원예과학기술지
KOREAN JOURNAL OF HORTICULTURAL SCIENCE & TECHNOLOGY

2016 한국원예학회 정기총회 및 제104차 춘계학술발표회 자료집
Program & Abstracts
2016 Annual Spring Conference of the Korean Society for Horticultural Science

주제 스마트 원예(Smart Horticulture)의 현황과 발전방안
일자 및 장소 2016. 5.25(수)~28(토), 청원컨벤션센터(CECO)
Program

- **Title:** 2016 Annual Spring Conference of the Korean Society for Horticultural Science
- **Theme:** Smart Horticulture – Current State and Perspectives
- **Date/Venue:** May 25–28, 2016 / Changwon Exhibition Convention Center, Changwon, Gyeongnam, Korea

<table>
<thead>
<tr>
<th>May 25 (Wed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600-21:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>May 26 (Thu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30-09:00</td>
</tr>
<tr>
<td>09:00-10:00</td>
</tr>
<tr>
<td>10:00-11:40</td>
</tr>
<tr>
<td>1. Current status and Standardization Trends of IoT based Smart Horticulture (Hyun Yoe, Sunchon National University, Korea)</td>
</tr>
<tr>
<td>2. Strategy and Policy Direction of ICT convergence in Horticulture Industry (Hong Sang Kim, Korea Rural Economic Institute, Korea)</td>
</tr>
<tr>
<td>11:40-12:00</td>
</tr>
<tr>
<td>- Outstanding Paper Award</td>
</tr>
<tr>
<td>- Best Associate Editor & Best Reviewer Award</td>
</tr>
<tr>
<td>- Outstanding Poster & Oral Award</td>
</tr>
<tr>
<td>12:00-13:00</td>
</tr>
<tr>
<td>13:00-14:00</td>
</tr>
<tr>
<td>14:00-15:00</td>
</tr>
<tr>
<td>1500-17:00</td>
</tr>
<tr>
<td>1600-17:00</td>
</tr>
<tr>
<td>1700-17:30</td>
</tr>
<tr>
<td>17:30-18:00</td>
</tr>
<tr>
<td>12:00-13:00</td>
</tr>
<tr>
<td>13:00-14:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>May 27 (Fri)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30-09:00</td>
</tr>
<tr>
<td>09:00-10:00</td>
</tr>
<tr>
<td>10:00-12:00</td>
</tr>
<tr>
<td>1. Jeong Wook Heo (Rural Development Administration)</td>
</tr>
<tr>
<td>2. Changjae Roh (Inst. of Convergence Technol.)</td>
</tr>
<tr>
<td>3. Changheo Chung (Seoul Natl. Univ.)</td>
</tr>
<tr>
<td>12:00-13:00</td>
</tr>
<tr>
<td>14:00-16:00</td>
</tr>
<tr>
<td>1500-17:00</td>
</tr>
<tr>
<td>1700-17:30</td>
</tr>
<tr>
<td>17:30-18:00</td>
</tr>
<tr>
<td>12:00-13:00</td>
</tr>
<tr>
<td>13:00-14:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>May 28 (Sat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00-13:00</td>
</tr>
</tbody>
</table>

Each oral presentation including question-and-answer time will be limited to 15 minutes. All poster presenters must set up and tear down their posters during the designated times. The author must remain by his/her poster board for the duration of the one-hour poster session.
135 P-1-3 Quality Change of Baemoochae Plant (X. Brassicaraphanus) during Postharvest Cold Storage
 NaRae Han, Soo-Seong Lee, and Jongkee Kim

136 P-1-4-1 양반에 강하고 다수성 청치마 상추 '삼복하철' 육성
 잔석우, 박수현, 차원영, 정성홍, 이주남, 서명주, 이민정, 임재현, 김은지, 김희태, 고순보

137 P-1-4-2 QTL Mapping of CMV-resistant Pepper with a Genotyping-By-Sequencing Approach
 Min Ho Eun, Jung Heon Han, Jae Bok Yoon, Ye Rin Lee, Kyumi Jeong, Heein Kim, and Jundae Lee

138 P-1-4-3 내염성 박 대목 무양 계통의 수박 접목 후 생육 비교
 안세준, 문지혜, 허유찬, 박대성, 김수호, 서상열, 최영철, 남주현, 김선민

139 P-1-4-4 Fine Mapping of the Genic Male-Sterile Gene (msk) in Pepper (Capsicum annuum L.)
 Kyumi Jeong, Ye Rin Lee, Heein Kim, and Jundae Lee

140 P-1-4-5 말기 품종의 역병 (Phytophthora cactorum) 저항성 분석
 이애란, 정규기, 김재현, 이준대

141 P-1-4-6 RAPD-SCAR Molecular Markers Related to Powdery Mildew Resistance in Squash
 Ha-Jin Jeon, Sang-Ri Seo, and Young-Doo Park

142 P-1-4-7 High-throughput SNP 분자 표지 개발을 통한 바추 MAB 유전자계 구축
 김정희, 안일군, 이은현, 박수형, 김정호

143 P-1-4-8 수용용 사계성 반 '무해' 육성
 이종남, 김혜진, 최미자, 김기호, 남정형, 홍수영, 김수현, 송학배, 김호로, 서중덕

144 P-1-4-9 다양성 세라리 퀘브를 활용한 십과 콩 토마토 DNA 추출
 김태인, 성서영, 김현철

145 P-1-4-10 영향도 카.lists 저항성 수박 개종 & 박 선발
 문지혜, 김수호, 박대성, 허유찬, 조명철, 양영수, 조용열

146 P-1-4-11 다양한 토마토 유전자원 수집 및 평가 결과
 조명철, 양영수, 김수호, 김정호, 허은숙, 최학수

147 P-1-4-12 웨도 & 지리적 위치에 따른 전 세계 무재배중 개체생기 개발
 김은선, 임재현, 박수형, 허선미, 김재현, 박재범

148 P-1-4-1 Molecular Mapping of the Root-Knot Nematode (Meloidogyne incognita) Resistance Gene Me7 in Pepper and Histological Characterization of the Parental Lines
 Amornrat Changkwan, Jin-Kyung Kwon, Ji-Woong Han, Joung Ho Lee, Gyung-Ja Choi, Yong-Ho Kim, and Byoung-Cheol Kang

149 P-1-4-1 긴자 Genome와 Genotype에 따른 효과적 갈변특성
 임주성, 이상기, 한다솔, 김미영, 조진성, 조광수, 장동철, 유홍성, 임재현, 김희영

150 P-1-4-1 A Study on the Characteristics of Various Morpholoy to Double Haploid Population of Brassica rapa
 Mi-Suk Seo, Kyousang-Ah Lim, Mi-Sun Moon, Hye-Young Seo, Seung-Ah Choi, Ji-Yoon Lee, and Jung-Sun Kim

151 P-1-4-1 파프리카 CMV, TSWV 저항성 개선 개선
 박종숙, 장지혜, 이재원, 권성윤, 송주영

152 P-1-4-1 다수성 미리 파프리카 알아나고 육성
 임재현, 박대성, 김철호, 김사진, 권오성, 권오윤

153 P-1-4-1 전국 재생용 다수성 6쪽 나무 '홍산'
 김재현, 임재현, 김협진, 임재현, 임재현, 임재현

154 P-1-4-1 Inheritance Study of a CMV Resistance Gene in Cucumber (Cucumis sativus L.) and Candidate Gene Analysis
 Ji-Woong Han, Joung Ho Lee, Seul Choi, Byoung-Chool Kang, and Kihwaon Song

155 P-1-4-1 흔히 인간이 볼 법한 치료용 감자 신종종 '남선'
 조진성, 전준기, 이영규, 한인성, 이형문, 김상영, 김대근, 조광수, 임재성, 장동철, 임재현, 임재성, 임재현, 임재현, 임재현

156 P-1-4-1 파 F1 종자생산용 무항생성 양봉활염 개발 '현제 27005'
 김화균, 김현진, 이재원, 장명철

157 P-1-4-1 Carotenoids Profiling to Infer Genetic Determinants of Tomato Fruit Colors
 Hee Ja Yoo, Gyu Myung Lee, Chang-Sik Oh, Inhwa Yeon, and Ye Min Lee

158 P-1-4-1 양파 F1 종자생산용 중품병종 양봉활염 개발 '현제 30011'
 김철호, 최민석, 장명철

159 P-1-4-1 Characterization of Ethylene Biosynthesis and Signaling Genes in Cucumber
 Jeong Hwan Lee, Daesun Choi, Youjin Jung, Hye Jin Kwon, Ji Hoon Han, and Sanghyeob Lee

160 P-1-4-1 수집지역별 한지형 말린 유전자원의 면역 성능 비교
 박영육, 장재현, 정재현, 이사암
Molecular Mapping of the Root-Knot Nematode (Meloidogyne incognita) Resistance Gene Me7 in Pepper and Histological Characterization of the Parental Lines

Ammoret Changkewon, Jin-Kyung Kwon, Ji-Woong Han, Jeong-Ho Lee, Gyu-Ja Choi, Yong-Ho Kim, and Byoung-Cheol Kang

1Department of Plant Science, Plant Genomics and Breeding Institute, and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea. 2Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea. 3Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.

The famous pepper accession (Capsicum annum) CM334 is known to be a resistant source against several pathogens including root-knot nematode (Meloidogyne incognita). This line carries the resistance gene Me7 that triggers a hypersensitive response (HR) resulting in brown or petal-egg-mass production on root surface. This study was aimed to map the Me7 gene using the F2 populations derived from a cross between ECW30R, a susceptible line and CM334. The previously developed molecular markers were analyzed to delimit the genomic region of Me7. A YAC clone corresponding to the genomic region was sequenced. To confirm the resistance phenotype, resistant and susceptible plants were compared after root inoculation with M. incognita race 4 at the second juveniles stage (J2). The test plants were inoculated with 1,000 J2 approximately, four weeks of post planting. Disease reaction on plants roots were observed at 5, 10 and 15 days of post inoculation. The roots of infected plants were characterized by examining histological variations, number of gall formation and comparing gall size on root surface. Further study will confirm and distinguish the resistance and susceptibility
Molecular Mapping of the Root-Knot Nematode (Meloidogyne incognita) Resistance Gene Me7 in Pepper and Histological Characterization of the Parental Lines

Amornrat Changkwian1, Jin-Kyung Kwon1, Ji-Woong Han, Jang-Ho Lee, Gyung-Ja Choi1, Yong-Ho Kim2, and Byoung-Cheol Kang2

1Department of Plant Science, Plant Genetic and Breeding Institute, and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul (151-921), Republic of Korea; 2Research Center for Biochemistry, Korea Research Institute of Chemical Technology, Daejeon 341-440, Republic of Korea; 3Department of Agricultural Biotechnology and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul (151-921), Republic of Korea.

The famous pepper accession (Capsicum annuum) CV7003 is known to be a resistant source against several pathogons including root-knot nematode (Meloidogyne incognita). This line carries the resistance gene Me7 which triggers a hypersensitive response (HR) resulting in reduction or halt egg mass production on root surface. This study was aimed to map the Me7 gene using the F1 population derived from a cross between EC100W, a susceptible line and CV7003. The previously developed molecular markers were analyzed to define the genomic region of Me7. A Vac gene corresponding to the disease resistance genes was sequenced. To confirm the resistance phenotype, resistant and susceptible plants were compared after root inoculation with M. incognita race 4 at the second juvenile-stage (L3). The resistant plants were inoculated with 1,000 J3 per plant, approximately four weeks of post planting. Disease reaction on plants was observed at 5, 10 and 15 days of post inoculation. The roots of resistant plants were characterized by examining histological variations, number of gall formation and growing size on root surface. Further study will confirm and distinguish the resistance and susceptibility mechanism at cellular level.

Introduction

Root-knot nematode (RKN) is a major pest of Solanaceae family. M. incognita is one of the most virulent species. A second stage juvenile (J2) can penetrate to roots immediately after hatching. Then, successful nematode is able to induce giant cells close to vascular cylinder and this feeding site is essential for reproduction. The giant cell starts inhibiting transfer of water and nutrient, which causes low yield of crop. M. incognita usually completes life cycle in 45 days after penetration. Uncontrolled feeding site causes incomplete life cycle of the plant. The Me7 gene mediates hypersensitive reaction which causes cell necrosis and inhibits feeding site establishment in resistance pepper plants. This study aims at observation of the cellular level of parental line and its mapping of gene using a second filial generation (F2) of pepper derived from the crossed between Early Calabrese 39R (EC100W) and Criolla de Morelos 374 (CV7003) which are susceptible and resistance lines, respectively.

Methodology

Plant Material and Inoculation

A total of 199 F2 plants derived from a cross between C. annuum ‘Early Calabrese 39R’ (EC100W) and ‘Criolla de Morelos 374’ (CV7003) were used in phenotype screening and fine mapping analysis. M. incognita egg masses were extracted using 1% NaOCl solution, and nematodes were collected using Baerman funnel technique. The four-week-old plants were inoculated with 1,000 J3.

Histological Study

The inoculated plants were kept in the growth chamber at 24°C. After 5, 10 and 15 days after inoculation (dai), plants were sprayed and fixed with modified Karnovsky’s fixative and post fixation steps followed according to Moon, et al. (2010) procedure. The tissue sections, were done using ultra-microtome and stained with 1% toluidine blue O in 1% potassium and observed under a light microscope.

Phenotype Screening

The galls formation was assessed after 60 dai. An inoculated plant was washed and measured (Figure 3). Criteria of resistance was done out using gall index system, which was categorized on percentage equal to less than 10%, was presented highly resistant, 11-30% moderate resistant, and over 35% was susceptible.

Genotype Screening

The genotype screening was done initially using SCAR and CAPS markers (Quiroga-Capadona et al., 2007; Patra et al., 2012). To develop closer map, we used BLAST with the pepper CMS49 genome reference (PepX, http://www.peppergenomics.esci.ac.co). Further development of SNP markers were based on PCR and high resolution melting (HRM) techniques.

Mapping Analysis

The Me7 linked markers were analyzed by Cardiovate Affilx 8.4 and mapping distance was calculated by Kosambi’s mapping functions, LOD threshold 3.0 and distance threshold 0.3. The genetic linkage chart was organized with MapChart 2.2 software.

Results and Discussion

Histological Study

External root characteristic study (Figure 1) of the parental lines EC100W (A, C, E) and CMS49 (B, D, F) were conducted at 5, 10, and 15 days, respectively. At 5 dai, gall formation was clearly identified in both lines (A, C, E, B, D, F) due to reduced root. At 10 and 15 dai, susceptible root (C, F) were clearly distinguished with more xylem than the resistant root (A, B, D, E). At 15 dai, there were large well-developed gall in EC100W (C, F) and small galls in CMS49 (B, D). Those galls roots were selected for further study at tissue level. The tissue dissected (Illustrated normal vascular cylinder in non-infected roots) (Figure 2A, B, D, H). At 5 dai, both parents (EC100W, CMS49) were infected but significantly different in size and cell development. At 10 dai, giant cell development was showed in both parents. Nonetheless, only in EC100W (C) the cells close to the feeding site were composed of dense tissue and compared with the CMS49 (F). At 15 dai, the infected cells in EC100W (H) grow much larger than CMS49 (F) and causes compact cell layers in vascular tissue.

Phenotype Observation

From total 199 F2 population the phenotyping showed 103 resistant and 96 susceptible plants (X2 = 5.687 and P > 0.01). The 11 phenotype sets confirmed that resistance phenotype is controlled by a single dominant gene. The gall counts were categorized in 3 groups, highly resistant, moderate resistant and susceptible (Figure 3). The resistant plant roots usually showed no or very small number of gall (CMS49). Plants with moderate resistance showed around 3-5 galls (C). The number of gall formed varied from 10 to 140 in susceptible parent (B) and (F).

Genotype Screening and Map Analysis

The screening was performed using PCR based markers which included SCAR, CAPS and HRM. All of the markers were co dominant markers. The closest flanking markers, SCAR, Primers (Patra et al., 2012) and newly developed HRM (Figure 11) were 3.9 and 4.5 cM away from the Me7 gene (Figure 8, respectively). In the previous research, a RFLP marker was mapped 4.4 cM from the Me7 gene in the population derived from CMS49 (Patra et al., 2012), and the RFLP was mapped to a locus on a Vac gene (PepX, 90 C) YC2022 (Tao et al., 1999). Therefore, in order to see how this could influence the Me7 gene sequence information, the Vac gene was sequenced. Amongst YAC-oriigins used for marker development for fine mapping, the fine mapping showed that the molecular markers, CAPS22B, HRM_YC2023, YAC30, and YAC235 were found to be located about 35 cM away from the Me7 gene. Besides the Vac gene marker sequencing, SNP-LDR candidate gene markers from the phenotyping screening (HRM, NBR201, NBR8035 and NBR134) were also analyzed, nevertheless, none were found to be in the vicinity of the target gene. Further studies with more markers will be developed from the RFLP scaffold.

References

