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Abstract 

Artificial neural networks have been attracted a great interest due to its 

unique functionality, i.e. ‘learning’ ability. Recently, the necessity of spiking 

neural network (SNN) is likely to increase so as to handle dynamic 

information from our “real world”. Regarding the time consuming process of 

the SNN within in-silico method, hardware-based SNNs have received 

remarkably great attention. In this thesis, memory and switch devices were 

investigated, then proof-of-concept demonstration was conducted for 

building blocks of SNNs, i.e. an artificial neuron and synapse.  

Short-term synaptic plasticity of faradaic type electrochemical capacitors 

(ECs) utilizing TiO2 mixed ionic-electronic conductor (MIEC) were reported. 

Various reactive electrode materials e.g. Ti, Ni, and Cr were employed to 

emulate redox-related short-term memory (STM) of the artificial synapse. 

By experiments, it turned out that the potentiation behaviors did not 

represent unlimited growth of synaptic weight. Instead, the behaviors 

exhibited limited synaptic weight growth that can be understood by means of 

an empirical equation similar to the Bienenstock-Cooper-Munro (BCM) rule, 

employing a sliding threshold. The observed potentiation behaviors were 

analyzed using the empirical equation and the difference between the 

different ECs were parameterized.  

For the emulation of abrupt conductance fluctuation at the neurons’ 

membrane, three types of non-memory switching systems were examined. 

First, current-voltage hysteresis of TiO2-based non-faradaic capacitors was 

investigated to primarily focus on the correlation between the blocking 

contact and the elasticity, i.e. non-plasticity, of the capacitors’ resistance 

change, in experimental and theoretical methods. The similarity between the 

spike firing behavior in neurons and the elasticity of the non-faradaic 

capacitors was addressed. Second, GeSe-based threshold switches (TSs) 

were examined. Both single (Pt/GeSe/Pt)-and dual-layered 
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(Cu/SiOx/GeSex/Pt) TSs exhibited monostable resistance switching, i.e. non-

memory switching phenomenon. Towards this end, oscillatory circuits 

encompassing the TS were considered based on the leaky integrate-and-fire 

(LIF) neuron model.  

Therefore, simulations on the neuronal behavior of neuristor-based leaky 

integrate-and-fire (NLIF) neurons were conducted based on the threshold 

switch. The spike firing dynamics of the NLIF neuron was analyzed on two-

dimensional phase plane, whose results suggest the dynamics is determined 

by two nullclines conditional on the variables on the plane, and thus the 

fixed point also conditional on them. A note should be placed on the 

operational noise caused by the variability of the threshold switching 

behavior in the neuron on each switching event. As a consequence, we found 

that the NLIF neuron exhibits a Poisson-like noise in spike firing, delimiting 

reliability of information conveyed by individual NLIF neurons. To 

highlight neuronal information coding at a higher level, a population of 

noisy NLIF neurons is analyzed in regard to probability of successful 

information decoding given the Poisson-like noise of each neuron. The result 

suggests highly probable success in decoding in spite of large variability of 

individual neurons due to the variability of the threshold switching behavior. 

Third, a proof-of-concept demonstration of relaxation oscillator-based 

leaky integrate-and-fire (ROLIF) neuron circuit was realized by employing 

an amorphous chalcogenide-based threshold switch and non-ideal op-amp. 

The proposed ROLIF neuron offers biologically plausible features such as 

analog-type encoding, signal amplification, unidirectional synaptic 

transmission, and Poisson noise. The synaptic transmission between pre and 

postsynaptic neurons is achieved through a passive synapse (synaptic 

resistor). The synaptic resistor coupled with the non-ideal op-amp enables 

synaptic weight-dependent excitatory postsynaptic potential (EPSP) 

evolution that evokes postsynaptic neuron’s spiking. In an attempt to 
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generalize our proposed model, we theoretically examine ROLIF neuron 

circuits adopting different non-ideal op-amps of different gains and slew 

rates. The simulation results points to the importance of the gain in 

postsynaptic neuron’s spiking irrespective of the slew rate as far as the rate 

exceeds a particular value, providing the basis of the ROLIF neuron circuit 

design. We eventually highlight the behavior of a postsynaptic neuron in 

connection to multiple presynaptic neurons via synapses in terms of the 

EPSP evolution amid simultaneously incident asynchronous and noisy 

presynaptic neurons’ spikes – which in fact uncovers the beauty of the 

random noise in spatial integration.  
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Threshold switch, S-shaped negative differential resistance, 

Short-term memory, Electrochemical capacitor, Non-faradaic 

type capacitor, Neuronal noise, Neuristor-based leaky integrate-
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1. Introduction 

 

1.1. Building blocks of a biological neural network 

 

1.1.1. Biological neuron 

 

In biological neural networks, negiboring neurons communicate with each 

other through ‘spike’, which is often referred to as action potential. In a 

neuron, without external stimualtion, the neuron’s lipid membrane separating 

extracellualr and intracellular media stays polarized with a resting potential of 

approximatedly -70 mV.[1] Ion pumps for Na+ and K+ ions, sodium-potassium 

adenosine triphosphatase (Na+/K+ -ATPase), embedded in the lipid membrane, 

produce certain Na+ and K+ concentration differences between intracelluar and 

extracelluar media, resulting in the generation of a Nernst potential of 

approximately -70 mV.[2] Hence, the membrane acts as a biological battery. If 

the sum of external stimuli is above a certain threshold, voltage-gated ion 

channels embedded in the membrane are opened, resulting in the flow of ions 

induced by the electrochemical potential gradient. (see Figure 1.1) Therefore, 

the polarized membrane is depolarized and the spike is generated, i.e. action 

potential firing. Spikes are short-lasting since Na+/K+ -ATPase ion pumps 

attempt to restore the concentration gradients of Na+ and K+ towards the 

membrane’s resting state. That is, the spike firing within neurons is a matter 

of ‘elasticity’ regarding the state of the membrane. The firing characteristic of 

neurons is often reffered to as ‘all-or-non-firing’ in light of the failed and 

successful spike generation on the basis of the threshold.  

Macroscopically, a set of spikes, i.e. spike train, is a encoding result of 

input soma current of the neuron of interset. Generally, the number of spikes 

per unit time, i.e. activity, increases monotonically with soma current. This 

phenomenon is widely known for neuron response function or gain function. 
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Therefore, the neuron can encode change of soma current into activity, 

reflecting the analog-type encoding characteristic of the biological neuron. 

When we consider a sensory part of the mamallian neural network, the 

biological neuron can also encode physical magnitue of real world. The role 

of the sensory part is to convert continuous physical magnitude such as angle 

of light bar, wind direction, and sound intensity into different magnitude of 

soma current. The relationship between the physcical magnitue of real world 

and activity is often referred to as tuning curve, representing encoding 

selectivity of the biological neuron.  
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Figure 1.1 Schematics of the (a) biological neuron and (b) action potential 

(spike). Only sodium ions are indicated in the schematic for symplicity. 
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1.1.2. Biological synapse 

 

A synapse is located between neighboring neurons, serving as a node 

defining the connection between the neurons. Neurons and chemical synapses 

form a large-scaled complex neural network carrying out higher-level 

functionalities such as learning and memory. Unlike CPUs (Boolean systems), 

neural networks are analog systems. That is, the amount of information which 

can be stored in a single synapse is unlimited, whereas in the case of Boolean 

systems only one of the binary numbers, ‘0’ and ‘1’, can be stored at a 

memory node.The difficulties in predicting the collective behavior of complex 

neural networks arise from the analog behavior of synapses and the random 

distribution of neurons.[3, 4] 

It is known that there are two types of synapse in the mammalian brain: the 

electrical synapse and the chemical synapse.[5] An electrical synapse allows 

‘bidirectional’ electrical signal flow between the neighboring neurons by 

means of the drift of related ions. Note that the drift results from an electric 

potential gradient, i.e. electric field, through the electrical synapse. That is, the 

signal flow does not involve chemical reactions. In this case, presynaptic and 

postsynaptic neurons are defined by the signal flow direction, i.e. a signal 

flows from a presynaptic to a postsynaptic neuron. In the case of a chemical 

synapse, signal flow is ‘unidirectional’, since the flow of neurotransmitters 

(chemical messengers) is restricted to one direction, from a presynaptic 

neuron, releasing neurotransmitters, to a postsynaptic neuron, receiving the 

neurotransmitters. (See Figure 1.2) This signal transmission process is 

believed to involve Ca2+- related complicated chemical reactions in the 

postsynaptic neuron.[6-8] Activation of these chemical reactions yields an 

increase in the strength of the correlation between the two adjacent neurons. 

Chemical synapses, rather than electrical synapses, are thought to be 

involved in learning and memory. Our main concern is therefore with 

chemical synapses and their short-term memory (STM) and long-term 
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memory (LTM) effects. For simplicity, we term a chemical synapse as 

a‘synapse’ without modifiers. ‘Neurons that fire together, wire together’, the 

quote that Hebb mentioned, abstractly describes the activity-dependent 

plasticity of a synapse.[9] In this quote, neuron firing means that the membrane 

of each neuron is strongly depolarized, resulting in action potential firing, i.e. 

a neuron’s activation. When both presynaptic and postsynaptic neurons are 

activated, the correlation between the neurons strengthens. The strength of the 

correlation is defined as the ‘synaptic weight’. An increase (decrease) of 

synaptic weight is referred to as potentiation (depression). Furthermore, 

depending on the duration of the changed synaptic weight, the change is 

classified as short-term potentiation (STP) and depression (STD), or long-

term potentiation (LTP) and depression (LTD). 
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Figure 1.2 A schematic of the chemical synapse 
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1.2. Overview on the neuromorphic engineering 

 

1.2.1. What is the artificial neural network? 

 

A megatrend in current technology development appears towards human 

beings’ less working life. ‘Work’ in this term does not necessarily mean only 

occupational activity. Rather, it encompasses all activities that can be done 

only by human beings. Decision-making is an example that human beings 

very often encounter in daily life and cannot be done by ‘things’. Thus, 

human beings can work less to a great extent if things are able to do the 

work instead. In this regards, artificial intelligence (AI) has recently been 

attracting great attention and methodology for AI – deep learning[10] – has 

been popularly invoked. It should be noted that AI in this sense means 

decision-making ability on the basis of training or learning with training sets. 

The artificial neural network (ANN) underlies deep learning, which is 

inspired by brains and their information processing pathways. The ANN 

takes after the brain considering their structure that consists of artificial 

neurons and synapses. However, there exists a large disparity in detailed 

behavior between the ANN and brain. The binary states are given to each 

artificial neuron in the ANN in response to the sum of the inputs plus bias – 

the neuron is often expressed by the Heaviside step function or sigmoid 

function.[10] These artificial neuron models largely differ from the biological 

neuron that represents analogue information by means of spiking 

dynamics.[11, 12] 

 

1.2.2. Necessity of the spiking neural network and hardware 

building blocks 

   

The spiking neural network (SNN) is another class of network for AI, 

which is distinguished from the aforementioned ANN considering its neural 
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representation on the spiking (dynamic) grounds.[13-15] Spiking neurons fire 

spikes upon the membrane potential crossing a threshold for spiking. The 

membrane potential evolves in due course with incident synaptic current. In 

addition, spiking activity – defining how often spiking occurs – significantly 

matters in representing analog-type information. The spiking neuron real-

time responses to time-dependent synaptic current, making it suitable for 

real-time information representation, which interacts with the real world.[13] 

Given the spiking neuron’s dynamic response, the physiological 

spatiotemporal learning rules, e.g. the Hebbian learning rules, may be 

directly applied to training the SNN. In this regards, the SNN shares more 

similarities with the biological neural network than the ANN. 

Both ANN and SNN are often realized on computers by emulation means 

– popularly referred to as ‘in silico’ network. In supervised learning, in silico 

synapses are trained so as to minimize a disparity between the calculated 

output and the desired one – so-called a cost function.[10, 16] The cost function 

minimization requires mathematical algorithms such as a gradient descent 

method and its variations. By all rights, the calculation efficiency can be 

largely improved by making use of a more efficient algorithm such as a 

stochastic gradient descent method.[17] However, the calculation is still costly 

when associated with a large number of synapses, hidden layers, and training 

sets.[10] Calculating the SNN appears even more daunting given the 

requirement of time-domain calculation of spiking and synaptic weight 

change. A need for a large amount of computational resource and the 

consequent long computation time are hardly capable of real-time interaction 

with the world.  

A workaround solution to the above-mentioned inherent issues is perhaps 

to implement such SNNs in physics-based hardware, which no longer 

requires such time-consuming calculations. Building a hardware SNN using 

proper ‘unit blocks’ is of significant concern. Regarding the current maturity 
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level of hardware SNN technology improvements in building blocks, 

plasticity-induction protocols, and learning protocols at the network level 

definitely need to be continued. In particular, as the entire network works on 

building block grounds, placing emphasis on underpinning artificial neurons 

most likely lays the foundation of success in the technology. 

 

1.2.3. Conventional and current approaches towards the 

hardware implementation 

 

To date, a great deal of efforts have been made to realize artificial 

hardware neurons and synapses, using conventional complementary metal-

oxide-semiconductor (CMOS) technologies.[18, 19] This CMOS-based 

approach has been the mainstream approach of neuromorphic (hardware) 

engineering. (see Figure 1.3)  

A recent emerging research trend is the increasing adoption of alternative 

approaches to realize artificial neurons and synapses. These emerging 

approaches differ from the mainstream approach in that neural 

functionalities are implemented by introducing functional materials-based 

elements that could partly replace CMOS-based elements in the former.[5]  

One of the advantages of these new approaches is that it may enable the 

circuitry of SNNs to be substantially simplified by using a less number of 

CMOS elements than the conventional approach. An artificial neuron 

example of such approaches is a recent breakthrough by Pickett et al., who 

achieved the LIF neuron by using two pairs of a Mott insulator and a 

capacitor.[20] In this system, threshold switching phenomenon of the Mott 

insulator was employed to realize ‘elasticity’ of the spike, i.e. rapid alteration 

of the membrane potential. Artificial synapses also have been realized by 

means of various physical concepts, e.g. ferroelectricity,[21-23] the phase 

change of higher chalcogenides,[24, 25] ferromagnetism,[26, 27] and 

nanoionics.[28-34] In these systems, their conductance (or resistance) is taken 
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as the synaptic weight. Among these candidates, nanoionic systems 

exhibiting the valence change memory (VCM) effect, coined by Waser et 

al,[35] appear to meet the requirement of ‘unidirectional signal transmission’ 

of a chemical synapse. In a two-terminal passive VCM system, a particular 

change in the conductance (or resistance) is made by only one of the two 

electric field directions. Therefore, this polarity-dependent synaptic weight 

change perhaps enables unidirectional potentiation to be realized. 
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Figure 1.3 Equivalent circuits of (a) an artificial neuron[18] and (b) an 

artificial synapse[19] based on CMOS elements. 
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2. Resistive switching systems for neuromorphic 

engineering 

 

2.1. Introduction 

 

Resistive switching phenomena have been attracted great interest for an 

application of the next-genration non-volatile memory.[1, 2] For instance, two-

dimensional crossbar array resistive switching memories have been popularly 

investigated for the practical use as a random access memory (RAM).[3, 4] 

Generally, cell selectors such as diodes or TSs are employed to prevent the 

sneak current path in the passive crossbar array structure.[3, 4] The TS is known 

to exhibit a monostable resistance state, so that TS works as a ‘resistance-

switch’ rather than a memory.[5, 6] Regarding the polarity-independent 

switching behavior, the TS has an advantage for being embedded into the 

crossbar array structure with both unipolar-and bipolar-type resistive 

switching memories.  

Recently, neuromorphic engineers pay attention to resistive switching 

phenomena in light of electronic replica of the biological neural system. For 

instance, a synapse is known to have an analog-type information memory. 

Therefore, the memory effect of the resistive switching system could be one 

of the prospective candidates of electronic replica.[7] On the other hand, the 

biological neuron generates spike, i.e. action potential, which is the result of 

‘elastic’ conductance fluctuation of the membrane rather than ‘plastic’. 

Therefore, non-memory resistive switching phenomenon, e.g., threshold 

switching, is more promising phenemenon than the memory switching for 

emulating spike firing of the bilogical neuron.  

Reflecting the well-known resistive switching features, TiO2 mixed ionic-

electronic conductor (MIEC) was chosen in this study. Electrode materials 
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may also affect point defect migration in an MIEC, as the boundary 

conditions of point defect dynamics greatly rely on the reactivity of the 

electrode material. Here, Pt was employed as the material for a bottom 

electrode (BE) for two reasons: (i) an inert Pt electrode most likely forms a 

blocking contact (no redox reaction) with the MIEC in the overpotential range 

that was chosen in this study, thus simplifying the boundary conditions and (ii) 

Pt significantly lowers dc electronic conduction due to either its high work 

function, which causes resulting in a high Schottky barrier, or its chemical 

inertness that prevents the reduction, i.e. self-doping, of TiO2. Both inert (Pt) 

and reactive (Cr, Ni, Ti) electrodes were employed for Top electrode (TE). In 

Pt/TiO2/Pt cell, redox reaction at both MIEC-electrode junction might be 

hindered by the blocking-contact so that we named the cell as a ‘non-faradic’ 

type, whereas ‘faradaic’ type (Cr, Ni, Ti)/TiO2/Pt cells might undergo redox 

reaction at TE-MIEC junction. Note that, since reactive electrodes were used, 

the two-terminal systems in this study are hypothesized to be ‘electrochemical 

capacitors’ (ECs).  

Higher chalcogenides are known to represent the threshold switching 

phenomenon. In this study, an amorphous GeSex layer was employed for both 

single- and dual-layered TSs. The threshold switching phenomenon was 

demonstrated by employing both a quasi-static measurment and a short-pulse 

measurement. Phenomenolgical differesistnace of monostable resistance 

switching between two TSs will be introduced in terms of s-shaped negative 

differential resistance (NDR) phenomenon. 

 

2.2. Resistive switching systems based on TiO2 

 

2.2.1. Experimental 
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TiO2-based cell fabrication: The non-faradaic and faradaic type cells were 

TE/TiO2/BE stacks. A schematic of the cross-section of the cell is shown in 

Figure 2.1a. Inert Pt electrodes were used as BEs. A 50 nm thick Pt blanket 

BE was deposited onto a thin Ti blanket film (10 nm) formed on a thermally 

oxidized Si wafer using electron-beam evaporation at room temperature. Then, 

deposition of 50 and 75 nm TiO2 blanket films using rf reactive sputtering at 

room temperature followed for non-faradaic and faradaic type cell, 

respectively. Finally, circle-shaped 50 nm thick reactive TEs (Pt, Cr, Ni, and 

Ti) were formed on top of the TiO2 film using electron-beam evaporation and 

patterned using a shadow mask. (see Figure 2.1b) 50 nm thick Pt layers were 

in situ deposited on top of the TEs (Cr, Ni, and Ti) to avoid the oxidation of 

the reactive electrodes by oxygen gas in air. For convenience, the Cr/TiO2/Pt, 

Ni/TiO2/Pt, and Ti/TiO2/Pt faradaic type cells are named as CTP, NTP, and 

TTP, respectively. 

 

Quasi-static measurments: The measurements on the fabricated non-

faradiac type cell was performed using a CHI700 potentiostat at different 

voltage sweep rates in various voltage ranges. A voltage was applied to the top 

electrode while the bottom electrode was grounded. The current density-

voltage (J-V) loops shown in this paper were taken from consecutive J-V 

loops, excluding the first-cycle loops. The first-cycle loops always started 

from a zero current. Current-voltage (I-V) measurements on the faradaic type 

cells was conducted by using a Keithley 236 Source Measurement Unit. 

 

Short-term memory effect measurements: The short-term memory (STM) 

behavior was measured on the faradaic type cells by applying voltage pulse 

trains using a Tektronix AFG3101 and reading the response using a Tektronix 

TDS5104 oscilloscope. In the measurements, a voltage was applied to the TE 

while the BE was grounded. 
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Figure 2.1 (a) A schematic of the cross-section of the TiO2-based cell. (b) 

The optical image of the fabricated TiO2-based cell from top view. 
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2.2.2. Non-faradaic type cell 

 

A schematic diagram of the fabricated Pt/TiO2/Pt junction sample is drawn 

in the top left inset of Figure 2.2. Insomuch as the fabricated cells are 

capacitor-shaped and believed to involve no redox reaction in the chosen 

voltage range, they could be regarded as non-faradaic capacitors. 

Consecutive current density-voltage (J-V) loops of the Pt/TiO2/Pt capacitor 

are plotted in Figure 2.2a, measured by applying triangle-shaped voltage 

pulses at a voltage sweep rate of 0.1 V s-1. The applied voltage pulses are 

shown in the bottom right inset of Figure 2.2a. The J-V loops represent 

reproducible ‘clockwise’ (CW) hysteresis with a reverse current flow 

(current flow in the opposite direction to the applied voltage) as can be more 

clearly seen in Figure 2.2b. It is observed that the current is reversed at 

approximately 0.4 V during the upward sweeps and at approximately 0.9 V 

during the downward sweeps. However, in the high voltage region, the J-V 

loci exhibit ‘counter-clockwise’ (CCW) hysteresis. Thus, the J-V loops show 

both CW and CCW hysteresis behaviors, crossing each other at a particular 

voltage (ca. 1 V). The J-V loops were found to scale with the TE area. 

Currents at a read-out voltage of 1 V for the capacitors with five different 

pad-sizes (1.7 × 10-4, 5.3 × 10-4, 1.1 × 10-3, 1.9 × 10-3, and 2.6 × 10-

3 cm2) are plotted in the inset of Figure 2.2b, showing linearity with respect 

to the pad-size. This suggests that the current shown in Figure 2.2 does not 

flow through localized current paths.  

In order to fully observe the CW hysteresis in detail, a range of applied 

voltage was narrowed down to 0–0.6 V and the voltage sweep rate was 

varied from 0.001 to 1 V s-1. The measured J-V loops are plotted in Figure 

2.3. It can be seen that the measured current increases with the voltage 

sweep rate, which is a typical character of displacement current in highly 

resistive dielectric materials having very low dc electronic current. The 
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contribution of displacement current to the measured current can be 

confirmed by evaluation of the overall charge involved in the J-V loops, 

which can be performed by integrating the measured current over time. As 

can be seen in the inset of Figure 2.3a, the positive charge density attributed 

to the positive current at different voltage sweep rates (filled squares) is the 

same as the negative charge density (open squares), implying that the net 

charge change is zero regardless of the voltage sweep rates.  

Unlike the CW hysteresis, the CCW hysteresis in the high voltage region 

was found to disappear at low voltage sweep rates as shown in Figure 2.4. 

The ratio of a current density at a particular voltage during a downward 

sweep (Jdown) to that of the same voltage during an upward sweep (Jup) was 

taken as a parameter representing the CCW hysteresis. Ratios larger than 

unity, therefore, indicate CCW hysteresis. As shown in Figure 2.4, at a 

voltage sweep rate of 0.001 V s-1, the CCW hysteresis fades away within the 

first three J-V cycles. If the current in this CCW is attributed to dc electronic 

current, the CCW hysteresis implies a resistance change rather than a time-

dependent displacement current. Increasing the voltage sweep rate makes the 

CCW hysteresis remain for more cycles, as in the 0.01 and 0.1 V s-1 cases, as 

shown in Figure 2.4. For the three rates, 0.1, 0.01, and 0.001 V s-1, the time 

intervals between the current measurements at 1.5 V during the upward and 

downward sweeps are 10, 100, and 1000 s, respectively. Thus, one may 

estimate the CCW hysteresis to retain itself for at least 100 s, since the CCW 

hysteresis at 0.01 V s-1 still somehow exists.  

For the quantitative understanding of the J-V hysteresis behavior, 

numerical calculation of J-V behavior for a one dimensional 

electrode/MIEC/electrode non-faradaic capacitor was performed. In a non-

faradaic capacitor, the interface between the MIEC and the electrode forms a 

blocking contact for oxygen vacancies so that their number is conserved 

within the capacitor. Time-dependent dc ionic conduction was calculated 
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using the drift–diffusion equation and Fick's second law with blocking 

contact boundary conditions. For dc electronic conduction, the drift-

diffusion of electrons, i.e. band conduction, was taken as their conduction 

mechanism. The band offset at the interface, varying on the electric field 

assigned to the Helmholtz layer, was employed as the boundary conditions.[8] 

A quasi-static approximation was employed to simplify this calculation in a 

time domain. Considering the large diffusion coefficient difference between 

an electron and oxygen vacancy, the use of this approximation is reasonable. 

Finally, the total current including the aforementioned dc current and 

displacement current was evaluated as a function of time and voltage. 

Details of the calculation procedures are described in the Supplementary 

information. The configuration of the model system is schematically 

illustrated in Figure 2.5. 

Oxygen vacancy migration coefficients, e.g. diffusion coefficient (DVo) 

and mobility (mVo), are critical parameters for the calculation. The areal 

density of oxygen vacancies (r) is also an important parameter. The 

geometries of the configuration, e.g. the thicknesses (d1 and d3) of the two 

Helmholtz layers and that (d2) of the MIEC, as well as their relative 

permittivities (er1, er3, and er2), serve as parameters as well. Electronic 

properties such as the Schottky barrier height (fb) and the effective mass (me) 

of an electron are also of concern, and equivalent series resistance (ESR) and 

lattice temperature must also be taken into consideration.  

The calculated J-V hysteresis loop at a voltage sweep rate of 0.1 V s-1 is 

plotted in Figure 2.6a. The parameters used for this calculation are listed in 

Table 2.1, which, in fact, gave the best fitting results. The J-V loop was taken 

from consecutive J-V loops except the first-cycle one, and thus the initial 

conditions such as distributions of oxygen vacancies, electrons, and Galvani 

potential in the MIEC were not of equilibrium. However, the initial 

conditions of the first-cycle loop calculation were always of equilibrium so 
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that the calculated loop started from zero current. The calculated J-V loop is 

found to be in good agreement with the experimental J-V loops shown in 

Figure 2.2a, exhibiting CW and CCW hysteresis behaviors and their crossing 

at approximately 1 V. As explained in the Supplementary information, the 

calculated current density is attributed to four major contributions, i.e. dc 

ionic conductions (drift and diffusion of oxygen vacancies), displacement 

current, and dc electronic conduction. The first three contributions are 

position-dependent. The center point of the model system (at a distance of 25 

nm from the left (right) interface), where the contribution of displacement 

current is minimum, was taken for the results shown in Figure 2.6b, so that 

the dc ionic conduction behavior can be clearly shown. The contributions of 

dc ionic and electronic conductions are separately plotted in Figure 2.6b as a 

function of time, so that their contributions to the total current at given times 

can be seen. Note that the dc electronic conduction and total current are 

position-independent as long as the number of oxygen vacancies is 

conserved (see Supplementary information) 

In Figure 2.6b, it is observed that the CCW hysteresis in the high voltage 

region (>~1 V, which corresponds to ~12 to 30 s) is attributed to dc 

electronic conduction rather than the ionic current, whereas the CW 

hysteresis in the low V region is mainly due to the ionic current. Therefore, 

the experimental CCW hysteresis is most likely of dc electronic current, and 

thus the hysteresis implies ‘resistance’ hysteresis. In contrast, the CW 

hysteresis in the low voltage region does not signify hysteretic resistance 

because the current in that case is not of dc electronic conduction. In the low 

voltage region, the contribution of dc electronic current is negligible as can 

be seen in Figure 2.6b, however, the contribution is still positive as the slope 

of the Fermi level, for instance, at a time of 40 s, i.e. 0 V, is still negative 

(see Figure 2.6e). In fact, for the whole voltage range, the electronic current 

is positive. 
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From the aforementioned experimental features as well as calculation 

results, regarding the CW hysteresis in the low voltage region, it can be 

estimated that the CW hysteresis arises from the migration of charged point 

defects confined within the MIEC. The low diffusion coefficient or mobility 

of oxygen vacancies in TiO2 may be the reason for voltage-sweep-rate-

dependent CW hysteresis behaviors shown in Figure 2.3. Generally, in an 

electrolyte, the nonlinearity of current–voltage behavior in J-V 

measurements is evolved through the time-dependent redistribution of 

Galvani potential, and the redistribution arises from the migration of ions 

with a finite diffusion coefficient. Unless sufficient time for the ions to 

respond to an applied voltage is given, the redistribution of Galvani potential 

cannot be achieved. In that case, the average electric field matters in current 

measurements. Therefore, linear current–voltage behavior appears.[9] 

Moreover, as shown in Figure 2.3a, the net change in charge density for each 

J-V cycle is zero. This most likely means no change in the number of oxygen 

vacancies during each J-V cycle, i.e. the Pt/TiO2/Pt capacitors are closed 

systems for oxygen vacancies with a blocking contact, which allows no 

redox reaction. That is, the oxygen vacancies related to the ionic current are 

confined within the MIEC, which is the crucial evidence supporting the 

blocking-contact-hypothesis. 

It should be noted that the above-mentioned capacitive behavior differs 

from that of normal dielectrics whose dielectric constants are attributed to 

molecular polarizabilities. Otherwise, the displacement currents in Figure 2.3 

approximately give dielectric constants of TiO2 (>500), which are much 

higher than that of any possible TiO2 phases. 

Regarding the CCW hysteresis, the calculation results revealed that it is a 

result of the evolution of electromotive force (EMF) for electronic 

conduction. Voltage division in the model system at a given voltage 

identifies the EMF evolution for electronic conduction. Figure 2.6c and 2.6d 
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show hysteretic voltage division in three series capacitors, i.e. left and right 

Helmholtz layers and the MIEC in Figure 2.5. Insomuch as a positive 

voltage sweep was applied to the right electrode of the model system, the left 

Helmholtz layer is located at the cathode where electrons are injected into 

the MIEC. A higher voltage assigned to the left Helmholtz layer (d1) leads to 

a higher electron injection. In fact, electronic current along the capacitor is 

most likely controlled by the electron injection through the cathode 

interface.[10] Regarding the quasi-static electronic current in the capacitor, a 

higher electron injection through the cathode interface leads to a higher 

electron ejection through the anode interface. Therefore, as the electron 

injection increases, the voltage division in the right Helmholtz layer (d3) 

becomes larger, which increases the ejection current. As shown in Figure 

2.6c, the voltage hysteresis is CCW, corresponding to the CCW J-V 

hysteresis. However, for oxygen vacancies, their drift–diffusion is a matter 

of the voltage assigned to the MIEC (d2) since they are confined within the 

MIEC. This voltage represents the CW hysteresis shown in Figure 2.6c, so 

that ionic current density versus voltage hysteresis is CW. 

The EMF evolution is likely attributed to the finite diffusion coefficient of 

oxygen vacancies in the MIEC, at high voltage sweep rates, oxygen 

vacancies hardly take enough time to achieve steady state concentration 

distribution as well as Galvani potential distribution. Consequently, during 

the downward sweep, i.e. the depolarization process, the capacitor keeps the 

electrical energy stored during the upward sweep to some extent. Then, the 

stored energy serves as EMF for electrons, leading to the positive Jdown/Jup 

ratio, as shown in Figure 2.4. In addition, decreasing a voltage sweep rate 

leads to the decrease of the EMF evolution owing to the increase of time 

given to oxygen vacancies. Therefore, the CCW hysteresis eventually 

disappears at low voltage sweep rates as experimentally identified (see 

Figure 2.4). 
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According to the calculation results, the intersection of CW and CCW 

hysteresis loops, shown in Figure 2.2, implies a transition between ionic and 

electronic conduction. While the number of oxygen vacancies is conserved 

in the non-faradaic system, their contribution to electric conduction is 

limited, as a large decrease in ionic contribution can be seen in the time 

range of approximately 16–25 s, in Figure 2.6b. For electrons, their reservoir 

is always connected to the capacitor under electrical measurements 

so that their number is not limited. Thus, at high electric fields, dc electronic 

conduction becomes prominent, showing an ionic-to-electronic conduction 

transition with an increase in voltage. In contrast, during the downward 

sweep, the reverse transition, i.e. electronic-to-ionic conduction transition, 

takes place at approximately 30 s as in Figure 2.6b.  
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Figure 2.2 J-V characteristics. (a) Consecutive J-V loops, apart from the 

first-cycle loop, of the Pt/TiO2/Pt capacitor under the applied voltage cycles 

shown in the bottom right inset. (b) J-V curves re-plotted on a linear scale. 

The inset denotes current values at 1 V of the capacitors with five different 

pad-sizes. 
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Figure 2.3 J-V hysteresis depending on a voltage sweep rate. (a) J-V loops 

of the capacitor at different voltage sweep rates. The inset denotes the charge 

density integrated over time periods in which positive currents flow (filled 

squares) and negative currents flow (open squares). (b) J-V loops at the higher 

voltage sweep rates. 
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Figure 2.4 CCW hysteresis depending on a voltage sweep rate. Change of 

the CCW hysteresis in the high voltage region with respect to J-V cycle 

number at different voltage sweep rates. 
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Figure 2.5 Schematic of a non-faradaic capacitor model system. 
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Figure 2.6 Calculation results. (a) Calculated J-V loop under the voltage-

time profile shown in the inset. (b) At the center of TiO2 in the model system, 

the contributions of each component, e.g. drift and diffusion of oxygen 

vacancies, and dc electronic conduction, to the total current density are, 

respectively, plotted. The solid and dashed lines denote positive and negative 

current density, respectively. The circles indicate transitions between ionic and 

electronic conduction. The voltages assigned to the left Helmholtz layer 

(cathode), the MIEC, and the right Helmholtz layer (anode) are plotted with 

respect to (c) the applied voltage and (d) time. (e) The calculated electron 

band profiles with time are shown.  
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Table 2.1 Parameters used in the J-V calculation 

DVo 

[cm2/s]  
mVo 

a 
[cm2/V·s] 

d1  
[nm] 

d2  
[nm] 

d3  
[nm] 

er1 
b er2 

b er3 
b 

 

5×10-13 1.93×10-11 0.2 50 0.2 3.07 43.02 3.07 
 

fb  
[eV] 

me  
[kg] 

r c  
[cm-2] 

ESR d 
[ohms] 

z e Temperature  
[K] 

1.7 9.11x10-31 4.5×1013 10 2 300 

 

aThis quantity is reliant on the diffusion coefficient through the Einstein 

equation,         
/   , where    and T denote the Boltzmann constant 

and temperature, respectively. bThe relative permittivity values of these three 

layers were indeed evaluated from the overall relative permittivity of the 

capacitor, which was measured to be approximately 39. This value was 

obtained from the admittance spectra of the capacitors. The admittance spectra 

will be discussed in detail in Supplementary Information. cAreal density of 

oxygen vacancies. dEquivalent series resistance. eCharge number of an oxygen 

vacancy. 
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2.2.3. Faradaic type cell 

 

Resistance switching behavior of the fabricated faradaic type cells was 

confirmed by current-voltage (I-V) measurements. Figure 2.7 shows the I-V 

measurement results of the three faradaic cells: CTP, NTP, and TTP. A set of 

ten consecutive triangle-shaped (stairwise increasing and decreasing) voltage 

pulses was applied at one polarity, followed by another set of ten consecutive 

triangle-shaped voltage pulses at the other polarity. Although the measured I-

V loops are complicated, the three samples exhibit the common tendency 

that pulse-number-dependent increases in the read current, i.e. set switching, 

occur at negative voltage polarity whereas decreases in the current, i.e. reset 

switching, are observed at positive voltage polarity. It turned out that the 

measured I-V hysteresis represents the STM effect rather than the LTM 

effect since the history- or experience-dependent hysteretic loops were found 

to recover their initial hysteretic loop shape within a few seconds. 

The I-V hysteretic loops were measured without electroforming. Thus, the 

current during the I-V measurements does not appear to flow through 

localized conduction pathways, i.e. conducting filaments, embedded in the 

insulating TiO2 matrix. As a matter of fact, the I-V loops were found to scale 

with the TE area (data not shown here). As shown in Figure 2.7, the I-V 

loops significantly vary on the TE material. Considering that the same Pt BE 

and TiO2 MIEC layers were used in the three different ECs, the significant 

difference is estimated to arise from the electrical and chemical properties of 

the TE materials and their interfaces. Detailed discussions will be given later.  

The kinetics of resistance switching phenomena of the EC was identified 

by measuring the current response of the EC to well-designed voltage pulse 

trains. The voltage pulse trains consist of periodic square-shaped voltage 

pulses (Vap), i.e. programming voltage pulses, and periodic square-shaped 

read-out voltage pulses (Vr) between the programming pulses. In the 
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measurements, the current level at the read-out voltage was taken as the 

read-out current (I). Read-out current changes (DI) during voltage pulse train 

application were defined as the deviations of the read-out currents from the 

initially read-out current (I0), i.e. DIn = In – I0 and n = 1, 2, 3, . . ., where n 

denotes the number of read-out voltage pulses. Moreover, we define set 

switching and reset switching as the increase and the decrease of the read-

out current, respectively.  

Figure 2.8a shows set switching behaviors of the three ECs (CTP, NTP, 

and TTP), measured by applying voltage stimuli (90.9 Hz, Vap = –3 V, 40 

stimuli) and reading currents (Vr = –2.3, –0.8, and –0.7 V for CTP, NTP, 

and TTP, respectively). The different read-out voltages were employed 

because of the minimum detectable current of the oscilloscope. Also, the I-V 

relationship significantly depends on the TE material, as shown in Figure 2.7. 

For each EC, the periodic stimuli led to a gradual decrease in resistance. 

However, after the train of voltage stimuli terminated (the arrow in Figure 

2.8a), the resistance underwent relaxation, as can be seen in Figure 2.8a. 

During this relaxation period, only read-out voltage pulses were applied to 

each EC to read the resistance relaxation. All ECs therefore represented the 

STM effect, rather than the LTM effect. As shown in Figure 2.8a, a read-out 

current change rate constant in set switching relies on the TE material. The 

reset switching behavior was also found to undergo relaxation, as shown in 

Figure 2.8b.  

A set of external stimuli of positive polarity, following periodic negative 

polarity stimuli, was found to lead to gradual reset switching rather than 

additional set switching, as plotted in Figure 2.8c. The polarity alternation 

point is indicated by the arrow in Figure 2.8c. During the positive polarity 

stimulation, the read-out current gradually dropped below the initial read-out 

current, and thus the read-out current change (DI) dropped below zero, 

implying reset switching. These measurement results justify the bipolar 
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resistive switching behavior of the ECs in the short-time period. 

The aforementioned differences in SET switching behavior between the 

three ECs most likely arise from the effect of the interface between the TE 

and MIEC on electronic and/or ionic transport and the related 

electrochemical reactions. We can rule out the BE and the MIEC layer’s 

bottom-interface and bulk as factors determining the SET switching 

difference, insomuch as they are barely influenced by the TE materials. 

Furthermore, electric-field-driven redistribution of self-dopants, i.e. probably 

oxygen vacancies[11-14] ‘confined’ within the TiO2 MIEC, does not appear to 

explain the bipolar resistive switching behavior. That is, blocking interfaces 

sandwiching the oxygen-vacancy-including MIEC layer, i.e. a non-faradaic 

capacitor configuration, cannot account for the observed SET switching 

phenomena. Oxygen vacancies in the MIEC migrate (drift) depending on the 

electric field direction and are piled up at the cathode interface, leading to 

enhancement of electron injection through the cathode interface.[8, 15, 16] If 

this were the case, the polarity reversal would result in polarity-independent 

switching, i.e. unipolar switching. This is definitely inconsistent with the 

observations shown in Figure 2.7. The Pt BE can be regarded to be inert, 

such that it forms blocking contact for oxygen vacancies. Thus, it is perhaps 

reasonable to estimate the reactive TE to result in partially non-blocking 

contact, enabling oxygen-vacancy-related electrochemical reactions to be 

activated. Therefore, oxygen vacancies are not confined within the MIEC, so 

that their number varies according to the polarity of the applied electric field. 

As shown in Figure 2.7, the RESET (SET) switching is caused by a 

positive (negative) voltage applied to the TE. Regarding the positive-

voltage-induced RESET switching, anodizing the TE appears to increase the 

resistance. Anodizing the reactive TE may lead to oxidation of the electrode. 

Insomuch as the anodized metal is either insulating/semiconducting, or at 

least more resistive than the metal, due to an increase in the effective 
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thickness of the non-metallic layer, the oxidation most likely increases the 

resistance. A mechanism for metal anodization is thought to involve the 

following three processes: (i) oxidation of the metal (M), i.e. M→Mz++ze–, 

(ii) drift of oxygen ions towards the anode, and (iii) oxide formation, i.e. Mz+ 

+ z/2O2– → MOz/2.
[17, 18] However, it should be noted that the measured 

reset switching may lack the third process, resulting in the formation of 

energetically stable oxide phases. This estimation is quite obvious, taking 

into account the synaptic weight relaxation, i.e. the STM effect. If stable 

oxide phases were formed, no relaxation would proceed, i.e. the LTM effect, 

when the external stimulation is removed.  

As Jeong et al have pointed out, the STM effect in nanoionic systems can 

be understood in terms of detailed balance between paired electrochemical 

reactions, i.e. forward and backward reactions.[7] In a nanoionic system 

without a sink of active ions/defects, a reaction driven by an external 

stimulus is thought to trigger the evolution of the restoring force, serving as 

a driving force of the paired backward reaction. When the stimulus 

terminates, the backward reaction prevails over the forward reaction, 

recovering the initial configuration of ions/defects, i.e. relaxation. However, 

if an energetically stable sink of ions/defects is evolved as a result of a third 

reaction, e.g. the third process in metal anodization, independent of the 

paired reactions satisfying the detailed balance, LTM can be achieved; i.e. 

relaxation can be avoided.[7, 19, 20]  

A mechanism for potentiation can be guessed as the reversal of the 

aforementioned RESET switching mechanism. With negative voltage 

application, an overpotential for the metal oxidation is probably negative so 

that metal ions are reduced. This reduction may cause a decrease in the 

effective thickness of the interfacial non-metallic layer, i.e. an increase in the 

thickness of the TE layer, and the consequent decrease of resistance. It is 

probable that there is an equilibrium concentration of the metal ions at the 
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ground state (no external stimulation). The equilibrium concentration may be 

determined by the Galvani potential distribution through the EC junction, 

where the overpotential for the metal redox reaction and the equilibrium 

concentration are self-consistent.[8] A decrease in metal ion concentration 

arising from the application of a negative stimulus therefore leads to the 

evolution of a restoring force and, when the stimulus terminates, the junction 

recovers the basal level of metal ion concentration, i.e. equilibrium 

concentration. That is, relaxation of resistance occurs. 

One may guess that the oxygen ion drift towards the anode, involved in 

the metal anodization, results in the top-electrode-dependent STM effect. As 

Yang et al have indicated, the oxygen vacancy concentration in TiO2 MIEC 

may vary in TE materials.[10] However, we should concern ourselves with 

oxygen ions rather than vacancies, since they are the species involved in 

anodization. Insomuch as the concentration of possibly included oxygen 

vacancies is much lower than the oxygen ion concentration in TiO2, e.g. 6.4 

× 1022 cm–3 in single crystalline rutile TiO2, the oxygen ion concentration 

barely depends on TE. Therefore, the oxygen ion drift towards the anode 

may not play an important role in the top-electrode-dependent STM effect. 

 

 

 

 

 

 

 

 

 

 

 



 

 37

 

 

 

 

 

 

 

 

 

Figure 2.7 Consecutively measured I-V loops of the (a) CTP, (b) NTP, and 

(c) CTP. For each EC, the first ten loops were measured by applying triangle-

shaped negative voltage pulses and the next ten loops by positive voltage 

pulses. The arrows indicate the tendencies of the loop shift with consecutive 

voltage application. 
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Figure 2.8 (a) SET behavior of the three ECs (CTP, NTP, and TTP) arising 

from external voltage stimuli (90.9 Hz, Vap = –3 V, 40 stimuli), applied up to 

the time indicated by the arrow, and the following relaxation of the synaptic 

weight. The read-out voltages for CTP, NTP, and TTP were –2.3, –0.8, and –

0.7 V, respectively. The voltage stimuli are shown in the inset. The widths of 

both Vap and Vr, t1 and t3, respectively, were 1 ms. The time intervals between 
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Vap and Vr (t2) and between Vr and the next Vap (t4) were 2 and 7 ms, 

respectively. Thus, the stimulation frequency was  ∑   
 
    

  
. (b) RESET 

and relaxation behaviors were also identified by applying voltage stimuli 

(90.9 Hz, Vap = 2 V, 40 stimuli) up to the time indicated by the arrow. (c) 

Transition from SET to RESET of resistance change, arising from the polarity 

alteration of external stimuli (–V to +V). 
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2.3. Threshold switch based on GeSe 

 

2.3.1. Experimental 

 

GeSe thin film deposition: An amorphous GeSe layer was deposited by rf 

magnetron co-sputtering method. (deposition rate:12.2 nm/min) The rf-

power of Ge4Se6 and Ge target, and working pressure under Ar atmosphere 

were maintained as 30 W, 20 W, and 0.5 mTorr, respectively during the 

deposition. The crystallization temperature was determined by the X-ray 

diffraction analysis of the annealed GeSe film as shown in Figure 2.9.[21] 

 

Threhold switch fabrication: TS cells were formed in crossbar structure 

(see Figure 2.10) realized by following steps. i) The Pt BE was deposited on 

Ti adhesion layer by electron-beam evaporation and patterned using a 

standard photolithography technique. (photoresist: AZ5214, aligner: Karl Suss 

MA6) ii) The 100 nm GeSe layer was deposited onto the BE by rf magnetron 

co-sputtering method. iii) For the singl-layered TS, the Pt TE was deposited 

onto the GeSe layer by electron-beam evaporation and patterned in the same 

method for the BE. For the dual-layerd TS, the 20 nm SiOx (SO) layer was 

deposited onto the GeSe layer before the TE depostion. Then, the Cu TE was 

deposited onto the SO layer by electron-beam evaporation and patterend in 

the same method for the BE. The cross-point areas were set to 5×5 mm2 for 

single-layered TS cells, whereas were set to varied from 5×5 to 50×50 mm2 for 

dual-layered TS cells.  

 

Current-voltage measurments: Two types of I-V measurements were 

conducted. i) I-V measurements on the dual-layered TS cells (Cu/SO/GeSe/Pt) 

were conducted by using a Keithley 236 Source Measurement Unit. ii) I-V 

behavior of the single-layered TS (Pt/GeSe/Pt) was measured by applying a 
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triangle voltage pulse using an Agilent 81110A pulse generator (PG). The 

response was simultaneously recorded by using a Tektronix TDS5104 

oscilloscope. The measured I-V behavior revealed Von, Voff, and Ron other than 

Roff that was barely readable due to the limited voltage resolution of the 

oscilloscope. The sub-threshold behavior including Roff was alternatively 

evaluated by employing a Keithley 236 Source Measurement Unit. A voltage 

was applied to the TE while the BE was grounded for three cases. 

 

Potentiostatic measurements: The voltage pulses were generated using an 

Agilent 81110A and applied to the BE of the cells. The responses of the cells 

to the voltage pulses were monitored using a Tektronix TDS 5104 

oscilloscope having an internal resistance of 50 ohms.  

 

XPS characterization: For the XPS characterization an additional type of 

cell was fabricated: unpatterned blanket Cu layer on blanket SO-GeSe dual-

layer solide electrolytes that were formed on blanket Pt BE layers. The 

aforementioned cell was used for the XPS characterization. For evaluation of 

depth profile of each element the specimen was sputtered using Ar ions at 3 

kV.  
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Figure 2.9 X-ray diffraction analysis of the annealed GeSe thin fim. The 

dot line and solid line indicate crystalline GeSe and Ge, respectively.[21] 
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Figure 2.10 (a) The optical image of the fabricated crossbar-structred TS 

cell from top view. (b) A cross-sectional transmission electron microscope 

image of the single-layered TS (Pt/GeSe/Pt) cell. (c) A schematic of the TS 

crossbar structure.[5] 
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2.3.2. Threshold switch exhibiting s-shaped negative differential 

resistance 

 

The Pt/GeSe/Pt TS is known to represent resistive switching of 

monostability – popularly referred to as threshold switching.[5, 6] The 

threshold switching differs from bistable resistive switching (memory 

switching) in light of lack of stability for the excited state (on-state) – 

featuring low resistance generally – without external perturbation.[4-6, 22] 

Typical I-V hysteretic loops of the TS are plotted in Figure 2.11a, which 

were measured by applying a triangular voltage pulse Vin (shown in the inset 

of Figure 2.11a) to the circuit in Figure 2.11b. Vout in Figure 2.11b was 

directly acquired from the oscilloscope. Given a known resistor Rload, the 

voltage across the TS (VTS) was obtained, providing the I-V hysteretic loops 

in Figure 2.11a.  

The characteristic threshold switching behavior can by and large be 

parameterized by four switching parameters: Roff, Ron, Voff, and Von denoting 

off- and on- resistance and threshold voltages for on-to-off and off-to-on 

switching, respectively.[5] The on-switching is known to be accompanied 

with s-shaped NDR.[22] s-shaped NDR following threshold switching has 

been observed in not only amorphous higher chalcogenides[4-6] but also 

various systems such as Mott insulators,[23, 24] open-base bipolar junctions,[25] 

Shockley diodes.[26, 27] The amorphous GeSe in the TS is an As-free 

chalcogenide material whose detail in film deposition can be seen 

elsewhere.[5] The s-shaped NDR that causes the on-state drives large current 

flow, and thus high power dissipation (Joule heat). Fortunately, the 

crystallization temperature of GeSe is fairly high (~350 Cͦ) so that the 

memory switching – arising from phase-change – could be prevented.[6] A 

mechanism for threshold switching in amorphous chalcogenide is still 

controversial between two plausible models: the thermal model[28, 29] and 
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purely electronic model.[30-32] The former elucidates the thermal activation of 

electronic carriers in the chalcogenide in which the number of electrons 

exponentially varies upon the lattice temperature.[28, 29] The purely electronic 

model such as double injection model[30, 31] a priori rules out such thermal 

activation and, instead, concerns the electric field re-distribution and 

resulting change in the band structure within the chalcogenide. In the double 

injection model, the electric field re-distribution is mediated by the time-

dependent interaction between electronic carriers and charge traps.[30, 31] 

Variability in the threshold switching parameters was unavoidable as for 

resistive switching devices.[33, 34] As seen in Figure 2.11c – e, there exist 

remarkable distributions of Von, Voff, and Roff, which by and large follow a 

normal distribution. The data fitting reveals standard deviations of 7, 5, and 

5% for Von, Voff, and Roff, respectively. Variability in Ron could not be 

evaluated in view of the difficulty in the parameter evaluation, though it is 

most likely present (see Experimental). These variations were seen after each 

switching cycle, and thus most likely driven by each switching-cycle.  
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Figure 2.11 (a) Threshold switching I-V loops of the TS in the circuit 

configuration in (b). The inset in a) shows the applied triangular voltage pulse. 

Variability in threshold switching parameters, (c) Von, (d) Voff, and (e) Roff, is 

shown in the histrogram. Roff was measured at a VTS of 0.5 V. 
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2.3.3. Threshold switch without s-shaped negative differential 

resistance 

 

The behavior of dual-layered TS cells, (or could be referred to as 

electrochemical metallization (ECM) cells) under negative voltage with a 

compliance current is examined. The negative voltage application in a quasi-

static voltage sweep mode with a compliance current leads to monostable 

resistive switching behavior, which is popularly referred to as threshold 

switching, as can be seen in Figure 2.12a. Here, the bias was applied to Cu TE 

while the Pt BE was grounded. This is a somewhat surprising result 

considering the fact that a typical memory switching could be generally 

achieved when the Cu electrode was positively biased, and the threshold-type 

switching would be expected when a limited switching power was applied by 

adopting a low level of compliance current. Threshold switching is of 

volatility rather than non-volatility, that is, it does not represent memory effect. 

In Figire 2.9a, a sudden increase in current at approximately -0.9 V is noticed, 

reaching the compliance current (50 mA). This voltage is defined as on-

switching voltage (Von). While the down sweep towards zero voltage, current 

starts dropping at approximately -0.25 V and the cell eventually recovers its 

original, i.e. pristine, resistance. This voltage is defined as off-switching 

voltage (Voff). This threshold switching behavior is quite stable. However, 

there are distributions of switching parameters, e.g. Von, Voff, and the 

resistances in the on- and the off-state, Ron and Roff, respectively, as shown in 

Figures. 2.12b and 2.12c, respectively, during the repeated I-V sweeps.  

The threshold switching behavior was double-checked by employing a 

potentiostatic measurement method (voltage pulse application). Here, the bias 

was applied to Pt BE while the Cu TE was grounded. A schematic of the 

measurement setup is illustrated in Figure 2.13c. The detail of the setup can 

be seen found elsewhere.[6] While application of the voltage pulses shown in 
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Figure 2.13b, the ECM cell underwent the threshold switching in case that the 

applied voltage was larger than a threshold voltage for the threshold switching 

(red line in Figure 2.13a).  

The threshold switching kinetics was identified by monitoring the response 

of the maximum current flowing through the ECM cell to the applied voltage 

pulses of different heights and widths. A current map with respect to voltage 

height and width is shown in Figure 2.13d. It is noticed that turning on the 

switch requires a certain time, i.e. incubation time denoted in Figure 2.13a, 

and a certain voltage, which are not independent of each other. The higher the 

applied voltage pulse height, the smaller the pulse width is to obtain the 

similar amount of current. This relationship can be obviously seen in that 

between the incubation time and voltage pulse height as plotted on the current 

map using open circles in Figure 2.13d. The incubation time largely relies on 

the voltage pulse height, in particular, at lower heights (ca. < 1.7 V) whereas 

very weak dependence is shown at the high heights, e.g. 1.8 and 1.9 V. Thus, a 

transition of threshold switching mechanism with respect to the voltage height 

tends appears to occur in a similar way as shown in the on-switching kinetics 

of ECM memory cells.[35] A note should be placed on the fact that the off-

switching is not accompanied with s-shaped NDR. During off-switching 

period in Figure 2.12a, resistance of the ECM cell is not abruptly but 

gradually recovered back to Roff. Regarding the quasi-static I-V measuremnt, 

it is plausible that multiple resistance states could be existed between Ron and 

Roff during off-switching. 

The overall current conduction through the cell is found to be non-uniform 

over the electrode area, regardless of the cell’s resistance state. The current 

barely scales with the electrode area in both on- and off-states as plotted in 

Figure 2.13e. The off-state currents were evaluated from the quasi-static I-V 

measurements and the on-state currents from the potentiostatic voltage pulse 

measurements. This most likely implies that current paths, having non-
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uniform distribution over the electrode area, were inherently embedded in the 

solid electrolyte in the pristine state. Note that these current paths do not 

necessarily mean conducting filaments as the term includes all factors that 

possibly lead to the non-uniform conductance distribution. The current paths 

perhaps result from spontaneous Cu ion migration through the dual-layer solid 

electrolyte, which was indeed identified in SO-based ECM cells.[36, 37]  

The XPS measurement was performed on a large blanket specimen. This 

specimen was also placed in deionized water before the XPS measurements 

to impose the same condition. The measured spectra are shown in Figure 

2.14. Given the high signal-to-noise ratio, the valence state of Cu in the 

GeSe layer could be identified; it turned out to be Cu0. That is, Cu stays 

neutral in the GeSe layer, whereas Cu in the SO layer in this blanket 

specimen is ionized. Given the measured XPS spectrum, the valence state of 

incorporated Cu in the pristine ECM cell is estimated to be twofold: neutral 

Cu0 and in the lower GeSe and Cu2+ in the upper SO. The standard chemical 

potential of Cu in SO is predicted to be lower than that in GeSe due to the 

higher Cu-O bonding energy than Cu-Se.[38] Thus, the SO layer perhaps 

serves as a chemical potential well for Cu, confining incorporated Cu 

atoms/ions in the well. Moreover, a much larger difference in 

electronegativity between Cu and O than that between Cu and Se leads to the 

stronger ionic bonding character of Cu-O than Cu-Se. Accordingly, the 

difference in the Cu valence state between SO and GeSe can be understood. 
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Figure 2.12  Threshold switching behavior of the ECM cell. (a) Typical I-

V curve representing the threshold switching behavior. A schematic of the TS 

is drawn in the inset. Statistic data of switching parameters such as (b) Von, 

Voff, (c) Ron, and Roff. Roff was evaluated at a read-out voltage of -0.1 V in the 

upwards sweep, i.e. towards the maximum whereas Ron at Voff -0.1 V due to 

the variation of Voff a constant read-out voltage could not be used. 
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Figure 2.13 Response of the threshold switch to voltage pulses. (a) 

Threshold switching response of the ECM TS to (b) applied voltage pulses. 

The measurements were conducted using a setup whose schematic is 

illustrated in (c). PG, DUT, osc1, and osc2 denote the pulse generator, device 
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under test, oscilloscope channels whose internal resistance is 50 ohms, 

respectively. The incubation time indicated in a) means a time required to turn 

on the switch. (d) A current map of the same switch, measured by applying 

voltage pulses of different widths and heights. The average incubation times 

under the various pulse heights are denoted by the circle symbols on the 

current map. (e) The currents in the off-state (at a read-out quasi-static voltage 

of -0.1 V) and the on-state (obtained from the current response to the voltage 

pulse) are plotted with respect to the electrode area. 
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Figure 2.14 (a) Photoelectron spectra of Cu 2p3/2 emission at given depths 

from the top Cu layer surface in the blanket structure. (b) Several sampled 

spectra at each layer. (GS short for GeSe) 
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2.4. Conclusions 

 

J-V behaviors of pristine Pt/TiO2/Pt non-faradaic capacitors were 

characterized; complex and dynamic hysteretic behaviors were found. The 

complex hysteresis represented a transition of electric conduction. By means 

of time-dependent defect migration calculations, the transition was found to 

be attributed to a transition between ionic and electronic conduction 

behaviors. The electronic conduction is much more sensitive to an applied 

voltage than the ionic conduction so that, after transition into the electronic 

conduction regime, the non-faradaic capacitor shows a drastic increase in 

current with the voltage. Given that this transition is caused by oxygen 

vacancy migration kinetics, i.e. dynamics, a threshold voltage for the 

transition depends not only on input voltage pulse height but also on its pulse 

width.  

Provided the both polarity-dependent SET and RESET phenomena and 

reactive TE (no Pt TE) of ECs, it is most likely that redox reaction at the 

interface between the TE and the MIEC layer might be the major resistive 

switching mechanism of ECs. At present, the role of the interface between 

the TE and the MIEC layer in electronic transport is not clear. We will leave 

this relationship as an open question. 

Both GeSe-based single- and dual-layered TSs exhibited monostable 

switching. One of the distinct phenomenological switching characteristics 

between two TSs was s-shaped NDR, which was clearly demonstrated in 

Pt/GeSe/Pt TS. (see Figure 2.10) Provided the quasi-static measurement in 

Figure 2.11, however, off-switching period of Cu/SO/GeSe/Pt was unlikely 

accompanied with s-shaped NDR. Later on, s-shaped NDR will be revisited 

when TS is embedded in the oscillatory circuit is Section 6.3.2. 

 

 



 

 55

2.5. Bibliography 

 

[1] R. Waser, M. Aono, Nat. Mater., 6, 833 (2007). 

[2] R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater., 21, 2632 

(2009). 

[3] G. H. Kim, J. H. Lee, Y. Ahn, W. Jeon, S. J. Song, J. Y. Seok, J. H. 

Yoon, K. J. Yoon, T. J. Park, C. S. Hwang, Adv. Funct. Mat., 23, 1440 (2013). 

[4] M. J. Lee, D. Lee, S. H. Cho, J. H. Hur, S. M. Lee, D. H. Seo, D. S. 

Kim, M. S. Yang, S. Lee, E. Hwang, M. R. Uddin, H. Kim, U. I. Chung, Y. 

Park, I. K. Yoo, Nat. Commun., 4, 2629 (2013). 

[5] H.-W. Ahn, D. S. Jeong, B.-k. Cheong, S.-d. Kim, S.-Y. Shin, H. 

Lim, D. Kim, S. Lee, ECS Solid State Lett., 2, N31 (2013). 

[6] D. S. Jeong, H. Lim, G.-H. Park, C. S. Hwang, S. Lee, B.-k. 

Cheong, J. Appl. Phys., 111, 102807 (2012). 

[7] D. S. Jeong, I. Kim, M. Ziegler, H. Kohlstedt, RSC Adv., 3, 3169 

(2012). 

[8] D. S. Jeong, H. Schroeder, R. Waser, Phys. Rev. B, 79, 195317 

(2009). 

[9] H. Wang, L. Pilon, Electrochim. Acta, 64, 130 (2012). 

[10] J. J. Yang, J. Strachan, F. Miao, M.-X. Zhang, M. Pickett, W. Yi, D. 

A. Ohlberg, G. Medeiros-Ribeiro, R. S. Williams, Appl. Phys. A, 102, 785 

(2011). 

[11] U. Balachandran, N. G. Eror, J. Mater. Sci., 23, 2676 (1988). 

[12] P. Kofstad, J. Phys. Chem. Solids, 23, 1579 (1962). 

[13] J.-F. Marucco, J. Gautron, P. Lemasson, J. Phys. Chem. Solids, 42, 

363 (1981). 

[14] C. Meis, J. L. Fleche, Solid State Ionics, 101–103, Part 1, 333 

(1997). 

[15] D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. 



 

 56

Petraru, C. S. Hwang, Rep. Prog. Phys., 75, 076502 (2012). 

[16] A. Sawa, Mater. Today, 11, 28 (2008). 

[17] N. Cabrera, N. F. Mott, Rep. Prog. Phys., 12, 163 (1949). 

[18] N. F. Mott, Trans. Faraday Soc., 35, 472 (1940). 

[19] T. Chang, S.-H. Jo, W. Lu, ACS Nano, 5, 7669 (2011). 

[20] T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, M. 

Aono, Nat. Mater., 10, 591 (2011). 

[21] H.-W. Ahn, Ph.D. dissertation, A study of the materials and device 

characteristics of Ge-doped Sb-Te and Ge-Se chalcogenides for high density 

phase change memory, Korea University, 2014. 

[22] M. D. Pickett, R. S. Williams, Nanotechnology, 23, 215202 (2012). 

[23] A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, 

J. C. Orlianges, A. Catherinot, P. Blondy, Sci. Technol. Adv. Mat., 11, 065002 

(2010). 

[24] M. D. Pickett, G. Medeiros-Ribeiro, R. S. Williams, Nat. Mater., 12, 

114 (2012). 

[25] J. W. Han, Y. K. Choi, Symp. VLSI Technol., Dig. Tech. Pap., 171 

(2010). 

[26] X. Tong, J. Luo, H. Wu, Q. Liang, H. Zhong, H. Zhu, C. Zhao, J. 

Vac. Sci. Technol. B, 32, 021205 (2014). 

[27] X. Tong, H. Wu, L. Zhao, H. Zhong, ECS Trans., 52, 105 (2013). 

[28] D. M. Kroll, M. H. Cohen, J. Non-Cryst. Solids, 8–10, 544 (1972). 

[29] C. Popescu, Solid-State Electron., 18, 671 (1975). 

[30] H. K. Henisch, E. A. Fagen, S. R. Ovshinsky, J. Non-Cryst. Solids, 

4, 538 (1970). 

[31] N. F. Mott, Contemp. Phys., 10, 125 (1969). 

[32] A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A. Kostylev, A. 

Benvenuti, R. Bez, IEEE Trans. Electron Devices, 51, 714 (2004). 

[33] S. B. Long, X. J. Lian, T. C. Ye, C. Cagli, L. Perniola, E. Miranda, 



 

 57

M. Liu, J. Sune, IEEE Electron Device Lett., 34, 623 (2013). 

[34] J. H. Yoon, S. J. Song, I.-H. Yoo, J. Y. Seok, K. J. Yoon, D. E. 

Kwon, T. H. Park, C. S. Hwang, Adv. Funct. Mater., 24, 5086 (2014). 

[35] S. Menzel, S. Tappertzhofen, R. Waser, I. Valov, Phys. Chem. Chem. 

Phys., 15, 6945 (2013). 

[36] D.-Y. Cho, S. Tappertzhofen, R. Waser, I. Valov, Nanoscale, 5, 1781 

(2013). 

[37] S. Tappertzhofen, I. Valov, T. Tsuruoka, T. Hasegawa, R. Waser, M. 

Aono, ACS Nano, 7, 6396 (2013). 

[38] R. Soni, P. Meuffels, A. Petraru, M. Hansen, M. Ziegler, O. Vavra, 

H. Kohlstedt, D. S. Jeong, Nanoscale, 5, 12598 (2013). 

 



 

 58

3. Artificial synapse 

 

3.1. Introduction 

 

Often, mammalian brains are compared with central processing units 

(CPUs) when the role of the brain is simply explained. Similar to CPUs, 

mammalian brains are able to carry out deterministic calculations, i.e. 

solving problems having fixed solutions. In these calculations, CPUs are 

much more reliable than brains in terms of speed, accuracy, and the scale of 

calculation. However, the function of mammalian brains that differentiates 

them from CPUs is ‘learning’. Brains are able to learn, so that they can solve 

problems having unfixed solutions, i.e. nondeterministic calculations. This 

fascinating functionality is a subject that a number of non-biology 

researchers (electrical engineers, computer scientists, materials scientists, etc) 

have attempted to emulate by means of non-biological systems. This 

research field is referred to as neuromorphic engineering, coined by Mead.[1] 

The hippocampus of a mammalian brain is known to be responsible for 

learning and memory. The basic building blocks of the hippocampus are the 

neuron and the synapse (chemical synapse). 

To realize the ambitious goal of neuromorphic engineering, it is necessary 

to build up complex ANNs using the basic building blocks, i.e. artificial 

neurons and synapses. As mentioned above, the higher-level functionalities 

of the hippocampus, e.g. learning and memory, must be understood at the 

network (collective) level rather than at the building block level. 

Nevertheless, considering that the collective behavior reflects a single 

building block’s behavior, it is of great importance to successfully realize 

artificial synapses and neurons that meet the requirements as building blocks 

of complex neural networks. In particular, learning and memory directly 
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involve the activity-dependent plasticity of chemical synapses, and thus 

particular emphasis needs to be placed on the achievement of artificial 

synapses. Recently, a number of attempts have been made to realize artificial 

synapses by means of various physical concepts.[2]  

In this study, we demonstrated the STM effect of two-terminal passive 

VCM systems utilizing TiO2 MIEC, which is well known as a typical VCM 

material.[3] In fact, TiO2 has attracted considerable attention for its 

application in resistive switching RAMs and memristors.[4-7] Note that the 

STM effect differs from the resistive switching effect representing LTM. The 

difference most likely arises from electroforming. In the STM effect 

measurements, electroforming procedures were not employed. Moreover, 

different ‘reactive’ metals such as Cr, Ni, Ti, rather than inert metals such as 

Pt, Au, were used as TEs to identify the dependence of STM effects on the 

reactive electrode. Note that, hereafter, conductance of ECs is termed as a 

synaptic weight, w. Likewise, read-out current change, i.e. DI of Figure. 2.7, 

can be termed as Dw. Finally, the observed STP behavior was described by a 

mathematical formula. By comparing the equation and experimental data, 

critical parameters determining the STP behavior were extracted, and a 

relationship between the parameters and electrode materials was addressed. 

 

3.2. Results and discussions 

 

When potentiated, the synaptic weight change did not show unlimited 

growth. Instead, it converged towards a certain value, as shown in Figures 

3.1a and c. The Hebb rule is described by tw dDw/dt = upreupost, where w, upre, 

and upost denote a time constant of potentiation, presynaptic activity, and 

postsynaptic activity, respectively. According to the Hebb rule, sustained 

activities on both sides of a synapse lead to the unlimited increase of the 

synaptic weight with time. Thus, the Hebb rule cannot directly be employed to 
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describe the measurement results. Not only these artificial synapses but also 

biological synapses are known to behave differently from the Hebb rule when 

potentiated.[8, 9] That is, similar to the EC artificial synapses, biological 

synapses represent the saturation of their synaptic weight. Several 

mathematical formulae have been suggested to take into account the synaptic 

weight convergence (saturation), e.g. the Bienenstock–Cooper–Munro (BCM) 

rule[8] and the Oja rule.[9] 

The stimulation frequency is regarded as a crucial variable in synaptic 

plasticity. For instance, Dudek and Bear reported stimulation-frequency-

dependent plasticity of synapses in the CA1 of the hippocampus.[10] In their 

study, it was found that there is a threshold frequency for potentiation; i.e. the 

stimulation frequency should be larger than the threshold for potentiation, 

otherwise the stimuli lead to depression instead of potentiation. It is therefore 

worth checking the effects of the stimulation frequency on the STM behavior 

of the ECs. We varied the stimulation frequency from 9.9 to 90.9 Hz at a fixed 

stimulation voltage. The frequency was varied by changing the time interval 

between a read-out voltage pulse and the next voltage stimulus, i.e. t4 as 

shown in the insets of Figure 2.7. The intervals for 90.9, 66.7, 47.6, 30.3, and 

9.9 Hz were 7, 11, 17, 29, and 97 ms, respectively. This stimulation-

frequency-dependent potentiation behavior was measured on the three ECs 

and the results are plotted in Figure 3.1. It can be seen that the potentiation 

behavior relies significantly on the stimulation frequency and the synaptic 

weight change increases as increasing frequency. Apart from CTP, the 

potentiation behaviors of the other ECs exhibited synaptic weight 

convergence towards certain levels during the stimulation (220, 160, 115, 75, 

and 25 stimuli at 90.9, 66.7, 47.6, 30.3, and 9.9 Hz, respectively). Thus, the 

basic Hebb rule, predicting uncontrolled growth of synaptic weight, cannot be 

employed to describe the potentiation behavior without taking into account 

the stimulation frequency. 
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The synaptic weight of each EC, averaged over the time period (2 ± 0.1 

s), are plotted with respect to stimulation frequency in Figure 3.1d. In Figure 

3.1d, in not only the time domain but also in the frequency domain, the 

potentiation behaviors of NTP and TTP tend to converge towards high-

frequency limit values. That is, saturation of synaptic weight of these 

capacitors appears to occur at higher frequencies. However, in the case of CTP, 

the synaptic weight hardly exhibits a tendency to saturation, at least at the 

given frequencies. Instead, the synaptic weight at the highest frequency (90.9 

Hz) is significantly larger than the other weight values. Considering that 

synaptic weight saturation most likely implies no further learning and memory, 

it is perhaps favored to widen the stimulation frequency range where synaptic 

weight saturation does not show up. Thus, the larger range of stimulation 

frequency perhaps enables the artificial synapses to realize a high degree of 

potentiation at various frequencies, as shown in CTP. In fact, repeated 

tetanization in the hippocampus of a mouse was found to lead to saturation of 

the synaptic weight of hippocampal synapses, and thus no new encoding of 

spatial information, which results in blocking the mouse’s spatial learning.[11, 

12] 

It is worth deriving an empirical equation describing the potentiation 

behavior of the EC artificial synapses by which the top-electrode-dependent 

potentiation behaviors can be parameterized. A comparison between the three 

different ECs can therefore be made more easily. The synaptic weight change 

of the EC artificial synapses may be viewed as a continuous transition 

between fully potentiated and ground states. The fully potentiated state was 

regarded as being reached when the EC’s synaptic weight reaches its 

maximum (wmax), as shown in Figure 3.2. That is, saturation, rather than 

unlimited growth, of synaptic weight was basically assumed, which is realistic, 

considering biological synapses’ potentiation behavior as discussed earlier. At 

a given time, the synaptic weight value w lies between w0 and wmax, 
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corresponding to the ground state and the fully potentiated state, respectively. 

For simplicity, the relative synaptic weight Dw, Dw = w – w0, can be defined, 

and thus the value lies between 0 and Dwmax (Dwmax = w0). It is perhaps proper 

to employ a time-dependent state variable (qt) that determines the kinetics of 

synaptic weight change. Let us suppose that the time-derivative of the 

synaptic weight change is proportional to the difference between the strength 

of dthe external stimulus (v) and the state variable (qt), i.e. 

 ∆ 

  
=  ( −   ),       (3.1) 

where k is a positive constant. In deriving the empirical equation, a firing-rate 

model, rather than a spiking model, was employed for simplicity.[13] The 

external stimulus strength v is therefore given by a firing rate, i.e. stimulation 

frequency. When the time-varying state variable qt becomes close to, but still 

below, the stimulus strength v, the rate of synaptic weight change decreases 

with time and a rate of zero is eventually achieved if qt reaches v. 

Equation 3.1 is basically borrowed from the BCM rule that was briefly 

discussed earlier. In the BCM rule, the state variable qt is referred to as a 

sliding threshold for potentiation.[8] The difference is that the BCM rule 

describes LTP, so that qt is a sliding threshold for LTP, whereas Equation 3.1 

deals with STP, thus its threshold is for STP. The sliding threshold is assumed 

to be given by the logisticdifferential equation: 

   

  
=    ( −   ),      (3.2) 

where a and b denote positive constants. The logistic function as a solution to 

the logistic differential equation accounts for the behavior of qt in the time 

domain, initially the rate of qt change is zero and increases, and thus qt 

increases, until qt reaches b. That is, qt converges towards b. The solution of 

Equation 3.2 is expressed as 

  =
 

      /  
,       (3.3) 
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where c = [b–qt(0)]/qt(0) and tq = (ab)–1. qt(0) means the initial value of the 

sliding threshold. The smaller the constant tq is, the steeper the threshold 

change is. 

Substituting Equation 3.2 into Equation 3.1 and solving the first-order 

differential equations gives 

∆ =     +    ln  
   /  (   )

    /    
  .     (3.4) 

Fitting of the measured potential behaviors shown in Figure 3.1 using 

Equation 3.4 was performed and the results are plotted in the same figure. The 

data fitting was done using the steepest gradient method and the parameters 

leading to the best fitting results were obtained. Two critical parameters, 

tq and k, with respect to frequency for each EC are shown in Figures 3.3c and 

d. As aforementioned, what determines the potentiation kinetics is the sliding 

threshold with time.  

The fitting results identify different sliding threshold behaviorr against time, 

depending on the sample (see Figures 3.3a and b). In particular, the threshold 

increase rate during potentiation shows distinctive features depending on the 

TE materials. TTP exhibits the steepest threshold increase rate out of the three 

ECs, whereas NTP exhibits the smallest rate. Accordingly, the time constant 

of the threshold change (tq ) with time for TTP is smallest and that for NTP is 

largest, as shown in Figure 3.3d. On the other hand, the synaptic weight 

change during potentiation, shown in Figure 3.1, was maximized in CTP. This 

is attributed to the larger constant k for CTP than the other ECs, as the 

comparison can be seen in Figure 3.3c. Moreover, the constant k for CTP 

increases with respect to the stimulation frequency, unlike the other ECs, so 

that the synaptic weight change for CTP does not converge with frequency 

(see Figure 3.1d). 

Taking into account the redox-based mechanisms of ECs, the meaning of 

the sliding threshold for potentiation can accordingly be interpreted as follows. 
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The time constant tq in Equations 3.3 and 3.4 may reflect the kinetics of the 

top-electrode-related reduction reaction, for instance, a redox reaction rate 

constant. Then, a higher reaction rate constant is supposed to increase a 

threshold change rate, so that the higher the reaction rate constant is, the lower 

the time tq constant is. Possible reduction reactions are as follows: Ni2+ + 2e– 

→ Ni, Cr3+ + 3e– → Cr, and Ti4+ + 4e– → Ti for NTP, CTP, and TTP, 

respectively. These reduction reactions are perhaps not spontaneous, as their 

standard electrode potentials in aqueous solutions are –0.23, –0.74, and –

0.86 V, respectively.[14, 15] A critical factor determining the redox reaction rate 

constant is an overpotential-dependent change in the free energy with respect 

to the reaction coordinate. On the assumption of the same symmetry for the 

above-mentioned three reduction reactions, the free energy change on the 

overpotential is proportional to the number of electrons involved in the 

reduction reaction. Therefore, at the same negative overpotential for the three 

ECs, the free energy change of TTP is estimated to be largest, since the 

reduction of a single Ti4+ ion involves the transfer of four electrons, so that the 

change of the reduction rate constant      
  from the equilibrium value (in 

case of no external stimulation) is also estimated to be largest. Since the 

reduction reactions of Cr3+ and Ni2+ involve the transfer of three and two 

electrons, respectively,      
 >      

  is estimated, i.e.      
 >      

 >

     
 . 

Accordingly, the time constant tq of NTP is estimated to be largest and 

those of CTP and TTP follow in turn. This estimation is in agreement with the 

experimental data shown in Figure 3.3d. In spite of this agreement, one should 

note that this suggested mechanism is based on speculation, since no detailed 

information on redox reactions related to the STM effect has been revealed, 

e.g. valence states of metal ions.  



 

 65

As discussed in before, the reason for the highest Dw for CTP out of the 

three ECs is attributed to the parameter k in Equations 3.1 and 3.4. In fact, k is 

a parameter defining a relation between ‘electronic conduction’ through the 

junction and the ‘sliding threshold’, perhaps determined by the 

aforementioned reduction kinetics. The read current in the whole 

measurements is most likely the ‘electronic’ one rather than an ionic or 

displacement current. Basically, what is suggested as mechanisms for the 

STM effect is electronic conductance modulation by the redox reactions. Thus, 

a higher k value denotes a more significant dependence of the electronic 

conductance on the redox reactions. To understand top-electrode-dependent k 

better, one needs to figure out electronic transport behavior through the EC 

junction.  
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Figure 3.1 Potentiation with respect to time for (a) CTP, (b) NTP, and (c) 

TTP at various stimulation frequencies (90.9, 66.7, 47.6, 30.3, and 9.9 Hz). 

The open circles are the measured data. The solid lines were calculated by 

using the empirical equation, explained in Section 3.2. (d) The Dw values, 

averaged over the time period (2±0.1 s), with respect to the stimulation 

frequency. 
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Figure 3.2 Schematic diagram of the synaptic weight change Dw at a given 

time t. Dwmax means the maximum synaptic weight change, and thus the 

saturation of synaptic weight is basically assumed. 
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Figure 3.3 (a) Calculated sliding threshold for potentiation as a function of 

time for the ECs at five different frequencies (90.9, 66.7, 47.6, 30.3, and 9.9 

Hz). The dashed lines denote external stimuli. (b) The sliding threshold 

behaviors are enlarged in the time range 1.5–2.4 s. The critical parameters 

determining the potentiation behaviors (c) k and (d) tq were plotted with 

respect to stimulation frequency. 
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3.3. Conclusions 

 

TiO2 MIEC layers sandwiched between asymmetric BE and TE (inert BE 

and redox-reactive TEs) were identified to represent the unidirectional STM 

effect. In all CTP, NTP, and TTP ECs, negativeand positive-stimulus-induced 

potentiation and depression, respectively, were observed. Both potentiated and 

depressed states could not last for a long time, but instead both states 

underwent relaxation towards the initial state. The three different ECs 

represented differences in their potentiation behaviors; for example, the much 

larger change in synaptic weight of CTP than the others. These differences 

arising from TE materials were parameterized by means of employing an 

empirical equation including the concept of a ‘sliding threshold’ for 

potentiation, as does the BCM rule. Several important parameters in the 

empirical equation were understood in relation to top-electrode-related redox 

reactions. 
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4. Emulating spiking phenomenon based on 

non-faradaic Pt/TiO2/Pt  

 

4.1. Introduction 

 

Recently, the analog-type resistance plasticity of a metal–insulator–metal 

capacitor has been utilized in the creation of artificial synapses, based on 

various physical concepts such as phase-change in higher chalcogenides, 

ferromagnetism, and nanoionics.[1-14] Not only capacitor-type but also 

transistor-type artificial synapse has been recently demonstrated.[15] 

Nanoionics-based artificial synapses can be further classified as anion-

migration type, often based on transition metal oxide (TMO) MIEC, and as 

cation-migration type.[5-14] The plasticity of synaptic weight change in the 

former type may be attributed to the electrical-stimulus-induced formation of 

low resistive phases, e.g. lower oxide or metal phases, while that in the latter 

type may be attributed to metal precipitation. These phases are energetically 

meta-stable, and thus can be retained for a long time.[10, 11, 16, 17] Several 

capacitor-like systems exhibiting plastic resistance are popularly referred to as 

memristors.[18, 19] Because the resistance of artificial synapses defines the 

degree of association between neighboring artificial neurons, the plasticity of 

resistance of memristors forms the basis for artificial synapses, and thus 

denotes the plasticity of neurons’ association. 

Compared with artificial synapses, artificial neurons emulating action 

potential firing functions appear to draw little attention despite their 

importance in communication within neural networks. The reason is most 

likely that the recent attention to neuromorphic systems is due to their 

plasticity, i.e. non-volatile, resistance switching phenomenon, which can be 

utilized in non-volatile memories, e.g. resistive RAMs and phase-change 
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RAMs.[20-25] Nevertheless, attempts to realize lossless signal transmission and 

action potential firing by circuit engineering can be found in old publications, 

for instance, the neuristor concept suggested by Crane in 1962.[26, 27] 

Krzysteczko et al. had a breakthrough in realizing action potential firing in 

MgO-based magnetic tunnel junctions, using the spin-transfer-torque-induced 

mono-stable switching of magnetic state configuration.[4] Recently, the 

neuristor concept has been revisited: scalable neuristors have been realized 

using a set of Mott memristors and parallelconnected capacitors, where action 

potential firing was successfully emulated.[28, 29] 

In this study, an attempt is made to realize the ‘elastic’, i.e. short-lasting, 

resistance change of an MIEC and to identify its similarities with the action 

potential firing behavior of a neuron. In this work, TiO2 was chosen as an 

MIEC, which is estimated to be one of the most promising materials for 

realization of artificial synapses as well as resistive RAMs. [19, 30-33] The defect 

structure of hypo-stoichiometric TiO2 was controversial for a long time, 

concerning whether the major defect type is oxygen vacancy or titanium 

interstitial.[34-38] Marucco et al. demonstrated that the major defect type is 

determined by temperature; therefore, oxygen vacancy and titanium 

interstitial are low- and high-temperature-stable defect types, respectively.[37] 

Since TiO2 film deposition and electrical characterization in this work were 

conducted at room temperature, oxygen vacancy was considered as the 

dominant defect type in this TiO2 MIEC.  

 

4.2. Results and discussions 

 

The electric conduction behavior of the Pt/TiO2/Pt capacitor was 

investigated with applying square-shaped voltage pulses. The width of voltage 

pulses varied from sub-ms to 100 ms. By utilizing a voltage divider, the 

response current was converted into response voltage, i.e. output voltage Vout. 
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In this manner, the output voltage responding to the input voltage Vin pulses 

was evaluated. Two different schemes of voltage application were employed: 

(i) polarization voltage Vpol pulses with a background dc voltage of zero, i.e. 

Vin = Vpol, and (ii) depolarization voltage Vdepol pulses superimposed on a 

background dc Vpol, i.e. Vin = Vpol – Vdepol. In the former case, the used circuit 

diagram is shown in the inset of Figure 4.1a. A voltage divider R0 (1 kohm) 

was connected in series to the Pt/TiO2/Pt capacitor RMIEC. Figure 4.1a and b 

show the square-shaped input voltage pulses, with four different heights (1, 2, 

3, and 4 V) and a 10 ms pulse width, and the output voltage pulses, 

respectively. The abrupt increase in the output voltage with the input voltage 

is shown in Figure 4.1b, suggesting that voltage spikes are generated, i.e. 

voltage spike firing, relying on the magnitude of external stimulation. Figure 

4.1c shows output voltage with respect to input voltage pulse height (0.2–4 V) 

and width (0.2–100 ms). In the figure, it can be noticed that increasing the 

input voltage pulse width leads to a decrease in the height required for a 

particular output voltage. This implies that the voltage spike firing is a 

function of, at least, two independent variables, i.e. voltage and time. Thus, 

the aforementioned magnitude of external stimulation should include the 

quantities of these two variables. In fact, it is found that input voltage pulses 

of 4 V height and 100 ms width result in the largest output voltage spike. 

In the latter case, i.e. application of Vdepol pulses superimposed on a 

background dc Vpol, the employed circuit diagram is depicted in the inset of 

Figure 4.1d. In the circuit, a voltage divider (also 1 kohm) was ahead of the 

capacitor. A dc Vpol of 3 V was applied to the circuit and Vdepol pulses of 

different heights (0.4, 0.8, 1.2, 1.6, and 2.0 V) and a 10 ms width were 

superimposed on the Vpol. The Vdepol pulses and consequent Vin pattern, i.e. 

Vpol–Vdepol, are plotted in Figure 4.1d. At a 3 V dc Vpol, the Vout was 

approximately 1.6 V, implying that the capacitor's resistance becomes 
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comparable to that of the voltage divider (1 kohm) at the given Vin. In this 

study, this output voltage is termed as the ‘resting potential’. 

Insomuch as the Pt/TiO2/Pt capacitor is a passive element, the Vdepol pulses 

imposed on the capacitor reduce the output voltage as shown in Figure 4.1e. 

However, when a Vdepol pulse ends, i.e. re-polarization starts, a voltage-spike is 

generated and its height is larger than the resting potential. Voltage-spike 

height can be defined as the deviation of the voltage spike maximum from the 

resting potential level (DVout). The voltage spike height with respect to the 

height and width of the Vdepol pulses is plotted in Figure 4.1f. It turns out that 

the voltage spike height relies on both Vdepol pulse height and width and it 

increases with the Vdepol pulse height and width. In fact, Vdepol pulses of the 

largest height (3 V) and width (60 ms) give rise to the largest output voltage 

as can be seen in Figure 4.1f. 

The ionic-to-electronic conduction transition was also observable in the 

case of application of square-shaped voltage pulses. In Figure 4.1b, the abrupt 

increase in the output voltage with the input voltage is attributed to the 

decrease of the capacitor's resistance with the input voltage, which results 

from the ionic-to-electronic conduction transition and non-linear J-V relation. 

At 1 V, the output voltage decreases during single pulse application, implying 

the electrical charging due to the polarization of oxygen vacancy distribution, 

and thus negligible electronic current (see the inset of Figure 4.1b). However, 

at 2 V, it can be seen that the output voltage increases during single pulse 

application, suggesting a gradual decrease in the capacitor's resistance, which 

results from the evolution of EMF for electronic conduction. Accordingly, the 

threshold voltage for ionic-to-electronic conduction transition is between 1 

and 2 V.  

Keeping in mind that the ionic-to-electronic conduction transition as well as 

EMF evolution arises from oxygen vacancy migration, it is estimated that the 

polarization-induced voltagespike firing behavior shown in Figure 4.1b is 
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controlled by the kinetics of oxygen vacancy migration. The ionic-to-

electronic conduction transition and EMF evolution occur while the capacitor 

is polarized, i.e. the distribution of oxygen vacancies is polarized, so that the 

kinetics of oxygen vacancy ‘drift’ is of great importance in the phenomenon. 

The output voltage-spike of the circuit in the inset of Figure 4.1a therefore 

varies on voltage, a driving force for oxygen vacancy ‘drift’, and time as 

plotted in Figure 4.1c. Increasing oxygen vacancies’ drift time, i.e. input 

voltage pulse width, and low driving force for oxygen vacancy drift, i.e. 

voltage height, are required for a particular polarization and the consequent 

output voltage. 

The above-mentioned voltage-spike firing behavior arises from the 

polarization of the non-faradaic capacitor that is depolarized in its resting state. 

In contrast, in a neuron, due to the presence of the resting potential (–70 mV), 

the membrane is polarized (depolarized) in the resting (excited) state. As 

briefly mentioned earlier, this polarized resting state is attributed to Na+/K+-

ATPase ion pumps serving as a power source by converting chemical energy 

into electrical energy, i.e. Nernst potential.[39] These ion pumps therefore let 

the cell membrane be an “active element”, and thus act as a lossless cable 

transmitting action potentials. In this sense, the depolarization-induced 

voltage-spike firing behavior shown in Figure 4.1e shares some common 

aspects with the action potential firing behavior in neurons. The polarization 

voltage (3 V) results in the resting potential (ca. 1.6 V) and serves as an 

additional energy source as ATPase ion pumps. The polarization voltage was 

found to be above a threshold for the ionic-to-electronic conduction transition, 

so that the capacitor's resistance was comparable to that of the voltage divider. 

During the depolarization period, the capacitor's resistance increases. 

Especially, if the depolarization voltage is high enough to lower the input 

voltage below a voltage for the electronic-to-ionic conduction transition, a 
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very large decrease in the capacitor's resistance takes place. Thus, the 

subsequent re-polarization period begins with a high output voltage that 

decreases with time, due to the decrease of the capacitor's resistance with time 

during the polarization period. What matters in the depolarization-induced 

voltage-spike firing is the kinetics of oxygen vacancy redistribution by 

‘diffusion’ rather than drift. Thus, it is expected that output voltage-spike is 

significantly affected by the height and width of depolarization voltage pulses. 

Figure 4.1f identifies this relationship, where voltage-spike height is defined 

as the deviation of the voltage-spike height from the resting potential level 

(DVout). It can be seen that the voltagespike increases with the height and 

width of the depolarization voltage pulses since the decrease of the capacitor's 

resistance becomes larger when depolarized by larger and wider 

depolarization voltage pulses. 

Compared to the polarization-induced voltage-spike firing, the 

depolarization-induced voltage-spike firing is perhaps favorable because of 

the presence of a polarization voltage source. The polarization voltage source 

enables the circuit to be active, and thus the continuous loss of output voltage-

spike, while the voltage-spike travels along passive circuit elements, is likely 

to be avoided. Of course, how to implement this concept in integrated circuits 

is an open question at this moment. 

Comparing the non-faradaic capacitor with several TMO MIEC systems 

mimicking the artificial synapses with plasticity, one may guess that the 

nature of the electrode–MIEC interface is a lasting-time-determining factor. 

For instance, Pd/WOx/W artificial synapses that Chang et al. reported may 

represent a relationship between non-blocking contact and plasticity.[8] 

Possible redox reactions at the WOx–W interface may provide a non-blocking 

contact nature and thus the reactions impede depolarization, consequently 

giving plasticity. Moreover, redox reactions at the metal–MIEC interface 
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perhaps lead to phase transition into low resistive phases, e.g. lower oxide 

phases and metal phases, which are energetically meta-stable. 
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Figure 4.1 Voltage-spike firing in the non-faradaic capacitor. (a) Square-

shaped voltage pulses applied to the circuit depicted in the inset for observing 

polarization-induced voltage-spike firing. (b) Resulting Vout pulses. An 

enlarged Vout pattern in the time period 0 – 0.25 s is plotted in the inset. (c) A 

Vout map against Vpol (Vin) pulse height and width. (d) Vdepol pulses and the net 

Vin pattern, applied to the circuit shown in the inset, for depolarization-

induced voltage-spike firing. (e) Resulting Vout pulses. The Vdepol and Vout 

profiles in the time period 0.95 – 1.1 s are plotted in the inset. (f) A map of 

ΔVout, against Vdepol pulse height and width. 
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4.3. Conclusions 

 

In this study, the current–voltage hysteresis of TiO2-based non-faradaic 

capacitors is investigated to primarily focus on the correlation between the 

blocking contact and the elasticity, i.e. non-plasticity, of the capacitors' 

resistance change, in experimental methods. The similarity between the action 

potential firing behavior in neurons and the elasticity of the non-faradaic 

capacitors is addressed. The electronic conduction is much more sensitive to 

an applied voltage than the ionic conduction so that, after transition into the 

electronic conduction regime, the nonfaradaic capacitor shows a drastic 

increase in current with the voltage. Given that this transition is caused by 

oxygen vacancy migration kinetics, i.e. dynamics, a threshold voltage for the 

transition depends not only on input voltage pulse height but also on its pulse 

width. That is, both types of input information, i.e. pulse height and width, 

can be encoded, generating output voltage pulses as long as the input 

quantities exceed thresholds for the transition. 

Although the aforementioned circuits including the non-faradaic capacitor 

represent similarities to biological neurons, there are a few features of the 

biological neuron's spiking behavior which are difficult to be emulated by 

employing the non-faradaic capacitor. For instance, (i) repetitive spike 

generation, i.e. spike train, under a constant stimulus instead of repetitive 

stimuli, and (ii) the existence of refractory periods. These features contribute 

to encoding the constant input stimulus into spiking activity, i.e. analog-to-

analog type information encoding. The analog type encoding process will be 

explained and determined in next sections based on the oscillatory circuit 

composed by TS and passive circuit elements. 
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5. Neuristor-based leaky integrate-and-fire 

neuron 

 

5.1. Introduction 

 

The human brain—three pounds of matter between our ears—has not yet 

been understood completely because of its complexity. For many decades, 

researchers have focused on understanding the principles and detailed actions 

of the human brain and, in general, the mammalian brain.[1-4] The unique 

functionalities of the mammalian brain, such as parallel information 

processing, low power consumption, and learning capacity, make it 

fascinating. These unique functionalities are of great interest to not only 

neuroscientists but also physicists and electrical/materials engineers. There 

have been many attempts to realize ‘artificial brains’ either by hardware- or 

software-based techniques.[5-10]  

The basic elements in a mammalian brain—a complex neural network—are 

neurons and synapses; synapses define the connectivity between neighboring 

neurons, and function as local memories.[11] Synapses and neurons are the 

basic elements in SNNs as well. Neurons are of significant importance as they 

generate action potentials (also known as spikes), and work as information 

units in neural networks.[2]  

As discussed in Section 4.3, there are several limitations for employing 

single Pt/TiO2/Pt non-faradaic capacitor as a spiking neuron: (i) a spike train 

generation under a constant input instead of repetitive sets of input stimuli and 

(ii) refractory periods. However, various types of artifical neuron models can 

represent aformentioned characterisitcs. That is due to the fact that artifical 

neuron models sufficiently reflect oscillating nature of membrane potential of 

the biological neuron. 



 

 84

Various types of artificial neuron models can be employed in SNNs, such as 

leaky integrate-and-fire (LIF) neuron,[1-3] Hodgkin-Huxley neuron,[12] and 

Izhikevich neuron models.[13, 14] Among these, the LIF neuron is the simplest 

model and can be easily implemented in SNNs.[1-3] An example of artificial 

hardware neurons by employing functioning resistive switching system that 

could partly replace CMOS-based elements is a recent breakthrough by 

Pickett et al., who achieved the LIF neuron by using two pairs of a Mott 

insulator and a capacitor.[15] Basically, the neuristor concept introduced by 

Crane[16] in 1962 was employed in the LIF neuron model; hence this LIF 

neuron is termed as neuristor-based LIF (NLIF) neuron in this study so as to 

differentiate it from the standard LIF neuron. 

Mott insulators are known to undergo temperature-driven insulator-to-metal 

transitions, so that the conductivity abruptly increases when the lattice 

temperature exceeds the transition temperature.[17] This transition is reversible, 

that is, the initial conductivity is recovered when the lattice temperature again 

falls below the threshold for the reverse transition, i.e., metal-to-insulator 

transition. As the lattice temperature change is due to Joule heating, the 

current-voltage (I-V) behavior of the Mott insulator is estimated to be volatile, 

i.e., threshold switching.[18-20] Threshold switching plays a key role in the 

functioning of the NLIF neuron.[15, 20] Other than the Mott insulator, 

amorphous higher chalcogenides,[21-24] Si n+/p/n+ junctions,[25] and particular 

TMOs such as NbOx[20, 26] are also known to exhibit volatile threshold 

switching. 

Regardless of the type of threshold switch (TS) in the NLIF neuron, the 

variability of threshold switching behavior cannot be completely avoided. It is, 

therefore, required to determine the effect of this variability on the neuronal 

behavior of the NLIF neuron that often leads to neuronal noises. The 

quantitative understanding of the noise is of significant importance when 

employing the NLIF neuron in both in silico and hardware-based ANNs 
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because some noise properties are acceptable in ANNs insomuch as the noise 

does not cause serious errors during information processing.[27] 

In this study, we conducted simulation on the NLIF neuron so as to identify 

its neuronal behavior, in particular, its possible noise and information 

representation in the presence of noise. Indeed, the employed analysis 

methods are widely used in characterization of other neuron models[1, 3, 28, 29] 

so that one can readily compare the characteristics of the NLIF neuron model 

with those of other models. 

 We first attempted to find optimized operational windows for the variables 

in the NLIF neuron model. It was indeed not an easy task to find the windows 

owing to the many variables involved simultaneously. We suggest a method to 

find successful spike firing conditions by conducting static and dynamic 

calculations on the NLIF neuron circuit. The acquired windows should be 

narrowed down by taking into account the optimal selectivity of individual 

NLIF neurons for stimulation. The neuronal selectivity is one of the essential 

functions of neurons, given that they work as information encoders, in 

particular, in the presence of noise. Next, we assumed the variability of the TS 

in an individual NLIF neuron under optimal firing conditions. Such variability 

is most likely seen every switching cycle[23, 30] i.e. switching-event-driven 

variability. Insomuch as threshold switching events occur in succession in the 

entire period of external stimulation, the variability of the TS leads to a noise 

in the neuron’s response. By analyzing the noise property, the relationship 

between the distribution and the consequent noise is understood and compared 

with the noise present in biological neurons. A question arising from the 

analysis on individual NLIF neurons is “Can conveying information, such as 

encoding and decoding, be achieved in a reliable manner by a population of 

these individual NLIF neurons?” This question is related to neuronal behavior 

at a higher dimension, i.e., the group, rather than at the individual neuronal 

level. The Bayesian decoder is employed so as to examine the reliability of 
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the information conveyed by a population of NLIF neurons. As a result, the 

reliability is evaluated by means of “uncertainty.” 

 

5.2. Results 

 

5.2.1. Optimal firing conditions of individual NLIF neurons 

 

In a single NLIF neuron circuit, standard circuit elements such as resistors 

(R1, R2, and RL), capacitors (C1 and C2), and TSs (S1 and S2) are in use, as 

shown in Figure 5.1a.[15] When it comes to a network of NLIF neurons, V2 in 

Figure 5.1a is relayed to a neighboring neuron through synapse, so that V2 is 

the output voltage, corresponding to membrane potential. To generate a 

positive spike V2, Vdc2 and Vdc1 need to be positive and negative, respectively. 

For simplicity, it is assumed that Vdc2 = -Vdc1 = Vd. The two dc voltage 

sources (Vdc1 and Vdc2) effectively supply power, enabling active operation, 

and determine the spike firing dynamics including the spike’s height and the 

level of undershoot following the spike. The spike firing dynamics will be 

accounted for in detail later. The key component in the NLIF neuron is the TS 

that performs monostable switching. The monostability of a TS can be 

understood from the schematic of current-voltage (I-V) hysteresis of the TS 

illustrated in Figure 5.1b. The behavior of the TS is described by four 

parameters: Ron, Roff, Von, and Voff, which denote the on- and off-state 

resistances and threshold voltages for off-to-on and on-to-off switching, 

respectively. The assumption of linear I-V behaviors in both the states allows 

constant Ron and Roff in a given operational voltage range. For simplicity, 

switches S1 and S2 are assumed to be identical. 

The NLIF neuron fires spikes only when switch S2 flickers at a given input 

current (Iin). Note that the term “flicker” means completing a threshold 

switching cycle, for instance, a cycle along the arrows in Figure 5.1b. To meet 
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this requirement, the five standard circuit components (R1, R2, RL, C1, and C2), 

the four operational parameters of the TS (Ron, Roff, Von, and Voff), and the dc 

voltage (Vd), i.e., ten variables in total, should be optimized. Owing to the 

difficulty in optimizing such a large number of variables, it is required to rule 

out several variables, in particular the operational parameters of the TS, that 

are most likely estimated from available experimental data. In this calculation, 

Roff and Von were set to 1 Mohm and 1 V, respectively, so that only two 

variables (Ron and Voff) of the TS remain. They were converted to the 

following normalized variables: Roff/Ron and Voff/Von. These threshold 

switching parameters are summarized in Table 5.1. Note that these ratios often 

are employed in characterizing resistive switching devices. A further reduction 

in the number of variables was made by setting Rd and Vd to 1 Gohm and 0.9 

V, respectively. RL works as a voltage divider in this single neuron; it is 

desired to be large. Vd needs to be close to, but smaller than, Von so as to turn 

on switch S2 with a small input current Iin; 90 percent of Von, i.e., 0.9 V, was 

taken as Vd. 

To arrive at a condition of flickering switch S2 at a given Iin, time-

independent calculations were performed with capacitors C1 and C2 ruled out 

(see Figure 5.2a). The calculations provided R1 and R2 windows for spike 

firing at given Roff/Ron and Voff/Von values. The condition drawn from these 

static calculations is a “prerequisite” for successful spike firing in the time 

domain. This is because the capacitors only determine the rate of voltage 

redistribution in the NLIF neuron upon switching of S1 and S2, and the 

voltages across the two switches will eventually reach Vd. Meeting the four 

requirements, shown in Figure 5.2b and described below, allows S2 to flicker. 

Note that on-switching of switch S1 is a necessary condition for that of switch 

S2, but off-switching of switch S1 is unnecessary for that of switch S2. 

Requirement i: setting Roff for both switches in the circuit results in a voltage 

across switch S1 (|V1+Vd|) that is larger than Von, leading to the off-to-on 
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switching of switch S1, given the aforementioned necessary condition for on-

switching of switch S2. Requirement ii: setting Ron and Roff for switches S1 

and S2, respectively, results in a voltage across switch S2 (|V2-Vd|) that is larger 

than Von, leading to off-to-on switching of switch S2. Requirement iii: setting 

Roff and Ron for switches S1 and S2, respectively, allows on-to-off switching of 

switch S2 by decreasing |V2-Vd| below Voff. Requirement iv: setting Ron for 

both switches allows on-to-off switching of switch S2 regardless of on- or off-

switching of switch S1, given that off-switching of switch S1 is not a necessary 

condition for that of switch S2. Satisfying these requirements, R2 windows 

with respect to input current Iin (1 mA) and combinations of Roff/Ron (5, 10, 20, 

and 50) and Voff/Von (0.3, 0.5, and 0.7) values were obtained as indicated using 

the grey zones in Figure 5.2c. The white zones correspond to the failure of 

spike firing. Insomuch as a current rather than a voltage is applied, R1 and R2 

are independent variables as can be seen in Figure 5.2c. It is noticed that the 

higher Roff/Ron and the lower Voff/Von ratio are, the wider R2 window is. For the 

following calculations, we chose moderate parameters of the TS (Roff/Ron = 20 

and Voff/Von = 0.5) and R1 and R2 of 100 kohm.  

As mentioned earlier, the windows drawn from the static calculations serve 

as necessary, rather than sufficient, conditions for successful firing of the 

NLIF neuron in a time domain; therefore, capacitors C1 and C2 need be 

optimized as well. The only concern in spike firing in due course would be the 

sequential on-switching events of switches S1 and S2 when both are in the off-

state, i.e., aforementioned Requirements i and ii are met in consecutive order. 

The major role of capacitors C1 and C2 in spike firing is time-dependent 

redistribution of V1 and V2 upon switching of S1 and S2. The capacitors 

determine the rate of the redistribution. That is, the higher the capacitance, the 

lower the rate. To satisfy the above-mentioned requirements, the time required 

for the evolution of V2—eventually leading to |V2-Vd| > Von, i.e., on-switching 

of switch S2 upon the on-switching of switch S1—should be sufficiently short 
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to hinder the off-switching of switch S1 in the meantime. Otherwise, an 

increase in |V2-Vd| in due course, owing to the on-switching of switch S1, 

would be abruptly diminished before Von is reached. Note that it was assumed 

that the switching times of S1 and S2 are sufficiently short to have a negligible 

impact on the time-dependent voltage redistribution. In addition, regarding the 

off-switching of switch S2, the static calculations basically assume the 

instability of the on-state of switch S2 (see Requirements iii and iv), and thus 

off-switching occurs regardless of capacitances of C1 and C2.  

Given the above-mentioned requirements, a capacitance window for spike 

firing at an input current of 1 mA is obtained as shown in Figure 5.3a. The 

input current profile with respect to time is plotted in Figure 5.3d. The 

maximum capacitance of C2 for successful spike firing at a given capacitance 

of C1 tends to increase monotonically with that of C1. A higher capacitance of 

C1 allows a longer discharging time of C1; the discharging arises from the on-

switching of switch S1 and continues as far as |V1+Vd| > Voff, i.e., off-

switching of switch S1. A higher capacitance of C2 allows the charging time of 

C2 to be longer; the charging arises from an increase in |V2| (V2 < 0) occurring 

upon the prior on-switching of switch S1 and continues until |V2-Vd| > Von, i.e., 

on-switching of switch S2. Thus, a higher capacitance of C1 enables the 

capacitance range of C2 to widen, leading to the formation of the capacitance 

window shown in Figure 5.3a. To highlight the capacitance dependence, four 

C1 and C2 pairs, denoted by a, b, g and d in Figure 5.3a, were sampled and for 

each pair a “membrane potential,” i.e., V2, the profile with respect to time was 

evaluated for the given input current Iin. The results plotted are shown in 

Figures 5.3b and 5.3c. In case of d, the charging period of capacitor C2 is 

longer than the discharging period of capacitor C1, and thus switch S1 recovers 

its off-state before a transition of switch S2 into the on-state. Therefore, no 

spike firing is observed (see Figure 5.3c). To closely look at the evolution of 

V1, V2 RS1 (R of S1), and RS2 (R of S2) for b case, their time-dependent 
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behaviors are zoomed in in Figures 5.3e and 5.3f. These variables are self-

consistent, which will be dealt with in detail below.   
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Figure 5.1 Circuitry of NLIF neuron and threshold switching behavior. (a) 

Circuitry of the NLIF neuron. (b) A schematic of I-V behavior of a TS. 
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Figure 5.2 Operational windows of series resistance. (a) Circuitry of the 

NLIF neuron for static calculations. RL, Vd, and Iin are set as 1 Gohm, 0.9 V, 

and 1 mA, respectively. (b) A table of requirements for successful spike firing. 

(c) Acquired operational windows (gray zones) of R1 and R2 for successful 

spike firing at given ratios of Roff/Ron and Voff/Von. 
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Figure 5.3 Operational windows of capacitance. (a) Window of C1 and C2 

(gray zone) for successful spike firing in due course, evaluated by time-

dependent calculation. The inset shows the NLIF neuron circuit with 

parameters used in this calculation. Four combinations of C1 and C2, a (3 nF, 

2 nF), b (7 nF, 2 nF), g (7 nF, 4 nF), and d (3 nF, 4 nF), are sampled and 

voltage-time behaviors of NLIF neurons with the capacitance combinations 

are plotted in (b) and (c). Input current Iin is shown in (d). For b case, the 

evolution of V1, V2 RS1 (R of S1), and RS2 (R of S2) is zoomed in in (e) and (f) 

to identify the self-consistent relation between them. The black and the red 

dashed line denote thresholds for on- and off-switching, respectively. 
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Table 5.1 Parameters used in the optimization of the operational window. 

Symbol Note Value Reference 

Roff 
a Parameter 1 MΩ [21, 22] 

Ron Variable -  

Voff Variable -  

Von Parameter 1.0 V [23, 26] 
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5.2.2. Spiking dynamics of the NLIF neurons 

 

The spike firing dynamics is described by the membrane potential V2 and 

the auxiliary variable V1 as follows: 

  
   

  
=    −

 

   
(  −     ) −

 

  
(  −   )   (5.1) 

and 
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  ,     (5.2) 

where RS1 and RS2 denote the resistance of S1 and S2, respectively. The NLIF 

neuron model is similar to the LIF neuron model regarding such that capacitor 

C2 integrates potential and fires a spike when the threshold for the on-

switching of S2 is reached. However, a difference lies in the auxiliary variable 

V1 and switch S1, which are self-consistently related to each other according to 

Eqaution 5.1. Thus, the spike firing dynamics is mapped onto a V1-V2 phase 

plane, which is analogous to two-dimensional, i.e. simplified, Hodgkin-

Huxley neuron models such as FitzHugh-Nagumo model.[31, 32] According to 

Equations 5.1 and 5.2, V1- and V2-nullcline are defined by the following linear 

equations, 
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and 
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= 0,    (5.4) 

respectively. Given the history- and voltage-dependence of RS1 and RS2, these 

nullclines are history- and voltage-dependent. If i) |  −     | ≤        or ii) 

      < |  −     | < |   | and |V1-Vdc1| immediately before entering into 

this voltage region in time was smaller than Voff, V1-nullcline is given by  

  −
    

       
  −

      

       
−

      

       
   = 0,    (5.5) 
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and if i) |  −     | ≥ |   | or ii)       < |  −     | < |   | and |V1-Vdc1| 

immediately before entering into this voltage region in time was larger than 

Von, the nullcline is given by 

  −
   

      
  −

      

      
−

     

      
   = 0.     (5.6) 

Likewise, V2-nullcline is expressed as 

  −    
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= 0,    (5.7) 

if i) |  −     | ≤        or ii)       < |  −     | < |   | and |V2-Vdc2| 

immediately before entering into this voltage region in time was smaller than 

Voff, and 
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+

 

   
+

 

  
   +

      

   
= 0,     (5.8) 

if i) |  −     | ≥ |   | or ii)       < |  −     | < |   | and |V2-Vdc2| 

immediately before entering into this voltage region in time was larger than 

Von.  

When Iin=0, V1 and V2 stay at a stable fixed point (V2=0.044, V1=-0.042) 

that is indicated in Figure 5.4a. The parameters used in the phase analysis are 

listed in Table 5.2, which correspond to case b shown in Figure 5.3. Upon the 

application of a constant current, V1-nullcline rises by 
     

      
    on the phase 

plane so that the fixed point moves far in the above-threshold region as shown 

in Figure 5.4b. Consequently, the (V2, V1) point flows towards the fixed point 

in due course as seen in Figure 5.4b. The flow encounters the on-switching 

condition for S1,   ≥ |   | +     = 0.1 V, which leads to the emergence of 

the different V1-nullcline given by Eqation 5.6. As a result, the flow alters the 

path towards a new fixed point that is again out of the sub-threshold region 

(see Figure 5.4c). On the way, the flow reaches the off-switching condition for 

S1,   ≤       +     = −0.4 V, leading to the recovery of the sub-threshold 

V1-nullcline (Equation 5.5), and thus a path change (Figure 5.4d). The path 
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undergoes another change when it reaches the on-switching condition for S2 

  ≤ −|   | +     = −0.1 V, as a consequence of emergence of the above-

threshold V2-nullcline given by Equation 5.8 (Figure 5.4e). Encountering the 

off-switching condition for S2,   ≥ −      +     = 0.4 V  recovers the 

sub-threshold V2-nullcline (Equation 5.7), so that the flow heads to a new 

fixed point as shown in Figure 5.4f. The subsequent firing dynamics follows 

the limit cycle that is indicated using a grey line in Figure 5.4f. The spike 

firing dynamics of the NLIF neuron differs from that of the Hodgkin-Huxley 

neuron mainly in the fact that a stable fixed point varies upon V1 and V2 on the 

phase plane as a result of V1- and V2-nullcline that are conditional on V1 and 

V2.  

Notably, the limit cycle is confined in the area (−|   | +     ≤   ≤

−      +      and       +     ≤   ≤ |   | +     ) on the phase plane 

as seen in Figure 5.4. That is, the spike’s height and the level of the following 

undershoot are determined by Vdc1, Vdc2, Von, and Voff, so that they are 

important parameters in spike’s shape design. 
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Figure 5.4 Spike firing dynamics on two-dimensional phase plane. (a) V1- 

and V2-nullcline and a stable fixed point (grey circle) when Iin=0. The white 

area denotes the sub-threshold region. (b)-(f) Changes in V1- and V2-nullcline 

upon threshold switching of S1 and S2 (the consequent changes in a fixed point) 

and the consequent trajectory of V1 and V2 on the phase plane. The grey cycle 

in (f) shows the corresponding limit cycle. The black and red dashed lines 

mean thresholds for on- and off-switching, respectively. 
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Table 5.2 Parameters used in the neuronal response function and tuning 

function simulation.  

R2 [Ω] RL [Ω] Ron [Ω] Roff [Ω] Von [V] Voff [V] 

100 k 1 G 1 M 50 k 1.0 0.5 

Vd [V] C1 [nF] C2 [nF] Iin
max [mA] ss [degree]  

0.9 7 2 1 30  
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5.2.3. Neuronal selectivity of the NLIF neuron 

 

The circuit parameters of the NLIF neuron are required to be further 

optimized by taking into account the neuronal selectivity of the NLIF neuron 

for stimulation. As an information encoder, the NLIF neuron should be able to 

represent “distinguishable” responses to different stimuli. Neuronal responses 

are typically parameterized by the spike firing rate or the spike number in a 

given time period. Regarding the neuronal selectivity, the NLIF neuron needs 

to vary its firing rate upon input current Iin. In particular, the firing rate and the 

input current are expected to be in a one-to-one correspondence relationship. 

Otherwise, one can hardly estimate the stimulus by counting the number of 

spikes, implying difficulty in “decoding” neuronal information. This difficulty 

in decoding consequently reduces the amount of information conveyed by the 

neuron.[33] In general, a neuronal encoding process is described by  =

 [   ( )], where a and s denote activity and stimulus, respectively. In this 

study, we define neuronal “activity” denoting the number of spikes in a time 

period of 30 ms. The function G in a biological neuron is nonlinear and 

exhibits a threshold value for activation, i.e., firing, of the neuron. This 

function is often referred to as the neuronal response function in which the 

activity is determined by input current Iin. 

For cases of aforementioned a, b and g, the neuronal response functions 

were simulated in the input current Iin range (0–1.0 mA) and they are plotted in 

Figure 5.5a. The neuronal response functions tend to increase monotonically 

with input current Iin as long as the current is larger than a threshold of 

approximately 0.25 mA. This threshold results from a threshold voltage for the 

on-switching of switches S1 and S2 (Von). All these functions appear to fulfill 

the aforementioned requirements for successful neuronal encoding. 

Nevertheless, a higher da/dIin value is favorable considering the fact that it 

reduces the uncertainty in discrimination when “noisy” neuronal responses are 
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decoded. This issue will be revisited later when dealing with the noisy 

behavior of the NLIF neuron. Thus, case b appears to be most favorable and 

further discussion in this study will be narrowed down on this particular case. 

The corresponding parameters are listed in Table 5.2. 

In biological neurons, the input current Iin is understood to be determined 

by stimulus s, that is, Iin is a function of stimulus s. Each individual neuron 

has a preferred stimulus sp, at which Iin injected into a given neuron becomes 

the maximum. Note that this is the case of controlled neurophysiology 

experiments. The corresponding neuronal in-vivo function works in the way 

that a sensory neuron transmits a spike train to a postsynaptic neuron, 

providing time-varying, rather than constant, synaptic current.[1] For simplicity, 

only one-dimensional stimuli are of concern in this study. For instance, 

stimulus s can be a one-dimensional visual stimulus such as the orientation 

angle of a light bar for the primary visual cortex[34, 35] and a wind direction for 

the cricket cercal system[36]. For convenience, the orientation of a light bar is 

considered as a one-dimensional stimulus in this study. It is assumed that the 

input current is described by a Gaussian function whose maximum is placed at 

preferred stimulus sp as follows:    ( ) =    
       −0.5  −    

 
/  

  , 

where Iin
max and ss are the maximum Iin and the standard deviation, 

respectively. Figure 5.5b shows the assumed Iin distribution with respect to 

stimulus, where Iin
max, sp, and ss are 1 mA, 0°, and 30°, respectively. Entering 

this Iin(s) function into the neuronal response function G[Iin] for b eventually 

gives the tuning curve shown in Figure 5.5c. This bell-shaped tuning curve 

appears consistent with that obtained for typical biological neurons. The 

response of the NLIF neuron shows its maximum at an orientation of 0°, 

corresponding to its preferred orientation, and tails around the preferred 

orientation. That is, stimuli within an orientation range of approximately -40° 

to 40° are able to activate the NLIF neuron although they are not exactly 
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coincident with the preferred orientation. As a matter of fact, this imperfect-

looking tuning curve enables a population of neurons with the limited number 

of preferred orientations to encode continuous, i.e., analog, information.[29] If 

neurons represented delta-function-like tuning curves, then an infinite number 

of such neurons would be required for encoding analog orientation 

information.  
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Figure 5.5 Tuning function of ideal NLIF neuron. (a) Neuronal response 

functions of the NLIF neuron with the three combinations of C1 and C2 (a, b, 

and g). (b) A Gaussian distribution of input current Iin, centered at a preferred 

orientation of 0°. (c) An ideal tuning curve of the NLIF neuron corresponding 

to the b case with a preferred orientation of 0°. 
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5.2.4. Noisy NLIF neuron 

 

The tuning curve shown in Figure 5.5c is of a perfectly working NLIF 

neuron. The orientation information encoded in the neuron can be decoded 

without uncertainty. Now, an arising question is “how large is the impact of 

imperfect behavior of the NLIF neuron on neuronal encoding and decoding?” 

Imperfect behavior is most likely caused by the variability of switching 

parameters of switches S1 and S2 (Ron, Roff, Von, and Voff). For actual 

experimental NLIF neurons, variations in such parameters cannot be avoided. 

Thus, an attempt to determine the quantitative uncertainty in processing 

neuronal information, caused by such variations, was made by evaluating the 

neuronal encoding and decoding processes with varying switching parameters. 

Firing each spike in a spike train involves off à on à off switching of each 

S1 and S2 in a consecutive order. Given that the switching parameters in an 

experimental switch, in general, varies on each switching cycle[22, 37], it is 

rather natural to assign different switching parameters to each switch after 

each spike in the spike train. That is, such a random update of the parameters 

lasts for an entire spike firing period. In this regard, the switching-event-

driven randomness leads to time-varying variability, and thus “noise” rather 

than heterogeneity.[38] Such variations lead to a change in the inter-spike 

interval (ISI) while a constant Iin is applied for a given time period. Spike 

firing behavior of the NLIF neuron involving the variation is shown in Figure 

5.6. For this simulation, Ron and Roff of switches S1 and S2 were randomly 

sampled using Gaussian PDFs centered at 50 kohm and 1 Mohm, respectively, 

with 10 percent resistance deviation. After each of on- and off-switching 

events a new resistance was assigned to the switches. The switching-event-

driven update therefore lets Ron and Roff fluctuate over time as shown in 

Figures 5.6b and d, implying noise rather than heterogeneity.  



 

 105

It should be noted that the nullclines, Equations 5.5-5.8, are determined by 

Ron and Roff of S1 and S2, and thus variation in these resistance values 

essentially alters the nullclines and the corresponding fixed point. Given the 

switching-event-driven random update of Ron and Roff, the nullclines vary, and 

thus the trajectory of (V2, V1) on the phase plane varies as well. The spike 

firing dynamics on the phase plane is shown in Figure 5.6f, corresponding to 

the time-domain analysis result in Figures 5.6a. In this regard, the noise of the 

NLIF neuron is distinguished from other noise models for LIF models, e.g. 

diffusive noise given white noise and/or noisy synaptic current,[39] and for 

conductance-based model such as Hodgkin-Huxley neuron[40, 41]. 

The noise characteristics were quantitatively analyzed by examining the 

relationship between the mean and the variance of the spike number for a time 

period of 30 ms. The data are plotted in Figure 5.6g. This relationship shows a 

type of a noise present. For instance, in some biological neurons, this 

relationship is often given by   
 =  〈 〉  and  ≈ 1, where   

  and 〈 〉 

denote the variance and the mean of the spike number, respectively.[42] This 

type of noise is referred to as the Poisson noise because the spike generation 

satisfies the Poisson process.[1] The Poisson noise results in a linear line 

whose slope is unity as indicated with the dashed line in Figure 5.6g. As 

shown in Figure 5.6g, similar to the Poisson noise, the variance increases as 

the mean spike number increases except that the slope for all four standard 

deviations is larger than unity (ca. 1.3). The NLIF neuron shows a Poisson-

like, rather than perfect Poisson, noise and the variance is larger than the 

Poisson noise at almost every mean spike number. Interestingly, for the 5 

percent deviation case, the variance is much smaller than that of the Poisson 

neuron at mean spike numbers of approximately 30. This is attributed to the 

activity limit by the capacitors’ charging and discharging times that restricts 

the integration time for spike firing (see Figure S4 in Supplementary 

Information). 
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The stochastic characteristics of this seemingly Poisson-like noise were 

further confirmed by analyzing the distribution of ISIs and the autocorrelation 

of the spikes in a given spike train: the results are shown in Figures 5.6h and i, 

respectively. In Figure 5.6h, the distribution is better fit by a Gamma, rather 

than exponential, function due to the effective refractory time caused by the 

finite recharging time of mainly capacitor C1.
[1] The evaluated autocorrelation 

data, shown in Figure 5.6i, show typical delta-function-like distribution, 

suggesting no correlation between spikes in a given spike train. These noise 

analyses, therefore, identify Poisson-like noise characteristics of the observed 

noise. 

To achieve successful spike firing, the standard deviations of the switching 

parameters should be confined within particular ranges. Mostly, failure of 

spike firing takes place when switch S2 becomes stuck to its on-state and high 

membrane potential (V2) is maintained. Typical examples of successful spike 

firing and failure cases are seen in Figures 5.7c and 5.7d. Insomuch as switch 

S2 keeps its on-state in case of failure, the membrane potential remains high, 

so that no further switching of switch S1 occurs. The duration time of current 

application was 30 ms. The number of successful spike firing events was 

evaluated with separately varying the standard deviation of each switching 

parameter to determine its tolerance limit. The results are shown in Figures 

5.7e-h. We varied input current Iin (0.4, 0.6, 0.8, and 1.0 mA) so as to 

investigate its effect on success in spike firing. The tolerance for parameter 

variations differs; the tolerance limits for variations in Ron and Roff reach up to 

approximately 30 percent whereas the limit for variation in Voff is less than 20 

percent as shown in Figures 5.7e-h. It should be noted that the current 

duration time raises the failure probability as the “Ron-stuck” event can indeed 

occur with an increase in the number of switching events during the duration 

of input current. Thus, the longer the duration of current application, the lower 

the probability of successful firing at a given deviation.  
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The switching parameters were chosen in a random manner by employing a 

Gaussian probability density function (PDF) with particular standard 

deviations. The means of these distributions were placed at the values used in 

the calculation of the perfect tuning curve in Figure 5.5c (Ron: 50 kohm, Roff: 1 

Mohm, Von: 1 V, and Voff: 0.5 V, the other parameters are shown in Table 5.2). 

The encoding process of a noisy individual NLIF neuron was evaluated by 

calculating its tuning curve based on statistics. Ron and Roff simultaneously 

varied at different standard deviations and the mean activity at each 

orientation was obtained out of 100 trials. Given the very limited tolerance for 

Von variation, no variation in Von was taken into account. The calculated tuning 

curves for four different deviations (5, 10, 20, and 30 percent) are shown in 

Figure 5.8. The maximum activity tends to decrease with increasing standard 

deviation and unexpected spike firing events also take place, in particular, at 

orientations out of a range of approximately -40° to 40°. Unlike the ideal 

tuning curve in Figure 5.5c, a one-to-one correspondence relationship 

between orientation and activity is no longer satisfied. Therefore, a significant 

difficulty in decoding the neuronal information arises, consequently reducing 

the amount of information conveyed by the noisy neuron.[33]  
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Figure 5.6 Poisson-like noise of NLIF neuron. (a) Noisy response of the 

NLIF neuron with 10 percent resistance deviation and (b) the corresponding 

fluctuation of resistance of TSs in time. (c) Another set of noisy response and 

(d) resistance fluctuation under the same condition. The input current is 

plotted in (e). (f) Spike firing dynamics mapped onto the phase plane for the 

dynamics shown in (a). (g) Variance of activity with respect to mean activity 

for the four different resistance deviations (5, 10, 20, and 30 percent). (h) ISI 

distribution for case of 10 percent of resistance deviation at given four 

different Iin values (1.00, 0.92, 0.74, and 0.49 mA). (i) Autocorrelation of 

spikes in a train. The NLIF neuron, allowing 10 percent of resistance 

deviation, was subject to 0.5 mA. 
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Figure 5.7 Failure of spike firing. (a) Successful spike firing example and 

(b) the corresponding variation of resistance of TSs. (c) Evolution of 

membrane potential in time in case of failure and (d) the corresponding 

change of resistance of TSs. This failure arises from switch S2 stuck to its on-

state. The number of successful spike firing events on 100 trials is evaluated 

at given standard deviation of each switching parameter while the other 

parameters are fixed: (e) Roff, (f) Von, (g) Ron, and (h) Voff. The evaluation was 

done at four different input currents (0.4, 0.6, 0.8, and 1.0 mA) 
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Figure 5.8 Variability effect on tuning function. Poisson-like-noise-

including tuning curves of the NLIF neuron allowing 5, 10, 20, and 30 percent 

of resistance deviation. 
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5.2.5. Representation of a population of NLIF neurons 

 

The noise in the individual NLIF neuron seems to be an obstacle to 

appropriate neuronal information processing because of the difficulty in 

decoding caused by the noise. Fortunately, neuronal information processing in 

the brain does not strongly rely on individual neurons; instead, the task is in 

general performed by a population of individual neurons.[29, 33, 43] Nevertheless, 

neuronal noise can still contaminate the population response. Some types of 

correlations between neurons in a population are known to reduce errors to 

some extent[33], but this does not seem to be the general case. A possible 

answer to the question “how do brains as groups of unreliable (noisy) neurons 

work reliably?” is that populations of neurons may encode and decode 

“probability distributions” rather than particular values.[44-46] In other words, 

encoding and decoding are viewed as processes retuning probability 

distributions over all possible values: response and stimulus distributions for 

encoding and decoding, respectively. Especially, decoding is most likely 

based on a statistical inference process, in particular, Bayesian inference.[28, 45, 

47, 48] In fact, some psychophysical evidence for Bayesian inference have been 

found in, for instance, contrast-depending velocity perception.[45, 49] Given the 

role of the NLIF neuron in either hardware-based or in silico systems, it is 

then an important task to examine the NLIF neuron as a Bayesian decoder, 

quantitatively evaluating probability distributions over the orientation at given 

degrees of variability of the switching parameters. 

According to the Bayes’ rule, a posterior PDF  [ | ] is given by the 

product of the likelihood function  [ | ] and the prior PDF  [ ]:  

 [ | ] =  [ | ] ∙  [ ]  [ ]⁄ ,     (5.9) 

where s and r denote stimulus and response, respectively. The notation 

 [ | ] means the conditional probability of event B, given event A; the 

likelihood function  [ | ] denotes the probability of observing response r, 
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given stimulus s. This function describes the variability of the response to a 

particular stimulus. Likewise, the posterior PDF  [ | ]  means the 

probability of stimulus s, given observation of response r. Insomuch as no 

condition is imposed on the prior and the response PDF,  [ ] and  [ ] are 

constant in ranges of stimulus s and response r, respectively. Thus, the 

posterior can be evaluated if the likelihood is known; the maximum of the 

posterior PDF corresponds to the most probable stimulus s estimated from the 

response observations. That is, the observed neuronal responses can be 

decoded in terms of probability. Note that  [ | ]  [ ]⁄  denotes the 

normalized likelihood PDF.  

Unfortunately, the NLIF neuron representing a Poisson-like noise does not 

allow an analytical description of its likelihood function unlike Poisson 

neurons.[1] The only way to obtain the likelihood is collecting the responses of 

a population of NLIF neurons statistically, given various stimuli acting on it. 

Statistics were made on 20 NLIF neurons of 20 different preferred stimuli sp 

that are homogeneously distributed in the orientation range -180° to 180°. 

Now, the response r is a vector quantity  ⃗  of 20 components:  ⃗ =

(  ,   ,   , ⋯ ,    ). The tuning curves of these 20 neurons on the assumption of 

no noise are shown in Figure S5 in Supplementary Information. No 

correlations between neighboring neurons are assumed and the firing event on 

each neuron is regarded to be independent, allowing the following simple 

calculation: 

 ( ⃗| ) = ∏  (  | )
  
   .       (5.10) 

The likelihood function was acquired by repeating spike number evaluation 

over 1000 times at each stimulus s and 300 stimuli were sampled between 

-180° and 180°. Given Equations. 5.9 and 5.10 and the constant PDFs  [ ] 

and  [ ], the posterior PDF satisfies the condition  ( | ⃗) ∝ ∏  (  | )
  
   . 

Thus, we can evaluate the probability of population representation of a 

particular pattern  ⃗ when subject to a given stimulus s. We snapshotted  ⃗ 
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patterns of the population of NLIF neurons with resistance deviations of 5, 10, 

20, and 30 percent at a stimulus of 0°, and the patterns are plotted in Figures 

5.9a, 5.9b, 5.9c, and 5.9d, respectively. The different preferred orientations of 

the population let a few neurons preferring stimuli in the vicinity of 0° be 

activated despite the noise complicating the patterns.   

Finally, the aforementioned Bayesian decoding was done for the patterns, 

leading the posterior PDFs shown in Figures 5.9e, 5.9f, 5.9g, and 5.9h, 

respectively. The posterior PDFs are more or less noisy showing data 

scattering; the larger the deviation, the larger the data scattering. This data 

scattering is also a matter of population size, i.e., the more neurons in the 

population, the less decoding error. Given a large increase in calculation time 

with increasing the number of neurons in the population, we placed 20 

neurons in the population; however, the Bayesian decoding of larger 

population sizes definitely enables correct estimation. The calculated posterior 

PDFs were fitted using Gaussian PDFs so as to evaluate the center and 

standard deviation of each posterior PDF. As can be seen in Figure 5.9, the 

center of each PDF is found to be placed around 0°. This revealed that this 

Bayesian decoder most likely give a correct answer and a correct inference 

will be made if made by means of the Bayes’ rule despite the present Poisson-

like noise. Nevertheless, note that statistics cannot be free from error in any 

cases so that the Bayesian decoding can give a wrong answer at times. 

Besides, it turns out that the standard deviation in the decoding becomes 

larger as increasing the variability of Ron and Roff of the TSs (see Figure 5.9i). 

The Bayesian decoding results were compared with the case of populations 

of Poisson neurons. The likelihood PDF as well as the posterior PDF of a 

population of independent Poisson neurons is given by a closed-form 

expression; an increase in the number of Poisson neurons in the population 

leads to a posterior PDF of a Gaussian form.[28] At a given stimulus, the 

likelihood PDF of each independent Poisson neuron was analytically 
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calculated with similar activity as that of the NLIF neuron at the same 

stimulus. As a result, the posterior PDF of a population of Poisson neurons 

with the four resistance deviations could be obtained from the population 

response patterns  ⃗  shown in Figures 5.9a, 5.9b, 5.9c, and 5.9d; the 

calculated PDFs are plotted using dashed lines in Figures 5.9e, 5.9f, 5.9g, and 

5.9h, respectively. In fact, the 20 Poisson neurons already provide a Gaussian 

PDF as shown in the figures. In comparison with the population of Poisson 

neurons, it is noticed that the Poisson-like NLIF neurons represent smaller 

maxima and larger deviations than the Poisson neurons under the same 

condition except the case of 5 percent deviation of TSs’ resistance (see Figure 

5.9a). A difference in the standard deviation of the posterior PDF between the 

NLIF neurons and the Poisson neurons is observed in Figure 5.9i. The larger 

uncertainty deviation of the Bayesian decoding for the NLIF neurons arises 

from the larger deviation of activity of the NLIF neuron than that of a Poisson 

neuron as shown in Figure 5.6g. Likewise, the larger maximum of posterior 

PDF of the NLIF neurons in Figure 5.9e than the Poisson neurons is 

understood in terms of the smaller variance of activity at 5 percent deviation 

of TSs’ resistance at the high mean activities, shown in Figure 5.6g. The 

smaller variance is attributed to the activity limit by charging and discharging 

of the capacitors. 
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Figure 5.9 Bayesian decoding of population representation of NLIF neurons. 

Snapshotted activity patterns of a population including 20 NLIF neurons for 

(a) 5, (b) 10, (c) 20, (d) 30 percent resistance deviation cases at a stimulus of 

0°. The results of the Bayesian decoding, i.e., posterior PDFs, for the patterns 

are shown in (e), (f), (g), and (h), respectively. The acquired posterior PDFs 

are compared with those of a population of 20 Poisson neurons (dashed lines). 

The standard deviations s of the posterior PDFs of the Poisson-like NLIF 

neurons for the different resistance deviations are shown in (i) in comparison 

with those of the Poisson neurons. 
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5.3. Discussions 

 

The NLIF neuron studied in this work can serve as a prototypical in silico 

neuron model exhibiting a Poisson-like noise. The circuitry is simple and 

perhaps easy enough to be implemented in large-scale ANNs. In particular, as 

a result of this study, it is understood that the variability of the TSs’ resistance 

leads to such a Poisson-like noise that the noise behavior of this prototypical 

in silico neuron needs to be under control and appropriately designed to meet 

the noise behavior required for ANNs built for specific purposes. 

Nevertheless, when it comes to hardware realization of such NLIF neurons, 

there are several practical obstacles that should be overcome to realize the 

goal. What is of significant importance in the Poisson-like NLIF neuronal 

behavior is the minimum variability of Von of the TS in the NLIF neuron. As 

discussed earlier, the tolerance limit of Von is merely a few percent unlike that 

of the other switching parameters, i.e., Ron, Roff, and Voff. Thus, “reliability” of 

this unreliable neuron requires meeting this stringent requirement for ensuring 

reliable operation. Apart from this restriction, other requirements discussed 

earlier may be satisfied by appropriate choices of TS materials, systems, and 

their design. Another important issue that potentially hinders practical use of 

this type of neuron is the long-term reliability of switches S1 and S2, which are 

subject to the relatively high dc-voltage stress (Vdc1 and Vdc2). The dc voltages 

allow active operation of the NLIF neuron, working as effective power 

suppliers. Regarding the limit cycle confined in the area (−|   | +     ≤

  ≤ −      +      and       +     ≤   ≤ |   | +     ) on the phase 

plane (see Figure 5.4), in order to realize spike firing at low Iin, dc voltages 

close to, but smaller than, Von need to be applied to switches S1 and S2, and 

thus the consequent electrical stress most likely affects the switches adversely. 

Eventually, it most likely leads to dielectric breakdown when a dielectric layer 

is in use as a TS material. This issue is also directly related to a high power 
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consumption problem. The constant application of dc voltages during the 

lifetime of the NLIF neuron gives rise to severe power consumption, which is 

definitely against one of the inherent advantages of neuromorphic systems 

over standard digital systems, i.e., low power consumption. Therefore, 

addressing these significant problems properly accelerates practical use of 

such NLIF neurons in hardware-based neuromorphic systems. 

 

5.4. Conclusions 

 

The most crucial conclusion drawn from this study is that the potential 

variability of behavior of the TS is allowed up to a certain level as long as the 

Bayesian decoder is able to discriminate the encoded information correctly. In 

addition, the uncertainty, i.e., standard deviation, of the posterior PDF shrinks 

when introducing a larger number of NLIF neurons in the population. In 

general, the statistical accuracy of a survey increases with the number of 

samples. Thus, the uncertainty of posterior and likelihood of individual NLIF 

neurons is compensated by the increase in accuracy. An increase in the 

number of neurons in the population, therefore, tolerates a larger variability of 

switching parameters of the TSs. Nevertheless, confining the variability 

within a tolerance range is still of significant importance, especially confining 

that of Von. 
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6. Relaxation oscillator-realized leaky integrate-

and-fire neuron 

 

6.1. Introduction 

 

To date, several prototypical neuron models have been proposed, which 

are mostly on the basis of integrate-and-fire behavior, for instance, the Axon-

Hillock neuron,[1, 2] NLIF neuron,[3, 4] conductance-based neuron,[5, 6] and 

Izhikevich neuron models.[7, 8] Each model remarks neuronal behavior to 

within different accuracy. With that said, they should feature essential 

neuronal behaviors that play key roles in neuronal representation such as LIF 

behavior, gain function, and autocorrelated, i.e. random, neuronal noise.[4]  

Towards this end, in this study we propose a spiking neuron model, based 

on a relaxation oscillator, and term it as a relaxation oscillator-based leaky 

integrate-and-fire (ROLIF) neuron. The ROLIF neuron model likely satisfies 

the aforementioned basic requirements for a hardware spiking neuron. We 

made use of a Pearson-Anson oscillator (PAO) – utilizing a TS based on 

amorphous higher chalcogenide – as a relaxation oscillator. A pair of the 

relaxation oscillator and non-ideal operational amplifier (op-amp) realizes 

the ROLIF neuron. Note that the op-amp is non-ideal considering the 

coupling between the input impedance of the op-amp and the adjacent circuit 

element, which is negligible in an ideal one. Neuronal noises in the ROLIF 

neuron – stemming from switching event-driven variability in threshold 

switching parameters – were experimentally addressed. This study covers a 

pair of ROLIF neurons in connection through a synapse in order to take into 

account synaptic transmission between them. Finally, the feasibility of more 

synaptic connections among ROLIF neurons was identified by simulating a 

small network of ROLIF neurons and synapses. An empirical formula of 
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spatial synaptic integration within the network was consequently acquired. 

In addition, a role of random neuronal noise in synaptic transmission is 

addressed. Hereafter, for simplicity ‘neuron’ refers to the ROLIF neuron 

unless otherwise stated. 

 

6.2. Experimental 

 

Pearson-Anson oscillation characterization: The PAO encompassing the 

TS was characterized by applying a square voltage pulse using an Agilent 

81110A PG and recording the response using a Tektronix TDS5104 

oscilloscope. The recorded results revealed oscillation frequency of the PAO 

in terms of the number of spikes at the given pulse duration. 

 

Synaptic transmission characterization: A pair of the PAO and commercial 

LT1007 op-amp eventually realized an individual neuron – its neuronal 

behavior was identified in a pair of neurons, being connected through a 

synaptic resistor, by applying the same measurement method as for the PAO. 

All circuit parameters used in the measurements are listed in Table 6.1.  

 

Time-dependent circuit calculation: The neuron circuit was generalized to 

instances of various non-ideal op-amps that feature different gains and slew 

rates. Feasible neuronal behaviors of such neurons were justified by means 

of circuit simulations. Towards a practical context, a single postsynaptic 

neuron in connection to many presynaptic neurons was theoretically taken 

into account and the proof-of-concept demonstration of unidirectional 

synaptic transmission through a simple synaptic resistor was followed. The 

variability in threshold switching was realized by randomly updating 

switching parameters (Roff, Ron, Von, and Voff) for every switching event. Each 

parameter was normalized to have the experimental mean (52 MΩ, 1.5 kΩ, 
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3.5 V, and 1.1 V for Roff, Ron, Von, and Voff, respectively) and standard 

deviation 5% of each mean. 
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Table 6.1 Parameters used in the measurements and calculations. 

R1 

[kΩ] 

R2 

[kΩ] 

Rload 

[kΩ] 

Rosc 

[Ω] 

Ramp1 

[kΩ] 

C1 

[pF] 

CP 

[pF] 

50 1 1 50 1 10 10 
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6.3. Results 

 

6.3.1. Equivalent circuit for neuron 

 

To begin, it is worth listing important characteristics of biological neurons, 

which were implemented in our neuron: neuronal gain function, signal 

amplification, unidirectional synaptic transmission, and neuronal random 

noise.[9, 10] (i) The neuron was designed to enable the injective encoding of 

analog input into activity (output) without noise. That is, a single neuron is 

able to encode large bits unlike above-threshold-working transistors. Various 

input, e.g. synaptic current, values ideally evoke distinguishable output 

neuronal activities, so that the input quantity is successfully estimated from 

the output activity. This relation between synaptic current and activity is 

often referred to as gain function that is the substrate of a neuronal tuning 

function.[11] (ii) The biological neuron spontaneously produces and stores 

energy on its lipid membrane due to the ion pumps embedded in the 

membrane – this spontaneous energy storage makes the neuron electrically 

active.[12, 13] Projecting this feature onto its electrical replica, the neuron 

should be able to amplify spikes so that large attenuation of spikes merely 

within neighboring neurons can be prevented. (iii) Neighboring neurons 

communicate with each other by means of spikes that are transmitted 

through synapses. Chemical synapses – that are believed to render unique 

functionalities of the mammalian brain, e.g. memory and learning, possible – 

allow unidirectional synaptic transmission only from the pre to the 

postsynaptic neuron. In this regard, spiking postsynaptic neurons should not 

alter the membrane potential of the presynaptic neurons. (iv) Neuronal noise 

was realized on the substrate of variability in the switching parameters of the 

TS. Such variability alters the ISI in a spike burst, and thus neuronal activity 

that refers to the number of spikes in a given time period. 
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Figure 6.1 depicts the equivalent circuit of the ROLIF neuron. The input 

and output voltages are denoted by Vin and Vout, respectively; Vout 

corresponds to the membrane potential of the neuron. In connection of a pair 

of neurons through a synapse, Vout of the presynaptic neuron is relayed to Vin 

of the postsynaptic neuron via the synapse. The neuron consists of a non-

ideal op-amp (grey dashed line) and PAO (orange dashed line) in Figure 6.1. 

Particular emphasis is placed on the non-ideality of the op-amp – 

parameterized by slew rate – as it likely becomes prominent in practice.  

The aforementioned key features of the biological neuron are 

implemented in these two simple components. The non-ideal op-amp 

enables active operation in light of gain G of the non-inverting op-amp, 

G=1+Ramp2/Ramp1. Thus, attenuated spikes along passive synapses can be re-

amplified through the op-amp. Provided the very small output resistance on 

the op-amp, a change in V1 in Figure 6.1 unlikely affects the behavior of the 

op-amp. Spike back-propagation is therefore hindered by the neuron itself. 

In addition, the op-amp in an individual neuron helps the individual neuronal 

behavior remain unchanged on the network level. Particularly, many 

presynaptic neurons connected to a postsynaptic neuron in parallel lead to a 

negligible change in the behavior of the postsynaptic neuron given the very 

high input resistance of the op-amp. The PAO is in charge of spiking in 

response to Vin, producing different spiking activities. That is, the PAO 

contributes to encoding the input voltage into spiking activity. Notably, the 

TS in the PAO exhibits switching event-driven variations in switching 

parameters and the resulting neuronal noise. It is noted that in Figure 6.1 a 

voltage, rather than a current, is taken as input, which allows a more intuitive 

understanding of the neuron. 

 

 

 



 

 127

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Equivalent circuit of the ROLIF neuron. The grey and orange 

boxes indicate a non-ideal op-amp and PAO, respectively. 
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6.3.2. Pearson-Anson oscillator 

 

The PAO was built on the basis of the TS as illustrated in the inset of 

Figure 6.2c. Conditional on Vin, Vout oscillates upon the threshold switching 

in conjunction with capacitor C1 that significantly slows down a change in 

VTS. Vout is shown in Figure 6.2a, which was triggered by two different Vin’s 

(3.6 and 4.3 V) plotted in Figure 6.2b. Notably, the observed behaviors 

resemble the membrane potential of a spiking neuron, which in fact 

underlies spiking in the neuron. Provided that each spike in the oscillation is 

evoked by a single threshold switching cycle as for the NLIF neuron,[4] the 

seeming spike bursts at 3.6 and 4.3 V in Figure 6.2b involved four and ten 

switching cycles, respectively. A rapid rise in Vout arises from the on-

switching, and the consequent high Vout immediately vanishes away upon the 

imminent off-switching. Thus, Vout at the base level between neighboring 

spikes implies the TS in the off-state.  

The number of spikes in a given time period parameterizes spiking 

activity a. The activity tends to increase with Vin as already seen in Figure 

6.2a. To highlight this, we further identified a change in the number of spikes 

upon Vin, providing the relationship shown in Figure 6.2c. First, there exists 

a threshold voltage for spiking (ca. 3.5 V) – determined by Von. At Vin below 

this threshold, VTS crossing Von remains out of reach so that no spiking is 

evoked. Second, the number of spikes gradually rises with Vin in a wide Vin 

range. This change in spike number is attributed to a decline in the ISI – 

corresponding to recharging time of C1 – with Vin. The charging leads to VTS 

evolution in due course towards Von. Therefore, the higher Vin is given, the 

shorter time is required for recharging, so is for reaching Von. Third, the 

activity is saturated at high Vin (> ca. 5.2 V). The capacitor’s charging and 

discharging as well as the kinetics of the threshold switching is in need of 

non-vanishing time.[14] Thus, this minimally required time delimits the 
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minimum ISI, i.e. maximum spike number.  

The above-mentioned characteristics of the PAO offer notable similarities 

to the gain function of the biological neuron, encoding the analog-type input 

into output (activity) that is likewise analog. Nevertheless, there exist 

disparities such as an input type; the oscillation of the PAO in Figure 6.2 was 

triggered by input voltage dissimilarly to biological neuron whose membrane 

potential is generally perturbed by current rather than voltage. However, 

applying a current to the PAO barely causes a dramatic change in the 

neuronal behavior albeit different in detail. Provided that either input type 

seldom alters the essential features of the gain function-like behavior, chosen 

is the one suitable for operation in combination with artificial synapses. 

Later, the proof-of-concept demonstration of the neuron is done on a pair of 

neurons – connected through a synaptic resistor. 

Each spike is evoked by a single threshold switching cycle, and the 

switching parameters vary upon each cycle. Considering that the ISI means a 

time required for VTS elevation up to Von, the variation of the ISI ahead of 

each spike is inevitable. The main reason is a variability in Von; the higher 

Von, the longer the required ISI. The variability of the parameters therefore is 

the direct cause of the neuronal random noise. We set aside these noise 

characteristics until a pair of neurons – in connection through a synapse – are 

addressed in Section 6.3.5. 
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Figure 6.2 (a) Oscillating outputs of the PAO under square voltage pulses in 

(b). (c) A change in the number of spikes with the height of a voltage pulse 

applied to the PAO circuit in the inset. The average dataset was obtained out 

of 20 trials. 
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6.3.3. Non-ideal op-amp 

 

The non-ideal op-amp in the neuronal circuit in Figure 6.1 enables spike 

amplification and unidirectional synaptic transmission. The non-ideality of 

concern encompasses finite input impedance Zin – described by Cin and Rin in 

parallel – and output resistance Rout as shown in Figure 6.3a. This non-

ideality is almost unavoidable in practice. In the ideal op-amp, Zin and Rout 

are infinite (real) and zero, respectively. The complex Zin due to non-zero Cin 

offers coupling between the op-amp and Rsyn, causing RC delay in Vin. We 

make active use of this non-zero Cin so as to realize synaptic transmission 

and the consequent excitatory postsynaptic potential (EPSP). These non-

ideal features, however, do not remarkably degrade the aforementioned roles 

of the op-amp. For instance, unless Rout is larger than or comparable to the 

following resistance in total, e.g. R1 + RTS + R2 in Figure 6.3a, the op-amp 

only allows unidirectional synaptic transmission.  

Alongside finite Rin and Rout, the non-ideality includes a finite slew rate (a 

measure of the response rate to input).[15] The larger the slew rate, the more 

immediately V1 responses to Vin. A low slew rate lets the op-amp work as a 

filtered amplifier (cutting off high       ⁄ ), and thus smoothing      ⁄  

and reducing the actual gain.[15] Thus, such a low slew rate notably distorts 

output V1 in comparison with input Vin. Figure 6.3b displays the output of the 

op-amp (LT1007) with an input spike train (Figure 6.3c) that was elicited 

from the PAO ahead. Indeed, a comparison between the input and output 

elucidates such a distortion attributed to a low slew rate. The output response 

rate of the non-ideal op-amp is given by the following differential 

equation[15]: 

     ⁄ =    ∙     
     ,    ,     (6.1) 

where   
     =  ∙     (G: gain), i.e. the ideal output. MSR denotes a 

maximum slew rate.     
     ,     stays between ±1 and describes a 
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change in the actual slew rate with time.[16] A heuristic estimation of 

    
     ,     from the data in Figure 6.3b offers  =    ℎ     

     −

     in which the tangent hyperbolic term controls ramping-up and -down 

rates of V1 (a: positive constant). Equation 6.1 in conjunction with the 

heuristic equation well accounts for the measurement results as can be seen 

in Figure 6.3b. MSR was set to 2.5 V ms-1 – the maximum slew rate of an 

LT1007. G and a were set to 51 and 0.5 V-1, respectively. The output on 

average points to an amplification of approximately merely 20 times, i.e. an 

actual gain of ca. 20, which indicates a large reduction in gain from the ideal 

one (G: 51). The non-ideal op-amp works as a low-pass filter whose cutoff 

‘rate’ (input voltage change rate) is characterized by the maximum slew rate 

MSR. The bandwidth is enlarged by adopting an op-amp with a larger 

maximum slew rate. Hereafter, we term a maximum slew rate MSR as a slew 

rate unless otherwise stated. 
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Figure 6.3 (a) Lumped circuit of the non-ideal op-amp in the ROLIF 

neuron circuit. (b) The response of the op-amp to the input spikes (Vin) plotted 

in (c). V1 was measured (red solid line) and also calculated (blue solid line) 

using Equation 6.1 in conjunction with the tangent hyperbolic function plotted 

in the inset. G, MSR, and a were set to 51, 2. 5 V ms-1, and 0.5 V-1, respectively. 
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6.3.4. Spiking neurons and synaptic transmission 

 

In the SNN, spiking in a neuron is driven by a set of spikes – rather than 

constant input – from neighboring neurons. Thus, placing the neuron under 

practical conditions is required for a further justification of its neuronal 

behavior. Towards this end, we made a spiking analysis on a pair of neurons 

that were connected via a resistor Rsyn working as a synapse; the circuit is 

depicted in Figure 6.4a. The presynaptic neuron – subject to a sufficiently 

high constant voltage – was excited to spike, and the spikes were translated 

into EPSP (  
    ) for the postsynaptic neuron through the aforementioned 

Rsyn-Cin coupling. In this regard, the postsynaptic neuron spikes in response 

to input spikes. Note that to avoid redundancy, we ruled out the op-amp in 

the presynaptic neuron insomuch as its only role is to amplify Vin. Instead, a 

sufficiently high voltage to require no amplification was applied to Vin.  

Three different voltages (3.8, 4.6, and 5.2 V), applied to the presynaptic 

neuron, successfully evoked spikes and they consequently led the 

postsynaptic neuron to spiking as plotted in Figure 6.4b and 6.4c.     
    and 

    
     were simultaneously acquired while applying the constant voltage. 

Recalling that the number of spikes parameterizes neuronal activity a, such 

measurements evaluate the activities of pre and postsynaptic neurons, u and 

v, respectively. Reflecting the feature of the PAO in Figure 6.2, the 

presynaptic activity u in Figure 6.4b tends to increase with Vin; likewise, so 

does the postsynaptic activity v in Figure 6.4c. Notably, there exists a much 

longer latency for a first spike in the postsynaptic neuron than the 

presynaptic neuron. It points out that EPSP evolution upon the arrival of 

spikes in the postsynaptic neuron takes a longer time than the instance of 

constant voltage application to the presynaptic neuron. However, the latency 

becomes significantly shortened by multiple presynaptic neurons insomuch 

as the membrane potential of the postsynaptic neuron quickly rises amid 
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simultaneous input spikes through multiple synapses. 
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Figure 6.4 (a) Equivalent circuit of a pair of neurons that are connected 

through a synaptic resistor. (Rsyn = 1 kΩ and Ramp2 = 100 kΩ) CP indicates a 

parasitic capacitance originated from the connection. (b) Spike bursts in the 

presynaptic neurons at different constant voltages (3.8, 4.6, and 5.2 V) and (c) 

the consequent postsynaptic spike bursts. An ISI distribution for the (d) 

presynaptic and (e) postsynaptic spike bursts. (f) An autocorrelogram of the 

presynaptic spikes in the burst at 5.2 V. (g) A relationship between the 

measured mean 〈 〉 and variance   
  of neuronal activity. The dashed line 

indicates a theoretical relation for a Poisson neuron. 
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6.3.5. Neuronal noise and its randomness 

 

The uncorrelated random variability in the threshold switching parameters 

is the direct cause of neuronal noise. Mapping such variability on the 

individual switch scale onto neuronal noise has recently been identified by 

theoretical means.[4] To verify this theoretical prediction, we made a 

statistical analysis on the neuronal noise that is represented by the variation 

of the ISI and the resulting spiking activity. The results are plotted in Figure 

6.4d and 6.4e for pre and postsynaptic noises, respectively. The histograms 

for the presynaptic neuron in Figure 6.4d certainly evidence the normal 

distribution of the ISI, reflecting the distributional nature of the switching 

parameters (Figure 2.8). A note should be placed on the fact that such 

histograms do not necessarily justify the randomness of ISI variation; instead, 

a cross-correlation analysis on the ISI distribution provides clear evidence 

for randomness.[4, 10] For instance, the autocorrelogram in Figure 6.4f 

obviously visualizes no correlation within the spikes in the same burst other 

than self-correlation that is indicated by the peak at a time lag of zero 

(Figure 6.4f). The noise characteristics of the postsynaptic neuron in Figure 

6.4e similarly feature to the presynaptic neuron albeit not as clear as the 

presynaptic neuron. 

In order to compare the observed noise characteristics with the biological 

neuron, we further made statistics of the activity – resulting in mean activity 

〈 〉 and variance   
  – on 20 spike bursts for both pre and postsynaptic 

neurons. The results are plotted on the 〈 〉 -   
  plane in Figure 6.4g. The 

dashed line denotes   
 =  〈 〉  (A: constant), representing a Poisson 

noise.[10] The biological neuron often exhibits such a Poisson noise 

behavior.[10, 17, 18] The theoretical estimation of the neuron clearly follows the 

feature of a Poisson noise as shown in Figure 6.4g. A similar noise behavior 

is seen in the presynaptic neuron in spite of a deviation from the dashed line. 
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However, the postsynaptic neuron hardly uncovers the behavior in a wide 

activity range mainly in light of the aforementioned large latency for a first 

spike as seen in Figure 6.4c. Nevertheless, it appears in good agreement with 

the theoretical prediction in the limited activity range, so that we assume the 

consistency between the theoretical and experimental results.    

Note that the finite impedance of the oscilloscope channel hinders us from 

acquiring the true Vout for both pre and postsynaptic neurons. For instance, 

the spike-width widening in Figure 6.4b and 6.4c arises from the channel 

impedance as justified in comparison with circuit simulation results (not 

shown). In the following circuit simulations, we ruled out this channel 

impedance in the circuits so as to evaluate the true output. 

 

6.3.6. Effect of op-amp on spiking dynamics of postsynaptic 

neuron 

 

Provided that the gain of the op-amp varies upon the oscillation frequency 

of the PAO and slew rate, the spiking dynamics of the postsynaptic neuron 

significantly rests on the op-amp. Recall that, in Section 6.3.1, the 

experimental proof-of-concept demonstration of the neuron was conducted 

by using a commercialized op-amp. The op-amp in the neuron circuit needs 

to be generalized to various op-amps with different gains and slew rates so 

as to underpin the generalization of the circuit. Employing circuit 

calculations, postsynaptic neuron’s spiking dynamics was examined with 

various gains in the 2 – 100 range and slew rates (0.1 – 20 V ms-1). We also 

took into account random variability in the switching parameters. Each mean 

postsynaptic activity in the map was acquired out of 20 trials. The detail of 

the calculation is explained in Supplementary Information. The postsynaptic 

neuron’s activity maps in Figure 6.5a – c were obtained at three different 

presynaptic neuron’s activity (16.4, 17.7, and 19.6), respectively. Notably, 



 

 139

the slew rate has strong influence on the postsynaptic neuron’s activity only 

when sufficiently small; for instance, Figure 6c succinctly shows a drastic 

change in the postsynaptic neuron’s activity upon a slew rate (< 4 V ms-1) at a 

gain of 100. The change is negligible, otherwise. The larger the slew rate, the 

more likely the disparity between the ideal and actual (non-ideal) outputs 

vanishes. Thus, the actually output becomes fairly independent of the slew 

rate (Figure 6.5b and 6.5c). By contrast, the gain has a larger effect on the 

postsynaptic neuron’s activity in a larger range. 
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Figure 6.5 Simulated postsynaptic activity maps with respect to the gain 

and slew rate when the mean presynaptic activities 〈 〉 were (a) 16.4, (b) 

17.7, and (c) 19.6, respectively. The calculations were conducted over 20 

trials on the equivalent circuit in Figure 5a at a Rsyn of 200 kΩ. 
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6.3.7. Synaptic resistance 

 

It is known that synaptic transmission is grounded on the synaptic efficacy 

causing EPSP. Likewise, synaptic transmission occurs in the pair of neurons 

through the synaptic resistor Rsyn leading to EPSP evolution. In this regard, 

we need to look into the relation between the synaptic resistance and 

corresponding synaptic weight. Towards this end, the circuit in Figure 6.6a 

was examined by calculational means at a fixed gain and a slew rate of 100 

and 2.5 V ms-1, respectively. The calculations at various Rsyn’s result in the 

induced postsynaptic neuron’s activity v with presynaptic neuron’s one u 

(Figure 6.6a). Notably, v linearly increases with u at a different onset. The u-

v relation at non-zero v can simply be expressed as  =  ( −  ) unless 

the v max remains out of reach, where m and b denote the slope and onset, 

respectively. m is nearly constant while b tends to decrease with Rsyn (see the 

inset of Figure 6.6a). 

Interestingly, a higher Rsyn causes more spikes in the postsynaptic neuron, 

which appears counter-intuitive. For instance, in Figure 6.6a, v at 250 kΩ is 

approximately five times as large as that at 70 kΩ when 20 in u. Given the 

use of the non-ideal op-amp, the EPSP evolution in due course is a 

consequence of the coupling between Rsyn and input impedance Zin – 

particularly Cin – alongside the finite slew rate (2.5 V ms-1). The lower Rsyn, 

the shorter the RC delay, i.e. the faster    
     rises (falls) upon spike 

incidence (termination) as shown in Figure 6.6b where two spikes arrive at 

Rsyn at 4.6 and 5.0 ms. The op-amp that works as a low-pass filter then filters 

out such fast-rising    
     (> MSR), so that the output (  

    ) is low. In this 

regard, high Rsyn is beneficial for a better signal transmission. However, the 

maximum    
     decreases because of the large voltage drop across the high 

Rsyn (Figure 6.6b). Thus, high Rsyn trades off the consequent reduction in 

  
     for a better transmission, so that the maximum   

     is given at 
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particular Rsyn that reconciles these two opposite effects. For different Rsyn’s, 

  
     evolution amid arrival of a presynaptic spike train (u=20) is seen in 

Figure 6.6c. In search of Rsyn at the maximum, maximum   
     was re-

plotted with respect to Rsyn in Figure 6.6d in which the two regimes are 

indicated. The maximum is at approximately 250 kΩ, which is reflected in 

Figure 6.6e; postsynaptic activity v reaches its maximum in the vicinity of 

250 kΩ Rsyn irrespective of the mean presynaptic activity 〈 〉. As per 

preferences in practice, one of the two Rsyn regimes can be chosen in the 

circuit design when taking into account synaptic plasticity. In the following 

circuit calculations, we adopted Rsyn below 250 kΩ (Regime I) whose 

variation causes the larger change in v than the other regime.  

The aforementioned behavior also depends on the slew rate. Rsyn at the 

maximum tends to decrease with the slew rate, narrowing down the working 

Rsyn window (see Supplementary Information). 
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Figure 6.6 (a) Simulated postsynaptic activity v with presynaptic activity u 

for different Rsyn’s. The inset shows the onset of each curve. Time-varying (b) 

   
     and (c)   

     upon incident presynaptic spikes at 4.6 and 5.0 ms for 

different Rsyn’s u was set to 20. (d) Maximum   
     with respect to Rsyn at u 

= 20. (e) Induced postsynaptic activity v with respect to Rsyn at three different 

〈 〉’s. The gain and slew rate were set to 100 and 2.5 V ms-1, respectively. The 

datasets in a) and e) were obtained out of 20 trials. 
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6.3.8. Non-linear integration rule 

 

In the SNN, a postsynaptic neuron is generally in connection to a number 

of presynaptic neurons via synapses. The EPSP thus evolves in due course 

amid simultaneously incident presynaptic currents. This type of integration 

is often referred to as spatial integration or spatial summation.[19-21] We 

examined the spatial integration of the postsynaptic neuron whose equivalent 

circuit is depicted in Figure 6.7a. The presynaptic neurons are numbered 

from one to n. Note that for the sake of simplicity Rsyn of all n synapses was 

set to 30 kΩ. Given the same Vin to all presynaptic neurons, the mean u, i.e. 

〈 〉, of each presynaptic neuron is the same. To highlight the effect of 

synapse number on postsynaptic activity v, v that is evoked by the spatial 

integration of u’s was identified for different n’s (n: 1, 13, 16, 25, and 40) 

whose results are plotted in Figure 6.7b. Notably, the same empirical 

equation,  =  ( −  ), describes the observed behavior with a change in 

the onset b upon n as shown in the inset of Figure 6.7b. The onset as a whole 

declines with n – more synapses lead to more postsynaptic neuron’s spikes 

albeit non-linear. Such a tendency is more evidently seen in Figure 6.7c in 

which the data in Figure 6.7b are re-plotted on an n-v plane at three 〈 〉 

values. 

This finding is again seemingly counter-intuitive given that parallel 

synaptic resistors – of the same resistance – hinder    
     from exceeding 

that for the single presynaptic neuron case when the presynaptic spikes are 

asynchronous (very probable in light of the Poisson spiking nature). This is 

evident as per the following equation:    
    =

    

        
    

   , where Gsyn 

and G0 denote the conductance of the synaptic resistor (1/Rsyn) and the 

lumped conductance of the postsynaptic neuron, respectively. As a matter of 

fact, connecting a postsynaptic neuron to 100 presynaptic neurons largely 
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suppresses an increase in    
     upon spiking as seen in Figure 6.7d in 

comparison with the single presynaptic neuron case. However, asynchronous 

presynaptic spikes – elicited from different presynaptic neurons – render it 

possible to fill the ISI in which    
     drops to the baseline (see Figure 

6.7d). The ISI-filling, however, overcompensates for the reduction in    
     

peaks when integrated over time by the op-amp, leading to a rather higher 

  
     than the single presynaptic neuron case as shown in Figure 6.7e. As a 

consequence, more presynaptic neurons evoke more postsynaptic spikes in 

the postsynaptic neuron. 
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Figure 6.7 (a) Equivalent circuit of n presynaptic neurons connected to a 

single postsynaptic neuron via n synaptic resistors. (b) Simulated postsynaptic 

activity v with respect to mean presynaptic activity 〈 〉. The inset shows the 

onset of each curve. (c) Non-linear v-n relations at three different 〈 〉’s. The 

datasets in b) and c) were acquired out of 20 trials. (d) Time-varying    
     

and (e)   
     for n=1 and 100 at 〈 〉 = 9.4. 
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6.4. Discussions 

 

Provided that a passive synapse was taken into consideration in this study, 

the proposed neuron was subject to voltage rather than current. Adopting 

passive artificial synapses is an ongoing effort in light of their simple device 

structure that offers large-scale integrated synaptic circuits.[22-25] In particular, 

two-terminal ‘memristive’ devices implemented in a fully passive crossbar 

array[24, 25] have been promisingly addressed on these grounds. Although 

these simple passive synapses are on the neuroscience-inspired substrate, 

they differ in plasticity induction protocols from the biological chemical 

synapse. Synaptic weight in such a device is translated into resistance (or 

conductance), and the resistance is tweaked as per ‘learning’.[25] The 

synaptic resistance-depending postsynaptic neuron’s activity (Figure 6.6) is 

relevant to this translation, connecting synaptic weight to the activity via 

synaptic resistance. In this regard, the neuron model in this study is likely 

compatible with such passive synapses. 

There are a number of artificial synapse models[26-29] – mostly built using 

scalable metal-oxide-semiconductor field-effect transistors (MOSFETs) 

which are more biologically plausible.[27-29] For some of them, their fidelity 

to the biological synapse offers excitatory postsynaptic current (EPSC)-

driven postsynaptic neuron’s spiking.[29] Realizing this requires active circuit 

elements, e.g. MOSFETs, for the synaptic circuitry, working as a current 

source for EPSC. Modifying the neuron circuit, particularly the op-amp, the 

neuron can also be used in association with such active artificial synapses. 

Current or current-to-voltage amplifiers are desirable in this instance. Either 

amplifier can similarly integrate and amplify the input, relaying the output to 

the PAO in due course. Simultaneously, an integration takes place on 

capacitor C1 in Figure 6.1, which lasts until the TS is turned on at Von. 

Therefore, the neuron is likely applicable in conjunction with different 
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artificial synapses in the SNN albeit different in spiking behavior in detail. 

The description of synaptic transmission through an active synapse is 

unlikely as simple as the case of passive synapse, and it is beyond the scope 

of the present study. 

The neuron circuit is likely scalable given the element-wise scalability. 

The TS has been found to shrink successfully down to a few tens of 

nanometers in length without significant degradation of the switching 

property.[30] In particular, the Pt/GeSe/Pt TS represents the off-state 

resistance scaling with the area.[14] The capacitor in the PAO is scalable if 

bearing the significant reduction in capacitor area, and thus capacitance. A 

workaround is to compensate for the area reduction by using high-k 

dielectrics or to build three-dimensional capacitors with high aspect ratios as 

for capacitance-based RAM such as dynamic RAM and ferroelectric 

RAM.[31] In this study, a capacitance of 10 pF was assigned to the capacitor 

in the PAO, which provides an ‘accelerated’ time scale in comparison with 

the biological neuron. The accelerated time scale has an advantage in 

response speed over the real-time scale as the response is more quickly 

evoked in the accelerated time scale. However, recalling the advantage of the 

SNN over ANN in interaction with the real world, the advantage in the 

accelerated time scale requires much more spikes in a given physical time 

period than the real time scale – which causes the larger power consumption. 

Thus, it is of importance to reconcile capacitor scaling down with the power 

consumption. More specifically, the relationship between the power 

consumption and the activity of the PAO was examined with the size of the 

PAO layout. (see Figure S6 in Supplementary information)  

The op-amp is scalable as well. In addition, the op-amp can be modified 

as per preferences in the integrated neuron circuit, we employed the 

particular op-amp in the experiments for experimental preferences though. 

The simplest case replaces the op-amp with an amplifier of two inverting 
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stages as for the Axon-Hillock neuron circuit.[1, 2] Irrespective of a type of 

amp, the slew rate tends to increase with scaling down insomuch as the 

capacitance-induced response lag diminishes as the capacitor area shrinks. 

Emphasis should therefore be placed on the gain rather than the slew rate in 

such integrated neuron circuits in light of the relationship shown in Figure 

6.5. In addition, the vanishing response lag due to the high slew rate hinders 

the input integration over time through the op-amp. Fortunately, the 

integrator, i.e. C1 in the PAO in Figure 6.1, remains available, rendering it 

possible to spike in the given circumstance. (see Figure S7 in Supplementary 

information) 

 

6.5. Conclusions 

 

We proposed a neuron circuit by exploiting a PAO and non-ideal op-amp. 

The proof-of-concept operation of the neuron was successfully demonstrated, 

which encompasses the feasible synaptic transmission through a passive 

synapse – equivalent to a synaptic resistor. The neuron was found to 

resemble the biological neuron mostly regarding the following aspects: (i) 

analog-type information encoding, (ii) signal amplification, (iii) 

unidirectional synaptic transmission, and (iv) random Poisson noise. The 

first and last features basically form the basis of possible application of the 

neuron to stochastic analog electronics.[32] The generalization of the 

proposed neuron as well as their connection through a synaptic resistor 

elucidated the importance of non-ideal phenomena – such as coupling 

between the synaptic resistor and the input impedance of the op-amp, and the 

random Poisson noise – in the synaptic transmission between pre and 

postsynaptic neurons, which also includes spatial integration. 
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7. Conclusions 

 

In this thesis, the proof-of-concept demonstration was addressed for the 

hardware realization of building blocks of SNN. Functionalities of the 

artificial synapse and the artificial neuron were realized by adopting 

functioning materials based on resistive switching phenomena which can 

partly replace CMOS-based elements. Thus, SNNs’ circuitry could be 

simplified by employing a less number of CMOS-based elements.  

The STM effect of the artificial synapse was demonstrated by employing 

TiO2-based ECs adopting reactive TEs. The synaptic weight of ECs could be 

modulated by changing either the polarity of input spike or the input spike 

activity. The input activity-dependent synaptic potentiation was 

parameterized by employing empirical equations adopting a ‘sliding 

threshold’ concept, which was inspired from BCM rule. The dynamic 

equilibrium between forward and backward reactions of potentiation could 

be understood in light of the TE-related redox reaction. Note that there are a 

few synaptic functionalities which were not realized in ECs, such as a spike-

timing-dependent-plasticity. At this moment, how to implement this concept 

into ECs is an open question.  

The spiking phenomenon of the biological neuron was realized by 

employing non-memory resistive switching systems. The non-faradic type 

Pt/TiO2/Pt capacitor exhibited the ionic-to-electronic conduction transition 

phenomenon, which was induced by EMF originated from the point-defect 

migration. The abrupt resistance change induced by the ionic-to-electronic 

conduction transition successfully emulated spike generation in the short 

time period. However, the non-faradaic capacitor itself could not encode the 

constant input stimulus by means of the spiking activity. This is due to the 

fact that, unlike the biological neuron, oscillatory membrane potential under 
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the constant stimulus could not be realized by single non-faradaic capacitor 

without assistant circuits for oscillation. 

The NLIF neuron is one of the hardware-realizable LIF neuron, which is 

composed of two PAO encompassing TSs. As discussed in Section 5.2.2, 

membrane potential of the NLIF neuron could be described by limited cycles 

in the phase plane, generating a spike train under the constant input stimulus. 

In this regard, analog-to-analog type information encoding was demonstrated. 

Provided the potential variability of behavior of the TS, encoding reliability 

of individual NLIF neuron strongly depended on the neuronal noise. 

Although the encoding process of individual NLIF neuron was unreliable, 

however, one could extract reliable information from population of NLIF 

neurons by employing Bayesian decoding method. On the basis of Bayesian 

decoder, increase in the number of NLIF neurons in the population tolerated 

a larger variability of switching parameters of the TS. Nevertheless, the 

variability of switching parameters should be placed within tolerance range. 

Towards the hardware-realized LIF neuron, the proof-of-concept 

demonstration of the ROLIF neuron was addressed. The ROLIF neuron 

emulated neuronal functionalities in terms of (i) analog-to-analog type 

information encoding, (ii) signal amplification, (iii) random Poisson noise, 

and (iv) unidirectional signal transmission. The last feature was expected to 

enable the ROLIF neuron to build the neural network along with passive 

synapses. Notably, the feasibility of the network configuration was 

demonstrated by means of the basic synaptic transmission via a synapse 

resistor between ROLIF neurons. Furthermore, both the synaptic weight 

dependence and effect of the number of presynaptic connections were 

investigated to verify basic conditions for neural networks by the simulation 

method. It turned out that non-ideal phenomena - such as coupling between 

the synaptic resistor and the input impedance of the op-amp, and the random 

Poisson noise – played a crucial role for spatial integration of signal. 
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8. Supplementary information 

 

Calculation of ionic current in a non-faradaic capacitor 

  

In a MIEC, both electrons and mobile ions/defects contribute to the dc 

current. In a non-faradaic capacitor, the interface between the MIEC and 

electrode forms a blocking contact for mobile ions/defects. Hence, the 

number of the mobile ions/defects is conserved in the capacitor, i.e. they are 

confined in the MIEC. However, for electrons this capacitor is regarded as 

an open system connected to an electron reservoir. The dc ionic and 

electronic currents are described separately below. 

Dc current in a MIEC is driven by two driving forces, chemical and 

galvani potential gradients. The former and the latter are termed diffusion 

and drift currents. Within the scope of a first-order approximation, the 

summation of drift and diffusion fluxes of charged particle  ,       
  and 

     
 , through a one-dimensional electrode/MIEC/electrode capacitor, which 

is termed as drift-diffusion flux    
 , is given by 

   
 =    

    −   
   

  
,      (S1) 

where   ,   ,   ,   , and   denote the ionization number, the 

concentration, the mobility of particle  ,   ,and the internal electric field, 

respectively. The first and the second term on the right side of Eq. (S1) mean 

the drift and the diffusion fluxes, respectively. Therefore, the dc ionic current 

density attributed to the drift-diffusion of particle   is    
 =       

 , where 

  means the elementary charge. For TiO2 MIEC,  =   
∙∙, denoting oxygen 

vacancy in the Kröger-Vink nomenclature.[1] 

In a non-faradaic capacitor, the migration mobile ions/defects are confined 

within the MIEC, i.e. the drift-diffusion fluxes at the two interfaces of the 

capacitor are zero. That is, no exchange of ions/defects takes place through 
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the interfaces. These boundary conditions play a key role in evaluating the 

time-dependent distribution of ions/defects in the MIEC. When a faradaic 

type capacitor is dealt with, appropriate formalism for ion/defect fluxes at 

the interface, e.g. the Butler-Volmer equation, can be used as boundary 

conditions instead.[2] 

 

 

Figure S1. (a) Schematic of a non-faradaic capacitor utilizing an MIEC. A 

voltage is applied to the right electrode while the left electrode is grounded. (b) 

Configuration of the nodes in a one-dimensional non-faradaic capacitor in 

distance x and time t dimensions. 

 

Calculation of dc electronic current in a non-faradaic capacitor 

 

For electrons, the non-faradaic capacitor is not a closed system so that 

their injection into and ejection from the capacitor and their drift-diffusion in 

the MIEC should be taken into account. It was assumed here that electrons in 

the electrode exhibit free electronic behavior and the MIEC has a single 

conduction band minimum. Also, it was assumed a mechanism for the 

injection of electrons from the electrode to the MIEC to be thermionic 

emission attributed to electron injection overcoming the band offset, i.e. 

Schottky barrier, at the electrode/MIEC interface.[3, 4] Electronic current 
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density from the MIEC to electrode (reservoir), i.e. electron’s flux from the 

electrode to the MIEC, is denoted by    , 
 .  

The reverse current density    , 
 , attributed to the electron’s flux from the 

MIEC to the electrode, should also be considered to describe the dc 

electronic current density at the interface. This reverse current density can be 

expressed as the following equation: 

   , 
 =      ,              (S2)  

where   =
 ∗  

   
, and  ∗ , T, and     denote the Richardson constant, 

temperature, the effect density of states for electrons in the MIEC.[5] And    

in Eq. (S2) indicates the concentration of electrons at the interface. In this 

model system, a voltage is applied to the right electrode as shown in Figure 

S1a. In accordance, electric current along the positive x-axis is taken as 

positive. This results in the opposite polarity of electric current such as 

negative current under a positive voltage, however, later we make the 

polarity reversed. The net current density at the left interface in Figure S1a 

can therefore be written as    
 =    , 

 −    , 
 , whereas that at the right 

interface    
 = −   , 

 +    , 
 . These two equations serve as the boundary 

conditions for the electrons’ transport through the capacitor. 

Electronic current density in the MIEC is described in terms of the 

distribution of electrons and a gradient of their electrochemical potential, i.e. 

Fermi level   . For a one-dimensional system, an electronic current density 

equation is    
 =       /  , where n and    denote electron 

concentration and electron’s mobility, respectively. In addition, the electron 

concentration in the MIEC depends on the electron’s effective mass   , the 

conduction band minimum   , and the electron’s electrochemical potential 

  , through the following equation: 

 = ∫  ( ) ( )  
 

  
,       (S3) 
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where the density of states of electrons  ( ) =
      

  
 / 

  
  −    

 / 
. Now, 

the electronic current density in the MIEC becomes a function of the 

distribution of the electrons’ electrochemical potential and the galvani 

potential. Note that the conduction band minimum    is a function of the 

galvani potential V through the equation,   =   −   , where    denotes 

the band offset at the electrode/MIEC interface. 

The time-domain calculation of ionic and electronic current density cannot 

be performed using an analytical method, and thus the Crank-Nicolson 

method was employed, combing explicit and implicit finite difference 

methods.[5] In this time-domain calculation, electrons’ behavior can be 

evaluated using a quasi-static approximation since electron’s mobility is 

much larger compared to that of an ion or an ionic defect. Employing the 

quasi-static approximation gives the important condition that electronic 

current density is constant at all positions in the one-dimensional MIEC at a 

given time. This condition defines the relationship between galvani potential 

and electrochemical potential, implying that these two variables are 

dependent on each other. That is, if the distribution of galvani potential is 

known, so is that of electrochemical potential. 

 

Calculation of time-dependent current in a non-faradaic capacitor 

 

Considering the configuration of J-V measurements on a non-faradaic 

capacitor, a capacitor illustrated in Figure S1a together with an equivalent 

series resistance (ESR) should be taken into account. An ESR includes all 

possible resistance contributions in the configuration, e.g. electrode 

resistance, wire resistance, and internal resistance of the measurement setup. 

Concerning the voltage division in the configuration, an applied voltage    , 

which is time-dependent, is expressed as  
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   = −      +   ,       (S4) 

where  ,     ,  , and    mean the area of the capacitor, the ESR, total 

current density including dc and displacement current, and the voltage drop 

along the capacitor, respectively. The total current density   is described as 

 =     −     
 

  
 

  

  
 ,       (S5) 

where the first and the second terms on the right side of Eq. (S5) denote dc 

and displacement currents, respectively.     is the summation of dc ionic 

current    
  and dc electronic current    

 , which are discussed in Sections 1 

and 2, respectively.   ,   , and   are a relative permittivity, the 

permittivity of vacuum, and galvani potential, respectively. Integrating Eq. 

(S5) over time from zero to   gives 

  

  
 
    

=
  

  
 
   

+ (    )  ∫ (   −  )  
  

 
.    (S6) 

Again, by integrating Eq. (S6) over   from zero to the capacitor thickness, 

  +   +   , one can evaluate the voltage assigned to the capacitor    at 

   as follows: 

  ( ′) =   (0) + ∫ (    )  ∫ (   −  )    
  

 

 

 
.   (S7) 

Due to charge conservation, Fick’s second law for electric charge in this one-

dimensional capacitor is described as     /  = −  /  , where   means 

charge density. Using the Poisson’s equation,  =   /  , where   means 

dielectric displacement,  = −      /  , Fick’s second law can be 

rewritten as  

 

  
    +

  

  
 =

 

  
    −     

 

  
 

  

  
  =

  

  
= 0.   (S8) 

Solutions of Eq. (S8) are constant along axis  , meaning that the total 

current density   is not a function of  . Therefore, Eq. (S7) can be rewritten 

as 

  ( ′) =   (0) + ∫ (    )  ∫        
  

 

 

 
− ∫ (    )

    ∫    
  

 

 

 
. (S9) 
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Entering Eq. (S9) into Eq. (S4) gives an equation relating an applied voltage 

    to the dc current density     and the total current density   as follows: 

   = −      +   (0) + ∫ (    )  ∫        
  

 

 

 
− ∫ (    )

    ∫    
  

 

 

 
. 

              (S10) 

For an easier calculation, Eq. (S10) needs to be differentiated with respect to 

time, which leads to  

    

  
= −     

  

  
+ ∫ (    )

       
 

 
−  ∫ (    )    

 

 
.        (S11) 

Eq. (S11) can be numerically solved using the Crank-Nicolson method.[6] 

Nodes along   and   axes are illustrated in Figure S1b. Using the Crank-

Nicolson method, Eq. (S11) in the time interval    − (  + ∆ )  is 

expressed as 

∆       (  + ∆ ) −    (  ) = −     ∆   [ (  + ∆ ) −  (  )] +   −

   (  + ∆ ),              (S12) 

where  

  = ∑ (    )     (  + ∆ )∆    
   ,          (S13) 

and 

  =   
  [   

    +    
    +    

    ].          (S14) 

where,     (  ),     (  ), and     (  ) denote the relative permittivities 

(thicknesses) of the left Helmholtz layer, the right Helmholtz layer, and rest 

of the capacitor volume, respectively. Eq. (S12) can be further rearranged by 

entering Eq. (S4) into it as follows: 

 (  + ∆ ) = −(     +    ∆ )      (  + ∆ ) −   (  ) −   ∆  .   (S15) 

Insomuch as the current density   is constant in the MIEC at a given time, 

from Eq. (S5), galvani potential distribution in the MIEC can be evaluated as 

far as the dc current     in Eq. (S5) is known at all position nodes in the 

MIEC at a given time. 

As mentioned earlier, electron distribution in the MIEC can be simplified 

using the quasi-static approximation so that it is time-independent. However, 
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ion/defect distribution should be taken into account in a time domain. Again, 

Fick’s second law can be utilized for this purpose. Fick’s second law for 

ion/defect   can therefore be described as  

   

  
= −

    
 

  
.             (S16) 

The drift-diffusion flux of oxygen vacancies    
  is a function of galvani 

potential and so is the concentration of ion/defect   via Eq. (S16). For a 

non-faradaic capacitor based on TiO2 MIEC,  =   
∙∙ as mentioned earlier. 

In a non-faradaic capacitor, the drift-diffusion flux of oxygen vacancies    
  

is zero at the two interfaces so that this condition works as a boundary 

condition in solving Eq. (S16). 

As above-mentioned, all three different current types,    
 ,    

 , and  , are 

given by functions of galvani potential distribution and they are indeed self-

consistent equations. This means that, by means of an iteration method, one 

can evaluate the three quantities at all positions (nodes) in the MIEC as well 

as time nodes in a time domain. In this calculation, the Newton-Raphson 

iteration was utilized.  

 

Impedance spectroscopy of a Pt/TiO2/Pt non-faradic capacitor 

 

The dielectric constant of TiO2 MIEC was determined from its admittance 

spectra. As suggested by Jeong et al., an equivalent circuit of a Pt/TiO2/Pt 

capacitor is a parallel connection of a capacitor and a resistor.[7] The 

admittance  of this capacitor is  

 =  2   + 1/ ,             (S17) 

where  , C, and R denote frequency, the capacitance and the resistance of 

the capacitor, respectively. Therefore, from the imaginary part of an 

admittance spectrum,   ( ) , the capacitance can be extracted. For 

capacitors with five different pad-sizes, each   ( ) spectrum is plotted in 
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Figure S2a. Note that, at frequencies below 1 MHz, neither open circuit nor 

short circuit calibration was necessary. The measured spectra show the good 

linearity of   ( ) and frequency as shown in Figure S2a. Eventually, the 

dielectric constant of TiO2 is evaluated by plotting the capacitance vales of 

the five capacitors with respect to the pad-sizes. From the slope of the data in 

Figure S2b, a dielectric constant of approximately 39 can be obtained. This 

value serves as one of critical parameters for the J-V calculations. 

 

 

Figure S2. (a) Admittance spectra (imaginary part) of Pt/TiO2/Pt non-

faradaic capacitors with five different pad-sizes. (b) Capacitance vales 

extracted from the admittance spectra with respect to pad-size. The dielectric 

constant of the MIEC was evaluated from the slope to be approximately 39. 

 

Influence of oxygen gas injection during top electrode deposition on 

the counter-clockwise J-V hysteresis 

 

To identify the nature of mobile point defects in a Pt/TiO2/Pt capacitor, we 

fabricated a similar capacitor with injection oxygen gas during TE 

deposition. It can be predicted that TE deposition perhaps causes the 
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reduction of TiO2 MIEC in chemical and/or mechanical manners. To prevent 

this possible reduction, oxygen gas was injected while the Pt TE was 

deposited. For convenience, let us term this capacitor as Pt(O)/TiO2/Pt. As 

can be seen in Figure S3, the oxygen injection process leads to significant 

shrinkage of CCW as well as CW J-V hysteresis. We estimate that the 

injected oxygen gas was used in the re-oxidation of the TiO2 MIEC, and thus 

the number of oxygen vacancies is significantly reduced in the Pt(O)/TiO2/Pt 

capacitor compared with a Pt/TiO2/Pt capacitor. Therefore, this experimental 

result is believed to indicate oxygen vacancy as a type of the dominant point 

defect in the Pt/TiO2/Pt capacitor. 

 

 

Figure S3. J-V hysteresis of a Pt(O)/TiO2/Pt capacitor, compared with that 

of a Pt/TiO2/Pt capacitor. 

 

Activity limit of the NLIF neuron 

 

Spike firing in due course in the NLIF neuron significantly depends on 

charging and discharging of capacitors C1 and C2 as the flicker of switch S2 

during its operation results from consecutive charging and discharging of 
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capacitor C2. It takes a particular time for capacitors to be charged and 

discharged, which is defined as an RC time constant. It is therefore 

predictable that the maximum number of spikes over a period of given time 

(here, 30 ms) is limited by the capacitive behavior. This limit is seen when it 

comes to high activity, for instance, the NLIF neuron with 5 percent Ron and 

Roff deviation (see Figure 5.6). A drastic decrease in variance at high mean 

activities ( > ca. 20) can be seen, implying that the variance is no longer 

determined by the deviation of the resistance. To highlight this activity limit, 

distributions of activity triggered by two different input currents (0.4 and 1.0 

A) are acquired for different  Ron and Roff deviations as shown in Figures 

S3a and b. Considering the spike firing characteristics shown in Figure 5.6, 

in general, a higher current as well as a smaller resistance deviation results in 

a larger mean activity. However, when the activity becomes close to the limit 

(ca. 45), the activity limit no longer allows higher activity, so that the 

variance is largely suppressed as shown in Figure S3b. The limit effect on 

variance is obviously seen in the comparison between the two different input 

current cases shown in Figures S5c and d, in which the variance of the 1.0 

A injection case is largely reduced. For a comparison with the Poisson 

neuron, the Fano factor, denoting a variance to mean ratio, is evaluated for 

the two different current injection cases with respect to assumed resistance 

deviation (see Figure S3e). The Poisson neuron exhibits a Fano factor of 

unity as indicated using a dashed line in Figure S3e.[8] Unlike the perfect 

Poisson neuron, the Fano factor of the NLIF neuron varies upon the 

resistance deviation. In particular, at higher resistance deviations the Fano 

factor is larger than unity; the variance is larger than the mean activity, and 

thus the variance of the NLIF neuron is larger than that of the Poisson 

neuron at a given mean activity. This leads to a larger uncertainty in the 

Bayesian decoding than the Poisson neuron case as shown in Figure 5.9. 
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Figure S4. Histrograms of activity for cases of (a) low mean activity (Iin: 

0.4 mA) and (b) high mean activity (Iin: 1.0 mA), which were acquired over 

100 time trials. The dashed line in the left panel indicates the activity limit. 

The mean and variance of activity for different resistance deviations are 

plotted for cases of (c) low (Iin: 0.4 mA) and (d) high (Iin: 1.0 mA) current 

injection. (e) The Fano factors, i.e. variance/mean ratio, for the two different 

current injection cases are shown with respect to resistive deviation. 

 

Injected current into each NLIF neuron in a population and its 

response 

 

For each NLIF neuron in a population of 20 NLIF neurons, injected 

current with respect to orientation is plotted in Figure S4a, which represents 

a bell-shape curve. And the corresponding tuning curve of the NLIF neuron 

is shown in Figure S4b. The tuning curves were evaluated on the assumption 

of no deviation of Ron and Roff.  
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Figure S5. (a) Injected current into each NLIF neuron with an each 

preferred orientation in a population of 20 neurons in total. Current profiles of 

only 5 neurons among 20 ones in total are plotted in this figure. (b) Tuning 

curves of the sampled 5 NLIF neurons responding to the injected current 

shown in (a). Note that no resistance deviation was assumed in this 

calculation. 

 

Time dependent circuit calculation of the ROLIF neuron 

 

The calculations of the circuit in Figure 6.4a were performed following 

three steps: (i)   
   ,     

   , and    
    , (ii)   

    , and (iii)   
     and 

    
     evaluation steps. First, the three variables (  

   ,     
   , and    

    ) 

related to the presynaptic neuron were described by employing the 

Kirchhoff’s current law at each node as follows: 

  
   

   

  
=

      
   

  
−

  
   

     
   

   
,           (S18) 

  
     

   

  
=

  
    

     
   

   
−

    
   

    
    

    
−

    
   

  
,          (S19) 

and 
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=

    
   

    
    

    
−

   
    

   
,           (S20) 

where Rin and Cin are the input resistance and capacitance of the non-ideal 

op-amp, respectively. Eqs. (S18)-(S20) were numerically solved by the 

Crank-Nicolson method. The corresponding discrete forms are expressed as 

  

∆ 
   

   ( + 1) −   
   ( ) =

 

   
    ( + 1) +    ( ) +
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   ( + 1) +   
   ( ) −

 

    
     

   ( + 1) +     
   ( ) ,      (S21) 
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and 

   

∆ 
    

    ( + 1) −    
    ( ) =

 

     
     

   ( + 1) +     
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    ( + 1) +    
    ( ) ,          (S23) 

respectively. Second,   
     was evaluated by numerically solving Eq. (18). 

Likewise, the equation can be re-written by a discrete formula. Third, 

employing the Kirchhoff’s current law at each node of the postsynaptic 

neuron,   
     and     

      – describing postsynaptic dynamics – were 

finally calculated by solving the following equations:  

  
   

    

  
=

  
    

   
    

  
−

  
    

     
    

   
,           (S24) 

and 

  
    

     
    

   
=

    
    

  
.            (S25) 

Eqs. (S24) and (S25) were numerically solved by the Crank-Nicolson 

method. In order to take into consideration random variability in the 
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switching parameters of the TS, the TS was endowed with random 

parameters (Ron, Roff, Von, and Voff) for each switching cycle, which follow a 

normal distribution. 

 

Relationship between the power consumption and activity of the 

PAO with the size of PAO layout 

 

The power consumption of the PAO was calculated. The PAO consumed 

~100 pJ/spike at ~2 MHz, (see the red line of Figure S6a at R1=50 kohm; the 

maximum number of spikes of Figure 6.2c (~20) corresponds to activity of 

~2 MHz) which translated to ~2 mJ/spike at 100 Hz. (see the blue line) The 

relatively high power consumption of the PAO could be reduced with R1 due 

to reduced activity (see Figure S6b) induced by enlarged RC integration time. 

One can notice that the power consumption at 100 Hz can be reduced down 

to ~10 nJ/spike at R1=10 Mohm. Also, the size of the PAO was estimated by 

employing a layout program, Microwind. C1 (10 pF) and R1 (50 kohm) 

corresponded to ~ 105 mm2 and ~103 mm2, respectively. Provided that the size 

of TS (25 mm2), a large proportion of the layout belongs to the capacitor, C1. 

The size of C1 (10 pF) is comparable to R1, even though R1 is elevated to 10 

Mohm. In addition, there are several methods to reduce the size of the layout; 

i) employing high-k dielectric materials for the capacitor, ii) employing non-

linear semiconducting materials for the resistor, R1, due to the fact that roles 

of R1 lie in RC integration and voltage dividing. 
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Figure S6. (a) The power consumption and (b) simulated activity of the 

PAO based on the inset of Figure 6.2c with respect to R1 at constant Vin (5 V). 

The blue line indicates translated power consumption at 100 Hz. 

 

Slew rate effect on postsynaptic activity 

 

The postsynaptic activity v with Rsyn was examined for different slew rates 

(2.5 – 2000 V/ms) at 100 gain by following the same calculation method in 

Sec. 6.3.6. The results are shown in Figure S7. 
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Figure S7. Postsynaptic activity induced by a presynaptic spike train (〈 〉 = 

17.6) with respect to Rsyn for different slew rates. 
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Abstract (in Korean) 
 

인공신경망은 학습능력이라는 독특한 기능을 구현할 수 있기 

때문에 많은 관심을 받아왔다. 최근에는 동적인 정보를 처리하기 

위한 ‘스파이킹 인공신경망’에 대한 관심이 고조되고 있다. 하지만 

소프트웨어 방식으로 동작하는 스파이킹 인공신경망의 경우, 

연산시간이 비효율적으로 늘어나기 때문에 물리적으로 동작하는 

하드웨어 기반의 스파이킹 인공신경망의 중요성이 높아지고 있다. 

본 논문에서는 메모리/스위치 현상을 나타내는 저항변화 시스템을 

연구하고 그 현상학적 특성을 이용하여 스파이킹 인공신경망의 

기본구성요소인 뉴런과 시냅스의 기능 구현 개념연구를 진행하였다. 

우선 인공시냅스의 단기가소성은 TiO2 와 반응성 금속 Cr, Ni, Ti 

기반의 전기화학적 커패시터에서 산화환원 반응을 통해 구현되었다. 

실험적으로, 인공시냅스의 시냅스 강화 현상은 생물시냅스에서 

관찰되는 바와 같이 무한정 증가하지 않았다. 생물 시냅스 

강화현상을 표현하는 Bienenstock-Cooper-Munro 경험식의 ‘움직이는 

문턱’ 개념을 도입하여 인공시냅스의 동역학적 시냅스 강도변화를 

실험식으로 모사가능 하였으며 각각의 전기화학적 커패시터의 

시냅스 강화현상을 수치정보화 하였다. 

다음으로, 뉴런 세포막의 급격한 전도도 변화현상을 모사하기 

위하여 세 종류의 스위치 시스템에 대한 연구를 수행하였다. 우선, 

TiO2 기반 비전기화학적 커패시터 시스템의 이온-블로킹 접촉과  

저항신축성을 알아보기 위해 실험적, 이론적으로 전류-전압 

이력현상을 분석하였다. 생물뉴런의 스파이크 생성현상을 유사한 

현상을 관찰할 수 있었으나, 단독 비전기화학적 커패시터는 

연속적인 스파이크를 생성하는 것은 불가능하였으며 단독 저항 

스위치는 회로에 내장된 형태로 구현되어야 함을 확인하였다. 

문턱스위를 내장한 neuristor-based leaky integrate and fire (NLIF) 

뉴런의 거동을 시뮬레이션을 활용하여 이론적으로 예측하였다. NLIF 

뉴런의 동역학적 특징은 2차원 위상면 분석을 통해 위상면 상의 

분기선과 고정점의 조건으로 결정됨을 제시하였다. 주목할만한 점은 

문턱스위치의 동작시마다 발생하는 동작 산포에 의해 뉴런잡음이 

발생한다는 것으로, 결과적으로 이 잡음은 푸아송 분포와 비슷한 

형태를 가지며 뉴런 정보전달의 신뢰도를 낮추게 된다. 정보전달의 

신뢰도를 평가하기 위해서 군집 NLIF 뉴런을 통한 정보전달 

시뮬레이션을 진행하였으며, 그 결과 문턱스위치의 동작산포에도 

불구하고 높은 신뢰도의 정보전달이 이루어짐을 확인하였다.  
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마지막으로, 문턱스위치와 비이상 연산증폭기를 기반으로 한 

relaxation oscillator-based leaky integrate-and-fire (ROLIF) 뉴런 회로를 

제시하고, 개념연구를 진행하였다. 실험적으로 ROLIF 뉴런의 특성 

4가지 즉, 아날로그 타입 정보 암호화, 신호 증폭, 일방향 신호전달, 

푸아송 잡음을 평가, 분석하였다. 단일 ROLIF 뉴런의 특성 뿐 

아니라 수동 시냅스를 적용하여 흥분성 연접후 전위증가 현상으로 

인해 연접전 뉴런에서 연접후 뉴런으로 신호가 전달됨을 

실험적으로 확인하였다. 제안된 뉴런모델의 특성을 일반화하기 

위하여 다양한 이득값과 슬루율을 갖는 비이상 연산증폭기를 

시뮬레이션하였으며 결과적으로, 특정 슬루율이 넘는 조건에서는 

이득값이 지배적인 파라미터임을 확인하였다. 최종적으로, 하나의 

연접후 뉴런이 다수의 연접전 뉴런과 연결된 경우에도 공간적 

신호쌓기에 의한 흥분성 연접후 전위증가가를 예측할 수 있으며, 

비동기적인 스파이크의 무작위 잡음이 핵심적인 역할을 수행함을 

확인하였다.  

주요어: 뉴로몰픽 공학, 인공시냅스, 인공뉴런, 문턱스위치, S-모양 

음의 미분저항, 단기메모리, 전기화학적 커패시터, 비전기화학적 

커패시터, 뉴런 잡음, Neuristor-based leaky integrate-and-fire 뉴런, 

Relaxation oscillator-based leaky integrate-and-fire 뉴런 
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