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Supplementary Material for “Adaptive Regulation to
Nominal Response for Uncertain Mechanical

Systems and Its Application to Optical Disk Drive”
Gyunghoon Park and Hyungjong Kim

This supplementary material aims at providing the detailed proof of the technical lemmas in the authors’ work [SM1].

SM.I. PROOF OF LEMMA 1

The proof begins by computing the time derivative of η using [SM1, Eq. (18a)] as follows:
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where the last equality is derived from

p = τΥ−1(τ)η − Γ(θ̂; τ)Φn
1

gn
x. (SM2)

It is pointed out that u = uc − s̄(C4η),

Υ
(
A4 −Υ−1αC4

)
Υ−1 = ΥA4Υ−1 − αC4Υ−1 =

1

τ
(A4 − αC4) , and ΥΓΦnB2 = γ.

On the other hand, using the nominal components φn and gn, the x-dynamics [SM1, Eq. (2)] can be rewritten as

ẋ =
(
A2 +B2φ

>
n
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x+B2gnuc −B2g

(
s̄(C4η)− λ

)
. (SM3)

Then with (SM3) and an additional symbol

Π := βC2 −Υ
(
A4 −Υ−1αC4

)
ΓΦn + ΥΓΦn(A2 +B2φ

>
n ),

the η-dynamics (SM1) turns out to be a simpler form
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From now on, we claim that Π = 0 regardless of τ , which concludes the proof. To see this, compute ΓΦn as

ΓΦn =


(c2/τ

2) 0

(c1/τ
3)− (c2/τ

2)φn,2 (c2/τ
2)

(c0/τ
4)− (c1/τ

3)φn,2 (c1/τ
3)

0 (c0/τ
4)

 .
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After additional calculations, each of the last two components of Π is expressed as

−Υ(A4 −Υ−1αC4)ΓΦn =


(c2/τ

2)a3 − c1/τ2 + (c2/τ)φn,2 −c2/τ
(c2/τ

2)a2 − c0/τ2 + (c1/τ)φn,2 −c1/τ
(c2/τ

2)a1 + (c0/τ)φn,2 −c0/τ
(c2/τ

2)a0 0

 ,

ΥΓΦn(A2 +B2φ
>
n ) =


0 c2/τ

(φn,1 − φn,2)c2 c1/τ

(φn,1 − φn,2)c1 c0/τ

(φn,1 − φn,2)c0 0

 .
This directly implies that Π = 0, by the definition of β.

SM.II. PROOF OF LEMMA 2

Firstly, we differentiate θ̃ in [SM1, Eq. (26)] as

˙̃
θ =

˙̂
θ − θ̇ = −κΞ>C>3 C3ξ̂ + κΞ>C>3 u− θ̇

= −κΞ>C>3 C3

(
Ξθ̃ + χ̃+ ξ

)
+ κΞ>C>3 u− θ̇

= −κΞ>C>3 C3Ξθ̃ + κΞ>
(
−C>3 C3χ̃+ C>3 (u− u?)

)
(SM4)

in which ξ̂ = ξ̃ + ξ = Ξθ̃ + χ̃+ ξ and u? = C3ξ are used. It is further noted that
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]
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]
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w = −s̄
(
C4p+

c2
τ2

1

gn
C2x

)
= −s̄(C4η) = −s̄(C4η̃ + λ) = −s̄
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c̃

]
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)
(SM7)

where the matrices Cλ, Dλ, Cc, and Dc are defined below [SM1, Eqs. (16) and (23)]. By the definition of Ω in [SM1, Eq.
(30)], the term u− u? in (SM4) is computed as follows:

u− u? = uc + w − u?n + λ?n = (uc − u?n)− (λ− λ?n) + (w + λ)

= (Cc −Cλ)

[
x̃

c̃

]
+ (Cc −Cλ)

[
x̃n

c̃n

]
− Ω. (SM8)

With the matrices
M1 := −C>3 C3, M2 = M3 := C>3 (Cc −Cλ), N1 := −C>3 ,

one can derive the θ̃-dynamics as [SM1, Eq. (27)].
We notice that using the x-dynamics (SM3), it is easy to obtain the [x̃; c̃]- and [x̃n; c̃n]-dynamics as in [SM1, Eq. (28)]. To

carry out the χ̃-dynamics, we substitute [SM1, Eq. (15b)] into [SM1, Eq. (25)], from which it follows:

˙̃
ξ =

˙̂
ξ − ξ̇ =

(
A3ξ̂ + Ψuθ̂ + L(u− C3ξ̂) + Ξ

˙̂
θ
)
−
(
A3ξ + Ψu?θ

)
= A3(ξ̂ − ξ) + L(u? − C3ξ̂) + Ξ

˙̂
θ + Ψu(θ̂ − θ) + L(u− u?)− (Ψu −Ψu?)θ

= (A3 − LC3)ξ̃ + Ξ
˙̃
θ + Ψuθ̃ + (L−Ψθ)(u− u?).

(Here, we use the equalities (Ψu −Ψu?)θ = Ψ(u−u?)θ = Ψθ(u− u?).) The time derivative of χ̃ is then derived as

˙̃χ =
˙̃
ξ − Ξ̇θ̃ − Ξ

˙̃
θ = (A3 − LC3)ξ̃ + Ξ

˙̃
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= (A3 − LC3)(ξ̃ − Ξθ̃) + (L−Ψθ)(u− u?). (SM9)
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Applying (SM8) to the above result, we finally have the χ̃-dynamics as

˙̃χ = (A3 − LC3)χ̃+ (L−Ψθ)

(
(Cc −Cλ)

[
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c̃

]
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)
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]
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where
M4 = M5 := (L−Ψθ)(Cc −Cλ) and N2 := −(L−Ψθ).

In computing the η̃-dynamics in [SM1, Eq. (29)], we differentiate τ η̃ using the η-dynamics [SM1, Eq. (21)] as follows:

τ ˙̃η = τ η̇ − τ η̇?

= (A4 − αC4)η +
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gn
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∂θ̂
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?
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gn

)
γ(θ; 0)Ω + τ∆ (SM10)

where the perturbation term ∆ is given as follows:

∆ :=
1

τ
(A4 − αC4)η? +

1

τ

(
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γ(θ̂; τ)− γ(θ; 0)

)
s̄(C4η) +

1

τ
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?

+
1

τ

g
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(
γ(θ̂; τ)− γ(θ; 0)

)
C4η

? +
1

τ
Υ(τ)

∂Γ

∂θ̂
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1

gn
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For ease of explanation, we rewrite ∆ as ∆ = ∆?
1 + ∆?

2 + ∆?
3 + ∆?

4 with the 4 sub-components

∆?
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1

τ

(
1− g
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)(
γ(θ̂; τ)− γ(θ; τ)

)
s̄(C4η) +
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τ
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γ(θ̂; τ)− γ(θ; τ)
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τ
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We complete the proof of the lemma by showing that each sub-component ∆?
i , i = 1, . . . , 4, is a continuous function of the

state variables that vanishes at the origin; thus, their linear combination ∆ also does. Some useful equalities are

1
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= −τ
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1

a3
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1
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 θ, ∂Γ

∂θ̂
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−1 0

−a3/τ −1

0 −a3/τ
0 0

 .
Then one can compute ∆?

1, ∆?
2, and ∆?

3 as follows:
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∆?
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?
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= −τ


0

1

a3
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))
= −τ


0
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(
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Ω, (SM13)

∆?
3 =


1 0 0 0

0 τ 0 0

0 0 τ2 0

0 0 0 τ3



−1 0

−a3/τ −1

0 −a3/τ
0 0

 ˙̃
θΦn

1

gn
(x̃+ xn)
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1 0

a3 τ

0 a3τ

0 0

κ
(
−Ξ>C>3 C3Ξθ̃ + Ξ>

(
M1χ̃+ M2

[
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c̃

]
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[
x̃n
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]
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Φn

1

gn
(x̃+ xn), (SM14)

from which the arguments on the first three sub-components ∆?
1, ∆?

2, and ∆?
3 are obtained. For the last term, we represent

∆?
4 as follows:

∆?
4 =

1

τ


0

a2 − τ2θ
a1 − τ2a3θ

a0

C4η
? +

1

τ
A4η

? − 1

τ


a3

a2

a1

a0

C4η
? − η̇?

=
1

τ


0

a2

a1

a0

λ− 1

τ


0

τ2θ

τ2a3θ

0

λ+
1

τ


a3

0

0

0

λ+
1

τ


τλ?n

(1)

τ2λ?n
(2) + τa3λ

?
n
(1) + τ2θλ?n

τ3λ?n
(3) + τ2a3λ

?
n
(2) + τ3θλ?n

(1) + τ2a3θλ
?
n

0

− 1

τ


a3

a2

a1

a0

λ

−


1

a3

0

0

 λ̇−


0

τλ?n
(2)

τ2λ?n
(3) + τa3λ

?
n
(2) + τ2θλ?n

(1)

τ3λ?n
(4) + τ2a3λ

?
n
(3) + τ3θλ?n

(2) + τ2a3θλ
?
n
(1)



= −


0

τθ

τa3θ

0

 (λ− λ?n)−


1

a3

0

0

 (λ̇− λ̇n)−


0

0

0

τ3λ?n
(4) + τ2a3λ

?
n
(3) + τ3θλ?n

(2) + τ2a3θλ
?
n
(1)



= −


0

τθ

τa3θ

0


(
Cλ

[
x̃

c̃

]
+ Cλ

[
x̃n

c̃n

])
−


1

a3

0

0


(
CλAn

[
x̃

c̃

]
+ CλN2Ω + CλAn

[
x̃n

c̃n

])

−


0

0

0

τ3λ?n
(4) + τ2a3λ

?
n
(3) + τ3θλ?n

(2) + τ2a3θλ
?
n
(1)


where the last equality comes from

λ− λ?n = Cλ

[
x̃

c̃

]
+ Cλ

[
x̃n

c̃n

]
and λ̇− λ̇?n = Cλ

[
˙̃x

˙̃c

]
+ Cλ

[
˙̃xn
˙̃cn

]
= CλAn

[
x̃

c̃

]
+ CλN2Ω + CλAn

[
x̃n

c̃n

]
.

It should be emphasized that, since λ?n(t) in fact has the form of a biased sinusoid

λ?n(t) = M?
0 +M?

1 sin(σt+ ρ?1),
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with some constants M?
0 , M?

1 , and ρ?1, one can obtain

τ3λ?n
(4)(t) + τ2a3λ

?
n
(3)(t) + τ3θλ?n

(2)(t) + τ2a3θλ
?
n
(1)(t) ≡ 0. (SM15)

This completes the claim on ∆?
4 and also concludes the lemma.

SM.III. PROOF OF LEMMA 3

The proof of the lemma is mainly based on the singular perturbation theory, especially on the Tikhonov’s theorem [SM2,
Thm. 11.2]. To this end, we regard the transformed system [SM1, Eqs. (27)–(29)] as a standard (or two-time scaled) singular
perturbation form with respect to the perturbation parameter τ . More specifically, the former two subsystems [SM1, Eqs. (27)
and (28)] are viewed as the slow subsystem in the standard singular perturbation theory.

Before going on further, we emphasize again that the initial value η̃(0) of the fast variable is a polynomial of 1/τ , as seen
in [SM1, Eq. (32)]. This implies that the requirements of the Tikhonov’s theorem [SM2, Thm. 11.2] are not fulfilled yet. Thus
as in an alternative way, we choose a small time instant T ? > 0 (independent on τ ) such that

‖[x̃(t); c̃(t)]‖ <

√
min(L(Pn))

max(L(Pn))

ε

2
, ∀t ∈ [0, T ?] (SM16)

where Pn is the positive definite matrix such that A>n Pn + PnAn = −I , and L(Pn) stands for the set of all the eigenvalues
of Pn. This selection of T ? is always possible, because the velocity of [x̃, c̃] is bounded around its starting point [x̃, c̃] = 0 due
to the saturation function s. With T ? selected as above, we will analyze the overall system [SM1, Eqs. (27)–(29)] sequentially
for the transient period [0, T ?) and the steady-state period [T ?,∞).

The following lemma indicates that, during the transient period t ∈ [0, T ?), the fast variable η̃(t) converges around its
quasi-steady-state η̃ = 0 with sufficiently small τ .

Lemma SM.III.1. There exists τ1 > 0 such that τ ∈ (0, τ1), the solution η̃(t) of [SM1, Eq. (27)] satisfies

‖η̃(T ?)‖ ≤ k1e−ϕ1(T
?/τ)‖η̃(0)‖+ τk2 (SM17)

where k1, k2, and ϕ1 are independent on τ . �

Proof of Lemma SM.III.1. With the time scale % := t/τ , the η̃-dynamics [SM1, Eq. (29)] is rewritten as a Lur’e-type nonlinear
system

dη̃

d%
= (A4 − αC4)η̃ + γ(θ; 0)uη + τ∆, yη := C4η̃, (SM18)

uη = −
(
g

gn
− 1

)
Ω = −

(
g

gn
− 1

)(
s̄
(
yη + Cλ

[
x̃(t)

c̃(t)

]
+ λn(t)

)
−
(
Cλ

[
x̃(t)

c̃(t)

]
+ λn(t)

))
=: −Ωη(t, yη)

where τ∆ is the perturbation term which vanishes when τ = 0. First, we claim that if τ = 0, then the origin of the nonlinear
system (SM18) is globally exponentially stable. Indeed, the transfer function

1 + (g/gn − 1)C4(sI −A4 + αC4)−1γ(θ; 0)

1 + (g/gn − 1)C4(sI −A4 + αC4)−1γ(θ; 0)
=

1 +

(
g

gn
− 1

)
a2s

2 + a1s+ a0
s4 + a3s3 + a2s2 + a1s+ a0

1 +

(
g

gn
− 1

)
a2s

2 + a1s+ a0
s4 + a3s3 + a2s2 + a1s+ a0

=
s4 + a3s

3 + (g/gn)a2s
2 + (g/gn)a1s+ (g/gn)a0

s4 + a3s3 + (g/gn)a2s2 + (g/gn)a1s+ (g/gn)a0
(SM19)

is strictly positive real [SM2] due to the construction of ai’s. In addition, for all 0 ≤ t ≤ T ?,

g

gn
− 1 ≤ ∂Ωη

∂yη
=

(
g

gn
− 1

)
∂s

∂yη
≤ g

gn
− 1, and

Ωη(t, 0) =

(
g

gn
− 1

)(
s
(
Cλ

[
x̃(t)

c̃(t)

]
+ λn(t)

)
−
(
Cλ

[
x̃(t)

c̃(t)

]
+ λn(t)

))
= 0
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(where the latter equality follows from (SM16)). These facts imply that the nonlinearity Ωη(t, yη) is contained in the sector
[g/gn − 1, g/gn − 1] (with respect to the input yη) for 0 ≤ t ≤ T ?. The circle criterion [SM2, Thm. 7.1] completes the claim
on the case τ = 0.

For the remainder of the proof, we remind that τ∆ is a continuous function of the state variable satisfying limτ→0 τ∆ = 0,
and the slower variables θ̃(t) and [x̃(t); c̃(t); x̃n(t); c̃n(t); χ̃(t)] are bounded for 0 ≤ t ≤ T ?. Finally, the lemma follows from
the vanishing and non-vanishing perturbation theory [SM2, Lems. 9.1 and 9.2]. �

It is important to note that, by Lemma SM.III.1 and the inequality [SM1, Eq. (32)], ‖η̃(T ?)‖ has an upper bound as

‖η̃(T ?)‖ ≤ k1e−ϕ1(T
?/τ)

∥∥∥∥1

τ
Υ(τ)p(0) +

1

τ
Υ(τ)Γ(θ̂(0); τ)Φn

1

gn
x(0)− η?(0)

∥∥∥∥+ τk2. (SM20)

Here as τ approaches zero, the right hand-side of the inequality converges to zero, and so η̃(T ?) also does. (Notice that this
does not take place with η̃(0).) Keeping this in mind, we now concentrate on the steady-state period t ∈ [T ?,∞).

In what follows, we call

dη̃

dσ
= (A4 − αC4)η̃ − γ(θ; 0)Ωη(T ?, C4η̃) (SM21)

(which is the same as the η̃-dynamics (SM18) with τ = 0 and with the slow variables frozen at t = T ?) as the boundary-layer

system. In a similar manner, one can consider the following reduced system in the sense of the singular perturbation theory (to
avoid confusion on the terminology, we denote the state variable of the reduced system as [θ̃◦; x̃◦; c̃◦; x̃◦n; c̃◦n; χ̃◦] rather than
[θ̃; x̃; c̃; x̃n; c̃n; χ̃]):

1

κ
˙̃
θ◦ = −Ξ◦>C>3 C3Ξ◦θ̃ + Ξ◦>

(
M1χ̃

◦ + M2

[
x̃◦

c̃◦

]
+ M3

[
x̃◦n

c̃◦n

]
+ N1Ω◦

)
, (SM22a)

˙̃x◦

˙̃c◦

˙̃x◦n
˙̃c◦n
˙̃χ◦

 =

An 0 0

0 An 0

M4 M5 A3 − LC3



x̃◦

c̃◦

x̃◦n

c̃◦n

χ̃◦

+

N2

0

N3

Ω◦, (SM22b)

where

Ω◦ = s̄

(
Cλ

[
x̃◦

c̃◦

]
+ λn

)
−Cλ

[
x̃◦

c̃◦

]
− λn, and (SM22c)

Ξ̇◦ = (A3 − LC3)Ξ◦ +

 0

−1

0

(u? + (Cc −Cλ)

[
x̃◦

c̃◦

]
+ (Cc −Cλ)

[
x̃◦n

c̃◦n

]
− Ω◦

)
. (SM22d)

Among them, the stability of the boundary-layer system is a natural consequence of Lemma SM.III.1.

Corollary SM.III.1. The origin of the boundary-layer system (SM21) is globally exponentially stable. �

From now on, we take a closer look at the reduced system (SM22). Let us define a set

R◦0 :=
{

[θ̃(T ?); x̃(T ?); c̃(T ?); x̃n(T
?); c̃n(T

?); χ̃(T ?)]

: [θ̃(t); x̃(t); c̃(t); x̃n(t); c̃n(t); χ̃(t)] is generated by [SM1, Eqs. (27)–(29)]
}
.

Then we are now ready to derive the stability of the reduced system.

Lemma SM.III.2. Suppose that all the assumptions hold. Then there exists κ > 0 such that for κ ∈ (0, κ),

(a) the state trajectory of the reduced system (SM22) initiated in R◦0 satisfies

‖[x̃◦(t); c̃◦(t)]‖ < ε

2
, ∀t ≥ T ?; (SM23)

(b) the origin of the reduced system (SM22) is exponentially stable with the region of attraction containing R◦0. �
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Proof of Lemma SM.III.2. To prove the item (a), consider the [x̃◦; c̃◦]-dynamics[
˙̃x◦

˙̃c◦

]
= An

[
x̃◦

c̃◦

]
+ N2Ω◦ (SM24)

with the initial condition [x̃◦(T ?); c̃◦(T ?)] satisfying

‖[x̃◦(T ?); c̃◦(T ?)]‖ <

√
min(L(Pn))

max(L(Pn))

ε

2

For the analysis, we now employ a Lyapunov function V (x̃◦, c̃◦) := [x̃◦; c̃◦]>Pn[x̃
◦; c̃◦]. It is noted that, by definition of s̄ and

T ?,

V (x̃◦, c̃◦) < min(L(Pn))
ε2

4
implies Cλ

[
x̃◦

c̃◦

]
+ λn ∈ Λ̂n and thus

Ω◦ = s̄

(
Cλ

[
x̃◦

c̃◦

]
+ λn

)
−

(
Cλ

[
x̃◦

c̃◦

]
+ λn

)
= 0.

It means that the set
V :=

{
[x̃◦; c̃◦] : V (x̃◦, c̃◦) < min(L(Pn))

ε2

4

}
is positive invariant. Notice that [x̃◦(T ?); c̃◦(T ?)] is already included in V , because

V
(
x̃◦(T ?), c̃◦(T ?)

)
≤ max(L(Pn)) ‖[x̃◦(T ?); c̃◦(T ?)]‖2 < min(L(Pn))

ε2

4
.

This proves the item (a). We further point out that Ω◦ = Ω◦(t) = 0 holds for all t ≥ T ?.
Next, putting Ω◦ = 0 into the reduced system (SM22a) and (SM22b), one has

1

κ
˙̃
θ◦ = −Ξ◦>C>3 C3Ξ◦θ̃◦ + Ξ◦>

(
M1χ̃

◦ + M2

[
x̃◦

c̃◦

]
+ M3

[
x̃◦n

c̃◦n

])
(SM25)

˙̃x◦

˙̃c◦

˙̃x◦n
˙̃c◦n
˙̃χ◦

 =

An 0 0

0 An 0

M4 M5 A3 − LC3



x̃◦

c̃◦

x̃◦n

c̃◦n

χ̃◦

 . (SM26)

We emphasize that the reduced system (SM25) and (SM26) has the standard singular perturbation form again, with respect
to the perturbation parameter κ. It is readily obtained from the fact that An and A3 − LC3 in (SM26) are Hurwitz that the
faster subsystem (SM26) is globally exponentially stable. Therefore, in accordance with the singular perturbation theory [SM2,
Thm. 11.4], it is enough for the item (b) to show that the following reduced dynamics, which is computed by putting the
quasi-steady-state [θ̃◦; x̃◦; c̃◦; x̃◦n; c̃◦n; χ̃◦] = 0 into (SM25), is stable:

dθ̃◦

dσκ
= −Ξ◦>C>3 C3Ξ◦θ̃◦ (SM27)

where σκ := κt, and Ξ◦(t) is the solution of

Ξ̇◦ = (A3 − LC3)Ξ◦ +

 0

−1

0

u?.
Note that the Ξ◦-dynamics above is input-to-state stable (ISS) and its input u? = u?n − λ?n is a bounded sinusoidal signal
of the frequency σ. This implies that C3Ξ◦(t) is persistently exciting [SM3, Thm. 5.2.1] and thus, the origin of (SM27) is
exponentially stable. In summary, by the singular perturbation theory [SM2, Thm. 11.4], there exists κ > 0 such that the origin
of (SM22) is exponentially stable for all κ ∈ (0, κ). �

We have observed so far in Corollary SM.III.1 and Lemma SM.III.2 that both the boundary-layer system (SM21) and the
reduced system (SM22) (with fixed κ ∈ (0, κ)) are exponentially stable. Thus the singular perturbation theory [SM2, Thm.
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11.4] says that there exists τ2 > 0 such that the overall singularly perturbed system [SM1, Eqs. (27)–(29)] is exponentially
stable for all τ ∈ (0, τ2). On the other hand, by employing the Tikhonov’s theorem [SM2, Thm. 11.2] for the steady-state
period t ∈ [T ?,∞), it follows that there exists τ3 > 0 such that for all τ ∈ (0, τ3), the actual state [x̃; c̃] remains close to its
counterpart [x̃◦; c̃◦] in the reduced system (SM22); more precisely,

‖[x̃(t); c̃(t)]− [x̃◦(t); c̃◦(t)]‖ < ε

2
, ∀t ≥ T ? (SM28)

where [x̃(t); c̃(t)] is the solution of (SM22) initiated at [x̃(T ?); c̃(T ?)] = [x̃◦(T ?); c̃◦(T ?)]. Combining (SM28) with the item
(a) of Lemma SM.III.2 implies that

‖[x̃(t); c̃(t)]‖ ≤ ‖[x̃(t); c̃(t)]− [x̃◦(t); c̃◦(t)]‖+ ‖[x̃◦(t); c̃◦(t)]‖ < ε

2
+
ε

2
= ε, ∀t ≥ T ?.

Finally, with τ set as τ = min(τ1, τ2, τ3), the proof of the lemma is completed.
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