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Abstract

Seung-Ho Ahn

Department of Industrial Engineering and Naval Architecture
College of Engineering

Seoul National University

Recently, in both academic and industrial environment including naval
architecture and ocean engineering, atomistic level design and analysis is
essential to overcome the limitations in conventional continuum based
approach. Conventionally, molecular dynamics (MD) simulation is used to
obtain the physical properties and behaviour of atomistic level structures.
However, the applications of MD simulation are restricted by its excessive
computational time. Especially the limitation of MD simulation is more
obvious in shape design optimization field. It is difficult to apply continuum-
based shape design sensitivity analysis which is essential for shape design
optimization due to the discrete nature of shape variations at the atomic level
of MD simulation. Shape design optimization scheme requires repeated
analysis process, which requires tremendous computational cost.

In the thesis, an isogeometric shape design optimization method
considering size effects in nanoscale structures is developed. We introduced
continuum based model considering size effects for the analysis of nanoscale
structures. Surface elasticity incorporating surface effects developed by
Gurtin and Murdoch (1975) and nonlocal theory developed by Eringen
(1983) are introduced, respectively. For experimental validation of
developed method, three-point bending test of silver nanowires using atomic
force microscope (AFM) are performed. Shape design optimization of
curved structures is performed using continuum based Naghdi shell
formulation in numerical examples. [sogeometric analysis (IGA) framework
is used for numerical analysis method. A direct differentiation method is

employed for the DSA and the design variables are selected as the control
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points defining the geometry for flexible modeling of free-form shell
surfaces. Exact solutions derived from curved beam theory are presented to
verify the numerical examples. It is shown that size effects affect the
behaviour of the nanoscale structures and its optimal shape.

The influence of surface effects in nanoscale is shown through three-
point bending test of silver nanowires using AFM instruments. The
behaviours of nanowires obtained from experimental results are compared
with those obtained from theoretical calculation and good agreement is
observed between them. Not only the behaviour of nanowires but the design
sensitivity is validated through experimental results. The design sensitivity
values obtained from fitting curve of experimental data are compared with
those obtained by DSA based on continuum formulation considering surface
effects, and it shows fairy good agreement.

The isogeometric method has numerous advantages over the classical
finite element analysis (FEA) due to its convenience of Non-Uniform
Rational B-Spline (NURBS) basis functions. In the isogeometric method, the
NURBS basis functions in CAD system are directly used in the response
analysis, which enables an incorporation of exact geometry and higher
continuity into the computational framework. Also, IGA provides more
accurate design sensitivity for complex geometries including higher order
geometric information such as normal vector and curvature. Especially for
shell structures, exact geometry is more important issue and application of

IGA gives more accurate computation results than FEA.

Keywords: Isogeometric analysis, Nanoscale, Size effects, Shape design

sensitivity, Shape design optimization, Experimental validation

Student number : 2009-21131
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Chapter 1. Introduction

1.1 Motivation

Recently, construction of nanoscale structures became possible due to
the development of MEMS (Micro Electro Mechanical Systems) and NEMS
(Nano Electro Mechanical Systems) technologies. Nanoscale structures such
as resonator, mass sensor and bio-chemical sensor are used in numerous
engineering fields and they are expected to be used more widely in the near
future. Especially, in naval architecture and ocean engineering, nanoscale
technology is required for various applications. For instance, organisms such
as algae and barnacles sticking on the lower structure of large sized ships
influence the propulsion power by increasing the ship resistance. By
releasing of several biocides embedded in a film forming nanocomposites,
antifouling can be achieved by slowing the growth of subaquatic organisms
as shown in figure 1.1-(a). Figure 1.1-(b) shows Danish Knud Rasmussen
Class inspection ship in the ice region. Nano-based surfaces have the
potential to completely preventing icing and ice can be removed from
composite structures through the use of conductive carbon fibres in the
composite. Nanotechnology is also applied for the application in
shipbuilding such as nano fillers for enhancement, thermal barrier materials
for engines, fuel cells, embedded sensors and cloaking for warship. (McGrail
2011) Especially, stress distribution near the nano-sized crack is observed in
this paper. The behavior of crack initiation and its growing process is very
crucial for the safety of ship and marine structures. Also, the observation on
the behavior of nano-sized beam and shell structures can be used for the
study of mechanical polishing on the surface of ship and marine structure.

To obtain the physical properties and behavior of nanoscale structures, MD
. X rli



simulation is used conventionally. MD simulation is a computer simulation
of physical movements of atoms and molecules using inter-atomic potential.
Therefore, accurate analysis including the information at the atomic scale is
possible, which is not able to be handled using conventional continuum
based approach. Even though MD simulation of nanoscale structures can
give accurate results, they are computationally expensive for systems with
practical structures having relatively large sizes.

To overcome the difficulty of computational cost in MD simulation,
continuum based formulations of nanoscale structures have been developed.
A nanoscale structure is assumed as one of the continuum model and
numerical analysis method such as FEA is applied to analyze the continuum
model. Although the conventional continuum models provide simple
formulas and have advantage on computational time, applying these
continuum models directly to practical model is questionable due to the size
effects. Size effects in this research mean material properties are influenced
by the effect of small size range. Material properties change as the thickness
or total volume of the structure decrease to nanometer range. To analyze
nanoscale structures based on continuum model considering size effects, the
conventional elasticity theory has been extended from various viewpoints
such as surface elasticity theory (Gurtin and Murdoch 1975), nonlocal theory
(Eringen 1983), strain gradient elasticity (Lam et al. 2003) and couple stress
theory (Mindlin and Tiersten 1962). In this research, surface elasticity
incorporating surface effects developed by Gurtin and Murdoch (1975) and
nonlocal theory developed by Eringen (1983) are used to develop shape

optimization scheme for nanoscale structures.
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The continuum mechanics models for nanoscale structures are also
advantageous in structural optimization areas. Because most optimization
schemes require repeated analysis process, applying MD simulation which
requires large computational cost to the optimization process is almost
impossible. Furthermore, it is difficult to apply continuum-based shape DSA
which is essential for shape optimization to the methodology based on MD
simulation due to the discrete nature of shape variations at the atomic level.
To overcome the difficulty of discrete nature in atomic structures, Jang and
Cho (2015) transformed the discrete spatial variation into a non-shape
variation of the GLE system. However, well-developed conventional shape
optimization schemes can be applied directly for nanoscale structures

regardless of discrete nature in atomic structures by using developed method.

1.2 Literature survey

1.2.1 Experimental validation of size effects in nanoscale

Some researchers show that size effects exist in nanoscale structures
through MD simulation or experiments. They also verified these size effects
can be explained by continuum-based theory considering surface effects or

nonlocal effects.

Molecular dynamics simulation
Miller and Shenoy (2000) and Dingreville et al. (2005) showed that
material properties have size dependence due to the increasing importance of
surfaces as the scale of structures become comparable with the atomic scale.

Figure 1.2 shows variation of plate modulus with respect to thickness.

4
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Miller and Shenoy (2000) also showed that continuum formulations of plate

in the nanoscale are reliable by comparing with MD simulation results.

However, it is observed that accuracy is somewhat decreased in considering

bending energy. Wang et al. (2010) showed that decreased accuracy can be

improved by considering residual surface stress in the formulation. Jin and

Yuan (2005a, b) discussed the macroscopic fracture parameters from both

MD simulation and the continuum model, indicating that the near-tip stress

calculated from MD simulation agrees well with the continuum one. Tsai

and Sie (2015) compared the maximum stress of crack tip problem obtained

by MD simulation with that obtained by nonlocal elasticity. It was shown

that there is a good agreement between them.
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Figure 1.2 Variation of plate modulus with respect to thickness

Three-point bending test using AFM

Development of AFM facilitates three-point bending test in nanoscale.

Some researchers discovered size effects in nanoscale through three-point

bending test using AFM, and analyzed the experimental results using several

continuum-based theories considering size effects.
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In order to account for the size-dependent mechanical properties, some
researchers applied strain gradient theory. Li et al. (2009) pointed out that
Eringen’s nonlocal theory is not adequate for three-point bending test of
nanowire. Nonlocal theory does not capture the variation of area and size
effects cannot be predicted for bending of a nanobeam under a concentrated
force, which is called paradox. They suggested two second-order material
constants to describe the size effect for nanowires. Developed theoretical
predictions for Young’s modulus of CNTs are in consistence with the
corresponding three-point bending experimental results by other researchers.

There have been many researchers who applied surface effects theory to
explain the size effects of the nanowire. Cuenot et al. (2004) analyzed the
elastic properties of silver and lead nanowires using three-point bending test
as shown in figure 1.3-(a). The elastic properties of the silver nanowires with
outer diameters ranging from 20 to 140 nm were measured using AFM. The
size dependence of the Young’s modulus is discussed using surface effects
theory. Jing et al. (2006) measured elastic properties of the silver nanowires
with outer diameters ranging from 20 to 140 nm using AFM as shown in
figure 1.3-(b). They showed the size dependence of the apparent Young’s
modulus of the silver nanowires is attributed to the surface effect.

He et al. (2008) analyzed the mechanical behavior of silver nanowires
using Euler-Bernoulli beam theory via the Young-Laplace equation. They
derived deflection of the beam and obtained effective Young’s modulus
considering size effects. Derived solutions agree well with size dependent
Young’s moduli observed from three-point bending tests by other
researchers. Chiu and Chen (2011) suggest higher-order surface stress which
considers not only the effect of in-plane membrane surface stresses, but also
the surface moments induced from the non-uniform surface stress across the

6 ._31_'1: T .E



layer thickness. It allows that the stress could be linearly varying across the
layer thickness, which results in surface stress as well as surface moment.
They show that developed method predicts more accurate results with the
experimental data reported by Jing et al. (2006) compared with original
method without high-order surface stress. Some other researchers also
extended the Gurtin-Murdoch theory to account for the flexural resistance.
Steigmann and Ogden (1999) point out that Gurtin-Murdoch theory cannot
be used for a compressive stress-state and in particular surface wrinkling or
roughening. They incorporate intrinsic flexural resistance of a surface to
overcome aforementioned issues. Chhapadia et al. (2011) introduce a
simplified and linearized version of a theory proposed by Steigmann and
Ogden (1999) to capture curvature-dependence of surface energy. They
propose an unambiguous definition of the thickness of a crystalline surface.
Hu et al. (2014) discuss that the thickness of surface layer is related to such
factors as defects, surface roughness, loading conditions and experimental
temperature. They suggest core-shell model to depict the size effect of
Young’s modulus. The effect of high order surface stress with experimental
data will be discussed clearly in chapter 4.1.3.

Many researchers have discussed the mechanical behavior of nanoscale
structures using three-point bending test. However, as far as authors know,
research on experimental validation of DSA is limited. The design sensitivity
values obtained from fitting curve of experimental data are compared with
those obtained by DSA based on continuum formulation considering surface
effects. Manufacturing structures with variation in nanoscale for obtaining
adjacent experimental data is not easy due to the limitation of manufacturing
techniques. In this research, we performed three-point bending test of silver
nanowires having various diameter and length as far as possible. In this way,

7 -':lw-.'-‘i: L T .E



DSA based on continuum-based theory considering size effects can be

validated.
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Figure 1.3 Variation of the measured Young’s modulus of silver nanowires

1.2.2 Isogeometric framework

Finite element analysis which is one of widely used numerical analysis
method has difficulties in dealing with curved structures due to geometric
approximation which is inherent in the finite element mesh. IGA framework
is introduced to overcome this difficulty. Hughes et al. (2005) developed
IGA method, which is an analysis framework employing the same basis
function as used in the CAD system. It enables the seamless incorporation of
higher order continuity and exact geometry such as curvature and normal
vector into the computational framework. IGA provides a more accurate
sensitivity of complex geometries including higher order geometric
information such as normal vector and curvature. The higher order NURBS
functions offer a more compact representation of response than FEA.

Therefore, it is possible for IGA to obtain a more accurate computation

results than FEA, even with less DOFs. Further, Cho and Ha (2009)
T
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performed shape optimization based on IGA and showed that IGA could
prevent the loss of higher-order geometric information, such as normal and
curvature in design sensitivity expressions. Also, developed isogeometric
shape optimization scheme applied to the area such as heat conduction
(Yoon and Cho 2013), crack propagation problem (Choi and Cho 2014) and
built up structures (Lee and Cho 2015).

Some researchers extended the IGA for micro or nano scale problems
considering size effects. Fischer et al. (2011) extended IGA towards the
numerical solution of the problem of gradient elasticity in two dimensions
for representing size effects. Introduction of higher order gradients of the
strains into the constitutive relation requires partial differential equation of
higher order. NURBS in IGA naturally includes higher order continuity of
the approximation of the displacements and the geometry. Rudraju et al.
(2014) introduced IGA for three-dimensional solutions using finite strain
gradient elasticity. They solved problems on martensitic microstructures

with size effects driven by non-convex free energy in strain space.

1.2.3 Curved structures in nanoscale

Curved structures are generalized form in nanoscale and curved
graphene is one example to show the importance of curvature in nanoscale
structures. Graphene is a one-atom-thick planar sheet of carbon atoms,
densely packed together into a honeycomb shaped crystal lattice. Several
methods to make graphene are developed and recently Kosynkin et al. (2009)
produced graphene nanoribbons structures by lengthwise cutting and
unravelling of multi-walled carbon nanotube side walls as shown in figure

1.4-(a), and it shows high crystallinity and interesting semimetal electronic

¥ ! |
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properties. The curved graphene obtained by unzipping carbon nanotubes is
intermediate structure between flat graphene sheet and carbon nanotube.
Some researchers show that curvature of the curved graphene affects the
properties of the graphene. It is shown that the curvature of the graphene
changes the electron density, so the electrical properties can be improved.
(Kolesnikov and Osipov, 2008) Gosalbez et al. (2011) discusses that curved
graphene with constant curvature is generated by unzipping carbon
nanotubes as shown in figure 1.4-(b), and the curvature affects the spin-orbit
coupling and bandwidth. In this way, since the curvature of nanoscale
structures fairly affect the properties of the structure, the representation of
exact geometry and the accurate prediction of mechanical behaviors in
continuum modeling are highly significant. In this paper, to analyze the
curved structure in nanoscale such as curved graphene, continuum shell
formulations considering size effects are introduced based on IGA
framework.

Surface elasticity is applied to the modeling of shells by other
researchers. Gurtin and Murdoch (1975) modeled the interfacial surface as a
membrane, but we modeled the interfacial surface as a shell as in Steigmann
and Ogden (1999). Altenbach and Eremeyev (2011) discussed the derivation
of the governing nonlinear shell equations considering surface effects. Zhang
et al. (2014) presented general equations of piezoelectric shells considering
surface effects in an orthogonal curvilinear coordinate system. Nonlocal
theory is also applied to the modeling of shells by other researchers. Hu et al.
(2008) discussed that the wave dispersion predicted by the nonlocal elastic
shell theory shows good agreement with that of the MD simulation results.
Nonlocal parameter is determined based on the MD result to predict the

dispersion of transverse wave in CNTs through the nonlocal shell models.

¥ ! |
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Arash and Ansari (2010) studied vibration characteristics of single-walled
carbon nanotubes (SWCNTSs) with different boundary conditions subjected

to initial strain based upon a nonlocal shell model accounting for the small-

scale effects.

(a) Gradual unzipping of one wall of a carbon nanotube to form a graphene

(Kosynkin et al. 2009)

(b) Obtaining a curved graphene as fraction of a nanotube
(Gosalbez et al. 2011)

Figure 1.4 Generation of a curved graphene from a nanotube
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1.2.4 Design optimization in nanoscale

Some continuum based optimization methods considering nanoscale
effects have been presented in recent year. Evgrafov et al. (2009) considered
the kinetic theory to topology optimization of heat conducting devices at
nano-scale as shown in figure 1.5. An average distance travelled by a
particle between collisions with other particles is considered in continuum
formulation to consider nano scale effects. Nanthakumar et al. (2015)
introduced a coupled XFEM/level set methodology to perform topology
optimization of nanostructures considering nanoscale surface effects as
shown in figure 1.6. They showed different optimal topology by considering
surface effects, but physical interpretations for the obtained optimal topology
under nanoscale are not presented. Glavardanov et al. (2012) deals with
optimal shapes against buckling of an elastic beams considering nonlocal
effects, but they only deals with optimization problems with cross sectional

areas which are sizing variables.
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(a) Without kinetic theory

— "

(b) With kinetic theory

Y

Figure 1.5 Different optimal material distributions by considering kinetic

theory (Evgrafov et al. 2009)

(a) Without surface effects

Figure 1.6 Different optimal topology by considering surface effects
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(b) With surface effects

(Nanthakumar et al. 2015)
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1.2.5 Organization of thesis

The paper is organized as follows: in Chapter 2, we explain the
equilibrium equations of beam and shell theory considering size effects
based on IGA, respectively. In this research, surface elasticity incorporating
surface effects developed by Gurtin and Murdoch (1975) and nonlocal
theory developed by Eringen (1983) are introduced, respectively. In Chapter
3, isogoemetric shape DSA formulation of beam and shell with size effects is
given, respectively. A direct differentiation method is employed for the DSA
and the design variables are selected as the control points defining the
geometry for flexible modeling of free-form shell surfaces. In Chapter 4,
three-point bending test of silver nanowires are given to validate developed
method. Also, the influence of size effects for the numerical solution is
shown and it is verified through exact solutions. Shape optimization
problems minimizing strain energy are given and the optimal solutions are
verified through exact optimal solution. Finally, we draw some conclusions,

which present the importance of the proposed method.
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Chapter 2. Isogeometric Analysis considering Size
Effects

2.1 NURBS basis function

In the IGA, we use same NURBS basis functions to represent solution
space and geometry. Consider a set of knots & in an n-dimensional parametric

space. In the one-dimensional case, it is written as

g:{glagza""£n+p+1}a (2.1)

where p and n are the order of the basis function and the number of control

points, respectively. The B-spline basis functions can be defined, recursively,

as
g =<e<gn]
N?(g)_{() otherwise } (p=0) (22)
and
NP(&):ﬂNWHM Pl

N, (p=123,---,). .
giﬂf_gi l §+p+l_§+l v (E) (p ) (2.3)

A general quadratic B-spline basis functions are shown in figure 2.1.

1 4
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o
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Figure 2.1 Quadratic B-spline basis functions, 2={0,0,0,1,2,3,3,4,5,5,5}

16 ; -’H kl 1_'.” (s

]

I

ITU



The shape functions are completely different from those in the FEM and
guarantee p-1 continuous derivatives. The B-spline has some useful
properties as a basis function such as partition of unity, compactness and
non-negativity. Using the B-spline basis function N/ (§) and weight w;, the
NURBS basis function R/ (&) is defined as

NP (§)w

RY (5) = .
SN (), -

For the given [ pairs of the p-th order NURBS basis function R’ and the

corresponding control point B;, the NURBS curve C is obtained as
C(&)=> R'(¢)B,. (2.5)
Similarly, NURBS surface S is defined as a tensor product of coordinates,

JOEN» WACRIHEREIES WACEN .6

i=1 j=1
where B,=B(x) are locations of the control points and #; is introduced for
the brevity of expression. CP denotes the number of control points and E is

the parametric domain of surface.

2.2 Beam structures considering surface effects

Nanoscale beam with circular cross section is considered as shown in
Figure 2.2. The Bernoulli-Euler beam is considered and shear effect is
ignored. A beam based on surface elasticity is considered to have an elastic
surface bonded to its bulk part. Due to the interaction between the surface

and bulk material, the traction T, and 7. exist on the surface.
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Bulk

O+

a0 ..
dx

M+dﬂAx
dx

Figure 2.3 Free-body diagram of incremental beam element
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The bending moment and vertical force equilibrium equations of the element
shown in figure 2.3 are obtained as

d’M d
?-FEJ‘S];ZdS:q(X)‘FL]ZdS (27)
where M is bending moment, ¢g(x) is distributed vertical force and s is the

perimeter of the cross section. Bending moment M is defined as

o*w o*w
M:L%ZdA:L[Ezy)ZdA:Elﬁ (2.8)

where 7 is obtained as zD*/64 for a circular cross section, D is a diameter of

circular cross section. The surface constitutive relations are obtained as
T, =r0+(2y0+/10)ux’x (2.9)
and
T = ToWy (2.10)

where uo and Ay are surface Lame constants and 7, is the residual surface
stress under unstrained conditions. 7w, given in equation (2.10) is
distributed transverse force along the beam longitudinal direction caused by
generalized Young-Laplace equation, which accounts for out of plane
stresses induced from residual surface stress and curvature in deformed
shape of a beam. (Chen et al. 2006) Using the equations (2.9) and (2.10), the

equilibrium relations for the surface are expressed as

2
T=t =20+ 1) @.11)
" ox
and
*w
Tz :Tnx,xnz :TO ynz (212)

Chiu and Chen (2011) suggest that higher-order surface stress which
considers not only the effect of in-plane membrane surface stresses, but also

the surface moments induced from the non-uniform surface stress across the
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layer thickness. Therefore, equation (2.12) is rewritten as

2 2 s 2 4
Tz:(foa_erd a—mjnzz(r W4 MJI@ (2.13)

Fo ) o oy
where m®is surface moment and d is surface bending stiffness parameter.
High-order term with respect to deflection w is considered with d term.
Substituting equations (2.8)-(2.13) into equation (2.7) yields
4 >

zD’ o'w ow
{EI+ ] E_g+2dsD}W:q(x)—2foD¥ (2.14)

where E; is 2uotAo. From equation (2.14), following governing equilibrium
equation is obtained as

L0'w o'w
B —+25,D—5 = q(x) (2.15)

where EI is defined as EI+(zD*/8)E,+2d,D. Equation (2.15) is multiplied by

an weight functions w and integrated over the structural domain to obtain

0

v . o'w o*w —
_[ {EI e +21'OD¥—q(x)}wdx=O (2.16)

where L is the length of the beam. Integrating equation (2.16) by part and

applying the boundary conditions give the governing equation as
aQ(z,i)zlg(z), “ZeZ, 2.17)

where the bilinear strain energy and load linear forms are obtained as

(L] e OWOW ow ow
ag(z,z)=J.0 {EI PYCRP +27,D % ox (2.18)
and
p— L p—
ZQ(Z)ZIO q(x)wdx (2.19)

Zc[HA(Q)]" is d-dimensional variational spaces of kinematically admissible
displacements. Using an isoparametric mapping, approximated response and
virtual response are expressed, in terms of NURBS basis functions and the

response coefficients at control points, as
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2" (E)=2.W,(E)y, (2.20)
and
—h & —
z'(E)=>W,(2)y,. (2.21)
1
where '€7"CZ and Z"€Z "C Z . For brevity of notation for discrete
response and function space, z and Z will be used instead of z" and Z’,

hereafter. Also, same notation is applicable for the virtual ones. Using

equations (2.20) and (2.21), the variational equation (2.17) is rewritten as

CP _
ag(2,2)=1,(z), "2=)Y W, (E)y, € Z, (2.22)
I
where
CP
aQ (Z92) = J.YZYIT {EI*VVICKJCWK,)OC + 2TODVI/I7:.¥WK,X }yde (223)
" IK
and
CP
I (2)=] D (t'w,y, )ax, (2.24)
1

where f is force component matrix. Detailed derivation on the beam
formulation including surface stress may refer to He and Lilley (2008), Liu

and Rajapakse (2010) and Chiu and Chen (2011).

2.3 Shell structures
2.3.1 Kinematics of deformation of shell

Consider a three-dimensional solid structure Q" in domain E’ that is a

three-dimensional Euclidean space. The space E’ is endowed with an
orthonormal basis vectors &. Let X, denote the cartesian coordinates of a
point %" € E*. Here, * means the domain or material point in thickness

direction. Also, the space R’ is three-dimensional vector space. in which N =
| X =11 =
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A

three vectors e' (i =1, 2,3) form a basis. Let there be given a domain Q
of E’ and assume that there exist an domain Q" of R’ and an one-to-one
mapping ©:Q" - E’ such that (E)(Q*)sz. Then each point X’ eQ)' can
be expressed as

¥ =0(x),x 0, (2.25)
and the three coordinates xl.* (i = 1,2,3) of x"eR® denote the curvilinear

coordinates of the point %" e E*.

Figure 2.4 Definition of the middle surface of the shell

The middle surface of the shell is often represented by a surface geometry €,
which uses two curvilinear coordinates (x;,x;) as shown in figure 2.4.
Therefore, the reference domain Q of the surface is composed of x; and x,,
while x; is the coordinate in thickness direction that is defined as -0.54<x3<
0.5h with & is the shell thickness. Thus, the material point X* of the

undeformed shell is given as
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X (x5, %) =X(x,x,)+x,a’ (x,x,), (2.26)

where X (x;,x,) is the material point on the middle surface, and a’(x;,x,) is

the surface unit normal vector. The corresponding covariant basis vectors are

AK

g, =X, :(i+x3a3)a =a, +x2,, (2.27)

in which (-), denotes partial differentiation with respect to the curvilinear
coordinates x, and Greek indices take values 1 and 2. a, and a“ are covariant
and contravariant basis vector on the middle surface, respectively. The
covariant and contravariant components of the surface metric tensors are

given as

5a” =a"-a’. (2.28)

a,=a,-a
In the Naghdi’s shell model, the displacement vector is assumed as

2 =ua” +xy.a” +wa =(u, +xy,)a’ +wa’, (2.29)

where u, and w are in-plane and out-of-plane displacement measure and v,
are rotational angle measure. The membrane, bending, and shear strain

measures are obtained as

up =5 (ol +10,], ~20,0), (2.30)

o, = %(,,,a I, + V,ﬂ||a)_§b; (], - bﬁyw)—%b; (], ~b,w). @31
and

Vo =W, +y, +bu,, (2.32)

where b, is covariant curvature tensor and b is mixed curvature tensor.
()allp=(")ap-T*%, (-)y means covariant differentiation in which 1% = a,za" is
christoffel symbol defined at the middle surface. These higher order

geometric quantities such as christoffel symbol and curvature tensor are

+ 1 )
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exactly represented in IGA. For more details of Naghdi’s shell formulation,
interested readers may refer to Naghdi (1973).

Because only specific shapes such as cylinder or sphere are generally
represented by using curvilinear coordinates in Naghdi’s shell, it is difficult
to model the arbitrary shape of shell surface. NURBS basis functions are
composed by two parameters and Naghdi shell element has two curvilinear
coordinates. Therefore, by choosing the NURBS parameter as curvilinear
coordinates and placing control points as we want, arbitrary shape of shell
surface can be modeled in IGA (Rho and Cho 2004). Also, this approach has
advantage on shape optimization due to its flexible shape change. In this
paper, NURBS parameter will be used as curvilinear coordinates in all

numerical examples for shell.

2.3.2 Equilibrium equations considering surface effects

Based on the kinematics of deformation of Naghdi’s shell, the
equilibrium equations considering surface effects in nanoscale are presented.

Consider the domain of the shell component Q' CFE’ mapped into the
domain QxR,Q c R*. Upper and lower surface of shell are defined as Q"
and ), respectively as shown in figure 2.5. The bulk strain energy Wiy, is

given as
1 *

where % is bulk stress and E,p is the bulk strain measure. 6™ and E,; are for

shear deformation, respectively. a is the determinant of the metric tensor.

3] 3 =77
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Bottom surface (-)

Figure 2.5 The alignments of bond chains of an atom in surface and bulk

Surface energy on the upper and lower surface is given as

1
— —Lap a3 +
W, = Ly ( 5 T Eap +T(E o j\/adQ

1 aff a3 -
+ L, (ET()Eaﬁ +T()Ea3j\/ZdQ , (2.34)

where T(Of; and T(”f ﬂ) are surface stresses on the upper and lower surface,

respectively. The total potential energy is obtained as

1 Q a * a— n— *
n:jg*(gg ’E,+0 3Ea3)\/ZdQ [ (rz, + frw)Nado
1 Q o +
(3558 #E Naae
1. . ,
+IQ(ET(_ﬁ)Eaﬂ+T(_3)Ea3)\/EdQ , (2.35)

where /* and f* are, respectively, in-plane and out-of-plane external body
force intensities per unit volume on the middle surface. z, and w are,
respectively, in-plane and out-of-plane virtual displacements on the middle
surface. The constitutive equations of the shell component for the bulk stress

are given as

aff _ op — (%
o =C™E, =C" (s, +x,0,) (2.36)

25 -":lﬂ-_i —— T



and

0@ =C"PE,, =C"Py,, (2.37)
where
CP" = pa”’ a™ +u(a“7aﬁ” +a“”aﬂ7) (2.38)
and
C” = pa“, (2.39)

where u and A are Lame constants. Surface Lame constants are different
from the Lame constants of the bulk used in equations (2.38) and (2.39). The
constitutive equations on the upper and lower surfaces of the shell

component are given as

r(‘f) =7r,a” + C(if”‘ (5W + %wﬂ‘j and r(”f) = C(";imyﬁ (2.40)
where
C(‘i/)”” =Aa”’a™ + u, (a‘”aﬂ" + aa”aﬁy) (2.41)
and
Cey? = wya™, (2.42)

where uy and Ay are surface Lame constants and 7y is the residual surface
stress under unstrained conditions. Chiu and Chen (2001) suggest that
higher-order surface stress which considers not only the effect of in-plane
membrane surface stresses, but also the surface moments. Surface moments

are given as

2

m =d 1=V oy (2.43)

£) S E T

where m('i/; and m('i ﬁ)( are surface moments on the upper and lower surface,
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respectively. They are induced from the non-uniform surface stress across
the layer thickness. d; is surface bending stiffness parameter. Applying the
above constitutive equations and using the principle of minimum total

potential energy, an equilibrium equation is expressed as
a,(2,2)=1,(Z), "2¢Z, (2.44)
where the bilinear strain energy and load linear forms are obtained as

an (:7)= [ (€261 ()5 ()] a2

h o h? " 1-v? " _
+IQ{(EC Ak 4 2Cf”’+2a’ - Cﬁ"lja}aﬁ(z)a)ﬂl(z)}\/ng

{26 )y )y, ()| Vade (2.45)
and
I,(Z)=] (172, +/"w=25,07¢,,(Z)Nad®, (2.46)

Zc[H'(Q)]" is d-dimensional variational spaces of kinematically admissible
displacements. From equation (2.45), the change of effective membrane,
bending and shear modulus are observed by considering surface effects.
Using an isoparametric mapping, approximated response and virtual
response are expressed, in terms of NURBS basis functions and the response
coefficients at control points as equations (2.20) and (2.21). Using equations

(2.20) and (2.21), the variational equation (2.44) can be rewritten as
CP _
a,(2.2)=1,(z), "z2=Y.W,(E)y, € Z, (2.47)
1
where

(z7)=], Z {B} (Ch+2C,,;)B} JyVadQ
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O | b7 n n 1-v° b \/_
[ Dy 4B 5 €+~ Coe +24,——C |BY 1y, Jad®

1,K
CP
[ 3V {BY (Ch+2C,, )BY Jy (NadQ (2.48)
1,K
and
lo(Z)= Lﬁ(f Wy, -t/ B}Y, WadQ, (2.49)

1
where B™, B* and B are membrane, bending and shear strain-displacement
matrix. C and C® are constitutive matrices for the plane stress homogeneous
linear elastic isotropic materials. Cg,s and C’y,¢ are those of the surface. f is
force component matrix and f,_is force component matrix by residual
surface stress. The membrane B™, bending B® and shear strain-displacement

matrix B® are given as

Vqué—FilVV, _FIZIVVI _bllVVI 00
B);I: _rlzzW W',’,]—F;VV, _b22VV1 0 0], (2.50)
2W,, =20,W, 2W, =20, W, =2b,W, 0 0
000 W,.-IIW -,
B)=/0 0 0  -T,W W, =T, |, (2.51)
0 0 0 2,20V, 20, —~2T%W,
and
bW, bW, W,. W, 0
s | 1" 1.& I (2‘52)

e, bw,o w00 W,

Also, the constitutive matrices for the plane stress homogeneous linear

elastic isotropic materials are given in matrix form as
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26111 o 2v YV oNa" 24247 2v Y Mg 20"a"” + 2v a2
-V l—v 1-v
C- E 20%2a% + 2v Y 27 20242 + 2v 2V 2" ’
2(1+v) l—v l—v
sym a1+ a2+ 2V 2v 424"
L -V
(2.53)
2,ua“ 11+la11 1 Z,anlz 12+ﬂoa11 2 2,ua“ 12+ﬂa” 12
C,, = 2,uoa22 22+/10a22 2 2, a2a 12+ﬂa22 12 ’
sym. 1y (anazz +a12a12)+%a12 12
(2.54)
E a"' g"
C=— 2.55
21+v)|a” a” | (2:33)
and
all alZ
CsLl =4, . (2.56)
surf 0 a12 azz
Force component matrix by residual surface stress is given as
2z,a"
f. =|2ca” |. (2.57)
27,a"

The integration of the bilinear energy form and load linear form in equation
(2.47) can be evaluated using numerical integration methods as Gaussian
quadrature. The four-point Gaussian quadrature formula is used for

numerical integration.
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2.3.3 Equilibrium equations considering nonlocal effects

The theory of nonlocal elasticity states that the stress at a given
reference point depends not only on the stress at this point, but also on the
stress at other points in the body. This way, the influence of the long range
forces between the atoms is taken into consideration, and thus the internal
length scale is considered in the constitutive equations. The nonlocal stress

tensor at point x is expressed as
Cop (x):j a(|x —x|,r)o_'aﬂ (x )dx (2.58)
where G, are the components of the classical local stress tensor, which are

related to the componenets of the linear strain tensor ¢, by the

conventional constitutive relations as
Gy =C"e, (2.59)

The kernel function a(|x -x|,7) represents the nonlocal modulus. [x'-x| being
the Euclidean distance and 7=e,a/[/ is a scale factor, where ¢, is an
adjusting constant which needs to be determined from experiments or MD
simulation results. a is a characteristic internal length such as C-C bond of
lattice parameter and / is the external characteristic length such as crack
length or wave length. It is possible to represent the integral constitutive
relations given by equation (2.57) in an equivalent differential form as

(Eringen 1983)
(1-uV*)o,, =5, (2.60)

where nonlocal parameter u=e,’a” is introduced. Based on the kinematics of
deformation of Naghdi’s shell, the equilibrium equations considering
7§
oy
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nonlocal effects in nanoscale are presented. In Eringen’s theory, equilibrium

is expressed in terms of nonlocal resultants N M%and 7* as

N ) -V + =0, (2.61)
M7 , V=0, (2.62)

and
b N7 +V* _+fr=0. (2.63)

The relations between local stress and nonlocal stress are given as

N7 — uV*N =N =hC"¢ (), (2.64)
3
MP —yN°MP =M = f_zca/’”’a)w (z) (2.65)
and
Ve — Ve =V =hC*y () (2.66)

where resultants with bar N% , M and V* mean local resultants.
Equations (2.61)-(2.63) and equations (2.64)-(2.66) are coupled and must
thus be solved simultaneously. Governing equations (2.61)-(2.63) are given

in its weak form as

ﬂ—V“);;a}/ZdQ

jg[(zv‘ﬂ“ﬂ b +f”‘)@ +(M“ﬁ

[ v o ) aanno s

Embedding the equations (2.64)-(2.66) into equation (2.67) yields

Ja[ 7

+ IQ[—V“Wa —B. 7w, + 70, + % [VadQ

NPw+ M

p u, + ba/,

7T w}ﬁm
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i, +b VN’ W+ VMY

AN

+,UJQ[V2N“ﬂ ,

=V, =BV, [JadQ=0. (2.68)

uf [V ye
Also, the following relations are valid for the terms dependent on u term.

jﬂ[(va“/’ BV V"‘) JI aQ

:jn[fa 5V

a”p_bg
—VZV“)&a}ﬁdQ:jQ[f"

z?a}/EdQ, (2.69)

o+ '], [Nad@ @70

J (varel,

and

af

JoL (b7 N e vive| )@ Naa=[ [ b, 2], 7= 5], 7, [Va.  @71)

Embedding the equations (2.69)-(2.71) into equations (2.68) and applying

divergence theorem yields final governing equations as
3
a,(2,Z) = IQ[C"‘MSW (z)e,(z)h +f—2C"‘Ma)aﬂ (z)o, (i)}/;dﬂ

+[ [ (2)r, (@) Nade

=Ll 1520 @)+ 170, @)+ £17, (7)) Nade

+L2[f“2a + "% |NadQ=1(z), "z Z (2.72)

Zc[H'(Q)]" is d-dimensional variational spaces of kinematically admissible
displacements. Using equations (2.20) and (2.21), the variational equation

(2.72) can be rewritten as
cP

ag(2.2)=1,(z), "z=Y.W,(E)y, € Z, (2.73)

1

where
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CP 3
a,(22)=] 3] {B‘}“TCB;?h +f—2B‘,’TCB‘,’J +B; CBY h}y,( VadQ  (2.74)
I.LK

and
cp
3 A A ICUNCEE
I

where B™, B* and B are membrane, bending and shear strain-displacement
matrix. C and C® are constitutive matrices for the plane stress homogeneous
linear elastic isotropic materials. f is force component matrix. Superscripts
on f tan("), nor and nor(") mean that it considers only its tangential or normal
component with or without derivatives. The membrane B™, bending B” and
shear strain-displacement matrix B® are given as equations (2.50)-(2.52).
Also, the constitutive matrices for the plane stress homogeneous linear
elastic isotropic materials are given in matrix form as equations (2.53) and
(2.55).

Displacement solution fields considering nonlocal effects are obtained
through equation (2.73), but nonlocal stress field cannot be obtained directly
from equation (2.73). Therefore, staggered approach is introduced to obtain
nonlocal stress field. (Askes et al. 2008) The staggered approach consists of
solving the equation (2.73), computing the local strains and using the
quantity as a source term for solving Helmholtz equations (2.64)-(2.66).
Many attempts have been made in classical elasticity to implement finite
elements with separate interpolations for stresses and displacements.
However, simple and straightforward implementation of the Eringen theory
that provides optimal convergence has not been accomplished as yet, and
may not be feasible. (Askes and Aifantis 2011)

The differences between surface elasticity and nonlocal elasticity are as
follows. Surface effects are caused by the differences of the coordination of
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atoms between bulk and surface as shown in figure 2.5-(a). The influences of
surface have to be taken into account as the surface to volume ratio increases
in nanoscale systems. Nonlocal effects are related to the non-continuum
nature of material interactions on a molecular scale and not negligible in
nanoscale structures as shown in figure 2.5-(b). In surface elasticity theory,
the changes of mechanical behavior are observed as the cross sectional area
in 1D structure or thickness in 2D structure varies. However, nonlocal theory
only represents the change of mechanical behavior as the length in 1D
structure or area of the surface in 2D structure varies. The exactness of
nonlocal theory comes from it considers long range force between atoms and
it can be more strict consideration than the way surface elasticity considers
length scale parameter by residual surface stress. Therefore, surface
elasticity is more suitable choice for observing the dependence on the
variations of cross sectional area in 1D structure or variation of thickness in
2D structure. On the other hand, nonlocal elasticity is appropriate for
observing small scale effects of carbon nanotubes or graphene which is 1
layered structure. And besides, stress singularity is not observed in crack tip
problems by considering nonlocal effects. Therefore, nonlocal elasticity is

proper for crack propagation problems in nanoscale.
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Chapter 3. Isogeometric Design Sensitivity Analysis

considering Size Effects

3.1 Beam structures

3.1.1 Sizing design sensitivity analysis considering surface
effects

By using the chain rule of differentiation, the variational equation
considering surface effects can be differentiated with respect to 7 as

d

E[aumu (z(x;u+ réu),i)] T (z,Z2)+a,(z.7) (3.1)
and
()], = (7). 62)

where u denotes a design vector function and the first term on the right side
of equation (3.1) represents the explicit dependence of a, on the design,
whereas the second term of equation (3.1) represents the implicit dependence
through the variation of the state variable. From equations (3.1) and (3.2),

we can obtain
a,(2.z2)=1';,(Z)—a'y, (2.Z) 3.3)

If we let the design vector u is a diameter of circular cross section D, the

design variations of bilinear form is obtained as

, _\ ! |(#zED* 3zD? o’w 0’w ow ow
adD(Z,Z):J.O |:{{ 16 + 3 +2dA_j(2y0+ﬂo)}§§+2%aa:ldx (34)

The design variation of load linear form vanishes.




3.1.2 Material derivatives

Consider the variation of the 1D domain from an original domain Q to a
perturbed one €, as shown in Figure 3.1. Suppose that only one parameter t

defines a transformation, and the mapping 7 is given by

x, =T(7,x) (3.5)

T

and

Q, =T(7,Q). (3.6)

Figure 3.1 Design variation of 1D domain using linear mapping

A design velocity field that is equivalent to a mapping rate can be defined as

dx, dI'(z,
V@@:%gaégﬂ (3.7)

In a neighborhood of 7=0, under certain regularity hypothesis and ignoring

higher-order terms, the following linear mapping relation is obtained

X, zT(O,x)+z’Z—Z(O,x)=X(x)+ TV(X), (3.9)

in which the linear design velocity field at the middle surface of the shell is

defined as

VﬁﬁV&ﬂzﬁ. (3.9)

A performance measure for the beam component may be written in domain
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integral form as
o= f(xKQ (3.10)
The material derivative of @ at Q is obtained as

®'= [ {f(x)+div(f(x)V(x))}dQ (3.11)

3.1.3 Shape design sensitivity analysis considering surface

effects

By using the material derivative formula given in equation (3.11), the
variational equation considering surface effects given in equation (2.17) can

be differentiated with respect to 7 as

- IQ(EI"WQ11 Wy, + EL'w ', = 27,Dw', %, — 27,Dw 0", )dQ)

+ jQ(EI"w,1 9y, — 22, Dw, W, )’1 V+(Ew, W, —2z,Dw,w, )V,dQ (3.12)

and

1, (7)]

From the material derivative of response solution, we obtain

r=0 =J-Q(qv_v'+ qv_VJV_FqWV,I)dQs (313)

w=w'+w V. (3.14)
Its spatial derivatives are expressed as
wh=w —wV —w v (3.15)
and
W’,u =w,-w Vi -wV,-w V-wV,. (3.16)
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Substituting equations (3.15) and (3.16) into equation (3.12) yields
d

E[aﬂ, (zr’ir )]

7=0

JEE Gy =wiV = wiloy = woV = w1 ), Q2
[ BT W (0, =V =0 =0,V =, )0
J, (2000w~ ), Ja

~Jo (25D, (3, =7, =, ¥ a2

+.[Q(EI*"V,11"_V,11 _ZTODWJV_VJ)J V"'(E]*"V,n"_",n _ZTOD"V,1V_V,1)V,1dQ (3.17)

and rearranging equation (3.17) yields

d

E[aﬂr (Zr,ir)]

7=0

IQ{E[*(W,M _W,11V,1 _WlVll _"",nV,l)V_",n}dQ
+IQ{EI*W»“ (V_'V’“ _V_VJIVJ _V_V,lV,ll _"_V,llV,l)}dQ
_J.Q(erD(‘;V*l =W,V )+ 25, Dw, (37, _V_",lV,l))dQ

+[ (B w, 3, —22,Dw,5, ), dQ (3.18)

Then, the material derivative of the strain energy bilinear form is denoted by

[a(z,i)]'za(i,i)+a(zj)+a',, (z,7) (3.19)
where

a(2,7) = | {E, %, —22,D%, 7, |dQ, (3.20)

a(2.7)= | {EI'w,i¥,, —2z,Dw, ¥, |dQ, (3.21)
and
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a', (2.2)=[ {EL (<2w, 7, = wV), ), d©
BT wy (2,7, w7, )jde
+IQ(4TODW T,V O
+ L{(EI W —2ToDW,1W,1)V,1}dQ (3.22)

Substituting equation (3.14) into (3.13) yields

1 (@)] = (a7 +am7,)ae, (3:23)

Then, the material derivative of the load linear form is obtained as

d

i (2], =1(@)+1, (@) (324)
where
1(z)=] (g% )aQ (3.25)
and
1y (2)= [ (a7, a0 (3.26)

The material derivative of variational equation for structural elasticity

problem is given as

d _
E[an (zr ,Z, )]

_=a(zZ)+a(z.z)+a', (2.7)

- _\_ d _
:l(z)+l',,(Z)EE[ZQ(ZT)]T:O. (3.27)
Since all ZeZ , and following equation is valid.
a(z.z)=I(z). (3.28)

The design sensitivity formulation using a direct differentiation method is

finally derived as
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a(z2,2)=1',(Z)-a', (2.7) (3.29)

3.2 Shell structures

3.2.1 Material derivatives in curvilinear coordinates

Since the design domain is the middle surface of a shell, the variation
for the thickness direction of the shell is not considered in this paper.
Consider the variation of the middle surface of a shell from an original
domain QcE® to a perturbed one (. c E®. Suppose that only one

parameter 7 defines a transformation, and the mapping 7' is given by

X, =T(7.%) (3.30)
and
QTET(T,Q). (3.31)

A design velocity field that is equivalent to a mapping rate can be defined as

o dx. dT(7,X
V(r,x):di;:fj—zx). (3.32)

In a neighborhood of 7=0, under certain regularity hypothesis and ignoring
higher-order terms, the following linear mapping relation is obtained as

, T(O,ﬁ)+r2—T(O,§():f((xl,x2)+rV(§(), (3.33)
T

X

Q

in which the linear design velocity field at the middle surface of the shell is

defined as

_dx,
dr | _,

V(%)=V(0.%) (3.34)

The material point x,R? is mapped into %, €E’, and perturbed basis a,,

a,, and a°, are defined for the perturbed material point X, as shown in
b T 5 ™ b
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figure 3.2.

Figure 3.2 Design variation of the middle surface of the shell

A performance measure for the shell component may be written in domain

integral form as

o= £ (x)ya(x)de. (3.35)

The material derivative of @ at Q is obtained as

cpvzjg{f(x)\/@+f(x)( a(x))'}dQ. (3.36)

3.2.2 Shape design sensitivity analysis considering surface
effects

By using the material derivative formula given in equation (3.36), the
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variational equation considering surface effects can be differentiated with

respect to 7 as

d

e, (22| = [ F(z2Nad+ | F(27)(Va) a0 (3.37)

[ [z Na+ rza s 1oz, (Va )}hde,

+jQ Frwoa + frwa + f"w(\/Z)}th

JLrie, (2)r2ma e, (2)a Jhac

][ 2nae,, (2)(a) |hie. (3.38)

where

F(2,2)=(C™h+ 202" )¢, ()5, (Z)
h CaﬁM+h C“/W+2d C"/’ w (2)o,(z)
12 surf E zzﬂ w

+HC P h+ 205 )y, (2)7,(2) (3.39)

and

F(2,2)=(C"h+2C8 e, (2)¢,, (Z)
+ h_3CdﬂM h Caﬂﬂl +2d Caﬂh/l ( )a) ( )
12 2 surf E /? A

HC R+ 2C00 )7, (2)7, (2)+(CPh+2C01 )b, (2) 2,0 (7)

surf

3
(e L a0 S e o, ()0, (9

n Ca3ﬂ3h+zciftﬁ3) (Z)}/ﬂ( ) (CaﬂMh‘l‘qufﬁ‘M) aﬂ( )‘éﬂi(i)

3
(flz Caﬁ;zl C:ff;zl + zd Z C(lﬁﬂij a/} (Z)COM (i)
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+(C“3ﬁ3h +2008 )7/a (z)7,(Z) (3.40)

The material derivatives of the membrane strain tensor, bending strain tensor

and shear strain tensor are obtained as
é4(2) ZSV’”[”a,ﬁ —Itt, —bww}

=sym{ i,y =Tl ~Tigit, ~byw=b,0] =, () + £, (2).  (3.41)
i, (2)=sym| v, , ~Tipw, |

= sym[ 1, , =Ty, ~Thir, |= @, (2)+ 0l (2), (3.42)
and

7.(2)= sym[w,a +y, + bjuJ'

=sym| Vo, +7, +Blu, + b, | =y, (2)+ 7. (2), (3.43)
in which £(z),w(z) and y(z) implicitly depend on the design through Z.
&'(z), &' (z) and y"(z) represent the explicitly dependent part that can be
computed from both the state variable z and the design velocity V. Note that
the operations of partial derivative with respect to the NURBS parametric
coordinates and the material derivatives are commutative. The material

derivative of variational equation for structural elasticity problem is given as

d

E[ag (Zr’ir )]

= a(i,7)+ a(Z,i)-i' a'y (Z’Z)

=0

=1(z)+1,(7)= di[lg (7.)] (3.44)

T

r=0"

In E* space the following relation holds such as zeZ, zeZ and

i = —_ . el — D . i
Z2=zg +zg . Since z=zg =0 on [~ and the basis vectors g are
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linearly independent, z =0 on I'” . Therefore, Z=(zZ)€Z , and
following equation is valid.
a(z.z)=1(z). (3.45)

The design sensitivity formulation using a direct differentiation method is

finally derived as
a(z,z2)=1',(z)-a', (2.7)

=1'(z)- {a'm,, (z.Z)+a', (2.Z)+a', (z,i)} (3.46)
Considering only membrane strain tensor and substituting equation (3.41)
into equation (3.37) yields equation (3.47). Substituting equations (3.42) and

(3.43) into equation (3.37) yields bending strain tensor equation (3.48) and

shear strain tensor equation (3.49).

@'y (2.2) = [ [(CPh+2C0 ), (2)2,,. (F)Va [,

f, [ (CP 20t o, (2)2,0 (2)(Va) i

H[ [(cnv et ) (< pm, b, (2)|Va o,

+ (c“ﬂ’”h #2001 e (2)(-17,1, ~ b, )| Na JdQ, (3.47)

3
a'y, (2,z)= IanzcaﬂM+h Cai +2d E C“"‘”J aﬁ(z)wﬂl(i)\/g}dﬂ,

surf a,

2 .
2o C“M y2a 1V - caﬂ#‘jw s (2)o,,(7)(Va) }dQ,

12

1
+f [ I cama  I° c;fg'uzd C“ﬂ”‘j{ "0, (Z)}Na dQ }d
f{

h3 ay a app o o—
Ty Cwi*“+2d z C'””J{ ﬁ(z)w%}ﬁ}@» (348)
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a',(2.7)= jﬂ{(cmswzcgggs) 7.(2)7, (2)\/;}41’9,
20y, ()7, (2)(Va) i

[ (CPh 200 ) B,y (2)+ 7, ()i Na a2 (3.49)

Here, m, b and s mean explicitly dependent part of membrane, bending, and
shear, respectively. From equation (3.38), explicitly dependent part of load

linear form is obtained as
I, (7)=jg_f“7a\/2+f“za (Va) + f"w\/2+f"w(\/2)1d9.

—jQ_{zroaaﬂgaﬂ (z)+ 27,07 (-1, = b,,7)|Na JdQ,

I, 27 (2)(Va) Jac, (3.50)

3.2.3 Shape design sensitivity analysis considering nonlocal

effects

By using the material derivative formula given in equation (3.36), the
variational equation considering nonlocal effects is differentiated with
respect to 7 as

%[agr (z,.% )]L:O = [ F(z2)NadQ+][ F(2,2)(Va) d2 (3.51)

and

d

E[IQ, (ir )]

=L et a ez, (Va) Jae
of [+ grida s pw(Ja) Jao

suf [{F56.,(2)+ "0, (2)+ 1, (2))Va |a0
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where

wuf [{f580s(@)+ [0, (Z)+ 117, (D)Va |d@  (3.52)

3

=\ _ 9 P _
F(z,z)=C ﬁmhgaﬁ(z)gM(z)+EC "0, (2) 0, (Z)

and

F(2,2)=C"he,(2)z,, (2)+f—2c'“/”*“a>

+Chy, (2)7,(Z) (3.53)

3
aoff (Z)wﬂﬂ (2)
+Ca3ﬁ3h7/a (Z)}/ﬂ (7)_’_ Caﬂ/uihéaﬂ (Z)g,ﬂ (7)

3

I o,

T 6(2)0,,(2)+Chy, (2)7,(Z)

3

a A P o
+C" he,, (Z)gm(z)+EC " w,5(2) 0, (Z)

+C Py (2)7,(Z) (3.54)

The material derivatives of the membrane strain tensor, bending strain tensor

and shear strain tensor are obtained as equations (3.41)-(3.43). Considering

only membrane strain tensor and substituting equation (3.41) into equation

(3.51) yields equation (3.55). Substituting equations (3.42) and (3.43) into

equation (3.51) yields bending strain tensor equation (3.56) and shear strain

tensor equation (3.57), respectively.

a'., (z,;) = Iﬂ[caﬂ”ﬂhgaﬂ (z)e, (i)\/g]dQ,

+IQ [Caﬁﬂ’lhgaﬂ (z)e,, (2)(\/5) :|dQ’
e[l (Erm, ) (D) Na o

+IQ|:Caﬂﬂﬁh{gaﬂ (Z)(—ff,ﬂn —Byzw)} \/EJdQ, (3.55)
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i a2)= ]| 0, (), ()4 o

+I _h—SC“ﬁMw
o 12 b

(50, (V) b

_h3 . o _ S
+IQ EC 7 {_FaﬁV/an(Z)_a)“ﬁ (Z)FMQZ/"}\/;:|JQ, (3.56)

and

a'y (2.2)= [ {CPhy, (2)7,(Z)Vald0.
+J‘Q {CawSh;/a (z)yﬂ (Z)(\/;) }dQ.

+IQ[Ca3ﬂ3h{qu”7ﬁ (Z)+7., (2)5}?%} Ja }IQ (3.57)

Here, m,b and s mean explicitly dependent part of membrane, bending, and
shear, respectively. From equation (3.52), explicitly dependent part of load

linear form is obtained as

1y @)= [,z rw (a) s rr(a) Joa
S50 @) 5 170, @) 127, @) (Va) Jan
of Ll 30, @)+ 70, (2)+ fir, (2))(Ja) Jao

[l (0, -, ) 1 (F, ) (V) Jao

+IQ:“fZ (B, ) (Va )]dQ (3.58)
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Chapter 4. Numerical Examples
4.1 Beam structures in nanoscale

4.1.1 Surface elasticity of silver nanowires under a

concentrated force

To validate the developed method experimentally, three-point bending
test of silver nanowires using AFM are performed. Continuum formulation
considering surface effects in nanoscale is introduced for the theoretical
analysis of silver nanowires under a concentrated force. Since nonlocal
theory does not capture the variation of cross sectional area and size effects
cannot be predicted for bending of a nanobeam under a concentrated force,
which is called paradox, nonlocal theory is not considered for the theoretical
analysis of silver nanowires. Several researchers neglect the effect of the
deflection due to shear and considered the beam as a straight one ignoring
initial deflection. (Jing et al, 2006) In this research, shear effects and initial
deflection of a beam will also be ignored for simplicity. Governing equation
of a straight beam considering surface effects in nanoscale is rewritten as

s d'w d*w
El) —+27,D—
( ) dx4 TO dx2

—q(x)=0 (4.1)
where (EI)* is effective rigidity and is obtained by

(EIY = EI + %ESD3 +2d.D (4.2)
and E_ is surface modulus and D is diameter of circular nanowire. A
constant concentrated load F'is applied at midpoint of the beam. For a fixed-
fixed nanowire boundary condition, following force equilibrium at x=0 is

considered as
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[E] += ED3]d 4
8 dx®

=F/2 (4.3)

x=0

Exact displacement field without considering 7, is expressed as

F(3L —4)c)x2
w=———2"—_ x€[0,L/2] (4.4)
48(EI)

Exact displacement field with considering 7, is expressed as

L sinh({Jnx/L—fn/4)

F
x— = tanh ({7 /4 (4.5)
47'0D \/5 ( ) \/5 cosh(ﬁ / 4)
Setting x to L/2 yields exact maximum deflection at midpoint as
F L 2L
= — ——tanh /4 4.6
max 4T0D 2 \/’ (\/7 ) ( )
where 7 is obtained as
n=27"DL*/ (EI) . (4.7)
Effective Young’s modulus is obtained from maximum deflection as
L'F
(4.8)

oA 3rD* .
Detailed derivation of exact displacement may refer to He and Lilley (2008).
As a further development, design sensitivities of maximum deflection

with respect to diameter and length are given, respectively. Derivative of

maximum deflection with respect to D is given as

8y —F |L 2L
oD 4, 4r.D*|2 [ <*f/4)
_F 2L e L o
+4T0D \/;sech (\/5/4>8\/; 5D 4.9)

where
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oy —128e'C (3ED* +16E,D)

oD n(ED* +8E,D*)

Derivative of maximum deflection with respect to L is given as

Oy __F |1_2 o
oL  4r, D2 [y tanh(*/gm)m
P 2L een? _L on
4D \/; sech (\/;/4)8\/; 3L

where

on _ 2567°L
OL EnD’+8mE.D’

(4.10)

A.11)

(4.12)

Figure 4.1 shows the effect of the surface stress on the effective Young’s

modulus. For the (001) silver, surface elasticity values from atomistic

calculations of 1,=0.89 and E;=1.22 are used. (Miller and Shenoy 2000)

The silver nanowire length used in the calculation is 1 gm and the diameter

of silver nanowire is 35 nm. The size dependence of the effective Young’s

modulus is observed by considering surface effects.
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Figure 4.1 Effect of the surface stress on the effective Young’s modulus

Table 4.1
Comparison of maximum displacement of silver nanowire under

concentrated load considering surface effects

(a) Exact (b) Numerical
Ratio (b)/(a)
displacement displacement
Quadratic FEA 0.7089 96.87 (%)
0.7318
Quadratic IGA 0.7262 99.23 (%)

The numerical maximum displacement using quadratic FEA and IGA are
compared with exact maximum displacement as shown in table 4.1. Total
number of DOFs used for each numerical analysis is 18. The IGA gives

more accurate results than the conventional FEA, even same DOFs is used.
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Table 4.2

Comparison of sizing design sensitivity of maximum displacement with
respect to the diameter of silver nanowire under concentrated load

considering surface effects

(a) Exact (b) Analytical
Ratio (b)/(a)
sensitivity sensitivity
Quadratic FEA -3.3579E+07 96.40 (%)
-3.4834E+07
Quadratic IGA -3.4444E+07 98.88 (%)

Table 4.3
Comparison of shape design sensitivity of maximum displacement with

respect to the length of silver nanowire under concentrated load considering

surface effects

(a) Exact (b) Analytical
Ratio (b)/(a)
sensitivity sensitivity
Quadratic FEA 8.9726E+05 96.11 (%)
9.3361E+05
Quadratic IGA 9.2174E+05 98.73 (%)

Analytical sizing and shape sensitivity using quadratic FEA and IGA are
compared with exact sensitivity as shown in table 4.2 and 4.3, respectively.
Comparing with the exact sensitivity, analytical sensitivity of IGA shows

better agreement than FEA case.
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4.1.2 Three point bending test of silver nanowires using
AFM

The elastic modulus of silver nanowires is measured by performing
three-point bending tests on nanowires suspended over substrate with
etched holes. Figure 4.2 shows the image of used AFM (Brucker,
Dimension Icon-PT SM) instrument. A small force is applied to the middle
point along its suspended length using AFM cantilever tip. The cantilever
(Veeco, RTESPA-300) here with calibrated resonance frequency 300 kHz
and normal spring constants of 40 N/m was used. Silver nanowires were
purchased from Plasmachem. Three kinds of silver nanowires dispersion in
Ethanol were purchased, respectively. Average diameters of each silver

nanowire are 40 nm, 100 nm and 200 nm, and its length is up to 50 um.
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Figure 4.5 AFM calibration grating for the three point bending test

Flat substrate with a hole is required for the three-point bending test of
silver nanowire. AFM calibration grating is well-defined structures
designed as an auxiliary aid for the monitoring of sophisticated imaging
tools, so it provides reliable testing substrate for three-point bending test of
silver nanowire. Used AFM calibration grating (Bruker, APCS-0099) in
this study is a multi-area calibration artifact and pitch size is selectable
from 2 um to 15 um. Therefore, we can choose suspended nanowire with
appropriate length depending on the diameter to prevent initial deflection of
nanowire. Several drops of the silver nanowires ethanol solution were
dispersed onto the substrate. For eliminating problems associated with
initial deflection of silver nanowire, the selection of reasonable ratio
between the nanowire length and its diameter is required. L/D>15 is
avoided to prevent initial deflection of silver nanowire. Since overlapped
suspension of the silver nanowires is not desirable in three-point bending
test, silver nanowire solution with low concentration is required for

observing individual silver nanowire. After the experiment, Sljlb.IStI'at_e is .
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rinsed several times with ethyl alcohol, acetone and DI water for another

experiment.

Figure 4.6 SEM instrument (Jeol, JSM-7100F)

Figure 4.6 shows the image of used scanning electron microscope (SEM)
(Jeol, JSM-7100F). Before measurement with AFM, SEM images were
obtained in advance. This is because scan speed of SEM is much faster than
AFM and matching the same position between two instruments is possible
by setting a coordinates using periodicity of AFM calibration gratings. We
can observe that some of silver nanowires were well-suspended over the
holes using SEM. The AFM images of the sample were scanned first at low

magnification as shown in figure 4.7 to obtain overall view and an
- = 1] ”
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individual nanowire of interest suspended over one hole is selected. Once a
suspended nanowire was selected, an AFM image at higher magnification
was carefully taken. Figure 4.8 and 4.9 show the images of the sample at
higher magnification by SEM and AFM, respectively. We can observe
same region is matched exactly by setting a coordinates using periodicity of
AFM calibration gratings. Since alignment is not perfectly orthogonal,

suspended length L is measured for each nanowire.

— lpm  JEOL 4/13/2016
20.0kV LED SEM WD 10.0mm 18:42:02

Figure 4.7 SEM image of a suspended silver nanowire at lower

magnification
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Figure 4.9 The AFM images of the sample at higher magnification
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The diameter D of the nanowire was measured by cross sectional view in
the AFM image. Figure 4.10 shows enlarged silver nanowire image and its
cross sectional view. Since height information is more reliable than surface
image due to the limitation of plane resolution, measured maximum height
is set to diameter of circular nanowire. The AFM tip was then moved to the
midpoint of the nanowire of interest. Special procedures are not required
for fastening the nanowires to the substrate. Adhesion of the silver
nanowire to the substrate was sufficiently strong to prevent any lift-off,
providing a clamped beam assumption.

Assuming that a force is applied at the midpoint of the beam and induces a
deflection, we measure force-displacement curves from the midpoint of the
suspended nanowire. The photodetector deflection sensitivity allows
conversion from the raw photodiode signal to deflection of the cantilever.
Deflection sensitivity is dependent on the cantilever type and laser
alignment. The sensitivity must be calibrated on a hard substrate before
accurate deflection data is obtained. As we know the parameters such as
deflection sensitivity and spring constant, the deflection voltage-time
curves can be converted to real force-distance curves. The cantilever tip
was brought to contact with the sample by a piezoelectric actuator, resulting
in both cantilever deflection and the bending of the suspended nanowire
simultaneously. Therefore, the slope of force-deflection curves gives the
spring constant of combined structure of cantilever and nanowire k,,. which
is related to the spring constant of the nanowire k, and that of cantilever £,

by

k _ kckwc 413
! kc _kwc ( ‘ )

k. is given value depending on the cantilever type. Figure 4.11 shows the

example of determining spring constant of nanowire £, fr(;nq spring 2
r L -I =11
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constant of combined structure k,. and that of cantilever k. as given in

equation (4.13).

[ |

e

Figure 4.10 The AFM images and its cross sectional view
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Figure 4.11 Determination of spring constant of nanowire from three-point

bending test

4.1.3 Experimental validation for surface elasticity of silver

nanowires

Surface elasticity with high order surface effect

Generally, according to the beam theory for a three-point bending test,
the effective Young’s modulus considering size effects is given by equation
(4.8). L, D and [ are obtained from the geometry information and stiffness
k=F/3max 1s determined by three point bending test. Figure 4.12 shows the
effective Young’s modulus obtained from three point bending test as the
function of the diameters of silver nanowires. Obtained experimental data is
compared with experimental data by Jing et al. (2006) and it shows fairly

good agreement.
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Figure 4.12 Variation of the effective Young’s modulus with the diameters

of silver nanowires

Jing et al. (2006) obtained a relationship between the effective Young’s
modulus and the diameters of nanowires through three point bending test.
Using the relation that total elastic energy is the sum of bulk and surface
elastic energy, they derived following approximated relation between
original Young’s modulus E and effective Young’s modulus £, as

8 8L°
E, =F+—E +—7,. 4.14
eff D s 5D3 0 ( )

Under the assumption that L is approximately 14D, fitting curve given in
equation (4.14) gives optimized surface parameters, £=56 GPa, E,=8.7 N/m
and 1,=5.8 N/m. Cuenot et al. (2004) also presented optimized surface
parameters £=67.5 GPa and 7=3.09 N/m from their own experimental
results. These values are different from £=76 GPa, £~1.22 N/m and 1,=0.89
N/m which are obtained from MD simulation results. Jing et al. (2006)
analyzed the reasons for the differences of surface parameters obtained by

MD simulation and experimental results are due to surface roughness and
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surface oxidation layer. Since rough surface may consume more energy than
a smooth surface during the deformation, surface parameters obtained from
experimental data are larger than those obtained from MD Simulation, which
deals with silver nanowires having smooth surface.

He et al. (2008) present the approach using the generalized Young-
Laplace equation to study the influence of surface effect on the three point
bending test of silver nanowires. Concentrated force 1.0 nN is applied at the
mid-point and maximum displacement wy,,x at the mid-point is obtained. The
effective Young’s modulus is obtained as FL3/[192(E1)*wmax]. For the
theoretical calculation, surface parameters are given as £=76 GPa, £~1.22
N/m and 1,=0.89 N/m which are obtained from MD simulation results.
Under the assumption that L is 1.0 um, theoretical solutions are compared
with experimental results obtained by Jing et al. (2006) and it shows fairly
good agreement between them. However, suspended length in the
experiment by Jing et al. (2006) is approximately 14D, not 1.0 um for all
diameters. To account for the differences between experimental results and
theory, some researchers discuss that surface moment with finite thickness
affects the surface energy. The surface elasticity theory developed by Gurtin
and Murdoch (1975) is based on the idea that two-dimensional membrane
with zero-thickness is bonded to the bulk, so it has no flexural resistance.
However, there is an intrinsic flexural resistance of the surface since the
surface region has a few atomic layers thickness. Chiu and Chen (2011)
suggest high-order surface stress which considers not only the effect of in-
plane membrane surface stresses, but also the surface moments induced from
the non-uniform surface stress across the layer thickness. It allows that the

stress could be linearly varying across the layer thickness, which results in
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surface stress as well as surface moment. The generalized Young-Laplace

equation with high-order surface stress is obtained as

wD? A*w *w

EI + E +2d D|— —27,D——
* T oxt o7 ox?

+g(x)=0. (4.15)

The surface bending stiffness parameter d;is estimated approximately from
the reported value of E; via the relation dszO(hz)ES where / is surface layer
thickness. In their study, d, is estimated as about 1.0~5.0 (10"*N-m) for
silver nanowires. They show that developed method predicts more accurate
results with the experimental data reported by Jing et al. (2006) compared

with original method without high-order surface stress.

Validation of surface elasticity theory by experimental data

For the wvalidation of surface elasticity theory using obtained
experimental data, dependence on diameter as well suspended length is
observed. The DSA formulation considering surface effects is also validated
through experimental data. Firstly, surface parameters E, and 7, in
generalized Young-Laplace equation are modified for best fitting
experimental data and their values are compared with those suggested by
Cuenot et al. (2004) and Jing et al. (2006). Since z,is dominant in calculation
of surface energy, Cuenot et al. (2004) ignored E,term. Average error of
effective Young’s modulus between theory and experimental data is defined

as

1 = Eex i_E eory,i
D D — (4.16)

exp =l Etheory,i

where N, 1s total number of experimental data, E,; and Eineory,; are i-th

effective Young’s modulus obtained by experiments and that obtained by

theory, respectively. Average error of effective Young’s modulus is

minimized when £ is 6.59 and zis 3.51. Surface parameters obtained from
5]
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experimental data in present study are comparable with those obtained by

other researchers as shown in table 4.4.

Table 4.4

Comparison of surface parameters obtained from other papers

MD Simulation  Cuenot (2004) Jing (2006) Present study
E (GPa) 76.0 67.5 56.0 76.0
E; (N/m) 1.22 - 8.7 6.59
7o (N/m) 0.89 3.09 5.8 4.81

Secondly, the dependence on surface bending stiffness parameter d of
effective Young’s modulus is observed. Chiu and Chen (2011) estimated d
as 1.0~5.0 (10"*N-m) for silver nanowires. Figure 4.13 shows the graph of
average error of effective Young’s modulus between theory and
experimental data as function of surface bending stiffness parameter d.
Average error of effective Young’s modulus is minimized when surface

bending stiffness parameter is 3.2 (10N m).

66 w-._i _;_.._ _.:E



0.18

0.16

0.14
0.12

o
=

0.08

Average error of E

0.06

0.04 ) L] ) L] L L]
0 1 2 3 4 5 6

Surface bending stiffness parameter (1 0'14N'm)
Figure 4.13 The graph of the average error of effective Young’s modulus as

function of surface bending stiffness parameter

Figure 4.14 shows the graph of effective Young’s modulus as function
of suspended length and diameter of silver nanowires. Red graph shows
effective Young’s modulus without surface effects. Size dependence of
effective Young’s modulus is not observed. In yellow graph, Size
dependence on effective Young’s modulus is observed under the assumption
that surface parameters are £=76 GPa, E,=1.22 N/m and 1,=0.89 N/m which
are obtained from MD simulation results. Especially, size dependence is not
clear for low suspended length on the given surface parameter. Green graph
shows best fitting surface of experimental data under the modified surface
parameters, £=76 GPa, £=6.59 N/m and 1,=3.71 N/m. In blue graph, best
fitting surface minimizing average error of effective Young’s modulus is
obtained by considering surface bending stiffness parameter d=3.2 (10
"N-m). Average error of effective Young’s modulus in the modified surface
parameter case (which is green) and high order surface effects case (which is
shows

O T
=T

blue) are obtained as 9.82(%) and 7.89(%), respectively. Figure j{k‘i
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the graph of the effective Young’s modulus as function of diameter of silver
nanowires with suspended length. We can observe that best fitting surface is
obtained by considering high order surface effects. With the modified
surface parameters, effective Young’s modulus is too high or too small for

some range.
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Figure 4.14 The graph of the effective Young’s modulus as function of

suspended length and diameter of silver nanowires
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Figure 4.15 The graph of the effective Young’s modulus as function of

diameter of silver nanowires with suspended length
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Validation of DSA considering surface effect

For the validation of DSA based on continuum-based theory
considering surface effects, the design sensitivity values obtained from
fitting curve of experimental data are compared with those obtained by DSA.
Surface parameters for best fitting curve of experimental data =76 GPa, E;
=1.22 N/m, 19=0.89 N/m and ds=3.2 (1E-14Nm) are used. Figure 4.16 and
4.17 show the design sensitivity of maximum displacement with respect to
diameter and suspended length of silver nanowires, respectively. Fitting
curve of experimental data is obtained using second order polynomial
function and design sensitivity is calculated from fitting curve. Design
sensitivity obtained by fittig curve of experimental data are compared with
that of theoretical calculation in table 4.5. Acceptable agreement is obtained
between the design sensitivity of maximum displacement obtained by
experiments and the results obtained by DSA considering surface effects.
Therefore, we can conclude that developed DSA formulation considering
surface effects in nanoscale is validated experimentally through three point

bending test of silver nanowires.

Table 4.5 Comparison of DSA between experiments and theory

(a) Fitting (b) Without (c) With

Ratio Ratio
curve by surface surface
(b)(@) (%) (c)/(a) (%)
experiments  effect effect
ow
P -9.100E-03  -1.742E-02  -9.493E-03 191.43 104.32
aD D=37nm
ow
7 2.771E-04 4.108E-04  3.044E-04 148.25 109.85
aL D=0.5pum
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Figure 4.16 Validation of design sensitivity of maximum displacement with

respect to diameter of silver nanowires
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Figure 4.17 Validation of design sensitivity of maximum displacement

with respect to suspended length of silver nanowires
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4.2 Shell structures in nanoscale

4.2.1 Shape design optimization of parabolic arch: optimal
height

Shape design optimization problem of parabolic arch in nanoscale
under distributed load is considered. Shape design optimization is to find the
optimal shape design which minimizes a certain objective functional while
satisfying given constraints. In shape design optimization, the shape of
physical domain must be treated as the design variable. In this example,
design variable is the height of parabolic arch, and the objective of shape
optimization is to minimize the total strain energy. The optimal shape for an
arch under distributed load is known as parabola where bending moments
vanish and the loads are carried by membrane forces only. There is infinite
number of quadratic parabolas to be spanned between two points, and we
want to find the optimal height of the parabola on the given width. Kiendl et
al. (2014) discussed the exact optimal height of parabola, and we derived
additional terms to reflect the surface effects in nanoscale. The total strain

energy for the parabolic arch with surface effects is derived as

1

U(h)= DU, (W) + 47,qD*U, (h)+ 472DU, (h
()= S a2y (400 () + 4mgD*0s () + 4mDU (1)} (4.17)
where
_ N1+ 4h* (16 +10h)+3sinh ™" (24
U, (h)= ( 3> ( ), (4.18)
32h
- 4 1
U,(h)==h+—, 4.19
,(h) P (4.19)
and

. inh~' (2%
0, (h) =1+ 4k +S“‘2—h(), (4.20)
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q=02N/nm

D=100nm

Figure 4.18 Model description of parabolic arch under distributed load

where u, Ao and 7y are considered to apply the surface effects, ¢ is the
distributed load, % is the height of the parabolic arch and D is the half width
of the arch. Since bending moments vanish in parabola, surface bending
stiffness parameter d; is not considered in this example. As D increases, the
relative effect of 7, decreases. This is in accordance with the physical
meanings that 7, have a larger influence on the small sized structure.
Detailed derivation of equation (4.17) and its derivatives can be found in
Appendix A. For the verification of numerical analysis results, numerical
strain energy and its shape design sensitivity are compared with the exact
solutions. The problem parameters are: D and 4 are 100 nm, ¢ is 0.2 N/nm
and thickness is 1 nm. The material is assumed as Si(100) under EAM
potential (Miller and Shenoy 2000). Young’s modulus E=107 GPa and
surface Lame constants ug is -2.7779, 4y is -4.4939 and residual surface
stress 7o is 0.6056. To guarantee constant state throughout the z-direction,
Poisson’s ratio v is set to zero and unit width is assumed. Total number of

DOFs is 245. The numerical strain energy using quadratic FEA and IGA are

3] 3 -1
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compared with exact strain energy as shown in table 4.6 The IGA gives

more accurate results than the conventional FEA, even same DOFs is used.

Table 4.6
Comparison of strain energy of parabolic arch under distributed load

considering surface effects

(a) Exact strain (b) Numerical
Ratio (b)/(a)
energy strain energy
Quadratic FEA 5.4607E-07 97.15 (%)
5.6210E-07
Quadratic IGA 5.5975E-07 99.58 (%)

The exact shape design sensitivity is obtained by differentiating equation
(4.17) with respect to the design variable 4, and the analytical sensitivity
using quadratic FEA and IGA are compared with exact sensitivity as shown
in table 4.7 Comparing with the exact sensitivity, analytical sensitivity of

IGA shows better agreement than FEA case.

Table 4.7
Comparison of shape design sensitivity of strain energy with respect to the

height of parabolic arch under distributed load considering surface effects

(a) Exact shape (b) Analytical shape Ratio

design sensitivity design sensitivity (b)/(a) (%)

uadratic -7. - .

Quadratic FEA 7.9957E-08 144.97
-5.5154E-08

Quadratic IGA -5.8937E-08 106.86

Exact optimal height is determined by the stationary point of strain energy

given in equation (4.17). Since the parabola is in pure membrane state,
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surface Lame constants affect only magnitude of total strain energy and do

not affect the optimal height. Only residual surface stress affects the optimal

design. Figure 4.19 shows the effect of the surface stress on the strain energy

with parabolic height. If the height of the arch tends to zero, the strain

energy become infinity. As the height of the arch tends to infinity, total

volume of the domain becomes infinity. Therefore, there exists optimal

height that minimizes total strain energy. Since the optimization problem is

convex, it does not require any constraints to get an optimal solution.
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To solve the nonlinear mathematical optimization problem, a gradient-based
optimization algorithm (MMFD; modified method of feasible direction) is
used. Exact optimal height is obtained as 109.558 nm without surface effects
and 107.044 nm with surface effects from exact solution. Strain energy
caused by distributed load is convex for the height change, but strain energy
caused by residual surface stress monotonically decreases as the height
decreases. Therefore, if we consider the strain energy caused by residual
surface stress additionally, lower height is more advantageous to obtain
minimum strain energy. If residual surface stress is not considered, obtained
stationary point has nothing to do with distributed load ¢. If residual surface
stress is considered, stationary point is determined as function of the the g to
79 ratio. As the distributed load ¢ increases, residual surface stress 7, affects
less to the solution. In other words, the difference between the optimal
height with and without surface effects increases as ¢ to 7, ratio decreases.
Figure 4.20-(a) shows the design model and design variable for the change
of parabolic height and Figure 4.20-(b) shows analysis model. Because the
shell structures require sufficient number of DOFs to ensure a reasonable
structural response analysis, shape parametrization is essential to avoid
wiggly design. In the present study, geometry is defined using some control
points and analysis model is obtained through A-refinement of the design
model keeping the geometry unchanged. Quadratic IGA is used and total
number of DOFs used for analysis is 65. Figure 4.20-(c) shows initial and
optimal design and the optimal height is obtained as 107.049 through 3
iteration. The number of iteration in optimization is same with that of DSA
evaluation. Note that total number of function evaluation including structural

analysis is larger than that of DSA evaluation.
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Figure 4.20 Shape design optimization of parabolic arch considering surface

effects

78

[

e '|_'

§ A=

.]'| aﬂr



160

—— Quadratic FEA
150 —#— Quadratic IGA

140 a\

130 \

120 \

110 — \‘\

100 L) 1 L) L) 1
20 30 40 50 60 70

Number of DOFs for each optimization

Optimal height (nm)

Exact Optimal Height : 107.04

Figure 4.21 Convergence of optimal height of parabolic arch considering

surface effects

Figure 4.21 shows the convergence of optimal height for FEA and IGA case
as the number of DOFs for each optimization increases. It converges well to
the exact optimal height with surface effects. Even basis functions with same
order are used in both FEA and IGA cases, IGA shows better convergence

rate than FEA case.

4.2.2 Shape design optimization of curved graphene:

optimal curvature

As a second example for shell, shape design optimization problem of

curved graphene under distributed load is considered. The design variable

is the curvature of curved graphene which is constant over the whole domain.

The objective of shape optimization is to minimize the total strain energy
with constraints that allowable volume fraction is equal to the original one.

Kosynkin et al. (2009) found that curved graphene with constant curvature
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can be constructed by unzipping carbon nanotubes, and the size of width,
length and curvature of the graphene can be obtained as we want from the
specific carbon nanotubes. Curved graphene is modeled as circular arch shell
shown in figure 4.22. w is the distributed load and the curvature of the
circular arch is 1/R over the whole domain where R is the radius of the
circular arch. As the radius of the circular arch changes, the center angle of

the circular arch also changes for preserving the original volume.

w=1nN/nm Y

L

Figure 4.22 Model description of circular arch under distributed load

Surface elasticity

The exact solution of strain energy considering surface effects is

derived as

/ 2
U=U,+U,+U, = N ds
Yo 2(EA+Ap, +2))

1 M? I V2
d ———d
+j; 2EI+ (25 + A, ) Hfo 2(G4, +11,) " (421)

Detailed derivation of exact solution and its derivatives are given in
3
7
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appendix A. Residual surface stress 7y and surface Lame constants uoand Ay
are introduced to consider surface effects. Surface bending stiffness
parameter d; is not considered here. 7, affects the stress state directly through
the axial force N, and o and Ay affect the constitutive relation. Optimal
curvature is determined by the stationary point of strain energy given in
equation (4.21). Optimal curvature minimizing strain energy is obtained
under the following conditions. We determined material properties of
graphene from the Farajpour’s assumption (2013). Young’s modulus
E=1000 GPa and surface Lame constants uqis 15.3846 and 4, is 23.0769 and
residual surface stress 7, is 0.4. To guarantee constant state throughout the z-
direction, Poisson’s ratio is set to zero and unit width is assumed. The
thickness is 3.35 nm and distributed load w is 3E-3 N/nm. Figure 4.23-(a)
shows the variation of membrane and bending energy as function of the
curvature, respectively. It is observed that optimal curvature minimizing
strain energy is determined by the ratio between membrane and bending
energy. Since the consideration of upand 4y changes constitutive relation, it
changes the ratio between membrane and bending energy. Figure 4.23-(b)
shows the effect of surface stress on the strain energy with curvature. If
surface effects are not considered, strain energy is minimized when
curvature is 1.745E-3. If upand A are considered, strain energy is minimum
when curvature is 1.762E-3. If o 4o and 7, are considered, strain energy is
minimum when curvature is 1.887E-3. Compared with parabolic arch
example, not only 7, but also upand 4, affect the optimization results. Also,
the dependence on the curvature of mechanical behaviors of curved shell in
nanoscale can be observed. Even the total volume and distributed load
remain constant during the curvature changes, total strain energy of the shell
model changes abruptly. Therefore, representation of exact geometry is
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highly signi

ficant in continuum shell modeling.
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Figure 4.23 The graph of the strain energy as function of the curvature
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Design Variab}eé

(a) Design model (b) Analysis model;

—— Initial design
—— Optimal design

(c) Initial and optimal design
Figure 4.24 Shape design optimization of circular arch considering surface

effects

Figure 4.24-(a) shows the design model and design variables for the change
of curvature. Analysis model in figure 4.24-(b) is obtained through A-
refinement of the design model keeping the geometry unchanged. Quadratic
IGA is used and total number of DOFs used for analysis is 115. Thickness is
0.335 nm and distributed load w is 0.01 N/nm. Figure 4.24-(c) shows initial
and optimal design. The optimal curvature is obtained as 0.087 through 3
iterations. This value is identical with exact optimal curvature considering

surface effects.
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Figure 4.25 Convergence of optimal curvature of circular arch considering

surface effects

Figure 4.25 shows the convergence of optimal curvature for FEA and IGA
case as the number of DOFs for each optimization increases. Both cases
converge well to the exact optimal curvature, and IGA case shows better
convergence rate than FEA case due to the exact geometry and higher-order

geometric information in DSA.

Nonlocal elasticity

The exact solution of strain energy considering nonlocal effects is

derived as

1 N? I M? 12
uv=U,+U,+U :f N dS—i—f—ds—l—f d
m s 0 2FA 0 2F] 0 2G4,

ds (4.22)

Detailed derivation of exact solution and its derivatives are given in
appendix B. Optimal curvature is determined by the stationary point of strain
energy given in equation (4.22). Optimal curvature minimizing strain energy
is obtained under the following conditions. For the verification of numerical
34 s M EEw
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analysis results, numerical strain energy and its shape design sensitivity are
compared with the exact solutions. The problem parameters are: R is 20 nm,
w is 1 nN/nm and thickness is 0.34 nm. Young’s modulus £ is 790.7 GPa
and nonlocal parameter is 1.0 nm. To guarantee constant state throughout the
z-direction, Poisson’s ratio is set to zero and unit width is assumed. Total
number of DOFs is 285. The exact strain energy and the numerical strain
energy using quadratic FEA and IGA are compared with exact strain energy
as shown in table 4.8 The IGA gives more accurate results than the

conventional FEA, even same DOFs is used.

Table 4.8
Comparison of strain energy of circular arch under distributed load

considering nonlocal effects

(a) Exact strain (b) Numerical

Ratio (b)/(a)
energy strain energy
Quadratic FEA 5.301E-24 91.11 (%)
5.818E-24
Quadratic IGA 5.719E-24 98.29 (%)

The exact shape design sensitivity is obtained by differentiating equation
(4.22) with respect to the curvature, and the analytical sensitivity using
quadratic FEA and IGA are compared with exact shape design sensitivity as
shown in table 4.9. Comparing with the exact sensitivity, analytical

sensitivity of IGA shows better agreement than FEA case.
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Table 4.9
Comparison of shape design sensitivity of strain energy with respect to the

curvature of circular arch under distributed load considering nonlocal effects

(a) Exact shape (b) Numerical

Ratio (b)/(a)
sensitivity shape sensitivity
Quadratic FEA -1.021E-24 87.85 (%)
-1.162E-24
Quadratic IGA -1.128E-24 97.01 (%)

Figure 4.26 shows the increase of nonlocal effects with the size changes. As
the radius of the circle increases, the difference of the normalized strain
energy between without and with nonlocal effects decreases.

Figure 4.27-(a) shows the variation of membrane and bending energy as
function of the curvature, respectively. It is observed that optimal curvature
minimizing strain energy is determined by the ratio between membrane and
bending energy. Consideration of nonlocal parameter changes the ratio
between membrane and bending energy. Figure 4.27-(b) shows the effect of
nonlocal effects on the strain energy with curvature. If nonlocal effects are
not considered, strain energy is minimized when curvature is 1.75E-02. If
nonlocal parameter is considered, strain energy is minimized when curvature
is 1.81E-02. Also, the dependence on the curvature of mechanical behaviors
of curved shell in nanoscale can be observed. Even the total volume and
distributed load remain constant during the curvature changes, total strain
energy of the shell model changes abruptly. Therefore, representation of

exact geometry is highly significant in continuum shell modeling.
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(a) Model description
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Figure 4.26 Nonlocal effects with the size changes
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Design Variab}eé

(b) Analysis model

—— Initial design
—— Optimal design

(c) Initial and optimal design
Figure 4.28 Shape design optimization of circular arch considering nonlocal

effects

Figure 4.28-(a) shows the design model and design variables for the change
of curvature. Analysis model in figure 4.28-(b) is obtained through h-
refinement of the design model keeping the geometry unchanged. Quadratic
IGA is used and total number of DOFs used for analysis is 115. Thickness is
0.34 nm and distributed load w is 1 nN/nm. Figure 4.28-(c) shows initial and
optimal design and the optimal curvature is obtained as 0.018 (1/nm)
through 3 iteration. This value is identical with exact optimal curvature

considering nonlocal effects.
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Figure 4.29 Convergence of optimal curvature of circular arch considering

nonlocal effects

Figure 4.29 shows the convergence of optimal curvature for FEA and IGA
case as the number of DOFs for each optimization increases. Both cases
converge well to the exact optimal curvature, and IGA case shows better
convergence rate than FEA case due to the exact geometry and higher-order
geometric information in DSA.

Nonlocal effects are applied as the function of strain measures and
contravariant component of the force given in equation (2.71). Strain
measures are the function of geometric quantities such as curvature and
christoffel symbol. Also, contravariant component of the forces and its
derivatives are also geometric quantities if we consider design dependent
load. Therefore, nonlocal effects are applied exactly by using IGA which is

geometrically exact.
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P=1N/nm?

Figure 4.30 Model description of circular shell under distributed load

Circular shell example with distributed vertical load is considered as shown
in figure 4.30. L is 400 nm, W is 400 nm, P is 1 N/nm® and p is 10 nm. The
convergence rate of terms dependent on nonlocal parameter using quadratic
IGA and FEA is compared. Load linear form dependent on nonlocal

parameter is written as
F, =] (f52,(2)+ /'@, (2)+ f17,(2))VadQ (4.23)

Also, explicitly dependent part of shape design sensitivity dependent on

nonlocal parameter is written as

o ()= [l 3 2)+ 0 )+ 12,20 ()
o[ [ T3 (2)+ 50, (D)% 7, (2) (Vi
o[l (-, )+ 1 (14,)) (Va) a2
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Equations (4.23) and (4.24) are computed for the unit Z and normalized
force and moment components are plotted in figure 4.31. Strain measures
and contravariant component of the forces are function of geometrical
quantities such as covariant basis, curvature and christoffel symbol. IGA is
geometrically exact and represent these quantities exactly even small number
of DOFs. However, quadratic FEA is not geometrically exact and these
quantities cannot be represented exactly. Also, geometrical error is increased

when calculating the first order derivatives of these quantities.
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4.2.3 Shape design optimization of silver shell: optimal

form

This example is suggested to illustrate the capabilities of developed
method under general shell components as shown in figure 4.32-(a). The
objective of this optimization problem is to minimize the strain energy under
the distributed load. Design variables are specific coordinates of control
points as shown in figure 4.32-(b), and 1445 DOFs are used for analysis
through /-refinement scheme as shown in figure 4.32-(c). The length L of
initial geometry is 1.0 gum and thickness % is 40 nm. The distributed load is
set to 0.5 MN/m’, and four corners are simply supported. The material is
assumed as silver which is same with the example suggested in chapter 4.1.
Young’s modulus £ is 76 GPa, Poisson’s ratio v is 0.37, surface modulus E;
is 1.22 N/m, residual surface stress 7y is 0.89 and surface bending stiffness
parameter d; is 3.2 (1E-14Nm). Figure 4.33 shows the optimization history
with and without surface effects. Figure 4.34 shows the optimization history
of membrane and bending energy, respectively. When the shape of the shell
if flat, the bending energy is dominant. As the curvature changes during the
optimization process, membrane-oriented design is presented avoiding as far
as possible bending energy to minimize total strain energy. Even at initial
design with surface effects, membrane energy is caused by residual surface
stress 7o. During the optimization process, bending energy is decreased by
curvature change but the membrane energy caused by 7, cannot be totally
decreased by curvature change. Therefore, total strain energy with 7, mainly
due to the membrane energy is higher than without 7,. For the high-order
surface effect, the structure behaves stiffer and total strain energy is

decreased.
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Figure 4.32 Model description of optimal shell form
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Figure 4.33 Optimization history of optimal shell form problem

Figure 4.35 shows the effect of the surface stress on the optimal shape.
Similar dome shape is obtained to minimize bending energy, but maximum
heights of the dome are different at each case. Maximum height of the
optimal shape is 435.3 nm for the case without surface effects, and it is 298.5
nm for the case with surface effects. The effect of E; is ignorable in this
example and that of 7, is required to be observed carefully. Since minimizing
the area is more advantageous than generating curvature to minimize
membrane energy caused by residual surface stress 7y, maximum height of
optimal shape is decreased. Maximum height of the optimal shape is
decreased to 294.3 nm for the case with high-order surface effects. This is
because bending energy over membrane energy decreases by considering

high-order surface effects. In figure 4.36, different distributed load is

assumed to show the dependence on the distributed load in the optimal shape.

When the distributed load is dominant compared with residual surface stress,
optimal shape is almost same with that of case without surface effects. On

the other hand, when the residual surface stress is dominant Wit}} rﬁlat_i,yely
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small distributed load, maximum height of optimal shape is almost zero, and

it has small curvature on the surface.
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Figure 4.35 Effect of the surface stress on the optimal shape
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4.2.4 Crack problem of graphene: exact stress distribution

without singularity

Since the behavior of crack initiation and its growing process are very
crucial for the safety of ship and marine structures, obtaining exact
mechanical behavior of structures with crack is important. As the size of the
crack decreases to micro or nanoscale, we cannot obtain exact computation
results using linear elastic fracture mechanics (LEFM). If we observe crack
tip in nanoscale, it is represented as smooth boundary and it has finite stress
value. However, stress computation based on LEFM contains singularity at
the crack tip, which does not indicate physical nature. This led researchers to
develop several fracture criteria such as J-integral and stress intensity factor.
However, contrary to the LEFM, it is found that no stress singularity is
present at the crack tip in nonlocal theory. Therefore, measuring maximum
stress can be used as a natural fracture criterion in nonlocal theory.
Validation of nonlocal theory using MD simulation is performed. We also
analyze the structures with crack in nanoscale using nonlocal theory and

maximum stress is observed using FEA and IGA.

Validation of nonlocal theory using MD simulation

In this chapter, molecular dynamics simulation is performed on the 2D
graphene systems containing atomic-scale cracks using LAMMPS (Sandia
National Laboratories 2009) molecular dynamics simulator. Graphene is a
one-atom-thick planar sheet of carbon atoms, densely packed together into a
honeycomb shaped crystal lattice. The associated atomistic interaction is
covalently bonded by SP*hybridized electrons, and the bond angle is 27/3.
(Cho et al. 2007) The interatomic distance between the adjacent atom is 1.42
100 ] 2-tH



A . The total potential of the graphene sheet considering bond stretching and

bond angle bending can be written as

U=Z%kr(r—ro)2 +Z%k€(9—60)2 (4.25)

where £, and k, are the bond stretching force constant and angle bending
force constant which are selected from AMBER force field for carbon-
carbon atomic-interaction. (Cornell et al. 1995) £, is 938(kcal/mol- A’ ) and
kg is 126(kcal/mol-rad®). Figure 4.37 shows the dimension of the graphene
sheet with a crack. The center crack is modeled by eliminating the associated
covalent bond. The crack length is 10.086 nm which is 41 lattices and total
length of the domain is 10 times of the crack length. Initial state without
applied deformation reaches equilibrium for approximately 100 ps with a
time step of 1.5 fs. After equilibrium is reached, we perform uniaxial tension
by applying a deformation. #,=0.005y is prescribed on upper and lower
surfaces. After another 100 ps, minimum potential energy of the system is
obtained. Molecular mechanics simulation is carried out at a temperature of
0 K. For more detailed procedure of molecular mechanics simulation,

interested readers may refer to Tsai et al. (2010) or Jin and Yuan (2005a).
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Figure 4.37 Model description of the graphene sheet with a center crack

The atomic stress is obtained from the virial theorem which gives the stress
value as the function of atom coordinates and interatomic forces. Virial

stress is given as

1

==t 4.26
2% P yJy ( )
where o™ is atomic stress at atom I rl is the distance between atom i

and j projected in an a direction, £/ is the f-component of the interatomic
force exerted on atom i by atom j. V), is volume per atom. Figure 4.38 shows
the plot of normalized virial stress of "*/o,, where oy is the distributed stress
on the upper and lower surfaces by applying a deformation. Stress is
concentrated on the crack tip and it converges to 1.0 as the distance from the

crack tip increases.
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Figure 4.38 The plot of normalized virial stress value

Figure 4.39-(a) shows atomic stress plot near the crack tip. For some
interested atoms in front of the crack tip, virial stress is calculated and
compared with continuum stress. Figure 4.39-(b) shows the distribution of
normalized virial stress in front of a crack with the comparison of continuum
stress from a LEFM solution and nonlocal stress. In the nonlocal stress
computation, nonlocal parameter for graphene sheets is given as 0.095 nm.
(Tsai and Sie 2015) At the crack tip, stress obtained from MD simulation
shows more reasonable description than the stress singularity obtained by
LEFM. Also, nonlocal stress shows no crack tip singularity and the stress

value is comparable with discrete virial stress.
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Infinite plate with a center crack

We consider infinite plate with a center crack under remote tension as
shown in figure 4.40-(a). Only a quarter of the model needs to be considered
due to the symmetry as shown in figure 4.40-(b). Local refinement is
required due to abrupt change of the solution near the crack tip as shown in
figure 4.40-(c). The crack length a is 5 nm and the length L of the plate is
100 nm for the infinite plate assumption. Discontinuity of crack geometry is
represented simply by using the quarter model. For the lower edges
containing crack geometry in figure 4.40-(b), boundary condition is not
applied for the regions with crack but fixed boundary condition is applied for
the regions without crack. For locating the crack tip at the desired position,
knot repetition is used for the NURBS basis functions to be modified to have
a Kronecker delta property at the crack tip. Distributed load &, is 1 nN/nm.
Young’s modulus of graphene is 790.7 GPa and Poisson ratio is 0.27.
Nonlocal parameter £ is 0.095 nm. (Tsai and Sie 2015) Numerical
nonlocal stress values obtained from IGA and FEA with same order basis
function are compared with exact nonlocal stress values to show the
accuracy of IGA. The process of obtaining exact local stress value of infinite
plate with a center crack under remote tension is given in Appendix C.
Figure 4.41 shows nonlocal stress distribution of infinite plate near the crack
tip. It shows the convergence of nonlocal stress for IGA and FEA case as the
number of DOFs increases. Even basis functions with same order are used in

both FEA and IGA cases, IGA shows better convergence rate than FEA case.
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Figure 4.40 Infinite plate with a center crack
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Figure 4.41 Nonlocal stress distribution near the crack tip of infinite plate
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Cylindrical shell under tension loading

The next example is cylindrical shell under tension loading. The model
description is shown in figure 4.42-(a). Radius R is 20 nm, thickness ¢ is 0.5
nm, and length L is 100 nm containing a circumferential through wall crack
of length 10w nm. Distributed tensile force P is 1 nN/nm. Young’s modulus
E is 1.0 GPa and Poisson ratio v is 0.3. Nonlocal parameter 4 is 1.0 nm.
Figure 4.42-(b) shows quarter model due to the symmetry and figure 4.42-(c)
shows nonlocal stress plot of o,. Stress is concentrated on the crack tip.
Numerical nonlocal stress values obtained from IGA and FEA with same
order basis function are compared with converged stress values to show the
accuracy of IGA. Exact solution does not exist in this example. Figure 4.43-
(a) and (b) respectively show the nonlocal stress distribution near the crack
tip of cylindrical shell under tension loading using quadratic IGA and
quadratic FEA as total DOFs increase. The convergence rate of the IGA is
superior to that of the FEA. That is because geometrical quantities such as

curvature and christoffel symbol are computed exactly on the IGA

framework.
t=0.51n
P =1nN/nm N P =1nN/nm
- 2a=107nm o

L=100nm

(a) Model description
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Figure 4.42 Cylindrical shell under tension loading
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Figure 4.43 Nonlocal stress distribution near the crack tip of cylindrical

shell under tension loading
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Chapter 5. Conclusions and Future Works
5.1 Conclusions

In this paper, isogeometric shape design optimization method
considering size effects in nanoscale structures is developed. MD simulation
gives accurate results for nanoscale structures, but they are computationally
expensive for systems with practical structures having relatively large sizes.
Therefore, we applied continuum based model such as beam and shell for the
analysis of nanoscale structures by considering size effects. Surface
elasticity theory and nonlocal theory is introduced to consider size effects in
nanoscale, respectively. They have different properties and should be applied
properly depending on the application. We also derived the shape DSA
formulation for beam and shell structures using direct differentiation method.

Through three-point bending test of silver nanowires using AFM
instruments, developed continuum based model considering surface effects
is validated. The behaviours of nanowires obtained from experimental
results are compared with those obtained from developed method and it
shows good agreement. The design sensitivity is also validated through
experimental data. The design sensitivity values obtained from fitting curve
of experimental data are compared with those obtained by DSA based on
continuum formulation considering surface effects, and fairly good
agreement is observed between them.

Several numerical examples are given to illustrate the capabilities of
developed method for the shell structures. The problem obtaining optimal
height of parabolic arch in nanoscale is solved by introducing surface effects.

Optimal curvature of curved graphene is obtained by considering surface

effects and nonlocal effects, respectively. Optimal shell form c;)n.side_ring q =
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surface effects and crack tip problem considering nonlocal effects are
presented. We demonstrate that I[GA framework shows better convergence
rate than FEA case due to the exact geometry and higher-order geometric
information in DSA formulation. Also, we derived exact optimal solution
and showed optimal solution is affected by size effects. The new results
obtained from the present research not only unveil the applicability of
conventional continuum based analysis in nanoscale, but also exhibit the
significance of considering size effects to obtain the proper optimal design in

nanoscale devices.

5.2 Future works

In this research, design sensitivity of continuum based beam model
considering surface effects is validated through experiments using AFM.
However, the beam is assumed as straight one for simplicity and design
sensitivity of shell structures is not validated. This is because experiments in
nanoscale have limitations on manufacturing technologies and applying
several boundary conditions. As the manufacturing technologies in
nanoscale and experiments scheme develop, several experiments will be
possible including validation of shell structures. Also, this research will be
the basis for the experimental vavidation of shape design optimization in
nanoscale.

It is expected that accurate prediction of mechanical behavior for
nanoscale structures based on IGA can be significant research to enhance
other useful properties such as electronic and electrical properties in MEMS

and NEMS devices.
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APPENDIX A

Exact optimal solution considering surface effects

Parabolic arch
Strain energy of parabolic arch considering surface effects is given as
! 2
U= f N ds.
0 2(EA+4p, +2X,)

(A.1)

Infinitesimal length of parabola is obtained as

[ ean 4, dv 8h
ds =, |1+ 7 X dx [wherey(x):?xz, — =77 (A.2)

Horizontal and vertical components of axial force N are given as,

respectively,
N, (x):qg—i (A3)
and
N, (x) =qx. (A4)

Additionally, considering normal force caused by residual surface stress

yields

274
N(x)=4[N; (x)+N; (x) +27, = W +2r,. (A.5)

Embedding the equation (A.2) and (A.5) into equation (A.1) yields

2
! 64h*
q 1+ I x> dx

st TEE 2y

1 L2
U(h)=
() 2(EA+4,u0+2)\0)f—L/2

1

Y +2)\0>U(h) (A.6)

Taking L=2D in equation (C.6), U (h) can be represented as

119 A =



2

~ D 2p4 AR
om= " "4h2 g 2m ||l
e qu4 ) 2 A x*
-/ a1

2 4 2.2 2.2
qD 4h°x 4h°x
470\/ prE +q2x2\/l+—D4 +4r§1/1+—D4

o,

:‘121)301 (h) +47'0qu(72 (h) +4T§DU3 (h), (A.7)
where
J1+4h* (164 + 10k )+ 3sinh ' (2A
Ul(h)—( ( 3) sinh ™' ( )), (A.3)
324°
- 4 1
U, (h)=—h+—
,(h) Sht o (A.9)
and
U, (h)=~1+ 4k +M. (A.10)

2h
The optimal height is determined numerically by the stationary point of
equation (A.7), and the derivative of strain energy with respect to 4 is given

as

ou(n) , ,0U,(h) ,0U,(h) 90U, (h)
DN 4 gD L 42 p T A.l1
on 7 T T M T A1)
where
0U,(h) (64h° —40K® —14h)—9sinh ™" (2h)y/1+ 44’
= , (A.12)
Oh (320* )1+ 4n?
0U () _4_1 (A.13)
oh 3 B ‘

and
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(A.14)

Circular arch

Reaction forces are determined from the moment equilibrium. Axial force,

shear force and moment are obtained from these reaction forces.

M
C,
CX
4
’
’
’
'I
/ C,
L
'
: %
LJ
| R
|
Figure A.1 Equilibrium of circular arch shell

Moment equilibrium at the left end can be represented as equation (A.15)

and reaction force C_ can be written as equation (A.16).
. /2
C.R(1—sinf,) —f% WRdYR(cosf, —costp) =0, (A.15)
C.,=wR(T-1), (A.16)
.-':lx_-i -";:. - 1_' ! E -"':.l .i

x
I —
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where

Tzcos@o[%—Go]/(l—sinGO) (A.17)
and
) —[R_Rc]ﬂ' (A.18)
2R )T '

R, is the radius for criteria makes 6, becomes zero. Moment equilibrium

at the right end and reaction force C, are given as

/2
C,Rcos6, —C,R(1—sin,)— j; WRAYR (cos ) =0, (A.19)

0

and
C, =wR [g - 90]. (A.20)

The axial force can be obtained from the force equilibrium equation as

follows:

N =-C,sinyp—C, cos) + f; wRcosda + 2T,

= wR +27, (A.21)

(1—T)sin1/1—|—[1,!1—§]cosz/)

The moment can be obtained from the moment equilibrium equation as

follows:

M = C,R(cost, —cost))— C,R(siny)—sin0,)

i
— wRdaR(cosa—cosw): wR?

bo

(A.22)

(l—sinw)T—i—cosw[w—g] .

The shear force can be obtained from the force equilibrium equation as

follows:

¥ =—C, costp+C, singh— L " WRsinydy

=WwR sin

(1-T)cost +

>

. (A.23)
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Embedding the derived N,M,V into strain energy equation yields

; N2 ; M2
U=U +U, +U = d. d
WU+ = | 2(EA+C,) s+, 2B+ C,)
i V2 W2R3
+), 264+6) " 2(EA+CN)[am R
W R’ w' R’
+m[ab + 6, + %Hm[as + 8, +7,], (A.24)
where
h2
Cy =4, +2X, Cy 27(2% +X), G = Ho, (A.25)
2 (2gin? (1-71) ' A26
o, =(1-T) J;O [sm @D}dqb: 2 (—200+sm(290)+7r), (A.26)
s -
— [2|cos? | w—T
6}71 _j;o Cos w[w 2] dw
:%8((%—20())3 _3((7r—290)2 _2)sin(290)—|—6(7r—26’0)c0s(290)), (A.27)
5, :2(1—T>f%2'[¢—§ sinwcosw]dzb
:@(—Sin(ze())—(7['—290>COS(2(90)), (A.28)
47! 47,11 .
7= W;Igz [g—90J+£ (=26, )sin6, T cosf) | (A.29)

o, =T"[ g[(1—sin¢)2]d¢:TTZ(—éeo +sin(20,) —8cosb, +37),  (A30)

2 )
By = [ 7]cos w[w—g] ]dw

:4%((%—200)3 _3((W_290)z _2)sin(290)—|—6(7r—26’0)c0s(290)), (A31)
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o 2l o
7,7—2Tf90 [(1 51n¢)cos¢[1/; 2”&’1/}

— %(2(sin90 —4)cosb, +(m—26, )<4sin 0, +cos(26, ))), (A.32)

2

(1-7)
4

a,=(1-T) fg 2 [cos® yldy = (—26, —2sin6, cosf, +7), (A.33)

do(m Y
B, =J fsin w[g—w] ]dw

:ﬁ((ﬁ—zeof +3((m—26,)" ~2)sin(20,) —6(7r—200)cos(290)), (A34)

and

Y :2(1—T>f§[[g—w]sinwcoswldw

b

_ “; 1) sin(26,)+ ( — 26, )cos(26,). (A35)

The optimal curvature is determined numerically by the stationary point of

equation (D.24), and the derivative of strain energy with respect to ~ is

given as

ou 09oUOR (0U, 0U, 0oU )

- — m s _R

Ok OR Ok OR  OR  OR ( ) (A.36)
where

ou,  3wWR o, +8, +7,]

OR  2(EA+Cy) m m T

2R3
w oa,, L a6, L 07, n or,, ’ (A37)

+2(EA+CN) OR  OR  OR  OR

2 p4
an — Sw'R [Oéb —f-ﬁb —i—’yb]
OR 2(EI+C,)
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(G4,+C,)|OR =~ OR ~ OR
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T <1‘4T L (<24 2c0s(26, )ok, (A40)
Do 20, (1-+o05(24,)) 3L, (A1)
8{;}; = [-sin(26,) - moos(24,)+ 2 cos(zeo)%
—|—<1;2T)(7r—26’0)sin(290)%, (A42)
3871; :;f_;é[%_ 0]_%%_%@ %(W—ZHO)sinHO —Tcos,
+%3 —sind, +%(7r—290)cos90 + T'sinf), %, (A.43)
%‘3‘; - %(—690 + sin(20,)— 8cosf, + 37r)g—]7;
+ L6+ 200s(20,) + 85in0,) 2. (A44)
%, w20, (cos(20,) +1) 3 (A45)
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(1-7) 26

+ (—2 — 2cos (26, ))8_13’ (A.47)
98, _1 %
ﬁ:_<7T_29°>2(COS(290)_1)8_1§’ (A.48)
0. _ (=1 or
a_R:T(sm(200)—I—(7r—2«90)COS<2«90))8—R
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APPENDIX B

Exact optimal solution considering nonlocal effects

Circular arch
Reaction forces are determined from the moment equilibrium. Axial
force, shear force and moment are obtained from these reaction forces as
shown in Figure A.1. Moment equilibrium at the left end can be represented

as equation (B.1) and reaction force C, can be written as equation (B.2).

CXR(I—sin@o)—j:/szdwR(cosﬁo —cost)) =0, (B.1)
1

C, :wR(T—1>—E,uw (B.2)

where
T = cosf), [%—90]/(1—511190) (B.3)

and

= [R —R ]7T B.4
o= 5| (BA)

R. is the radius for criteria makes 6, becomes zero. Moment equilibrium at

the right end and reaction force C, are given as

C,Rcosf), —C,R(1—sinf),)

_j:/szdwR(cos V) + pw(l—sinb, ) =0, (B.5)
and

C = wR[g—Qo]. (B.6)
The axial force can be obtained from the force equilibrium equation as

follows:

N=—C_siny—C, cosy + f; wRcosyda

¥ ! |
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1 .
+EMWSIH¢- (B.7)

R (1—T)sin¢+[¢—§]cos1/)

The moment can be obtained from the moment equilibrium equation as

follows:

M = C,R(cost, —cost))— C,R(siny) —sinf,)
—wR? [(sinw —sinf, ) —(cos)(¢ — 6, )] + pwsina)

:sz[(1—sinw)T+cos¢[w—§]]+uwsin¢. (B.8)

The shear force can be obtained from the force equilibrium equation as

follows:

V =—C, costh+C, sing)— j;wwR sin yd )

_WR[( )cosw+[——w]sm¢ —,uwcosw (B.9)

Embedding the derived N,M and V into strain energy equation yields

U=U, +U, +U, = lez s+flM2 +fl Vs

0 2FEI 2GA4,
R R
_m[am +8, +7m]+ﬁ[ab + 8, —i—’y,,}—i-ﬁ[as +6,+7],  (B.10)
where
1-TY
o, =w'R’ {< 7 ) (—290+Sin(290)+7r)},

W {ﬁ(ﬁ—zeo ) =3((m—20,)" =2]sin(20,)+ 6<7T—290)°°S(29°))H’

WR? 1“? )(—sin(2€0)—(7T—2€O)c0s(2€0)>H, B.11)
b= 4222 (=26, +sin (26,) + ), (B.12)
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o (27 —2)(—26, +sin (20, ) + 7)),

2

M;V [sin (26, )+ (m — 26, )cos (26, )] (B.13)

2 pd
o, =wR ,

2
{%(—600 +sin (26, ) —8cosf, + 3%)}

+wiR H%S((w —20,) - 3((7r —26,) - 2)5in(290 )+ 6(x — 26, )cos (26, ))H

+w?R* E(z(sineo —4)cosf, +(m — 26, )(4sind, +cos(200)))], (B.14)
2W2
8,=E£ o (200 +sin(26,) + 7), (B.15)
2p2
y, =22 R (2T(4cost90 + 26, —sin(290)—7r))
2p2
+ “W4R (—sin(26,)— (7 — 26, )cos (26, ), (B.16)

b

1-T)
l( ) (—26, —2sin6, cos, +7T)]

TR %((w —26,) + 3((7r —26,) - 2)sin(290 )—6(m— 200)cos(200))},

+u?R> (1;T>(Sin(200)+(7r—200)cos(290)>l, (B.17)
ww’ .
B, = e (—26, — 2sin 6, cosb, + ), (B.18)

v, = puw? (I—T)[—HO —sin6, cosb, +g]

2

+M;V (sin(26, ) + (7 —26, )cos(26, ))- (B.19)

The optimal curvature is determined numerically by the stationary point of

equation (B.10), and the derivative of strain energy with respect to « is given
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as

dU QU OR (9U, U, dU )
oY _9YV R _ | = |(—R
Ok OR Ok [ oR | OR | OR ]< ) (8:20)
where
du 1 1 1
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9 _ L ope u(_ze +sin(26,)+7)
8T 2 0 0 4
+w'R? H%(sin(%o) +(m —26, )cos(26, ))H, (B.24)
dg, _ 98, 98, 06,
R OR 26, OR (B.25)
2
aaﬁlén =—u’ ZMI;} (—290 +sin(200)+77), (B.26)
95, w’
= 2 4R’ (—2+2cos(26,)). (B.27)
dy, _ 9, 06, , 9y, 0T
dR 99, OR 9T oR (B.28)
o ’ ~
379’” :_u;v (27 —2)(~2+2¢05(26,))— 2(r 20, )sin(26,)].  (B.29)
0

130 ;_'! k'_u 1—--]



0 —uw’ .
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da T . 1

aej =wR* T(—6+2cos(200) +8sinf,) —g((w—200)2 (cos(26,) +1))],
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+wAR? H(z(sin 0, — 4)cos ), + (m — 26, )(4sinf, + cos(ZHO)))], (B.33)

g, pw’ 90,

= 242 2 .
dR 4 (72 +2c05(26,)) OR (B34
dv, _0v, , 07,06, 0v,0T
=0y S
dR OR 06, OR OT OR (B.35)
oy, uw'R’ :
8_0:: = T<2T(—4sm90 +2— 2cos(290 )))
uw’R?
—|—T(2(7r — 26, )sin (26, ). (B.36)
0 ‘R’ .
%: %(4 cosf, + 26, —sin(26, ) — 7r) (B.37)
da, Oa, Oa, 00, Oa, OT
e e (B.38)

dR ~ OR ' 90, OR ' OT OR

o, (1-1) 1 2
% — WR? ; (—2—2cos(200))+§(7r—290) (cos(Z@O)—lﬂ
W R? (I—T) (7T—290)Sin(290>l (B.39)
%:Wsz (T_1>(_29 —2sinf, cos6, + )
aT 2 0 0 0 >
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_wW'R? %{sin(290)+ (7 — 26, )cos(26, )} ,

ds, _ 95, , 95,06,
dR ~ OR ' 06, OR

9B, _ p'w’

R IR (26, + 2sinf, cos b, — ),
o8, ww’
a_é:W<_2_2005200),

0

dy, _ 0, %+ 9y, 0T
dR 06, DR = OT OR

8 2
8_}: —pw? (1=T)(1+ cos 26, ) - “;” (726, )sin(26,).
0
87s 1 m
3T —pw’ [—00 —sind, cos 6, +E]
oT RJ[Z -0, — cosﬁo]
R 2R (l—sinHO)
and
%, _ R
R 2R*
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APPENDIX C

Exact stress field near the crack tip considering nonlocal

effects
O- U
R LEFM
\\ — Nonlocal theory
\

Crack line

—
e
—_—
—
p—
—
—_—

Figure C.1 Stress distribution of LEFM and nonlocal theory near

the crack tip

Asymptotic solution near the crack tip is already known and stress field near

the crack tip considering nonlocal effects in nanoscale can be obtained.

K =5 ra (C.1)

where 2a is crack length and &, is distributed load per unit length. Local

stress ©,, 1s obtained as

Gy (r,0)= K, cosg(l + singsinﬁj
2 2 2

N27xr

A cosg(l +sin§smﬁ) (C2)
J2r 2 272

Nonlocal stress o,, is obtained as
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1
(o (r) = e IRZ-zz {KO(V li’ |j (r Pl ) }r'd@' (C.3)

Second order Bessel function K, is used as a Kernel function as

z)=| ———d cos(z1),, (C.4)

\/t_+

Embedding the equation (C.4) into equation (C.3) yields

1 w ox COSQ(I-FSinQSinﬁj
022(§)=5w\/%2 ﬁjo [] 2 27 2 ) |dgag
" K (-

0 . 0 . 360

a1 o cosE l+sm§sm7
=G, /_ dde' C5
Z 272.\/5 J-O J.—zz é ( )

K, (\/52 +§'2—2§§'c0s6?)\/?

where r is a distance from the crack tip, &=r/l, &'=r'/]l and [ is

Nonlocal parameter. Nonlocal stress on the crack tip is obtained as

0, (0)=5, \/; 18 j £)JEdE =0.57365 \fl (C.6)

To obtain the value of equation (C.5), triple integral needs to be performed
numerically and it is computationally expensive. Also, asymptotic solution
does not exist always on the general loading condition, so equation (C.5) is
calculated only in special situation which requires exact solution. Generally,
nonlocal stress field is obtained using numerical analysis given in chapter

2.3.3.
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