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Abstract 

 

Seung-Ho Ahn 
Department of Industrial Engineering and Naval Architecture 

College of Engineering 
Seoul National University 

 

Recently, in both academic and industrial environment including naval 

architecture and ocean engineering, atomistic level design and analysis is 

essential to overcome the limitations in conventional continuum based 

approach. Conventionally, molecular dynamics (MD) simulation is used to 

obtain the physical properties and behaviour of atomistic level structures. 

However, the applications of MD simulation are restricted by its excessive 

computational time. Especially the limitation of MD simulation is more 

obvious in shape design optimization field. It is difficult to apply continuum-

based shape design sensitivity analysis which is essential for shape design 

optimization due to the discrete nature of shape variations at the atomic level 

of MD simulation. Shape design optimization scheme requires repeated 

analysis process, which requires tremendous computational cost. 

In the thesis, an isogeometric shape design optimization method 

considering size effects in nanoscale structures is developed. We introduced 

continuum based model considering size effects for the analysis of nanoscale 

structures. Surface elasticity incorporating surface effects developed by 

Gurtin and Murdoch (1975) and nonlocal theory developed by Eringen 

(1983) are introduced, respectively. For experimental validation of 

developed method, three-point bending test of silver nanowires using atomic 

force microscope (AFM) are performed. Shape design optimization of 

curved structures is performed using continuum based Naghdi shell 

formulation in numerical examples. Isogeometric analysis (IGA) framework 

is used for numerical analysis method. A direct differentiation method is 

employed for the DSA and the design variables are selected as the control 
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points defining the geometry for flexible modeling of free-form shell 

surfaces. Exact solutions derived from curved beam theory are presented to 

verify the numerical examples. It is shown that size effects affect the 

behaviour of the nanoscale structures and its optimal shape. 

The influence of surface effects in nanoscale is shown through three-

point bending test of silver nanowires using AFM instruments. The 

behaviours of nanowires obtained from experimental results are compared 

with those obtained from theoretical calculation and good agreement is 

observed between them. Not only the behaviour of nanowires but the design 

sensitivity is validated through experimental results. The design sensitivity 

values obtained from fitting curve of experimental data are compared with 

those obtained by DSA based on continuum formulation considering surface 

effects, and it shows fairy good agreement. 

The isogeometric method has numerous advantages over the classical 

finite element analysis (FEA) due to its convenience of Non-Uniform 

Rational B-Spline (NURBS) basis functions. In the isogeometric method, the 

NURBS basis functions in CAD system are directly used in the response 

analysis, which enables an incorporation of exact geometry and higher 

continuity into the computational framework. Also, IGA provides more 

accurate design sensitivity for complex geometries including higher order 

geometric information such as normal vector and curvature. Especially for 

shell structures, exact geometry is more important issue and application of 

IGA gives more accurate computation results than FEA. 

 

Keywords: Isogeometric analysis, Nanoscale, Size effects, Shape design 

sensitivity, Shape design optimization, Experimental validation 
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Chapter 1. Introduction 

1.1 Motivation 

Recently, construction of nanoscale structures became possible due to 

the development of MEMS (Micro Electro Mechanical Systems) and NEMS 

(Nano Electro Mechanical Systems) technologies. Nanoscale structures such 

as resonator, mass sensor and bio-chemical sensor are used in numerous 

engineering fields and they are expected to be used more widely in the near 

future. Especially, in naval architecture and ocean engineering, nanoscale 

technology is required for various applications. For instance, organisms such 

as algae and barnacles sticking on the lower structure of large sized ships 

influence the propulsion power by increasing the ship resistance. By 

releasing of several biocides embedded in a film forming nanocomposites, 

antifouling can be achieved by slowing the growth of subaquatic organisms 

as shown in figure 1.1-(a). Figure 1.1-(b) shows Danish Knud Rasmussen 

Class inspection ship in the ice region. Nano-based surfaces have the 

potential to completely preventing icing and ice can be removed from 

composite structures through the use of conductive carbon fibres in the 

composite. Nanotechnology is also applied for the application in 

shipbuilding such as nano fillers for enhancement, thermal barrier materials 

for engines, fuel cells, embedded sensors and cloaking for warship. (McGrail 

2011) Especially, stress distribution near the nano-sized crack is observed in 

this paper. The behavior of crack initiation and its growing process is very 

crucial for the safety of ship and marine structures. Also, the observation on 

the behavior of nano-sized beam and shell structures can be used for the 

study of mechanical polishing on the surface of ship and marine structure. 

To obtain the physical properties and behavior of nanoscale structures, MD 
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simulation is used conventionally. MD simulation is a computer simulation 

of physical movements of atoms and molecules using inter-atomic potential. 

Therefore, accurate analysis including the information at the atomic scale is 

possible, which is not able to be handled using conventional continuum 

based approach. Even though MD simulation of nanoscale structures can 

give accurate results, they are computationally expensive for systems with 

practical structures having relatively large sizes. 

To overcome the difficulty of computational cost in MD simulation, 

continuum based formulations of nanoscale structures have been developed. 

A nanoscale structure is assumed as one of the continuum model and 

numerical analysis method such as FEA is applied to analyze the continuum 

model. Although the conventional continuum models provide simple 

formulas and have advantage on computational time, applying these 

continuum models directly to practical model is questionable due to the size 

effects. Size effects in this research mean material properties are influenced 

by the effect of small size range. Material properties change as the thickness 

or total volume of the structure decrease to nanometer range. To analyze 

nanoscale structures based on continuum model considering size effects, the 

conventional elasticity theory has been extended from various viewpoints 

such as surface elasticity theory (Gurtin and Murdoch 1975), nonlocal theory 

(Eringen 1983), strain gradient elasticity (Lam et al. 2003) and couple stress 

theory (Mindlin and Tiersten 1962). In this research, surface elasticity 

incorporating surface effects developed by Gurtin and Murdoch (1975) and 

nonlocal theory developed by Eringen (1983) are used to develop shape 

optimization scheme for nanoscale structures. 
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    (a) Antifouling of organisms using nanoparticles (Yebra et al. 2004) 

 

(b) Anti-icing technology using nano-composites used in Danish Knud 

Rasmussen class inspection ship (Ryerson 2013) 

Figure 1.1 Examples of nanotechnologies in naval architecture and ocean 

engineering 

 



 

4 

The continuum mechanics models for nanoscale structures are also 

advantageous in structural optimization areas. Because most optimization 

schemes require repeated analysis process, applying MD simulation which 

requires large computational cost to the optimization process is almost 

impossible. Furthermore, it is difficult to apply continuum-based shape DSA 

which is essential for shape optimization to the methodology based on MD 

simulation due to the discrete nature of shape variations at the atomic level. 

To overcome the difficulty of discrete nature in atomic structures, Jang and 

Cho (2015) transformed the discrete spatial variation into a non-shape 

variation of the GLE system. However, well-developed conventional shape 

optimization schemes can be applied directly for nanoscale structures 

regardless of discrete nature in atomic structures by using developed method. 

 

1.2 Literature survey 

1.2.1 Experimental validation of size effects in nanoscale 

 

Some researchers show that size effects exist in nanoscale structures 

through MD simulation or experiments. They also verified these size effects 

can be explained by continuum-based theory considering surface effects or 

nonlocal effects. 

 

Molecular dynamics simulation 

Miller and Shenoy (2000) and Dingreville et al. (2005) showed that 

material properties have size dependence due to the increasing importance of 

surfaces as the scale of structures become comparable with the atomic scale. 

Figure 1.2 shows variation of plate modulus with respect to thickness.  
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Miller and Shenoy (2000) also showed that continuum formulations of plate 

in the nanoscale are reliable by comparing with MD simulation results. 

However, it is observed that accuracy is somewhat decreased in considering 

bending energy. Wang et al. (2010) showed that decreased accuracy can be 

improved by considering residual surface stress in the formulation. Jin and 

Yuan (2005a, b) discussed the macroscopic fracture parameters from both 

MD simulation and the continuum model, indicating that the near-tip stress 

calculated from MD simulation agrees well with the continuum one. Tsai 

and Sie (2015) compared the maximum stress of crack tip problem obtained 

by MD simulation with that obtained by nonlocal elasticity. It was shown 

that there is a good agreement between them. 

 

              (a) Al plates                     (b) Si plates 

Figure 1.2 Variation of plate modulus with respect to thickness 

 

Three-point bending test using AFM 

Development of AFM facilitates three-point bending test in nanoscale. 

Some researchers discovered size effects in nanoscale through three-point 

bending test using AFM, and analyzed the experimental results using several 

continuum-based theories considering size effects. 
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In order to account for the size-dependent mechanical properties, some 

researchers applied strain gradient theory. Li et al. (2009) pointed out that 

Eringen’s nonlocal theory is not adequate for three-point bending test of 

nanowire. Nonlocal theory does not capture the variation of area and size 

effects cannot be predicted for bending of a nanobeam under a concentrated 

force, which is called paradox. They suggested two second-order material 

constants to describe the size effect for nanowires. Developed theoretical 

predictions for Young’s modulus of CNTs are in consistence with the 

corresponding three-point bending experimental results by other researchers. 

There have been many researchers who applied surface effects theory to 

explain the size effects of the nanowire. Cuenot et al. (2004) analyzed the 

elastic properties of silver and lead nanowires using three-point bending test 

as shown in figure 1.3-(a). The elastic properties of the silver nanowires with 

outer diameters ranging from 20 to 140 nm were measured using AFM. The 

size dependence of the Young’s modulus is discussed using surface effects 

theory. Jing et al. (2006) measured elastic properties of the silver nanowires 

with outer diameters ranging from 20 to 140 nm using AFM as shown in 

figure 1.3-(b). They showed the size dependence of the apparent Young’s 

modulus of the silver nanowires is attributed to the surface effect. 

He et al. (2008) analyzed the mechanical behavior of silver nanowires 

using Euler-Bernoulli beam theory via the Young-Laplace equation. They 

derived deflection of the beam and obtained effective Young’s modulus 

considering size effects. Derived solutions agree well with size dependent 

Young’s moduli observed from three-point bending tests by other 

researchers. Chiu and Chen (2011) suggest higher-order surface stress which 

considers not only the effect of in-plane membrane surface stresses, but also 

the surface moments induced from the non-uniform surface stress across the 
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layer thickness. It allows that the stress could be linearly varying across the 

layer thickness, which results in surface stress as well as surface moment. 

They show that developed method predicts more accurate results with the 

experimental data reported by Jing et al. (2006) compared with original 

method without high-order surface stress. Some other researchers also 

extended the Gurtin-Murdoch theory to account for the flexural resistance. 

Steigmann and Ogden (1999) point out that Gurtin-Murdoch theory cannot 

be used for a compressive stress-state and in particular surface wrinkling or 

roughening. They incorporate intrinsic flexural resistance of a surface to 

overcome aforementioned issues. Chhapadia et al. (2011) introduce a 

simplified and linearized version of a theory proposed by Steigmann and 

Ogden (1999) to capture curvature-dependence of surface energy. They 

propose an unambiguous definition of the thickness of a crystalline surface. 

Hu et al. (2014) discuss that the thickness of surface layer is related to such 

factors as defects, surface roughness, loading conditions and experimental 

temperature. They suggest core-shell model to depict the size effect of 

Young’s modulus. The effect of high order surface stress with experimental 

data will be discussed clearly in chapter 4.1.3. 

Many researchers have discussed the mechanical behavior of nanoscale 

structures using three-point bending test. However, as far as authors know, 

research on experimental validation of DSA is limited. The design sensitivity 

values obtained from fitting curve of experimental data are compared with 

those obtained by DSA based on continuum formulation considering surface 

effects. Manufacturing structures with variation in nanoscale for obtaining 

adjacent experimental data is not easy due to the limitation of manufacturing 

techniques. In this research, we performed three-point bending test of silver 

nanowires having various diameter and length as far as possible. In this way, 
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DSA based on continuum-based theory considering size effects can be 

validated. 

 

  (a) Young’s modulus obtained by Cuenot et al. (2004) 
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(b) Young’s modulus obtained by Jing et al. (2006) 
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 (c) Effect of high order surface stress (Chiu and Chen 2011) 

Figure 1.3 Variation of the measured Young’s modulus of silver nanowires 

 

1.2.2 Isogeometric framework 

 

Finite element analysis which is one of widely used numerical analysis 

method has difficulties in dealing with curved structures due to geometric 

approximation which is inherent in the finite element mesh. IGA framework 

is introduced to overcome this difficulty. Hughes et al. (2005) developed 

IGA method, which is an analysis framework employing the same basis 

function as used in the CAD system. It enables the seamless incorporation of 

higher order continuity and exact geometry such as curvature and normal 

vector into the computational framework. IGA provides a more accurate 

sensitivity of complex geometries including higher order geometric 

information such as normal vector and curvature. The higher order NURBS 

functions offer a more compact representation of response than FEA. 

Therefore, it is possible for IGA to obtain a more accurate computation 

results than FEA, even with less DOFs. Further, Cho and Ha (2009) 
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performed shape optimization based on IGA and showed that IGA could 

prevent the loss of higher-order geometric information, such as normal and 

curvature in design sensitivity expressions. Also, developed isogeometric 

shape optimization scheme applied to the area such as heat conduction 

(Yoon and Cho 2013), crack propagation problem (Choi and Cho 2014) and 

built up structures (Lee and Cho 2015). 

Some researchers extended the IGA for micro or nano scale problems 

considering size effects. Fischer et al. (2011) extended IGA towards the 

numerical solution of the problem of gradient elasticity in two dimensions 

for representing size effects. Introduction of higher order gradients of the 

strains into the constitutive relation requires partial differential equation of 

higher order. NURBS in IGA naturally includes higher order continuity of 

the approximation of the displacements and the geometry. Rudraju et al. 

(2014) introduced IGA for three-dimensional solutions using finite strain 

gradient elasticity. They solved problems on martensitic microstructures 

with size effects driven by non-convex free energy in strain space. 

 

1.2.3 Curved structures in nanoscale 

 

Curved structures are generalized form in nanoscale and curved 

graphene is one example to show the importance of curvature in nanoscale 

structures. Graphene is a one-atom-thick planar sheet of carbon atoms, 

densely packed together into a honeycomb shaped crystal lattice. Several 

methods to make graphene are developed and recently Kosynkin et al. (2009) 

produced graphene nanoribbons structures by lengthwise cutting and 

unravelling of multi-walled carbon nanotube side walls as shown in figure 

1.4-(a), and it shows high crystallinity and interesting semimetal electronic 
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properties. The curved graphene obtained by unzipping carbon nanotubes is 

intermediate structure between flat graphene sheet and carbon nanotube. 

Some researchers show that curvature of the curved graphene affects the 

properties of the graphene. It is shown that the curvature of the graphene 

changes the electron density, so the electrical properties can be improved. 

(Kolesnikov and Osipov, 2008) Gosálbez et al. (2011) discusses that curved 

graphene with constant curvature is generated by unzipping carbon 

nanotubes as shown in figure 1.4-(b), and the curvature affects the spin-orbit 

coupling and bandwidth. In this way, since the curvature of nanoscale 

structures fairly affect the properties of the structure, the representation of 

exact geometry and the accurate prediction of mechanical behaviors in 

continuum modeling are highly significant. In this paper, to analyze the 

curved structure in nanoscale such as curved graphene, continuum shell 

formulations considering size effects are introduced based on IGA 

framework. 

Surface elasticity is applied to the modeling of shells by other 

researchers. Gurtin and Murdoch (1975) modeled the interfacial surface as a 

membrane, but we modeled the interfacial surface as a shell as in Steigmann 

and Ogden (1999). Altenbach and Eremeyev (2011) discussed the derivation 

of the governing nonlinear shell equations considering surface effects. Zhang 

et al. (2014) presented general equations of piezoelectric shells considering 

surface effects in an orthogonal curvilinear coordinate system. Nonlocal 

theory is also applied to the modeling of shells by other researchers. Hu et al. 

(2008) discussed that the wave dispersion predicted by the nonlocal elastic 

shell theory shows good agreement with that of the MD simulation results. 

Nonlocal parameter is determined based on the MD result to predict the 

dispersion of transverse wave in CNTs through the nonlocal shell models. 
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Arash and Ansari (2010) studied vibration characteristics of single-walled 

carbon nanotubes (SWCNTs) with different boundary conditions subjected 

to initial strain based upon a nonlocal shell model accounting for the small-

scale effects. 

 

(a) Gradual unzipping of one wall of a carbon nanotube to form a graphene 

(Kosynkin et al. 2009) 

(b) Obtaining a curved graphene as fraction of a nanotube 

(Gosálbez et al. 2011) 

Figure 1.4 Generation of a curved graphene from a nanotube 
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1.2.4 Design optimization in nanoscale 

 

Some continuum based optimization methods considering nanoscale 

effects have been presented in recent year. Evgrafov et al. (2009) considered 

the kinetic theory to topology optimization of heat conducting devices at 

nano-scale as shown in figure 1.5. An average distance travelled by a 

particle between collisions with other particles is considered in continuum 

formulation to consider nano scale effects. Nanthakumar et al. (2015) 

introduced a coupled XFEM/level set methodology to perform topology 

optimization of nanostructures considering nanoscale surface effects as 

shown in figure 1.6. They showed different optimal topology by considering 

surface effects, but physical interpretations for the obtained optimal topology 

under nanoscale are not presented. Glavardanov et al. (2012) deals with 

optimal shapes against buckling of an elastic beams considering nonlocal 

effects, but they only deals with optimization problems with cross sectional 

areas which are sizing variables. 
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      (a) Without kinetic theory             (b) With kinetic theory 

Figure 1.5 Different optimal material distributions by considering kinetic 

theory (Evgrafov et al. 2009) 

 

(a) Without surface effects             (b) With surface effects 

Figure 1.6 Different optimal topology by considering surface effects 

(Nanthakumar et al. 2015) 
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1.2.5 Organization of thesis 
 

The paper is organized as follows: in Chapter 2, we explain the 

equilibrium equations of beam and shell theory considering size effects 

based on IGA, respectively. In this research, surface elasticity incorporating 

surface effects developed by Gurtin and Murdoch (1975) and nonlocal 

theory developed by Eringen (1983) are introduced, respectively. In Chapter 

3, isogoemetric shape DSA formulation of beam and shell with size effects is 

given, respectively. A direct differentiation method is employed for the DSA 

and the design variables are selected as the control points defining the 

geometry for flexible modeling of free-form shell surfaces. In Chapter 4, 

three-point bending test of silver nanowires are given to validate developed 

method. Also, the influence of size effects for the numerical solution is 

shown and it is verified through exact solutions. Shape optimization 

problems minimizing strain energy are given and the optimal solutions are 

verified through exact optimal solution. Finally, we draw some conclusions, 

which present the importance of the proposed method. 
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Chapter 2. Isogeometric Analysis considering Size 

Effects 
 

2.1 NURBS basis function 

In the IGA, we use same NURBS basis functions to represent solution 

space and geometry. Consider a set of knots ξ in an n-dimensional parametric 

space. In the one-dimensional case, it is written as 

{ }1 2 1, , , ,n pξ x x x + +=   (2.1) 

where p and n are the order of the basis function and the number of control 

points, respectively. The B-spline basis functions can be defined, recursively, 

as 
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A general quadratic B-spline basis functions are shown in figure 2.1.  
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Figure 2.1 Quadratic B-spline basis functions, Ξ={0,0,0,1,2,3,3,4,5,5,5} 
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The shape functions are completely different from those in the FEM and 

guarantee p-1 continuous derivatives. The B-spline has some useful 

properties as a basis function such as partition of unity, compactness and 

non-negativity. Using the B-spline basis function p
iN (ξ) and weight wi, the 

NURBS basis function p
iR (ξ) is defined as 

( )
( )

( )
1

.
p

i ip
i n

p
j j

j

N w
R

N w

x
x

x
=

=

å
 

(2.4) 

For the given l pairs of the p-th order NURBS basis function p
iR  and the 

corresponding control point Bi, the NURBS curve C is obtained as 

( ) ( )
1

.
l

p
i i

i

RC Bx x
=

=å  (2.5) 

Similarly, NURBS surface S is defined as a tensor product of coordinates, 

       ,
1 1

, , ,
l m CP

p q
i j i j I I

i j I

R R W   
 

   S Ξ B Ξ B  (2.6) 

where BI=B(x) are locations of the control points and WI is introduced for 

the brevity of expression. CP denotes the number of control points and Ξ is 

the parametric domain of surface. 

 

2.2 Beam structures considering surface effects 

Nanoscale beam with circular cross section is considered as shown in 

Figure 2.2. The Bernoulli-Euler beam is considered and shear effect is 

ignored. A beam based on surface elasticity is considered to have an elastic 

surface bonded to its bulk part. Due to the interaction between the surface 

and bulk material, the traction Tx and Tz exist on the surface. 
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Figure 2.2 Cross sectional view of circular beam 
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Figure 2.3 Free-body diagram of incremental beam element 
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The bending moment and vertical force equilibrium equations of the element 

shown in figure 2.3 are obtained as 

 
2

2 x zs s

d M d
T zds q x T ds

dx dx
     (2.7) 

where M is bending moment, q(x) is distributed vertical force and s is the 

perimeter of the cross section. Bending moment M is defined as 

2 2

2 2xxA A

w w
M zdA Ez zdA EI

x x


  
     
   (2.8) 

where I is obtained as πD4/64 for a circular cross section, D is a diameter of 

circular cross section. The surface constitutive relations are obtained as 

 0 0 0 ,2xx x xu       (2.9) 

and 

0 , nx xw  (2.10) 

where µ0 and λ0 are surface Lame constants and τ0 is the residual surface 

stress under unstrained conditions. τ0w,x given in equation (2.10) is 

distributed transverse force along the beam longitudinal direction caused by 

generalized Young-Laplace equation, which accounts for out of plane 

stresses induced from residual surface stress and curvature in deformed 

shape of a beam. (Chen et al. 2006) Using the equations (2.9) and (2.10), the 

equilibrium relations for the surface are expressed as 

 
2

, 0 0 2
2x xx x

w
T z

x
   

  


 (2.11) 

and 

2

, 0 2
  

 
z nx x z z

w
T n n

x
 (2.12) 

Chiu and Chen (2011) suggest that higher-order surface stress which 

considers not only the effect of in-plane membrane surface stresses, but also 

the surface moments induced from the non-uniform surface stress across the 
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layer thickness. Therefore, equation (2.12) is rewritten as 

2 2 2 4

0 02 2 2 4
 
      

            

s

z s z s z

w m w w
T d n d n

x x x x
 (2.13) 

where ms is surface moment and ds is surface bending stiffness parameter. 

High-order term with respect to deflection w is considered with ds term.  

Substituting equations (2.8)-(2.13) into equation (2.7) yields 

 
3 4 2

04 2
2 2

8

 
  

       
s s

D w w
EI E d D q x D

x x
 (2.14) 

where Es is 2µ0+λ0. From equation (2.14), following governing equilibrium 

equation is obtained as 

 
4 2

*
04 2

2 
 

 
w w

EI D q x
x x

 (2.15) 

where EI* is defined as EI+(πD3/8)Es+2dsD. Equation (2.15) is multiplied by 

an weight functions w  and integrated over the structural domain to obtain 

 
4 2

*
04 20

2 0
  

     


L w w
EI D q x wdx

x x
 (2.16) 

where L is the length of the beam. Integrating equation (2.16) by part and 

applying the boundary conditions give the governing equation as 

   , , ,a l Z
  z z z z  (2.17) 

where the bilinear strain energy and load linear forms are obtained as 

 
2 2

*
02 20

, 2

    
      


L w w w w
a EI D dx

x x x x
z z  (2.18) 

and 

   
0

L
l q x wdx  z  (2.19) 

Z [H2(Ω)]d is d-dimensional variational spaces of kinematically admissible 

displacements. Using an isoparametric mapping, approximated response and 

virtual response are expressed, in terms of NURBS basis functions and the 

response coefficients at control points, as 
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   
CP

h
I I

I

W z Ξ Ξ y  (2.20) 

and 

    ,
CP

h
I I

I

W z Ξ Ξ y  (2.21) 

where zh∈Zh⊂Z and z h∈ Z h⊂ Z . For brevity of notation for discrete 

response and function space, z and Z will be used instead of zh and Zh, 

hereafter. Also, same notation is applicable for the virtual ones. Using 

equations (2.20) and (2.21), the variational equation (2.17) is rewritten as 

     , , ,
CP

I I
I

a l W Z
   z z z z Ξ y  (2.22) 

where 

   *
, , 0 , ,

,

, 2  
CP

T T T
I I xx K xx I x K x Kx

I K

a EI W W DW W dxz z y y  (2.23) 

and 

    ,
CP

T
I Ix

I

l W dx  z f y  (2.24) 

where f is force component matrix. Detailed derivation on the beam 

formulation including surface stress may refer to He and Lilley (2008), Liu 

and Rajapakse (2010) and Chiu and Chen (2011). 

 

2.3 Shell structures 

2.3.1 Kinematics of deformation of shell 
 

Consider a three-dimensional solid structure *̂  in domain E3 that is a 

three-dimensional Euclidean space. The space E3 is endowed with an 

orthonormal basis vectors ˆie . Let *ˆix  denote the cartesian coordinates of a 

point * 3ˆ x E . Here, * means the domain or material point in thickness 

direction. Also, the space R3 is three-dimensional vector space in which 
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three vectors ei  1,2,3i   form a basis. Let there be given a domain *̂  

of E3 and assume that there exist an domain *  of R3 and an one-to-one 

mapping * 3: Θ E  such that  * *ˆ Θ . Then each point * *ˆˆ x  can 

be expressed as 

 * * * *ˆ , ,x Θ x x   (2.25) 

and the three coordinates *
ix   1,2,3i   of * 3x R  denote the curvilinear 

coordinates of the point * 3ˆ x E . 
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3ê 1 2,x x x Ξ

 

Figure 2.4 Definition of the middle surface of the shell 

 

The middle surface of the shell is often represented by a surface geometry Ω, 

which uses two curvilinear coordinates (x1,x2) as shown in figure 2.4. 

Therefore, the reference domain Ω of the surface is composed of x1 and x2, 

while x3 is the coordinate in thickness direction that is defined as -0.5h x3

0.5h with h is the shell thickness. Thus, the material point *x̂  of the 

undeformed shell is given as 
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     * 3
1 2 3 1 2 3 1 2ˆ ˆ, , , , ,x x x x x x x x x x a  (2.26) 

where x̂ (x1,x2) is the material point on the middle surface, and a3(x1,x2) is 

the surface unit normal vector. The corresponding covariant basis vectors are 

 * 3 3
, 3 3 ,,

ˆ ˆ ,x x   
    g x x a a a  (2.27) 

in which (·),α denotes partial differentiation with respect to the curvilinear 

coordinates xα and Greek indices take values 1 and 2. aα and aα are covariant 

and contravariant basis vector on the middle surface, respectively. The 

covariant and contravariant components of the surface metric tensors are 

given as 

, .a a  
     a a a a  (2.28) 

In the Naghdi’s shell model, the displacement vector is assumed as 

 * 3 3
3 3ˆ ,u x w u x w  

         z a a a a a  (2.29) 

where uα and w are in-plane and out-of-plane displacement measure and ψα  

are rotational angle measure. The membrane, bending, and shear strain 

measures are obtained as 

 1
2 ,

2
u u b w    

     (2.30) 

     1 1 1
,

2 2 2
b u b w b u b w 

           
         (2.31) 

and 

, ,w b u         (2.32) 

where bαγ is covariant curvature tensor and b
  is mixed curvature tensor. 

(·)α||β=(·)α,β- 
 (·)µ means covariant differentiation in which 

 = aα,β·a
µ is 

christoffel symbol defined at the middle surface. These higher order 

geometric quantities such as christoffel symbol and curvature tensor are 
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exactly represented in IGA. For more details of Naghdi’s shell formulation, 

interested readers may refer to Naghdi (1973). 

Because only specific shapes such as cylinder or sphere are generally 

represented by using curvilinear coordinates in Naghdi’s shell, it is difficult 

to model the arbitrary shape of shell surface. NURBS basis functions are 

composed by two parameters and Naghdi shell element has two curvilinear 

coordinates. Therefore, by choosing the NURBS parameter as curvilinear 

coordinates and placing control points as we want, arbitrary shape of shell 

surface can be modeled in IGA (Rho and Cho 2004). Also, this approach has 

advantage on shape optimization due to its flexible shape change. In this 

paper, NURBS parameter will be used as curvilinear coordinates in all 

numerical examples for shell. 

 

2.3.2 Equilibrium equations considering surface effects 

 

Based on the kinematics of deformation of Naghdi’s shell, the 

equilibrium equations considering surface effects in nanoscale are presented. 

Consider the domain of the shell component *̂ ⊂E3 mapped into the 

domain 2,  R R . Upper and lower surface of shell are defined as Ω+ 

and Ω-, respectively as shown in figure 2.5. The bulk strain energy Wbulk is 

given as  

*

3 *
3

1
,

2bulkW E E ad 
  



    
   (2.33) 

where σαβ is bulk stress and Eαβ is the bulk strain measure. σα3 and Eα3 are for 

shear deformation, respectively. a is the determinant of the metric tensor. 
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Figure 2.5 The alignments of bond chains of an atom in surface and bulk 

 

Surface energy on the upper and lower surface is given as 

   
3

3

1

2surfW E E ad 
  
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3

3

1
,

2
E E ad 
  




 

    
   (2.34) 

where  
   and  

   are surface stresses on the upper and lower surface, 

respectively. The total potential energy is obtained as 

 * *

3 * *
3

1

2
nE E ad f z f w ad  

   
 

        
     

        
3
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1

2
E E ad 
  




 

    
    

        
3

3

1
,

2
E E ad 
  




 

    
   (2.35) 

where fα and fn are, respectively, in-plane and out-of-plane external body 

force intensities per unit volume on the middle surface. z  and w are, 

respectively, in-plane and out-of-plane virtual displacements on the middle 

surface. The constitutive equations of the shell component for the bulk stress 

are given as 

 3
  

      C E C x  (2.36) 



 

26 

and 

3 3 3 3 3
3 ,C E C    

     (2.37) 

where 

 C a a a a a a           (2.38) 

and 

3 3 ,C a    (2.39) 

where µ and λ are Lame constants. Surface Lame constants are different 

from the Lame constants of the bulk used in equations (2.38) and (2.39). The 

constitutive equations on the upper and lower surfaces of the shell 

component are given as 

       
3 3 3

0  and 
2s s

h
a C C     

        
     
 

 (2.40) 

where 

   0 0sC a a a a a a           (2.41) 

and 

 
3 3

0 ,sC a    (2.42) 

where µ0 and λ0 are surface Lame constants and τ0 is the residual surface 

stress under unstrained conditions. Chiu and Chen (2001) suggest that 

higher-order surface stress which considers not only the effect of in-plane 

membrane surface stresses, but also the surface moments. Surface moments 

are given as 

 

21 


 


 sm d C

E
 (2.43) 

where  

m  and  


m  are surface moments on the upper and lower surface, 
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respectively. They are induced from the non-uniform surface stress across 

the layer thickness. ds is surface bending stiffness parameter. Applying the 

above constitutive equations and using the principle of minimum total 

potential energy, an equilibrium equation is expressed as 

   , , ,a l Z
  z z z z  (2.44) 

where the bilinear strain energy and load linear forms are obtained as 

         , 2 sa C h C ad 
   

  z z z z   

            
3 2 21

2
12 2

  
 

  


        
   

 ss

h h
C C d C ad

E
z z  

               3 3 3 32 sC h C ad   
  


   z z  (2.45) 

and 

    02 ,nl f z f w a ad 
   

   z z  (2.46) 

Z [H1(Ω)]d is d-dimensional variational spaces of kinematically admissible 

displacements. From equation (2.45), the change of effective membrane, 

bending and shear modulus are observed by considering surface effects. 

Using an isoparametric mapping, approximated response and virtual 

response are expressed, in terms of NURBS basis functions and the response 

coefficients at control points as equations (2.20) and (2.21). Using equations 

(2.20) and (2.21), the variational equation (2.44) can be rewritten as 

     , , ,
CP

I I
I

a l W Z
   z z z z Ξ y  (2.47) 

where 

    m m
surf

,

, 2
CP

T T
I I K K

I K

a h ad 
  z z y B C C B y  



 

28 

3 2 2
b b

surf
,

1
2

12 2




        
   


CP

T T T
I I s K K

I K

h h
d ad

E
y B C C C B y  

         s s s s
surf

,

2
CP

T T T
I I K K

I K

h ad


   y B C C B y  (2.48) 

and 

   
0

m ,
CP

T T
I I I I

I

l W ad 
  z f y f B y  (2.49) 

where Bm, Bb and Bs are membrane, bending and shear strain-displacement 

matrix. C and Cs are constitutive matrices for the plane stress homogeneous 

linear elastic isotropic materials. Csurf and Cs
surf are those of the surface. f is 

force component matrix and 
0

f  is force component matrix by residual 

surface stress. The membrane Bm, bending Bb and shear strain-displacement 

matrix Bs are given as 

1 2
, 11 11 11

1 2
22 , 22 22

1 1
, 12 , 12 12

0 0

0 0 ,

2 2 2 2 2 0 0

I I I I
m
I I I I

I I I I I

W W W b W

W W W b W

W W W W b W





 

    
     
      

B  (2.50) 

1 2
, 11 11

1 2
22 , 22

1 2
, 12 , 12

0 0 0

0 0 0 ,

0 0 0 2 2 2 2

I I I
b
I I I I

I I I I

W W W

W W W

W W W W





 

   
    
     

B  (2.51) 

and 

1 2
1 1 ,
1 2
2 2 ,

0
.

0
I I I Is

I
I I I I

b W b W W W

b W b W W W




 
  
  

B  (2.52) 

Also, the constitutive matrices for the plane stress homogeneous linear 

elastic isotropic materials are given in matrix form as 
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 

11 11 11 11 12 12 11 22 11 12 11 12

22 22 22 22 22 12 22 12

11 22 12 12 12 12

2 2 2
2 2 2

1 1 1
2 2

2 2 ,
2 1 1 1

2
.

1

  
  

 
  




       
      
 
  
  

a a a a a a a a a a a a

E
a a a a a a a a

sym a a a a a a

C

(2.53) 

 

11 11 11 11 12 12 11 22 11 12 11 12
0 0 0 0 0 0

22 22 22 22 22 12 22 12
surf 0 0 0 0

11 22 12 12 12 12
0 0

2 2 2

2 2 ,

.

     
   

 

   
 

   
 

   

a a a a a a a a a a a a

a a a a a a a a

sym a a a a a a

C    

(2.54) 

 
11 12

s

12 22
,

2 1

a aE

a a
C


 

    
 (2.55) 

and 

11 12
s
surf 0 12 22

.
a a

a a


 
  

 
C  (2.56) 

Force component matrix by residual surface stress is given as 

0

11
0

22
0

12
0

2

2 .

2

a

a

a






 
   
  

f  (2.57) 

The integration of the bilinear energy form and load linear form in equation 

(2.47) can be evaluated using numerical integration methods as Gaussian 

quadrature. The four-point Gaussian quadrature formula is used for 

numerical integration. 
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2.3.3 Equilibrium equations considering nonlocal effects 

 

The theory of nonlocal elasticity states that the stress at a given 

reference point depends not only on the stress at this point, but also on the 

stress at other points in the body. This way, the influence of the long range 

forces between the atoms is taken into consideration, and thus the internal 

length scale is considered in the constitutive equations. The nonlocal stress 

tensor at point x is expressed as 

     ' ' ', d     x x x x x  (2.58) 

where   are the components of the classical local stress tensor, which are 

related to the componenets of the linear strain tensor   by the 

conventional constitutive relations as 

C 
    (2.59) 

The kernel function α(|x`-x|,τ) represents the nonlocal modulus. |x`-x| being 

the Euclidean distance and 0 /e a l   is a scale factor, where e0 is an 

adjusting constant which needs to be determined from experiments or MD 

simulation results. a is a characteristic internal length such as C-C bond of 

lattice parameter and l is the external characteristic length such as crack 

length or wave length. It is possible to represent the integral constitutive 

relations given by equation (2.57) in an equivalent differential form as 

(Eringen 1983) 

 21 .       (2.60) 

where nonlocal parameter µ=e0
2a2 is introduced. Based on the kinematics of 

deformation of Naghdi’s shell, the equilibrium equations considering 
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nonlocal effects in nanoscale are presented. In Eringen’s theory, equilibrium 

is expressed in terms of nonlocal resultants Nαβ,Mαβand Vα as 

0,N b V f   


    (2.61) 

0,M V 


   (2.62) 

and 

0.nb N V f 
 

    (2.63) 

The relations between local stress and nonlocal stress are given as 

 2 ,N N N hC   
     z  (2.64) 

 
3

2

12

h
M M M C   

     z  (2.65) 

and 

 2 3 3V V V hC    
     z  (2.66) 

where resultants with bar N , M  and V  mean local resultants. 

Equations (2.61)-(2.63) and equations (2.64)-(2.66) are coupled and must 

thus be solved simultaneously. Governing equations (2.61)-(2.63) are given 

in its weak form as 

   N b V f u M V ad     
   




          

       0nb N V f w ad 
 

        (2.67) 

Embedding the equations (2.64)-(2.66) into equation (2.67) yields 

N u b N w M V w ad   
    



         

     
nV b V u f u f w ad   

   

          
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    2 2 2N u b N w M ad  
   

 

            

2 2 2 0.V w V b V u ad   
  

 

         (2.68) 

Also, the following relations are valid for the terms dependent on µ term. 

 2 2N b V u ad  
 

         

,nf u b f u ad 
   

       (2.69) 

 2 2 n nM V ad f f ad 
    

  
 

              (2.70) 

and 

 2 2 .nb N V w ad b f w f w a  
     

              (2.71) 

Embedding the equations (2.69)-(2.71) into equations (2.68) and applying 

divergence theorem yields final governing equations as 

         
3

,
12

h
a C h C ad 

       

 
   

 
z z z z z z   

            3 3C h ad 
  


    z z   

              , ,
n nf f f ad

       

      z z z   

          ,nf z f w ad l Z 





       z z  (2.72) 

Z [H1(Ω)]d is d-dimensional variational spaces of kinematically admissible 

displacements. Using equations (2.20) and (2.21), the variational equation 

(2.72) can be rewritten as 

     , , ,
CP

I I
I

a l W Z
   z z z z Ξ y  (2.73) 

where 
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 
3

m m b b s s s

,

,
12

CP
T T T T T T
I I K I K I K K

I K

h
a h h ad 

 
    

 
z z y B CB B CB B C B y  (2.74) 

and 

       tan ' nor 'nor ,
CP

T mT bT sT
I I I I I

I

l W ad 
    z f y B f B f B f  (2.75) 

where Bm, Bb and Bs are membrane, bending and shear strain-displacement 

matrix. C and Cs are constitutive matrices for the plane stress homogeneous 

linear elastic isotropic materials. f is force component matrix. Superscripts 

on f tan(`), nor and nor(`) mean that it considers only its tangential or normal 

component with or without derivatives. The membrane Bm, bending Bb and 

shear strain-displacement matrix Bs are given as equations (2.50)-(2.52). 

Also, the constitutive matrices for the plane stress homogeneous linear 

elastic isotropic materials are given in matrix form as equations (2.53) and 

(2.55).  

Displacement solution fields considering nonlocal effects are obtained 

through equation (2.73), but nonlocal stress field cannot be obtained directly 

from equation (2.73). Therefore, staggered approach is introduced to obtain 

nonlocal stress field. (Askes et al. 2008) The staggered approach consists of 

solving the equation (2.73), computing the local strains and using the 

quantity as a source term for solving Helmholtz equations (2.64)-(2.66). 

Many attempts have been made in classical elasticity to implement finite 

elements with separate interpolations for stresses and displacements. 

However, simple and straightforward implementation of the Eringen theory 

that provides optimal convergence has not been accomplished as yet, and 

may not be feasible. (Askes and Aifantis 2011) 

The differences between surface elasticity and nonlocal elasticity are as 

follows. Surface effects are caused by the differences of the coordination of 
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atoms between bulk and surface as shown in figure 2.5-(a). The influences of 

surface have to be taken into account as the surface to volume ratio increases 

in nanoscale systems. Nonlocal effects are related to the non-continuum 

nature of material interactions on a molecular scale and not negligible in 

nanoscale structures as shown in figure 2.5-(b). In surface elasticity theory, 

the changes of mechanical behavior are observed as the cross sectional area 

in 1D structure or thickness in 2D structure varies. However, nonlocal theory 

only represents the change of mechanical behavior as the length in 1D 

structure or area of the surface in 2D structure varies. The exactness of 

nonlocal theory comes from it considers long range force between atoms and 

it can be more strict consideration than the way surface elasticity considers 

length scale parameter by residual surface stress. Therefore, surface 

elasticity is more suitable choice for observing the dependence on the 

variations of cross sectional area in 1D structure or variation of thickness in 

2D structure. On the other hand, nonlocal elasticity is appropriate for 

observing small scale effects of carbon nanotubes or graphene which is 1 

layered structure. And besides, stress singularity is not observed in crack tip 

problems by considering nonlocal effects. Therefore, nonlocal elasticity is 

proper for crack propagation problems in nanoscale. 
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Obtaining Cs , τ0MD Simulation Continuum model

( ) 0:= + + +Cσ εs sdC t

Cs : Surface Lame constant

( )0 0 0, ,s m l t=C

τ0 : Residual surface stress

ds : Bending stiffness parameter

(a) Surface elasticity 

Obtaining e0MD Simulation Continuum model

( )2 2

Nonlocal stres

0

s

:-  =σ σ C εe a

e0 : Adjusting constant
a

a : Characteristic internal length

 (b) Nonlocal elasticity 

Figure 2.6 The difference between surface and nonlocal elasticity 
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Chapter 3. Isogeometric Design Sensitivity Analysis 

considering Size Effects 

 

3.1 Beam structures 

3.1.1 Sizing design sensitivity analysis considering surface 

effects 

 

By using the chain rule of differentiation, the variational equation 

considering surface effects can be differentiated with respect to τ as 

      
0

; , ' , ',
d

a x a a
d  


 


    u u u uz u u z z z z z  (3.1) 

and 

                  
0

' .
d

l l
d    

   u u uz z  (3.2) 

where u denotes a design vector function and the first term on the right side 

of equation (3.1) represents the explicit dependence of au on the design, 

whereas the second term of equation (3.1) represents the implicit dependence 

through the variation of the state variable. From equations (3.1) and (3.2), 

we can obtain 

     ', ' ' ,a l a  u u uz z z z z   (3.3) 

If we let the design vector u is a diameter of circular cross section D, the 

design variations of bilinear form is obtained as 

 
3 2 2 2

0 0 02 20

3
' , 2 (2 ) 2

16 8
    

                        


L

D s

ED D w w w w
a d dx

x x x x
z z   (3.4) 

The design variation of load linear form vanishes. 
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3.1.2 Material derivatives 

 

Consider the variation of the 1D domain from an original domain Ω to a 

perturbed one Ωτ as shown in Figure 3.1. Suppose that only one parameter τ 

defines a transformation, and the mapping T is given by 

 ,T x x  (3.5) 

and 

 , .T     (3.6) 

 

x

 

 V x x
 

Figure 3.1 Design variation of 1D domain using linear mapping 

 

A design velocity field that is equivalent to a mapping rate can be defined as 

   ,
, .

dT xd

d d
 


 

 
x

V x  (3.7) 

In a neighborhood of τ=0, under certain regularity hypothesis and ignoring 

higher-order terms, the following linear mapping relation is obtained 

       0, 0, ,
T

T x x x x  



   


x x V  (3.8) 

in which the linear design velocity field at the middle surface of the shell is 

defined as 

   
0

0, .
dx

x x
d



 

 V V  (3.9) 

A performance measure for the beam component may be written in domain 
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integral form as 

  .f x d


    (3.10) 

The material derivative of Φ at Ω is obtained as 

       ' ' .f x div f x x d


    V  (3.11) 

 

3.1.3 Shape design sensitivity analysis considering surface 

effects 

 

By using the material derivative formula given in equation (3.11), the 

variational equation considering surface effects given in equation (2.17) can 

be differentiated with respect to τ as 

 
0

,
d

a
d     


  z z  

 * *
,11 ,11 ,11 ,11 0 ,1 ,1 0 ,1 ,1' ' 2 ' 2 'EI w w EI w w Dw w Dw w d 


      

   * *
,11 ,11 0 ,1 ,1 ,11 ,11 0 ,1 ,1 ,1,1

2 2EI w w Dw w V EI w w Dw w V d 


      (3.12) 

and 

                  ,1 ,1
0

' ,
d

l qw qw V qwV d
d     

       z  (3.13) 

From the material derivative of response solution, we obtain 

,1' . w w w V  (3.14) 

Its spatial derivatives are expressed as 

,1 ,1 ,1 ,1 ,11'w w w V w V    (3.15) 

and 

,11 ,11 ,11 ,1 ,1 ,11 ,111 ,11 ,1' .    w w w V w V w V w V  (3.16) 



 

39 

Substituting equations (3.15) and (3.16) into equation (3.12) yields 

 
0

,
d

a
d     


   z z  

  *
,11 ,11 ,1 ,1 ,11 ,111 ,11 ,1 ,11EI w w V w V w V w V w d


       

  *
,11 ,11 ,11 ,1 ,1 ,11 ,111 ,11 ,1EI w w w V w V w V w V d


        

  0 ,1 ,1 ,1 ,11 ,12 D w w V w V w d


      

  0 ,1 ,1 ,1 ,1 ,112 Dw w w V w V d


      

   * *
,11 ,11 0 ,1 ,1 ,11 ,11 0 ,1 ,1 ,1,1

2 2EI w w Dw w V EI w w Dw w V d 


      (3.17) 

and rearranging equation (3.17) yields 

 
0

,
d

a
d     


   z z  

        *
,11 ,11 ,1 ,1 ,11 ,11 ,1 ,11EI w w V w V w V w d


      

       *
,11 ,11 ,11 ,1 ,1 ,11 ,11 ,1EI w w w V w V w V d


       

         0 ,1 ,1 ,1 ,1 0 ,1 ,1 ,1 ,12 2D w w V w Dw w w V d 


       

       *
,11 ,11 0 ,1 ,1 ,12EI w w Dw w V d


    (3.18) 

Then, the material derivative of the strain energy bilinear form is denoted by 

       , ' , , ' ,Va a a a     z z z z z z z z  (3.19) 

where 

   *
,11 ,11 0 ,1 ,1, 2 ,a EI w w Dw w d


  z z    (3.20) 

   *
,11 ,11 0 ,1 ,1, 2 ,a EI w w Dw w d


  z z    (3.21) 

and 
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             *
,11 ,1 ,1 ,11 ,11' , 2Va EI w V w V w d


   z z  

  *
,11 ,11 ,1 ,1 ,112EI w w V w V d


     

                   0 ,1 ,1 ,14 Dw w V d


   

                    *
,11 ,11 0 ,1 ,1 ,12EI w w Dw w V d


    (3.22) 

Substituting equation (3.14) into (3.13) yields 

   1 ,1
0

,
d

l qw qwV d
d     

      z   (3.23) 

Then, the material derivative of the load linear form is obtained as 

     
0

'V
d

l l l
d    


    z z z  (3.24) 

where 

   1l qw d


 z   (3.25) 

and 

   ,1'Vl qwV d


 z  (3.26) 

The material derivative of variational equation for structural elasticity 

problem is given as 

        
0

, , , ' ,V

d
a a a a

d     
     z z z z z z z z  

                     
0

' .V

d
l l l

d    
     z z z  (3.27) 

Since all Zz , and following equation is valid. 

   , .a lz z z   (3.28) 

The design sensitivity formulation using a direct differentiation method is 

finally derived as 
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     , ' ' ,V Va l a z z z z z  (3.29) 

 

3.2 Shell structures 

3.2.1 Material derivatives in curvilinear coordinates 
 

Since the design domain is the middle surface of a shell, the variation 

for the thickness direction of the shell is not considered in this paper. 

Consider the variation of the middle surface of a shell from an original 

domain 3̂  E  to a perturbed one 3ˆ
  E . Suppose that only one 

parameter τ defines a transformation, and the mapping T is given by 

 ˆ ˆ,T x x  (3.30) 

and 

 ˆ ˆ, .T     (3.31) 

A design velocity field that is equivalent to a mapping rate can be defined as 

   ˆ,ˆ
ˆ, .

dTd

d d
 


 

 
xx

V x  (3.32) 

In a neighborhood of τ=0, under certain regularity hypothesis and ignoring 

higher-order terms, the following linear mapping relation is obtained as 

       1 2ˆ ˆ ˆ ˆ ˆ0, 0, , ,
T

T x x  



   


x x x x V x  (3.33) 

in which the linear design velocity field at the middle surface of the shell is 

defined as 

   
0

ˆ
ˆ ˆ0, .

d

d


 

 
x

V x V x  (3.34) 

The material point xτ∈R2

 

is mapped into ˆx ∈E3, and perturbed basis a1τ, 

a2τ and a3
τ are defined for the perturbed material point ˆx  as shown in 
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figure 3.2. 

 

 1 2ˆ ,x xx

̂

̂

 1a x

 2a x

 3
a x

ˆx

ˆ


ˆ


 ˆV x

 

Figure 3.2 Design variation of the middle surface of the shell 

 

A performance measure for the shell component may be written in domain 

integral form as 

    .f a d


   x x  (3.35) 

The material derivative of Ф at Ω is obtained as 

         ' .f a f a d



    x x x x  (3.36) 

 

3.2.2 Shape design sensitivity analysis considering surface 

effects 
 

By using the material derivative formula given in equation (3.36), the 



 

43 

variational equation considering surface effects can be differentiated with 

respect to τ as 

      
0

, , ,
d

a F ad F a d
d

z z z z z z
   



  
          (3.37) 

and 

   
0

,
d

l f z a f z a f z a hd
d 

  
   



 

          z     

      n n nf w a f w a f w a hd




           

             0 02 2 ,a a a hd 
    


     z z   

                02 ,a a hd
 





     z  (3.38) 

where 

            surf, 2F C h C 
   z z z z   

    
3 2 2

surf

1
2

12 2
  

 
  

 
   
 

s

h h
C C d C

E
z z  

                 3 3 3 3
surf2C h C   

    z z  (3.39) 

and 

       surf, 2F C h C 
   z z z z   

          
3 2 2

surf

1
2

12 2
  

 
  

 
   
 

  
s

h h
C C d C

E
z z  

                 3 3 3 3
surf surf2 2C h C C h C     

         z z z z    

         
3 2 2

surf

1
2

12 2
  

 
  

 
   
 

s

h h
C C d C

E
z z  

           3 3 3 3
surf2   

    C h C z z      surf2 
    C h C z z  

         
3 2 2

surf

1
2

12 2
  

 
  

 
   
 

s

h h
C C d C

E
z z  
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           3 3 3 3
surf2C h C   

    z z  (3.40) 

The material derivatives of the membrane strain tensor, bending strain tensor 

and shear strain tensor are obtained as 

  ,sym u u b w
     


    z  

       , ,Vsym u u u b w b w 
                    z z     (3.41) 

  ,sym 
      


    z  

         , ,Vsym  
                    z z    (3.42) 

and 

  ,sym w b u     


    z  

        , ,Vsym w b u b u 
                 z z    (3.43) 

in which   z ,   z  and   z  implicitly depend on the design through z . 

 V z ,  V z  and  V z  represent the explicitly dependent part that can be 

computed from both the state variable z and the design velocity V. Note that 

the operations of partial derivative with respect to the NURBS parametric 

coordinates and the material derivatives are commutative. The material 

derivative of variational equation for structural elasticity problem is given as 

       
0

, , , ' ,V

d
a a a a

d     
     z z z z z z z z  

                     
0

' .V

d
l l l

d    
     z z z  (3.44) 

In E2 space the following relation holds such as ˆ Zz , ˆ Zz  and 

ˆ i i
i iz zz g g    . Since ˆ 0i

izz g   on D  and the basis vectors ig  are 
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linearly independent, 0iz   on D . Therefore, ( )iz Zz    , and 

following equation is valid. 

   , .a lz z z   (3.45) 

The design sensitivity formulation using a direct differentiation method is 

finally derived as 

          , ' ' ,V Va l a z z z z z  

                   ' ' , ' , ' ,V mV bV sVl a a a   z z z z z z z  (3.46) 

Considering only membrane strain tensor and substituting equation (3.41) 

into equation (3.37) yields equation (3.47). Substituting equations (3.42) and 

(3.43) into equation (3.37) yields bending strain tensor equation (3.48) and 

shear strain tensor equation (3.49). 

       surf' , 2 ,mVa C h C a d 
  


    z z z z   

               surf2 ,C h C a d 
  





      z z  

               surf2 ,n
nC h C u b w a d 

  

       z  

              surf2 ,n
nC h C u b w a d 

  

       z   (3.47) 

     
3 2 2

surf

1
' , 2 ,

12 2
  

 
  



  
     

  
   

bV s

h h
a C C d C a d

E
z z z z  

    
3 2 2

surf

1
2 ,

12 2
  

 
  





  
     

  
 s

h h
C C d C a d

E
z z  

  
3 2 2

surf

1
2 ,

12 2
  

 
  



  
      

  
  n

s n

h h
C C d C a d

E
z  

  
3 2 2

surf

1
2 ,

12 2
  

 
  



  
       

  
  n

s n

h h
C C d C a d

E
z  (3.48) 

and 
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        3 3 3 3
surf' , 2 .sVa C h C a d   

  


  z z z z   

              3 3 3 3
surf2 .C h C a d   

  



   z z  

          3 3 3 3
surf2 .   

    

       n n

n nC h C b u b u a dz z  (3.49) 

Here, m, b and s mean explicitly dependent part of membrane, bending, and 

shear, respectively. From equation (3.38), explicitly dependent part of load 

linear form is obtained as 

     ' .n n
Vl f z a f z a f w a f w a d 

 

 



       z    

          0 02 2 ,n
na a u b w a d 

    

       z   

        02 ,a a d
 





     z  (3.50) 

 

3.2.3 Shape design sensitivity analysis considering nonlocal 

effects 

 

By using the material derivative formula given in equation (3.36), the 

variational equation considering nonlocal effects is differentiated with 

respect to τ as 
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                   , ,
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where 
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The material derivatives of the membrane strain tensor, bending strain tensor 

and shear strain tensor are obtained as equations (3.41)-(3.43). Considering 

only membrane strain tensor and substituting equation (3.41) into equation 

(3.51) yields equation (3.55). Substituting equations (3.42) and (3.43) into 

equation (3.51) yields bending strain tensor equation (3.56) and shear strain 

tensor equation (3.57), respectively. 
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and 
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Here, m,b and s mean explicitly dependent part of membrane, bending, and 

shear, respectively. From equation (3.52), explicitly dependent part of load 

linear form is obtained as 
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Chapter 4. Numerical Examples 
 

4.1 Beam structures in nanoscale 

4.1.1 Surface elasticity of silver nanowires under a 

concentrated force 

 

To validate the developed method experimentally, three-point bending 

test of silver nanowires using AFM are performed. Continuum formulation 

considering surface effects in nanoscale is introduced for the theoretical 

analysis of silver nanowires under a concentrated force. Since nonlocal 

theory does not capture the variation of cross sectional area and size effects 

cannot be predicted for bending of a nanobeam under a concentrated force, 

which is called paradox, nonlocal theory is not considered for the theoretical 

analysis of silver nanowires. Several researchers neglect the effect of the 

deflection due to shear and considered the beam as a straight one ignoring 

initial deflection. (Jing et al, 2006) In this research, shear effects and initial 

deflection of a beam will also be ignored for simplicity. Governing equation 

of a straight beam considering surface effects in nanoscale is rewritten as 

( ) ( )
4 2

*

04 2
2 0

d w d w
EI D q x

dx dx
t+ - =  (4.1) 

where (EI)* is effective rigidity and is obtained by 

( )* 3 2
8 s sEI EI E D d D
p

= + +  (4.2) 

and sE  is surface modulus and D is diameter of circular nanowire. A 

constant concentrated load F is applied at midpoint of the beam. For a fixed-

fixed nanowire boundary condition, following force equilibrium at x=0 is 

considered as 



 

50 

3
3

2 3

0

/ 2
8 s

x

d w
EI E D F

dx

p

=

æ ö÷ç- + =÷ç ÷çè ø
 (4.3) 

Exact displacement field without considering τ0 is expressed as 

( )
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F L x x
w x L

EI

-
= Î  (4.4) 

Exact displacement field with considering τ0 is expressed as 
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Setting x to L/2 yields exact maximum deflection at midpoint as 
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where η is obtained as 

( )*0 22 / .DL EIh t=  (4.7) 

Effective Young’s modulus is obtained from maximum deflection as 
3

4
max3eff

L F
E

Dp d
=  (4.8) 

Detailed derivation of exact displacement may refer to He and Lilley (2008).  

As a further development, design sensitivities of maximum deflection 

with respect to diameter and length are given, respectively. Derivative of 

maximum deflection with respect to D is given as 
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where 
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Derivative of maximum deflection with respect to L is given as 
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Figure 4.1 shows the effect of the surface stress on the effective Young’s 

modulus. For the (001) silver, surface elasticity values from atomistic 

calculations of τ0=0.89 and Es=1.22 are used. (Miller and Shenoy 2000) 

The silver nanowire length used in the calculation is 1 µm and the diameter 

of silver nanowire is 35 nm. The size dependence of the effective Young’s 

modulus is observed by considering surface effects. 
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Figure 4.1 Effect of the surface stress on the effective Young’s modulus 

 

Table 4.1 

Comparison of maximum displacement of silver nanowire under 

concentrated load considering surface effects 

 
(a) Exact 

displacement 

(b) Numerical 

displacement 
Ratio (b)/(a) 

Quadratic FEA
0.7318 

0.7089 96.87 (%) 

Quadratic IGA 0.7262 99.23 (%) 

 

The numerical maximum displacement using quadratic FEA and IGA are 

compared with exact maximum displacement as shown in table 4.1. Total 

number of DOFs used for each numerical analysis is 18. The IGA gives 

more accurate results than the conventional FEA, even same DOFs is used. 
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Table 4.2 

Comparison of sizing design sensitivity of maximum displacement with 

respect to the diameter of silver nanowire under concentrated load 

considering surface effects 

 
(a) Exact 

sensitivity 

(b) Analytical 

sensitivity 
Ratio (b)/(a) 

Quadratic FEA
-3.4834E+07 

-3.3579E+07 96.40 (%) 

Quadratic IGA -3.4444E+07 98.88 (%) 

 

Table 4.3 

Comparison of shape design sensitivity of maximum displacement with 

respect to the length of silver nanowire under concentrated load considering 

surface effects 

 
(a) Exact 

sensitivity 

(b) Analytical 

sensitivity 
Ratio (b)/(a) 

Quadratic FEA
9.3361E+05 

8.9726E+05 96.11 (%) 

Quadratic IGA 9.2174E+05 98.73 (%) 

 

Analytical sizing and shape sensitivity using quadratic FEA and IGA are 

compared with exact sensitivity as shown in table 4.2 and 4.3, respectively. 

Comparing with the exact sensitivity, analytical sensitivity of IGA shows 

better agreement than FEA case. 
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4.1.2 Three point bending test of silver nanowires using 

AFM 

 

The elastic modulus of silver nanowires is measured by performing 

three-point bending tests on nanowires suspended over substrate with 

etched holes. Figure 4.2 shows the image of used AFM (Brucker, 

Dimension Icon-PT SM) instrument. A small force is applied to the middle 

point along its suspended length using AFM cantilever tip. The cantilever 

(Veeco, RTESPA-300) here with calibrated resonance frequency 300 kHz 

and normal spring constants of 40 N/m was used. Silver nanowires were 

purchased from Plasmachem. Three kinds of silver nanowires dispersion in 

Ethanol were purchased, respectively. Average diameters of each silver 

nanowire are 40 nm, 100 nm and 200 nm, and its length is up to 50 µm. 

 

 

Figure 4.2 AFM instrument (Brucker, Dimension Icon-PT SM) 
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Cantilever Tip

  

Figure 4.3 AFM cantilever (Veeco, RTESPA-300) 

 

 

Figure 4.4 Silver nanowires (Plasmachem) 
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Figure 4.5 AFM calibration grating for the three point bending test 

 

Flat substrate with a hole is required for the three-point bending test of 

silver nanowire. AFM calibration grating is well-defined structures 

designed as an auxiliary aid for the monitoring of sophisticated imaging 

tools, so it provides reliable testing substrate for three-point bending test of 

silver nanowire. Used AFM calibration grating (Bruker, APCS-0099) in 

this study is a multi-area calibration artifact and pitch size is selectable 

from 2 µm to 15 µm. Therefore, we can choose suspended nanowire with 

appropriate length depending on the diameter to prevent initial deflection of 

nanowire. Several drops of the silver nanowires ethanol solution were 

dispersed onto the substrate. For eliminating problems associated with 

initial deflection of silver nanowire, the selection of reasonable ratio 

between the nanowire length and its diameter is required. L/D>15 is 

avoided to prevent initial deflection of silver nanowire. Since overlapped 

suspension of the silver nanowires is not desirable in three-point bending 

test, silver nanowire solution with low concentration is required for 

observing individual silver nanowire. After the experiment, substrate is 
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rinsed several times with ethyl alcohol, acetone and DI water for another 

experiment. 

 

 

Figure 4.6 SEM instrument (Jeol, JSM-7100F) 

 

Figure 4.6 shows the image of used scanning electron microscope (SEM) 

(Jeol, JSM-7100F). Before measurement with AFM, SEM images were 

obtained in advance. This is because scan speed of SEM is much faster than 

AFM and matching the same position between two instruments is possible 

by setting a coordinates using periodicity of AFM calibration gratings. We 

can observe that some of silver nanowires were well-suspended over the 

holes using SEM. The AFM images of the sample were scanned first at low 

magnification as shown in figure 4.7 to obtain overall view and an 
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individual nanowire of interest suspended over one hole is selected. Once a 

suspended nanowire was selected, an AFM image at higher magnification 

was carefully taken. Figure 4.8 and 4.9 show the images of the sample at 

higher magnification by SEM and AFM, respectively. We can observe 

same region is matched exactly by setting a coordinates using periodicity of 

AFM calibration gratings. Since alignment is not perfectly orthogonal, 

suspended length L is measured for each nanowire. 

 

Figure 4.7 SEM image of a suspended silver nanowire at lower 

magnification 
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Figure 4.8 The SEM images of the sample at higher magnification 

 

 

Figure 4.9 The AFM images of the sample at higher magnification 
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The diameter D of the nanowire was measured by cross sectional view in 

the AFM image. Figure 4.10 shows enlarged silver nanowire image and its 

cross sectional view. Since height information is more reliable than surface 

image due to the limitation of plane resolution, measured maximum height 

is set to diameter of circular nanowire. The AFM tip was then moved to the 

midpoint of the nanowire of interest. Special procedures are not required 

for fastening the nanowires to the substrate. Adhesion of the silver 

nanowire to the substrate was sufficiently strong to prevent any lift-off, 

providing a clamped beam assumption. 

Assuming that a force is applied at the midpoint of the beam and induces a 

deflection, we measure force-displacement curves from the midpoint of the 

suspended nanowire. The photodetector deflection sensitivity allows 

conversion from the raw photodiode signal to deflection of the cantilever. 

Deflection sensitivity is dependent on the cantilever type and laser 

alignment. The sensitivity must be calibrated on a hard substrate before 

accurate deflection data is obtained. As we know the parameters such as 

deflection sensitivity and spring constant, the deflection voltage-time 

curves can be converted to real force-distance curves. The cantilever tip 

was brought to contact with the sample by a piezoelectric actuator, resulting 

in both cantilever deflection and the bending of the suspended nanowire 

simultaneously. Therefore, the slope of force-deflection curves gives the 

spring constant of combined structure of cantilever and nanowire kwc which 

is related to the spring constant of the nanowire kw and that of cantilever kc 

by 



c wc

w
c wc

k k
k

k k
 (4.13) 

kc is given value depending on the cantilever type. Figure 4.11 shows the 

example of determining spring constant of nanowire kw from spring 
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constant of combined structure kwc and that of cantilever kc as given in 

equation (4.13). 
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Figure 4.10 The AFM images and its cross sectional view 
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Figure 4.11 Determination of spring constant of nanowire from three-point 

bending test 

 

4.1.3 Experimental validation for surface elasticity of silver 

nanowires 

 

Surface elasticity with high order surface effect 

Generally, according to the beam theory for a three-point bending test, 

the effective Young’s modulus considering size effects is given by equation 

(4.8). L, D and I are obtained from the geometry information and stiffness 

ks=F/δmax is determined by three point bending test. Figure 4.12 shows the 

effective Young’s modulus obtained from three point bending test as the 

function of the diameters of silver nanowires. Obtained experimental data is 

compared with experimental data by Jing et al. (2006) and it shows fairly 

good agreement. 
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Figure 4.12 Variation of the effective Young’s modulus with the diameters 

of silver nanowires 

 

Jing et al. (2006) obtained a relationship between the effective Young’s 

modulus and the diameters of nanowires through three point bending test. 

Using the relation that total elastic energy is the sum of bulk and surface 

elastic energy, they derived following approximated relation between 

original Young’s modulus E and effective Young’s modulus Eeff as 

2

03

8 8
.

5eff s

L
E E E

D D
t= + +  (4.14) 

Under the assumption that L is approximately 14D, fitting curve given in 

equation (4.14) gives optimized surface parameters, E=56 GPa, Es=8.7 N/m 

and τ0=5.8 N/m. Cuenot et al. (2004) also presented optimized surface 

parameters E=67.5 GPa and τ0=3.09 N/m from their own experimental 

results. These values are different from E=76 GPa, Es=1.22 N/m and τ0=0.89 

N/m which are obtained from MD simulation results. Jing et al. (2006) 

analyzed the reasons for the differences of surface parameters obtained by 

MD simulation and experimental results are due to surface roughness and 
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surface oxidation layer. Since rough surface may consume more energy than 

a smooth surface during the deformation, surface parameters obtained from 

experimental data are larger than those obtained from MD Simulation, which 

deals with silver nanowires having smooth surface. 

He et al. (2008) present the approach using the generalized Young-

Laplace equation to study the influence of surface effect on the three point 

bending test of silver nanowires. Concentrated force 1.0 nN is applied at the 

mid-point and maximum displacement wmax at the mid-point is obtained. The 

effective Young’s modulus is obtained as FL3/[192(EI)*wmax]. For the 

theoretical calculation, surface parameters are given as E=76 GPa, Es=1.22 

N/m and τ0=0.89 N/m which are obtained from MD simulation results. 

Under the assumption that L is 1.0 µm, theoretical solutions are compared 

with experimental results obtained by Jing et al. (2006) and it shows fairly 

good agreement between them. However, suspended length in the 

experiment by Jing et al. (2006) is approximately 14D, not 1.0 µm for all 

diameters. To account for the differences between experimental results and 

theory, some researchers discuss that surface moment with finite thickness 

affects the surface energy. The surface elasticity theory developed by Gurtin 

and Murdoch (1975) is based on the idea that two-dimensional membrane 

with zero-thickness is bonded to the bulk, so it has no flexural resistance. 

However, there is an intrinsic flexural resistance of the surface since the 

surface region has a few atomic layers thickness. Chiu and Chen (2011) 

suggest high-order surface stress which considers not only the effect of in-

plane membrane surface stresses, but also the surface moments induced from 

the non-uniform surface stress across the layer thickness. It allows that the 

stress could be linearly varying across the layer thickness, which results in 
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surface stress as well as surface moment. The generalized Young-Laplace 

equation with high-order surface stress is obtained as 

( )
3 4 2

04 2
2 2 0.

8 s s

D w w
EI E d D D q x

x x

p
t

é ù ¶ ¶ê ú+ + - + =ê ú ¶ ¶ë û
 (4.15) 

The surface bending stiffness parameter ds is estimated approximately from 

the reported value of Es via the relation ds≈O(h2)Es where h is surface layer 

thickness. In their study, ds is estimated as about 1.0~5.0 (10-14N·m) for 

silver nanowires. They show that developed method predicts more accurate 

results with the experimental data reported by Jing et al. (2006) compared 

with original method without high-order surface stress. 

 

Validation of surface elasticity theory by experimental data 

For the validation of surface elasticity theory using obtained 

experimental data, dependence on diameter as well suspended length is 

observed. The DSA formulation considering surface effects is also validated 

through experimental data. Firstly, surface parameters Es and τ0 in 

generalized Young-Laplace equation are modified for best fitting 

experimental data and their values are compared with those suggested by 

Cuenot et al. (2004) and Jing et al. (2006). Since τ0 is dominant in calculation 

of surface energy, Cuenot et al. (2004) ignored Es term. Average error of 

effective Young’s modulus between theory and experimental data is defined 

as 

exp
exp, theory,

1exp theory,

1
N

i i

i i

E E
e

N E=

-
= å  (4.16) 

where Nexp is total number of experimental data, Eexp,i and Etheory,i are i-th 

effective Young’s modulus obtained by experiments and that obtained by 

theory, respectively. Average error of effective Young’s modulus is 

minimized when Es is 6.59 and τ0 is 3.51. Surface parameters obtained from 
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experimental data in present study are comparable with those obtained by 

other researchers as shown in table 4.4. 

 

Table 4.4 

Comparison of surface parameters obtained from other papers 

 MD Simulation Cuenot (2004) Jing (2006) Present study 

E (GPa) 76.0 67.5 56.0 76.0 

Es (N/m) 1.22 - 8.7 6.59 

τ0 (N/m) 0.89 3.09 5.8 4.81 

 

Secondly, the dependence on surface bending stiffness parameter ds of 

effective Young’s modulus is observed. Chiu and Chen (2011) estimated ds 

as 1.0~5.0 (10-14N·m) for silver nanowires. Figure 4.13 shows the graph of 

average error of effective Young’s modulus between theory and 

experimental data as function of surface bending stiffness parameter ds. 

Average error of effective Young’s modulus is minimized when surface 

bending stiffness parameter is 3.2 (10-14N·m). 
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Figure 4.13 The graph of the average error of effective Young’s modulus as 

function of surface bending stiffness parameter 

 

Figure 4.14 shows the graph of effective Young’s modulus as function 

of suspended length and diameter of silver nanowires. Red graph shows 

effective Young’s modulus without surface effects. Size dependence of 

effective Young’s modulus is not observed. In yellow graph, Size 

dependence on effective Young’s modulus is observed under the assumption 

that surface parameters are E=76 GPa, Es=1.22 N/m and τ0=0.89 N/m which 

are obtained from MD simulation results. Especially, size dependence is not 

clear for low suspended length on the given surface parameter. Green graph 

shows best fitting surface of experimental data under the modified surface 

parameters, E=76 GPa, Es=6.59 N/m and τ0=3.71 N/m. In blue graph, best 

fitting surface minimizing average error of effective Young’s modulus is 

obtained by considering surface bending stiffness parameter ds=3.2 (10-

14N·m). Average error of effective Young’s modulus in the modified surface 

parameter case (which is green) and high order surface effects case (which is 

blue) are obtained as 9.82(%) and 7.89(%), respectively. Figure 4.15 shows 
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the graph of the effective Young’s modulus as function of diameter of silver 

nanowires with suspended length. We can observe that best fitting surface is 

obtained by considering high order surface effects. With the modified 

surface parameters, effective Young’s modulus is too high or too small for 

some range. 
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Figure 4.14 The graph of the effective Young’s modulus as function of 

suspended length and diameter of silver nanowires 
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(a) Surface parameter (Es=1.22 N/m, τ0=0.89 N/m) 

 

(b) Modified surface parameter (Es=6.59 N/m, τ0=3.51 N/m) 

 

(c) High order surface effect (Es=1.22 N/m, τ0=0.89 N/m, ds=3.2×1E-14Nm) 

Figure 4.15 The graph of the effective Young’s modulus as function of 

diameter of silver nanowires with suspended length 
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Validation of DSA considering surface effect 

For the validation of DSA based on continuum-based theory 

considering surface effects, the design sensitivity values obtained from 

fitting curve of experimental data are compared with those obtained by DSA. 

Surface parameters for best fitting curve of experimental data E=76 GPa, Es 

=1.22 N/m, τ0=0.89 N/m and ds=3.2 (1E-14Nm) are used. Figure 4.16 and 

4.17 show the design sensitivity of maximum displacement with respect to 

diameter and suspended length of silver nanowires, respectively. Fitting 

curve of experimental data is obtained using second order polynomial 

function and design sensitivity is calculated from fitting curve. Design 

sensitivity obtained by fittig curve of experimental data are compared with 

that of theoretical calculation in table 4.5. Acceptable agreement is obtained 

between the design sensitivity of maximum displacement obtained by 

experiments and the results obtained by DSA considering surface effects. 

Therefore, we can conclude that developed DSA formulation considering 

surface effects in nanoscale is validated experimentally through three point 

bending test of silver nanowires. 

 

Table 4.5 Comparison of DSA between experiments and theory 

 

(a) Fitting 

curve by 

experiments 

(b) Without 

surface 

effect 

(c) With  

surface 

effect 

Ratio 

(b)/(a) (%)

Ratio 

(c)/(a) (%) 

37D nm

w

D =

¶
¶

 -9.100E-03 -1.742E-02 -9.493E-03 191.43 104.32 

0.5D m

w

L m=

¶
¶

 2.771E-04 4.108E-04 3.044E-04 148.25 109.85 
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Figure 4.16 Validation of design sensitivity of maximum displacement with 

respect to diameter of silver nanowires 
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 Figure 4.17 Validation of design sensitivity of maximum displacement 

with respect to suspended length of silver nanowires 
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4.2 Shell structures in nanoscale 

4.2.1 Shape design optimization of parabolic arch: optimal 

height 

 

Shape design optimization problem of parabolic arch in nanoscale 

under distributed load is considered. Shape design optimization is to find the 

optimal shape design which minimizes a certain objective functional while 

satisfying given constraints. In shape design optimization, the shape of 

physical domain must be treated as the design variable. In this example, 

design variable is the height of parabolic arch, and the objective of shape 

optimization is to minimize the total strain energy. The optimal shape for an 

arch under distributed load is known as parabola where bending moments 

vanish and the loads are carried by membrane forces only. There is infinite 

number of quadratic parabolas to be spanned between two points, and we 

want to find the optimal height of the parabola on the given width. Kiendl et 

al. (2014) discussed the exact optimal height of parabola, and we derived 

additional terms to reflect the surface effects in nanoscale. The total strain 

energy for the parabolic arch with surface effects is derived as 

( )
( )

( ) ( ) ( ){ }2 3 2 2
1 0 2 0 3

0 0

1
4 4 ,

2 4 2
U h q D U h qD U h DU h

EA
t t

m l
= + +

+ +
    (4.17) 

where 

( )
( ) ( )2 3 1

1 3

1 4 16 10 3sinh 2
,

32

h h h h
U h

h

-+ + +
=  (4.18) 

( )2

4 1
,

3
= +U h h

h
 (4.19) 

and 

( )
( )1

2
3

sinh 2
1 4 ,

2

-

= + + h
U h h

h
 (4.20) 
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Figure 4.18 Model description of parabolic arch under distributed load 

 

where µ0, λ0 and τ0 are considered to apply the surface effects, q is the 

distributed load, h is the height of the parabolic arch and D is the half width 

of the arch. Since bending moments vanish in parabola, surface bending 

stiffness parameter ds is not considered in this example. As D increases, the 

relative effect of τ0 decreases. This is in accordance with the physical 

meanings that τ0 have a larger influence on the small sized structure. 

Detailed derivation of equation (4.17) and its derivatives can be found in 

Appendix A. For the verification of numerical analysis results, numerical 

strain energy and its shape design sensitivity are compared with the exact 

solutions. The problem parameters are: D and h are 100 nm, q is 0.2 N/nm 

and thickness is 1 nm. The material is assumed as Si(100) under EAM 

potential (Miller and Shenoy 2000). Young’s modulus E=107 GPa and 

surface Lame constants µ0 is -2.7779, λ0 is -4.4939 and residual surface 

stress τ0 is 0.6056. To guarantee constant state throughout the z-direction, 

Poisson’s ratio ν is set to zero and unit width is assumed. Total number of 

DOFs is 245. The numerical strain energy using quadratic FEA and IGA are 
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compared with exact strain energy as shown in table 4.6 The IGA gives 

more accurate results than the conventional FEA, even same DOFs is used. 

 

Table 4.6 

Comparison of strain energy of parabolic arch under distributed load 

considering surface effects 

 
(a) Exact strain 

energy 

(b) Numerical 

strain energy 
Ratio (b)/(a) 

Quadratic FEA
5.6210E-07 

5.4607E-07 97.15 (%) 

Quadratic IGA 5.5975E-07 99.58 (%) 

 

The exact shape design sensitivity is obtained by differentiating equation 

(4.17) with respect to the design variable h, and the analytical sensitivity 

using quadratic FEA and IGA are compared with exact sensitivity as shown 

in table 4.7 Comparing with the exact sensitivity, analytical sensitivity of 

IGA shows better agreement than FEA case. 

 

Table 4.7 

Comparison of shape design sensitivity of strain energy with respect to the 

height of parabolic arch under distributed load considering surface effects 

 
(a) Exact shape 

design sensitivity

(b) Analytical shape

design sensitivity 

Ratio 

(b)/(a) (%) 

Quadratic FEA
-5.5154E-08 

-7.9957E-08 144.97 

Quadratic IGA -5.8937E-08 106.86 

 

Exact optimal height is determined by the stationary point of strain energy 

given in equation (4.17). Since the parabola is in pure membrane state, 
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surface Lame constants affect only magnitude of total strain energy and do 

not affect the optimal height. Only residual surface stress affects the optimal 

design. Figure 4.19 shows the effect of the surface stress on the strain energy 

with parabolic height. If the height of the arch tends to zero, the strain 

energy become infinity. As the height of the arch tends to infinity, total 

volume of the domain becomes infinity. Therefore, there exists optimal 

height that minimizes total strain energy. Since the optimization problem is 

convex, it does not require any constraints to get an optimal solution. 
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Figure 4.19 Effect of the surface stress on the strain energy with parabolic 

height 
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To solve the nonlinear mathematical optimization problem, a gradient-based 

optimization algorithm (MMFD; modified method of feasible direction) is 

used. Exact optimal height is obtained as 109.558 nm without surface effects 

and 107.044 nm with surface effects from exact solution. Strain energy 

caused by distributed load is convex for the height change, but strain energy 

caused by residual surface stress monotonically decreases as the height 

decreases. Therefore, if we consider the strain energy caused by residual 

surface stress additionally, lower height is more advantageous to obtain 

minimum strain energy. If residual surface stress is not considered, obtained 

stationary point has nothing to do with distributed load q. If residual surface 

stress is considered, stationary point is determined as function of the the q to 

τ0 ratio. As the distributed load q increases, residual surface stress τ0 affects 

less to the solution. In other words, the difference between the optimal 

height with and without surface effects increases as q to τ0 ratio decreases. 

Figure 4.20-(a) shows the design model and design variable for the change 

of parabolic height and Figure 4.20-(b) shows analysis model. Because the 

shell structures require sufficient number of DOFs to ensure a reasonable 

structural response analysis, shape parametrization is essential to avoid 

wiggly design. In the present study, geometry is defined using some control 

points and analysis model is obtained through h-refinement of the design 

model keeping the geometry unchanged. Quadratic IGA is used and total 

number of DOFs used for analysis is 65. Figure 4.20-(c) shows initial and 

optimal design and the optimal height is obtained as 107.049 through 3 

iteration. The number of iteration in optimization is same with that of DSA 

evaluation. Note that total number of function evaluation including structural 

analysis is larger than that of DSA evaluation. 
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    (a) Design model                  (b) Analysis model; 

 

(c) Initial and optimal design 

Figure 4.20 Shape design optimization of parabolic arch considering surface 

effects 

 

 

 

 

 

 



 

79 

4 6 8 10 12 14

Figure 4.21 Convergence of optimal height of parabolic arch considering 

surface effects 

 

Figure 4.21 shows the convergence of optimal height for FEA and IGA case 

as the number of DOFs for each optimization increases. It converges well to 

the exact optimal height with surface effects. Even basis functions with same 

order are used in both FEA and IGA cases, IGA shows better convergence 

rate than FEA case. 

 

4.2.2 Shape design optimization of curved graphene: 

optimal curvature 
 

As a second example for shell, shape design optimization problem of 

curved graphene under distributed load is considered.  The design variable 

is the curvature of curved graphene which is constant over the whole domain. 

The objective of shape optimization is to minimize the total strain energy 

with constraints that allowable volume fraction is equal to the original one. 

Kosynkin et al. (2009) found that curved graphene with constant curvature 
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can be constructed by unzipping carbon nanotubes, and the size of width, 

length and curvature of the graphene can be obtained as we want from the 

specific carbon nanotubes. Curved graphene is modeled as circular arch shell 

shown in figure 4.22. w is the distributed load and the curvature of the 

circular arch is 1/R over the whole domain where R is the radius of the 

circular arch. As the radius of the circular arch changes, the center angle of 

the circular arch also changes for preserving the original volume. 

 

1 /nN nmw

R

X

Y

Z

 

Figure 4.22 Model description of circular arch under distributed load 

 

Surface elasticity 

The exact solution of strain energy considering surface effects is 

derived as 

( )

2

0
0 02 4 2

l

m b s

N
U U U U ds

EA m l
= + + =

+ +ò  

                 
( ) ( )

2 2

20 0
0 0 02 2 2

l l

t

M V
ds ds

EI h GAm l m
+ +

+ + +ò ò  (4.21) 

Detailed derivation of exact solution and its derivatives are given in 
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appendix A. Residual surface stress τ0 and surface Lame constants µ0 and λ0 

are introduced to consider surface effects. Surface bending stiffness 

parameter ds is not considered here. τ0 affects the stress state directly through 

the axial force N, and µ0 and λ0 affect the constitutive relation. Optimal 

curvature is determined by the stationary point of strain energy given in 

equation (4.21). Optimal curvature minimizing strain energy is obtained 

under the following conditions. We determined material properties of 

graphene from the Farajpour’s assumption (2013). Young’s modulus 

E=1000 GPa and surface Lame constants µ0 is 15.3846 and λ0 is 23.0769 and 

residual surface stress τ0 is 0.4. To guarantee constant state throughout the z-

direction, Poisson’s ratio is set to zero and unit width is assumed. The 

thickness is 3.35 nm and distributed load w is 3E-3 N/nm. Figure 4.23-(a) 

shows the variation of membrane and bending energy as function of the 

curvature, respectively. It is observed that optimal curvature minimizing 

strain energy is determined by the ratio between membrane and bending 

energy. Since the consideration of µ0 and λ0 changes constitutive relation, it 

changes the ratio between membrane and bending energy. Figure 4.23-(b) 

shows the effect of surface stress on the strain energy with curvature. If 

surface effects are not considered, strain energy is minimized when 

curvature is 1.745E-3. If µ0 and λ0 are considered, strain energy is minimum 

when curvature is 1.762E-3. If µ0, λ0 and τ0 are considered, strain energy is 

minimum when curvature is 1.887E-3. Compared with parabolic arch 

example, not only τ0 but also µ0 and λ0 affect the optimization results. Also, 

the dependence on the curvature of mechanical behaviors of curved shell in 

nanoscale can be observed. Even the total volume and distributed load 

remain constant during the curvature changes, total strain energy of the shell 

model changes abruptly. Therefore, representation of exact geometry is 
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highly significant in continuum shell modeling. 
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 (a) Membrane and bending energy variation 
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Figure 4.23 The graph of the strain energy as function of the curvature 
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 (a) Design model                 (b) Analysis model; 

 

(c) Initial and optimal design 

Figure 4.24 Shape design optimization of circular arch considering surface 

effects 

 

Figure 4.24-(a) shows the design model and design variables for the change 

of curvature. Analysis model in figure 4.24-(b) is obtained through h-

refinement of the design model keeping the geometry unchanged. Quadratic 

IGA is used and total number of DOFs used for analysis is 115. Thickness is 

0.335 nm and distributed load w is 0.01 N/nm. Figure 4.24-(c) shows initial 

and optimal design. The optimal curvature is obtained as 0.087 through 3 

iterations. This value is identical with exact optimal curvature considering 

surface effects. 
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 Figure 4.25 Convergence of optimal curvature of circular arch considering 

surface effects 

 

Figure 4.25 shows the convergence of optimal curvature for FEA and IGA 

case as the number of DOFs for each optimization increases. Both cases 

converge well to the exact optimal curvature, and IGA case shows better 

convergence rate than FEA case due to the exact geometry and higher-order 

geometric information in DSA. 

 

Nonlocal elasticity 

The exact solution of strain energy considering nonlocal effects is 

derived as 

2 2 2

0 0 02 2 2

l l l

m b s
t

N M V
U U U U ds ds ds

EA EI GA
= + + = + +ò ò ò  (4.22) 

Detailed derivation of exact solution and its derivatives are given in 

appendix B. Optimal curvature is determined by the stationary point of strain 

energy given in equation (4.22). Optimal curvature minimizing strain energy 

is obtained under the following conditions. For the verification of numerical 



 

85 

analysis results, numerical strain energy and its shape design sensitivity are 

compared with the exact solutions. The problem parameters are: R is 20 nm, 

w is 1 nN/nm and thickness is 0.34 nm. Young’s modulus E is 790.7 GPa 

and nonlocal parameter is 1.0 nm. To guarantee constant state throughout the 

z-direction, Poisson’s ratio is set to zero and unit width is assumed. Total 

number of DOFs is 285. The exact strain energy and the numerical strain 

energy using quadratic FEA and IGA are compared with exact strain energy 

as shown in table 4.8 The IGA gives more accurate results than the 

conventional FEA, even same DOFs is used. 

 

Table 4.8 

Comparison of strain energy of circular arch under distributed load 

considering nonlocal effects 

 
(a) Exact strain 

energy 

(b) Numerical 

strain energy 
Ratio (b)/(a) 

Quadratic FEA
5.818E-24 

5.301E-24 91.11 (%) 

Quadratic IGA 5.719E-24 98.29 (%) 

 

The exact shape design sensitivity is obtained by differentiating equation 

(4.22) with respect to the curvature, and the analytical sensitivity using 

quadratic FEA and IGA are compared with exact shape design sensitivity as 

shown in table 4.9. Comparing with the exact sensitivity, analytical 

sensitivity of IGA shows better agreement than FEA case. 
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Table 4.9 

Comparison of shape design sensitivity of strain energy with respect to the 

curvature of circular arch under distributed load considering nonlocal effects 

 
(a) Exact shape 

sensitivity 

(b) Numerical 

shape sensitivity
Ratio (b)/(a) 

Quadratic FEA
-1.162E-24 

-1.021E-24 87.85 (%) 

Quadratic IGA -1.128E-24 97.01 (%) 

 

Figure 4.26 shows the increase of nonlocal effects with the size changes. As 

the radius of the circle increases, the difference of the normalized strain 

energy between without and with nonlocal effects decreases. 

Figure 4.27-(a) shows the variation of membrane and bending energy as 

function of the curvature, respectively. It is observed that optimal curvature 

minimizing strain energy is determined by the ratio between membrane and 

bending energy. Consideration of nonlocal parameter changes the ratio 

between membrane and bending energy. Figure 4.27-(b) shows the effect of 

nonlocal effects on the strain energy with curvature. If nonlocal effects are 

not considered, strain energy is minimized when curvature is 1.75E-02. If 

nonlocal parameter is considered, strain energy is minimized when curvature 

is 1.81E-02. Also, the dependence on the curvature of mechanical behaviors 

of curved shell in nanoscale can be observed. Even the total volume and 

distributed load remain constant during the curvature changes, total strain 

energy of the shell model changes abruptly. Therefore, representation of 

exact geometry is highly significant in continuum shell modeling. 
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(a) Normalized strain energy as the function of radius of the circle 

Figure 4.26 Nonlocal effects with the size changes 
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Figure 4.27 Variation of strain energy with curvature for a circular arch 

under distributed load considering nonlocal effects 
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      (a) Design model                 (b) Analysis model 

  

(c) Initial and optimal design 

Figure 4.28 Shape design optimization of circular arch considering nonlocal 

effects 

 

Figure 4.28-(a) shows the design model and design variables for the change 

of curvature. Analysis model in figure 4.28-(b) is obtained through h-

refinement of the design model keeping the geometry unchanged. Quadratic 

IGA is used and total number of DOFs used for analysis is 115. Thickness is 

0.34 nm and distributed load w is 1 nN/nm. Figure 4.28-(c) shows initial and 

optimal design and the optimal curvature is obtained as 0.018 (1/nm) 

through 3 iteration. This value is identical with exact optimal curvature 

considering nonlocal effects. 
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 Figure 4.29 Convergence of optimal curvature of circular arch considering 

nonlocal effects 

 

Figure 4.29 shows the convergence of optimal curvature for FEA and IGA 

case as the number of DOFs for each optimization increases. Both cases 

converge well to the exact optimal curvature, and IGA case shows better 

convergence rate than FEA case due to the exact geometry and higher-order 

geometric information in DSA. 

Nonlocal effects are applied as the function of strain measures and 

contravariant component of the force given in equation (2.71). Strain 

measures are the function of geometric quantities such as curvature and 

christoffel symbol. Also, contravariant component of the forces and its 

derivatives are also geometric quantities if we consider design dependent 

load. Therefore, nonlocal effects are applied exactly by using IGA which is 

geometrically exact. 
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Figure 4.30 Model description of circular shell under distributed load 

 

Circular shell example with distributed vertical load is considered as shown 

in figure 4.30. L is 400 nm, W is 400 nm, P is 1 N/nm2 and µ is 10 nm. The 

convergence rate of terms dependent on nonlocal parameter using quadratic 

IGA and FEA is compared. Load linear form dependent on nonlocal 

parameter is written as 

      , , .n nF f f f ad
        


    z z z  (4.23) 

Also, explicitly dependent part of shape design sensitivity dependent on 

nonlocal parameter is written as 

            '
, ,

n n
VF f f f a hd

        




      z z z z  

              , ,
n nf f f a hd

       

      z z z    

            ,
nf u b w f a hd  

      

           
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          ,
nf b u a hd
  


      (4.24) 

Equations (4.23) and (4.24) are computed for the unit z  and normalized 

force and moment components are plotted in figure 4.31. Strain measures 

and contravariant component of the forces are function of geometrical 

quantities such as covariant basis, curvature and christoffel symbol. IGA is 

geometrically exact and represent these quantities exactly even small number 

of DOFs. However, quadratic FEA is not geometrically exact and these 

quantities cannot be represented exactly. Also, geometrical error is increased 

when calculating the first order derivatives of these quantities. 
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Figure 4.31 Convergence rate of nonlocal parameter terms 
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4.2.3 Shape design optimization of silver shell: optimal 

form 

 

This example is suggested to illustrate the capabilities of developed 

method under general shell components as shown in figure 4.32-(a). The 

objective of this optimization problem is to minimize the strain energy under 

the distributed load. Design variables are specific coordinates of control 

points as shown in figure 4.32-(b), and 1445 DOFs are used for analysis 

through h-refinement scheme as shown in figure 4.32-(c). The length L of 

initial geometry is 1.0 µm and thickness h is 40 nm. The distributed load is 

set to 0.5 MN/m2, and four corners are simply supported. The material is 

assumed as silver which is same with the example suggested in chapter 4.1. 

Young’s modulus E is 76 GPa, Poisson’s ratio ν is 0.37, surface modulus Es 

is 1.22 N/m, residual surface stress τ0 is 0.89 and surface bending stiffness 

parameter ds is 3.2 (1E-14Nm). Figure 4.33 shows the optimization history 

with and without surface effects. Figure 4.34 shows the optimization history 

of membrane and bending energy, respectively. When the shape of the shell 

if flat, the bending energy is dominant. As the curvature changes during the 

optimization process, membrane-oriented design is presented avoiding as far 

as possible bending energy to minimize total strain energy. Even at initial 

design with surface effects, membrane energy is caused by residual surface 

stress τ0. During the optimization process, bending energy is decreased by 

curvature change but the membrane energy caused by τ0 cannot be totally 

decreased by curvature change. Therefore, total strain energy with τ0 mainly 

due to the membrane energy is higher than without τ0. For the high-order 

surface effect, the structure behaves stiffer and total strain energy is 

decreased. 
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Figure 4.32 Model description of optimal shell form 
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Figure 4.33 Optimization history of optimal shell form problem 

 

Figure 4.35 shows the effect of the surface stress on the optimal shape. 

Similar dome shape is obtained to minimize bending energy, but maximum 

heights of the dome are different at each case. Maximum height of the 

optimal shape is 435.3 nm for the case without surface effects, and it is 298.5 

nm for the case with surface effects. The effect of Es is ignorable in this 

example and that of τ0 is required to be observed carefully. Since minimizing 

the area is more advantageous than generating curvature to minimize 

membrane energy caused by residual surface stress τ0, maximum height of 

optimal shape is decreased. Maximum height of the optimal shape is 

decreased to 294.3 nm for the case with high-order surface effects. This is 

because bending energy over membrane energy decreases by considering 

high-order surface effects. In figure 4.36, different distributed load is 

assumed to show the dependence on the distributed load in the optimal shape. 

When the distributed load is dominant compared with residual surface stress, 

optimal shape is almost same with that of case without surface effects. On 

the other hand, when the residual surface stress is dominant with relatively 
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small distributed load, maximum height of optimal shape is almost zero, and 

it has small curvature on the surface. 
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Figure 4.34 Optimization histories of membrane and bending energy 
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(a) Without surface effects 

 

(b) With surface effects 

 

(c) With high-order surface effects 

Figure 4.35 Effect of the surface stress on the optimal shape 
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(a) q=0.1 MN/m2    

 

 (b) q=0.5 MN/m2 

  

                         (c) q=1.0 MN/m2 

Figure 4.36 Effect of distributed load on the optimal shape 
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4.2.4 Crack problem of graphene: exact stress distribution 

without singularity 

 

Since the behavior of crack initiation and its growing process are very 

crucial for the safety of ship and marine structures, obtaining exact 

mechanical behavior of structures with crack is important. As the size of the 

crack decreases to micro or nanoscale, we cannot obtain exact computation 

results using linear elastic fracture mechanics (LEFM). If we observe crack 

tip in nanoscale, it is represented as smooth boundary and it has finite stress 

value. However, stress computation based on LEFM contains singularity at 

the crack tip, which does not indicate physical nature. This led researchers to 

develop several fracture criteria such as J-integral and stress intensity factor. 

However, contrary to the LEFM, it is found that no stress singularity is 

present at the crack tip in nonlocal theory. Therefore, measuring maximum 

stress can be used as a natural fracture criterion in nonlocal theory. 

Validation of nonlocal theory using MD simulation is performed. We also 

analyze the structures with crack in nanoscale using nonlocal theory and 

maximum stress is observed using FEA and IGA. 

 

Validation of nonlocal theory using MD simulation 

In this chapter, molecular dynamics simulation is performed on the 2D 

graphene systems containing atomic-scale cracks using LAMMPS (Sandia 

National Laboratories 2009) molecular dynamics simulator. Graphene is a 

one-atom-thick planar sheet of carbon atoms, densely packed together into a 

honeycomb shaped crystal lattice. The associated atomistic interaction is 

covalently bonded by SP2 hybridized electrons, and the bond angle is 2π/3. 

(Cho et al. 2007) The interatomic distance between the adjacent atom is 1.42
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A . The total potential of the graphene sheet considering bond stretching and 

bond angle bending can be written as 

   2 2

0 0

1 1

2 2rU k r r k        (4.25) 

where kr and kθ are the bond stretching force constant and angle bending 

force constant which are selected from AMBER force field for carbon-

carbon atomic-interaction. (Cornell et al. 1995) kr is 938(kcal/mol- 2A ) and 

kθ is 126(kcal/mol-rad2). Figure 4.37 shows the dimension of the graphene 

sheet with a crack. The center crack is modeled by eliminating the associated 

covalent bond. The crack length is 10.086 nm which is 41 lattices and total 

length of the domain is 10 times of the crack length. Initial state without 

applied deformation reaches equilibrium for approximately 100 ps with a 

time step of 1.5 fs. After equilibrium is reached, we perform uniaxial tension 

by applying a deformation. uy=0.005y is prescribed on upper and lower 

surfaces. After another 100 ps, minimum potential energy of the system is 

obtained. Molecular mechanics simulation is carried out at a temperature of 

0 K. For more detailed procedure of molecular mechanics simulation, 

interested readers may refer to Tsai et al. (2010) or Jin and Yuan (2005a). 
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Figure 4.37 Model description of the graphene sheet with a center crack 

 

The atomic stress is obtained from the virial theorem which gives the stress 

value as the function of atom coordinates and interatomic forces. Virial 

stress is given as 

0

1

2i ij ij
j i

r f
V

  


   (4.26) 

where i
  is atomic stress at atom i, 

ijr   is the distance between atom i 

and j projected in an α direction, 
i jf   is the β-component of the interatomic 

force exerted on atom i by atom j. V0 is volume per atom. Figure 4.38 shows 

the plot of normalized virial stress of σyy/σ0, where σ0 is the distributed stress 

on the upper and lower surfaces by applying a deformation. Stress is 

concentrated on the crack tip and it converges to 1.0 as the distance from the 

crack tip increases. 
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Figure 4.38 The plot of normalized virial stress value 

 

Figure 4.39-(a) shows atomic stress plot near the crack tip. For some 

interested atoms in front of the crack tip, virial stress is calculated and 

compared with continuum stress. Figure 4.39-(b) shows the distribution of 

normalized virial stress in front of a crack with the comparison of continuum 

stress from a LEFM solution and nonlocal stress. In the nonlocal stress 

computation, nonlocal parameter for graphene sheets is given as 0.095 nm. 

(Tsai and Sie 2015) At the crack tip, stress obtained from MD simulation 

shows more reasonable description than the stress singularity obtained by 

LEFM. Also, nonlocal stress shows no crack tip singularity and the stress 

value is comparable with discrete virial stress. 
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 (a) Interested atom around a crack line  
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(b) Comparison of normailized stress 

Figure 4.39 Distribution of the stress near the crack line 
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Infinite plate with a center crack 

We consider infinite plate with a center crack under remote tension as 

shown in figure 4.40-(a). Only a quarter of the model needs to be considered 

due to the symmetry as shown in figure 4.40-(b). Local refinement is 

required due to abrupt change of the solution near the crack tip as shown in 

figure 4.40-(c). The crack length a is 5 nm and the length L of the plate is 

100 nm for the infinite plate assumption. Discontinuity of crack geometry is 

represented simply by using the quarter model. For the lower edges 

containing crack geometry in figure 4.40-(b), boundary condition is not 

applied for the regions with crack but fixed boundary condition is applied for 

the regions without crack. For locating the crack tip at the desired position, 

knot repetition is used for the NURBS basis functions to be modified to have 

a Kronecker delta property at the crack tip. Distributed load    is 1 nN/nm. 

Young’s modulus of graphene is 790.7 GPa and Poisson ratio is 0.27. 

Nonlocal parameter   is 0.095 nm. (Tsai and Sie 2015) Numerical 

nonlocal stress values obtained from IGA and FEA with same order basis 

function are compared with exact nonlocal stress values to show the 

accuracy of IGA. The process of obtaining exact local stress value of infinite 

plate with a center crack under remote tension is given in Appendix C. 

Figure 4.41 shows nonlocal stress distribution of infinite plate near the crack 

tip. It shows the convergence of nonlocal stress for IGA and FEA case as the 

number of DOFs increases. Even basis functions with same order are used in 

both FEA and IGA cases, IGA shows better convergence rate than FEA case. 
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(c) Locally refined model (2726 DOFs) 

Figure 4.40 Infinite plate with a center crack 
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Figure 4.41 Nonlocal stress distribution near the crack tip of infinite plate 
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Cylindrical shell under tension loading 

The next example is cylindrical shell under tension loading. The model 

description is shown in figure 4.42-(a). Radius R is 20 nm, thickness t is 0.5 

nm, and length L is 100 nm containing a circumferential through wall crack 

of length 10π nm. Distributed tensile force P is 1 nN/nm. Young’s modulus 

E is 1.0 GPa and Poisson ratio ν is 0.3. Nonlocal parameter   is 1.0 nm. 

Figure 4.42-(b) shows quarter model due to the symmetry and figure 4.42-(c) 

shows nonlocal stress plot of σyy. Stress is concentrated on the crack tip. 

Numerical nonlocal stress values obtained from IGA and FEA with same 

order basis function are compared with converged stress values to show the 

accuracy of IGA. Exact solution does not exist in this example. Figure 4.43-

(a) and (b) respectively show the nonlocal stress distribution near the crack 

tip of cylindrical shell under tension loading using quadratic IGA and 

quadratic FEA as total DOFs increase. The convergence rate of the IGA is 

superior to that of the FEA. That is because geometrical quantities such as 

curvature and christoffel symbol are computed exactly on the IGA 

framework. 

 

100nmL 

20nm

R 

2 10 nma 

0.5nmt 

1nN/nmP 1nN/nmP

(a) Model description 



 

109 

P X

Y
Z

 

(b) Quarter model 

zz

X

Y
Z

(c) Stress plot 

Figure 4.42 Cylindrical shell under tension loading 
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Figure 4.43 Nonlocal stress distribution near the crack tip of cylindrical 

shell under tension loading 
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Chapter 5. Conclusions and Future Works 
 

5.1 Conclusions 

In this paper, isogeometric shape design optimization method 

considering size effects in nanoscale structures is developed. MD simulation 

gives accurate results for nanoscale structures, but they are computationally 

expensive for systems with practical structures having relatively large sizes. 

Therefore, we applied continuum based model such as beam and shell for the 

analysis of nanoscale structures by considering size effects. Surface 

elasticity theory and nonlocal theory is introduced to consider size effects in 

nanoscale, respectively. They have different properties and should be applied 

properly depending on the application. We also derived the shape DSA 

formulation for beam and shell structures using direct differentiation method. 

Through three-point bending test of silver nanowires using AFM 

instruments, developed continuum based model considering surface effects 

is validated. The behaviours of nanowires obtained from experimental 

results are compared with those obtained from developed method and it 

shows good agreement. The design sensitivity is also validated through 

experimental data. The design sensitivity values obtained from fitting curve 

of experimental data are compared with those obtained by DSA based on 

continuum formulation considering surface effects, and fairly good 

agreement is observed between them. 

Several numerical examples are given to illustrate the capabilities of 

developed method for the shell structures. The problem obtaining optimal 

height of parabolic arch in nanoscale is solved by introducing surface effects. 

Optimal curvature of curved graphene is obtained by considering surface 

effects and nonlocal effects, respectively. Optimal shell form considering 
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surface effects and crack tip problem considering nonlocal effects are 

presented. We demonstrate that IGA framework shows better convergence 

rate than FEA case due to the exact geometry and higher-order geometric 

information in DSA formulation. Also, we derived exact optimal solution 

and showed optimal solution is affected by size effects. The new results 

obtained from the present research not only unveil the applicability of 

conventional continuum based analysis in nanoscale, but also exhibit the 

significance of considering size effects to obtain the proper optimal design in 

nanoscale devices. 

 

5.2 Future works 

In this research, design sensitivity of continuum based beam model 

considering surface effects is validated through experiments using AFM. 

However, the beam is assumed as straight one for simplicity and design 

sensitivity of shell structures is not validated. This is because experiments in 

nanoscale have limitations on manufacturing technologies and applying 

several boundary conditions. As the manufacturing technologies in 

nanoscale and experiments scheme develop, several experiments will be 

possible including validation of shell structures. Also, this research will be 

the basis for the experimental vavidation of shape design optimization in 

nanoscale. 

It is expected that accurate prediction of mechanical behavior for 

nanoscale structures based on IGA can be significant research to enhance 

other useful properties such as electronic and electrical properties in MEMS 

and NEMS devices. 
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APPENDIX A 

Exact optimal solution considering surface effects 

Parabolic arch 

Strain energy of parabolic arch considering surface effects is given as 

( )

2

0
0 0

.
2 4 2m l

=
+ +ò

l N
U ds

EA
 (A.1) 

Infinitesimal length of parabola is obtained as 

( )
2

2 2
4 2 2

64 4 8
1 where , .

æ ö÷ç= + = = ÷ç ÷çè ø
h h dy h

ds x dx y x x x
L L dx L

 (A.2) 

Horizontal and vertical components of axial force N are given as, 

respectively, 

( )
2

8h

qL
N x

h
=-  (A.3) 

and 

( ) .=vN x qx  (A.4) 

Additionally, considering normal force caused by residual surface stress τ0 

yields 

( ) ( ) ( )
2 4

2 2 2 2
0 02

2 2 .
64

t t= + + = + +h v

q L
N x N x N x q x

h
 (A.5) 

Embedding the equation (A.2) and (A.5) into equation (A.1) yields 

( )
( )

2
2 4 2/2

2 2 2
02 4/2

0 0

1 64
2 1

2 4 2 64

L

L

q L h
U h q x x dx

EA h L
t

m l -

æ ö÷ç ÷ç= + + +÷ç ÷ç+ + ÷çè ø
ò  

     
( )

( )
0 0

1

2 4 2
U h

EA m l
=

+ +
  (A.6) 

Taking L=2D in equation (C.6), ( )U h  can be represented as 
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( )
2

2 4 2 2
2 2

02 4

4
2 1

4

D

x D

q D h x
U h q x dx

h D
t

=-

æ ö÷ç ÷ç= + + +÷ç ÷ç ÷çè ø
ò  

    
2 4 2 2

2 2
2 4

4
1

4

D

x D

q D h x
q x dx

h D=-

é ùæ ö÷ê úç ÷= + +ç ÷ê úç ÷çè øê úë û
ò  

    
2 4 2 2 2 2

2 2 2
0 02 4 4

4 4
4 1 4 1

4

D

x D

q D h x h x
q x dx

h D D
t t

=-

é ù
ê ú+ + + + +ê ú
ê úë û

ò  

    ( ) ( ) ( )2 3 2 2
1 0 2 0 34 4 ,q D U h qD U h DU ht t= + +    (A.7) 

where 

( )
( ) ( )( )2 3 1

1 3

1 4 16 10 3sinh 2
,

32

-+ + +
=

h h h h
U h

h
 (A.8) 

 

( )2

4 1
,

3
= +U h h

h
 (A.9) 

and 

( )
( )1

2
3

sinh 2
1 4 .

2

-

= + + h
U h h

h
 (A.10) 

The optimal height is determined numerically by the stationary point of 

equation (A.7), and the derivative of strain energy with respect to h is given 

as 

( ) ( ) ( ) ( )1 2 32 3 2 2
0 04 4 ,t t

¶ ¶ ¶ ¶
= + +

¶ ¶ ¶ ¶

   U h U h U h U h
q D qD D

h h h h
 (A.11) 

where 

( ) ( ) ( )

( )

5 3 1 2

1

4 2

64 40 14 9sinh 2 1 4
,

32 1 4

-- - - +¶
=

¶ +

 h h h h hU h

h h h
 (A.12) 

( )2

2

4 1
,

3

¶
= -

¶

U h

h h
 (A.13) 

and 
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( )
( )3 1

22

1 1 1
4 sinh 2 .

21 4

-¶ æ ö÷ç= + -÷ç ÷çè ø¶ +

U h
h h

h h hh
 (A.14) 

 

Circular arch 

Reaction forces are determined from the moment equilibrium. Axial force, 

shear force and moment are obtained from these reaction forces. 

 

R

0q
y

M

xC

yC

xC

 

Figure A.1 Equilibrium of circular arch shell 

 

Moment equilibrium at the left end can be represented as equation (A.15) 

and reaction force xC  can be written as equation (A.16). 

( ) ( )
0

/2

0 01 sin cos cos 0,
p

q
q y q y- - - =òxC R wRd R  (A.15) 

( )1 ,= -xC wR T  (A.16) 
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where 

( )0 0 0cos / 1 sin
2

æ ö÷ç= - -÷ç ÷çè ø
T

p
q q q  (A.17) 

and 

0 .
2

cR R

R
q p

æ ö- ÷ç= ÷ç ÷çè ø
 (A.18) 

cR  is the radius for criteria makes 0q  becomes zero. Moment equilibrium 

at the right end and reaction force yC  are given as 

( ) ( )
0

/2

0 0cos 1 sin cos 0,y xC R C R wRd R
p

q
q q y y- - - =ò  (A.19) 

and 

0 .
2

p
q

æ ö÷ç= - ÷ç ÷çè øyC wR  (A.20) 

The axial force can be obtained from the force equilibrium equation as 

follows: 

        
0

0sin cos cos 2x yN C C wR da
y

q
y y y t=- - + +ò  

( ) 01 sin cos 2
2

wR T
p

y y y t
é ùæ ö÷çê ú= - + - +÷ç ÷çê úè øë û

 (A.21) 

The moment can be obtained from the moment equilibrium equation as 

follows: 

( ) ( )0 0cos cos sin siny xM C R C Rq y y q= - - -  

  ( ) ( )
0

2cos cos 1 sin cos .
2

wRdaR a wR T
y

q

p
y y y y

é ùæ ö÷çê ú- - = - + - ÷ç ÷çê úè øë û
ò  (A.22) 

The shear force can be obtained from the force equilibrium equation as 

follows: 

           
0

cos sin sinx yV C C wR d
y

q
y y y y=- + -ò  

( )1 cos sin .
2

wR T
p

y y y
é ùæ ö÷çê ú= - + - ÷ç ÷çê úè øë û

 (A.23) 
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Embedding the derived N,M,V into strain energy equation yields 

( ) ( )

2 2

0 02 2

l l

m b s
N M

N M
U U U U ds ds

EA C EI C
= + + = +

+ +ò ò  

   
( ) ( )

[ ]
2 2 3

0 2 2

l

m m m m
t V N

V w R
ds

GA C EA C
a b g t+ = + + +

+ +ò  

   
( )

[ ]
( )

[ ]
2 5 2 3

,
2 2b b b s s s

M t V

w R w R

EI C GA C
a b g a b g+ + + + + +

+ +
 (A.24) 

where 

( )
2

0 0 0 0 04 2 , 2 , ,
2

m l m l m= + = + =N M V

h
C C C  (A.25) 

( )
( )

( )( )
0

2
2 22

0 0

1
1 sin 2 sin 2 ,

4

p

q
a y y q q p

-é ù= - = - + +ê úë ûòm

T
T d  (A.26) 

0

2
22 cos

2m d
p

q

p
b y y y

é ùæ öê ú÷ç= - ÷çê ú÷çè øê úë û
ò  

( ) ( )( ) ( ) ( ) ( )( )3 2

0 0 0 0 0

1
2 3 2 2 sin 2 6 2 cos 2 ,

48
p q p q q p q q= - - - - + -  (A.27) 

       ( )
0

22 1 sin cos
2m T d

p

q

p
g y y y y

é ùæ ö÷çê ú= - - ÷ç ÷çê úè øë û
ò  

( )
( ) ( ) ( )( )0 0 0

1
sin 2 2 cos 2 ,

4

T
q p q q

-
= - - -  (A.28) 

( )
2
0 0

0 0 0 02 2

4 4 1
2 sin cos ,

2 2

t tp
t q p q q q

æ ö é ù÷ç ê ú= - + - -÷ç ÷ç ê úè ø ë û
m T

w R wR
 (A.29) 

( ) ( )( )
0

2
22 2

0 0 01 sin 6 sin 2 8cos 3 ,
4

p

q
a y y q q q pé ù= - = - + - +ê úë ûòb

T
T d  (A.30) 

0

2
22 cos

2b d
p

q

p
b y y y

é ùæ öê ú÷ç= - ÷çê ú÷çè øê úë û
ò  

( ) ( )( ) ( ) ( ) ( )( )3 2

0 0 0 0 0

1
2 3 2 2 sin 2 6 2 cos 2 ,

48
p q p q q p q q= - - - - + -  (A.31) 
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( )
0

22 1 sin cos
2b T d

p

q

p
g y y y y

é ùæ ö÷çê ú= - - ÷ç ÷çê úè øë û
ò  

( ) ( ) ( )( )( )0 0 0 0 02 sin 4 cos 2 4sin cos 2 ,
4

T
q q p q q q= - + - +  (A.32) 

( )
( )

( )
0

2
2 22

0 0 0

1
1 cos 2 2sin cos ,

4

p

q
a y y q q q p

-é ù= - = - - +ê úë ûòs

T
T d  (A.33) 

0

2
22 sin

2s d
p

q

p
b y y y

é ùæ öê ú÷ç= - ÷çê ú÷çè øê úë û
ò  

( ) ( )( ) ( ) ( ) ( )( )3 2

0 0 0 0 0

1
2 3 2 2 sin 2 6 2 cos 2 ,

48
p q p q q p q q= - + - - - -  (A.34) 

and 

        ( )
0

22 1 sin cos
2s T d

p

q

p
g y y y y

é ùæ ö÷çê ú= - - ÷ç ÷çê úè øë û
ò  

( )
( ) ( ) ( )( )0 0 0

1
sin 2 2 cos 2 ,

4

T
q p q q

-
= + -  (A.35) 

The optimal curvature is determined numerically by the stationary point of 

equation (D.24), and the derivative of strain energy with respect to k  is 

given as 

( )2 ,
k k

æ ö¶ ¶ ¶¶ ¶ ¶ ÷ç= = + + -÷ç ÷çè ø¶ ¶ ¶ ¶ ¶ ¶
m b sU U UU U R

R
R R R R

 (A.36) 

where 

        
( )

[ ]
2 23

2
m

m m m
N

U w R

R EA C
a b g

¶
= + +

¶ +
 

       
( )

2 3

,
2

m m m m

N

w R

EA C R R R R

a b g té ù¶ ¶ ¶ ¶
ê ú+ + + +
ê ú+ ¶ ¶ ¶ ¶ë û

 (A.37) 

        
( )

[ ]
2 45

2
b

b b b
M

U w R

R EI C
a b g

¶
= + +

¶ +
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( )

2 5

,
2

b b b

M

w R

EI C R R R

a b gé ù¶ ¶ ¶
ê ú+ + +
ê ú+ ¶ ¶ ¶ë û

 (A.38) 

        
( )

[ ]
2 23

2
s

s s s
t V

U w R

R GA C
a b g

¶
= + +

¶ +
 

( )

2 3

,
2

s s s

t V

w R

GA C R R R

a b gé ù¶ ¶ ¶
ê ú+ + +
ê ú+ ¶ ¶ ¶ë û

 (A.39) 

        
( )

( )( )0 0

1
2 sin 2

2
m

T T

R R

a
q q p

-¶ ¶
= - + +

¶ ¶
 

             
( )

( )( )
2

0
0

1
2 2cos 2 ,

4

T

R

q
q

- ¶
+ - +

¶
 (A.40) 

( ) ( )( )2 0
0 0

1
2 1 cos 2 ,

8

b q
p q q

¶ ¶-
= - +

¶ ¶
m

R R
 (A.41) 

         ( ) ( ) ( )0 0 0 0

1
sin 2 cos 2 2 cos 2

4
m T

R R

g
q p q q q

¶ - ¶é ù= - - +ë û¶ ¶
 

             
( )

( ) ( ) 0
0 0

1
2 sin 2 ,

2

T

R

q
p q q

- ¶
+ -

¶
 (A.42) 

( )
2 2
0 0 0 0

0 0 0 02 3 2 2 2

8 4 4 1
2 sin cos

2 2
m T

R w R w R R wR

t t t q tp
q p q q q

æ ö é ù¶ - ¶÷ç ê ú= - - - - -÷ç ÷ç ê úè ø¶ ¶ ë û
 

        ( )0 0
0 0 0 0

4 1
sin 2 cos sin ,

2
T

wR R

t q
q p q q q

é ù ¶
ê ú+ - + - +
ê ú ¶ë û

 (A.43) 

        ( )( )0 0 06 sin 2 8 cos 3
2

b T T

R R

a
q q q p

¶ ¶
= - + - +

¶ ¶
 

            ( )( )
2

0
0 06 2cos 2 8sin ,

4

T

R

q
q q

¶
+ - + +

¶
 (A.44) 

( ) ( )( )2 0
0 0

1
2 cos 2 1 ,

8

b q
p q q

¶ ¶-
= - +

¶ ¶
b

R R
 (A.45) 

        ( ) ( ) ( )( )0 0 0 0 0

1
2 sin 4 cos 2 4sin cos 2

4
b T

r R

g
q q p q q q

¶ ¶é ù= - + - +ê úë û¶ ¶
 

             ( ) ( )( ) 0
0 0 02 4cos 2sin 2 ,

4

T

R

q
p q q q

¶
+ - -

¶
 (A.46) 

        
( )

( )0 0 0

1
2 2sin cos

2
s

T T

R R

a
q q q p

-¶ ¶
= - - +

¶ ¶
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( )

( )( )
2

0
0

1
2 2cos 2 ,

4

T

R

q
q

- ¶
+ - -

¶
 (A.47) 

( ) ( )( )2 0
0 0

1
2 cos 2 1 ,

8

b q
p q q

¶ ¶
= - -

¶ ¶
s

R R
 (A.48) 

        
( )

( ) ( ) ( )( )0 0 0

1
sin 2 2 cos 2

4
s T

R R

g
q p q q

-¶ ¶
= + -

¶ ¶
 

            
( )

( ) ( ) 0
0 0

1
2 sin 2 ,

2

T

R

q
p q q

- ¶
+ -

¶
 (A.49) 

( )

0 0

2
0

cos
2

,
1 sin

p
p q q

q

æ ö÷ç - - ÷ç ÷çè ø¶
=

¶ -
T

R R
 (A.50) 

and 

0
2

.
q p¶

=
¶R R

 (A.51) 
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APPENDIX B 

Exact optimal solution considering nonlocal effects 

Circular arch 

Reaction forces are determined from the moment equilibrium. Axial 

force, shear force and moment are obtained from these reaction forces as 

shown in Figure A.1. Moment equilibrium at the left end can be represented 

as equation (B.1) and reaction force Cx can be written as equation (B.2). 

( ) ( )
0

/2

0 01 sin cos cos 0,
p

q
q y q y- - - =òxC R wRd R  (B.1) 

( ) 1
1xC wR T w

R
m= - -  (B.2) 

where 

( )0 0 0cos / 1 sin
2

æ ö÷ç= - -÷ç ÷çè ø
T

p
q q q  (B.3) 

and 

0 .
2

cR R

R
q p

æ ö- ÷ç= ÷ç ÷çè ø
 (B.4) 

Rc is the radius for criteria makes θ0 becomes zero. Moment equilibrium at 

the right end and reaction force Cy are given as 

             ( )0 0cos 1 siny xC R C Rq q- -  

            ( ) ( )
0

/2

0cos 1 sin 0,wRd R w
p

q
y y m q- + - =ò  (B.5) 

and 

0 .
2

p
q

æ ö÷ç= - ÷ç ÷çè øyC wR  (B.6) 

The axial force can be obtained from the force equilibrium equation as 

follows: 

0

sin cos cosx yN C C wR da
y

q
y y y=- - +ò  
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( ) 1
1 sin cos sin .

2
wR T w

R

p
y y y m y

é ùæ ö÷çê ú= - + - +÷ç ÷çê úè øë û
 (B.7) 

The moment can be obtained from the moment equilibrium equation as 

follows: 

     ( ) ( )0 0cos cos sin siny xM C R C Rq y y q= - - -  

        ( ) ( )( )2
0 0sin sin cos sinwR wy q y y q m yé ù- - - - +ë û  

( )2 1 sin cos sin .
2

wR T w
p

y y y m y
é ùæ ö÷çê ú= - + - +÷ç ÷çê úè øë û

 (B.8) 

The shear force can be obtained from the force equilibrium equation as 

follows: 

     
0

cos sin sinx yV C C wR d
y

q
y y y y=- + -ò  

( ) 1
1 cos sin cos .

2
wR T w

R

p
y y y m y

é ùæ ö÷çê ú= - + - +÷ç ÷çê úè øë û
 (B.9) 

Embedding the derived N,M and V into strain energy equation yields 

2 2 2

0 0 02 2 2

l l l

m b s
t

N M V
U U U U ds ds ds

EA EI GA
= + + = + +ò ò ò  

[ ] [ ] [ ],
2 2 2m m m b b b s s s

t

R R R

EA EI GA
a b g a b g a b g= + + + + + + + +  (B.10) 

where 

( )
( )( )

2

2 2
0 0

1
2 sin 2 ,

4m

T
w Ra q q p

é ùì üï ï-ï ïê úï ï= - + +í ýê úï ïê úï ïï ïî þë û
 

( ) ( )( ) ( ) ( ) ( )( )3 22 2
0 0 0 0 0

1
2 3 2 2 sin 2 6 2 cos 2 ,

48
w R p q p q q p q q

é ùì üï ïï ïê ú+ - - - - + -í ýê úï ïï ïî þë û
 

( )
( ) ( ) ( )( )2 2

0 0 0

1
sin 2 2 cos 2 ,

4

T
w R q p q q

é ùì üï - ïï ïê ú+ - - -í ýê úï ïê úï ïî þë û
 (B.11) 

( )( )
2

2
0 02

2 sin 2 ,
4m

w

R
b m q q p= - + +  (B.12) 
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        ( ) ( )( )
2

0 02 2 2 sin 2 ,
4m

w
T

m
g q q p

- é ù= - - + +ê úë û  

( ) ( ) ( )
2

0 0 0sin 2 2 cos 2 ,
4

wm
q p q qé ù- + -ë û  (B.13) 

( )( )
2

2 4
0 0 06 sin 2 8cos 3 ,

4b

T
w Ra q q q p

é ùì üï ïï ïê ú= - + - +í ýê úï ïï ïî þë û
 

( ) ( )( ) ( ) ( ) ( )( )3 22 4
0 0 0 0 0

1
2 3 2 2 sin 2 6 2 cos 2 ,

48
w R p q p q q p q q

é ùì üï ïï ïê ú+ - - - - + -í ýê úï ïï ïî þë û
 

( ) ( ) ( )( )( )2 4
0 0 0 0 02 sin 4 cos 2 4sin cos 2 ,

4

T
w R q q p q q q

é ù
ê ú+ - + - +
ê úë û

 (B.14) 
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2 2

0 02 sin 2 ,
4b

wm
b q q p= - + +  (B.15) 

        ( )( )( )
2 2

0 0 02 4 cos 2 sin 2
4b

w R
T

m
g q q q p= + - -  

( ) ( ) ( )( )
2 2

0 0 0sin 2 2 cos 2 ,
4

w Rm
q p q q+ - - -  (B.16) 
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2

2 2
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1
2 2sin cos ,

4s

T
w Ra q q q p

é ùì üï ï-ï ïê úï ï= - - +í ýê úï ïê úï ïï ïî þë û
 

( ) ( )( ) ( ) ( ) ( )( )3 22 2
0 0 0 0 0

1
2 3 2 2 sin 2 6 2 cos 2 ,
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w R p q p q q p q q
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ê ú+ - + - - - -
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( ) ( ) ( )( )2 2
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1
sin 2 2 cos 2 ,

4

T
w R q p q q

é ù-ê ú+ + -ê ú
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 (B.17) 

( )
2 2

0 0 02
2 2sin cos ,

4s

w

R

m
b q q q p= - - +  (B.18) 

         ( )2
0 0 01 sin cos

2s w T
p

g m q q q
æ ö÷ç= - - - + ÷ç ÷çè ø

 

( ) ( ) ( )( )
2

0 0 0sin 2 2 cos 2 .
4

wm
q p q q+ + -  (B.19) 

The optimal curvature is determined numerically by the stationary point of 

equation (B.10), and the derivative of strain energy with respect to κ is given 
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as 

( )2 ,
k k

æ ö¶ ¶ ¶¶ ¶ ¶ ÷ç= = + + -÷ç ÷çè ø¶ ¶ ¶ ¶ ¶ ¶
m b sU U UU U R

R
R R R R

 (B.20) 

where 

[ ] [ ] [ ]1 1 1

2 2 2m m m b b b s s s
t
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dR EA EI GA
a b g a b g a b g= + + + + + + + +  
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m m m b b bd d d d d dR R

EA dR dR dR EI dR dR dR
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      ( )
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m
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a
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¶
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0
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m w
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¶ ¶ ¶ ¶
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4

m w
T
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q p q q

q
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APPENDIX C 

Exact stress field near the crack tip considering nonlocal 

effects 

 



r
 

Figure C.1 Stress distribution of LEFM and nonlocal theory near 

the crack tip 

 

Asymptotic solution near the crack tip is already known and stress field near 

the crack tip considering nonlocal effects in nanoscale can be obtained. 

IK a   (C.1) 

where 2a is crack length and   is distributed load per unit length. Local 

stress 22  is obtained as 

         22

3
, cos 1 sin sin

2 2 22
IK

r
r

   

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 

 

3
cos 1 sin sin

2 2 22
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r
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 

 (C.2) 

Nonlocal stress 22  is obtained as 
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Second order Bessel function 0K  is used as a Kernel function as 
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Embedding the equation (C.4) into equation (C.3) yields 
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where r is a distance from the crack tip, /r l  , ' '/r l   and l is 

Nonlocal parameter. Nonlocal stress on the crack tip is obtained as 

   '22 00

4.8
0 ' ' 0.5736

2 2

a a
K d

l l
     





    (C.6) 

To obtain the value of equation (C.5), triple integral needs to be performed 

numerically and it is computationally expensive. Also, asymptotic solution 

does not exist always on the general loading condition, so equation (C.5) is 

calculated only in special situation which requires exact solution. Generally, 

nonlocal stress field is obtained using numerical analysis given in chapter 

2.3.3. 
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크기 효과를 고려한 연속체-나노스케일 

구조물의 아이소-지오메트릭 형상 최적설계 

 

안 승 호 

산업·조선공학부 

공과대학 

서울대학교 

 

초 록 

 

    최근에, 조선 해양 공학 분야를 포함한 다양한 학술 및 산업 분야에서 

기존의 연속체 기반 접근법의 한계를 뛰어넘기 위한 방안으로써 원자 

단위의 설계와 해석이 주목 받고 있다. 전통적으로, 나노 스케일 구조물의 

거동과 물성치를 얻기 위하여 분자동역학 시뮬레이션 기법이 주로 사용 

되었으나 과도한 계산 시간이 필요하다는 한계점이 있었다. 특히, 

분자동역학 시뮬레이션의 한계는 형상 최적 설계 분야에서 더욱 

두드러진다. 원자 구조의 불연속성으로 인하여 형상 설계 민감도를 

정의하기가 어려울 뿐 아니라, 반복적인 해석을 필요로 하는 최적 설계 

문제를 풀기 위해서 더욱 과도한 계산 시간을 필요로 하게 된다. 

 

    본 논문에서는 나노 스케일에서의 크기 효과가 고려된 아이소-

지오메트릭 형상 최적 설계 기법을 개발하였다. 나노스케일 구조물을 

해석하기 위하여 크기 효과가 고려된 연속체 모델을 도입하였다. 특히, 

Gurtin과 Murdoch이 제안한 표면 효과를 고려한 연속체 이론과 
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Eringen이 제안한 비국소 효과를 고려한 연속체 이론을 각각 고려하였다. 

원자 현미경을 이용한 은 나노 와이어의 굽힘 실험을 통하여 개발된 

방법론을 실험적으로 검증하였다. 수치 예제에서는 연속체 기반의 Naghdi 

쉘 정식화를 적용하여 곡면 구조물의 최적 설계를 수행 하였으며, 수치 

해석을 위하여 아이소-지오메트릭 기법을 적용하였다. 설계 민감도를 

얻기 위하여 직접 미분법을 사용 하였으며, 설계 변수는 쉘의 자유로운 

형상 변화를 보장하는 NURBS의 조정점으로 하였다. 휘어진 빔 이론에 

기반하여 정해를 유도 하였으며, 이를 이용하여 수치 해석 예제를 

검증하였다. 나노 스케일에서의 크기 효과의 고려가 쉘 구조물의 거동 및 

최적설계 결과에 미치는 영향력을 확인 하였다. 

 

    원자현미경을 이용한 은나노 와이어의 굽힘 실험을 통하여 나노 

스케일에서 표면 효과의 영향력을 보였다. 실험 값과 이론 계산 값을 

통하여 얻은 은나노 와이어의 거동을 비교 함으로써 일치도를 확인할 수 

있었다. 실험 결과를 이용하여 은나노 와이어의 거동뿐 아니라 이의 설계 

민감도를 검증하였다. 실험 값으로부터 곡선 맞춤을 얻고 이로부터 계산된 

설계 민감도를 이론 값을 통해서 계산된 설계 민감도와 비교 함으로써 

설계 민감도 값을 검증할 수 있었으며 좋은 일치도를 보임을 확인하였다. 

 

    아이소-지오메트릭 기법은 NURBS 기저함수의 편리성으로 인하여 

기존의 유한요소 해석법에 비하여 여러 가지 이점을 갖는다. CAD에서의 

NURBS 함수를 사용함에 따라 엄밀한 기하형상과 고차의 연속성을 갖는 

특징 등이 응답 해석에 반영된다. 또한, 아이소-지오메트릭 방법은 법선 

벡터와 곡률과 같은 고차의 기하 정보가 정확하게 반영된다. 따라서, 

복잡한 기하 형상을 갖는 구조물에 대해서도 엄밀한 설계 민감도의 계산이 

가능하기 때문에 곡면 구조물에서 설계 민감도를 구함에 있어 이점을 

갖는다. 특히 쉘 구조물 에서는 엄밀한 기하형상의 고려가 매우 중요하게 
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작용하기 때문에 아이소-지오메트릭 해석법을 적용함에 따라 기존의 

유한요소 해석법에 비하여 정확한 해석 결과를 얻을 수 있다. 

 

주요어: 아이소-지오메트릭 해석법, 나노스케일, 크기 효과, 형상 

설계 민감도, 형상 최적 설계, 실험적 검증 
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