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Abstract 
 

Study on Design Space Exploration and Rearrangement 

Using Stochastic and Statistic Approach  

for the Multidisciplinary Design Optimization 

 

 

Yong-Hee Jeon 

School of Mechanical and Aerospace Engineering 

Seoul national University 

 

In this study, a stochastic and statistic approach for the systematic design 

space exploration and rearrangement is proposed. To efficiently investigate 

the feasibility of the design space, surrogate model and Monte Carlo 

simulation have been used. With these methods, probability density function, 

cumulative distribution function and reliability of the design space are 

calculated to identify the probability of design success. Then, the design space 

is moved and rearranged into the higher feasible region using Chebyshev 

inequality and reliability index. First of all, a number of test cases composed 

of algebraic functions were carried out to investigate the validity of the 

suggested method. For two exact functions, multidisciplinary feasible and 

collaborative optimization formulations were performed to verify the utility of 

proposed methods. As a result, converged design space included the feasible 

region located outside of the initial design space. Based on these results, the 

proposed method was applied to the multidisciplinary design optimization of 
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the aircraft wing which also considered collaborative optimization with three 

subsystems (aerodynamics, structure, and performance). And then, design 

optimizations were performed for the initial and converged design space 

separately. Consequently, the feasibility and optimization result of the 

converged design space were improved in comparison with those of the initial 

design space. In conclusion, it is verified that the design space exploration and 

rearrangement method proposed in this study has the capability of searching 

for the feasible region which is excluded in the initial design space, and can 

rearrange the design space into the higher feasible design space automatically. 

 

 

Key Words :  Aerodynamic-structural coupled optimization; Aircraft wing; 

Chebyshev inequality; Collaborative optimization; Design space 

exploration; Design space rearrangement; Monte-carlo 

simulation; Reliability index 
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Chapter 1. Introduction 

1.1 Motivations 

 

In the last few decades, there are remarkable advancement of 

computational capability and numerical analysis techniques such as 

computational fluid dynamics (CFD), computational structural mechanics 

(CSM) and numerical optimization methodology. It makes drastic change of 

the traditional design process that depends on designer’s experience and 

insight. In traditional design process, designer must make a lot of decisions 

and corrections to obtain appropriate results on the sequential and repetitive 

‘trial and error’ procedure as in Fig. 1.1. By the reason of above demerit, 

numerical design optimization technique based on mathematical theory has 

quickly replaced traditional design process. Numerical optimization technique 

offers a logical approach to design automation, and enables engineers to 

optimize large and complex system. To design more practical and complex 

system that includes a number of mutually interact disciplines, 

multidisciplinary analysis and design optimization must be considered. 

Multidisciplinary design optimization (MDO) can be described as “a 

methodology for the design of systems where the interaction between several 

disciplines must be considered, and where the designer is free to significantly 

affect the system performance on more than one discipline.”[1] 

For the complex engineering system, life-cycle of the system can be 

defined by a number of discrete phases from conceptual design to the 

retirement. While each design phase has an individual and considerable effect 
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on the design product, early design phase has the most leverage. It is clear that 

the rapid accumulation of the knowledge and information about the given 

design problem can reduce the design cost and can keep high level of the 

design degree of freedom (DOF) from the outset to manufacture phase as 

shown in Fig. 1.2. In a word, the decisions of early design phase have great 

influence on the direction of the whole design process, performance and 

efficiency of the design results [2, 3]. Therefore, the more careful 

consideration must be given on the early phase of complex system design 

problem. However, there exist only a few information and knowledge about 

the given design problem at the initial design phase. Even though some 

information is gathered with various methods, it is still insufficient to grasp 

the characteristics of the design problem. Therefore, wide scope of the design 

problem, which includes various objectives, constraints, and design variables, 

should be carefully considered and explored to understand the design problem. 

For the lack of information and knowledge about the given design problem, 

the designer defines initial design space based on one’s own intuition or 

experience, and searches for a feasible design solution within the initially 

defined design space in most design problems [4]. However, this design space 

has the infeasible region together with a few pieces of the feasible region in 

the majority of cases. As the number of design variables and constraints 

increases, the feasible region tends to decrease and it becomes more difficult 

to define the valid design space that is physically reasonable and guarantee the 

success of the optimization and the existence of the global optimum. 

Especially in a complicated design problem like multidisciplinary design 
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optimization or multilevel design optimization, this difficulty may be more 

severe.  

In this study, an aircraft wing optimization coupled with aerodynamics, 

structure, and performance is carried out to validate proposed method. Its 

complexity is higher than that of the design optimization problem based on 

single discipline analysis. If some information and knowledge for these three 

disciplines are insufficient, it is difficult to define the reasonable design space 

in the initial design stage. Hence, efficient and logical design space 

exploration and arrangement method are greatly required to carry out the 

multidisciplinary design optimization of aircraft wing.  
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Fig. 1.1 Sequential design process 
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Fig. 1.2 Life-cycle design stages [3] 
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1.2 Literature Survey  

 

Over the last several decades, various design methods such as the inverse 

design method and the direct numerical optimization method have been 

applied to diverse design problems for the airfoil and aircraft wing.  

Among those established methods, the inverse design method has been 

widely used as an efficient design method. Inverse design on the aerodynamic 

configurations of the transonic airfoil and wing were also implemented based 

on various governing equations and algorithms [5-12]. However, distributions 

of the target pressure must be described by designer before the inverse design 

starts. It is very difficult for each designer, and also has great influence on the 

design results. To specify the optimal target distribution automatically, some 

numerical optimization methods were adopted [13-17]. However, results of 

the inverse design are thoroughly limited by its target pressure distribution 

and it is very difficult to find and to guarantee the global optimum. Then, 

direct numerical optimization methods based on mathematical theory have 

quickly replaced inverse design methods as aerodynamic shape optimization 

method. Direct numerical optimization methods couple the numerical analysis 

codes and a numerical optimization algorithm to minimize or maximize the 

objective function and satisfy the geometric and performance constraints. 

Among numerous direct numerical optimization methods, the gradient-based 

optimization algorithms have been widely utilized for conventional direct 

numerical optimization [18-20]. For the first time, this type of design 

procedure was introduced by Hicks and Henne to the design of three-

dimensional configuration [18]. Jameson et al. and Reuther et al. applied 
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direct optimization method with an adjoint variable method for sensitivity 

analysis to an aerodynamic configuration of the airplanes [19, 20]. Although 

the gradient-based optimization algorithm is one of the most efficient 

optimization algorithms, it cannot ensure the global optimum. Hence, global 

optimum search algorithms such as genetic algorithm (GA) have been used 

for the direct numerical optimization [21-26]. In recent years, 

multidisciplinary analysis and design optimization to the complex three-

dimensional wing and aircraft configuration have been carried out intensely 

[27-39]. It was successfully applied to various applications like aeroelastic 

analyses and optimization of transonic transport wing, MDO of a supersonic 

fighter wing, high speed civil transport (HSCT) configurations, and so on.  

For the reason of computational efficiency and design cost, various 

mathematical modeling of systems, approximation concepts, and 

decomposition techniques have been developed for MDO problems. 

According to the decomposition method, MDO formulation can be divided 

into single-level and multi-level approaches. In single-level approach, only 

one design optimizer exists, and each discipline just takes charge of analysis. 

It can be categorized as three types roughly: multidisciplinary feasible (MDF), 

individual disciplinary feasible (IDF), and all-at-once (AAO) approach [40]. 

In multi-level approach, a number of optimizers also exist to decide the design 

variables on each subspace and system level. Each subspace optimizer decides 

and controls its design variables which are assigned by the system optimizer, 

and then the system optimizer coordinates whole subspace design variables 

and results to merge into one: concurrent subspace optimization (CSSO), 
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collaborative optimization (CO) and bi-level integrated system synthesis 

(BLISS) [41-43].  

In addition to those studies, a number of approaches have been researched 

to efficiently explore the design space and to find the global optimum using 

stochastic criteria and approximation models [44-55]. DIRECT (dividing 

rectangles) method which based on Lipschitz optimization method for finding 

the global optimum of a multivariate function subject to simple bounds was 

proposed by Jones et. al. [44] This method was modified to consider parallel 

load balancing and to reduce the computational time of the design space 

exploration by Baker et. al. [45], and it was applied to the multidisciplinary 

design of a high speed civil transport (HSCT). Sevant et. al. used sequential 

response surfaces to optimize the flying wing [46]. With this method, the 

design space was sequentially approximated and modified to find the global 

optimum. With approximation models and merit functions, Chung et. al. [47] 

exploited the aerodynamic optimization of the small business jet, which 

includes the noisy design space. Using proposed method can avoid the local 

optima and predict global optima in fixed design space. Sasena et. al. 

proposed efficient global optimization (EGO) for constrained global 

optimization [48]. Kriging model and variance-reducing criteria were used to 

reduce the root mean square error of the resulting meta-model, and DIRECT 

algorithm was adopted to find the optimum of the infill sampling criteria. 

Using these algorithms, the constrained global optimum on a highly nonlinear 

design surface can be found efficiently and rapid design space exploration can 

be done. In addition, a large number of probabilistic design approach have 

been researched to efficiently explore the design space and to produce robust 
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optimum using stochastic criteria and approximation models [49-55]. 

However, the design space exploration and rearrangement results of above 

methods are limited within the initial design space in most cases. Because it is 

hard for them to make the feasible region laying outside of the initial design 

space included into the rearranged design space, it is impossible to search for 

better solutions which exist in the outside of the initial design space. Thus, to 

improve the feasibility, cautious and detailed exploration of the design space 

must be carried out by including the feasible region laying the outside of the 

initial design space. For the sake of this purpose, Jeon et al.[56-58] presented 

rearranging method of the design space using Monte Carlo Simulation (MCS) 

and Chebyshev inequality, and this method has a capability of searching for 

the outside of the initial design space. However, they have some limits to 

adopt various types of MDO problem. Hence, systematic and automatic 

design space rearrangement method is still required. 
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1.3 Dissertation Objectives and Outline 

 

For the complex system design, especially in case of MDO, it is more 

difficult to define appropriate design space at the initial design phase. 

However in the majority of cases, established design methods cannot define 

the adequate design space if there are not enough knowledge and information 

about the given design problem. To overcome above drawback, efficient 

design space exploration method is highly required to rapidly grasp the 

characteristic of given problem. Moreover, logical and systematic design 

space rearrangement method is also required to define proper design space 

automatically. 

Therefore this study will propose the systematic design space exploration 

and rearrangement method using statistic and stochastic approaches. This 

method is applied to the design optimization problem of the exact function 

with two variables, and from this problem, it will be confirmed that this 

method has a capability of including the feasible region laying the outside of 

the initial design space. In addition, in spite of no feasible region in the initial 

design space, it will be presented that the design space can have a feasible 

region from rearrangement of the design space. Finally, the proposed method 

will be applied to the MDO of the aircraft wing, and its utility for the practical 

MDO problem will be examined. 
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Chapter 2. Numerical Analysis 

 

To verify the utility of proposed design space exploration and 

rearrangement method on diverse design cases, supersonic fighter and 

transonic transport wing is considered in this study. Therefore, two types of 

aeroelastic analysis codes have been used according to application case. 

 

 

2.1 High-Fidelity Aeroelastic Analysis 

 

2.1.1 Aerodynamic Analysis 

2.1.1.1 Governing Equation: Three Dimensional Euler Equation 

The design range of supersonic fighter wing interested in this study is 

from the transonic speed to the supersonic speed, therefore the aerodynamic 

analysis code should be robust and accurate to take account of this wide range. 

A high fidelity CFD algorithm modeling the three-dimensional Euler equation 

is used to calculate the transonic and supersonic aerodynamic properties of the 

supersonic fighter wing. 

The three-dimensional Euler Equations can be written in the non-

dimensionalized, conservative form as follows: 
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Where, Q is the conservative variable vector and E, F, G are flux vectors. 

r is the density and u, v, w are the velocity components in the direction of x, y, 

z-axis. e is the total specific energy and the pressure, p is defined as: 
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Where, g is the specific heat ratio. All geometrical dimensions are 

normalized with the root chord length C ; the density is normalized with the 

free stream value ¥r ; the velocity components are normalized with the free 

stream speed of sound, ¥c ; and the pressure p is normalized with the free 

stream value 
2

¥¥cr ; the total specific energy, e is normalized by 
2

¥c ; the 

time, t is normalized by ¥cC / . 

Eq. (2.1) can be transformed from Cartesian coordinates (x, y, z) into 

curvilinear coordinates (x, h, z) as follows: 

 

t=t , ),,( zyxxx = , ),,( zyxhh = , ),,( zyxzz =       (2.4) 

 

The Jacobian of transformation and metrics are expressed as follows: 



- 13 - 

 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )xhhxxhhxxhhx

zxxzzxxzzxxz

hzzhhzzhhzzh

xhzzxhhzxhxzxzhzhx

zzz

hhh

xxx

yxyxJxzxzJzyzyJ

yxyxJxzxzJzyzyJ

yxyxJxzxzJzyzyJ

VolumezyxzyxzyxzyxzyxzyxJ

zyx

zyx

zyx

-=-=-=

-=-=-=

-=-=-=

=---++=-

,,

,,

,,

1

(2.5) 

 

The resulting transformed equation is presented as follows: 
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U, V and W represent the contravariant velocities. 
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2.1.1.2 Spatial Discretization 

Finite volume method (FVM) is relatively independent on the quality of 

grid system and stable at the discontinuity of the flow. Therefore, FVM is 

applied to discretize the computational domain with structured grid system in 
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this study. If the divergence theorem is applied to the integral form of the Eq. 

(2.1), the resulting equation is: 
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Applying this relation to a single cell element, and using the mid-point 

rule, it can be discretized as: 
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In Eq. (2.10), Q̂  must be interpreted as a cell-averaged value. Setting Dx 

= Dh =  Dz = 1, then J -1 can be interpreted as a cell volume. Other terms are 

defined in Eq. (2.7). This relation is called semi-discrete, since the time 

variable remains continuous. 

 

To capture stationary discontinuities without oscillations, an upwind 

method is used. In this study, Van Leer’s flux vector splitting was employed 

to calculate the Jacobian matrix, and Roe’s flux difference splitting to solve 

the flux vector. 

The flux vector splitting methods of Van Leer [59, 60] is based on a 

directional discretization of the flux derivatives. The flux vector is split as: 
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-+ += EEE                                                (2.11) 

 

where, E+ has positive eigenvalue and E- has negative eigenvalue. Van 

Leer’s flux vector can be written for the generalized coordinate (x, h) as in 

the Eq. (2.12) 
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nx, ny is the x, y components of the normal vector of x-constant cell 

boundary, respectively and given as nx=xx /½Ñx½ and ny=xy /½Ñx½. 

 

Roe’s approximate Riemann solver [61] is adopted to calculate the 

numerical flux at the cell interface because it is simple to use and shows good 



- 16 - 

 

shock resolution in one-dimensional cases. Roe’s scheme can be clarified by 

considering the following linearized equation. 
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The numerical flux at the cell interface is: 
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Where, A is a Jacobian matrix based on Roe’s averaging which leads to as 

follows: 
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The flux difference can be obtained in the following manner 
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where L is the eigenvalues of Jacobian matrix based on Roe’s averaging, 

and is given in the Eq. (2.19). e in Eq. (2.20) is a small positive number.  
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To increase the order of spatial accuracy, QR and QL are computed by 

monotone upstream-centered scheme for conservation law (MUSCL) scheme. 

Primitive variables are used to calculate the slope, since using the 
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conservative variables gives slightly dissipative results for some problems 

[62]. The MUSCL scheme is used with Van Albada limiter as follows [63]: 
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The spatial accuracy is determined by the values of f and χ. 

f  = 0   : 1st order upwind 

f  = 1 , χ = -1  : 2nd order fully upwind 

f  = 1 , χ = 1/3  : 3rd order upwind biased approximation 

 

2.1.1.3 Time Integration 

Among the varied time integration techniques, Beam-Warming’s AF-ADI 

(Approximate Factorization - Alternating Direction Implicit) scheme is 

employed for time integration. 

The time integration scheme adopted here is backward Euler time 

integration and given by  
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Here, 1ˆ +nE , 1ˆ +nF  and 1ˆ +nG  are unknown values at the n+1 time step. Eq. 

(2.22) is linearized by using a Taylor series expansion. 
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By substituting Eq. (2.23) into Eq. (2.22), Eq. (2.22) can be expressed as 

follows: 
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Applying the 1st order upwind scheme to the left hand side of Eq. (2.24), 

the resulting equation is as follows: 
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AF-ADI scheme finds the inverse matrix by dividing the block diagonal 

matrix into three tri-diagonal matrices. Eq. (2.25) is rearranged by applying 

AF-ADI scheme as follows: 
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To accelerate the steady state solution, local time step method is used for 

each cell’s individual time step. Furthermore, Saw tooth cycle multi-grid 

scheme [64, 65] and implicit residual smoothing [66] scheme are also adopted 

to accelerate convergence of analysis and to stabilize analysis code. 

 

2.1.1.4 Grid System and Validation 

As shown in Fig. 2.1, (O-H) type wing mesh is used for aerodynamic 

analysis. The O-type airfoil grid is generated by the transfinite Interpolation 

technique and is expended toward spanwise direction to produce the wing 

mesh of O-H type grid topology. Total number of mesh size is (121´33´33). 

In order to validate the accuracy of the developed numerical analysis code, 

the transonic flow field around the ONERA M6 wing was evaluated and 

compared with the experimental data of Schmitt et al [67]. Fig. 2.2 shows the 

pressure contours on the upper surface of the ONERA M6 wing and compares 



- 21 - 

 

Cp distribution between the computed surface pressure distribution and the 

experimental data for two different spanwise locations. 
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2.1.2 Structural Analysis 

 

To build detailed structural model of the wing, each parts of the wing 

structure those are spar, rib and skin have been modeled individually. Nine-

node shell mixed finite element has been used to facilitate the structural 

modeling of the wing component. To connect the structural analysis code and 

the aerodynamic analysis code, automatic mesh generation algorithm using 

non-uniform bi-cubic spline composite surface method is used to transform 

aerodynamic mesh to finite element mesh. VMT method is adopted to transfer 

aerodynamic force to the structural analysis code. Minimum size of structural 

component has been determined to bear ultimate loading condition and the 

buckling of upper surface.  

 

2.1.2.1 Nine-node Shell Mixed Finite Element and Drilling DOF 

Nine-node shell mixed finite element is utilized for the structural analysis 

in this study. The element has three translational degrees of freedom (DOF) 

and two rotational DOF per node as shown in Fig. 2.3, and therefore each 

element has 45 DOF. The element is constructed on the basis of the Hellinger-

Reissner principle with the assumed displacement field as well as the 

independently assumed strain field, which lead to the equilibrium Eq. (2.27) 

and the compatibility Eq. (2.28). 

 

0=-ò WCEdVE
V

T

dd       (2.27) 



- 23 - 

 

0)( =-ò
V

T dVEECEd               (2.28) 

 

where E  and Ed  are the displacement dependent strain vector and its 

virtual strain vector, respectively, E and Ed  are the independent strain 

vector and its virtual strain vector, respectively, C  is the elastic constitutive 

matrix, Wd is the virtual work done due to external load, and V  is the 

volume of integration. 

To improve the element performance by reducing the locking effect and 

suppressing the spurious modes, the assumed strain field of the present 

element is defined as Eq. (2.29) with 38 independent parameters. Because 

these parameters are eliminated in element level, additional computation time 

is negligible. 
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In spite of three translational DOF and two rotational DOF per node, 

normal direction of the surface may not be continuous for the modeling of 

complicated structures such as wing boxes. Because the rotational 
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deformation of discontinuous surface cannot be expressed with only two 

rotational DOFs per node, “drilling degrees of freedom” is adopted to the 

elements [68], as shown in Eq. (2.30). 
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where K0 is the element stiffness matrix of nine-node shell mixed element 

without the drilling DOF, and Kd is the element stiffness matrix associated 

with the drilling DOF. 

 

2.1.2.2 Validation of Nine-node Shell Mixed Finite Element 

The performance of the element is validated with cut-out hemisphere 

subjected to alternating point load as shown in Fig. 2.4. Cut-out hemisphere is 

representative test problem for validation of shell element. Since hemisphere 

has a doubly curved configuration, it is important to model curved surface and 

to avoid a membrane locking simultaneously. The geometry and material 

properties of the hemisphere are shown in Fig.2.4, also. Both ends of 

hemisphere are under free condition. A pinched hemisphere, with two inward 

and out ward forces 90° apart can be modeled using symmetry boundary 

conditions on one quadrant. 
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The radial displacement at the loading point is normalized by the result of 

Simo et. al. [69]. Fig 2.5 shows normalized displacement at the loading point 

vs. mesh size. The results indicate that the element has good accuracy as well 

as convergence characteristics for structural analysis 

 

2.1.2.3 Modeling of Wing Structure 

To combine CFD with CSM, the automatic mesh generation algorithm is 

adopted to construct CSM mesh with the wing surface information obtained 

from CFD mesh. Non-uniform bi-cubic spline composite surface method is 

used to transform CFD mesh to CSM mesh. The leading edge flap and the 

trailing edge flap are not considered due to their negligible contribution to 

wing stiffness as shown in Fig. 2.6. 

 

2.1.2.4 CFD and CSM Connection Scheme 

In this study, “VMT (V:shear force, M:moment, T:torque) method” is 

adopted for transformation. VMT transforms aerodynamic forces to structural 

nodal forces maintaining shear force, moment, and torque equilibriums. The 

wing is divided into several parts for multi-VMT method as shown in Fig. 2.7. 

Since the major deformation of the wing is due to bending and torsional 

behavior, it is assumed that the geometry of airfoil is not changed during 

deformation. Therefore, only the translations and rotations of airfoil are 

considered to create a deformed CFD mesh. 

The deformation can be described by the translation of the trailing edge 

and the rotation around the trailing edge. The deformed shape of wing in span 
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direction is determined by the new location of airfoil due to translations and 

rotations with the second order spline interpolation of the airfoil sections [70]. 

 

2.1.2.5 Sizing of Structural Component by Ultimate Loading 

Condition 

Before multidisciplinary design starts, minimum size of structural 

component should be determined to bear expected ultimate loading condition. 

DaDT (Durability and Damage Tolerance) allowable method is used for spar, 

rib, and lower skin which are subjected to tension forces. Secondly, the 

minimum size of the structural component is determined to withstand the 

buckling. The buckling load of the upper skin is obtained by the analysis of an 

idealized equivalent rectangular panel.  

In this study, four parameters which are upper and lower wing skin’s 

thickness at the root and tip are selected as the structural design variables. 

Those are most important design parameters because the largest compressive 

and tensile stresses are induced on those regions. 
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2.1.3 Aeroelastic Analysis 

The structural deformation of the wing changes the distribution of the 

aerodynamic force on the wing surface and this altered aerodynamic force 

distribution has a reverse influence on the structural deformation (Fig. 2.8).  

For the static aeroelastic analyses, there are two CFD/CSM analysis code 

coupling method. First one is loose coupling method. First of all, aerodynamic 

analysis is performed to obtain converged aerodynamic force distributions, 

and then it is transformed the structural forces and transferred to FEM code. 

After FEM analysis, deformation information is transferred to the grid 

generation module and updates the aerodynamic and structure grid. With 

regenerated mesh, next iteration of the static aeroelastic analysis is repeated 

until it converges (Fig. 2.9). However, this method requires about 4-7 times 

aeroelastic analysis iteration and it is very time-consuming and inefficient. 

To overcome above problem, tight coupling method is introduced. During 

the iteration of the flow solver, the FEM solver is called and executed per 

every specified number of iteration, and then renews aerodynamic and 

structural meshes. The static aeroelastic analysis is performed until the flow 

solver is converged. This method requires only 30% to 50% additional time 

for the CFD calculation and it’s very efficient compared with the loose 

coupling method. 

To validate the adequacy of the tight coupling method, the displacements 

of the wing tip are calculated by both methods and compared in table 2.1 and 

Fig. 2.10. The main wing of T-50, the baseline wing of the optimization, is 

used for this calculation and Mach number is 0.9. The leading edge flap is 

rotated downward by 10° and the angle of attack is 10°. 
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Fig. 2.1 O-H type grid system (121´33´33) 
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Fig. 2.2 Pressure contour on the upper surface and comparison of the 

measured and computed surface pressure coefficients of the ONERA M6 

(M¥=0.84, a=3.06°, Re=1.1´107) 
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Fig. 2.3 Nine-node shell mixed element [37] 

 

 

Fig. 2.4 Cut-out hemisphere problem 
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Fig. 2.5 Cut-out hemisphere problem result 

 

 

Fig. 2.6 CSM model of the fighter wing [37] 
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Fig. 2.7 Multi-VMT method [37] 

 

 

 

Fig.2.8 The Schematic of aeroelastic analysis between CFD and CSM 
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Fig. 2.9 Coupling methods of aeroelastic analysis 

 

Baseline Wing
Loose Coupling Method
Tight Coupling Method

 

Fig. 2.10 Comparison of the aeroelastic deformations of the wing between 

loose and tight coupling method 
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Table 2.1 Comparison of aeroelastic displacement of wing tip by each method 

Analysis Method Loose Coupling Tight Coupling 

Displacement (inch) 2.16701232 2.1676974 
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2.2 Low-Fidelity Aeroelastic Analysis 

 

In addition to high-fidelity aeroelastic analysis code for the supersonic 

fighter wing, low-fidelity aeroelastic analysis code for the transonic transport 

wing has been adopted to consider varied paradigm of MDO problem. In this 

study, CO which is representative multi-level design method is applied to the 

wing design for a commercial aircraft of DC-9, considering aerodynamics, 

structure, and performance disciplines. 

For disciplinary analyses of the aircraft wing, vortex lattice method (VLM) 

is used for aerodynamic analysis and Wing-box modeling for structural 

analysis. Fig. 2.11 shows each simplified analysis model and grid systems. 

Each analysis module is decomposed along aerodynamic and structural 

disciplines. Weissinger method is applied as a VLM, in which aerodynamic 

force is computed from the planar geometry of the lift surface created by the 

superposition of vortex filaments, and trapezoidal vortex ring is distributed on 

the lift surface to consider the effect of mean camber line of the wing section. 

To consider the compressibility, Prandtl-Glauert rule is used, under the 

assumption of small disturbance. Induced drag, skin-friction drag, profile drag 

and wave drag are considered as to compute total drag. Induced drag is 

computed by Treffz Plane analysis, profile drag by empirical equation and 

wave drag by Crest-Critical Mach number method. Besides, the wing 

structure is modeled by 20 segments in a direction of span. Based on the fact 

that the leading edge and the trailing edge take a little role in transferring the 

load from the wing to the fuselage, the wing-box endures main load applied to 
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the wing. Upper and lower skin, spar and rib consist of the wing-box. More 

details and validation of analysis code are given in Ref. [71, 72]. 
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Fig. 2.11 VLM model and wing-box model aircraft wing [71] 



- 38 - 

 

Chapter 3. Stochastic Approaches for the DSE 

and Rearrangement 

 

In this study, establishment of the systematic design space exploration 

(DSE) and rearrangement method is main objective. To achieve this goal, 

surrogate model is used to consider the efficiency of the MDO and DSE. 

Monte-carlo simulation (MCS) is also adopted to investigate the probabilistic 

quality and quantity of the whole design space. Probabilistic values of the 

design space obtained with surrogate model and MCS are used for 

rearrangement of the design space. Detailed description about stochastic 

approaches used in this study is following. 

 

3.1 Surrogate Model 

 

In a large percentage of cases, the MDO problem has a number of 

disciplines which are strongly coupled each other. For that reason, relatively 

huge amount of calculation time is required then single discipline analysis. 

Therefore, efficiency of analysis is the key point for appropriate MDO 

framework. To resolve the crux of analysis efficiency, surrogate models 

frequently replace the analysis code in the most part of MDO problem. 

Second order polynomial regression model of response surface method 

(RSM) and artificial neural network (ANN) is used to replace the analysis 

module in this study.  
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3.1.1 Response Surface methodology 

Response Surface Methodology (RSM) is a collection of statistical and 

mathematical technique useful for developing, improving, and optimization 

process. RSM uses Design of Experiments (DOE) techniques, regression 

analysis, and Analysis of Variance (ANOVA) collectively [73].  

RSM is widely used for an efficient tool of design/control since it is 

expected to have following advantages over other direct optimization methods. 

 

l Compared with other optimization methods, it can be simply 

implemented. 

l It smoothes out the high frequency noise of the objective function and 

is thus expected to find a solution near the global optimum. 

l Various objectives and constraints can be attempted in the design 

process without additional numerical computations. 

l It can be effectively applied to MDO problems with many objectives 

and constraints. 

l It does not require a modification in analysis codes. 

 

However there are some drawbacks to RSM. The range of the design 

parameters highly affects the fitting capabilities of the RS models. The wide 

range may increase the prediction error such that the predicted performances 

cannot be exactly obtained. RSM has also a limitation on the number of the 

design parameters because the computation time for the construction of the 
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RS models is proportional to the square of the number of the design 

parameters. 

The response surface model is usually assumed as a second order 

polynomial as Fig. 3.1, which can be written for nv design variables as 

follows: 
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where )( py  is the response; )( p

ix  and )( p

jx  are the vn  design variables; 

0c , ic  and ijc  are unknown coefficients; and e  is an error. The second 

order model of Eq. (3.1) has 2/)2)(1( ++= vvt nnn  regression coefficients. 

For ns sample data points, Eq. (3.1) can be written in a matrix form as  
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where vector {y} has ns dimensions, and the matrix [X] is a [ns ´ nt] matrix. 

We can determine the vector of regression coefficients {c} using the method 

of least squares so that L2 norm of the error vector {e} is minimized. The least 

square estimator is defined as 
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The least square estimator must satisfy zero as following, 
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Thus, the regression coefficients {c} is determined as, 
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3.1.2 Artificial Neural Network 

ANN model in this study consists of three layers – input, output and 

hidden layers as shown in Fig. 3.2. The transfer function, S(x) connecting 

information of between neurons in layers is a sigmoid function such as Eq. 

(3.6). 
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Neurons in the hidden and in the output layers are calculated as Eq. (3.7) 

and (3.8).  
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Where, X is the input variables vector, Y is the output variables vector and 

H is the vector of the hidden nodes. The a, b, c, d and ω mean weights of 

neurons. Using above equations, the correlation of input variables (design 

variables or flow condition; X) and output variables (unknown variables of 

the reduced order model; Y) is replaced with weights of ANN (ωHidden, 

ωOutout). 

Because output variables can be variously formulated as cross and power 

terms of input variables, it is difficult to determine the form of output 

variables as polynomial expressions. ANN transmits the linear combination of 

input variables to a hidden layer by a transfer function, and then the linear 

combination of values in a hidden layer is propagated to an output layer. That 

is, ANN itself can select terms that represent output variables due to its 

structure as mentioned before. The weight of ANN obtained from a series of 

this procedure determines whether input variables are mutually independent 

or not. 

Levenberg-Marquardt algorithm is a variation of Newton’s method that 

was designed for minimizing functions that are sums of squares of other 

nonlinear functions. This is very well suited to neural network training where 

the performance index is the mean squared error. This algorithm finds an 

optimum by searching along direction that a gradient descends through 

sensitivity information and a modified Hessian matrix [74]. 
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Fig. 3.1 Second order polynomial response surface model 

 

 

Fig. 3.2 Three-layer artificial neural network (ANN) model 
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3.2 Design of Experiment (DOE) 

 

Design of experiment (DOE) is the design by information-gathering 

exercise in the design space that is the region where design variables exist. 

The simplest way to improve surrogate model accuracy is screening 

experiment points as much as possible. Full factorial design extracts a large 

number of experiment points to reproduce a real design space more accurately. 

2k and 3k full factorial design is the most widely used, and they extract 2n and 

3n number of combinations of n design variables. However, as n becomes 

large the evaluation of both 2n and 3n full factorial design becomes impractical. 

A full factorial design is used for ten or fewer design variables. 

In order to reduce the number of the required numerical experiments, 

another DOE known as central composite design (CCD) may be used. In CCD 

a 2n full factorial experimental design is employed along with 2n “star” design 

points and one or more “center” design points. A three variables CCD is 

shown in Fig. 3.3.  

In this experimental design, the star points lie outside the boundary 

created by 2n full factorial design points. The distance from the star points to 

the center of the CCD typically varies from 1.0 to n . Using the response 

data from 122 ++ nn  experiments specified by a CCD, a quadratic response 

surfaces may be constructed. As with 2n and 3n full factorial designs, the 

number of required CCD experiments also becomes impractical as n becomes 

large. 

Therefore, D-Optimal design is more frequently used for the large number 

of design variables. D-Optimal experimental designs provide an attractive 
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method for creating experimental designs inside an irregularly shaped design 

space. In addition, D-Optimal experimental designs require fewer than 

122 ++ nn  response values needed for central-composite experimental 

designs. A sample D-Optimal design is shown in Fig. 3.3. 
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Fig. 3.3 Comparison of three variables DOE results 
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3.3 Analysis of Variance (ANOVA) 

 

After estimating the coefficients in the response surface (RS) model, 

analysis of variance and regression analysis produce a measure of uncertainty 

in the coefficients. This uncertainty estimation is provided by t-static defined 

as:  
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Where 2ŝ  is the estimation of variance. Coefficients with low values for 

the t-static are not accurately predicted. Allowing poorly estimated terms to 

remain in the RS model may reduce the prediction accuracy of the model.  

One of important statistical parameters is the coefficient of determination, 

R2, which provides a summary statistic that measures how well the regression 

equation fits the data. It is given as, 

SSTO

SSE

SSTO

SSR
R -== 12                                    (3.10) 

 

Where, SSTO means the total sum of squares and SSE is error sum of 

squares. 

However, a large value of R2 does not necessarily imply that the 

regression model is a good one. Adding a variable to the model will always 

increase R2, regardless of whether the additional variable is statistically 

significant or not. Thus it is possible for models that have large value of R2 to 
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yield poor predictions of new observations of the estimates of the mean 

response. Because R2 always increases as we add terms to the model, some 

regression model builders prefer to use an adjusted R2 statistic defined as, 
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Where SSE is the error sum of squares and SYY is the total sum squares. 

Typical values of Radj
2 are from 0.9 to 1.0 when the observed response values 

are accurately predicted. 
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3.4 Monte-Carlo Simulation (MCS) 

 

In this study, rapid collection of the whole design space information is 

important so that Monte-Carlo simulation (MCS) should be performed to an 

approximated model. In case of the function composed of algebraic 

expression, it is not a big issue, but solving the partial differential equation 

(PDE) like Euler equations, it could take from several times to a few days to 

get a single output. Therefore, if it is not an algebraic expression, it is efficient 

to construct surrogated model, e.g. 2nd order polynomial or neural network. 

By performing the MCS to the constructed approximate models, the ratio of 

occupation of the feasible region in the design space (probability of success; 

POS) and reliability index (k) of the each sample are calculated. MCS is also 

applied to evaluating the distribution of the objective functions and the 

constraints. Because required time of function evaluation is reduced with 

surrogate model, about 220 (about one million) number of the sample points 

are used for accuracy of the MCS. Sample points are randomly generated with 

the uniform distribution and the standard normal distribution. 
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3.5 Calculate the probability of success 

 

Joint probability formulation is needed to evaluate the probability that 

satisfies simultaneously the distribution of the joint random variables. 

Typically, it was used to two formulations that the joint probability model and 

the empirical probability function. This density function is an analytical 

probability model that represents the joint distribution from given 

corresponding means and standard deviations and represented by: 
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Where, for random variables X and Y, mX and mY are the means, sX and sY 

are the standard deviations, and r is correlation coefficient. Limited 

information is only required for this model, which guarantees the flexibility 

for the application. However, in the case of aircraft design that is complex 

system with many design variables, it is difficult to obtain correlation 

coefficient. If the number of the random variables is n, correlation coefficient 

should be calculated as many as the combination selecting r among n (1 < r £ 

n). 
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On the other hand, the empirical distribution function is based on 

empirically collected data samples. Since this model is not needed the 

correlation coefficient, it is more useful than the analytic model. In addition to, 

the empirical model has the most accurate joint distribution prediction, 

because it does not rely on any approximation methods to generate the 

criterion statistics needed.  

The empirical function is depend on sample data and is not concerned 

about the distribution of random variables. If sample data is enough, then the 

joint distribution can be predicted accurately. But if too many, much time is 

spent in the design process. 

The joint probability mass function is defined by 
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Where, ai is the sample values derived from a sampling method such as 

MCS and xi is random variables. 

The joint probability distribution function is similarly given by 
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In this paper, ai is predicted values of the objective function from MCS 

and xi is 1 in the case of satisfying all constraints and 0 otherwise. 

The joint probability of success is the probability that all constraints is 

satisfied and is defined by  
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for the empirical distribution function with M = number of samples, 
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for the joint probability model. Generally, as the probability of success is 

higher, the feasible region is larger. 

Fig. 3.4 is shown geometrically the probability of success with two 

objective functions [75]. It is decided by overlapping high humps in the 

interested region and the ring is the same probability. 
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Fig. 3.4 Joint and marginal probability density function of continuous criteria 

X and Y [75] 



- 54 - 

 

3.6  Chebyshev Inequality Condition 

 

For the MDO problem, there are not enough information and knowledge 

about the given design problem at the initial design phase, in most cases. In 

the worst case, designer cannot define suitable range of design variables at the 

initial design phase due to above reason. As a result, there can be no feasible 

region within the design space. Therefore, initial design space which has no 

feasible region or has just tiny feasible region should be rearranged into the 

proper design space to include feasible region for the success of design. 

Chebyshev inequality condition is applied to the modification of the 

design space in order to improve the feasibility of the design space. 

Chebyshev inequality condition can be written as: 

 

{ }
2

2

1
e

s
em -³£-xP                                        (3.18) 

 

Where μ is the mean value, s is the standard deviation of the random 

variable x and e is arbitrary positive range. If x has normal distribution and e 

equals 2s, the probability can be calculated as: 
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In a word, the probability that x exists inside the interval (-2s, 2s) is about 

95%. However, if the distribution of the random variable is unknown, 

adjusted Chebyshev inequality condition for the uniform distributed random 
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variables is used. For the uniform distributed random variables, the 

probability that x exists inside the interval (-3s, 3s) is at least 8/9. If the mean 

and standard deviation values of the design variables which exist on the 

feasible design space can be obtained, designer can rearrange the design space 

into the improved feasible region using Chebyshev inequality condition as in 

Fig. 3.5. 
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Fig. 3.5 Chebyshev inequality condition and rearranged design space 
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3.7 Reliability Index 

 

POS is calculated by the number of the samples which satisfy all the given 

constraints through spraying about one million samples into the design space. 

If the feasible region is very small or even it does not exist, several millions of 

samples are not enough to find the feasible region from the design space 

exactly. However reliability index based method proposed in this study can 

search the feasible design space efficiently, even though there is no feasible 

region within the initial design space. The reliability index at the sampled 

point defined as Eq. (3.20) is calculated by using the Monte Carlo simulation 

and surrogate model. Even though the feasible region cannot be found exactly, 

approximate location of the feasible region can be inferred with reliability 

index.  
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In above equation, gi means i-th constraint, σgi means deviation of gi and m 

means the number of constraints. Each gi value at sampled design point can be 

easily evaluated via Monte-Carlo simulation using surrogate model. If gi is 

negative, it satisfies the constraint and σgi shows the variation of gi caused by 

disturbance of input. Therefore, the reliability index (ki) at the sampled point 

physically means the distance of the sampled point from the boundary of gi. In 

short, if ki of a sampled point is positive, it satisfies constraint gi and as the 

value of ki is larger, the sample is farther from the boundary of gi. On the 
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contrary, if ki is negative, it does not satisfy gi and as the value of ki is smaller, 

the sample exists farther from the region which satisfies gi. From ki which has 

these characteristics, each sample should choose the minimum ki value as a 

representative so that it can be estimated whether the sample exists in the 

feasible region or not. 

Using the decided reliability index, temporary mean μx should be chosen 

as shown in Eq. (3.21). This means that the input value which has the largest k 

value among the reliability indexes (k) of each sample is taken as the mean 

(μx) of the feasible region and at the same time, choosing the largest k among 

critical k values. 
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As shown in Fig. 3.6 (a), if the design space includes the feasible region 

completely, the mean of the feasible region, the mean of the input and the 

mean from the reliability index are close together. However, as shown in Fig. 

3.6 (b), if the design space does not cover the real feasible region, the mean of 

the input could show some difference with the mean of the real feasible region 

whereas the mean defined in Eq. (3.21) could approach to the mean of the real 

feasible region. Therefore, deciding the mean as shown in Eq. (3.21) is more 

efficient way to search the real feasible region than just using the input mean. 
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(a) The design space exactly includes feasible region. 

 

 

(b) The design space does not exactly include feasible region. 

 

Fig. 3.6 Mean of input and temporary mean from reliability index with respect 

to the design space. 
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Chapter 4. Design Space Exploration and 

Rearrangement Results and Discussion 

 

In this chapter, design space exploration method using surrogate model 

and MCS will be proposed. Using surrogate model and MCS, probabilistic 

quantities and qualities of the design space and all variables are efficiently 

investigated. With these probabilistic data from DSE, feasibility of the design 

space is investigated and then rearranges the design space into the updated 

space which has higher feasibility. To update design variable range, 

Chebyshev inequality condition and reliability index (RI) is adopted to 

determined new design space.  

This method is applied to the design optimization problem of the exact 

function with two variables, and from this problem, it will be confirmed that 

this method has a capability of including the feasible region laying the outside 

of the initial design space. Finally, the proposed method will be applied to the 

design optimization problem coupled disciplines of aerodynamics, structure, 

and performance, and from these results, it will be showed that this method 

can search for better solution than an optimum in the initial design space 
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4.1 DSE and Rearrangement of the Design space to 

Improve the Feasibility with Chebyshev Inequality 

 

DSE and rearrangement procedure using Chebyshev inequality is shown 

in Fig. 4.1. At the very first, define the problem and the initial range of design 

space, and then surrogate model of the defined problem is constructed to 

consider the efficiency of evaluation during whole design process. Then 

Monte-Carlo simulation (MCS) is implemented to obtain the probabilistic 

quantities and qualities of the design space with constructed surrogate model. 

Through the Monte-Carlo simulation, probabilistic and statistic quantities of 

the design space such as probability of success (POS), reliability index value, 

mean or deviation of design variables can be calculated. In the case of 

Chebyshev inequality based method, convergence check procedure is directly 

done using calculated POS and mean values of the present design space. If the 

present design space satisfies convergent criteria, rearrangement iteration 

finishes instantly and optimization process will start. On the other hand, 

rearrangement procedure based on Chebyshev inequality condition will be 

performed to update the whole design variables range with calculated mean 

and deviation value of the current feasible region, and then next iteration will 

start for updated design space. Through a number of iteration, the design 

space steadily converges into the higher feasible region.  
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4.1.1 Test Functions 

For the validation of the proposed design space exploration and 

rearrangement method, Goldstein function and Branin function are selected. 

These functions are the representative test functions for the MDO problem 

which have nonlinear characteristics and multiple local optima and global 

optimum simultaneously. For the validation of proposed method, test 

functions are subjected to relatively simple constraints to remove the absence 

of feasible region on the design space. Moreover, these simple constraint 

functions make design problem into the closed form. 

 

 

4.1.1.1 Goldstein Function 

Goldstein function which has two variables (x1, x2) and four local optima 

was selected as test function, and two constraint functions (g1, g2) was 

considered as following. 
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Goldstein function has the global optimum value at (0,-1) located in the 

feasible design space, and three local optima exist simultaneously as shown in 

Fig. 4.2.  
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Among those local optima, a local optima exists on the feasible region at 

(-0.6, -0.4) as shown in Fig. 4.3. Therefore, optimum value of the initial 

design space is f(-0.6, -0.4)* = 30. 

To perform DSE and rearrangement using Chebyshev inequality, the 

initial design space has been defined as shown in table 4.1. POS of the initial 

design space is about 2.53%. After eight iterations, the converged design 

space includes whole feasible region as in Fig. 4.3. During the iteration, each 

variables mean and POS have been changed as in Fig. 4.4 and POS has been 

increased up to 15.26%. 

 

 

4.1.1.2 Branin Function 

Branin function has two variables (x1, x2) and three optima at (-p , 12.275), 

(p , 2.275) and (9.42478, 2.475) with f(x1, x2)=0.397887. Two constraint 

functions (g1, g2) have been considered as following. 
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Branin function has three optima and their values are equal, but only one 

optima locates on the feasible region at (p , 2.275) as shown in Fig. 4.5. 
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The initial design space has been defined as shown in table 4.2. POS of 

the initial design space is about 6.01%, and optimum of the initial design 

space is f(2, 4)*»6.4482.  

After nine iterations, converged design space includes whole feasible 

region like the Goldstein function case (Fig. 4.6). During the iteration, each 

variables mean and POS have been changed as in Fig. 4.7 and POS has been 

increased up to 30.43%. Besides, the optimum of the converged design space 

is f(p, 2.275)* »0.3979 that is one of the three optima. 

 

 

4.1.1.3 Collaborative Optimization (CO) of Goldstein Function with 

Chebyshev Inequality Condition 

Collaborative optimization (CO) is a multi-level decomposed optimization 

methodology for a large-scale MDO. CO is known to have computational and 

organizational advantages. Its decomposed architecture removes a necessity 

of direct communication among disciplines, and guarantees their autonomy. 

CO decomposes the design problem into system level and subsystem level as 

shown in Fig. 4.8.  

In case of CO, definition of design optimization problem is shown in Fig. 

4.9 and the relation of variables among the system and the subsystems are 

arranged in table 4.3. As shown in Fig. 4.9 and table 4.3, by adding algebraic 

formula y1=x1+x2, an interdisciplinary variable is generated, which an output 

of a subsystem is the input of the other subsystem.  

To exploit Chebyshev inequality based method, initial range was defined 

from -1 to 1 for all design variables. Result of CO is shown on the Z-space in 
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Fig. 4.10. In this case, the global optimum has been included within the initial 

design space and the converged design space at the same time. 

In this case, converged space covered whole feasible space also. In table 

4.4, CO result of the Goldstein function has been described. Through the 

iteration, POS has been increased from 0.32% to 34.94% in Z-space and the 

global optimum has been found at (0, -1) in both of them. Consequently, it is 

confirmed that the proposed method can be applied to the CO appropriately. 
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4.1.2 MDO of the Aircraft Wing 

 

4.1.2.1 Aero-structural Optimization of the Supersonic Fighter Wing 

with High Fidelity Analysis 

The proposed method has been applied to the aero-structural 

multidisciplinary optimization of the supersonic fighter wing. Since the 

aerodynamics is coupled with structure and constraints are complicatedly 

connected to each other, it is one of the most representative MDO problems 

which correspond with real aircraft wing design. Three-dimensional Euler 

code in aerodynamic analysis and nine-node shell mixed FEM code in 

structural analysis are used. Sweep angle, aspect ratio, twist, reference area 

and taper ratio of the wing which are defined the wing platform, thickness of 

root lower skin, tip lower skin, root upper skin and tip upper skin are selected 

as the design variables (See Fig.4.11 and table 4.5). Lift, drag, lift to drag ratio, 

area of the wing and the displacement of the wing tip are selected as 

constraint functions. Lift, lift to drag ratio and wing area must be larger than 

the baseline, but drag and the displacement of the wing tip must be smaller 

than the baseline. 

 

)(05.0

,,

,//,:  Subject to

)/maximize:Objective

baseline

baselinebaseline

baselinebaseline

ntdisplacemeTipntdisplacemeTip

DragDragAreaWingAreaWing

DLDLLiftLift

D(L

´<D

<>

>>
      (4.3) 

 



- 67 - 

 

Since the number of design variables is more than previous examples, we 

calculated the probability of success from 107 sample points uniformly 

distributed. In the initial design space, the probability of success is 0.00195%. 

After 8 iterations, the probability of success is converged with same procedure 

as the previous example. The probability of success is increased by 30.93% in 

the changed design space and history of the POS is represented in Fig. 4.12. 

At the initial design space, the probability distribution of each design variable 

shows irregular distribution as shown in Fig. 4.13, whereas regulated 

probability distributions are represented in Fig. 4.14 at the converged design 

space. Fig. 4.15 and 4.16 represent the ranges of both initial and final design 

variables and optimized wing planforms at each design space. Compared to 

initial design space, the ranges of sweep angle, aspect ratio, twist and area are 

reduced, but others are expanded to outside of the initial design space in Fig. 

4.15.  

To compare the Cp distributions of the optimized wing, the initial design 

space optimal wing has relatively wider negative Cp region on the upper 

surface than the optimized wing of the converged design space as shown in 

Fig. 4.17. Moreover, the optimized aspect ratio of the initial design space is 

bigger about 8.2% than the optimized aspect ratio of the converged design 

space (see table 4.6). Along the spanwise direction, Cp distributions are 

compared in Fig. 4.18. Each airfoil sections are located on the root, 25% and 

85% of the span. For the optimized wing cases, there is no significant change 

of the Cp distribution from first airfoil section to third airfoil section. But the 

Cp distributions of the baseline wing show considerable change as the distance 

from the wing root increases. Cp distribution of the third airfoil section shows 
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drastic pressure rise on the upper surface. It causes loss of the aerodynamic 

performance of the baseline wing. Consequently, optimized wings have a 

tendency to avoid such drastic pressure change, and then their leading edge 

sweep angles have been changed to get larger sweep back angle.  

Hence, optimized lift to drag ratio of the initial design space has more 

improved results than the converged design space. As in table 4.6, lift to drag 

ratio maximized in each design space is increased to 27.76% at the initial 

design space and to 18.40% at the converged design space with respect to the 

baseline, but the initial design space result seriously violated the tip 

displacement constraint. In fact, the probability of success is too low at the 

initial design space, and it means that the initial space has no feasible regions. 

Fig. 4.19 and 4.20 show the probability density function and cumulative 

distribution function of lift to drag ratio. Same as previous examples, the 

increase of the probability can be verified from 48.81% to 95.0%. 

According to presented results, the proposed probabilistic approach to 

improve the feasibility of the design space can be successfully applied to the 

aerodynamic-structural multidisciplinary design optimization of the wing. 

And it produced better optimized solutions in the converged design space than 

in the initial design space. 

 

 

4.1.2.2 Aero-structural Optimization of the Transonic Wing with Low 

Fidelity Analysis 

The proposed method is applied to the aero-structural multidisciplinary 

optimization of the transonic wing. Vortex Lattice Method (VLM) code in 
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aerodynamic analysis and wing-box model in structural analysis are used. 

Semi-span, taper ratio, leading edge sweep angle, t/c at root and t/c at tip of 

the wing are selected as the design variables, which are in table 4.7 and Fig. 

4.21 Lift to drag ratio, lift, drag, weight and area of the wing are selected as 

objective function and constraints. Lift to drag ratio, lift and wing area must 

be larger than the baseline, but drag and weight must be smaller than the 

baseline. 
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Because only 42 points are success out of 220 (about 1,000,000) points, the 

probability of success in the initial design space is 0.0042% and probability 

distribution of each design variables are represented in Fig. 4.22. Chebyshev 

inequality condition is used to modify the initial design space. Because the 

distribution of design variables in case of success is unknown, modify the 

boundaries of design variables using 3s to contain 89% of the feasible region. 

The probability of success in the changed design space is grown up to 

4.2442%. And the distribution of design variables is approach to normal 

distribution. So we modify the design space using 2s to maintain nearly 

constant ranges of the design variables and to contain 95% out of the range of 

success. This process is repeated until the increase of POS is less than 1%. 

The POS in the converged design space is grown up to 18.8853%, and the 
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distributions of design variables in converged space are represented in Fig. 

4.23. Fig. 4.24 represents the ranges of both initial and final design variables. 

Compared to initial random design space, the ranges of semi-span, t/c(root), 

and L.E. Sweep are reduced, but taper ratio and t/c(tip) are expanded. Fig. 

4.25 shows optimized wing planforms in initial design space and converged 

design space. 

To investigate the POS of objective function, Fig. 4.26 and Fig. 4.27 

represent the probability density function and cumulative distribution function 

of lift to drag ratio. In Fig. 4.26, most values of the objective function are on 

the infeasible region at the initial design space, but at the converged design 

space, most values of the objective function move to the feasible region. In 

Fig. 4.27, the probability of success in initial space, 32.38%, is dramatically 

increase in converged space, 73.83%, by rearranging of the design space. 

When the problem maximizing lift to drag ratio is solved in the initial and 

converged design space, the optimal point is different in each case. If the 

converged design space shrinks into the initial space, the optimal point is 

almost the same. But, if the converged design space is extended to the outside 

of the initial space, it can be verified that the optimal point is located at the 

new space. In addition, it can be verified that optimized lift to drag ratio of the 

initial and converged design space is improved with respect to the base line 

design by 7.34 %, 10.88 % each. This means the altered design space includes 

a proper optimal point but the initial design space doesn’t. (See table 4.8) 
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4.1.2.3 CO of the Transonic Wing with Low Fidelity Analysis 

In this study, CO is applied to the wing design for a commercial aircraft of 

DC-9, considering aerodynamics, structure, and performance disciplines 

To exploit multidisciplinary design optimization of transonic aircraft wing, 

the design formulation is specified as following. In this study, the design 

objective is maximization of the flight range: 
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Eq. (4.5), Brequet range equation, includes lift to drag ratio (L/D) 

represented the aerodynamic performance and weights (Wi, Wf) estimated 

from the structure analysis. Because cruise velocity (V), specific fuel 

consumption (SFC) and the initial aircraft weight (Wi) are constant, L/D has to 

be increased and the aircraft weight after finishing its mission (Wf) must be 

decreased to maximize range. While range is maximized, six constraints as 

follows should be satisfied. 
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The initial design variables rage is described in table 4.9. The initial value 

of each design variable is determined based on DC-9 specification. For this 

problem, the flight condition should be like following. The aircraft cruises at 

7,620 m (25,000ft) above the ground with Mach number 0.75. Angle of attack 

is considered to be zero and take-off gross weight is 49,000 kg (108,000 lb). 

Definition of design optimization problem is shown in Fig. 4.28, and all 

system variables are depicted in table 4.10. 

As a result, POS of design space has been increased from 0.13% to 38.0% 

and optimum result of the converged design space represents 12.4% improved 

range than baseline wing (see table 4.11 and 12). The converged design space 

has been rearranged into the varied direction for each design variable as in Fig. 

4.29. Especially, converged design spaces of taper ratio and thickness to chord 

ratio at root have been moved right or left side of the initial design space. And 

also, converged design space optimum exists out of the initial design space. 

Moreover in Fig. 4.30, PDF of lift to drag ratio shows improved POS from 

49.8% to 77.3%. 
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Fig. 4.1 DSE and rearrangement of the design space with Chebyshev 

Inequality 
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Fig. 4.2 Goldstein function and constraints 
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Fig. 4.3 Result of Goldstein function with Chebyshev inequality 
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Fig. 4.4 Convergence history of Goldstein function 
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Fig. 4.5 Branin function and constraints 

 

 

Fig. 4.6 Result of Branin function with Chebyshev inequality 
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Fig. 4.7 Convergence history of Branin function 
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Fig. 4.8 Collaborative Optimization (CO) architecture 

 

System level

min. f(z1,z2)

s.t.  g1
* = 0, g2

* = 0

Subsystem 1.

min. g1= (x1-z1)
2 + (y1-z2)

2

s.t. c1 = 0.5(x1+1.4)2 +x2<0

Subsystem 2.

min. g2= (x1-z1)
2 + (y1-z2)

2

s.t. c2 = (x1-0.2) 2 +x1 –y1-1.5<0

Analysis 1.

ü y1 = x1 + x2

Analysis 2.

ü f(x1, y1)={1+(y1+1)2(19-
14y1+3y1

2)} {30+(5x1-3y1)
2(18-

16(5x1-3y1)+3(5x1-3y1)
2)}

 

Fig.4.9 CO formulation of Goldstein function 
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Fig. 4.10 Result of CO for Goldstein function 

 

 

Fig. 4.11 Aerodynamic design variables of the supersonic wing 
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Fig. 4.12 POS history via iterations (M¥=0.87) 
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Fig. 4.13 Probability distribution of the initial design variables 
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Fig. 4.14 Probability distribution of the converged design variables  
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Fig. 4.15 Comparison of the design space and optimum (M¥=0.87) 
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Fig. 4.16 Comparison of the supersonic wing planform (M¥=0.87) 
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a) Baseline Wing 
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c) Converged design space optimum wing 

Fig. 4.17 Cp distributions of the supersonic wing (left=lower surface / 

right=upper surface, M¥=0.87) 
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c) Optimum wing at the converged space 

Fig. 4.18 Cp distributions along the wing span (1st sec.= root, 2nd sec.= 25%, 

3rd sec.= 85% of span) 
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Fig. 4.19 PDF of the lift to drag ratio (M¥=0.87) 

 

 

Fig. 4.20 CDF of the lift to drag ratio (M¥=0.87) 
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Fig. 4.21 Transonic wing geometry and design variables 
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Fig. 4.22 Probability distribution of the initial design variables 
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Fig. 4.23 Probability distribution of the converged design variables 
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Fig. 4.24 Comparison of the design space (M¥=0.75) 
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Fig. 4.25 Comparison of the transonic wing planform 
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Fig. 4.26 PDF of lift to drag ratio (M¥=0.75) 

 

 

Fig. 4.27 CDF of lift to drag ratio (M¥=0.75) 
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Fig.4.28 The structure of CO for wing design problem 

 

 

Fig. 4.29 Comparison of the design space (CO, M¥=0.75) 
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Fig. 4.30 PDF of lift to drag ratio (CO, M¥=0.75) 
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Table 4.1 Design space and POS of the Goldstein function 

 X1 X2 Optimum POS(%) 

Initial 

space 
(-1~1) (-0.5~1.5) 

f(-0.6,-0.4)* 

=30.0 
2.5298 

Converged 

space 
(-1.21~0.55) (-1.92~0.18) 

f(0,1)* 

=3.0 
15.2562 

 

 

Table 4.2 Design space and POS of the Branin function 

 X1 X2 Optimum POS(%) 

Initial 

space 
(-3~2) (4~9) 

f(2,4)* 

=6.4482 
6.0865 

Converged 

space 
(-0.348~8.711) (-1.457~7.565) 

f(p,2.275)* 

=0.3979 
30.4336 
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Table 4.3 Summary of the input & output variables 

 X1 X2  F 

System z1 n/a z2 n/a 

Subsystem 1 x1 x2 y1 n/a 

Subsystem 2 x1 n/a y1 f 

 

 

 

 

Table 4.4 Design space and POS of the CO (Goldstein function) 

 Z1 Z2 Optimum POS(%) 

Initial 

space 
(-1.00 ~1.00) (-1.00 ~1.00) f(0,-1)*=3 0.3160 

Converged 

space 
(-1.4876 ~0.8269) (-2.0270 ~-0.4037) f(0,-1)*=3 34.9440 
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Table 4.5 Range of design variables at initial design space (M¥=0.87) 

Design Variables 
Lower 

limit 
Baseline 

Upper 

limit 

L.E. sweep 

angle (°) 

Initial 30 
35 

40 

Converged 32.027 40.762 

Aspect ratio 
Initial 2.5 

3 
4.5 

Converged 3.606 4.158 

Twist angle (°) 
Initial -5 

-2.5 
0 

Converged -2.995 -2.423 

Wing area (ft2) 
Initial 229.5 

255 
280.5 

Converged 253.27 274.15 

Taper ratio 
Initial 0.2162 

0.2402 
0.2642 

Converged 0.176 0.253 

RootLower Skin 

Thickness (inch) 

Initial 0 
0.1 

0.2 

Converged 0.114 0.431 

TipLower Skin 

Thickness (inch) 

Initial 0 
0.1 

0.2 

Converged 0.087 0.407 

RootUpper Skin 

Thickness (inch) 

Initial 0 
0.1 

0.2 

Converged 0.117 0.380 

TipUpper Skin 

Thickness (inch) 

Initial 0 
0.1 

0.2 

Converged 0.053 0.400 
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Table 4.6 Results of optimization (M¥=0.87) 

Design variables 

& Objective function 
Baseline 

Initial space 

optimum 

Converged 

space optimum 

L.E. sweep angle (°) 35 40 40.19 

Aspect ratio 3.5 4.5 4.158 

Twist angle (°) -2.5 -2.84 -2.83 

Wing area (ft2) 255 255.02 262.88 

Taper ratio 0.2402 0.2415 0.2219 

RootLower Skin Thickness 

(inch) 
0.1 0.0353 0.2896 

TipLower Skin Thickness (inch) 0.1 0.1164 0.2638 

RootUpper Skin Thickness 

(inch) 
0.1 0.1186 0.2622 

TipUpper Skin Thickness (inch) 0.1 0.2000 0.2406 

L/D 37.79 48.28 44.75 

DL/D(%)  27.76 18.40 

Tip Displacement 
6.158e-

002 

1.113e-

001 
6.403e-002 
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Table 4.7 Initial and converged design space (M¥=0.75) 

 

Design variables Lower limit Baseline Upper limit 

Semi span 
Initial space 35.456 

46.655 
53.184 

Converged space 44.830 50.620 

Taper ratio 
Initial space 0.152 

0.2 
0.228 

Converged space 0.207 0.299 

L.E. sweep 

angle 

Initial space 19.6 
24.5 

29.4 

Converged space 23.820 24.833 

t/c at root 
Initial space 0.1104 

0.1310 
0.1656 

Converged space 0.1119 0.1244 

t/c at tip 
Initial space 0.0696 

0.0830 
0.1044 

Converged space 0.0931 0.1190 
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Table 4.8 Result of optimization (M¥=0.75) 

 

Design variables 

& Objective function 
Baseline 

Initial design 

space optimum 

Converged design 

space optimum 

semi-span (ft) 46.6550 45.5841 44.8299 

Taper ratio 0.2 0.228 0.2987 

sweep angle (deg) 24.5 24.1784 23.9414 

t/c at root 0.131 0.1186 0.1125 

t/c at tip 0.083 0.1044 0.1112 

L/D 19.3620 20.7843 21.4693 

DL/D (%)  7.34 10.88 

 

 

 

Table 4.9 Range of design variables 

Design Variables Min. Baseline Max. 

Span (ft) 41.989 46.655 51.320 

Sweep angle (deg) 22.050 24.500 26.950 

Taper ratio 0.184 0.204 0.224 

t/c at wing root 0.118 0.131 0.144 

t/c at wing tip 0.075 0.083 0.091 
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Table 4.10 Summary of variables for CO 

 system sub 1. sub 2. sub 3. 

span Z1 X1 X1 n/a 

sweep Z2 X2 X2 n/a 

taper ratio Z3 X3 X3 n/a 

t/c root Z4 X4 X4 n/a 

t/c tip Z5 X5 X5 n/a 

L/D Z6 Y1 n/a X1 

CD n/a Y2 n/a n/a 

Area n/a Y3 n/a n/a 

Wwing n/a n/a Y1 n/a 

Wfuel Z7 n/a Y2 X2 

dtip n/a n/a Y3 n/a 

Range F n/a n/a Y1 
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Table 4.11 Comparison of initial & converged design spaces 

 Initial space Converged space 

span 41.989 ~ 51.320 45.363 ~ 46.054 

sweep 22.050 ~ 26.950 25.250 ~ 30.044 

taper ratio 0.184 ~ 0.224 0.233 ~ 0.291 

t/c root 0.118 ~ 0.144 0.104 ~ 0.125 

t/c tip 0.075 ~ 0.091 0.058 ~ 0.109 

L/D 0.000 ~ 36.361 17.355 ~ 22.851 

Wfuel (104) 0.000 ~ 4.626 2.137 ~ 2.333 

feasibility 0.1272 % 38.3769 % 

 

 

Table 4.12 Comparison of the optimum values 

 Initial space Converged space 

span 46.258 45.325 

sweep 23.462 25.723 

taper ratio 0.224 0.282 

t/c root 0.124 0.110 

t/c tip 0.089 0.084 

Range 1768.8 1862.4 

 6.8 % 12.4 % 
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4.2 DSE and Rearrangement of the Design space to 

Improve the Feasibility with Reliability Index 

 

Earlier proposed design space rearrangement method based on Chebyshev 

inequality condition is performed along with solid line procedure as shown in 

Fig. 4.31. This early proposed method is relatively simple iterative algorithm, 

but probabilistic evaluation and rearrangement of the design space can be 

successively done by using Chebyshev inequality. Even though probabilistic 

distributions of the design variables are absolutely unknown, Chebyshev 

inequality condition for uniform distributed random variables provides 

reasonable basis for the rearrangement of the design space. However, if the 

feasible region doesn’t exist within the initial design space, mean and 

deviation values of the feasible region cannot exist. As a result, Chebyshev 

inequality cannot be applied. Furthermore, if there exists very small feasible 

region within the initial design space, iteration number will increase 

unnecessarily to find converged design space. To overcome these problems, 

reliability index which includes geometric information among the whole 

design points and constraint functions has been introduced. In Fig. 4.31, 

hatched box shows replaced procedure to obtain mean and deviation using the 

reliability index based approach. Even though feasible region does not exist 

within the design space, mean and deviation value of the design variables 

could be evaluated and determined efficiently with newly proposed method. 
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4.2.1 Test Functions 

To compare reliability index (RI) based method to Chebyshev inequality 

(CI) based method, same test functions those are Goldstein function and 

Branin function are adopted with same problem. In addition, additional test 

case to validate the ability of RI based method is exploited starting on the 

unfeasible region: Chebyshev inequality based method cannot perform DSE 

and rearrangement. 

 

4.2.1.1 Goldstein function 

n Start on feasible region 

The design optimization problem was performed using the both formal 

design space defining method and the RI based method in this study 

concerned with the initial design space setting x1 and x2 into (-1, 1) and (-0.5, 

1.5). Fig. 4.32 shows the procedure of automatic rearrangement of the design 

space and it is identified that the RI based method includes more feasible 

region than the CI based method does when observing the 2nd design space. 

As explained in numerical approach, the former method uses only 

information of the feasible region in the design space and the newly proposed 

method uses approximate information of global feasible region so that the 

position of the center (mean value) of the new method is more close to the 

center of the whole feasible region. Therefore, the 2nd design space is defined 

that the new method includes more feasible region comparing with the CI 

based method. 

In Fig. 4.33, the five iterations are required to converge and the RI based 

method is more efficient about 30%. POS is also increased from 2.53% to 
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14.10% (table 4.13). Since both proposed methods are subjected to the same 

constraint function and have same objective, same number of function 

evaluations has been required for single sampling point in both methods. At 

every rearrangement iteration loop, same number of total sampling points has 

been used to carry out Monte-Carlo simulation, so total number of function 

evaluations per iteration is equal. Hence, additional algebraic calculations to 

obtain reliability index and temporary mean are required to newly proposed 

method. But it is relatively small and negligible in comparison with function 

evaluation via Monte-Carlo simulation. 

So to speak, it is confirmed that the design space which contains the entire 

feasible region is automatically rearranged with relatively low computation 

than CI based method. While optimization is performed in the initial design 

space, only the local minimum f(-0.6,-0.4) = 30 is found but in the converged 

design space which contains the global optimum f(0,-1) = 3, higher quality of 

optimal solution can be acquired. 

 

n Start on infeasible region 

This case is the same design optimization problem but only the initial 

design space is different as setting x1 and x2 into 0 ~ 1(table 4.14). Because 

there is no feasible region in this space, automatic rearrangement of the design 

space is impossible with the CI based method. However, in the RI based 

method, rearrangement of the design space is possible because of the 

reliability index which reveals information of the whole feasible region. As 

shown in Fig. 4.34, the RI based method has information that the position of 

the whole feasible region in the initial design space is located in the lower left 
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so that movement to the 2nd design space is possible. For this reason, even 

though the designer defines the wrong design space due to the lack of 

knowledge or due to the mistake, the RI based method proposed in this study 

can automatically rearrange the design space. 

Fig. 4.35 shows the feasibility (%) of the design space for this case and 

shows the similar iteration number with above case. Moreover, there was no 

optimum in the initial design space but in the converged design space, it is 

found that two optima f(0,-1) = 3 and f(-0.6, -0.4) = 30 exist 

 

 

4.2.1.2 Branin Function 

n Start on feasible region 

This case is also same problem with CI base method. Comparing with CI 

based method, it has been converged into almost same design space as shown 

in Fig. 4.36 and table 4.15 and required iteration numbers decrease about 30% 

(see Fig. 4.37) 

 

n Start on infeasible region 

Starting design space of this case is (-5<x1<0, 5<x2<10) and it is 

infeasible region (see Fig. 4.38). Just like Goldstein function case, RI based 

method can find converged space which has same improved POS and design 

variables range with starting on feasible region case, as described in table 4.16. 

Furthermore, location and variable range of the starting design space is not 

a problem for RI based method as shown in Fig. 4.39. All test cases 

converged same design space, regardless of starting location (see table 4. 17). 
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According to the above results, it is confirmed that RI based method is useful 

and robust for DSE and rearrangement of the design space. 

 

 

4.2.1.3 Collaborative Optimization (CO) of Goldstein Function with 

Reliability Index 

n Start on feasible region 

In case of CO, definition of design optimization problem is same as 

section 4.1.1.3. The initial design space is summarized in table 4.18. If the 

range of the interdisciplinary variable z2 (y1) is specified like in the table 4.18, 

the range of y1 in the subsystem 1 becomes to -2 ~ 2. Because it includes the 

initial specified range -1 ~ 1, both the system and the subsystems have the 

common region and CO can be performed without any trouble to find the 

optimal solution. However, the design space does not contain the entire 

feasible region therefore; there is possibility that a higher quality of optimum 

solution could exist in the feasible region outside of the design space. 

Fig. 4.40 shows the result of performing design space exploration in the z-

space which consists of the system variable. Comparing with the former MDF 

result(sec 4.1.1.1 and 4.2.1.1), it is confirmed that the design space of this 

case is specified as a larger one. The reason is estimated that the system does 

not deal with x1, x2 variables directly but indirectly as z1, z2 (y1=x1+x2) 

variables. As a result, the design space is converged to a larger one than the x1 

and x2 of former case. 

Fig. 4.41 shows the feasibility (%) of the design space of this case and 

total 7 iterations were performed. It needs a little more iterations than the 
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former examples of RI based method for Goldstein function and this is 

because the system does not use feasible region information directly but 

presume the feasible region from information of subsystem design space. Also, 

high feasibility close to 0.6 is caused by regarding the common design space 

of the subsystems as the feasible region. 

 

n Start on infeasible region 

In this case, there is no feasible region in the initial design space and the 

range of the design variables (z1, z2, x2) is varied from 1 to 2 (table 4.19). 

There is no common space between the interdisciplinary variables (y1) and z2 

because y1 is 2 ~ 4 in this range. Therefore, it is impossible to perform CO. 

However, if the design space is rearranged by the proposed method in this 

work, the design optimization can be executed properly due to existence of 

the common space between y1 and z2. 

Fig. 4.42 shows the procedure of design space automatic rearrangement of 

this case. Just like above case, it is found that the design space includes the 

whole feasible region. Total 17 iterations have been performed in this 

procedure. Because the initial design space does not include any feasible 

region, about 7 iterations were consumed to find this feasible region. (Fig. 

4.43) 

Comparing with results of section 4.2.1.1, it took more iteration to find the 

feasible region and this is also caused by the lack of direct information from 

the feasible region. By adding the procedure of exploring the feasible region, 

the range of z1 variable presumed largely and consequently, the larger design 
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space is defined than above case and the feasibility is confirmed as a low 

value 0.35. 
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4.2.2 CO of the Transonic Wing with Low Fidelity Analysis Using 

RI Based Method 

This section’s CO problem is under same condition with section 4.1.2.3. 

To consider the efficiency of design procedure, artificial neural network 

(ANN) model has been constructed. In this study, ANN model consists of 

three layers – input, output and hidden layers. 

Since single analysis of this study requires relatively short time than other 

CFD analysis code based on Euler or Navier-Stokes governing equations, 55 

experimental points have been used for training of ANN model to obtain 

improved result. ANOVA results of the constructed model are shown in table 

4.20. As shown in table 4.20, maximum root mean square error (RMSE) is 

less than 0.02415 and minimum R2 is more than 0.995. According to above 

result, constructed model ensures reliable prediction of the objective and 

constraint functions. Moreover, sensitivity of the defined design variables to 

the objective and constraints function is shown in Fig. 4.44. It is clear that the 

Semi-span length is the most effect on the whole response, but t/c at tip is the 

least. Even so, it can be confirmed that L/D and Wfuel increase or decrease 

according to the change of t/c at tip. As stated above, defined design variables 

are adequate for aircraft wing design problem. SQP method that is one of the 

widely used gradient based optimization method has been applied to 

efficiently find optimal solution. 

Fig. 4.45 shows the converged design space by the proposed method. 

White rectangles are the initial design space, and hatched rectangles mean the 

converged one. Circles on horizontal axis indicate optimum point in the 

converged design space. The design space of semi-span, Wfuel, L/D, and range 
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are shrunk comparing with the initial design space, and those of taper ratio 

and t/c at tip are extended. The design space of the sweep angle and t/c at root 

are moved toward upper bound and lower bound of the initial design space, 

respectively. With above results, flexibility and degree of freedom to 

rearrange the design space of the proposed method can be verified. In general, 

as rearrangement iteration progressed, other design space exploration and 

rearrangement method moved toward biased direction. Table 4.21 summarizes 

optimal points obtained in the initial and the converged design space. The 

objective function, range is improved by 4.6% in the initial design space, but 

by 8.2% in the converged design space. However, due to the instable 

characteristic of CO, Wfuel increases by 2.0% in the initial design space and 

3.8% in the converged design space. Since each discipline is absolutely 

disconnected on subsystem level, matching condition must be introduced on 

system level optimization. So, equality constraint necessarily required on 

system level and it is very difficult to directly concern for most gradient based 

optimization algorithm. Hence, converts equality constraint to separated 

inequality constraints and deals with them. On this process, there is the 

potential that the opposite tolerances of separated inequality conditions 

produce unpredictable error and accumulate it. Even though optimal result 

violates Wfuel constraint, its amount is relatively small as compared with 

improvement of objective function. Considering instable characteristic of CO, 

this result can be acceptable. 

From these results, it can be confirmed that have the ratio of infeasible 

region in the initial design space is more than those in the converged design 

space for semi-span, Wfuel, L/D, and range. In case of t/c at root, optimal point 
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is laying on the outside of the initial design space, and the design space 

obtained from this proposed method offers the opportunity searching for 

better solution than optimum in the initial design space. 
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Fig. 4.31 Flow chart of the automatic design space rearrangement method 
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Fig. 4.32 Result of Goldstein function with RI 

 

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

1 2 3 4 5

Probability of Success mean of x1 mean of x2

 

Fig. 4.33 Convergence history of Goldstein function with RI 
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Fig. 4.34 The procedure of automatic rearrangement of the design space with 

RI based method 
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Fig. 4.35 The feasibility of the design space with RI based method
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Fig. 4.36 The procedure of automatic rearrangement of the design space with 

RI based method for Branin function 

 

 

Fig. 4.37 The feasibility of the design space with RI based method for Branin 

function 
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Fig. 4.38 The procedure of automatic rearrangement of the design space with 

RI based method for Branin function (start on infeasible region) 

 

Fig. 4.39 Converged design spaces with respect to starting location
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Fig. 4.40 The procedure of automatic rearrangement of the design space 
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Fig. 4.41 The feasibility of the design space
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Fig. 4.42 The procedure of automatic rearrangement of the design  
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Fig. 4.43 The feasibility of the design space 
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Fig. 4.44 Sensitivity analysis of selected design variables to the objective and 

constraints functions 
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Fig. 4.45 The initial and converged design space and optimal solution in the 

converged design space 
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Table 4.13 Design space and POS of the Goldstein function with RI based 

method (start on feasible region) 

 X1 X2 POS(%) 

Initial space (-1, 1) (-0.5, 1.5) 2.5298 

Converged space (-1.17, 0.63) (-2.10, 0.12) 14.0962 

 

Table 4.13 Design space and POS of the Goldstein function with RI based 

method (start on infeasible region) 

 X1 X2 POS(%) 

Initial space (0, 1) (0, 1) 0. 

Converged space (-1.17, 0.66) (-2.14, 0.12) 13.7216 

 

Table 4.15 Design space and POS of the Branin function with RI based 

method (start on feasible region) 

 X1 X2 POS(%) 

Initial space (-3, 2) (4, 9) 6.0865 

Converged space (-0.349, 8.711) (-1.456, 7.565) 30.4354 

 

Table 4.16 Design space and POS of the Branin function with RI based 

method (start on infeasible region) 

 X1 X2 POS(%) 

Initial space (-5, 0) (5, 10) 0. 

Converged space (-0.348, 8.711) (-1.456, 7.564) 30.4390 
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Table 4.17 Comparison of the initial and converged design space with respect 

to the starting location 

Case Total Iter. Init. Space Conv. Space 

1 6 
-5<x1<0 

5<x2<10 

-0.348<x1< 8.711 

-1.456<x2< 7.564 

2 7 
3<x1<5 

8<x2<13 

-0.349<x1< 8.711 

-1.456<x2< 7.564 

3 7 
8<x1<15 

-4<x2<-1 

-0.349<x1< 8.711 

-1.456<x2< 7.565 

4 8 
-9<x1<-2 

-8<x2<-1 

-0.349<x1< 8.711 

-1.456<x2< 7.564 

 

Table 4.18 the range of the design variables (system and subsystems) 

 variables min. max. 

System 
z1 -1 1 

z2 -1 1 

Subsystem 1. 
x1 -1 1 

x2 -1 1 

Subsystem 2. 
x1 -1 1 

y1 -1 1 
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Table 4.19 The range of the design variables (system and subsystems) 

 variables min. max. 

System 
z1 1 2 

z2 1 2 

Subsystem 1. 
x1 1 2 

x2 1 2 

Subsystem 2. 
x1 1 2 

y1 1 2 

 

 

Table 4.20 ANOVA results of constructed ANN model. 

 
RMSE R2 

Range 0.0141982 0.9984 

L/D 0.01730317 0.9976 

CL 0.00741811 0.9996 

CD 0.02414505 0.9953 

Area 0.0047938 0.9998 

Wwing 0.01296684 0.9987 

Wfuel 0.00919147 0.9993 

dtip 0.00589646 0.9997 
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Table 4.21 Results of the design optimization in the initial and converged 

design space. 

 
Baseline 

Initial 

Design Space 

Converged 

Design Space 

Semi-span (m) 14.220 14.190 14.113 

Sweep angle (deg) 24.50 25.324 26.218 

Taper ratio 0.204 0.210 0.220 

t/c root 0.131 0.123 0.118 

t/c tip 0.0830 0.0878 0.0845 

L/D 18.181 19.014 19.681 

Wfuel (kg) 10491.592 10704.780 10895.289 

Range (km) 3068.022 3208.589 3321.190 

Improvement of 

Range 
0 % 4.58% 8.25% 
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4.3 Discussion 

 

In this chapter, the Chebyshev inequality based method and the reliability 

index based method for the design space exploration and rearrangement have 

been proposed, and have been applied to a number of the test cases for 

investigation of the utility.  

For the Goldstein function and the Branin function, the initial design 

spaces of the both proposed methods have converged into the equivalent 

design space under the same starting condition. However, RI based method 

requires fewer number of iterations to find the converged design space in the 

majority of cases. Moreover, RI based method can find the converged design 

space under the starting condition on the infeasible region. For the 

aerodynamic-structural multidisciplinary design optimization of the aircraft 

wing, both methods have successfully converged into the higher feasible 

design space, also. Even the case of CO of the transonic wing, appropriate 

design space can be found using the proposed methods.  

Since the geometrical information included in the RI based method, more 

appropriate mean and deviation value of the feasible region can be obtained 

regardless of the location and size of the initial design space, and it promotes 

the efficiency and the robustness of the rearrangement process. Though, 

starting on the infeasible region, unexpected additional iteration is required to 

rearrange the design space into the feasible region. It is caused by the lack of 

information of the feasible region at the initial design space. Due to the 

unclear mean and deviation value of the feasible region, the initial design 
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space must be moved to the feasible direction by the size of the initial design 

space, and it aggravates the convergence efficiency. 

Consequently, it is verified that the proposed methods have the ability and 

the utility of the systematic rearrangement of the design space. 
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Chapter 5. Conclusions and Future Works 

 

In this study, design space exploration and rearrangement method to 

include more feasible region in the design process is suggested. To examine 

the validity of this method, two design variable function problem with the 

initial design space which has feasible region and infeasible region is applied 

to MDF and CO problems. Moreover, this method is applied to CO problem 

of the aircraft wing which three disciplines such as aerodynamics, structure 

and performance are combined to show its utility for complex and practical 

problem. As a result, the following conclusions can be made; 

(1) It is confirmed that whole feasible region can be covered with this 

method by several design space rearrangement process. Reliability index 

proposed an appropriate mean value as the indicator for searching feasible 

region. In both MDF and CO application, this method suggested a design 

space which includes valid feasible region though it did not have any feasible 

region in the initial design phase. 

(2) This approach is expanded into the multi-level application and it can 

mitigate the difficulty for defining the design space with incomplete 

information of a system and subsystems (disciplines). Each discipline 

searches for the design space satisfying its own constraints and the system 

controls the design space from subsystems’ design space. This procedure 

plays a part in the supplementation of incomplete information of a system and 

subsystems. 
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(3) The proposed method in this study offers higher possibility to obtain 

the global optimum. As appears out of Goldstein and aircraft wing problems, 

this method is identified to suggest the superior optimum value in the 

rearranged design space to the one from initial design space as more feasible 

region is included. In case of practical aircraft wing design problem, the 

objective function range achieved 8% performance improvement in the 

converged new design space while 4% performance improvement is shown in 

the initial design space. 

 

Although accomplished sturdy about the design space exploration and 

rearrangement, there are numbers of future works as ever.  

The most studies are concentrating on the closed and convex type design 

problems to avoid the complexity of the MDO problem. Though, in the 

practical design problem, there exist the design problem which has 

unconnected multiple feasible region. For this case, established study cannot 

provide the robust and reliable DSE and rearrangement strategy. Hence, 

proposed method should be extended to consider the unclosed and concave 

design problems.  

And also, total efficiency of the DSE framework should be reconsidered to 

improve convergence efficiency of the rearrangement process. Appropriate 

DOE method is required to reduce building time and cost of surrogate model 

which take the most of calculation time and cost. 
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초 록 
 

 

본 연구에 는  통계  법  이용한 계 공간  탐색과 

재 에 한 연구를 수행하 다. 계 공간  가용  

효  계산하  해 근사 모델과 몬 카를  시뮬 이  

법  용하 다. 시  법  이용하여 계 공간   도 

함수   분포 함수, 신뢰  지수 등   통계  수  값들  

효  계산하고 계 공  인하 다. 계산  계 

공간   통계  특  값들  , Chebyshev 부등식과 

신뢰  지수를 이용하여 좀   가용 역  포함하는 계 

공간  자동 재  수행하 다.  

, 안  법  검증  하여 수식  구  엄  

함수에 한 계 공간  탐색과 재  수행하여 용  

검증하 다.  가지  엄  함수에 해 단일 단계 최  법인 

다분야 만족 법 (multi-disciplinary feasible, MDF) 과 다단계 

최  법인 동 최 (collaborative optimization, CO)  

식 를 수행하여 다양한 다분야 통합 최  법에 한 

용  검증하 다. 그 결과  수  계 공간  초  계 

공간  외부에 놓여  포함 지 않았  가용 역  포함한 

공간  자동 재  었다. 이러한 결과를 탕  안  

법  인 다분야 통합 최 계 인 공 과 구조, 능 

분야를 함께 고 하는 항공  날개  다분야 통합 최  에 

용하 며, 단일 단계 최  불어 인 다단계 최  
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법인 동 최  법도 용하 다. 또한, 초  계 공간과 

수  계 공간 각각에  최 를 개별  수행하여 그 값 

들  하여 수  계 공간  가용 과 최 해가 초  계 

공간  값보다 향상  값  지니고 있  인하 다. 

이러한 결과를 통해 , 본 논 에  시   통계  법  

이용한 계 공간  탐색  재  법  다양한 다분야 통합 

최 계 에 용함에 있어 초  계 공간에  외  가용 

역 지도 포함한 가용 이 높  역  계 공간  

효  탐색하고 자동  재  할 수 있 며, 보다 향상  

최 해를 수  계 공간에  도출할 수 있  인하 다. 

 

Key Words : 공 -  다 야간 최  계, 항공  날개, Chebyshev 

등 건, 협동 최 화, 계 공간 탐색, 계 공간 재 , 

몬 카  시뮬 , 신뢰  지수 
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