An Exact Pricing Error of the APT
within the Arbitrage Framework

Chang Mo Ahn*

We derive an exact deviation for an individual asset from APT
pricing in a finite economy within the arbitrage framework. This
deviation is the product of a tradeoff between mean and
variance of the efficient arbitrage portfolio, the asset’s idiosyn-
cratic variance and the proportion of this arbitrage portfolio
represented by the asset. We show that the deviation becomes
negligible in an infinite economy if the efficient portfolio is well
diversified. (JEL Classification: G12)

I. Introduction

The arbitrage pricing theory (APT), introduced by Ross (1976a, b)
and extended further by Chamberlain and Rothschild (1983) and
Ingersoll (1984), has shown the existence of an approximate pricing
relationship in an infinite economy, given a factor structure. This
approximate pricing relationship is obtained by employing an
arbitrage argument. But this relationship has been criticized for its
testability as in Shanken (1982, 1985). Shanken (1982) states:
“Ross’s theory does not (even in the limit as the number of assets
approaches infinity) imply exact linear risk-return relation. Thus the
testability of the theory could reasonably be questioned on this
ground alone.” Connor (1984) derived an exact APT model asympto-
tically in an infinite economy by using an equilibrium argument.
Also the testability of the Connor model has been questioned as
Shanken (1982) argues, “the ‘equilibrium APT’ appears to be sub-
ject to substantially the same difficulties encountered in testing the
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CAPM.”

Dybvig (1983) and Grinblatt and Titman (1983) derived an approxi-
mate pricing APT model in a finite economy by using an equilibrium
argument. They argue that the magnitude of mis-pricing is explicitly
bounded with additional strong assumptions about preferences,
asset supplies and idiosyncratic variances of assets. An explicit
bound might not be small enough if these assumptions are not
satisfied. Furthermore, this APT model has the same testability
problems that the Connor model has since it is based on the
equilibrium argument.

This paper derives an exact deviation for an individual asset from
APT pricing in a finite economy within the arbitrage framework
which Ross (1976a, b) employes. We will use “pricing error” to
mean deviation from APT pricing. Dybvig (1983) and Grinblatt and
Titman (1983) argue that the pricing error for asset is bounded by
Ro”w;, where R is the risk aversion coefficient, o° is the asset’s
idiosyncratic variance and w; is the proportion of total wealth
represented by the asset. In our model, the exact pricing error for
asset i is given by Togw;, where T is a tradeoff between expected
return and variance of the efficient arbitrage portfolio, ¢ is the
asset’s idiosyncratic variance and w; is the proportion of this
arbitrage portfolio represented by the asset.

In an infinite economy, this exact pricing error becomes negligible
if the efficient arbitrage portfolio is well diversified. We demonstrate
that an exact pricing APT model holds asymptotically in an infinite
economy even though Ross (1976b) shows that the sum of squared
deviations from exact pricing is bounded. In the Ross model, it is
unclear how accurately each asset is priced under the APT. Thus
Shanken (1982) states: “most’ of the deviation from linearity must
be ‘small’, although any particular deviation may be ‘large’.” However,
our APT model shows that the APT prices every asset accurately no
matter how much the idiosyncratic variance of each asset may be
as long as the efficient arbitrage portfolio is well diversified. Hence
we show that the APT is testable if the efficient arbitrage portfolio
is well diversified. Our APT pricing relationship is derived by
considering any set of N assets that follows a factor structure.
There are no restrictions on the relation between the subsets of
assets under consideration and other assets in the economy.
Hence, our APT model can be testable for subsets of the universe
of assets.! Since our model is not an equilibrium APT model, it
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may avoid the difficulties of testing CAPM. Shanken (1985) states:
“As we have seen, however, nothing in D-R’s analysis indicates that
a refutable empirical hypothesis can be obtained within the
arbitrage framework itself.” Our APT model provides a testable
empirical hypothesis obtained within the arbitrage framework.
Section II provides a brief review of the Arbitrage Pricing Theory.
Section III shows an exact pricing error for an individual asset in a
finite economy within the arbitrage framework. Section IV investi-
gates the APT model in an infinite economy. It demonstrates that
an exact pricing APT model holds asymptotically. Section V provides
a summary.

II. Arbitrage Pricing Theory

The APT assumes returns are generated by a K-factor structure
denoted as

R=E+Bf+te, (1)

where R=an N-dimensional vector of the random asset returns,
E=an N-dimensional vector of the ex-ante expected returns,
B=an NXK matrix of factor loadings,
f=an K-dimensional vector of mean zero factors, which are
assumed to be uncorrelated with each other,
e=an N-dimensional vector of mean zero idiosyncratic
disturbances, which are assumed to be uncorrelated with
the factors and with each other.
Ross’ argument is as follows. Suppose we form an arbitrage
portfolio with no systematic risk such that

w’ 1ly=0 and w' B=0, 2)
where w=an N-dimensional vector of portfolio weights,

1y=an N-dimensional vector of ones.
Then the ex-post return of the arbitrage portfolio is given by

w’ R=w’E+w’ Bftw' e=w’E+w’e. 3)

The law of large numbers suggests that in an infinite economy,

lDybvig (1983), and Grinblatt and Titman (1983) postulate a factor
structure for assets in the economy. As Shanken (1985) points out, this is
a fundamental departure from the original APT which requires a factor
structure for a given subset of assets.
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w'e=0, 4)

because the arbitrage portfolio is assumed to be well-diversified.
Thus w'R=w’E. Since this arbitrage portfolio requires zero net
investment (i.e. w’ 1y=0), w'R=0 from the absence of arbitrage. It
implies that

w E=0. (5)

In sum, any portfolio satisfying (2) must also satisfy (5), given
the assumption that the portfolio approximately eliminates the
idiosyncratic risk. But in a finite economy where the number of
assets is finite, we cannot guarantee that w’E=0, since it may be
practically impossible to diversify the idiosyncratic risk completely.
However, we assume in this section for pedagogic purposes that e=
0. Then (2) implies that w’E=0. Otherwise, there must be an
arbitrage opportunity. It is well known that (2) and w’E=0 together
implies the existence of the linear return relationship (APT pricing):

E=2o+B A for iR, (6)

where A1, is an N-dimensional constant vector.

Ross (1976b) has shown that an approximate APT model holds in
an infinite economy without assuming e=0. The sum of squared
deviation from (6) is bounded as the number of assets approaches
infinity, i.e.

(E=20—BA)E—210—BA) <co as N— oo, (7)

In Section III, we will derive an exact deviation for each asset
from APT pricing in a finite economy within the arbitrage frame-
work under imperfect diversifiability of the idiosyncratic risk.

III. An Exact Pricing Error for Each Asset in a Finite
Economy

In a finite economy, undiversifiability of the idiosyncratic risk
implies that the absolute value of the idiosyncratic disturbance of
the arbitrage portfolio is greater than zero,

[well >0. 8)

It follows that w’'ee’w=>0. By taking an expectation operator, we
obtain
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w’Elee’ lw=w’ Var[elw=w’ Vw>0, 9)

where V is assumed to be an NxXN diagonal covariance matrix of
idiosyncratic disturbances defined by Varle].2

The arbitrage portfolios are assumed to require zero net invest-
ment and to eliminate factor risks as in Ross (1976a, b),

w’' 1y=0 and w’'B=0. (10)

The arbitrage portfolios are risky since the idiosyncratic disturbance
cannot be eliminated completely. Ross (1976b) assumes risk averse
investors for whom the coefficient of relative risk aversion is
uniformly bounded. He shows that from utility maximization, the
variance of the efficient arbitrage portfolio with zero factor risk and
zero net investment which provides a positive expected return must
be bounded away from zero (i.e. positive). He demonstrates that the
minimum variance for the portfolio solving the following problem is
strictly positive.

Problem 1
Minimize w’Vw
w
subject to w 1y=0, w'B=0 and O<c<w’E.

In fact, he used additional technical assumptions such as non-
negligibility of type B agents whose relative risk aversion is
uniformly bounded, and the existence of at least one asset with
limited liability. But we do not need these assumptions. The only
assumptions we need in deriving the APT model are the absence of
arbitrage and risk averse investors. A much simpler proof is
provided in the following lemma.

Lemma 1
The minimum variance of Problem 1 is strictly positive.

Proof: The Kuhn-Tucker conditions for Problem 1 are
2Vw—x1y—yB—zE=0, (11)
w’'1ly=0, (12)

9 612 0 0
Ve 0 022 0
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w’ B=0, and (13)
c—w E=0, (14)

where x, y and z are Lagrange multipliers. Multiplying both sides
of (11) with w and using (12) and (13) gives

2w’ Vw—zw’ E=0. (15)

Since z is positive, the strict positivity of w’E implies the strict
positivity of w’Vw. The proof is complete.

The result of Lemma 1 is intuitively appealing since if a zero-
investment, zero-loadings arbitrage portfolio with positive expected
return has zero variance, it implies an arbitrage opportunity. Ross
(1976b) demonstrates, by using Lemma 1, that the sum of squared
deviation from APT pricing is bounded as the number of assets
under consideration approaches infinity. In order to obtain the
pricing structure, we consider a problem which is in a sense dual
to Problem 1. Our approach is similar to the one to obtain a single
beta representation of the Capital Asset Pricing Model (CAPM).
Consider the following problem:

Maximize w’'E
w

subject to w ly=1 and O<w’'Vw<d,
where V is the covariance matrix of asset returns.

The first order condition of the above problem provides a single
beta representation for expected return on each asset i in terms of
the covariance of random return on the efficient portfolio w with
random return on the individual asset i. The pricing relationship
for the APT can be obtained by the first order condition for the
dual problem of Problem 1. Similarly, the return on asset i under
APT pricing is determined by the covariation of random return on
the efficient arbitrage portfolio with random return on asset i. This
efficient arbitrage portfolio is the solution of the dual problem. We
formulate the following dual problem to Problem 1.

Problem 2
Maximize w'E
w
subject to w* 1y=0, w'B=0 and O<w’' Vw<d.

We use the arbitrage portfolio to mean the portfolio with zero-
investment and zero-loadings. Also we use the efficient arbitrage
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portfolio(w*) to mean the solution to Problem 2. We will dem-
onstrate that the expected return on the efficient arbitrage portfolio
with non-zero idiosyncratic risk must be positive. We will show by
employing the same technique used in Lemma 1 that the maximum
expected return for Problem 2, w*E, is strictly positive.

Lemma 2
The maximum expected return of Problem 2 is strictly positive.

Proof: The Kuhn-Tucker conditions for Problem 2 are

E—x1y—yB—-2zVw*=0, (16)
w* 1y=0, (17)
w’'B=0, and (18)
d—w* Vw*=0, (19)

where x, y and z are Lagrange multipliers. Multiplying both sides
of (16) with w* and using (17) and (18) gives

w* E—2zw* Vw*=0. (20)

Since z is positive, the strict positivity of w* Vw* implies the strict
positivity of w* E. The proof is complete.

Lemma 2 argues that risk aversion requires positive expected
return for the efficient arbitrage portfolio with non-zero idiosyncratic
risk. Intuitively, a risk averse investor would hold an arbitrage
portfolio with non-zero idiosyncratic risk only if it provides positive
expected return. We will derive the exact pricing error for the APT.
Since risk averse investors would hold the efficient arbitrage
portfolio (w*) and since the pricing relationship is determined by

w*, we will focus on the efficient arbitrage portfolio. Lemma 2
implies that if

w* 1y=0, w*’B=0 and w* Vw*>0 for w*<=R", 21
then we must have
w*E>0, (22)

where w* is the efficient arbitrage portfolio, the solution to Problem
2. It follows that there is no solution (i.e. the efficient arbitrage
portfolio), w*=R", which satisfies the following system,

w* 1y=0, w*B=0 and w*Vw*>0 and w*E<O. (23)
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If and only if there is no solution for the system (23), the model
holds as shown in the following theorem.3

Theorem 1
Exactly one of the following systems has a solution.

System A: w* 1y=0, w*’B=0, w*' Vw*>0 and w* E<O0, for w*=R,
where w* is the efficient arbitrage portfolio.

System B: E= 2o+ B + Vw*T for i<R",
where 1o is an N-dimensional constant vector, T is a
positive scalar and w* is the efficient arbitrage portfolio.

Proof: See the Appendix.

Theorem 1 states that if one of these systems has no solution,
there is a solution for the other system. From the concavity of
preference, there is no solution of w*ER" for System A. Thus there
is a solution of A,=R", i1 <R, and TER' for System B. System B
provides the exact pricing errors from APT pricing, i.e.

E— 20o—BA=Vw'T. (24)

The exact pricing error on asset i is given by Tolw, a positive
scalar, where ¢ is the idiosyncratic variance of asset i and wy is
the proportion of the efficient arbitrage portfolio represented by
asset i. System B specifies the sign of the exact pricing error for
asset i such that it depends on the sign of w; If any asset i has
been in a short position to form the efficient arbitrage portfolio
(w*), the sign of the pricing error for this asset is negative. If it is
in a long position, the sign of its pricing error is positive.4 The
positive scalar T is further explained by the following theorem.

Theorem 2
The positive scalar T is
w*E
T= ———=2z, (25)
w*/ Vw*

where z is Lagrange multiplier in (16).

3Theorem 1 is one of Theorems of the alternative. See Mangasarian (1969)
for a detailed discussion of theorems of the alternative.

4Uniqueness of the vector w* is obvious. The optimal solution w in
Problem 1 is unique from the strictly convex objective function and the
compact set of constraints. Uniqueness of the optimal solution w* in
Problem 2 follows from the fact that Problem 2 is equivalent to Problem 1.
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Proof: Multiplying both sides of System B with w* gives
wYE=w" 1y A otw* B A +w* Vw*T, (26)

where 10" is an element of 2o. Using (17), (18) and (20) provides
(25). The proof is complete.

The positive scalar T is twice the Lagrange multiplier z in
Problem 2. That indicates the marginal effect on the expected return
on the efficient arbitrage portfolio of increasing the idiosyncratic
risk by 1 unit. Also it is a tradeoff between mean and variance of
the efficient arbitrage portfolio. This looks very similar to a linear
tradeoff between mean and standard deviation, &, which, Cham-
berlain and Rothschild (1983) argue, plays an important role in the
analysis of the factor structure. One interesting result in our
analysis is that System B is exactly the same as the first order
condition of Problem 2 in equation (16). System B is equivalent to
the mean-variance efficiency of the arbitrage portfolio. A similar
observation has been made by Roll (1977) and Ross (1977) for the
CAPM. The CAPM is equivalent to the statement that the market
portfolio is mean variance efficient.

Similarly, we can argue that the APT is equivalent to the
statement that the mean-variance efficient arbitrage portfolio is
well-diversified. This will be clearly demonstrated in Theorem 3 and
Theorem 4. So far, even though we have worked in the arbitrage
framework used by Ross (1976a, b), we have not employed an
arbitrage argument. In fact, we will employ an arbitrage argument
to explain the limiting behavior of the pricing error in proving
Theorem 3 and Theorem 4.

We might argue that the exact pricing error, To¢;w*, for the
individual asset i, will be negligible, if T, as a function of w;*, does
not increase too fast, as the number of assets approaches infinity.
(As the number of assets approaches infinity, w;* will obviously be
negligible.) We will show this in the next section.

IV. The APT in an Infinite Economy

In this section, we show that an exact pricing APT model holds
asymptotically in an infinite economy if the efficient arbitrage
portfolio (w*) is well diversified. In Section III, we derived the exact
pricing errors in a finite economy, i.e.
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E—10—BA=Vw*T. (24)
The exact pricing error for asset i can be written as
Ei—2o*—BiA=To ‘w*, 27)

where 1o is an element of Ao, B; is the i" row of B and ¢/ is
the ™ diagonal element of V (i.e. the idiosyncratic variance of asset
i).

If the arbitrage portfolio is well diversified in an infinite economy,
the proportion of the efficient arbitrage portfolio represented by
asset i is of order 1/N in absolute magnitude as in Ross (1976Db)
ie.

aj

w;= + ﬁ N (28)

where a; is a positive constant. The variance of the efficient
arbitrage portfolio is

a’o
w*’Vw=2w,~”m= T (29)
The variance of the efficient arbitrage portfolio is bounded by
o* o?
a — <w¥ Vw<a*— , (30)
N N
where a is the smallest a;, a is the largest a; and ¢ is the average
variance of the e; terms (e; is the i element of the vector e).

If the number of assets approaches infinity, the variance of the
arbitrage portfolio will be negligible. If the arbitrage portfolio is
well-diversified, the absolute exact deviation for asset i from APT
pricing is
a;o i’w*’ E

. (81)
Nw* Vw*

[To i w*| =
The following theorem demonstrates that if the number of assets
approaches infinity, the pricing error for asset i is negligible.

Theorem 3
The absolute pricing error from exact pricing for asset i,

|To fwi*|— 0 as N— oo, (32)

Proof: If follows from (30) and (31) that the absolute deviation is
bounded, i.e.
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aio#w*’E<a6i2w*'E actw* E

Nw* Vw* — o?
Na*—
N

|Tofw™| = (33)

QZGZ

Since the efficient arbitrage portfolio is assumed to be well
diversified, w* Vw*— 0 as the number of assets approaches infinity
as demonstrated in (30). By the absence of arbitrage, if

w* 1y=0, w*B=0 and w* Vw*— 0, (34)
we must have
w* E— 0. (35)

(33) and (35) imply that the absolute deviation from exact pricing is
negligible. The proof is complete.

This is a strong result. It shows that an exact pricing APT model
holds asymptotically in an infinite economy. Ross (1976Db)
demonstrates that as the number of assets approaches infinity, the
sum of squared deviations is bounded, i.e.

SWIE — Ao —BiAP<co. (36)

Shanken (1985) states: “The APT remains silent, however, with
respect to the pricing of a given individual security with positive
residual variance.” The above result shows that the APT provides
the negligible deviation for each asset no matter how much the
residual variance of the asset may be. Even the sum of squared
deviations from exact pricing is negligible in an infinite economy as
shown in the following theorem.

Theorem 4
The sum of squared deviations is negligible as the number of
assets approaches infinity, i.e.

SEL[E: — Ao —BiAF—0 as N— oo, (37)
Proof. See the Appendix.

Shanken (1985) states: “In fact, as emphasized in Shanken
(1982), the APT restriction is an approximation, one which prices
“most” assets well but permits arbitrarily large deviations from
exact pricing on a finite asset. Thus it is difficult to conceive of
any (finite) empirical procedure that could be used to refute the
actual conclusion of the APT. In this sense, the theory is
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untestable in principle.” He states: “My thesis in Shanken (1982)
was i) the arbitrage paradigm has not produced a refutable
hypothesis.” The Shanken argument can apply to only (36).
Theorem 3 and Theorem 4 show that the APT prices every asset
very accurately. His argument does not apply to our APT model.
Hence the APT is testable in principle if the efficient arbitrage
portfolio is well diversified.

V. Summary

The exact pricing error for an individual asset is derived in a
finite economy by using an arbitrage framework. The exact pricing
error is the product of a trade-off between mean and variance of
the efficient arbitrage portfolio, the idiosyncratic variance of the
individual asset, and the proportion of this arbitrage portfolio
represented by the individual asset. The trade-off between mean
and variance is twice the Lagrange multiplier for the idiosyncratic
variance of the efficient arbitrage portfolio. That indicates the
marginal effect on the expected return on the arbitrage portfolio of
increasing the idiosyncratic variance by 1 unit.

In an infinite economy, the pricing error for the individual asset
is negligible if the efficient arbitrage portfolio is well diversified. Also
the sum of squared deviations from exact pricing is negligible. The
APT is equivalent to the statement that the mean-variance efficient
arbitrage portfolio is well-diversified. If the portfolio is well
diversified, we have an exact APT model asymptotically.

The derivation of an asymptotic exact pricing model in an infinite
economy depends critically on how well the efficient arbitrage
portfolio is diversified. It would be an interesting research if one
demonstrates that the efficient arbitrage portfolio is well diversified
in an infinite economy.

Appendix

Theorem 1
Only one of the following systems has a solution.

System A: w*’B=0, w*’ 1y=0, w* Vw*>0, and w* E<O0, for w*eR",
where w* is the efficient arbitrage portfolio.



ARBITRAGE PRICING THEORY 169

System B: E= 2o+ B + Vw*T for i<R",
where 1o is an N-dimensional constant vector, T is a
positive scalar and w* is the efficient arbitrage portfolio.

Proof:

i) Suppose System A has a solution w*R". Then we have to show
that System B has no solution. On the contrary, suppose that
System B has a solution, Ao, A, and T. Multiplying w* on both
sides of System B gives

wW*E = Ao*w* Iy+ w* B A+ w" Vw*T,
where is an element of 1o. From System A,
0>w*E = 20" w" 1y + w* B A+w* Vw*T>0,

a contradiction. Hence, System B cannot have a solution.
ii) Suppose System A has no solution. Then we have to show that
System B has a solution, 1o, 4 and T. Consider the following sets:

Ci={, x, y, 2): w”B=u, w"1ly=x, W’Vw*=y and W E=2z|,
Co={u, x, y, 2): u=0, x=0, y>0 and z<O0}.

Since there is no solution for System A, CiNCy=¢g. Then there
exists a hyperplane that separates C; and C,. That is, there exist
non-zero vector p; and non-zero scalars ps, ps and ps; such that

w* Bp: + w* 1ype + W* Vw*ps + w* Eps > up) + xp2 + yps + zpa,

for u, x, y and z<clCs, p1=R", ngRl, pg,ER1 and p4€R1. Since y
can be an arbitrarily large positive number, it follows that ps;<O.
Since z can be an arbitrarily large negative number, if follows that
ps+>0. Let u=0, x=0, y=0 and z=0. Then

w* Bp, + w* 1ype + w* Vw*ps + w*’ Eps >0 for each w*<R".
By choosing w*= —(Bp: + 1ap2 + Vw*ps + Epa), it then follows that
— | Bpy + 1zp2 + Vw*ps + Eps | >>0.
Thus Bp; + 1yp2 + Vw*ps + Eps=0. It implies that
E= 2o0"1n+B A+ VWw*T,

where Ao0*=—p2/ps, A=-—pi1/ps and T=—p3/ps>0. The equation
can be rewritten as E= 1o"1y+ B A+ Vw*T. Hence, System B has a
solution. The proof is complete.
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Theorem 4
The sum of squared deviations is negligible as the number of
assets approaches infinity, i.e.

SN [E — A, ~BiA?—>0 as N— co,

Proof: If we show (Vw*T) Vw*T— 0 as the number of assets
approaches infinity, the proof is complete. The sum of squared
deviations, T?w* V' Vw*, can be rewritten as

W EPS al o

(w* Vw™*)°N?

T?w* V' Vw* =

Using (30) and (31), we can find a bound of this sum, i.e.

Nw* EY’a’*c* w*"Ex Ed*c*

T*w* V' Vw* <
a'(c?? a‘(c??

where ¢ is the average variance of the e; terms, ¢* is the average
fourth moment of the e; terms and x=Nw?*. x’E is bounded in the
following way:

x'E<aly|E| <oo.

As the number of assets approaches infinity, w* E approaches zero
from the absence of arbitrage. Thus T°w*' V' Vw* — 0. The proof is
complete.

(Received January, 1999; Revised March, 1999)
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