often used in order to study the biology and function of neurons and to study the pathophysiology of neurodegenerative diseases. To use neurons obtained from neurosurgery might be considered to be more suitable for the study of the human brain. However, such studies are severely limited by the lack of
sufficient numbers needed to study detailed cellular and molecular properties. Recently, hybrid human neuronal cell lines were generated by fusing human fetal CNS neurons with human neuroblastoma cells [18]. One of these clones, the A1 cell line, was demonstrated to exhibit properties of primary human cerebral neurons and serve as a valuable in vitro model for investigating the biology, physiology, and pathology in a similar way to human cerebral neurons [8,18]. In our experiments, in vitro ischemia model involved the A1 cells under 6-h OGD when the viability was reduced to 50% of control level, and the cells exhibited necrotic or apoptotic features. OGD-induced toxicity in human cerebral neurons was significantly attenuated by G-CSF treatment, determined by MTT and LDH release assays. The additional finding that G-CSF-induced effect tapered off at higher concentration than 25 ng/ml or during longer OGD, suggested that the neuroprotection by G-CSF might be critically dependent on proper concentration and duration of ischemic insult, resulting in a narrow therapeutic effectiveness window in ischemia pathophysiology.

Ischemic brain contains various states of cells undergoing apoptosis or necrosis [16]. Neuronal death after ischemia might involve a combination of apoptotic and necrotic processes even at the level of the individual neuron [5,17]. This raised the question how G-CSF induces neuroprotective effects under OGD. In the present study, staining cells simultaneously with Annexin V and the PI allowed the discrimination of viable cells (Annexin V−PI−), early apoptotic (Annexin V+PI−) and late apoptotic or necrotic cells (Annexin V+PI+). G-CSF seemed to mediate their neuroprotection by reducing both apoptotic and necrotic cells. In addition, the apoptosis after ischemia is mediated mainly by the action of caspases [16]. The cleavage of caspase-3 from its pro-form (procaspase-3) to its active form has been shown to be critical for its role in apoptosis [20]. In our study, G-CSF prevented caspase-3 activation and subsequent cell death under OGD.
Fig. 3. Association of G-CSF-induced neuroprotection with G-CSF receptors and STAT pathway. Most A1.1 cells expressed G-CSFR in culture (A–C). Western blot analysis was sequentially probed for human G-CSFR (D), STAT3 (E, upper panel), and phospho-STAT3 (E, lower panel) in cultures exposed to control conditions, OGD for 6 h, and OGD for 6 h with 25 ng/ml of G-CSF. The bands of β-actin in the lowest panel are shown for internal standards. G-CSF led to the phosphorylation of STAT3 proteins, while OGD led to a decrease of STAT3 and pSTAT3 (F). * p < 0.05 compared with normal control (*) or OGD alone (#) group, respectively.
G-CSFR is a single-chain member of the cytokine receptor superfamily, which lacks tyrosine kinase activity [10]. Binding of G-CSF to its receptor, induces the activation of JAK-1 and JAK-2, which also leads to the phosphorylation of STAT1 [11]. On phosphorylation, STAT translocates to the nucleus and initiates transcription of its target genes, which bring about pleiotropic effects [7,11]. STAT3 is the principal STAT protein activated by G-CSFR, and mediates anti-apoptotic function such as bcl-2 upregulation and provides trophic support of neurons to survive [25]. In our study, G-CSFR was expressed in the A1 cell line, and the pSTAT3 level was increased by G-CSF treatment, while total STAT3 protein levels were not changed, supporting that STAT phosphorylation depends on G-CSFR signaling. The STAT3 upregulation by G-CSF observed in vivo ischemia [22] was not seen in the A1 cell line. The dense nuclear labeling of STAT3 in the penumbra could reflect membrane receptor-mediated translocation of STAT3 from the cytoplasm to the nucleus that corresponds to the upregulated pSTAT3. G-CSF has a receptor-mediated protective effect on human cerebral neurons via activation of STAT3 following ischemic injury. G-CSF-induced neuroprotection may represent a new therapeutic strategy in ischemic stroke.

Acknowledgments

This study was supported by the 21st Century Frontier Research Fund of Ministry of Science & Technology (SC3060) and by grant from the Seoul National University Hospital, Sam-sung Research Fund (21-2003-002-0), Republic of Korea.

References