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Abstract 

Multi-parametric Elastic Full 
Waveform Inversion Strategy for 

Seismic Data in the Frequency 
Domain 

 

Ju-Won Oh 

Department of Energy Systems Engineering 

The Graduate School 

Seoul National University 
 

As an alternative of the conventional hierarchical approach for the elastic 

full waveform inversion (FWI), I suggest new frequency-domain inversion 

strategy for multi-parametric elastic FWI of seismic data. The new inversion 

strategy consists of 4 inversion algorithms.  

At first, the new parameterization using Poisson’s ratio for a multi-parameter 

extraction is introduced. By analyzing the virtual source with mathematical 

and physical behaviors of its basis components, I verify that new 

parameterization using Poisson’s ratio compensates some limitations of the 

conventional parameterizations, which are caused by absence of mode-

converted and S-S waves in the partial derivative wavefields for the P-wave 

velocity.  

Secondly, the spectral weighting scheme using the source-deconvolved 

backpropagated wavefields is developed to automatically control a spatial 

resolution of gradient direction depending on the thickness of subsurface 

layers.  
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Thirdly, for a noise reduction, I develop a spectral filtering scheme for the 

gradient direction using the denoise function, which is automatically 

calculated from seismic data and filters out relatively noise-contaminated 

frequency components during the inversion.   

Finally, for a stable and accurate frequency-domain FWI, I suggest to apply 

the depth scaling scheme using the Levenberg-Marquardt method, in which 

the parameter-search moves from shallow to deep structures by reducing the 

damping factor.  

By applying new inversion strategy to various numerical examples, I 

demonstrate that the new inversion strategy improves the stability and 

accuracy of the multi-parametric elastic FWI for random-noise included-data. 

  

Keywords: Elastic full waveform inversion, Parameterization, Weighting 

method, Denoise function, Levenberg-Marquardt method  

Student Number: 2010-23339 
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Chapter 1. Introduction 

 

Seismic full waveform inversion (FWI) can be a useful method for inferring 

material properties such as velocities, which can be applied to background 

velocities during seismic migration. Although the rapid development of 

computer technology has made seismic waveform inversion more practical 

and a number of studies have been devoted to improving the accuracy and 

efficiency of waveform inversion (Tarantola 1984; Mora 1987; Pratt et al. 

1998; Shin and Min 2006; Brossier et al. 2010; Herrmann 2010), some 

problems associated with seismic waveform inversion have yet to be resolved. 

 One of the main problems in multi-parametric full waveform inversion is 

that it is hard to recover subsurface parameters simultaneously because, as a 

number of parameters increases, the ill-posedness of the waveform inversion 

also increases. Several studies have devoted to increase the accuracy of multi-

parametric FWI by finding optimal parameterization. For isotropic elastic case, 

Köhn et al. (2012) compared several isotropic elastic parameter groups and 

Jeong et al. (2012) suggested two-stage FWI strategy with a chain rule to 

recover accurate density. Recently, Prieux et al. (2013a) and Prieux et al. 

(2013b) tried the visco-acoustic and visco-elastic FWI using OBC (Ocean 

Bottom Cable) data by analyzing the radiation patterns of model parameters. 

For an elastic VTI case, which is more complex because 5 parameters should 

be recovered, Lee et al. (2010) tried recovering 4 parameters except the 

density by applying two-stage FWI with the coupling method to improve 
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gradient for C11. Koo et al. (2010) also suggested two-stage FWI using both 

isotropic and VTI elastic FWI. Kamath and Tsvankin (2013) tried to extract 

the VTI parameters from multi-components data including P-P waves and 

converted P-SV waves. However, there are still some problems to be resolved 

in VTI elastic FWI. For this reason, some groups have tried to recover VTI 

parameters from the acoustic VTI FWI (Gholami, et al., 2013a; Gholami et al., 

2013b). However, most works have relied on phenomenological observations 

or some kinds of multi-stage FWI.  

Another limitation of waveform inversion is that obtaining the global 

minimum solutions is not easy when the initial guesses deviate significantly 

from the true models. Several studies have proposed methods to overcome 

this problem. The frequency marching method (Sirgue and Pratt 2004; Kim et 

al. 2011) is one such method. In the frequency marching method, waveform 

inversion is performed by starting with low frequencies and moving to higher 

frequencies and is based on the fact that the objective function is not likely to 

have local minima at low frequencies (Bunks et al. 1995). The frequency 

marching method has yielded reasonable solutions for most cases to which it 

has been applied. However, in our experience, for salt models, which are one 

of the most challenging models in waveform inversion, the frequency 

marching method has not yielded good inversion results without good initial 

guesses. To provide good initial guesses for FWI, the Laplace-domain 

waveform inversion has been proposed (Shin and Cha 2008), which allows 

one to obtain reasonable solutions for salt models (Jeong et al. 2012). As an 

alternative to the frequency marching method, Lazaratos et al. (2011) 
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suggested the spectral shaping method, which makes the gradient have a 

similar spectrum to that of earth’s subsurface using information recorded in 

local wells. However, most works also have relied on the multi-stage FWI or 

are expensive. 

Some other problems must be resolved to make FWI practical. One of which 

is the effect of noise. Real field data include various coherent and incoherent 

noises. Because modeled data do not include noise, gradients that minimize 

residuals between noisy field data and noise-free modelled data can be 

distorted. In addition, noise can hide weak reflected signals with low signal-

to-noise ratios. Several objective functions based on the l1, l2, Huber, and 

hybrid l1/l2 norms have been proposed as robust FWI algorithms for use with 

noise-contaminated data (Tarantola 1987; Huber 1973; Bube and Langan 

1997; Ji, 2012). Pyun et al. (2009) suggested the l1-like norm acoustic FWI 

algorithm, which shares features with the original l1-norm inversion. Aravkin 

et al. (2011) proposed using Student’s t distribution for a robust acoustic FWI. 

For elastic FWI, Brossier et al. (2010) showed that the l1-norm objective 

function can be more convenient than the Huber and hybrid l1/l2 norms 

because additional effort is required to find suitable criteria for the Huber and 

hybrid l1/l2 norms. They reported reasonable results for data with uniform 

random noise using the l1-norm FWI with a multistep strategy (Brossier et al. 

2009a) and a dynamic time damping factor (Brossier et al. 2009b), under the 

assumption that the source wavelet spectrum is negligible when sequentially 

inverting single frequencies or groups of frequencies within a narrow 

bandwidth. However, the conventional l1-norm elastic FWI does not 
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guarantee stable solutions when the observed data are severely contaminated 

with incoherent random noise and when the inversion is performed 

simultaneously for the entire frequency band.  

Xu et al. (2006) compared several source-independent waveform inversion 

algorithms for elastic FWI and asserted that IES (Iterative Estimation of 

Source signature) is better than the ATN (Average Trace Normalization) and 

STN (standard trace normalization) approaches for data containing random 

noise. Choi and Min (2012) compared the source-estimation logarithmic 

waveform inversion algorithm with the source-independent logarithmic 

waveform inversion. They found that the source-estimation logarithmic 

inversion can reduce the influence of random noise on the inversion result, 

whereas the source-independent logarithmic method yields slightly better 

results than the source-estimation logarithmic method for coherent noise. 

However, the inversion results from the elastic FWI for data with random 

noise are still unsatisfactory. 

For another issues, that is to make frequency-domain FWI more stable and 

accurate, Wang and Rao (2009) suggested the layer-stripping method, in that 

the model parameters are sequentially inverted from the shallow to deep parts 

of given models. However, in the layer-stripping method, the parameter-

searching region should be manually controlled with additional processes. On 

the other hand, Brossier et al. (2009b) suggested the dynamic time-damping 

strategy, in which the observed data are damped depending on arrival time 

and the parameter-searching is also performed from shallow to deep parts. 

However, in their method, the time-damping factors and the number of 
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iteration for each time-damping factor are manually determined.   

Because, as mentioned above, most previous works have relied on some 

hierarchical FWIs with too many stages to compensate various limitations of 

the frequency-domain multi-parametric FWI, the uncertainties of FWI 

increase due to human interventions at a finish of each stage. To overcome 

this limitation of conventional hierarchical approaches, throughout the paper, 

I introduce the new inversion algorithms, which can partially or totally replace 

the conventional multi-stage FWI.  

This paper is organized as follows: In Chapter 2, the inverse problem for the 

single-frequency data and banded data will be discussed. In Chapter 3, the 

scattering patterns induced by model parameters are analyzed using a new 

concept (basis virtual source) and, based on the analysis, the new 

parameterization will be introduced, which provides robust and highly 

resolved inversion results for the isotropic elastic FWI. In Chapter 4, I analyze 

the limitations of conventional scaling methods and introduce the weighting 

method, in which the weighting factor is automatically calculated and reflects 

the information about the thickness of subsurface layer from the seismic data. 

In Chapter 5, I analyze the noise behavior in the frequency-domain FWI and 

introduce the denoise function, which acts like a conventional manual 

frequency filter but is determined automatically from the seismic data. In 

Chapter 6, for more stable and accurate frequency-domain FWI, the depth 

scaling method using the Levenberg-Marquardt method (Levenberg, 1944; 

Marquardt 1963) is introduced, which can be an alternative of the layer-

stripping method (Wang and Rao, 2009) and time-damping strategy (Brossier 
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et al. 2009b). Finally, in Chapter 7, the numerical examples for the elastic 

Marmousi-2 model using new inversion algorithm will be showed to check if 

the new inversion algorithm improves the accuracy and robustness of multi-

parametric FWI without relying the multi-stage approaches.  
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Chapter 2. Inverse Problem 

 

2.1 Inverse Problem for Single-Frequency Data 

 

In frequency-domain waveform inversion using the Levenberg-Marquardt 

method (Levenberg, 1944; Marquardt, 1963; Lines and Treitel, 1984), the 

objective function, which measures the misfit between the single-frequency 

modeled and observed data based on the assumption that the error is a linear 

function with respect to the model parameter change, can be expressed by       

( ) ( ) ( )* * 2
0( , )

T T
s s s s

s

M pd b d d b d dé ù= - - + -
ë ûåp J p r J p r p p ,  (2-1) 

where dp  and b  are the model parameter change vector and the damping 

factor (i.e., Lagrange multiplier), respectively and the term s  denote the 

source. The superscripts T and * indicate the transpose and complex conjugate, 

respectively. According the Lines and Treitel (1984), when using the 

Levenberg-Marquardt method, we can apply a constraint that makes the 

energy of the parameter change vector, dp , converge to a certain finite 

quantity, 0p . The term β damps out the changes in the model parameter 

vector by limiting the energy in the gradient vector. This approach is very 

useful for the frequency-domain FWI and I will discuss about several 

advantages of the Levenberg-Marquardt method in Chapter 6. 

 

The terms sJ  and sr  are the Jacobian matrix and the residual vector, 

respectively. The residual vector is defined as the set of differences between 

the observed data ( sd ) and the modeled data ( ( )su p ) obtained for the initial 



 

 

 

8

or assumed model, p , as expressed by 

( )s s s= -r d u p ,               (2-2) 

where 

1( ) ( )s s
-=u p S p f                    (2-3) 

and S  is the modeling operator. The Jacobian matrix, which is called 

partial derivative wavefields, is expressed by 

1

( ) ( ) ( )s s s
s

k nmp p p

æ ö¶ ¶ ¶
= ç ÷

¶ ¶ ¶è ø

u p u p u p
J L L ,         (2-4) 

where 

1 1
,

( )
( ) ( )vs

s s k

k kp p

- -æ ö¶ ¶
= - =ç ÷

¶ ¶è ø

u p S
S u p S f p .          (2-5) 

The terms , ( )v
s kf p  and nm denote the virtual source vector for the kth model 

parameter and the number of model parameters, respectively.  

 The goal of the inverse problem is to find an optimal model parameter 

change vector (dp ) that minimizes the objective function expressed in eq. 

(2-1). To achieve this goal, we can differentiate the objective function with 

respect to the model parameter change vector. Consequently, the optimal 

parameter change vector, which is called the damped linear least-squares 

solution, can be obtained by solving the following normal equation: 

                 ( ) ( )* *T T
s s s s

s s

b d
é ù

+ =ê ú
ë û
å åJ J I p J r               (2-6) 

The left term without the damping factor ( ( )*T
s s

s
å J J ) represents the 

approximate Hessian matrix obtained based on the assumption that the errors 

are linear; the right term denotes the gradient direction.  
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2.2 Inverse Problem for Banded Data 

 

 For the banded seismic data, the objective function described for the single-

frequency data in eq. (2-1) can be rewritten as follows: 

( ) ( ) ( )
* * 2

, , 0

( , )

  ( ) ( )
T T

s s s s
s

M

pw w
w

d b

d w d w b d dé ù= - - + -ê úë ûåå

p

J p r J p r p p
,  (2-7) 

where w  denote the angular frequency. As I did for the single-frequency 

FWI, the optimal solution, which minimizes the above objection function, can 

be obtained by solving the following normal equation: 

             ( ) ( )* *
, , , ( )J J I p J rw w w

w w

b d w
é ù

+ =ê ú
ë û
åå ååT T

s s s s
s s

       (2-8) 

This approach is accurate and satisfies the inverse theory for the banded data. 

I call this approach ‘Conventional Scaling method-I (CS-I)’ throughout the 

paper and will discuss the characteristics of the CS-I method in Chapter 4. 

However, the FWI using CS-I method generally provides poorly resolved 

inversion results, because, in seismic exploration using an active source, the 

frequency-domain inversion problem is generally affected by the source 

spectrum. In other words, the source spectrum acts as a weighting function 

during the inversion. This source-dependent property of frequency-domain 

seismic waveform inversion may degrade inversion results as Jang et al. 

(2009) showed. To avoid this limitation, Brossier et al. (2010) used a 

hierarchical approach, in which the inverse problem is solved for several 

frequencies moving from low-frequency to high-frequency bands. They 

assumed that, if the inversion is performed with mono-frequency or very 
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narrow-band frequency data, the weighting effect of the source spectrum can 

be negligible. However, this approach may require more computational time 

than the simultaneous-frequency inversion because the inverse problem for 

each frequency group should be solved sequentially without the parallel 

computation over frequencies. On the other hand, Jang et al. (2009) 

suggested a scaling method for the simultaneous-frequency inverse problem 

of banded data by applying the Hessian matrix inside the frequency loop. 

They showed that this scaling method improves inversion results by 

minimizing the effect of source spectrum. This scaling method requires less 

computational time and human intervention than the hierarchical approach. 

However, for the banded data, this scaling method does not conform to the 

aforementioned inverse theory because. According to the inverse theory, the 

Hessian matrix should be applied outside the frequency loop as shown in eq. 

(2-8). For this reason, I will call this approach the ‘combination of mono-

frequency inverse problems’ throughout the paper. The combination of 

mono-frequency inverse problems does not directly minimize the objective 

function in eq. (2-7). Instead, we first minimize the mono-frequency 

objective function, in eq. (2-1), to obtain mono-frequency gradient direction 

at each frequency and then combine those mono-frequency gradients to 

construct a total gradient direction, which is called ‘banded gradient 

direction’. The combination of mono-frequency inverse problems can begin 

with the objective function expresses by 

( ) ( )
*

, , , ,r J p r J pw w w w w w w w
w

d d= - -åå
T

s s s s
s

M k k ,     (2-9) 
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where wk  is a scaling factor, which determines the weight of each mono-

frequency descent direction. As we did for the aforementioned inverse 

problem, the model parameter update at each frequency can be expressed 

using the mono-frequency descent direction as 

1

* *
, , , , ,

1
( )T T

s s s s s
s sk

w w w w w w

w

d
-

é ù
= -ê ú

ë û
å åp J J J d u .         (2-10) 

We can combine the mono-frequency descent directions to obtain the banded 

descent direction in several ways. As performed by Jang et al. (2009), we 

can simply sum all the mono-frequency descent directions without 

normalization. In this case, the scaling factor, kw , is 1. In another way, as 

Ha et al. (2009) did, we can sum all the mono-frequency descent directions 

after the normalization, in which each mono-frequency descent vector is 

divided by its maximum absolute value. In this approach, the scaling factor 

is the maximum absolute value of each mono-frequency descent vector. 

However, the former provides inconsistent inversion results because of the 

spectral weighting effect of the Hessian matrix (for more details, refer 

Appendix A in Oh and Min [2013a]). Although the latter, which will be 

called ‘Conventional Scaling method II (CS-II)’ throughout the paper’, 

provides more stable solutions, neither method guarantees the global 

minimum solution for the objective function in eq. (2-7) because their 

solutions are just the combination of solutions for the mono-frequency 

inverse problems. The influences and disadvantages of the conventional 

scaling methods will be discussed in Chapter 4. 

One limitation of the FWI is the computational overburden related to the 
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computation of the huge Jacobian matrix and the inverse of the Hessian 

matrix. Therefore, for a computational convenience, the back-propagation of 

the residuals is adopted (Pratt et al. 1998) to avoid computing Jacobian 

directly. With the same reason as that for the gradient, the diagonal of the 

new pseudo-Hessian matrix is used (Choi et al. 2008) instead of the 

approximate Hessian matrix although there are several ways to calculate the 

Hessian matrix approximately, such as the l-BFGS (Byrd et al. 1995), quasi-

Newton (Nocedal, 1980) and the truncated Newton strategy (Métivier et al. 

2012). Therefore, the approximated gradient direction (we call it ‘descent 

direction’ throughout the paper) for the CS-I and CS-II methods can be 

expressed by 

1

( )
CS-I diag{ ( )} ( )pp H I

w w

d w b w

-
é ùì ü é ù

= + Ñí ýê ú ê ú
î þ ë ûë û
å ål

n E       (2-11) 

and 

( )
1( ) 2 1

CS-II NRM NRM diag{ ( )} ( ) ( )pp H I
w

d w b w w
-é ù= + Ñ

ë ûål
n E , (2-12) 

where 

                 

*
( ) ( ) ( )

Tv v
n s s

s

w w wé ù é ù= ë û ë ûåH F A F ,          (2-13) 

( ) ,1 ,2 ,
1 1 1

diag Re          
ns ns ns

i i i np
i i i

g g g
= = =

ì ü
= í ý

î þ
å å åA L  ,     (2-14) 

and 

[ ]{ }*1( ) Re ( , ) ( , ) ( ) ( , )p F p S p d u pw w w w w-é ù é ùÑ = -ë û ë ûå
T Tv

s s s
s

E . (2-15)  

The terms, ( )n wH , ig  and ( )E wÑp , are the new pseudo-Hessian matrix, 
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the impulse response for the ith source and the mono-frequency gradient, 

respectively. The terms ns and np denote the number of sources and the 

number of nodal points, respectively. The term NRM1 represents the 

normalizing operator, which divides the each single-frequency descent 

direction vector by its maximum absolute value. This normalizing operator 

makes the single-frequency descent directions contribute equally to the 

parameter update, ( )ldp . The term NRM2 denotes the normalizing operator 

for the total descent direction, which constrains the total descent direction to 

the range from -1 to 1. With the solution, ( )pd l , the model parameter can be 

updated with step length (a ) as follows: 

( 1) ( ) ( )p p pa d+ = + ´l l l  .           (2-16) 

 The modified version of the conjugate gradient method is applied to 

accelerate the convergence rate (Fletcher and Reeves 1964; Ha et al. 2009) 

and the finite-element method is used for forward modeling (Zienkiewicz 

and Taylor 2000). For a fair comparison, I assumed that the exact source 

wavelet is known because, in my experience, the results of the source 

wavelet estimation (Song et al. 1995) are different depending on the 

parameterization. 
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Chapter 3. Parameterization for Elastic FWI 

 

3.1 Analysis on Radiation Patterns of Virtual Source 

 

In Chapter 3, to find the best parameterization for multi-parametric FWI, the 

characteristics of virtual source will be discussed in its physical aspects. 

Because the virtual source is only term changed by the parameterization, the 

analysis on the behavior of the virtual source is required. Recently, several 

studies have tried to find the best parameterization in some cases analyzing 

the radiation patterns depending on the incidence and scattered angles, such as 

acoustic (Prieux et al., 2013a), acoustic VTI (Gholami et al., 2013a, Gholami 

et al., 2013b and Plessix and Cao, 2011), isotropic elastic (Köhn et al. 2012), 

acoustic-elastic coupled media (Prieux et al., 2013a and Prieux et al., 2013b). 

However, most of the previous works are too phenomenological to explain the 

details about behaviors of the virtual source. For these reasons, in this chapter, 

I discuss some generalized interpretation tools to understand the behavior of 

the virtual source depending on properties of medium and parameterizations 

by introducing new concept, which is called ‘basis virtual source’. Before 

introducing basis virtual sources, I first discuss how the radiation patterns of 

the virtual source are determined in the FWI analyzing the scattering pattern 

of subsurface heterogeneities. 
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3.1.1 Previous works for the scattering of seismic wave 

 

Before explaining the behaviour of virtual source as a point scatterer, 

previous studies about the scattering of seismic waves will be reviewed 

because the radiation pattern of the virtual source resembles the seismic 

scattering in a media with heterogeneous inclusion. The seismic waves are 

generally scattered by numerous subsurface heterogeneities depending on 

the wavelength and the length of the heterogeneity, which make the recorded 

seismic signals more complicated.  

The mechanisms of scattering have been well resolved in various scientific 

fields like meteorology and optics (Cox, 2002; Bohren and Huffman, 1983) 

as well as in the seismology. According to the Reynolds (1997), the 

scattering patterns of seismic waves can be divided by four cases depending 

on the angular wavenumber (k) and the length of the heterogeneity (a). 

When the wavelength is too long compared to the length of a heterogeneity 

( 0.01<ka ), the scattering effects are negligibly small and the medium can 

be regarded as quasi-homogeneous. When the wavelength becomes shorter 

or the length of a heterogeneity increases ( 0.01 0.1£ <ka ), the scattering is 

called ‘Rayleigh scattering’, in which the scattered wavefields propagate all 

the direction. For shorter wavelength or longer heterogeneity ( 0.1 10£ <ka ), 

the resonance scattering (so-called Mie scattering) can be occurred in which 

the scattered waves are dominant at the forward or backward directions. 

When the wavelength is too short compared to the length of a heterogeneity 

( 10 £ ka ), the scattered waves follow the geometric ray theory. The 
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variations of scattered wavefields for the various values of ka are well 

described in Wu (1984).    

The study about the scattering of seismic waves has been actively studied 

from 1980s in the pure seismology because recorded earthquake waves, 

which have very low frequency signals, tend to be easily scattered by 

numerous subsurface heterogeneities. If the seismic waves are affected by 

various kinds of scattering, they are damped due to the energy loss and 

contain lots of scattered artefacts. For these reasons, many geophysicists 

have devoted understanding the scattering patterns of seismic waves during 

few decades (Aki and Richards, 1980; Wu and Aki, 1985). 

 The scattered energy, which are generated by subsurface inclusions and 

recorded on the surface, are described by the Born approximation in the 

frequency-domain as follows (Snieder, 2002): 

( )

2 (0)

(0) ' '

(0) '

( ) ( , ') ( ') ( ') '

             ( , ') ( ') ( ') '

             ( , ') ( ') ( ') '

w r= D

+ ¶ D ¶

- D ¶

ò

ò

ò

B
i ij j

ij k nklj l j

ij j nklj k l

u r G r r r u r dV

G r r c r u r dV

G r r n c r u r dS

.         (3-1) 

The terms, ( )B
iu r  and (0) ( , ')ijG r r , indicate the scattered wavefields and the 

Green’s function from an arbitrary location, 'r , to a receiver, r , on a 

reference medium, respectively. The terms, ( ')ju r  and '¶ k , denote the 

incidence wavefields at an arbitrary location ( 'r ) and a spatial 

differentiation, respectively. The first and second volume integral represents 

the recorded scattered displacement fields at a receiver ( r ) induced by a 

perturbation of densities and elastic coefficients at an arbitrary location, 'r , 

respectively. The surface integral at the third line in eq. (3-1) denotes the 
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surface traction induced by a perturbation of elastic coefficients on the 

surface (S). Using the Born approximation, the scattered wavefields at a 

receiver induced by subsurface heterogeneities can be analytically calculated. 

For more details about how the Born approximation is derived, refer Snieder 

(2002).  

Many previous works have devoted describing the scattering patterns of 

seismic waves using the moment-tensor description of the virtual source 

(Wu and Aki, 1985; Burridge et al., 1998). However, as a generalized 

interpretation tool for the virtual source, it is not enough because previous 

works describe the moment tensor of the virtual source only depending on 

subsurface parameter. In other words, conventional studies for the scattering 

patterns are specified for not the FWI but natural scattering phenomena. 

Because, in the FWI, the scattering patterns are mainly governed by the 

parameterization, the conventional analysis for the scattering should be 

modified to describe the numerical scattering phenomena induced by various 

kinds of the virtual source. 
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3.1.2 Virtual source in FWI as a point scatterer 

 

As mentioned in the previous section, the virtual source is only term 

changed depending on the parameterization. Therefore, to understand the 

influence of different parameterization, we have to know the behavior of the 

virtual source during FWI. Because the virtual source can be regarded as a 

point scatterer, many geophysicists have tried to interpret its behavior based 

on the Born approximations and have provided reasonable interpretations, by 

plotting the radiation patterns of the virtual source for various incidence and 

scattered angles, for several cases (Gholami et al., 2013a; Gholami et al., 

2013a; Prieux et al., 2013a; Prieux et al., 2013b). However, the scattering 

patterns of virtual source are too complicated, particularly in the elastic 

media. In addition, as the Born approximation (eq. (3-1)) shows, the 

scattering pattern are frequency-dependent and wavelength-dependent. 

 Other minor influences of the parameterization also disturb interpreting 

exact behavior of the virtual source. For examples, the degree of 

approximation for the Hessian matrix influences on the FWI because the 

Hessian matrix also consists of the virtual sources. Additionally, the 

different contribution of a step-length for different parameterizations also 

causes some differences. For these reasons, somebody can reach different 

results for the same parameterization depending on which inversion strategy 

they used. To reduce above minor influences, in this paper, the inversion 

approach is based on the steepest descent method and only the gradient 

direction obtained at the first iteration will be analyzed.  
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For more general interpretation tool for scattering patterns of the virtual 

source, we start to analyze the physical meaning of the virtual sources by 

comparing the elastic wave equation to the Born approximation. The 

displacement-based elastic wave equation in the time domain, particularly 

for the elastic VTI (Vertical Transverse Isotropic) media, can be expressed 

by 

2

11 13 442

2

13 33 442

r

r

é ù¶ ¶ ¶¶ ¶¶ ¶é ù æ ö
= + + +ç ÷ê úê ú¶ ¶ ¶ ¶ ¶ ¶ ¶ë û è øë û
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x xz z z

u u uu u
c c c

t x x z z z x

u uu u u
c c c

t z x z x z x

.   (3-2) 

As discussed in the inverse problem, the virtual source (for comparison to 

basis virtual source that introduced next section, it will be called ‘full virtual 

source’) can be obtained by taking partial derivative of modelling operator 

with respect to the model parameter as expressed by eq. (2-5).  

To make the full virtual source has a form like Born approximation, we try 

to express the elastic virtual source in the frequency domain, which follows 

simple ray path shown in Figure 3-1, for an arbitrary parameter (p) using 

wave propagators as shown in  

2
elastic

( , )( , )
( , ) ( , )t

tw +-
- -

æ ö¶¶
» + ç ÷

¶ ¶è ø

mv e
d f d e d

k i jm i j
f u i j w w u i j

p p
 ,   (3-3) 

where 

exp( )+ = - - Dx zw ik x ik z              (3-4) 

and 

exp( )= ± ± Dm
x zw ik x ik z .            (3-5) 
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 The operator, +w , indicates the down- and right-going wave propagator and 

mw  indicates the bidirectional wave propagator (Berkhout, 1985). The terms 

xk  and zk  are angular wavenumbers and the terms, x  and z , are the 

propagation distance for x and z directions, which equivalent to the length of 

a heterogeneity, respectively. The terms, m and k, denote the mass and 

stiffness coefficients. The term, 2w- , represents the second order time 

derivative. The subscripts, d, e, τ and f denote the displacement, strain, stress 

and body force, respectively, and ‘-’ in the subscript means that the physical 

quantities are converted by the operator from left to right. 

 Because the virtual source is assumed as a point scatterer located in the 

subsurface medium as shown in Figure 3-1, the surface integral in eq. (3-1) 

can be vanished and the volume integrals for whole domain can be ignored. 

In addition, because the scattered wavefields ( ( )B
iu r ) and Green’s function 

( (0)
ijG ) in eq. (3-1) correspond to the Jacobian and inverse of modelling 

operators for the FWI in eq. (2-5), respectively, we notice that the full virtual 

source has the same form with that in the Born approximation. In addition, 

because wave propagators originate from the elastic wave equation in eq. (3-

2), they represent the spatial derivatives with respect to x and z. In other 

words, the terms, +w  and mw , can be regarded as the inner spatial 

derivatives and the outer derivatives in eq. (3-2), respectively. Using this 

expression, we can also regard the spatial derivatives of the displacement 

(so-called ‘strain’) determines the pattern of the incidence waves, on the 

other hand, the spatial derivatives of the stress determines the scattering 

patterns acting as body forces (For more details, refer section named ‘Basis 
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virtual source’). For these reasons, understanding the behavior of spatial 

derivatives in the virtual source is important to interpret the radiation 

patterns of the virtual source. 

As well as the spatial derivative, the time derivative that corresponds to 

2w-  in the frequency domain also need to be treated importantly. This is 

because, in the high frequency, the contribution of the time derivative 

becomes dominant in the total scattered wavefields and makes the scattering 

pattern more complicated. For the virtual source in the FWI, the length of 

heterogeneity corresponds to the size of grid because the virtual source acts 

as a point scatterer. When we perform the frequency-domain FWI, the grid 

size ( hD ) is generally determined by the reasonably smallest grid numbers 

for one wavelength (G) in the range of avoiding numerical dispersions 

retaining the computational efficiency (5 10< <G ) as expressed by  

                       min

max

v
h

G f
D £

´
,                   (3-6) 

where fmax and vmin indicate the maximum frequency and minimum velocity 

in the subsurface media. In this case, the value, ka, can be expressed as 

follows: 

min

max

2p
£ ´

´

vf
ka

v G f
.              (3-7) 

From above equation, we notice that the FWI is generally in the Mie 

scattering regime in which the scattering pattern is very complicated 

depending on the value, ka, except when the inversion-frequency (f) is 

enough low or the medium-velocity (v) is enough high.   
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 This study is designed based on the fact that all the wave equations share 

similar time and spatial derivatives. For this reason, if the characteristics for 

the radiation pattern of the virtual source are classified by not the parameter 

but the time and spatial derivatives, it would provide more generalized 

insights for the behavior of the virtual source in most cases. For this reason, I 

developed the basis virtual sources, which are the mathematical and physical 

bases of the virtual source and are characterized depending on time and 

spatial derivatives.   

 

 

 

Figure 3-1 Schematic diagram illustrating the wave propagation scattered at 

a boundary of a subsurface layer. Black circle, inverted triangle and grey 

square indicate the source, receiver and subsurface reflector, respectively. 

The dashed and solid lines denote the incidence and scattered ray paths. 
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3.2 Basis Virtual Source 

 

3.2.1 Mathematical Description of Basis Virtual Source 

 

 For more generalized interpretation tool for the behavior of the virtual source, 

the new concept, ‘basis virtual source’, is introduced, which are classified 

depending on the time and spatial derivatives in the elastic wave equation. 

Because the staggered-grid FDM is specified to express the both stress and 

displacement components physically well, the staggered-grid (as shown in 

Figure 3-2a) is employed, in which all the physical parameters are located on 

the same grid as that of the normal stresses, to define the mathematical 

expression of the basis virtual sources (Graves, 1996). To figure out the 

mathematical shape of the basis virtual source at a glance, it would be helpful 

to analyze the displacement-based elastic wave equation as shown in eq. (3-2).  

Based on the displacement-based elastic wave equation, we can divide the 

modeling operator by 8 kinds of spatial derivatives and 2 kinds of time 

derivatives. This classification is also valid in the Born approximation (eq. (3-

1)) because it also consists of 8 kinds of scattering source in the second 

volume integral, depending on the directions (2 kinds) and components (2 

kinds) of the spatial derivatives and recorded wavefields (2 kinds), and 2 

kinds of scattering source in the first volume integral depending on the 

recorded wavefields. To distinguish 10 basis virtual sources, we can divide 

them into two groups depending on their direction: one group is named 

‘Horizontal Basis virtual source (HB)’ that acts along the horizontal direction 
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and the other group is called ‘Vertical Basis virtual source (VB)’, which acts 

along the vertical direction. Finally, the 10 basis virtual sources, which act on 

grids around the model parameter, can be briefly expressed by 

2 2

2 2

2 2

2 2

2 2

2 2
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HB             VB
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z z x z

u u

z x x x

u u

t t

  ,          (3-8) 

where first two subscripts, x, z and t, denote the two spatial and time 

derivatives, respectively, and the last subscripts, h and v, indicate that they are 

derived from horizontal and vertical displacements of incidence waves. 

Because, the virtual source is obtained by taking partial derivative with 

respect to model parameter, the parameter between the each primary 

derivative can be treated as a scalar. At an arbitrary point, (i, j), the vector for 

basis virtual sources can be expressed as follows:  

( )4 5
HB HBHB ( , ) 0 0 0 0 0 0 0= -

xxh xxh

T

xxh i j M M           (3-9) 

( )4 5
HB HBHB ( , ) 0 0 0 0 0 0 0= -

xzv xzv

T

xzv i j M M           (3-10) 

( )

( )

1 2 7 8
HB HB HB HB

4 5
HB HB

HB ( , ) 0 0 0 0 0

                 0 0 0 0 0 0 0

= - -

+ -

zzh zzh zzh zzh

zzh zzh

T

zzh

T

i j M M M M

M M
 (3-11) 
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( )
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1 2 7 8
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( )4 5
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tth tth

T
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( )2 5
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T

zxh i j M M           (3-14) 

( )2 5
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( )2 5
VB VBVB ( , ) 0 0 0 0 0 0 0= - -

ttv ttv

T

ttv i j M M           (3-18) 

The terms, 4 5 4 5 2 5 2 5
HB HB HB HB VB VB VB VB,  ,  ,  ,  ,  ,  and 

zzh zzh zxv zxv xzh xzh xxv xxv
M M M M M M M M , 

are ignored because they are just the products of the second derivatives in 

staggered-grid FDM and are appeared only in the staggered-grid FDM. In 

each equation, the terms, M (the superscripts mean the nodal point as shown 

in Figure 3-2b), can be treated as momenta of basis virtual sources (physically 

they mean components of normal and shear strains) and can be expressed as 

follows: 

4 5
HB HB

( , , ) ( , , )
                

¶ ¶
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x x
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Because, as mentioned before, the FWI is generally in the Mie scattering 

regime, the damping effects occurred when seismic waves propagate from 

one grid to an adjacent grid cannot be negligible contrary to the Rayleigh 
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scattering. For this reason, all basis virtual sources can be regarded as a basis 

of the full virtual source. However, strictly saying, the two groups 

([ HBxxh , HBxzv ] and [ VBzxh , VBzzv ]) are linear dependent. Therefore both 

members of these two groups cannot be called as a basis of the full virtual 

source separately. However, in my experience, it is just valid in the 

staggered-grid FDM and, in the other numerical schemes such as cell-based 

FDM (Min et al., 2004) and finite element method, all the basis virtual 

sources are mathematical bases of the full virtual source. 

 Using these basis virtual sources, the elastic virtual source for the arbitrary 

parameter, pi, can be generalized as a linear combination of the basis virtual 

sources as follows: 

( )

( ) ( )

full 33 1311

13

HB VB + HB +VB

      HB HB VB VB HB VB

f

r

¶ ¶¶
= +
¶ ¶ ¶

¶ ¶
+ + + + + +
¶ ¶

ip xxh zzv xzv zxh

i i i

zzh zxv xzh xxv tth ttv

i i

c cc

p p p

c

p p

  (3-29) 

In eq. (3-29), we regard that the partial derivatives of the stiffness and mass 

coefficients with respect to the model parameter determine which basis 

virtual sources are activated or not. This mechanism depends on the 

parameterization. In addition, the eq. (3-29) means that the characteristics of 

full virtual source are determined by the combination of the behaviour of the 

basis virtual sources. In other words, if we know how the basis virtual 

sources behave during the FWI, we can forecast the behaviour of the full 

virtual source for each parameter even though we use different 

parameterization. 
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 From eq. (3-29), we can guess that only difference caused by different 

assumption of medium is the coefficients of the linear combination. For this 

reason, the analysis for the isotropic basis virtual source can be also applied 

to elastic VTI, visco-elastic and visco-elastic VTI cases. In addition, because 

the group of basis virtual sources for the acoustic media is a subset of that 

for the elastic media, the radiation pattern of the basis virtual source through 

the acoustic or acoustic VTI media can be interpreted using the analysis for 

the elastic basis virtual sources by taking some characteristics related to only 

P-P reflections.  

 

 (a)                              (b) 

 

Figure 3-2 (a) The staggered-grid used for the analysis on the virtual source. 

All the physical parameters are located on the same grid with that of normal 

stresses (Graves, 1996). (b) The numbers for indicating the location of the 

entries of basis virtual sources through eqs. from (3-9) to (3-18)   

 

 

 



 

 

 

29

3.2.2 Physical Description of Basis Virtual Source 

 

 To compute the gradient direction in the elastic FWI, the residual wavefields 

for horizontal and vertical directions are cross-correlated with horizontal and 

vertical displacements of partial derivative wavefields, respectively. Therefore, 

it would be helpful to analyze particle motions generated by the virtual source 

separately depending on the direction. To do so, in this part, the basis virtual 

source is physically described using moment tensor as previous studies did for 

the parameter (Wu and Aki, 1985; Burridge et al., 1998). Figures 3-3 and 3-4 

show the moment tensor description of the horizontal and vertical basis virtual 

sources, respectively. The direction of moment tensor is determined when the 

first motion of incidence wave is positive and when the waves are attenuated 

propagating through the media. Because the incidence waves also oscillate, 

the direction of virtual sources is continuously changed. For this reason, I 

show only the first motion of P-P reflection (black solid arrows) and S-P 

reflection (black dashed arrows).  

From the figures, we can notice that the basis virtual sources, which derived 

by horizontal normal stress like HBxxh and HBxzv, also act as horizontally 

tensional forces as shown in Figures 3-3a and 3-3b. This is because the 

scattering pattern is determined by the horizontal derivatives as shown in eq. 

(3-11). On the other hand, the basis virtual sources, VBzxh and VBzzv that are 

derived by the vertical normal stress, act as vertically tensional forces due to 

the vertical derivative. The shear stress-derived basis virtual sources (HBzzh, 

HBzxv, VBxzh and VBxxv) also acts like shear forces as Figures 3-3 and 3-4 
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show. If we focus the direction of the shear force along both the horizontal 

and vertical directions, we notice that they act like a double-coupled force 

together, which is the mechanism of earthquake.  

On the other hand, as shown in Figures 3-3e and 3-4e, the HBtth and VBttv act 

as a unidirectional force. This phenomenon is because these basis virtual 

sources do not have wave propagators and they only have the term with 

related to mass of particle. This might means that, if the incidence wave acts 

as an external force to the system, the particles which forced by HBtth and 

VBttv interact with the external force following the law of universal gravitation 

between incidence waves and particles as shown in Figures 3-5 and 3-6. For 

this reason, the mass-induced basis virtual sources act like a universal 

gravitation between incidence waves and particles.  

 From these characteristics of basis virtual sources, we can classify all the 

basis virtual sources by four groups: horizontal normal stress-induced group 

(HBxxh and HBxzv), vertical normal stress-induced group (VBzxh and VBzzv), 

double-coupled force-like group (HBzzh, HBzxv, VBxzh and VBxxv) and universal 

gravitation-like group (HBtth and VBttv). These grouping has some practical 

meanings, because, in many cases, the members of each group act together. 

However, in my opinion, each normal stress group should be divided because 

each member has different characteristics due to the S-wave. In Figures 3-3 

and 3-4, the first S-P motions (black dashed arrows) are also displayed, which 

adds some complexities to the elastic FWI. For example, we can notice that 

the S-P motions of HBxxh, which is induced by horizontal components of the 

incidence wave, and HBxxv, which is induced by vertical components of 
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incidence wave, are reversed. This reversed S-P motions, which are caused by 

the first motion of incidence SV waves as shown in Figure 3-7, cause some 

trade-off relationships during the FWI and make the FWI easily go to local 

minima according to circumstances as discussed in Appendix A. 

 

 

(a)                  (b)                   (c) 

 

(d)                  (e) 

 

Figure 3-3 Moment tensor description of horizontal basis virtual sources: (a) 

HBxxh, (b) HBxzv, (c) HBzzh, (d) HBzxv and (e) HBtth. Black solid and dashed 

lines indicate the first motion induced by incidence P- and S-waves, 

respectively.   
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(a)                  (b)                   (c) 

 

(d)                  (e) 

 

Figure 3-4 Moment tensor description of vertical basis virtual sources: (a) 

VBzxh, (b) VBzzv, (c) VBxzh, (d) VBxxv and (e) VBttv. Black solid and dashed 

lines indicate the first motion induced by incidence P- and S-waves, 

respectively.   
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(a)

 

(b)

 

(c)  (d)

 

(e)  (f)

 

(g)  (h)

 

(i)  (j)

 

Figure 3-5 Horizontal displacements of Jacobian induced by HBxxh (a and b), 

HBxzv (c and d), HBzzh (e and f), HBzxv (g and h) and HBtth (i and j) describing 

the first motion of P-P waves (a, c, e, g and i) and S-P waves (b, d, f, h and j), 

respectively. The circle and arrows indicate the source and the first motion.   
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(a)  (b)

 

(c)  (d)

 

(e)  (f)

 

(g)  (h)

 

(i)  (j)

 

Figure 3-6 Vertical displacements of Jacobian induced by VBzxh (a and b), 

VBzzv (c and d), VBxzh (e and f), VBxxv (g and h) and VBttv (i and j) describing 

the first motion of P-P waves (a, c, e, g and i) and S-P waves (b, d, f, h and j), 

respectively. The circle and arrows indicate the source and the first motion.   
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Considering that the acoustic wave equation does not have shear stress, we 

can guess, in the acoustic media, the full virtual source only contains 

hydrostatic pressure or unidirectional pressure. Therefore, basis virtual 

sources in the acoustic media are HBxxh, HBxzv, HBtth, VBzxh, VBzzv and VBttv. 

On the other hand, in elastic media, the behavior of full virtual source is more 

complex due to the shear stress-induced basis virtual sources.  

To verify if basis virtual sources act like aforementioned forces, Jacobian 

induced by only each basis virtual source are calculated as shown in Figures 

3-5 and 3-6. The five subsurface inclusions are assumed with the nearly same 

distances from the seismic source. By checking the first motion of Jacobian 

when the P-P and S-P waves are generated and the radiation pattern of 

Jacobian, we can notice that the behavior of each virtual source well reflects 

the scattering pattern of corresponding moment tensor. In addition to this 

phenomenon caused by directional property, we can also notice that the 

strengths of each basis virtual source are different over the domain related to 

the incidence angle.  

 To figure out this phenomenon, I discuss how each basis virtual source 

controls the pattern of incidence wave, which is related to the momentum of 

the basis virtual source as shown from eq. (3-19) to eq. (3-28). Because the 

momentum of basis virtual source is determined depending on the strength of 

strain induced by both incidence P- and S-waves, it is helpful to derive the 

strain using Helmholtz decomposition as follows: 
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     (3-31) 

The terms, F  and Y , denote the scalar and vector potentials, respectively. 

From above two equations, we can derive the normal strains and components 

of shear strain as expressed by 

2 2
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¶ ¶ ¶ ¶
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2 2

2
zu

x x z x

¶ ¶ F ¶ Y
= +

¶ ¶ ¶ ¶
.      (3-35) 

Figure 3-7 shows the incidence displacement fields and strains, which are 

calculated for all the elements when the source is located at middle of the 

surface. For the normal strains (Figure 3-7c and 3-7d), we can notice that the 

horizontal and vertical normal strains induced by P-waves have large values 

along the horizontal and vertical directions, respectively. On the other hand, 

the normal strains induced by S-waves have positive and negative values that 

corresponds to eqs. (3-32) and (3-33). This means that, if the basis virtual 

sources induced by horizontal and vertical normal strains act together, the 

coverage of incidence P-waves can be improved but the incidence S-waves 

are cancelled each other. In other words, the virtual source that consists of 
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both horizontal and vertical normal strains cannot generate S-P and S-S 

motions as Tarantola (1984) showed. In addition, when the normal strain acts 

as tensional or compressional forces along both horizontal and vertical 

directions (isotropic explosive source), the P-S motions are also compensated 

each other as shown in Appendix A. As shown in Figures 3-7e and 3-7f, the 

components of shear strains also satisfy the eqs. (3-34) and (3-35).  

 From above results, I conclude that the pattern of incidence wave as a 

momentum of virtual source is determined by the inner spatial derivatives, 

which indicate the strain in elastic media.  
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(a)                              (b) 

  

(c)                              (d) 

  

    (e)                              (f) 

   

Figure 3-7 The (a) horizontal and (b) vertical displacements induced by a 

vertical body force on the surface and the distributions of resulting strains at 

subsurface medium: (c) xu

x

¶

¶
, (d) zu

z
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3.2.3 Numerical Example for Simple Layer Model 

 

To examine how the different kind of basis virtual source influence on the 

descent direction, I calculate the descent direction for the simple one layer 

model (Figure 3-8) at first iteration with steepest descent approach, in which 

the Hessian matrix is not applied. The frequency-domain FWI is applied using 

the finite element method for the forward modeling. The parameters used for 

the FWI are listed in Table 3-1. The initial guesses are the same as the 

background parameters so that only discrepancy is induced by the anomalous 

body. 

 In the frequency-domain FWI with backpropagation as shown in eq. (2-15), 

the gradient direction can be obtained by cross-correlating the virtual source 

and backpropagated wavefields, In this case, basis virtual source changes the 

sensitivity of gradient direction depending on its moment tensor, which 

originates by outer spatial derivatives. For example, if the moment tensor 

(horizontal derivative) of basis virtual source has horizontally tensional or 

compressional form, it provides gradient direction by measuring the 

horizontal variations of the backpropagated wavefields. On the other hand, the 

basis virtual source, whose moment tensor is a vertically tensional or 

compressional form, measures the vertical variations of the backpropagated 

wavefields. However, considering HBtth and VBttv which have the 

unidirectional moment tensor, they measure the backpropagated wavefields 

themselves and provides poorly sensitive gradient direction. In other words, 

the sensitivity of gradient direction (or Jacobian) is determined by the moment 
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tensor (outer spatial derivative) of the full virtual source.  

To verify these phenomena, I calculate the single-shot-descent direction for 

the thick one layer model (Figure 3-8). Figures 3-10 and 3-11 show the 

descent direction obtained by 5 horizontal basis virtual sources and 5 vertical 

basis virtual sources, respectively. From figures, we can notice four main 

characteristics for behaviors of basis virtual sources. At first, we notice that 

each basis virtual source covers different area depending on the inner spatial 

derivatives that are strains, reflecting its main incidence angles as shown in 

Figure 3-7. This make us convince that, as mentioned in the previous 

subsection, the distribution of strains depending on the incidence angle 

determines the magnitude of basis virtual source. Figures 3-11 shows the 

descent direction of some groups for shear stress-induced basis virtual 

sources. We summed all the shear stress-induced basis virtual sources 

because, in most cases, all the shear stress-induced basis virtual sources 

(they share the same parameter) act together like double-coupled forces. 

From the descent direction obtained by the double-coupled forces (Figure 3-

11c), we notice that the anomalous layer located at intermediate incidence 

angle is well described.  

Secondly, each basis virtual source provides differently resolved descent 

direction because the sensitivity of the descent direction is also determined 

by whether corresponding basis virtual source measures horizontal (HBxxh 

and HBxzv, VBxzh and VBxxv) and vertical variations (VBzxh, VBzzv, HBzzh and 

HBzxv) of the backpropagated wavefields or backpropagated wavefields 

themselves (HBtth and VBttv). For example, comparing the Figures 3-10b 
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(VBzzv) and 3-10e (VBttv), we can notice that the VBttv provides less sensitive 

descent direction near the layer because it measures backpropagated 

wavefields themselves to describe the anomalous body. If we focus on the 

top boundary of layer in Figure 3-10e, the descent directions for the 

anomalous layer (black-colored) are nearly same magnitude (strictly, weaker 

due to damping effects) with cycle skipping artifacts (white-colored) above 

them. On the other hand, in Figure 3-10b, the magnitude of the descent 

direction for the anomalous layer obtained by the VBzzv becomes stronger by 

measuring vertical variations of the backpropagated wavefields. This 

phenomenon is also well observed in Figures 3-9a for the HBxxh and 3-9e for 

the HBtth. From these results, I convince that the basis virtual sources 

obtained from time derivatives have the poorest sensitivity at the boundary 

of the anomalous layer among 10 basis virtual sources.  

 Thirdly, as Figures 3-10a (HBxxh), 3-10b (HBxzv), 3-10c (VBxzh) and 3-10d 

(VBxxv) show, the descent directions obtained from horizontal variation of 

the backpropagated wavefields have some problems to detect exact depth of 

the anomalous layer, which might be related to the Fresnel zone.  

Fourthly, as Figures 3-9b and 3-10a show, the descent directions obtained 

from HBxzv and VBzxh tend to go to negative direction even though all the 

true parameters, except Poisson’s ratio, are larger than initial guesses which 

means that the gradient should be positive at the anomalous layer. This is 

because these two basis virtual sources have strong trade-off depending on 

amplitudes of P-waves and S-waves in residual wavefields.    
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By synthesizing aforementioned four observations, we can convince that 

full virtual source, which consists of the normal strain-induced basis virtual 

sources (HBxxh, VBzxh, HBxzv and VBzzv) and double-coupled basis virtual 

sources (HBzzh, HBzxv, VBxzh and VBxxv) will provide wide-coverage and 

highly resolved gradient directions. From this idea, I find out some 

limitations of conventional parameterizations for isotropic media and 

suggest the new parameterization using the Poisson’s ratio in the next 

subchapter. These analyses are also applicable to the elastic VTI case as 

shown in Appendix C.  

 

 

Figure 3-8 The simple one layer model.  

 

Table 3-1 Inversion parameters used for one layer model.  
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(a)

   

 

(b)   

 

(c)   

 

Figure 3-9 Single-shot descent directions obtained by using only (a) HBxxh, 

(b) HBxzv, (c) HBzzh, (d) HBzxv and (e) HBtth.   
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(d)   

 

(e)   

 

Figure 3-9 (Continued)   
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(a)

   

 

(b)   

 

(c)   

 

Figure 3-10 Single-shot descent directions obtained by using only (a) VBzxh, 

(b) VBzzv, (c) VBxzh, (d) VBxxv and (e) VBttv.   
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(d)   

 

(e)   

 

Figure 3-10 (Continued)   
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(a)

   

 

(b)   

 

(c)   

 

Figure 3-11 Single-shot descent directions obtained by using (a) HBzzh+HBzxv, 

(b) VBxzh+VBxxv and (c) HBzzh+HBzxv+VBxzh+VBxxv (double-coupled forces).   
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3.3 New Parameterization for Isotropic Elastic FWI 
 

3.3.1 Conventional parameterization for isotropic elastic media 

 

For isotropic elastic FWI, most previous studies have used two kinds of 

parameterizations. One uses the elastic wave equation parameterized by 

Lamé constants (λ and μ) and density (ρ), which I call ‘Isotropic Parameter 

Group-I (IPG-1)’ throughout the paper. The other parameterization method 

represents the elastic wave equation with P-wave (vp) and S-wave (vs) 

velocities and density, which will be called ‘Isotropic Parameter Group-II 

(IPG-II)’. 

 The isotropic elastic wave equation using the IPG-I can be expressed by 
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 ,   (3-36) 

in which other parameters, such as P-wave velocity (vp), S-wave velocity (vs), 

Poisson’s ratio (ν) that is defined as the ratio of transverse to longitudinal 

strains, can be calculated as follows:  
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The isotropic elastic wave equation using the IPG-II can be expressed by 

( )
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 . (3-40) 

 As previous studies have reported (Jeong et al. 2012; Köhn et al. 2012), the 

IPG-I provides better estimation for the Lamé constants or wave velocities but 

is weak at recovering density structures. On the other hand, the IPG-II 

provides much better parameter estimation when all the three parameters are 

simultaneously inverted. Based on this fact, Jeong et al. (2012) suggest to use 

the two-stage FWI strategy, in which the FWI is sequentially performed by 

the IPG-II with a chain rule following the IPG-I. Köhn et al. (2012) compared 

three parameter groups, which are (λ, μ, ρ), (vp, vs, ρ) and (Ip, Is, ρ), 

respectively, and conclude that choice of the seismic velocities in favor of 

Lamé parameters can improve the image quality and that the model 

parameterization has mainly an influence on the density inversion result. 

However, in my opinion, the latter conclusion is only valid in the FWI for the 

low-frequency data because the behavior of high-frequency virtual sources is 

more complicated. The impedance-density parameter group is not considered 

in this paper, because the results might be nearly similar with those obtained 

using the seismic velocities as Köhn et al. (2012) insisted. 

 By contrast with previous study of Köhn et al. (2012), in this paper, three 

parameter groups will be discussed, those are aforementioned IPG-I and IPG-

II and the new parameter group using the Poisson’s ratio called ‘Isotropic 

Parameter Group-III’ throughout the paper. In the following section, the new 
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parameterization method using Poisson’s ratio will be introduced and the 

advantages of the new parameterization will be discussed.   

 

3.3.2 New Parameterization using Poisson’s ratio 

 

When we use the parameter group using the Poisson’s ratio instead of the 

S-wave velocity (IPG-III), the isotropic elastic wave equation can be 

expressed by  
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.    (3-41) 

The S-wave velocity can be estimated using eq. (3-39). The IPG-III is 

designed so that the resolution and robustness of the gradient direction for the 

P-wave velocity, one of the important parameter for seismic data processing, 

can be enhanced maintaining the advantage of the IPG-II, that is good 

estimation of the density. This idea is derived based on the scattering theory 

of the basis virtual source as explained previous subchapters.  

Using the linear combination of the basis virtual source, three full virtual 

sources for the IPG-I and IPG-II can be expressed as follows:  
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The full virtual sources for the P-wave velocity, Poisson’s ratio and the 

density in the IPG-III can be expressed by 
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At first, as eqs. (3-43) and (3-44) show, the members of full virtual sources 

for the density in both IPG-II and IPG-III are the same, which means that the 

full virtual sources for the density show similar behaviors. On the other hand, 

in the IPG-I, the full virtual source for the density only consists of the HBtth 

and VBttv, which induce unidirectional particle motions. These unidirectional 
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basis virtual sources make the partial derivative wavefields less sensitive to 

variations of the residuals (Figure 3-10) and all kinds of reflected waves 

similarly contribute to the gradient direction (refer Appendix A). For these 

reasons, the inversion of the density in the IPG-I tends not to collaborate well 

with that of Lamé constants, which are induced by bi-direction particle 

motions. For the P-wave related parameters, λ and P-wave velocity, we notice 

that the virtual source only consists of normal stress-induced basis virtual 

sources. For this reason, the partial derivative wavefields only contain P-P 

scattered waves as we discussed in Chapter 3.2.2 and Appendix A. The 

absence of P-S, S-P and S-S scattered waves in partial derivative wavefields 

for the P-wave velocity causes three limitations. One is the poor resolution of 

the P-wave velocity in the IPG-II (or λ in the IPG-I). Second limitation is that 

the P-S, S-P and S-S reflected waves in residual wavefields act like coherent 

noise. Third one is high sensitivity of the gradient direction for the P-wave 

velocity to noises. These three limitations will be discussed in next subsection 

for the FWI with CTS model. To compensate above limitations, the IPG-III is 

designed so that the P-wave velocity provides highly resolved and robust 

gradient direction. This can be achieved by adopting Poisson’s ratio as a 

direct parameter because the additional terms of full virtual source, those are 

the double-coupled basis virtual sources (HBzzh, HBzxv, VBxzh and VBxxv), 

generate P-S, S-P and S-S scattering.  

For the S-wave related parameters, rigidity in the IPG-I, S-wave velocity in 

the IPG-II and the Poisson’s ratio in the IPG-III, we can expect that the 

gradient direction of the rigidity is the best among the three parameter group 
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because the other two parameters (S-wave velocity and Poisson’s ratio) only 

have shear stress-induced basis virtual sources with HBxzv and VBzxh, which 

have strong trade-off effects (refer Appendix A). 

 

3.3.3 Advantages of the New Parameterization 

 

To verify one of the benefits of using the IPG-III, that is highly resolved P-

wave image, I perform the elastic FWI for the synthetic CTS (Cross-

Triangular-Square) model (Figure 3-12). This test is not the same inversion 

that done by Köhn et al. (2012). I just use the CTS model for the resolution 

analysis of the gradient (exactly, descent direction) image because various 

shaped-structures of the CTS model are good to determine which 

parameterization provides well resolved descent direction. The inversion 

settings are listed on Table 3-2. The initial guesses are the same as the 

background parameters so that only discrepancy is induced by the 

anomalous body. For more accurate analysis, in this numerical example, I 

apply single frequency (4 Hz) FWI with the approximate Hessian. Therefore, 

this approach is very close to the Gauss-Newton method except that I ignore 

the off-diagonal terms of the approximate Hessian matrix.   

Figures 3-13a and 3-14a show the mono-frequency descent directions for 

the λ and the P-wave velocity obtained using the IPG-I and IPG-II, 

respectively, in the first iteration. I notice that the descent directions for the λ 

and P-wave velocity are the same because these two parameters are 

composed by the same basis virtual sources, those are HBxxh, HBxzv, VBzxh 
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and VBzzv, with same percentage (25 %) of each basis virtual source. This 

phenomenon indicates that, if some parameters have same basis virtual 

sources whether they are for the P-wave velocity or elastic constants, their 

behaviors are also similar during the FWI. However, the combination of 

these four basis virtual sources make the P-S, S-P and S-S motions be 

cancelled each other as shown in Appendix A. On the other hand, as shown 

in Figure 3-15a, the mono-frequency descent direction for the P-wave 

velocity obtained using the IPG-III is much improved, particularly around 

the cross structure, in the aspect of the spatial resolution. Other structures, 

triangular and rectangular-shaped structures, are also well resolved even 

though we only use 4 Hz component of data. This highly resolved descent 

direction for the P-wave velocity in the IPG-III can be achieved due to the 

additional terms of the full virtual source, those are the shear motion-induced 

basis virtual sources (HBzzh, HBzxv, VBxzh and VBxxv), because these double-

coupled basis virtual sources generate not only P-P wave but also P-S, S-P 

and S-S waves that have shorter wavelength than P-P wave in mono-

frequency (refer p

p

v
l

w
= , s

s

v
l

w
=  and Figure 3 in Virieux and Operto 

[2009]).  

The other limitations of the IPG-I and IPG-II is high sensitivity to 

variations of Poisson’s ratio and noises in observed data. Because, in the 

IPG-I and IPG-II, virtual sources for λ and P-wave velocity generate only P-

P scattered waves, the maximum correlation is occurred when arrival times 

of P-P scattered wave in partial derivative wavefields and P-P (or S-P) 
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reflected wave in residual wavefields are coincident. However, in the IPG-III, 

the maximum correlation is occurred when arrival times of all the P-P, P-S, 

S-P and S-S scattered waves are coincident with those in the residual 

wavefields because the virtual source for the P-wave velocity generates all 

kinds of scattered waves. This means that the maximum correlation for a 

perturbation of the P-wave velocity in the IPG-III is much larger than that in 

the IPG-II. For this reason, during the FWI, the gradient direction for the P-

wave velocity in the IPG-II generates strong artifacts induced by zero-lag 

cross-correlation of P-P scattered waves with P-S, S-P and S-S reflected 

waves as shown in Figures 3-13a and 3-14a. For the same reason, the P-

wave velocity in the IPG-II is also sensitive to the noise. 

Figures 3-13b, 3-14b and 3-15b show the descent directions of the rigidity, 

S-wave velocity and Poisson’s ratio obtained using the IPG-I, IPG-II and 

IPG-III, respectively. As similar with the previous example for the λ and P-

wave velocity in the IPG-I and IPG-II, the descent directions of the S-wave 

velocity and Poisson’s ratio obtained using the IPG-II and IPG-III, 

respectively, are also the same because they are composed by same basis 

virtual sources (HBxzv, HBzzh, HBzxv, VBzxh, VBxzh and VBxxv) with the same 

proportion of each basis virtual source (see eqs. (3-43) and (3-44)). However, 

the sign of the descent directions for the S-wave velocity and the Poisson’s 

ratio is reversed because there exists some trade-off relations between the S-

wave velocity and the Poisson’s ratio. In other words, the negative direction 

of the descent direction for the Poisson’s ratio provides same effects to the 

positive direction of the descent direction for the S-wave velocity, because a 
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decrease in the Poisson’s ratio causes an increase in the S-wave velocity as 

shown in eq. (3-39). On the other hand, as shown in Figure 3-14b, the 

descent direction for the rigidity also provides highly resolved image as that 

for the P-wave velocity in the IPG-III, because the full virtual source for the 

rigidity also has the double coupled basis virtual sources in addition to the 

normal stress-induced basis virtual sources (HBxxh and VBzzv) as shown in eq. 

(3-42).    

Finally, Figures 3-13c, 3-14c and 3-15c show the descent directions of the 

density obtained using the IPG-I, IPG-II and IPG-III, respectively. We can 

notice that the descent directions for the density obtained using the IPG-II 

and IPG-III are also the same because they are also obtained by the same 

basis virtual sources as shown in eqs. (3-43) and (3-44) and both descent 

directions provide highly-resolved density image due to the contribution of 

the all kinds of basis virtual sources but, as Appendix B shows, the virtual 

source for density in the IPG-I and IPG-II acts like Mie scattering due to the 

time derivatives. On the other hand, the descent direction for the density 

obtained using the IPG-I is not sensitive at the boundary of the anomalous 

body because its basis virtual sources (HBtth and VBttv) generate less 

sensitive Jacobian as mentioned before (Figure 3-10). 

From these results for the CTS model, we can notice that the characteristics 

of the gradient direction for the various parameters are determined by 

included basis virtual sources, at least, in the first iteration. In addition, the 

highly resolved image for the gradient direction for the P-wave velocity can 

be achieved by adopting Poisson’s ratio because shear stress-induced basis 
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virtual sources additionally generates P-S, S-P and S-S scattered waves. As a 

result, in the IPG-III, the gradient directions for all the parameters can be 

improved than those for the conventional parameter groups because 

improvements of the P-wave velocity provide positive influences on FWIs 

for other parameters although there are some trade-off relations between S-

wave velocity and Poisson’s ratio. 

 

  

 

Figure 3-12 The CTS model for resolution analysis    

 

 

Table 3-2 Inversion parameters used for the CTS model    
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(a) 

 
(b) 

 
(c) 

 

Figure 3-13 The normalized descent directions for the CTS model obtained at 

1st iteration using the IPG-I : (a) l , (b) m  and (c) r    
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(a) 

 
(b) 

 
(c) 

 

Figure 3-14 The normalized descent directions for the CTS model obtained at 

1st iteration using the IPG-II: (a) pv , (b) sv  and (c) r    
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(a) 

 
(b) 

 
(c) 

 

Figure 3-15 The normalized descent directions for the CTS model obtained at 

1st iteration using the IPG-III : (a) pv , (b) n  and (c) r    
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3.3.4 Numerical Examples for elastic Marmousi-2 Model 

 

In this chapter, I demonstrate the superiority of the parameterization using 

the Poisson’s ratio for more complex geologic structures by applying three 

parameterizations to the elastic Marmousi-2 model. Figure 3-16 shows the 

four parameter structures of the elastic Marmousi-2 model. Because the 

shallow structures of the original elastic Marmousi-2 model have very large 

Poisson’s ratio, we need to modify only the Poisson’s ratio of shallower part 

by multiplying some depth-variable factors (from 0.6 to 1.0) to satisfy the 

minimum grid numbers per wavelength for the finite-element method. 

Because, for this reason, the modified Poisson’s ratio is not dramatically 

changed in this numerical example, the sensitivity of the parameter groups to 

the Poisson’s ratio will not cause severe problems at each parameter group. 

The inversion parameters are listed on Table 3-3 and the new pseudo-

Hessian matrix (Choi et al. 2008) is applied to pre-condition the gradient 

direction. The initial guesses for the P-wave velocity linearly increase from 

1.5 at the top to 4.56 km/s at the bottom of the model. The initial guesses for 

the S-wave velocity and the density are estimated using the fixed Poisson’s 

ratio (0.25) and Gardner’s equation (Gardner et al., 1974), respectively as 

shown in Figure 3-17. Because of these poorly estimated initial guesses, I 

assume that very low frequency components are available. Although this 

assumption is unrealistic, the scaling method we use in this paper, in which 

each mono-frequency descent direction is normalized by its maximum value 

after the Hessian matrix is applied inside the frequency loop, provides high-
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frequency dominant descent direction (refer Chapter 4.1.2 or Oh and Min 

[2013a]). Therefore, the influence of these very low frequency data is not 

dominant and the high-frequency characteristics of each parameterization are 

well distinguished.  

Figures 3-18, 3-19 and 3-20 show the recovered structures obtained using 

the IPG-I, IPG-II and IPG-III, respectively. We notice that, in this case, all 

the conventional parameterization methods provide reasonable inversion 

results, except that both density structures are little overestimated in the IPG-

I and IPG-II. The Poisson’s ratio obtained using the IPG-II is distorted 

because fixed step-length strategy is applied for both P-wave and S-wave 

velocity in the IPG-II. On the other hand, we can notice that, in the IPG-III 

(Figure 3-20), there are great improvements at the deeper structures in the 

aspects of spatial resolution. In addition, in the density structures, the salt 

structures that have high P-wave velocity and low density are well resolved 

in the IPG-III due to the improvements of the gradient direction for the P-

wave velocity. 
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(a)   

 

(b)   

 

(c)   

 

(d)   

 

Figure 3-16 Modified elastic Marmousi-2 model: (a) P-wave velocity, (b) S-

wave velocity, (c) density and (d) Poisson’s ratio 

 

 

Table 3-3 Inversion parameters used for elastic Marmousi-2 model 
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(a)   

 

(b)   

 

(c)   

 

(d)   

 

Figure 3-17 Initial models: (a) P-wave velocity, (b) S-wave velocity, (c) 

density and (d) Poisson’s ratio 
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(a)   

 

(b)   

 

(c)   

 

(d)   

 

Figure 3-18 Final inverted models obtained by the IPG-I: (a) P-wave velocity, 

(b) S-wave velocity, (c) density and (d) Poisson’s ratio 
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(a)   

 

(b)   

 

(c)   

 

(d)   

 

Figure 3-19 Final inverted models obtained by the IPG-II: (a) P-wave 

velocity, (b) S-wave velocity, (c) density and (d) Poisson’s ratio 
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(a)   

 

(b)   

 

(c)   

 

(d)   

 

Figure 3-20 Final inverted models obtained by the IPG-III: (a) P-wave 

velocity, (b) S-wave velocity, (c) density and (d) Poisson’s ratio 
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Chapter 4. Spectral Weighting Scheme 

 

 One of the main problems in waveform inversion is that obtaining the global 

minimum solutions is not easy when the initial guesses deviate significantly 

from the true models. Several studies have proposed methods to overcome 

this problem. The frequency marching method (Sirgue and Pratt 2004; Kim et 

al. 2011) is one such method. In the frequency marching method, waveform 

inversion is performed by starting with low frequencies and moving to higher 

frequencies and is based on the fact that the objective function is not likely to 

have local minima at low frequencies (Bunks et al. 1995). However, in my 

experience, the frequency marching method requires lots of human 

interventions and accurate criterions to finish each step. In addition, when we 

use frequency marching method, it takes more time than simultaneous 

approach under the assumption that the parallel computing is available. 

As an alternative to the frequency marching method, Lazaratos et al. (2011) 

suggested the spectral shaping method, which makes the gradient have a 

similar spectrum to that of earth’s subsurface using information of the 

impedance recorded in local wells. Although the spectral shaping method 

could be more accurate, it is too expensive because the spectral shaping 

function demands for several local wells. 

In this Chapter, as an alternative to the frequency marching method and the 

spectral shaping method, I introduce the weighting method, in which the 

spectral weighting function can be automatically determined using the 
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deconvolved backpropagated wavefields depending on the true and initial 

models without any prior information or human intervention (Oh and Min 

2013a).    

To design a waveform inversion algorithm that gives reliable inversion 

results regardless of the models, I first analyze, in the aspects of the scaling of 

gradient direction with Hessian matrix, why conventional waveform inversion 

algorithms are likely to converge to local minima. In general, waveform 

inversion is performed by constructing the objective function based on the 

residuals between the modeled and the field data and by computing the 

gradient to determine the model parameter update direction. When we apply 

frequency-domain waveform inversion to banded data, each single-frequency 

gradient is computed using the Jacobian and the residual and is then summed 

over the frequencies. Because the residual spectrum originate from the 

differences between the true and the assumed models (i.e., an initial or 

inverted model at each iteration step), the final gradient direction should 

appropriately describe the differences between the true and the assumed 

models. In general each gradient computed at each frequency contributes to 

recovering structures with different wavelength structures. In other words, for 

long-wavelength structures, the gradients obtained at low frequencies will be 

more important than the gradients at high frequencies and vice versa. 

Therefore, gradients computed over frequencies should most likely be 

properly weighted depending on the thickness-differences between the true 

and the assumed models to obtain reasonable inversion results close to the 

global minimum.  
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In this Chapter, by analyzing the characteristic of gradients over a range of 

frequencies, I address the limitations of some conventional elastic FWI 

algorithms and then propose a weighting method to overcome the limitations 

of these approaches. One problem associated with conventional waveform 

inversion is that the particular frequency components emphasized in the 

banded gradient direction are not dependent on the given models. In one case, 

high-frequency components are excessively weighted, and in another case, 

dominant frequencies of the source wavelets are always emphasized. These 

limitations of the conventional inversion algorithms will be discussed in 

following subchapter. This Chapter is edited version of Oh and Min (2013a). 
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4.1 Limitations of Two Conventional Scaling methods 
 

 Before introducing the weighting method, I analyze limitations of two 

conventional scaling methods in the aspect of the spatial resolution of the 

gradient direction. The first conventional scaling method is based on the 

general inverse theory for banded data as expressed by eq. (2-11), which is 

called ‘CS-I method (Conventional Scaling method-I)’ through the paper. The 

other conventional scaling method, which is called ‘CS-II method 

(Conventional Scaling method-II; Ha et al. 2009), is defined by eq. (2-12). For 

easy analysis, I use two simplified geologic models shown in Figure 4-1. The 

thick rectangular-shaped model in Figure 4-1a is modeled on a salt structure, 

which has a low-velocity zone beneath the high-velocity salt body. The 

second model is modeled on interbedded structures consisting of three high-

velocity layers (Figure 4-1b). P- and S-wave velocities and densities are 

shown in Figure 4-1, and the parameters used for the inversion are listed in 

Table 4-1. The S-wave velocities are generated so that the Poisson’s ratio is 

constant at 0.25. The density is fixed at 2.0 g/cm3 and is not updated during 

the FWI. For the initial guesses, we assume homogeneous models whose 

parameters are the same as those of the background media so that the only 

discrepancies between the true and initial models can be induced by 

anomalous bodies.       
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(a)

     

(b)

     

Figure 4-1 Simple models: (a) thick rectangular-shaped model and (b) thin-

layers model.   

 

Table 4-1 Inversion parameters used for the simple models for resolution 

analysis  
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4.1.1 Limitation of Conventional Scaling Method I 

 

The limitation of CS-I method has been well reported by some previous 

works. As Jang et al. (2009) insisted, in the CS-I method, each mono-

frequency gradient should be weighed by the source spectrum. For example, if 

the amplitude spectrum of the source wavelet is dominant at low- or high-

frequency band, we obtain thick or thin gradient directions, respectively. On 

the other hand, the CS-II method, in which each mono-frequency gradient is 

pre-conditioned by the mono-frequency Hessian matrix inside the frequency 

loop, does not suffer from the source spectrum due to the cancellation of the 

source wavelet. To confirm this limitation of the CS-I method, we perform the 

elastic FWI for the thick rectangular-shaped model (Figure 4-1a). As Figure 4-

2a shows, we suppose two types of source wavelets. The first source wavelet 

is the first derivative of Gaussian function, in which most energy is dominant 

at a quarter of maximum frequency as Figure 4-2b shows. The other source 

wavelet is the Ricker function, which maximum frequency is around one half 

of the maximum frequency (Figure 4-2b). As we mentioned before, because 

the source spectrum acts as a spectral weighting function in the CS-I method, 

the descent direction of the P-wave velocity obtained using the Ricker 

function is thinner than the descent direction obtained using the first 

derivative of Gaussian function (Figures 4-3a and 4-3b). On the other hand, in 

the CS-II method, the source spectrum does not influence on the descent 

directions as Figures 4-3c and 4-3d show.    
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(a)    

(b)  

 

Figure 4-2 (a) Source wavelets of the first derivative of Gaussian function 

and Ricker function and (b) their amplitude spectra 
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(a)                             (b) 

  
(c)                             (d) 

  
(e)                             (f) 

  

Figure 4-3 Descent directions of P-wave velocity for the thick rectangular-

shaped model at the first iteration obtained using the CS-I (a and b), CS-II (c 

and d) and weighting methods (e and f) when the first derivative of Gaussian 

function (a, c and e) and the Ricker function (b, d and f) are used as a source 

wavelet 
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4.1.2 Limitation of Conventional Scaling Method II 

 

Although the CS-II method provides source independent FWI under the 

assumption that the exact source wavelet can be estimated, the CS-II method 

also has a limitation related to controlling the spatial resolution of the gradient 

direction. To investigate the limitation of the CS-II method, we also perform 

the elastic FWI for the thick rectangular-shaped model.  

 Figure 4-4a shows the depth profiles of the single-frequency descent 

directions obtained by the CS-II method. As we can see, because each single-

frequency descent directions are aligned at the top of the anomalous body, the 

banded descent direction, which is obtained by summing all the single-

frequency descent directions after the normalization, has high-frequency 

dominant tendency at the boundary of the anomalous body as Figure 4-4b 

shows. Figures 4-5a and 4-5b show the banded descent direction for the P-

wave velocity obtained by the CS-II method when the Nyquist frequency is 10 

and 20 Hz, respectively. When the time sampling interval is smaller, we 

obtain a high-frequency descent direction, which is not appropriate to recover 

the long-wavelength structures even though we use the extremely low-

frequency components (0.2 Hz) during the FWI.  
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(a) 

 

(b) 

 

Figure 4-4 (a) Mono-frequency descent directions and (b) total descent 

direction summed from 0.25 to 20 Hz: Grey vertical line indicates the top of 

the anomalous body 
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(a)                             (b) 

  

(c)                             (d) 

  

Figure 4-5 Descent directions of P-wave velocity for the thick rectangular-

shaped model at the first iteration obtained using the CS-II (a and b) and 

weighting method (c and d) when the Nyquist frequency is 10 (a and c) and 

20 Hz (b and d) 
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4.2 Analysis of the Jacobian and the residuals 

 

In advance of analyzing the limitations of the conventional scaling methods, 

investigating the general characteristics of the gradient direction expressed by 

the Jacobian matrix and the residual helps us to describe the problems of the 

two conventional scaling methods and to examine the meaning and the 

importance of the weighting method in frequency-domain elastic FWI.  

 Figure 4-6 shows the real part of the vertical components of the transpose of 

Jacobian matrices obtained using the reciprocity theorem (Shin et al. 2001a) 

for the P-wave velocity at 1, 5 and 9 Hz when the source is located in the 

middle of the surface. The transpose of the Jacobian matrices in the frequency 

domain resembles a snapshot of the monochromatic waves. The Jacobian 

matrices at each frequency have aspects of fluctuation, and the widths of these 

fluctuations are related to dominant wavelengths or frequencies (see Figure 3 

in Virieux and Operto [2009] for more details). Considering that each single-

frequency Jacobian matrix has a different resolution associated with the width 

of the fluctuation, we can guess that, if the initial model is homogeneous, the 

low- and high-frequency Jacobian matrix would be good for recovering the 

thick rectangular-shaped and thin-layers models, respectively. 

 We can see in eq. (2-6) that the gradient is obtained by the cross-correlation 

between the single-frequency Jacobian matrix and the residual vector, which 

may mean that the contribution of each single-frequency Jacobian matrix to 

the banded gradient direction is controlled by the residual vector (strictly, the 

deconvolved residual vector). 
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 Figure 4-7 schematically shows the propagation of waves reflected at 

subsurface layers that have different thicknesses. When the seismic waves 

encounter a layer in the subsurface, the low-frequency signals, whose 

wavelength is approximately larger than eight times the thickness of the layer 

in my examples (for more details, please see Widess [1973] and Kallweit and 

Wood [1982]), are transmitted through the layer without reflection, as shown 

in Figure 4-7b. Figure 4-8 shows the phases of monochromatic waves, which 

propagate through the homogeneous, thick rectangular-shaped and thin-layers 

models. Figure 4-8 shows that both the low- and high-frequency signals are 

reflected at the top of the thick layer (Figures 4-8c and 4-8d), while the low-

frequency signals are transmitted through the thin layers and only the high-

frequency signals are reflected (Figures 4-8e and 4-8f). For this reason, the 

low-frequency components of the residual wavefields are primarily associated 

with long wavelengths when the initial guesses are poorly estimated. 

Considering the feature of seismic attenuation, the low-frequency components 

of the residual wavefields may also include information about the deep 

structures. Conversely, the high-frequency components of the residual 

wavefields are related to the short-wavelength and the shallow structures. 

From these phenomena, we may say that the deconvolved residual vectors, to 

some extent, reflect the differences between the true and the inverted models 

during the inversion process. 

 Figure 4-9 shows the RMS errors calculated by the deconvolved residuals 

with a frequency at the first iteration of inversion for the two models. For the 

thick rectangular-shaped model, the RMS errors are dominant at the low-
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frequency band below 2 Hz, whereas for the thin-layers model, the RMS 

errors at high frequencies are relatively greater than the errors at low 

frequencies because the thin layers cannot be detected by low-frequency 

signals. However, an overall feature of the RMS errors for the thin-layers 

model is that they are relatively unchanged compared with those for the thick 

rectangular-shaped model. From these results, we can guess that if we apply 

the CS-II method to the thick rectangular-shaped model, the normalization 

will degrade the inversion results by relatively attenuating the effect of the 

important low-frequency components and by relatively emphasizing the effect 

of the high-frequency components. For the thin-layers model, the CS-II 

method will provide good results because the residuals are relatively uniform 

over frequencies, and the effect of normalization is not as great as for the 

thick rectangular-shaped model. On the other hand, if we use the CS-I method 

with the source-wavelet-convolved residuals, the CS-I method may not 

resolve the thin layers properly depending on the major frequency of the 

source wavelet as discussed in Chapter 4.1.  
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(a)                  (b)                   (c) 

 

(d)                  (e)                   (f) 

 

Figure 4-6 Vertical components of the transpose of the Jacobian matrices (a, 

b and c) and the partial derivative wavefields (d, e and f) extracted at a depth 

of 1.5 km for the P-wave velocity at 1 Hz (a and d), 5 Hz (b and e) and 9 Hz 

(c and f). 
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(a)   

 
(b)   

 

Figure 4-7 Schematic diagrams illustrating the propagation of waves 

reflected at the top of (a) thick and (b) thin layers. The black circle and 

inverted triangle indicate the seismic source and the receiver, respectively. 

The thick and thin arcs denote wavefronts of the low- and high-frequency 

wavefields, respectively. 
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(a)                             (b) 

  

(c)                             (d) 

  

(e)                             (f) 

  

Figure 4-8 The phase of the monochromatic wavefields for the vertical 

components of the displacements obtained for the homogeneous initial (a 

and b), thick rectangular-shaped (c and d) and thin-layers models (e and f) at 

2 (a, c and e) and 8 Hz (b, d and f). The white rectangles indicate the 

anomalous body. 
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Figure 4-9 Deconvolved RMS errors with a frequency at the first iteration of 

inversion for the thick rectangular-shaped (solid line) and the thin-layers 

models (dashed line).  
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4.3 Weighting Factors using Deconvolved Wavefields 

 

 To overcome the limitations of the conventional scaling methods, I propose 

the weighting method, which can provide a geological model-induced spectral 

weighting effect for each single-frequency descent direction. The purpose of 

my weighting scheme is similar to previous works focused on gradient-

shaping methods (Lancaster and Whitcombe 2000; Lazaratos and David 2009; 

Lazaratos et al. 2011). Lazaratos et al. (2011) addressed that the model 

generated by inversion should have a frequency spectrum of the earth’s 

subsurface to assure good convergence and that this target spectrum can be 

derived by averaging the spectra of log curves recorded in local wells. 

Conversely, the weights in my weighting method are determined by spectral 

differences between the observed and the modeled data recorded during a 

seismic survey based on the analysis of the spectral wave propagation 

(Chapter 4.2) without using information recorded in local wells. In this 

subchapter, I discuss about the physical meaning of my weighting factors and 

how the weighting factors can determine the spatial resolution of gradient 

direction. 

 

4.3.1 Frequency-domain FWI with Weighting Factors 

 

 The weighting method is designed based on the CS-II method so that the 

spectral weighting effects of the Hessian matrix (refer Appendix A in Oh and 

Min 2013a) and the source spectrum (Chapter 4.1.1) can be removed. If we 

apply the weighting factor to each single-frequency descent direction, the total 
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descent direction can be written as 

[ ]{ }weighted NRMw w
w

d g d= -åp p ,           (4-1) 

where wg  is a weighting factor. Comparing eq. (4-1) with eqs. (2-9) and (2-

10), we can notice that the objective function of the weighting method can be 

obtained by defining the scaling factor as the maximum absolute of the 

descent vector over the weighting factor. To give the model-induced spectral 

weighting effect, we can use two types of weighting factors as follows 

Type-I 1

nr

i
i

r

nr
wg

==
å %

,                      (4-2) 

and 

1Type-II

np

j
j

v

np
wg

=
=
å %

,                      (4-3) 

where ri and vj indicate the residuals measures at the ith receiver and the 

backpropagated wavefield recorded at the jth nodal point, respectively. The 

tilde indicates that these measures are deconvolved, and the terms nr and np 

denote the number of receivers and nodal points, respectively. Each weighting 

factor is designed as an average of complex absolute values so that the 

weighting factors can quantify the spectral differences of the recorded signals 

between the observed and modeled data. The Type-I weighting factor has an 

effect of directly measuring the residuals of the reflected wavefields between 

observed and modeled data considering only forward wave propagation from 

sources to receivers. In contrast, the Type-II weighting factor approximately 

measures misfits in the square of the amplitudes of the reflected wavefields 
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between the observed and the modeled data considering both forward and 

backward wave propagation. In other words, the Type-II weighting factor is 

proportional to the elastic energy at each frequency. The Type-II weighting 

factor calculated by the backpropagated wavefields plays a role in amplifying 

the weighting effect of the Type-I weighting factor and making the weighting 

effect more robust to the spectrum of noise. In this study, we use the Type-2 

weighting factor.  

 In general, the backpropagated wavefields are generated by simultaneously 

backpropagating the residuals obtained for each shot gather. To avoid the 

complexity caused by combining numerous data for all the shot gathers, I only 

use the average of wavefields recorded at every nodal point by 

backpropagating the residuals measured when the source is located in the 

middle of the surface. Because we just use the residual and the backpropagred 

wavefields that were already calculated for the gradient, the weighting method 

does not increase computational costs a lot.  

 

 

 

 

 

 

 

 

 



 

 

 

89

4.3.2 Physical Meanings of Weighting Factors 

 

 I discuss the physical meanings of two weighting factors. The Type-I 

weighting factor, as shown in eq. (4-2), is directly calculated using the 

deconvolved residuals; The Type-II weighting factor, as shown in eq. (4-3), is 

the backpropagated version of the Type-I weighting factor. 

 The residual vector can be written as 

1 1
true true estimated estimated
- -é ù é ù= -ë û ë ûr S f S f .         (4-4) 

Because each component of 1-S  corresponds to Green’s function, i.e., 

impulse response, we can say that the Type-1 weighting factor (eq. (4-2)) 

measures the spectral difference of the residuals between the observed and the 

modeled data. However, the physical meaning of Green’s function is different 

depending on the data acquisition system of the observed data. Because, in eq. 

(4-4), the residual spectrum can be affected by the spectrum of Green’s 

function, which physical meaning is determined by the physical properties of 

the source and recorded data. According to Berkhout (1985), the physical 

properties of Green’s function can be divided by two kinds depending on the 

data acquisition system; reflectivity and admittance. In eq. (4-5), if the input 

(I) and output (O) have the same physical quantities, we call the operator (M) 

reflectivity.  

=MI O                  (4-5) 

Because this is the case of the common data acquisition system in marine 

survey (pressure to pressure), we call inverse of the modeling operator (i.e., 
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Green’s function) for the acoustic wave equation as a reflectivity matrix. 

However, the reflectivity tends to proportional to the angular frequency (for 

more details, refer to Chapter 6 in Lines and Newrick [2004]). These facts 

mean that, if we apply the Type-I weighting factor to marine data, the 

weighting effect might be dominant at high-frequency bands due to the 

spectrum of Green’s function (i.e., reflectivity). For this reason, if someone 

want to apply the weighting method to marine data, some additional works are 

required to convert Green’s function.  

On the other hand, in eq. (4-5), if the input (I) is velocity fields and output (O) 

is pressure fields, we call the operator (M) impedance. In physics, the 

impedance is defined by the pressure field over the velocity field, which is the 

same physical meaning of the multiplication between the density and velocity. 

In seismology, the impedance is a measurement of how the wave can be easily 

impeded by subsurface layers. Because the high-frequency components of 

wave are easily impeded by subsurface layer (see Figures 4-7 and 4-8) and the 

pressure field is proportional to the time derivative of velocity (It means the 

multiplication of iω in the frequency domain), we can guess that the high-

frequency components of wave have larger impedance than the low-frequency 

components. On the other hand, the admittance, which is defined by the 

inverse of the impedance (velocity over pressure), is a measurement of how 

the wave can easily propagate through the subsurface layers and is inversely 

proportional to the angular-frequency for the same reason of the impedance.  

As Berkhout (1985) explained, when we record the particle velocity fields 

induced by a pressure or body force source (i.e., the common data acquisition 
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for land survey), the physical meaning of Green’s function is the admittance, 

which is inversely proportional to the angular-frequency. For this reason, 

velocity components of Green’s function induced by Pressure source (or body 

force source) plays a role in assigning large weights to the low-frequency 

bands, which gives similar effects to some smoothing techniques (Fichtner et 

al. 2009) and the multi-scale approach (Bunks et al. 1995, Kim et al. 2011). 

When we record the particle displacement as we did in this paper, this 

smoothing effect of Green’s function can be amplified in the frequency 

domain due to the relationship of the time derivative of displacements to 

velocity. Because I use the CS-II method, in which the banded gradient 

direction has high-frequency characteristics as I discussed in Chapter 4.1, as 

an initial condition for the weighting, this smoothing effects will compensate 

the high-frequency dominance of the CS-II method. However, in my 

experience, the weighting effect of the Type-I weighting factor is not enough 

to compensate the high-frequency characteristics of the CS-II method. In 

addition, the Type-I weighting factor is not robust to noise spectrum because it 

is direct measure of the observed data. For these reasons, I also suggest the 

Type-II weighting factor, which is the amplified version of the Type-I 

weighting factor.  

 The backpropagation of the observed and the modeled data can be expressed 

by 

observed 1 *
true

*1 1
true true true           

T

T

v -

- -

é ù= ë û

é ù é ù= ë û ë û

S d

S S f
          (4-6) 

and 
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modeled 1 *
estimated

*1 1
estimated estimated estimated           

T

T

v -

- -

é ù= ë û

é ù é ù= ë û ë û

S u

S S f
.       (4-7) 

respectively. Because 
*1 1T- -é ù é ùë û ë ûS S  consists of the products of Green’s 

functions, we can say that the Type-2 weighting factor (eq. (4-3)) roughly 

measures the energy misfit (i.e., the square of amplitude difference) between 

the observed and the modeled data. Figure 4-10a describes the properties of 

the forward and the backward propagation of the wavefields. The forward-

propagated wavefields recorded at receivers are reflected at the top of the 

anomalous body just once (e.g., solid trace), whereas the wavefields, which 

are propagated along the solid trace and are recorded at receivers, are, in turn, 

backpropagated along the dashed trace. If it is possible to use the same 

modelling operator for both the forward and the backward propagation, the 

forward and the backward propagation of the wavefields will be along the 

same paths. From these phenomena, we can guess that if we use 

backpropagated wavefields recorded at the original source position (black-

filled circle in Figure 4-10), the original weighting effect of Type-I weighting 

factor will be amplified.  

 In eqs. (4-6) and (4-7), we assumed that we can compose the complex 

impedance matrix for true geological structures. However, in FWI, we 

backpropagate the observed data using the complex impedance matrix 

composed for the initial (or the estimated) models in which case the 

backpropagation of the residual vector can be expressed by 
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[ ]
*residual 1

estimated

1 * 1 *
estimated estimated          

T

T T

v -

- -

é ù= -ë û

é ù é ù= -ë û ë û

S d u

S d S u
          (4-8) 

The first term in eq. (4-8), 
1 *

estimated

T-é ùë ûS d , has uncertainty, which means that 

the backpropagated wavefields of the observed data propagate along different 

ray paths from those used for the forward propagation. Let me assume that the 

true geological and the initial models have a thick and a thin rectangular 

anomalous body, as shown in Figures 4-10a and 4-10b, respectively. For 

convenience, I only consider the reflected waves. While the observed data 

experience reflection due to the thick anomalous body, the recorded data are 

backpropagated based on the thin-layer model (initial guess) and their low-

frequency components (dotted lines in Figure 4-10b) may not be reflected 

because the layer of the initial guess is too thin compared to the wavelengths. 

As a result, the low-frequency components of the backpropagated wavefields 

cannot be recorded at the receiver for the virtual source (i.e., the original 

source position for forward propagation; black filled circle in Figure 4-10). In 

contrast, the high-frequency components of the backpropagated wavefields of 

the observed data (dashed lines in Figure 4-10b) can be reflected and recorded. 

This behavior of the backpropagated residual can have a negative influence on 

the spectral weighting effects if we only use the backpropagated residual 

recorded at the original source position used for the forward propagation. To 

avoid this problem, we use the average value of the backpropagated 

wavefields recorded at all the nodal points of the given model, as shown in eq. 

(4-3), to consider the energy of all the backpropagated seismic waves that are 
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transmitted or reflected. By doing so, we can roughly measure the energy 

misfits between the true and the modeled seismic signals. 

 The other advantage of the Type-II weighting factor is the robustness of the 

weighting factor to the noise spectrum. When the observed data include some 

noise, eq. (4-6) can be rewritten as 

observed 1 * 1 *
true true

T T

s nv - -é ù é ù= +ë û ë ûS d S d    ,       (4-9) 

Where the subscripts s and n denote the seismic signals and the noise, 

respectively. In contrast to the signals, because noise is only added during 

forward propagation to obtain the observed data (not during back propagation), 

the noise is relatively not amplified compared to the signals. Consequently, 

the back-propagation increases the spectral influence of the seismic signals on 

the weighting factor, which is the strength of the Type-2 weighting factor.  

 To investigate the sensitivity of the two weighting factors to the noise 

spectrum, I perform the elastic FWI for synthetic data with random noise for 

the thick rectangular-shaped model, whose signal-to-noise ratio gradually 

changes from 10 at the lowest frequency to 2 at the highest frequency. Figure 

4-11 show the two weighting factors over frequencies. From the Figure 4-12, I 

notice that the Type-1 weighting factor, which is the direct measure of the 

deconvolved residual, is sensitive to the noise spectrum and does not work 

properly for the noise-included data. In contrast, the Type-2 weighting factor 

is less sensitive to noise and acts as a weighting function relatively well, as 

shown in Figure 4-11. For above two advantages of the Type-2 weighting 

factor, I only consider the Type-2 weighting factor through the paper. 
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(a)   

 
(b)   

 

Figure 4-10 Schematic diagrams illustrating (a) the forward and backward 

propagations of the reflected waves by the thick rectangular-shaped 

anomalous body and (b) the backward propagation on the thin layer model. 

The black solid and dashed lines indicate the forward and backward wave 

paths, respectively. The dotted lines denote the backward wave paths for the 

low-frequency component. The black circle and inverted triangles indicate 

the seismic source and receivers, respectively. 
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(a) 

 
(b) 

 

Figure 4-11 Distribution of the (a) Type-I weighting factor and (b) the Type-

II weighting factor over frequencies without (dashed line) and with (solid 

line) random noise 
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4.3.3 Resolution Determination using Weighting Factor 

 

To investigate whether the weighting method improves inversion results and 

compensate the limitations of two conventional scaling methods, I perform 

elastic FWI using the weighting method and compare the results with those of 

the CS-I and the CS-II methods. Figure 4-12 shows the banded descent 

directions of the P-wave velocity for two simplified models obtained at the 

first iteration using the CS-I, CS-II and weighting methods. In Figures 4-12c 

and 4-12d, I observe that the three thin layers are well detected in the banded 

descent directions obtained using the CS-II method, whereas the thick 

anomalous body is not detected due to the dominance of high-frequency 

components as we discussed in Chapter 4.2.2. In contrast, in the descent 

directions obtained using the CS-I method (Figures 4-12a and 4-12b), the 

three thin layers are not resolved well, although anomalous bodies in the 

rectangular shaped-model are resolved as thicker than those obtained using 

the CS-II method. From Figure 4-12, I note that the dominant frequency in the 

descent directions does not change even though the true model is different and 

the spectral distribution of the deconvolved residuals is different in each case 

(Figure 4-9). Therefore, neither method reflects the relative spectral 

differences between the true and the initial models properly. In other words, 

the single-frequency descent directions computed at each frequency are not 

appropriately weighted depending on the given model. Figures 4-12e and 4-

12f illustrate the descent directions obtained at the first iteration using the 

weighting method. Unlike the CS-I and CS-II methods, both the targeted thick 
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body and the thin layers are well reflected in the descent directions.   

In summary, the two conventional scaling methods are quasi-monochromatic, 

which means that a certain frequency band is always emphasized in the 

descent direction regardless of the patterns of deconvolved residuals with 

frequency. This emphasis occurs because the normalization of the CS-II 

method excessively emphasizes high-frequency components, and in the CS-I 

method, the dominant frequency of the source wavelet is emphasized. 

Compared to the two conventional scaling method, the weighting method is 

much more flexible, and its banded descent directions appropriately describe 

the spectral variation of the deconvolved residuals, which are caused by the 

thickness difference between the true geological and the assumed models. In 

addition, the weighting method is not affected by the source spectrum 

(Figures 4-3e and 4-3f) and the Nyquist frequency (Figures 4-5c and 4-5d). 

 Figure 4-13 shows P-wave velocity models inverted by the CS-I, the CS-II 

and the weighting methods for the thick rectangular-shaped and thin-layers 

models. Because I fixed Poisson’s ratio over the entire model, the inversion 

results for the S waves are very similar to the results for the P waves. For this 

reason, I do not display the S-wave velocity models. The velocity structures 

obtained using the CS-II method are too thin (Figure 4-13c) because the 

parameter update focuses on the upper part of the anomalous body due to the 

high-frequency patterns in the banded descent directions. For the same reason, 

I also observe cycle-skipping artifacts below the anomalous body (see Figure 

1 in Bunks et al. (1995) and Figure 7 in Virieux and Operto (2009)). For the 

thin-layers model, whose deconvolved residuals are relatively unchanged, the 
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velocities recovered using the CS-II method are in good agreement with the 

true velocities. In Figures 4-13a and 4-13b, we can see that the velocity 

structures inverted by the CS-I method are not satisfactory. 

 On the other hand, the velocity structures reconstructed by the weighting 

method are much improved (Figures 4-13e and 4-13f) for both cases because 

the frequency components required to effectively recover the true velocities 

are properly weighted in the early stage of inversion, which yields reliable 

banded descent directions, as shown in Figures 4-12e and 4-12f.  
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(a)                             (b) 

 

(c)                             (d) 

 

(e)                             (f) 

 

Figure 4-12 Descent directions of P-wave velocity for the thick rectangular-

shaped (a, c and e) and thin layers models (b, d and f) at the first iteration 

obtained using the CS-I (a and b), CS-II (c and d) and weighting method (e 

and f)  
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(a)                             (b) 

 

(c)                             (d) 

 

(e)                             (f) 

 

Figure 4-13 P-wave velocity structures for the thick rectangular-shaped (a, c 

and e) and thin-layers (b, d and f) models obtained at the 20th iteration using 

the CS-I (a and b), the CS-II (c and d), and the weighting (e and f) methods. 
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4.4 Numerical Example for SEG/EAGE Salt Model 

 

 To examine whether the weighting method can properly recover more 

complicated models, which have both long- and short-wavelength structures, 

we perform elastic FWI using the conventional and weighting methods for the 

SEG/EAGE salt model. Figure 4-14 shows a 2-D section of the SEG/EAGE 

salt model (AA’ line). Parameters for the inversion are listed in Table 4-2. We 

use all of the frequencies in the range of 0.167 to 10 Hz with a frequency 

interval of 0.167 Hz although we know that reliable low-frequency signals are 

difficult to record in field explorations due to the noise (refer Chapter 5.1). It 

is well known that low-frequency components below 1 Hz are essential to 

properly invert salt models when initial velocities are poorly estimated 

(Abubakar et al. 2011). Plessix (2009) noted that low-frequency data can be 

obtained if we include the data recorded by OBS, which has been widely used 

in detecting earthquake waves. Nevertheless, using such low frequencies 

(0.167 Hz) may make the example of the salt model appear unrealistic. 

However, our purpose is to demonstrate if the weighting method can be 

effectively applied to the salt model, and we assumed the ideal case where 

very low frequencies are available. Figure 4-15 shows the velocity models 

inverted by the CS-I, the CS-II methods when we use the gradually increasing 

velocity and density models for the initial guesses. The initial P-wave 

velocities vary from 1.5 to 3.06 km/s, and the initial S-wave velocities are 

determined from the initial P-wave velocities and Poisson’s ratios fixed at 

0.25. In Figure 4-15, we observe that the salt bodies recovered by both the 
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CS-I and CS-II methods are thinner than the salt body of the true model and 

that the velocities below the salt body are higher than the velocities of the 

original versions. These phenomena are commonly encountered in 

conventional elastic waveform inversion for the salt model even though we 

also use very-low-frequency data. The results for the CS-I method (Figure 4-

15a) have similar problems to the results from the CS-II method. On the other 

hand, the P-wave, S-wave velocity models and the density obtained using the 

weighting method (Figure 4-19) agree well with the true velocity models even 

though the initial models are poorly estimated, and the frequency selection 

strategy is not applied. In Figure 4-19, I confirm that, using the weighting 

method, we can recover the thickness of the salt body properly and that the 

background velocities below the salt body are also well reconstructed by 

controlling the spatial resolution automatically.  

 Figures 4-16, 4-17 and 4-18 show the banded descent directions for the P-

wave velocity obtained by the CS-I, CS-II and the weighting methods at the 

100th and 200th iterations. In the early stage of inversion, the low-frequency 

components of the descent directions are heavily weighted without any human 

intervention in the weighting method to reduce errors caused by the thick salt 

body. As iteration proceeds, the descent directions constructed by the 

weighting method become much more compatible with the true velocity 

model, while the images produced using the CS-I and the CS-II methods are 

not notably improved. 

 Figure 4-20b shows the normalized weighting factors extracted at the 100th 

and 200th iterations to confirm the relationship between the weighting factors 
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and the descent directions shown in Figures 4-18 and 4-20. In the early stage 

of inversion, the weighting factors for low frequencies are greater than the 

factors for the high frequencies, which contributes to recovering the long-

wavelength structures related to the salt body. Because large errors in the low-

frequency band are reduced as the iterations proceed and the thick salt body is 

recovered to some extent due to good descent directions, the weights for the 

high-frequency band become relatively larger to restore the short-wavelength 

structures. This behavior of my weighting factor, in particular, the weights for 

the low-frequencies in early stage of in version, provides weighting effects 

similar to those of Lazaratos et al. (2011) and Routh et al. (2011). However, 

compared with their fixed shaping, the weights of my weighting method are 

automatically and flexibly determined depending on the spectral differences 

of the deconvolved residual during the FWI.  
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(a)   

 

(b)   

 

(c)   

 

(d)   

 

Figure 4-14 The SEG/EAGE salt model: (a) the P-, (b) the S-wave velocities, 

(c) the Poisson’s ratios and (d) the densities. 
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(a) 

 

(b) 

 

Figure 4-15 P-wave velocity structures obtained at the 300th iteration using 

(a) the CS-I and (b) the CS-II methods for the SEG/EAGE salt model when 

the initial P-wave velocity increases linearly from 1.5 to 3.06 km/s. 

 

 

Table 4-2 Inversion parameters used for the 2D SEG/EAGE salt model 
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(a) 

 

(b) 

 

Figure 4-16 Descent directions for the P-wave velocity obtained at the (a) 

100th and (b) 200th iterations using the CS-I method. 
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(a) 

 
(b) 

 

Figure 4-17 Descent directions for the P-wave velocity obtained at the (a) 

100th and (b) 200th iterations using the CS-II method. 
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(a) 

 
(b) 

 

Figure 4-18 Descent directions for the P-wave velocity obtained at the (a) 

100th and (b) 200th iterations using the weighting method. 
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(a) 

 
(b) 

 
(c) 

 

Figure 4-19 (a) P-, (b) S-wave velocity and (c) density structures obtained at 

the 300th iteration using the weighting method for the SEG/EAGE salt model 

when the initial P-wave velocity increases linearly from 1.5 to 3.06 km/s. 
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(a) 

 
(b) 

 

Figure 4-20 (a) The variation of the weighting factors through iterations and 

(b) that of the normalized weighting factor. 
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Chapter 5. Spectral Filtering Scheme 

 

5.1 Noise-behavior in the frequency-domain FWI 

 

 Before introducing my spectral filtering scheme, I analyze the noise- 

behavior during frequency-domain FWI in the spectral and spatial aspects. In 

the inverse problem that we discussed in Chapter 2, the gradient direction is 

determined to minimize the misfit between the field data and modeled data. If 

the field data are noise-free, the model parameters obtained around the global 

minimum can properly describe subsurface structures because the modeled 

data are also noise-free. However, because field data are usually contaminated 

by noises, the model parameters determined around the global minimum can 

deviate from those of subsurface structures. In the former case, the gradient 

direction is only affected by seismic events, which will be called the ‘pure 

seismic-gradient direction’ throughout the paper. In the latter case, the 

gradient direction is influenced by both seismic events and noises, which will 

be referred to as the ‘total gradient direction’. 

 In the noise-included inverse problem, because the observed data are 

expressed by 

event noise= +d d d ,               (5-1) 

The total gradient direction for the single-frequency data can be written as 

follows: 
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where the superscripts event and noise indicate the seismic event and noise, 

respectively. In eq. (5-2), the total gradient direction in the noise-included 

inverse problem can be divided into two directions. The first direction, 

( )eventE wÑp , is the pure seismic-gradient direction, which corresponds to the 

aforementioned noise-free inverse problem for describing subsurface 

structures. The second direction, ( )noiseE wÑp , is caused by the noise in the 

observed data, which will be referred to as the ‘noise direction’ throughout the 

paper. This direction corresponds to the reverse time migration (RTM) image 

obtained by only back-propagating the noise components. As demonstrated by 

eq. (5-2), the parameter change vector in the noise-included inverse problem 

can be distorted due to the artifacts induced by the RTM image of the noise 

components. The lower the S/N ratio is, the more distorted are the inversion 

results. In Appendix C, we discuss the noise direction caused by various types 

of noise. 

 In Figure 5-1a, the schematic diagram shows the relationship between the 

pure seismic and total gradient directions. In the noise-free inverse problem, 

the inversion process concentrates on finding the seismic global minimum 

solution, which is the goal of seismic inversion. However, when noise is 

included in the inverse problem, the inversion process converges to the total 

global minimum while updating the combination of the pure seismic-gradient 

direction and the noise direction (e.g., Figure 5-1a). In addition, the parameter 

update along the noise direction can yield numerous local minima during the 
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inversion process. Consequently, the optimized solutions for noisy data can 

deviate from the seismic global minimum solutions (which are the desired 

solutions) due to the parameter updating along the noise direction. For this 

reason, to obtain reasonable solutions from noisy observed data, we must 

constrain the data-fitting process along the noise direction to make the model 

parameter converge to the seismic global minimum solution, as shown in 

Figure 5-1b. 

 To do so, the analysis of the noise behavior according to the noise 

distribution is required because real field data include various types of noise 

and because the noise distribution is not uniform. The noise distribution can 

be analyzed with respect to three factors: the receiver, the frequency and the 

arrival time (or depth). In Figure 5-2a, we display the noise distribution in the 

residual wavefields with a 3-D cube whose axes represent the receiver, the 

frequency and the arrival time. The noise distribution along the receiver axis 

describes the magnitude of the noise recorded at each receiver. The noise 

distribution along the frequency axis is dependent on the noise type. In other 

words, the waveform of noise determines the distribution of noise along the 

frequency axis. The noise distribution along the arrival-time axis indicates 

when the noise is dominantly recorded and which of the reflected waves (e.g., 

the waves reflected from shallow or deep structures) are highly contaminated 

by noise. When considering only primary reflected waves, the arrival time 

axis can be converted into the depth axis, as is done in migration. 

 The effect of the noise distribution for the receivers can be minimized by 

choosing an optimal objective function. Numerical studies have demonstrated 
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that several objective functions, such as the l1-norm, Huber norm, l1/l2 hybrid 

norm and Student’s t-distribution, can improve the robustness of FWI for data 

including spike-shaped noise. For example, in FWI based on the l1-norm 

objective function, normalizing the residuals measured at each receiver using 

their amplitudes plays a role in making the noise levels over all receivers 

commensurate with each other, consequently enhancing the robustness of the 

inversion for spike-shaped noise. However, although these objective functions 

minimize the effect of the noise distribution for the receivers, they do not 

consider the noise distributions for frequency and arrival time. This limitation 

may explain why conventional FWI fails to provide good inversion results for 

data containing random noise. Frequency-domain FWI is independently 

conducted for each single-frequency data set. Therefore, if noise dominates 

the data in certain frequency bands, the gradients at those frequencies can be 

distorted due to the severely noise-contaminated residual vectors. However, 

the conventional FWI methods do not prevent these distorted gradients from 

contributing to the final gradient direction. 

 In general, because the gradients for deeper structures have smaller values 

than those for shallower structures due to geometrical spreading effects, the 

model parameter updates are focused on shallow parts in the early iterations 

and then move to deeper parts as the iteration proceeds in the frequency-

domain FWI. For noisy data, if shallow structures are recovered to some 

extent as the iteration proceeds, the percentage of noise increases in the 

residual wavefields for the early-arrival reflected waves, distorting the 

gradients for the shallower parts and degrading the inversion results. To obtain 
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reasonable results from noisy data, the influence of the noise distributions for 

frequency and depth, as well as the receivers, should be suppressed. 

 In this chapter, I will introduce the denoise function, which helps to reduce 

the data-fitting procedure along the noise direction for frequency axis. With 

related to the technique to suppress the parameter updating along the noise 

direction for depth axis, in Chapter 6-2, I will discuss the depth scaling 

strategy using Levenberg-Marquardt method. For the easy analysis, I do not 

consider the spectral weighting scheme, which is introduced in Chapter 4. 

This Chapter is edited version of Oh and Min (2013b). 
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(a) 

 

(b) 

 

Figure 5-1 Schematic diagrams illustrating the parameter search directions 

in the noise-included FWI algorithm (a) without and (b) with constraints 

refraining from the data-fitting process along the noise direction. The dotted 

arrows indicate the pure seismic-gradient direction that leads to the seismic 

global minimum solution (gray filled circle) and the dashed arrows denote 

the noise direction. The solid arrows represent the total gradient direction 

leading to the total global minimum solution (black filled circle). 
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(a)

     

(b)

   

Figure 5-2 Schematic diagrams illustrating (a) a 3D noise-distribution model 

with frequency, receiver and arrival time (or depth) axes and (b) a 2D noise-

distribution model with frequency and arrival time axes. The gray points 

indicate noise, and their size represents the intensity of the noise. 

 

 



 

 

 

119

5.2 Review of Previous Studies on Broadband Seismic 

Noise 
 

 Before introducing the denoise function, we briefly review the previous 

studies of broadband seismic noise. During a seismic survey, various types of 

noise can be included in field data (Figure 5-3). Particularly, for a land 

seismic survey, recorded data can be severely contaminated by dispersive 

ground roll and ambient ground motion. When we apply the 2-D elastic FWI 

to field data, the 2-D approximation of 3-D field data can also be a major 

source of noise because of the amplitude loss caused by spherically expanding 

wavefronts and some coherent noises reflected from interfaces located out of 

the vertical plane including the survey line. To alleviate the effects of ground 

roll and coherent noise, several techniques, such as the f-k filtering method, 

the borehole seismic survey and the coherent noise removal technique (Abma 

1995; Guitton 2003), have been actively studied. 

 The ambient ground motion has broad frequency range depending on the 

source of noise. According to Peck (2008), the ambient ground motion can 

come from two types of sources: natural and cultural. Natural sources include 

the wind and ocean. Although there are some regional variations, low-

frequency ground motions (referred to as microseisms), which are caused by 

large-scale meteorological events or the wave motion of large bodies of water, 

typically have a dominant frequency below 0.5 Hz (Bard et al. 2003). Small 

scale wind also causes ground motions with various frequencies depending on 

the speed of the wind (Kanasewich 1990). Cultural sources of ground motion 

are mainly the result of human activities, such as the movement of vehicles 
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and the operation of machinery, and these tend to produce high-frequency 

vibrations (Butler 1975).  

 To alleviate the effect of ambient ground motion, we can apply frequency 

filters to the Fourier-transformed recorded data to cut off undesired frequency 

components. To design an appropriate frequency-filter, we need to know the 

noise spectrum for the survey area. However, even though we have 

information about the noise spectrum, the frequency filter designed for the 

noise spectrum might not properly work during the FWI. When we design 

frequency filters, we define the passband as a trapezoid rather than a boxcar to 

avoid the Gibbs phenomenon (Yilmaz 2001). In this case, the sloping areas of 

the frequency filters may work against our original intention, depending on 

the scaling methods used in the inversion algorithms (refer Chapter 4 spectral 

weighting scheme or Oh and Min 2013a). For this reason, one option for 

robust FWI is to simply discard undesired frequency components during the 

inversion, as Shin and Min (2006) did. However, if the observed data have a 

small amount of noise at a certain frequency, this approach can degrade the 

inversion results or cause a loss of resolution. Moreover, when the noise is 

scattered over many frequencies, it may not be easy to filter out the noisy 

frequency components.  
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Figure 5-3 Schematic diagram illustrating the generation and propagation of 

the random noise. Black arcs represent the wavefronts of random noise. The 

cultural random noises are written in italics.  
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5.3 Spectral Filtering using Denoise function 

 

5.3.1 Mathematical expression of the Denoise Function 

 

 To complement the limitations of frequency filters, I suggest using the 

denoise function (Oh and Min 2013b). Several studies have shown that some 

objective functions can improve the robustness of the full waveform inversion 

for outliers (Pyun et al. 2009) and coherent random noise (Brossier et al. 

2010). However, in my experience, it is doubted that these objective functions 

are also robust to the incoherent random noise, such as the ambient ground 

motion. Because the spectrum of the ambient seismic noise is independent of 

the seismic source spectrum, the S/N ratios of the observed data at each 

frequency are determined by the combination of the source and noise spectra. 

Therefore, we need to introduce a denoise function during seismic waveform 

inversion to provide reasonable weights to each single-frequency descent (or 

gradient) direction, depending on its S/N ratio. Considering that field data 

contain noise and that synthetic data are noise-free, I construct the denoise 

function as 
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where s and r indicate the shot and receiver numbers, respectively, and e is a 

control factor to adjust the degree of noise suppression. 
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 The denoise function is designed based on the characteristics of the seismic 

signal and the ambient ground motion. Considering the randomness of the 

noise sources (wind, oceans and human activities), I assume that the ambient 

ground motions are randomly recorded at each receiver of each shot gather. In 

contrast, the monochromatic seismic signals resemble sine or cosine curves, 

although they are damped depending on the propagation distance. We know 

that summing sine or cosine curves with different phases causes their 

amplitudes to cancel each other out in some places. Based on this fact, we can 

guess that summing the seismic signals with those recorded at adjacent shot 

gathers will have the effect of suppressing signals if the number of shots is 

enough. If the distance between shots is far enough, the degree of amplitude 

suppression is not big due to the damping effect of signals and thus amplitude 

level of summed signal can be maintained in the original level. 

 The denoise function is based on these properties of signal and random noise. 

For the denoise function, observed and modeled data are first summed over 

the entire shot (Step 1), which likely cancels out seismic signals due to their 

monochromatic property but also amplifies certain types of noise, particularly 

random noise. By summing the absolute values of summed data over the 

entire receiver (Step 2), we can roughly measure the ratio of signal to noise 

over different frequencies. 

 If we assume that field data are noise-free at certain frequencies, the denoise 

function can be approximated as 1 if the assumed velocity structure and the 

estimated source wavelet are close to the true velocity structure and the true 

source wavelet, respectively, as the iteration proceeds: 
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Here, the superscript ‘model’ indicates that the respective variables are purely 

derived from geological models and do not include noise. For noisy data, the 

denoise function can be approximately proportional to the S/N ratio because  

monochromatic signals tend to be partially canceled out by those at adjacent 

shot gathers when they are added together (see Figures 5-7, 5-8 and 5-9). As a 

result, the denominator of eq. (5-4) can dominated by noise, which can be 

expressed as  
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where ( )s w  and ( )n w  are the spectra of the seismic signals and noises, 

respectively.  

 Introducing the denoise function into eq. (2-11) gives  

{ }{ }1( )
descent NRM ( ) NRM diag ( ) ( )l g E

w

d w w w
-é ù= - ´ é ù Ñë ûë ûå pp H .  (5-6) 

In eq. (5-6), we expect that the denoise function plays a role in weakening the 

influence of severely noise-contaminated frequency components on the total 

descent direction and acts similar to a frequency filter for descent (or gradient) 

direction. 
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 The degree of noise suppression is also affected by the control factor, e. If 

the control factor is 0, the denoise function is 1, and the gradient vector is the 

same as that of the conventional waveform inversion. The larger the control 

factor is, the more strictly noise is suppressed, which means that the slope of 

the denoise function becomes steeper. An appropriate control factor can be 

chosen depending on which we prefer between noise suppression and spatial 

resolution because there is a trade-off between noise suppression and 

resolution loss in inversion results depending on the control factor. 
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5.3.2 Practical Aspects of the Denoise Function 

 

 We investigate the effect of the denoise function by applying the l2-norm 

elastic FWI to synthetic data with several monochromatic random noises for 

the layered model shown in Figure 5-4. For simplicity, we assume that the 

Poisson’s ratio and density are constant at 0.25 and 2.0 g/cm3, respectively, for 

the entire model. The inversion parameters are listed in Table 5-1. The first 

derivative of the Gaussian function is used as a seismic source wavelet. The 

initial P- and S-wave velocities gradually increase from 1.5 to 4.5 km/s and 

from 0.866 to 2.581 km/s, respectively. 

 To investigate why the conventional FWI is weak for random noise produced 

by the ambient ground motion, we assume that the observed data include 

several types of monochromatic noise. We add monochromatic random noise 

only at integer frequencies, with the maximum amplitude set such that the 

spectral S/N ratio (i.e., maximum amplitude of signal over maximum 

amplitude of random noise) is 2 at all frequencies. Although this example is 

unrealistic, the approximation is useful for investigating problems of the 

conventional method and for assessing the sensitivity of the denoise function 

for the banded data. Figure 5-5 shows the real part of the Fourier-transformed 

true data, contaminated by monochromatic random noise at only integer 

frequencies. Because random noise is added at integer frequencies, the 

seismic signals at 5 and 10 Hz are contaminated by random noise, whereas 

those at 2.67 and 7.67 Hz are noise-free. Figure 5-6 shows single-frequency 

descent directions of P-wave velocity obtained when monochromatic random 
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noise is added to observed data in the inversion. By comparing the descent 

directions obtained for the random noise-added data (Figure 5-6b) with those 

for the noise-free data (Figure 5-6a), I confirm that random noise distorts the 

single-frequency descent directions. 

 Figure 5-7a shows the amplitude spectra of the monochromatic random noise 

and the noise-free observed data. To consider all the data at each frequency, 

amplitudes of data and random noise are summed over whole receivers and 

shots. Figure 5-7b shows the variation of the denoise function during the 

inversion. In the early stage of the inversion, the denoise function for the 

noise-free frequency components deviates from 1 because the modelled data 

deviate from field data. However, as the iteration proceeds, the denoise 

function approaches 1, supporting eq. (5-4). In the noise-contaminated 

frequencies, the denoise function has relatively small values which indicates 

that the denoise function is proportional to the S/N ratio of the random noise-

included data, as shown in eq. (5-5). In Figure 5-7b, the denoise function for 

monochromatic random noise resembles a notch filter. Based on these results, 

we expect that the denoise function will effectively filter out severely noise-

contaminated gradients during the inversion. 

 However, we can also observe that the values at the low-frequency bands are 

relatively larger than those at the high-frequency bands, although the S/N ratio 

is the same over the entire frequency spectrum. This phenomenon can be 

explained by the spectral sensitivity of the denoise function. Figures 5-8 and 

5-9 show the principle of the denoise function (i.e., Step 1 in eq. 14) at 10 and 

5 Hz, respectively.  
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Figure 5-4 (a) P-wave and (b) S-wave velocity structures for the layered 

model. 

 

 

 

 

 

Table 5-1 Parameters used in the inversion for the layered model 
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(a) 

 

(b) 

 

Figure 5-5 Real parts of the (a) horizontal and (b) vertical displacements of 

frequency-domain synthetic data with monochromatic random noise 

obtained for the layered model at 2.67 Hz, 5 Hz, 7.67 Hz and 10 Hz. 
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(a) 

 

(b) 

 

Figure 5-6 Mono-frequency descent directions of the P-wave velocity 

obtained at the 5th iteration for (a) noise-free data and (b) data containing 

monochromatic random noise obtained for the layered model. 
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(a) 

 

(b) 

 

Figure 5-7 (a) Amplitude spectra of the monochromatic random noise (red 

line) and noise-free seismic signal generated using the first derivative of the 

Gaussian function (black line), summed over shots and receivers, and (b) 

spectra of the denoise functions (e=2) at the 2nd (solid black line), 25th 

(dashed black line) and 50th (solid red line) iterations. 
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(a)     

 

(b)     

 

(c)     

 

(d)     

 

Figure 5-8 Real components of the horizontal displacements for the noise-

free monochromatic signals (a and b) and monochromatic random noises (c 

and d) at 10 Hz before (a and c) and after summation over 100 adjacent shot 

gathers (b and d). For visualisation, we only display 5 shot gathers for (a) 

and (c). 



 

 

 

133

(a)     

 

(b)     

 

(c)     

 

(d)     

 

Figure 5-9 Real components of the horizontal displacements for the noise-

free monochromatic signals (a and b) and monochromatic random noises (c 

and d) at 5 Hz before (a and c) and after summation over 100 adjacent shot 

gathers (b and d). For visualisation, we only display 5 shot gathers for (a) 

and (c). 
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(a)     

 

(b)     

 

(c)     

 

(d)     

 

Figure 5-10 Real components of the horizontal displacements for the noise-

free monochromatic signals (a and b) and monochromatic random noises (c 

and d) at 0.2 Hz before (a and c) and after summation over 100 adjacent shot 

gathers (b and d). For visualisation, we only display 5 shot gathers for (a) 

and (c). 
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In Figures 5-8 and 5-9, we display raw monochromatic seismic signals, 

random noises and their respective summed data over 100 adjacent shot 

gathers. For raw data, we only show 5 shot gathers for visualization. As we 

mentioned in the previous section, the monochromatic seismic signals are 

cancelled out and their amplitudes are lowered, particular in the central part of 

the survey line, where superposition occurs most often (Figures 5-8b and 5-

9b). In contrast, the random noise is amplified, although some reductions also 

occur (Figures 5-8d and 5-9d). Figure 5-10 shows raw and summed seismic 

signals and random noise at 0.2 Hz. Compared to the high-frequency 

examples, the extremely low-frequency seismic signals are amplified because 

of their long wavelengths. Based on Figures 5-8b, 5-9b and 5-10b, I can 

confirm that the sensitivity of the denoise function is inversely proportional to 

frequency. That is why the value of the denoise function increases at low 

frequency in Figure 5-7b even though I suppose the same S/N ratio of the 

observed data through all the frequencies. However, if we take the sum of 

only 5 shot gathers to calculate the denoise function, the amplification of the 

low-frequency signals will not be so large, and the sensitivity of the denoise 

function for the very low-frequency data will be improved. In other words, the 

interval of sources and the number of shot gathers summed for the denoise 

function will be important for obtaining a more reliable denoise function. 

Further study is needed on this issue. 

 Figure 5-11 compares the descent directions of the P-wave velocity obtained 

at the 5th iteration using the denoise function with those obtained without the 

denoise function (i.e., the conventional method). The descent direction 
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obtained by the conventional method are distorted even though only 10 

frequency components are contaminated by random noise. This occurs 

because all frequency components contribute to the total descent direction, 

irrespective of their noise contamination. However, in the FWI using the 

denoise function, the descent directions are much improved because the noise-

dominated components are filtered out by the notch filter-like denoise 

function. Figure 5-12 shows the inversion results obtained with and without 

the denoise function. The inverted velocity structures obtained using the 

denoise function are also more compatible with true velocities than those 

obtained using the conventional waveform inversion. There results 

demonstrate that the denoise function is nearly proportional to the S/N ratio of 

the observed data contaminated by random noise, and they show that it 

prevents noise-contaminated components from affecting the total descent 

direction. 
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 (a) 

 

(b) 

 

Figure 5-11 Gradient directions of the P-wave velocity obtained at the 5th 

iteration for data with monochromatic random noise, (a) without and (b) 

with the denoise function. 
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(a) 

 

(b) 

 

Figure 5-12 Recovered P-wave velocity structures at the 50th iteration (a) 

without and (b) with the denoise function for data with monochromatic 

random noise added at only integer frequencies. 
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5.4 Numerical Examples: Elastic Marmousi-2 Model 

 

I need to demonstrate that the denoise function can improve inversion 

results for data contaminated by various types of random noise. To do this, we 

conduct the l2-norm elastic FWI for the modified version of the elastic 

Marmousi-2 model (Figure 3-16) with linearly increasing initial models 

(Figure 3-17). We assume three types of random noise: white, low-frequency 

and high-frequency.   

 

5.4.1 Effect of Source Spectrum 

 

In the frequency-domain FWI, the influence of noise is determined not only 

by the noise spectrum but also by the source spectrum. To investigate the 

effect of the source spectrum during FWI of noisy data, we perform the elastic 

FWI for synthetic data with white random noise, which is randomly generated 

in the frequency-domain. We suppose two types of source spectra. One is the 

first derivative of the Gaussian function, whose energy is mainly concentrated 

around a quarter of the maximum frequency (Figure 4-3). The other source 

function is the Ricker wavelet, whose central frequency is approximately half 

of the maximum frequency as shown in Figure 4-3. Figure 5-13a shows total 

amplitude spectra of the random noise and noise-free signals. In Figure 5-13a, 

we observe that the high-frequency components are severely contaminated by 

the random noise due to the weak energy of the first derivative of the 

Gaussian function at high frequencies. Considering that high-frequency 

components mainly contribute to recovering short-wavelength structures in 
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the inversion, we expect that short-wavelength structures are severely 

distorted by the random noise. 

 In this numerical example for white random noise, we can guess that the 

spectral S/N ratio is proportional to the source spectrum because the density 

of noise is uniform for the entire frequency. Figure 5-13b shows the denoise 

function over varying frequency for white random-noisy data during the 

inversion. The denoise function resembles the source spectrum, except at low-

frequency bands. This is due to the insensitivity of the denoise function at 

low-frequency bands, as was mentioned before (Figure 5-10). In this case, the 

denoise function resembles a low-pass filter, which helps to suppress the 

effects of noisy high-frequency components of the descent direction on model 

parameter updates. In other words, the denoise function acts as a frequency-

filter for the descent direction (or gradient direction) that is designed semi-

automatically (except the control factor, e) from the spectra of the random 

noise in field data without any prior information. Figure 5-14 shows the 

descent direction of the P-wave velocity obtained with and without the 

denoise function at the 50th iteration. The descent direction obtained without 

the denoise function (Figure 5-14a) is contaminated by the random noise 

because of the large contributions of high-frequency descent direction, which 

is induced by the normalizing operator in eq. (2-12). On the other hand, the 

effects of the random noise are not dominant in the descent direction obtained 

using the denoise function, which indicates that the noisy gradients for high 

frequencies are effectively filtered out, although some low-frequency artifacts 

are updated due to the inaccurate value of the denoise function at low-
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frequency bands, as shown in Figure 5-13b. Figure 5-15 shows the recovered 

velocity structures obtained using the FWI with and without the denoise 

function at the 130th iteration. In the conventional method (Figure 5-15a), the 

recovered P-wave velocities are also distorted by the random noise. Detailed 

structures are poorly inverted, particularly at greater depths. The P-wave 

velocity structure inverted using the denoise function (Figure 5-15b) are fairly 

compatible with the true P-wave velocity structure.   
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(a) 

 

(b) 

 

Figure 5-13 (a) Amplitude spectra of the white random noise (dashed line) 

and noise-free seismic signal generated using the first derivative of the 

Gaussian function (black line), summed over shots and receivers, and (b) 

spectra of the denoise functions (e=1) at the 2nd (solid black line), 50th 

(dashed black line), and 100th (dotted black line) iterations. 
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(a) 

 

(b) 

 

Figure 5-14 Descent directions of the P-wave velocity obtained at the 50th 

iteration for the white random noise–included data generated using the first 

derivative of the Gaussian function (a) without and (b) with the denoise 

function. 
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(a) 

 

(b) 

 

Figure 5-15 Recovered P-wave velocity structures at the 130th iteration (a) 

without and (b) with the denoise function for data with white random noise 

obtained by the first derivative of the Gaussian function. 
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To verify the behavior of the denoise function for different source wavelets, 

we also perform the frequency-domain elastic FWI for the observed data 

obtained by the Ricker wavelet with the same inversion setting as the previous 

example. The same white random noise is also added to the observed data, as 

shown in Figure 5-16a. In this case, the low-frequency components of the 

observed data are severely contaminated by the random noise due to the weak 

energy of the Ricker wavelet at the low-frequency bands (Figure 4-3). As 

shown in Figure 5-16b, the denoise function has a similar spectrum to that of 

the Ricker wavelet. Comparing Figure 5-16 with Figure 5-13, we note that the 

denoise function for the Ricker wavelet is different to that of the first 

derivative of the Gaussian function in two aspects. First, the denoise function 

for the Ricker wavelet does not have large errors at low frequencies as a result 

of the Ricker wavelet as the low-frequency band. As shown in eq. (5-5), if the 

signals ( model
, ( )s ru w ) are sufficiently weak compared to the noise ( noise

, ( )s rd w ), we 

can guess that the small variation of the signals does not cause any large 

variation in calculating the denoise function. The other dissimilarity is the 

unexpectedly large contribution at high-frequency band in spite of the low 

S/N ratio. The reason can be explained by a resonance frequency of denoise 

function. Because the denoise function is calculated by summing all the 

signals over entire shots, at each single frequency, the results are sensitive to 

the wavelength of seismic signals. If the velocities of surface are 

homogeneous in elastic media, the denoise function has two kinds of peaks 

that are caused by resonances of P-waves and S-waves, respectively, and can 
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be expressed by 

resonance

c
f

s
=
D

.                     (5-7) 

where sD  indicates the interval of sources. For examples, if the P-wave and 

S-wave velocities are 1.5 and 1.0 km/s and shot interval is 0.1 km, the denoise 

function has peak values at every 10 Hz due to S-waves and 15 Hz due to P-

waves. When we apply the FWI for marine data, the resonance frequency of 

the denoise function can be exactly calculated and removed during the FWI. 

However, this resonance frequency cannot be calculated and might not be 

severe in elastic media where seismic velocities at surface are heterogeneous. 

However, when we use homogeneous initial velocities at surface, the 

resonance frequency causes unexpected large values of the denoise function 

around resonance frequencies like this numerical examples. In contrast, in the 

example for the first derivative of the Gaussian function, such resonances did 

not arise because the first derivative of the Gaussian function has weak energy 

at high-frequency bands. Figures 5-17 and 5-18 show the descent directions of 

the P-wave velocity at the 100th iteration and the recovered P-wave velocity 

structures at the 200th iteration, respectively. The descent direction obtained 

without the denoise function (Figure 5-17a) is mainly distorted by low-

frequency components of random noise because of the small S/N ratio at low 

frequencies, which is caused by the weak energy of the Ricker wavelet. In 

contrast, the effects of low-frequency random noise are not dominant in the 

descent direction obtained using the denoise function (Figure 5-17b) because 

the denoise function acts similar to a high-pass filter in this case. 
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Consequently, the P-wave velocities recovered using the denoise function 

(Figure 5-18) are quite compatible with true velocities. Some structures, such 

as the layers, the salt body, the unconformity, the anticlines above and below 

the unconformity and several faults in the central part of the model, are well 

recovered compared to the results of the conventional FWI. However, giving 

less weight to the noise-dominant low-frequency data makes the convergence 

rate slow, and the deeper structures are not properly recovered, although there 

are great improvements.  
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(a) 

 

(b) 

 

Figure 5-16 (a) Amplitude spectra of the white random noise (dashed line) 

and noise-free seismic signal generated using the Ricker wavelets (black 

line), summed over shots and receivers, and (b) spectra of the denoise 

functions (e=1) at the 2nd (solid black line), 50th (dashed black line), and 

100th (dotted black line) iterations. 
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(a) 

 

(b) 

 

Figure 5-17 Descent directions of the P-wave velocity obtained at the 100th 

iteration for data with white random noise generated using the Ricker 

wavelet (a) without and (b) with the denoise function. 
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(a) 

 

(b) 

 

Figure 5-18 Recovered P-wave velocity structures at the 200th iteration (a) 

without and (b) with the denoise function for data obtained by the Ricker 

wavelet and included by white random noise. 
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5.4.2 Effect of Noise Spectrum 

 

Generally, the random noise, which is produced by the ambient ground 

motion from natural sources such as wind and ocean microseisms, is dominant 

at the low-frequency band, as discussed above. Although the dominant 

frequency of noise changes depending on the site characteristics, we assume 

that the low-frequency random noise is dominant below 2 Hz. Figure 5-19 

shows the spectra of noise-free seismic signal and the low-frequency random 

noise, which are used for the observed data. 

Compared to the conventional method, the denoise function works quite well 

during the inversion and provides a reasonable solution, as shown by the 

descent directions (Figure 5-20) and the recovered P-wave velocities (Figure 

5-21). 

 The high-frequency dominant random noise is generated after the ambient 

ground motion from cultural sources, such as moving vehicles or heavy 

machinery near the road and production well. Although this type of cultural 

noise can be transient, and thus dependent on time, we add the high-frequency 

random noise to the whole shot gathers, but the noise amplitudes are 

randomly determined. Figure 5-22 shows the amplitude spectra of the noise-

free signal and random noise and the variations of the denoise function during 

the FWI. We observe that the denoise function well reflects the S/N ratio of 

the observed data. Using this low-pass filter-like denoise function, the 

calculated descent direction (Figure 5-23) is nearly noise-free, and the 

recovered P-wave velocities are in good agreement with the true P-wave 
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velocities. 

 Based on these results for my four numerical examples, I am convinced that 

the conventional frequency-domain FWI does not properly cope with the 

spectral variations of the S/N ratio, which are determined by the noise and 

source spectra. In contrast, the denoise function reshapes the gradient (or 

descent) spectrum by giving less weight to the noise-dominant single 

frequency gradient directions, depending on the S/N ratio of the observed data, 

and provides a reasonable solution in the presence of the random noise with 

little human intervention. 
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(a) 

 

(b) 

 

Figure 5-19 (a) Amplitude spectra of the low-frequency random noise 

(dashed line) and noise-free seismic signal generated using the first 

derivative of the Gaussian function (black line), summed over shots and 

receivers, and (b) spectra of the denoise functions (e=1) at the 2nd (solid 

black line), 50th (dashed black line), and 100th (dotted black line) iterations. 
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(a) 

 

(b) 

 

Figure 5-20 Descent directions of the P-wave velocity obtained at the 100th 

iteration (a) without and (b) with the denoise function for data with low-

frequency random noise generated using the first derivative of the Gaussian 

function. 
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(a) 

 

(b) 

 

Figure 5-21 Recovered P-wave velocity structures at the 200th iteration (a) 

without and (b) with the denoise function for data with low-frequency 

random noise obtained using the first derivative of the Gaussian function. 
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(a) 

 

(b) 

 

Figure 5-22 (a) Amplitude spectra of the high-frequency random noise 

(dashed line) and noise-free seismic signal generated using the first 

derivative of the Gaussian function (black line), summed over shots and 

receivers, and (b) spectra of the denoise functions (e=1) at the 2nd (solid 

black line), 50th (dashed black line), and 100th (dotted black line) iterations. 
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(a) 

 

(b) 

 

Figure 5-23 Descent directions of the P-wave velocity obtained at the 50th 

iteration (a) without and (b) with the denoise function for data with high-

frequency random noise generated using the first derivative of the Gaussian 

function. 
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(a) 

 

(b) 

 

Figure 5-24 Recovered P-wave velocity structures at the 130th iteration (a) 

without and (b) with the denoise function for data with high-frequency 

random noise obtained using the first derivative of the Gaussian function. 
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Chapter 6. Depth Scaling Scheme 

 

 As I discussed in the beginning of Chapter 5, we also consider the noise 

distribution along the arrival time or depth axis to reduce the influence of the 

noise. Therefore, in addition to the spectral filtering scheme using the denoise 

function, I also suggest to use the Levenberg-Marquardt method with flexible 

damping factor. Because noise can hide weak reflections in certain time 

windows, as mentioned above, FWI might not provide reasonable solutions 

for certain depths. Wang and Rao (2009) used the layer-stripping scheme, in 

which they divided the model into two parts and then sequentially inverted the 

shallow and deep parts. Once the shallow part was recovered, it was not 

updated while the deeper part was updated. When they recovered the deeper 

layer, they replaced the early-time data with synthetic data generated based on 

the inverted model for the shallow part. Through these processes, Wang and 

Rao (2009) successfully applied the layer-stripping method to the Marmousi 

model and a field data set. However, one may hesitate to use the layer-

stripping method because it requires additional effort due to the 

aforementioned additional processes. Moreover, one might obtain different 

final values near the boundary between the two recovered parts because they 

are inverted separately. As an alternative to the layer-stripping method, I 

suggest a depth scaling strategy in which I apply the constraint (i.e., the 

damping factor or Lagrange multiplier) of the damped least-squares method 

(i.e., the Levenberg-Marquardt method).  
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6.1 Reconsideration of Levenberg-Marquardt Method 

 

At first, I discuss the effects of the damping factor in the Levenberg-

Marquardt method (eq. (2-6)). Due to geometrical spreading effects, in the 

steepest descent method, the gradient for the deeper structures is small, 

which makes it hard to recover deeper structures. To compensate for this 

issue, we generally precondition the gradient direction by using the Hessian 

matrix, which plays a role in compensating for geometrical spreading effects 

(Choi et al. 2008). In this paper, I refer to this ability as the ‘scaling power of 

the Hessian matrix’. The success of the depth scaling strategy depends on the 

scaling power of the Hessian matrix, i.e., the depth scaling strategy would 

not be working properly if we were to employ a poorly calculated Hessian 

matrix. Oh and Min (2012) compared various approximated versions of the 

Hessian matrix in terms of the matrix’s scaling power and showed that the 

pseudo-Hessian (Shin et al., 2001b) matrix has a weaker scaling power than 

the new pseudo-Hessian matrix.  

Following Shin et al. (2001b), we can define the damping factor as 

follows:  

max
100

k
b = ´ H ,                 (6-1) 

where max H  and k indicate the maximum value of the Hessian matrix and 

its percentage, respectively. Shin et al. (2001b) noted that the diagonal of the 

approximate Hessian matrix acts like an automatic gain control (AGC) for the 

subsurface image and that small damping factors over-amplify deeper 

structures. My depth scaling strategy uses this feature of the Hessian matrix. 
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However, because the computation cost of calculating the approximate 

Hessian matrix is too great, we use the new pseudo-Hessian matrix.  

Figure 6-1 shows the synthetic graben structure, which is one of the oil-

promising geologic structures and Table 6-1 shows the inversion parameters 

used during the FWI. Figure 6-2 shows the descent directions preconditioned 

by the diagonals of the approximate Hessian matrix, which are constrained 

by various damping factors. As Lines and Treitel (1984) explained, the main 

advantage of the Levenberg-Marquardt method is that, it provides good 

convergence in the early stage and efficiency in the late stage of the 

inversion by decreasing the damping factor as iteration proceeds. 

Corresponding to their statements, when k is 0 %, the descent direction 

provides highly resolved image in the deeper structures (but not accurate) 

and provides the same as that of the linear least-squares inversion. When k is 

large, the deep structures in the gradient images are poorly defined because 

the geometrical spreading effect is not properly compensated due to the 

constraint of the large damping factor. Using this behavior of the damping 

factor, we can control the parameter-recovering depth in the inversion. The 

parameters for shallow parts can be restored using large damping factors in 

the early stage and, in the later stage, deeper parts can be reconstructed 

primarily using small damping factors. I notice that the variable damping 

factor acts like a depth filter for gradients. In other words, we can hold the 

gradients for some parts for which we do not want to update the parameters, 

as in the layer-stripping scheme.  

To determine the damping factor in a flexible manner, we can choose 
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empirical values, as Oh and Min (2012) did. However, in this study, the 

damping factor is determined based on the convergence of the inversion 

process. The damping factor is set to 1 % of the maximum value of the new 

pseudo-Hessian matrix at the beginning of the inversion. Whenever the 

inversion process diverges (i.e., the trend for the RMS error increases), the 

damping factor decreases to 50 % of its former value (e.g., Lines and Treitel, 

1984).  
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Figure 6-1 P-wave velocity of the synthetic graben structure. The true S-

wave velocity and density are determined by the fixed Poisson’s ratio (0.25) 

and equation of Gardner et al. (1974), respectively.  

 

 

 

Table 6-1 Parameters used for the synthetic graben model 
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Figure 6-2 Descent directions obtained at the 1st iteration using various 

damping factors for the synthetic graben model with a known source wavelet 

when the diagonals of the approximate Hessian matrices are used as a pre-

conditioner. 
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6.2 Advantages of the Depth Scaling Scheme 
 

In this subchapter, I will discuss other two advantages of the depth scaling 

scheme. One advantage is that the Levenberg-Marquardt method is good for 

the mono-frequency FWI and is also good when the particular frequency 

bands are severely weighted during the inversion. The other advantage is that 

the depth scaling method can enhance the robustness of the FWI to the 

random noise. I verify these advantages comparing the depth scaling scheme 

with the fixed damping scheme as Sheen et al. (2006) did.  

 

6.2.1 Advantage for mono-frequency FWI 

 

In the mono-frequency FWI or the weighted-frequency FWI like the FWI 

with the weighting method described in Chapter 4, the inversion results can 

contain lot of artifacts because the Jacobian, that is a tool for resolving 

subsurface structures, behaves like monochromatic waves as shown in Figure 

4-6. For example, as shown in Figure 3-16a, the mono-frequency descent 

directions fluctuates around boundaries of the subsurface layer and yields 

distorted results. However, if we apply the depth scaling strategy using the 

Levenberg-Marquardt method described previous chapter, these mono-

frequency-induced artifacts can be reduced because the damping factor damps 

out the gradient direction below a certain depth as shown in Figure 6-2. Figure 

6-3 shows the recovered P-wave velocity obtained by the mono-frequency 

FWI (3 Hz) with the fixed damping scheme and the depth scaling scheme. As 

the results show, the fixed damping scheme suffers from the wavelet-induced 
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artifacts, on the other hand, the depth scaling scheme provides well described 

background velocity with less artifacts. Because the observed data generally 

are band-limited due to the noise or limitations of the measurement, when we 

perform the frequency-domain FWI, the depth scaling scheme should be 

employed for a stable FWI.   

 

6.2.2 Advantage for random noise-included data 

 

In conventional FWI with a fixed damping scheme, as performed by Sheen 

et al. (2006), even when the shallow parts have already been recovered and 

primarily the deeper parts are being inverted, the gradients for the shallow 

parts are still updated with large values. For noisy data, this procedure may 

play a role in degrading the inversion results for the shallow parts. This 

problem also can be compensated for by introducing the depth scaling scheme 

with a variable damping factor. To verify the noise suppression of the depth 

scaling scheme, I perform the FWI with random noisy data, in which the 

spectral S/N ratio (maximum amplitude of signal over maximum amplitude of 

noise) is 5. Figure 6-4 shows the P-wave velocity structures obtained by the 

FWI for the full bandwidth of the observed data with a fixed damping and 

depth scaling schemes. In the fixed damping scheme, the shallower structures 

suffer from the noise-induced artifacts, on the other hand, the damping scaling 

scheme provides relatively robust inversion results. From this numerical test, I 

notice that the depth scaling scheme should be applied with the denoise 

function (Chapter 5) for more robust FWI to the random noise. 
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(a) 

 

(b) 

 

Figure 6-3 The recovered P-wave velocity structures obtained by the FWI 

for the mono-frequency noise-free data (3 Hz) with (a) the fixed damping 

scheme and (b) the depth scaling scheme 
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(a) 

 

(b) 

 

Figure 6-4 The recovered P-wave velocity structures obtained by the FWI 

for the random noise included synthetic data with (a) the fixed damping 

scheme and (b) the depth scaling scheme. 
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Chapter 7. Numerical Examples 

 

 From Chapters 3 to 6, for the multi-parametric FWI of the banded seismic 

data, four new methods have been introduced, those are the parameterization 

using the Poisson’s ratio for accurate multi-parameter extraction from the 

seismic data, the spectral weighting method to control the spatial resolution of 

the gradient direction, the spectral filtering method using the denoise function 

to filter out noisy components of data and the depth scaling scheme using the 

Levenberg-Marquardt method for the stable FWI. In this chapter, as the last 

chapter for the new methodology, we discuss how new inversion strategy 

improves the inversion results for the multi-parameter FWI with the random 

noise-included data. To do that, the elastic FWIs for the elastic Marmousi-2 

model (Figure 3-19) are performed with the same inversion setting (Table 3-3) 

and initial model (Figure 3-20) as those used in Chapter 3. For these 

numerical examples, the source-wavelet inversion is also performed during 

the FWI (Song et al., 1995). 

 Figure 7-1 shows synthetic seismograms of the observed data with random 

noise. The synthetic observed data are simulated using the time-domain 4th-

order staggered grid finite-difference method (Graves 1996). The random 

noises are generated in the frequency domain and designed so that vertical 

motions of random noise are much larger than horizontal motions. Figure 7-2a 

shows the spectra of the noise-free seismic signal and random noise. Based on 

the previous studies about the ambient ground motions (refer Chapter 5.2 and 
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Figure 5-3), the low-frequency components of random noise below at 2.5 Hz 

are made after the microseism induced by large-scale motions of the oceanic 

flow and the middle-frequency components around at 5 Hz are generated after 

high-speed motions of wind. Some cultural random noises at higher-frequency 

bands are also considered.  

 Before applying new inversion strategy, it would be important to cut off 

severely noise-contaminated components of the observed data in advance, 

because the Type-II weighting factor is still sensitive to the noise spectrum 

although it is designed to reduce influences of noise spectrum. Because, in 

addition, it is easy to identify these severely noise-contaminated components 

of the observed data by the human eye, there is no reason to participate these 

severely distorted data in the FWI. For this reason, frequency components 

below 2 Hz and above 7 Hz for all the shot gathers are excluded during the 

FWI.  

 Figure 7-3 shows the recovered structures obtained using the IPG-II (seismic 

velocities and density) without the new inversion strategy. In this example, we 

can notice that each parameter has different sensitivity for the random noise. 

The P-wave velocity structure is severely distorted by some noise-induced 

artifacts, because, as I mentioned in Chapter 3.3.3, the absence of P-S, S-P 

and S-S scattered waves in the virtual source for the P-wave velocity makes 

the FWI more sensitive to noises. On the other hand, the recovered S-wave 

velocity structure is relatively less contaminated by random noise.      

 As shown in Figure 7-4, we notice that the new parameterization using the 

Poisson’s ratio (IPG-III) can improve the robustness of the FWI to the random 
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noise, because, in the IPG-III, all the parameters generates P-P, P-S, S-P and 

S-S scattered waves. However, there are still lots of noise-induced artifacts in 

the recovered structures, because noisy components of the observed data still 

equally contribute to the banded descent direction. Figure 7-5 shows the 

recovered structures when I additionally use the Type-II weighting factors. 

Because the Type-II weighting factor is calculated based on the admittance 

spectrum (exactly, admittance spectrum over angular frequency: refer Chapter 

4.3.2), that is inversely proportional to the angular frequency, the noise-

contaminated low-frequency components are heavily weighted during the 

FWI. In addition, due to the very low S/N ratio around 5 Hz, the weighting 

factor provides large weights to noisy-contaminated 5 Hz component as 

shown in Figure 7-2b. For these reasons the recovered structures severely 

contaminated by low-frequency components of the random noise. This also 

can be a problem of the conventional frequency marching method, in which 

we perform the FWI from low-frequency to high-frequency components. In 

the frequency marching method, if we fail to select good (less noisy) starting 

frequency, the final inversion results will suffer from noise-induced artifacts. 

In addition, like this numerical example, when the noises are scattered over 

frequencies, it is not easy to march the FWI to higher frequency. 

 Figure 7-6 shows the inversion results when the denoise function is 

additionally applied during the FWI. For great effects of the noise reduction, 

the large value of the control factor, e, is chosen at a cost of spatial resolution. 

Because the denoise function reduces the contribution of noisy components, 

which have relatively low S/N ratio, we can notice that the recovered 
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structures are greatly improved. However, there are still some noise-induced 

artifacts around the salt body located at the left side of the model. 

 Figure 7-7 shows the recovered structures obtained by entire new inversion 

strategies using the IPG-III, Type-II weighting factor, denoise function and 

depth scaling scheme. We can notice that, with new inversion strategy, the 

subsurface structures are well described with less noise-induced artifacts and 

all the parameters are well estimated in some extent compared with previous 

results. However, we notice that there are some artifacts near the surface, 

which originate from the inaccuracy of source-wavelet-estimation. As shown 

in Figure 7-8, due to noise-components of observed data, the source wavelet is 

poorly estimated, particularly for the phase spectrum. This result indicates that, 

for a successful FWI using the new inversion strategy with real field data, the 

new inversion strategy should be applied with robust source-estimation 

technique or good initial source wavelet. 
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(a)                             (b) 

 

Figure 7-1 Synthetic observed data contain random noise: (a) Horizontal 

and (b) vertical displacements  
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(a) 

 

(b) 

 

Figure 7-2 (a) The spectra of the noise-free signal and the random noise, (b) 

variations of the weighting factor, (c) variations of the denoise function and 

(d) total weighting function, which is the multiplication of the weighting 

factor and the denoise function 
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(c) 

 

(d) 

 

Figure 7-2 (Continued) 
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(a) 

 

(b) 

 

(c) 

 

Figure 7-3 Recovered (a) P-wave velocity, (b) S-wave velocity and (c) 

density with the IPG-II and without the weighting method, denoise function 

and depth scaling scheme 
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(a) 

 

(b) 

 

(c) 

 
Figure 7-4 Recovered (a) P-wave velocity, (b) S-wave velocity and (c) 

density with the IPG-III and without the weighting method, denoise function 

and depth scaling scheme 
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(a) 

 

(b) 

 

(c) 

 

Figure 7-5 Recovered (a) P-wave velocity, (b) S-wave velocity and (c) 

density with the IPG-III and Type-II weighting factor without the denoise 

function and depth scaling scheme 

 

 

 

 

 

 



 

 

 

179

(a) 

 

(b) 

 

(c) 

 

Figure 7-6 Recovered (a) P-wave velocity, (b) S-wave velocity and (c) 

density with the IPG-III, weighting method and denoise function (e=5) 

without the depth scaling scheme 
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(a) 

 

(b) 

 

(c) 

 

Figure 7-7 Recovered (a) P-wave velocity, (b) S-wave velocity and (c) 

density with the IPG-III, weighting method, denoise function (e=5) and 

depth scaling scheme 
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(a) 

 

(b) 

 

Figure 7-8 (a) The amplitude and (b) phase spectra of true source and 

estimated source wavelets.  
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Chapter 8. Discussion & Conclusions 

 

 Through the paper, the new inversion strategy is proposed to extract multi 

parameters for the seismic data with wide bandwidth. The new inversion 

strategy contains (1) the new parameterization using the Poisson’s ratio, (2) 

the weighting factor to control the spatial resolution of the descent direction 

depending on the thickness of subsurface layers, (3) the denoise function 

which damps out severely noise-contaminated frequency components of the 

observed data and (4) the depth scaling scheme using the Levenberg-

Marquardt method for more stable frequency-domain FWI.  

To find the best parameterization, Chapter 3 described the mechanism of the 

virtual source with smaller concept, which is the basis virtual source. Each 

basis virtual source can be described by different moment tensors and 

partially or totally contributes to determine the radiation patterns of each 

model parameter. From the results of analysis, the new parameterization using 

the Poisson’s ratio was proposed, which provides reasonable seismic 

velocities and density.  

To overcome fixed weighting effects of conventional scaling methods, 

Chapter 4 introduced the weighting method in which the weighting factors are 

automatically calculated from the source-deconvolved backpropagated 

wavefields and approximately control the spatial resolution depending on the 

thickness of subsurface layers.  

 In the Chapter 5, the spectral filtering scheme for the gradient direction was 
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suggested using the denoise function, which is also automatically calculated 

by summing all the shot gathers and, in Chapter 6, the depth scaling scheme 

using the Levenberg-Marquardt method was proposed, in which the damping 

factor is set to decrease when the error diverges. 

 The final numerical examples (Chapter 7) showed that the new inversion 

strategy provides reasonable inversion results for all the parameters, in the 

case when the observed data are severely distorted by random noise (although 

synthetic observed data are used), with only one step and less human 

interventions. 

Considering that the conventional approaches require too many stages and, 

at end of each step, the FWI process is controlled by human interventions, the 

new inversion algorithm suggested in this paper will be more reasonable and 

efficient way because only thing we need to decide is choosing the control 

factor of the denoise function to control the filtering ability. However, there 

are still some problems to be resolved for real data application. The real data 

obtained by a land survey include some coherent noises and dispersive 

Rayleigh waves, which cannot be simulated through the numerical modeling. 

To overcome these limitations, the new inversion strategy should work with 

some coherent noise removal techniques. In addition, because the spectral 

weighting and filtering strategies of the new strategy are based on the exact 

source-spectrum, the new inversion strategy should be applied with exact 

source-estimation techniques or good initial source wavelet. Moreover, 

because the low-frequency components of real data are generally 

contaminated by noise, they cannot be used during the FWI. For this reason, it 
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would be better if the new inversion strategy is applied with good initial 

guesses obtained from Laplace-domain FWI (Shin and Cha, 2008) or the 

frequency down-shifting technique (Warner et al., 2013). 
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Appendix A. Particle Motion of Partial Derivative 

Wavefields 

 

 In Appendix A, I briefly discuss some problems, which are derived by the 

directional measurements, which are the displacement fields in the data 

acquisition system assumed in this paper. 

Because, in the marine data which are generally pressure fields, the 

measurement is non-directional, the FWI might work well. However, it is 

doubt that the FWI with directional measurement like displacement fields also 

work well during the FWI because, particularly for the c13 in the VTI elastic 

FWI, the elastic FWI sometimes failed by parameter-update along a wrong 

direction of the gradient. To reveal the reason of this problem, I analyze the 

partial derivative wavefields, which are excited by each basis virtual source 

for the single perturbation model (Figure A-1).  

From Figures A-2 to A-6 show the pattern of scattered wavefields generated 

by each basis virtual source. As we can see, all the basis virtual source 

generates P-P, P-S, S-P and S-S particle motions. We notice that, for some 

groups of basis virtual sources, P-S, S-P or S-S particle motions can be 

partially canceled (at certain scattering angle) or totally canceled when HBxxh, 

HBxzv, VBzxh and VBzzv act together. As a result of these interactions, the 

radiation pattern of virtual source for certain parameter depending on the 

parameterization can be composed as Appendix B shows. 

From Figure A-8 to Figure A-17, I display the partial derivative wavefields 
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excited by each basis virtual source and Figure A-7 shows the residual 

wavefields obtained by the difference between the single perturbation model 

and initial model (that is the same as background model). Because, in the time 

domain, the gradient is defined as a zero-lag cross correlation between 

residual and partial derivative wavefields, the seismic waves in residual 

(Figure A-7) and partial derivative wavefields should have the same sign to 

increase initial model parameters. However, we can notice that particle 

motions of partial derivative wavefields are very complex as results of the 

complicated mechanical motions for scattering patterns of each basis virtual 

sources.  

In addition, as shown in Figure A-8, the S-P wave in partial derivative 

wavefields obtained by HBxxh (members of full basis virtual source for the P-

wave velocity in the IPG-II) is reversed. However, this is not a severe problem 

because other waves such as P-P, P-S and S-S waves contribute to the gradient 

direction in positive ways. Although, as figures show, all the partial derivative 

wavefields have this kind of trade-off problem, their effects are not severe. 

Particularly, for even shear stress-induced basis virtual sources, these negative 

effects can be compensated because they generally work together. 

On the other hand, for the HBxzv, all the S-wave related reflected waves such 

as P-S, S-P and S-S waves are reversed and finally the gradient direction is 

calculated in negative ways due to the strong S-S waves. In addition, for the 

VBzxh, the S-S reflected wave, which has the strongest amplitude, is reversed 

and finally the gradient direction also can go to negative directions. For these 

reasons, compared to the acoustic VTI FWI, in the elastic VTI media, it is 
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hard to invert the c13 when the FWI process is S-wave dominant (large 

amplitudes of reflected S-wave in residual wavefields) as Appendix C shows. 

These behavior of the HBxzv and VBzxh, which are members of c13, can be 

treated as a natural phenomenon. Because a decrease of c13 causes an increase 

of S-wave velocity as shown in eq. (3-10), this behavior is faster way to 

reduce the error when the FWI process is S-wave dominant, in which S-waves 

would contribute large portion in the total error. 

This reversal tendency of HBxzv and VBzxh also cause some problems in the 

isotropic elastic FWI because the FWI process can be P-wave dominant or S-

wave dominant depending on the subsurface Poisson’s ratio. In my experience, 

for the most cases when the FWI process is S-wave dominant, the 

conventional isotropic FWI is also severely distorted by these negative 

contribution of HBxzv and VBzxh. Further studies are required for more accurate 

analysis for this problem. 

 

Figure A-1 Single perturbation model. Black rectangle and black circle 

denote the location of perturbation and the seismic source.  

 



 

 

 

202

(a)                             (b) 

 

(c)                            (d) 

 

Figure A-2 The scattering mechanism of basis virtual sources, HBxxh (a and 

b) and HBxzv (c and d), induced by (a) horizontal displacements and (c) 

vertical displacements of incidence P-wave and (b) horizontal displacements 

and (d) vertical displacements of incidence SV-wave. The white and gray 

arrows indicate the first particle motion of P- and S-waves. The double and 

black arrows denote the effective incidence motion and corresponding 

moment tensor of basis virtual source. Black circle and gray rectangle denote 

the source and scatterer. The dashed and dotted lines indicate the ray path of 

incidence and scattered waves.   
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(a)                             (b) 

 

    (c)                             (d) 

 

Figure A-3 The scattering mechanism of basis virtual sources, HBzzh (a and 

b) and HBzxv (c and d), induced by (a) horizontal displacements and (c) 

vertical displacements of incidence P-wave and (b) horizontal displacements 

and (d) vertical displacements of incidence SV-wave.  
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(a)                             (b) 

 

    (c)                             (d) 

 

Figure A-4 The scattering mechanism of basis virtual sources, VBzxh (a and 

b) and VBzzv (c and d), induced by (a) horizontal displacements and (c) 

vertical displacements of incidence P-wave and (b) horizontal displacements 

and (d) vertical displacements of incidence SV-wave.  
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(a)                             (b) 

 

(c)                              (d)  

 

Figure A-5 The scattering mechanism of basis virtual sources, VBxzh (a and 

b) and VBxzv (c and d), induced by (a) horizontal displacements and (c) 

vertical displacements of incidence P-wave and (b) horizontal displacements 

and (d) vertical displacements of incidence SV-wave.  
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(a)                             (b) 

 

    (c)                             (d) 

 

Figure A-6 The scattering mechanism of basis virtual sources, HBtth (a and 

b) and VBttv (c and d), induced by (a) horizontal displacements and (c) 

vertical displacements of incidence P-wave and (b) horizontal displacements 

and (d) vertical displacements of incidence SV-wave.  
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(a)                             (b) 

 
Figure A-7 Residual seismograms for the (a) horizontal and (b) vertical 

displacements obtained by the single perturbation and initial models (Figure 

A-1) 
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(a)                             (b) 

 

Figure A-8 Partial derivative wavefields obtained by the HBxxh for the 

homogeneous initial model: (a) horizontal and (b) vertical displacements  

 

(a)                             (b) 

 

Figure A-9 Partial derivative wavefields obtained by the VBzxh for the 

homogeneous initial model: (a) horizontal and (b) vertical displacements  
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(a)                             (b) 

 

Figure A-10 Partial derivative wavefields obtained by the HBxzv for the 

homogeneous initial model: (a) horizontal and (b) vertical displacements  

 

(a)                             (b) 

 

Figure A-11 Partial derivative wavefields obtained by the VBzzv for the 

homogeneous initial model: (a) horizontal and (b) vertical displacements  
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(a)                             (b) 

 

Figure A-12 Partial derivative wavefields obtained by the HBzzh for the 

homogeneous initial model: (a) horizontal and (b) vertical displacements  

 

(a)                             (b) 

 

Figure A-13 Partial derivative wavefields obtained by the VBxzh for the 

homogeneous initial model: (a) horizontal and (b) vertical displacements  
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(a)                             (b) 

 

Figure A-14 Partial derivative wavefields obtained by the HBzxv for the 

homogeneous initial model: (a) horizontal and (b) vertical displacements  

 

(a)                             (b) 

 

Figure A-15 Partial derivative wavefields obtained by the VBxxv for the 

homogeneous initial model: (a) horizontal and (b) vertical displacements  
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(a)                             (b) 

 

Figure A-16 Partial derivative wavefields obtained by the HBtth for the 

homogeneous initial model: (a) horizontal and (b) vertical displacements  

 

(a)                             (b) 

 

Figure A-17 Partial derivative wavefields obtained by the VBttv for the 

homogeneous initial model: (a) horizontal and (b) vertical displacements  
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Appendix B. Comparison of Radiation Pattern 

Depending on Parameterization 

 

In Appendix B, we verify that the full virtual source, which is composed by 

linear combination of basis virtual sources, well describe the radiation 

patterns of certain parameters that have reported by previous studies. The 

partial derivative wavefields are calculated in a homogeneous medium when 

the source is located on the middle of the surface. The PML boundary with 

thickness of 1 km is applied at top boundary for visualization only when the 

partial derivative wavefields are computed. As I mentioned in Chapter 3.3.2, 

the virtual source for λ and P-wave velocity in the IPG-I and IPG-II only 

generates P-P scattered waves. Comparing the partial derivative wavefields 

from Figure B-1 to Figure B-4, with the radiation patterns in Tarantola (1986), 

the radiation patterns for each parameter are well described. For the new 

parameterization, we can notice that the virtual source for the P-wave velocity 

(Figures B-5 and B-6) generates all kinds of scattered waves.   
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(a)                             (b) 

  

(c)                               (d) 

  

(e)                                (f) 

  

Figure B-1 The snapshots of horizontal displacements for partial derivative 

wavefields at 1.8s (a, c and e) and 2.7s (b, d and f) obtained by IPG-I: λ (a 

and b), μ (c and d) and density (e and f)  
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(a)                              (b) 

  

(c)                               (d) 

  

(e)                                (f) 

  

Figure B-2 The snapshots of vertical displacements for partial derivative 

wavefields at 1.8s (a, c and e) and 2.7s (b, d and f) obtained by IPG-I: λ (a 

and b), μ (c and d) and density (e and f)  
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(a)                             (b) 

  

(c)                               (d) 

  

(e)                                (f) 

  

Figure B-3 The snapshots of horizontal displacements for partial derivative 

wavefields at 1.8s (a, c and e) and 2.7s (b, d and f) obtained by IPG-II: P-

wave (a and b), S-wave (c and d) velocities and density (e and f)  
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(a)                              (b) 

  

(c)                               (d) 

  

(e)                                (f) 

  

Figure B-4 The snapshots of vertical displacements for partial derivative 

wavefields at 1.8s (a, c and e) and 2.7s (b, d and f) obtained by IPG-II: P-

wave (a and b), S-wave (c and d) velocities and density (e and f)  
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(a)                             (b) 

  

(c)                               (d) 

  

(e)                                (f) 

 

Figure B-5 The snapshots of horizontal displacements for partial derivative 

wavefields at 1.8s (a, c and e) and 2.7s (b, d and f) obtained by IPG-III: P-

wave (a and b), Poisson’s ratio (c and d) velocities and density (e and f)  
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(a)                             (b) 

  

(c)                               (d) 

  

(e)                                (f) 

  

Figure B-6 The snapshots of vertical displacements for partial derivative 

wavefields at 1.8s (a, c and e) and 2.7s (b, d and f) obtained by IPG-III: P-

wave (a and b), Poisson’s ratio (c and d) velocities and density (e and f)  
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Appendix C. New Parameterization for VTI 

Elastic FWI 

 

 

C.1 New Parameterization for VTI media using Poisson’s ratio 

 

The elastic wave equation to describe the elastic VTI media can be 

expressed by 
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The terms, c11, c33, c13, c44 and density (ρ), denote the four elastic stiffness 

coefficients for the 2D VTI elastic media and the density, respectively. Other 

parameters, such as horizontal (vp,H) and vertical P-wave velocity (vp,V), S-

wave velocity (vs), Poisson’s ratio (ν), Thomsen’s parameters (ε and δ), can be 

calculated as follows:  
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Using these basis virtual sources, the full virtual source can be generalized as 

a linear combination of basis virtual sources as expressed by 
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If we consider the form of the elastic VTI wave equation and the isotropic 

elastic wave equation, we can notice that the scattering pattern induced by the 

basis virtual sources are totally same when the initial model is homogeneous 

because the scattering pattern of the basis virtual source is determined by the 

spatial derivatives. For this reason, in this paper, I also analyze the behavior of 

the VTI virtual source based on the scattering theory of the basis virtual 

sources as I did for the isotropic parameterization. 
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For the VTI elastic FWI, one of the most popular parameterization is to 

parameterize the VTI elastic wave equation with the displacement-based 

form using the c11, c33, c13, c44 and density, which we call ‘VTIPG-I (VTI 

Parameter Group-I)’, as follows: 
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In this case, we invert four elastic stiffness coefficients and the other 

parameters, such as horizontal and vertical P-wave velocity, S-wave velocity, 

Poisson’s ratio, Thomsen parameters can be indirectly calculated using from 

eqs. (C-3) to (C-8), respectively. 

Using the linear combination of the basis virtual source, the full virtual 

sources for the c11, c33, c13, c44 and density can be expressed as follows: 
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With these expressions, I notice that, the conventional parameters for the VTI 

media are well organized depending on their mechanical motions. In other 

word, the full virtual sources for the c11 and c33 only acts like the horizontal 

and vertical normal stress, respectively. Because the basis virtual source, 

HBxxh, mainly use the incidence wave with high incidence angle, I can guess 

that the c11 for the deeper structures are not recovered well with the 
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conventional full virtual source for the c11. On the other hand, the basis virtual 

source, VBzzv, dominantly use the incidence wave with low incidence angle, 

which means that, if the seismic sources are sparsely spaced, the conventional 

full virtual source for the c33 suffers from the lack of the data coverage. The 

full virtual source for the c13 is a combination of the horizontal and vertical 

normal stress. However, as I showed in Appendix A, the S-wave-related 

motion of these two basis virtual sources (HBxzv and VBzxh) partially 

contribute to negative direction depending on the subsurface parameters. The 

full virtual source for the c44 acts like a double coupled forces, which are good 

to resolve the subsurface structures located in the intermediate incidence angle. 

As we discussed in Chapter 3.2.3, the full virtual source for the density 

consists of unidirectional basis virtual sources, resulting a less sensitive 

Jacobian matrix. These characteristics are also easily found in the previous 

works of the FWI for the VTI media. Lee at al. (2010) showed that the 

frequency-domain FWI for VTI media with the VTIPG-I provides poor FWI 

results of the c11 and c13 structures and suggested the coupling method, in 

which the gradients for the c11 are indirectly calculated using the gradients for 

the c33, and the two-stage FWI. They used modified overthrust model, whose 

Poisson’s ratios are fixed at 0.25, and did not recover the density structures 

under the assumption that we know the exact density structures. However, it is 

still questionable whether their method also works well for the real overthrust 

structures with various Poisson’s ratio and density because, as I mentioned in 

Appendix A, the FWI process can be P-wave dominant or S-wave dominant 

depending on the subsurface Poisson’s ratio. In addition, the two-stage FWI 
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strategy for the real field data, which include various kinds of noise, has lots 

of uncertainties because, in real case, it is hard to determine the exact criterion 

stopping the first stage of the FWI. To overcome these limitations, we try to 

seek a solution by finding the best parameterization for the VTI elastic media 

based on the scattering theory of the basis virtual source. 

To enhance the gradient directions, I suggest the new parameter group for 

the VTI media which we call ‘VTIPG-II’ throughout the paper. The elastic 

wave equation for the VTI media can be expressed by the VTIPG-II as 

follows:  
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The full virtual sources for the VTIPG-II can expressed by 

( )

, ( )

,full
,

,

2
2 HB VB

1 2

2 1 2
         HB HB VB VB

1 2 2 2

r
r

e

r n

e n

æ ö
= + ç ÷

+è ø

é ùæ ö -æ ö
+ + + +ê úç ÷ç ÷

+ -è øè øë û

f
p H i

p H

v p H xxh zzv

p H

zzh zxv xzh xxv

v
v

v
 



 

 

 

225

( )

( )
( )

( )

, ( )

13 ( )

( )

2
,full

2

2
,

2

full

22
,full

2
VB

1 2

2 1 2
         HB HB VB VB

2 21 2

HB VB

2 1
HB HB VB VB

1 2 2 2
s

r

e

r n

ne

r

e n

é ù-
= ê ú

+ê úë û

é ù- -æ ö
+ + + +ê úç ÷

-è ø+ê úë û

= +

é ùæ ö- æ ö
= + + +ê úç ÷ç ÷ç ÷+ -è øê úè øë û

f

f

f

p V i

i

i

p H

v zzv

p H

zzh zxv xzh xxv

C xzv zxh

p H

zzh zxv xzh

v

v

v
( )

( )

( )

( )

full 2 2 2
, ,

2
,

HB VB + HB VB

1 2
      HB HB VB VB

1 2 2 2

r w

n

e n

= + +

é ùæ ö -æ ö
+ + + +ê úç ÷ç ÷ç ÷+ -è øê úè øë û

f
i

xxv

p H xxh p V zzv tth ttv

p V

zzh zxv xzh xxv

v v

v

. (C-13) 

Comparing eq. (C-13) with eq. (C-11), we can notice that the full virtual 

sources for all the parameters except c13, are improved and become to 

include double-coupled basis virtual sources. For this reason, we can expect 

that the coverage of gradient directions can be improved.   

 

C.2 Numerical Example for SEG/EAGE Overthrust Model 

 

To verify the feasibility of new VTI parameter groups (VTIPG-II) for 

complex geologic model, I perform the FWI for 2D SEG/EAGE overthrust 

model as shown in Figure B-1. Although the FWI for the 2D SEG/EAGE 

overthrust model have been performed by many previous works (Lee et al. 

2012; Jeong et al. 2012), most works used modified version by fixing the 

Poisson’s ratio or density and there haven’t been no attempts to test the FWI 

for its original version. This is because, in our experiences, the SEG/EAGE 

overthrust model is one of difficult benchmark models, which has nearly 
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inverted c13 structure and various Poisson’s ratio, and inverting 5 VTI 

parameters simultaneously is not easy using the conventional parameterization. 

Another problem is the instability of the PML (Perfectly Matched Layer; 

Bérenger, 1994). The PML or CPML (Convolutional Perfectly Matched 

Layer; Roden and Gedney, 2000) is one of the most popular boundary 

condition due to its good efficiency. When we apply the PML to the elastic 

wave equation for the VTI media, we must consider three stability conditions 

of the PML (Béchache et al. 2003). The stability condition-I, stability 

condition-II and stability condition-III are expressed by  

( ) ( )( ) ( ) ( )( )2 2

13 44 11 33 44 13 44 44 33 44 0c c c c c c c c c c+ - - + + + £  , (C-14) 

( )
2
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and 

( )
2 2

13 44 11 33 44 0c c c c c+ - - £ ,            (C-16) 

respectively. We can guess that, for isotropic elastic media, the stability 

condition-II (eq. [C-15]) always equals to zero. This means that the PML for 

the VTI elastic wave equation also well operates to the subsurface isotropic 

layer. However, because the FWI is an iterative method, the estimated 

parameters for subsurface layers can easily get out the stability condition-II 

when the layers are isotropic. In other words, when the surface layer is 

isotropic, the PML can be unstable if we do not perform the VTI inversion 

carefully. Because our inversion algorithm, in which we use the new pseudo-

Hessian matrix (Choi et al. 2008), scaling method using weighting method 
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(Oh and Min 2013a) with the normalization (Ha et al. 2009) and fixed step 

length, is based on approximated Gauss-Newton method, we fixed only top 

layer, under the assumption that we know the exact parameters, and freeze 

the top layer without parameter update. Below the top layer, we assume that 

we know only the approximate linear vertical variations of the vertical P-

wave velocity (1.6 ~ 5.5 km/s) and use isotropic initial models as shown in 

Figure C-2. The initial S-wave velocity and density models are estimated 

using the fixed Poisson’s ratio (0.25) and the Gardner’s equation (Gardner et 

al., 1974; 0.25
,1.7r = ´ p Vv ), respectively. The parameters used for the FWI are 

listed on Table C-1. Due to the poor initial guesses, we assume that very low 

frequency components are available.  

 Figures C-3 and C-4 shows the recovered parameter structures obtained 

using the VTIPG-I and VTIPG-II, respectively. I notice that there are great 

improvements when the new VTI parameterization is applied although the c13 

structures are still not satisfied. These numerical results also support that the 

interpretation tool for the radiation pattern of basis virtual source, which I 

suggested in Chapter 3, can be also applied to elastic VTI media.   
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(a)

    

(b)

    

(c)

    

Figure C-1 2D SEG/EAGE overthrust model: (a) c11, (b) c33, (c) c13, (d) c44 

and (e) density  
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(d)

    

(e)

    

Figure C-1 (Continued)  

 

 

 

Table C-1 Inversion parameters for the 2D SEG/EAGE overthrust model  
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(a)

    

(b)

    

(c)

    

Figure C-2 Initial models for the FWI: (a) c11, (b) c33, (c) c13, (d) c44 and (e) 

density  
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(d)

    

(e)

    

Figure C-2 (Continued)  
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(a)

    

(b)

    

(c)

    

Figure C-3 The recovered structures of (a) c11, (b) c33, (c) c13, (d) c44 and (e) 

density using the VTIPG-I.  
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(d)

    

(e)

    

Figure C-3 (Continued)  
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(a)

    

(b)

    

(c)

    

Figure C-4 The recovered structures of (a) c11, (b) c33, (c) c13, (d) c44 and (e) 

density using the VTIPG-II.  
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(d)

    

(e)

    

Figure C-4 (Continued)  
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초    록 

 

본 연구에서는 기존의 다단계 파형역산 전략에 대한 대안으로써, 

다변수 추출을 위한 다양한 주파수 대역을 갖는 탄성파 탐사 

자료의 주파수 영역 파형 역산 전략을 제안한다. 먼저 가상송신원에 

대한 분석을 통하여, 탄성파 완전파형역산에서 포아송비를 이용하여 

지하매질을 변수화하는 것이 다변수 추출에 가장 효율적임을 

확인한다. 또한 현장 자료의 스펙트럼 정보를 이용하여 각 주파수 

별 최대급경사 방향에 가중치를 줌으로써 지하 지층의 두께를 

대략적으로 반영하여 파형 역산의 분해능을 조절하는 가중치 

기법을 제안한다. 다음으로 현장 잡음이 파형 역산에 미치는 영향을 

줄이기 위하여, 송신원 별 현장 자료의 중합을 통해 현장 자료의 

신호 대 잡음비를 대략적으로 추정하여 각 주파수 별 최대급경사 

방향을 필터링하는 잡음 제거 함수를 제안한다. 마지막으로 기존 

레벤버그-마쿼트 방법의 재해석을 통해, 주파수 영역 파형역산의 

수렴성과 잡음 안정성을 증대시킬 수 있는 심도 조정 역산 전략을 

제안한다. 본 논문에서 제안하는 4가지 새로운 파형역산 기법을 

다양한 수치예제에 적용함으로써, 광대역 탄성파 탐사 자료로부터의 

다변수 추출이 보다 효율적이고 정확함을 확인한다. 

   

주요어: (주파수 영역 파형 역산, 변수화 방법, 가중치 기법, 

잡음제거 함수, 레벤버그-마쿼트 방법) 

학  번: (2010-23339) 
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