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Abstract

Study on Design Space Exploration and Rearrangement
Using Stochastic and Statistic Approach
for the Multidisciplinary Design Optimization

Yong-Hee Jeon
School of Mechanical and Aerospace Engineering

Seoul national University

In this study, a stochastic and statistic approach for the systematic design
space exploration and rearrangement is proposed. To efficiently investigate
the feasibility of the design space, surrogate model and Monte Carlo
simulation have been used. With these methods, probability density function,
cumulative distribution function and reliability of the design space are
calculated to identify the probability of design success. Then, the design space
is moved and rearranged into the higher feasible region using Chebyshev
inequality and reliability index. First of all, a number of test cases composed
of algebraic functions were carried out to investigate the validity of the
suggested method. For two exact functions, multidisciplinary feasible and
collaborative optimization formulations were performed to verify the utility of
proposed methods. As a result, converged design space included the feasible
region located outside of the initial design space. Based on these results, the
proposed method was applied to the multidisciplinary design optimization of
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the aircraft wing which also considered collaborative optimization with three
subsystems (aerodynamics, structure, and performance). And then, design
optimizations were performed for the initial and converged design space
separately. Consequently, the feasibility and optimization result of the
converged design space were improved in comparison with those of the initial
design space. In conclusion, it is verified that the design space exploration and
rearrangement method proposed in this study has the capability of searching
for the feasible region which is excluded in the initial design space, and can

rearrange the design space into the higher feasible design space automatically.

Key Words : Aerodynamic-structural coupled optimization; Aircraft wing;
Chebyshev inequality; Collaborative optimization; Design space
exploration; Design space rearrangement; Monte-carlo
simulation; Reliability index

Student Number : 2001-30442
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Nomenclatures

English Symbols

A
AR
C

c
CysCisC;

c_root
c_tip
EF,G

BQ ~ M

T A S

Jacobian matrix
aspect ratio of a wing
root airfoil chord length or elastic constitutive matrix

speed of sound or vector of regression coefficients

regression coefficients

maximum camber of a wing root airfoil

maximum camber of a wing tip airfoil

inviscid flux vectors

total specific energy

cumulative distribution function or objective function
response surface model or probability density function
the c.d.f. of a standard normal distribution

i-th constraint function

transformed Jacobian

element stiffness matrix

Mach number

number of regression coefficients

number of candidate data points

number of sample data points

number of design variables

pressure or probability
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conservative variable vector

q heat flux

R residual vector

Re Reynolds number

S mesh area (volume) or wing area

t time

tr taper ratio of a wing

t_root thickness ratio of a wing root airfoil
t_tip thickness ratio of a wing tip airfoil
(U,V ,W) contravariant velocities

(u,v,w) velocities

w weighting factor

X vector of design variables or matrix of data point set or random
variable

x”,x'? design variables

y observed response

(x,y,z) Cartesian coordinates

Greek Symbols

a angle of attack

=

implicit residual smoothing coefficient
specific heat ratio
strain or error

mean of normal distribution
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0 linear twist angle of a wing

A spectral radius

U mean or expected value

7. temporary mean of the feasible region
P density

c standard deviation

(&,n,8)  generalized curvilinear coordinates
A eigenvalue of Jacobian matrix or sweep angle

Q probability space

Mathematical Symbol

\% gradient

A increment

VA second difference operator
Subscript

o0 freestream values
Superscript

baseline baseline value
th
n n time step

T transpose of matrix
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Chapter 1. Introduction

1.1 Motivations

In the last few decades, there are remarkable advancement of
computational capability and numerical analysis techniques such as
computational fluid dynamics (CFD), computational structural mechanics
(CSM) and numerical optimization methodology. It makes drastic change of
the traditional design process that depends on designer’s experience and
insight. In traditional design process, designer must make a lot of decisions
and corrections to obtain appropriate results on the sequential and repetitive
‘trial and error’ procedure as in Fig. 1.1. By the reason of above demerit,
numerical design optimization technique based on mathematical theory has
quickly replaced traditional design process. Numerical optimization technique
offers a logical approach to design automation, and enables engineers to
optimize large and complex system. To design more practical and complex
system that includes a number of mutually interact disciplines,
multidisciplinary analysis and design optimization must be considered.
Multidisciplinary design optimization (MDO) can be described as “a
methodology for the design of systems where the interaction between several
disciplines must be considered, and where the designer is free to significantly
affect the system performance on more than one discipline.”[1]

For the complex engineering system, life-cycle of the system can be
defined by a number of discrete phases from conceptual design to the

retirement. While each design phase has an individual and considerable effect
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on the design product, early design phase has the most leverage. It is clear that
the rapid accumulation of the knowledge and information about the given
design problem can reduce the design cost and can keep high level of the
design degree of freedom (DOF) from the outset to manufacture phase as
shown in Fig. 1.2. In a word, the decisions of early design phase have great
influence on the direction of the whole design process, performance and
efficiency of the design results [2, 3]. Therefore, the more careful
consideration must be given on the early phase of complex system design
problem. However, there exist only a few information and knowledge about
the given design problem at the initial design phase. Even though some
information is gathered with various methods, it is still insufficient to grasp
the characteristics of the design problem. Therefore, wide scope of the design
problem, which includes various objectives, constraints, and design variables,
should be carefully considered and explored to understand the design problem.
For the lack of information and knowledge about the given design problem,
the designer defines initial design space based on one’s own intuition or
experience, and searches for a feasible design solution within the initially
defined design space in most design problems [4]. However, this design space
has the infeasible region together with a few pieces of the feasible region in
the majority of cases. As the number of design variables and constraints
increases, the feasible region tends to decrease and it becomes more difficult
to define the valid design space that is physically reasonable and guarantee the
success of the optimization and the existence of the global optimum.

Especially in a complicated design problem like multidisciplinary design



optimization or multilevel design optimization, this difficulty may be more
severe.

In this study, an aircraft wing optimization coupled with aerodynamics,
structure, and performance is carried out to validate proposed method. Its
complexity is higher than that of the design optimization problem based on
single discipline analysis. If some information and knowledge for these three
disciplines are insufficient, it is difficult to define the reasonable design space
in the initial design stage. Hence, efficient and logical design space
exploration and arrangement method are greatly required to carry out the

multidisciplinary design optimization of aircraft wing.
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1.2 Literature Survey

Over the last several decades, various design methods such as the inverse
design method and the direct numerical optimization method have been
applied to diverse design problems for the airfoil and aircraft wing.

Among those established methods, the inverse design method has been
widely used as an efficient design method. Inverse design on the aerodynamic
configurations of the transonic airfoil and wing were also implemented based
on various governing equations and algorithms [5-12]. However, distributions
of the target pressure must be described by designer before the inverse design
starts. It is very difficult for each designer, and also has great influence on the
design results. To specify the optimal target distribution automatically, some
numerical optimization methods were adopted [13-17]. However, results of
the inverse design are thoroughly limited by its target pressure distribution
and it is very difficult to find and to guarantee the global optimum. Then,
direct numerical optimization methods based on mathematical theory have
quickly replaced inverse design methods as aerodynamic shape optimization
method. Direct numerical optimization methods couple the numerical analysis
codes and a numerical optimization algorithm to minimize or maximize the
objective function and satisfy the geometric and performance constraints.
Among numerous direct numerical optimization methods, the gradient-based
optimization algorithms have been widely utilized for conventional direct
numerical optimization [18-20]. For the first time, this type of design
procedure was introduced by Hicks and Henne to the design of three-

dimensional configuration [18]. Jameson et al. and Reuther et al. applied
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direct optimization method with an adjoint variable method for sensitivity
analysis to an aerodynamic configuration of the airplanes [19, 20]. Although
the gradient-based optimization algorithm is one of the most efficient
optimization algorithms, it cannot ensure the global optimum. Hence, global
optimum search algorithms such as genetic algorithm (GA) have been used
for the direct numerical optimization [21-26]. In recent years,
multidisciplinary analysis and design optimization to the complex three-
dimensional wing and aircraft configuration have been carried out intensely
[27-39]. It was successfully applied to various applications like aeroelastic
analyses and optimization of transonic transport wing, MDO of a supersonic
fighter wing, high speed civil transport (HSCT) configurations, and so on.

For the reason of computational efficiency and design cost, various
mathematical modeling of systems, approximation concepts, and
decomposition techniques have been developed for MDO problems.
According to the decomposition method, MDO formulation can be divided
into single-level and multi-level approaches. In single-level approach, only
one design optimizer exists, and each discipline just takes charge of analysis.
It can be categorized as three types roughly: multidisciplinary feasible (MDF),
individual disciplinary feasible (IDF), and all-at-once (AAO) approach [40].
In multi-level approach, a number of optimizers also exist to decide the design
variables on each subspace and system level. Each subspace optimizer decides
and controls its design variables which are assigned by the system optimizer,
and then the system optimizer coordinates whole subspace design variables

and results to merge into one: concurrent subspace optimization (CSSO),



collaborative optimization (CO) and bi-level integrated system synthesis
(BLISS) [41-43].

In addition to those studies, a number of approaches have been researched
to efficiently explore the design space and to find the global optimum using
stochastic criteria and approximation models [44-55]. DIRECT (dividing
rectangles) method which based on Lipschitz optimization method for finding
the global optimum of a multivariate function subject to simple bounds was
proposed by Jones et. al. [44] This method was modified to consider parallel
load balancing and to reduce the computational time of the design space
exploration by Baker et. al. [45], and it was applied to the multidisciplinary
design of a high speed civil transport (HSCT). Sevant et. al. used sequential
response surfaces to optimize the flying wing [46]. With this method, the
design space was sequentially approximated and modified to find the global
optimum. With approximation models and merit functions, Chung et. al. [47]
exploited the aerodynamic optimization of the small business jet, which
includes the noisy design space. Using proposed method can avoid the local
optima and predict global optima in fixed design space. Sasena et. al.
proposed efficient global optimization (EGO) for constrained global
optimization [48]. Kriging model and variance-reducing criteria were used to
reduce the root mean square error of the resulting meta-model, and DIRECT
algorithm was adopted to find the optimum of the infill sampling criteria.
Using these algorithms, the constrained global optimum on a highly nonlinear
design surface can be found efficiently and rapid design space exploration can
be done. In addition, a large number of probabilistic design approach have

been researched to efficiently explore the design space and to produce robust
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optimum using stochastic criteria and approximation models [49-55].
However, the design space exploration and rearrangement results of above
methods are limited within the initial design space in most cases. Because it is
hard for them to make the feasible region laying outside of the initial design
space included into the rearranged design space, it is impossible to search for
better solutions which exist in the outside of the initial design space. Thus, to
improve the feasibility, cautious and detailed exploration of the design space
must be carried out by including the feasible region laying the outside of the
initial design space. For the sake of this purpose, Jeon et al.[56-58] presented
rearranging method of the design space using Monte Carlo Simulation (MCS)
and Chebyshev inequality, and this method has a capability of searching for
the outside of the initial design space. However, they have some limits to
adopt various types of MDO problem. Hence, systematic and automatic

design space rearrangement method is still required.



1.3 Dissertation Objectives and Outline

For the complex system design, especially in case of MDO, it is more
difficult to define appropriate design space at the initial design phase.
However in the majority of cases, established design methods cannot define
the adequate design space if there are not enough knowledge and information
about the given design problem. To overcome above drawback, efficient
design space exploration method is highly required to rapidly grasp the
characteristic of given problem. Moreover, logical and systematic design
space rearrangement method is also required to define proper design space
automatically.

Therefore this study will propose the systematic design space exploration
and rearrangement method using statistic and stochastic approaches. This
method is applied to the design optimization problem of the exact function
with two variables, and from this problem, it will be confirmed that this
method has a capability of including the feasible region laying the outside of
the initial design space. In addition, in spite of no feasible region in the initial
design space, it will be presented that the design space can have a feasible
region from rearrangement of the design space. Finally, the proposed method
will be applied to the MDO of the aircraft wing, and its utility for the practical

MDO problem will be examined.
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Chapter 2. Numerical Analysis

To wverify the utility of proposed design space exploration and
rearrangement method on diverse design cases, supersonic fighter and
transonic transport wing is considered in this study. Therefore, two types of

aeroelastic analysis codes have been used according to application case.

2.1 High-Fidelity Aeroelastic Analysis

2.1.1 Aerodynamic Analysis

2.1.1.1 Governing Equation: Three Dimensional Euler Equation

The design range of supersonic fighter wing interested in this study is
from the transonic speed to the supersonic speed, therefore the aerodynamic
analysis code should be robust and accurate to take account of this wide range.
A high fidelity CFD algorithm modeling the three-dimensional Euler equation
is used to calculate the transonic and supersonic aerodynamic properties of the
supersonic fighter wing.

The three-dimensional Euler Equations can be written in the non-

dimensionalized, conservative form as follows:

0 O OF 3G _

+—+ =0 (2.1)
o4 ox oy 0oZ
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p pu pv pw
pu pu’ +p puv puw

O=|pv|,E=| pu |,F=| pp>+p |,G=| pw (2.2)
pw puw pvw pw’ +p
pe (pe + plu (pe+ plv (pe+ p)w

Where, Q is the conservative variable vector and E, F, G are flux vectors.
p is the density and u, v, w are the velocity components in the direction of x, y,

z-axis. e is the total specific energy and the pressure, p is defined as:

p= p(y—l){e—%(&f +v:+w )} (2.3)

Where, vy is the specific heat ratio. All geometrical dimensions are
normalized with the root chord length C'; the density is normalized with the
free stream value p,_; the velocity components are normalized with the free

stream speed of sound, ¢, ; and the pressure p is normalized with the free

stream value pwcwz; the total specific energy, e is normalized by cwz; the

time, ¢ is normalized by C/c,, .
Eq. (2.1) can be transformed from Cartesian coordinates (x, y, z) into

curvilinear coordinates (&, 7, {) as follows:

T=t, fé:fé(xﬂyﬂz)’ 77=77(Xayaz)a §=§(x,y,z) (24)

The Jacobian of transformation and metrics are expressed as follows:
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-1
J =X v,z 4 X, Y2, X, V.2, — X, V.2, —X, V.2, —X.V,Z, =Volume

§X:J(ynzg—ygzn), 5)7:J(an§_24xn)’ 5z:‘]xny§ _xﬁyn) 2.5)
nx:‘](y§z§_y§z§)’ n, —J(qui_zixg)’ ”zszgyi_xiyq)
<. :J(ye‘.zn _ynzaf)’ é/y :J(Ze‘.xn _anaf)’ ¢. :J(xafyn _xnyaf)

The resulting transformed equation is presented as follows:
a_Q+a_E+a_F+a_G:O (26)
or o0& on o<

pU pV pw
pul +¢.p L| Py . puW +¢ . p
E=7 pU+Sp |, F=7 vV +n,p |, G=7 pvW+Cp (2.7)
pwU +&.p pwV +1n.p pwW +¢_p
(pe+ p)U (pe+ p) (pe+ pW

U, V and W represent the contravariant velocities.

U=Su+&v+Sw
V=nu+nyv+nw (2.8)
W=Cu+g v+{.w

2.1.1.2 Spatial Discretization

Finite volume method (FVM) is relatively independent on the quality of
grid system and stable at the discontinuity of the flow. Therefore, FVM is

applied to discretize the computational domain with structured grid system in
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this study. If the divergence theorem is applied to the integral form of the Eq.

(2.1), the resulting equation is:

lniiﬂg}m+j] OF & O 5 06 E =0 (2.9)
J Ot J9de 4| 0& on o
Applying this relation to a single cell element, and using the mid-point

rule, it can be discretized as:

o0 . . . A 5 - -
1% f -E, +F | -F , +G -G ;=0 (210

1 1
i+, j k i~k i,j+—k i,j——k i)k~ i,j,k—
J 61 e =7 i 773 ok Sk

In Eq. (2.10), Q must be interpreted as a cell-averaged value. Setting AE
= An= A¢=1, thenJ"' can be interpreted as a cell volume. Other terms are
defined in Eq. (2.7). This relation is called semi-discrete, since the time

variable remains continuous.

To capture stationary discontinuities without oscillations, an upwind
method is used. In this study, Van Leer’s flux vector splitting was employed
to calculate the Jacobian matrix, and Roe’s flux difference splitting to solve
the flux vector.

The flux vector splitting methods of Van Leer [59, 60] is based on a

directional discretization of the flux derivatives. The flux vector is split as:
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E=E*+E 2.11)

where, E* has positive eigenvalue and £~ has negative eigenvalue. Van
Leer’s flux vector can be written for the generalized coordinate (&, 1) as in

the Eq. (2.12)

_ E=E
M>1, 1"
E =0
_ E*=0
M <1, R R
E =F
i |
. —uzx2
£ {nv( " C)+u}
/4
M<1, EiZ 7+
‘ ‘ f‘l+|:ny( u—20)+vi|
/4
1 ;{( —l)ﬁ(—b7+2c)+2c2}+l ?
S @ + 27 || (2.12)
_ \Y% —
where, ffzi%[Mil]z@, U=nu+ny, m=L (2.13)
c

n,, N, is the x, y components of the normal vector of &-constant cell

boundary, respectively and given as n,=&,/ | Vé‘| and n,=¢&,/ | Vé‘| .

Roe’s approximate Riemann solver [61] is adopted to calculate the

numerical flux at the cell interface because it is simple to use and shows good
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shock resolution in one-dimensional cases. Roe’s scheme can be clarified by

considering the following linearized equation.

o0

L4 40,002 =0 @.14)

ot

The numerical flux at the cell interface is:
1 - .
= E[E(erl) +E(Q,il)_ | AHi | (Q,-Iil - Q,il)] (215)
2 2 2 2 2

Where, A is a Jacobian matrix based on Roe’s averaging which leads to as

follows:

PrPy

Upg

%

“L\/p—L

o,

VL\/E (2.16)
V.

+hilp,

s

B
Il

<1
||
+ |+

=
)

ﬁaaaaa

S
Il

The flux difference can be obtained in the following manner

| A1(Q" - Q") = AE |, +|AE|, +| AE|, +|AE |, (2.17)
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S ~ . .
u Au—-n, Au
Ap
[AEL=A I (Bp==) v |5 AEL=Alp| Av-n, Au
2 2
q q
~ A —ulAu
T ESRRd
1
Ap+ pcAU | utn.c
| AE |3,4 =| A3,4 | (% (2.18)
2c vin c
H+cu

where A is the eigenvalues of Jacobian matrix based on Roe’s averaging,

and is given in the Eq. (2.19). ¢in Eq. (2.20) is a small positive number.

~|V
A —ilVEl
J
A, =A,
- V& (2.19)
A, =(u +C)T
~ Ve
A, =(u—0)7
| A | |A|>e
A=y AP+é’ A< (2.20)
2¢

To increase the order of spatial accuracy, Or and Q; are computed by
monotone upstream-centered scheme for conservation law (MUSCL) scheme.

Primitive variables are used to calculate the slope, since using the
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conservative variables gives slightly dissipative results for some problems

[62]. The MUSCL scheme is used with Van Albada limiter as follows [63]:

Qe =0, +025¢s [(1 = y)A_ +(1+ x9)A, ],

O =00 —0.25¢s[(1+ y)A_ + (1= x)A 1.,

A, =0,-0, A =0-0, (2.21)
2A A +¢

s=——————, £=1.0x10"
A+A " +¢

The spatial accuracy is determined by the values of ¢ and y.

¢ =0 : 1*" order upwind
¢ =1,x=-1 : 2" order fully upwind
¢ =1,x=1/3 : 3" order upwind biased approximation

2.1.1.3 Time Integration

Among the varied time integration techniques, Beam-Warming’s AF-ADI
(Approximate Factorization - Alternating Direction Implicit) scheme is
employed for time integration.

The time integration scheme adopted here is backward Euler time

integration and given by

lA—Q+D§J§?”+l +D F™ +D,.G™ =0
J At " ¢

AQ — Qn+l _ Qn

(2.22)
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Here, £E™', F™ and G"" are unknown values at the n+1 time step. Eq.
p- Eq,

(2.22) is linearized by using a Taylor series expansion.

En+1:EAvn+Ian(Qn+l _Qn)+0(At2)zEn +12["AQ
FAvnH:FAvn +én(Qn+l _Qn)+0(At2)zﬁn +énAQ

én+1:én+én(Qn+l _Qn)+0(At2)zGAn +énAQ (223)
4= p 0 &_00
00 o0 o0

By substituting Eq. (2.23) into Eq. (2.22), Eq. (2.22) can be expressed as

follows:

1
JAt

{—+D§AA[+DWZ§+D§CA’}AQ: —[D§E+Dnl:“+D4CA} (2.24)

Applying the 1* order upwind scheme to the left hand side of Eq. (2.24),

the resulting equation is as follows:

[J%+D§21* +Dg21’ +Dq’1§+ +D,7*1§’ +D§’C’+ +D;C’}AQ =—R"i

t

R =B+ E(@Y)].0s . ~[E @+ E @)1, (2.25)
[ @)+ B @Y s ~[E @+ F@D)] 10

e+ M) s -l @+ 6 @] 0
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AF-ADI scheme finds the inverse matrix by dividing the block diagonal
matrix into three tri-diagonal matrices. Eq. (2.25) is rearranged by applying

AF-ADI scheme as follows:
X Sweep:| -+ D A"+ DIA AQ” =-R"
P JAt : :

I A n . 1 -
YSweep:| —+D B"+D B |[AQ =—A
P [JAt " d } 0 =7n"e (2.26)

I N - 1 .
Z Sweep:|—+D.C"+D!C” |[AQ=—-A
P [JAt ¢ ¢ }Q JAt Q

Qn+1 :Qn + AQ

To accelerate the steady state solution, local time step method is used for
each cell’s individual time step. Furthermore, Saw tooth cycle multi-grid
scheme [64, 65] and implicit residual smoothing [66] scheme are also adopted

to accelerate convergence of analysis and to stabilize analysis code.

2.1.14 Grid System and Validation

As shown in Fig. 2.1, (O-H) type wing mesh is used for aerodynamic
analysis. The O-type airfoil grid is generated by the transfinite Interpolation
technique and is expended toward spanwise direction to produce the wing
mesh of O-H type grid topology. Total number of mesh size is (121x33x33).

In order to validate the accuracy of the developed numerical analysis code,
the transonic flow field around the ONERA M6 wing was evaluated and
compared with the experimental data of Schmitt et al [67]. Fig. 2.2 shows the

pressure contours on the upper surface of the ONERA M6 wing and compares
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C, distribution between the computed surface pressure distribution and the

experimental data for two different spanwise locations.
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2.1.2 Structural Analysis

To build detailed structural model of the wing, each parts of the wing
structure those are spar, rib and skin have been modeled individually. Nine-
node shell mixed finite element has been used to facilitate the structural
modeling of the wing component. To connect the structural analysis code and
the aerodynamic analysis code, automatic mesh generation algorithm using
non-uniform bi-cubic spline composite surface method is used to transform
aerodynamic mesh to finite element mesh. VMT method is adopted to transfer
aerodynamic force to the structural analysis code. Minimum size of structural
component has been determined to bear ultimate loading condition and the

buckling of upper surface.

2.1.21 Nine-node Shell Mixed Finite Element and Drilling DOF

Nine-node shell mixed finite element is utilized for the structural analysis
in this study. The element has three translational degrees of freedom (DOF)
and two rotational DOF per node as shown in Fig. 2.3, and therefore each
element has 45 DOF. The element is constructed on the basis of the Hellinger-
Reissner principle with the assumed displacement field as well as the
independently assumed strain field, which lead to the equilibrium Eq. (2.27)

and the compatibility Eq. (2.28).

[ SE CEdV —W =0 (2.27)
14
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j SETC(E - E)dV =0 (2.28)

where £ and SE are the displacement dependent strain vector and its
virtual strain vector, respectively, E and OE are the independent strain
vector and its virtual strain vector, respectively, C is the elastic constitutive
matrix, OW is the virtual work done due to external load, and V is the
volume of integration.

To improve the element performance by reducing the locking effect and
suppressing the spurious modes, the assumed strain field of the present
element is defined as Eq. (2.29) with 38 independent parameters. Because
these parameters are eliminated in element level, additional computation time

is negligible.

e.=a, +a,é+an+aidn+ald +a sl
+ong +adng +auin’ +ay,én’g

€, =a,+ta S+an+a,én+a,d+a,éC
+o g + o, End +an, S +adng

E,=0, tad+tayn+ta,dn+a,l+a,id
+ NG + 0, ENe

£, =0y + 0o, & +ayn+aén+oaEn

£, =0y + 0630§ oy n+ a32§77 + a36§’72

(2.29)

In spite of three translational DOF and two rotational DOF per node,
normal direction of the surface may not be continuous for the modeling of

complicated structures such as wing boxes. Because the rotational
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deformation of discontinuous surface cannot be expressed with only two
rotational DOFs per node, “drilling degrees of freedom” is adopted to the

elements [68], as shown in Eq. (2.30).

ui
vi
K 0
Kege=|ms =01 (2.30)
9x45 9><g gxi
0,
02[

where K is the element stiffness matrix of nine-node shell mixed element
without the drilling DOF, and K, is the element stiffness matrix associated

with the drilling DOF.

2.1.2.2 Validation of Nine-node Shell Mixed Finite Element

The performance of the element is validated with cut-out hemisphere
subjected to alternating point load as shown in Fig. 2.4. Cut-out hemisphere is
representative test problem for validation of shell element. Since hemisphere
has a doubly curved configuration, it is important to model curved surface and
to avoid a membrane locking simultaneously. The geometry and material
properties of the hemisphere are shown in Fig.2.4, also. Both ends of
hemisphere are under free condition. A pinched hemisphere, with two inward
and out ward forces 90° apart can be modeled using symmetry boundary

conditions on one quadrant.
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The radial displacement at the loading point is normalized by the result of
Simo et. al. [69]. Fig 2.5 shows normalized displacement at the loading point
vs. mesh size. The results indicate that the element has good accuracy as well

as convergence characteristics for structural analysis

2.1.2.3 Modeling of Wing Structure

To combine CFD with CSM, the automatic mesh generation algorithm is
adopted to construct CSM mesh with the wing surface information obtained
from CFD mesh. Non-uniform bi-cubic spline composite surface method is
used to transform CFD mesh to CSM mesh. The leading edge flap and the
trailing edge flap are not considered due to their negligible contribution to

wing stiffness as shown in Fig. 2.6.

2.1.24 CFD and CSM Connection Scheme
In this study, “VMT (V:shear force, M:moment, T:torque) method” is

adopted for transformation. VMT transforms aerodynamic forces to structural
nodal forces maintaining shear force, moment, and torque equilibriums. The
wing is divided into several parts for multi-VMT method as shown in Fig. 2.7.

Since the major deformation of the wing is due to bending and torsional
behavior, it is assumed that the geometry of airfoil is not changed during
deformation. Therefore, only the translations and rotations of airfoil are
considered to create a deformed CFD mesh.

The deformation can be described by the translation of the trailing edge

and the rotation around the trailing edge. The deformed shape of wing in span
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direction is determined by the new location of airfoil due to translations and

rotations with the second order spline interpolation of the airfoil sections [70].

2.1.2.5 Sizing of Structural Component by Ultimate Loading
Condition

Before multidisciplinary design starts, minimum size of structural
component should be determined to bear expected ultimate loading condition.
DaDT (Durability and Damage Tolerance) allowable method is used for spar,
rib, and lower skin which are subjected to tension forces. Secondly, the
minimum size of the structural component is determined to withstand the
buckling. The buckling load of the upper skin is obtained by the analysis of an
idealized equivalent rectangular panel.

In this study, four parameters which are upper and lower wing skin’s
thickness at the root and tip are selected as the structural design variables.
Those are most important design parameters because the largest compressive

and tensile stresses are induced on those regions.
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2.1.3 Aeroelastic Analysis

The structural deformation of the wing changes the distribution of the
aerodynamic force on the wing surface and this altered aerodynamic force
distribution has a reverse influence on the structural deformation (Fig. 2.8).

For the static aeroelastic analyses, there are two CFD/CSM analysis code
coupling method. First one is loose coupling method. First of all, aerodynamic
analysis is performed to obtain converged aerodynamic force distributions,
and then it is transformed the structural forces and transferred to FEM code.
After FEM analysis, deformation information is transferred to the grid
generation module and updates the aerodynamic and structure grid. With
regenerated mesh, next iteration of the static aeroelastic analysis is repeated
until it converges (Fig. 2.9). However, this method requires about 4-7 times
aeroelastic analysis iteration and it is very time-consuming and inefficient.

To overcome above problem, tight coupling method is introduced. During
the iteration of the flow solver, the FEM solver is called and executed per
every specified number of iteration, and then renews aerodynamic and
structural meshes. The static aeroelastic analysis is performed until the flow
solver is converged. This method requires only 30% to 50% additional time
for the CFD calculation and it’s very efficient compared with the loose
coupling method.

To validate the adequacy of the tight coupling method, the displacements
of the wing tip are calculated by both methods and compared in table 2.1 and
Fig. 2.10. The main wing of T-50, the baseline wing of the optimization, is
used for this calculation and Mach number is 0.9. The leading edge flap is

rotated downward by 10° and the angle of attack is 10°.

-27-



7777777
Nt /////,,,f//// 7

‘,"'\-‘)‘.“““Il"”///

S
v’\\\\\‘\\\\“‘hw///

=
o

.
i

-

-

-
o2

IIIII//;//

S

S5

S
S\t

2o
KL

RO o N
NS IS ) ////
WO/
il Y i
I O N 0

"y,

S

NS
ERTIORD NN
Il““g\\‘\::\\\:&/

N e

........

Ny

| XY T .

5 NN
SR ////////lmm“\\\‘\\\\\

RS //////IIll" ||“\\ \

Fig. 2.1 O-H type grid system (121x33x33)

_28-



£3.54% Span Cp Distribution
(Exp. Yalue 3t 90% Span)

46.74% Span Cp Digtribution
[Exp. Value 3t 44% Span]

Fig. 2.2 Pressure contour on the upper surface and comparison of the
measured and computed surface pressure coefficients of the ONERA M6

(M.=0.84, 0=3.06°, Re=1.1x10")
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Fig. 2.3 Nine-node shell mixed element [37]

Fig. 2.4 Cut-out hemisphere problem
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Fig. 2.5 Cut-out hemisphere problem result

Fig. 2.6 CSM model of the fighter wing [37]
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Fig. 2.7 Multi-VMT method [37]

i Pressure mapping algorithm [ IS

Aerodynamicforce

aerodynamic/structural [ Structural analysis

analysis

| Aerodynamic analysis 1

\.________—/1 Displacement mapping algorithm E

Deflection of the wing
l '

Fig.2.8 The Schematic of aeroelastic analysis between CFD and CSM
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| Start Analysis I
| Start Analysis | *

* —>| Aerodynamic analysis id—
I Aerodynamic analysis |<-—

I Structural analysis |

s it a specific
iteration no.?

I Structural analysis

s structura
deformation
negligible?

No

Converged?

Yes

End analysis

End analysis

Fig. 2.9 Coupling methods of aeroelastic analysis

Baseline Wing
Loose Coupling Method
Tight Coupling Method

Fig. 2.10 Comparison of the aeroelastic deformations of the wing between

loose and tight coupling method
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Table 2.1 Comparison of aeroelastic displacement of wing tip by each method

Analysis Method Loose Coupling Tight Coupling

Displacement (inch) 2.16701232 2.1676974
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2.2 Low-Fidelity Aeroelastic Analysis

In addition to high-fidelity aeroelastic analysis code for the supersonic
fighter wing, low-fidelity aeroelastic analysis code for the transonic transport
wing has been adopted to consider varied paradigm of MDO problem. In this
study, CO which is representative multi-level design method is applied to the
wing design for a commercial aircraft of DC-9, considering aerodynamics,
structure, and performance disciplines.

For disciplinary analyses of the aircraft wing, vortex lattice method (VLM)
is used for aerodynamic analysis and Wing-box modeling for structural
analysis. Fig. 2.11 shows each simplified analysis model and grid systems.
Each analysis module is decomposed along aerodynamic and structural
disciplines. Weissinger method is applied as a VLM, in which aerodynamic
force is computed from the planar geometry of the lift surface created by the
superposition of vortex filaments, and trapezoidal vortex ring is distributed on
the lift surface to consider the effect of mean camber line of the wing section.
To consider the compressibility, Prandtl-Glauert rule is used, under the
assumption of small disturbance. Induced drag, skin-friction drag, profile drag
and wave drag are considered as to compute total drag. Induced drag is
computed by Treffz Plane analysis, profile drag by empirical equation and
wave drag by Crest-Critical Mach number method. Besides, the wing
structure is modeled by 20 segments in a direction of span. Based on the fact
that the leading edge and the trailing edge take a little role in transferring the

load from the wing to the fuselage, the wing-box endures main load applied to
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the wing. Upper and lower skin, spar and rib consist of the wing-box. More

details and validation of analysis code are given in Ref. [71, 72].
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Aircraft wing geometry
& configuration

VLM model

» chordwise 10 grids
»spanwise 20 grids

Wing-box model

»spanwise 20 grids
» Skin, spar, stringer, rib

Fig. 2.11 VLM model and wing-box model aircraft wing [71]
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Chapter 3. Stochastic Approaches for the DSE

and Rearrangement

In this study, establishment of the systematic design space exploration
(DSE) and rearrangement method is main objective. To achieve this goal,
surrogate model is used to consider the efficiency of the MDO and DSE.
Monte-carlo simulation (MCS) is also adopted to investigate the probabilistic
quality and quantity of the whole design space. Probabilistic values of the
design space obtained with surrogate model and MCS are used for
rearrangement of the design space. Detailed description about stochastic

approaches used in this study is following.

3.1 Surrogate Model

In a large percentage of cases, the MDO problem has a number of
disciplines which are strongly coupled each other. For that reason, relatively
huge amount of calculation time is required then single discipline analysis.
Therefore, efficiency of analysis is the key point for appropriate MDO
framework. To resolve the crux of analysis efficiency, surrogate models
frequently replace the analysis code in the most part of MDO problem.
Second order polynomial regression model of response surface method
(RSM) and artificial neural network (ANN) is used to replace the analysis

module in this study.
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3.1.1 Response Surface methodology

Response Surface Methodology (RSM) is a collection of statistical and
mathematical technique useful for developing, improving, and optimization
process. RSM uses Design of Experiments (DOE) techniques, regression
analysis, and Analysis of Variance (ANOVA) collectively [73].

RSM is widely used for an efficient tool of design/control since it is

expected to have following advantages over other direct optimization methods.

® Compared with other optimization methods, it can be simply
implemented.

® [t smoothes out the high frequency noise of the objective function and
is thus expected to find a solution near the global optimum.

® Various objectives and constraints can be attempted in the design
process without additional numerical computations.

® [t can be effectively applied to MDO problems with many objectives
and constraints.

® [t does not require a modification in analysis codes.

However there are some drawbacks to RSM. The range of the design
parameters highly affects the fitting capabilities of the RS models. The wide
range may increase the prediction error such that the predicted performances
cannot be exactly obtained. RSM has also a limitation on the number of the

design parameters because the computation time for the construction of the
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RS models is proportional to the square of the number of the design
parameters.

The response surface model is usually assumed as a second order
polynomial as Fig. 3.1, which can be written for n, design variables as

follows:
Yy =c, + Zcix,.(p) + Zcijxi(p)xj(p) +¢, p=L..n 3.1

(p)

where y'” is the response; x”’ and xj.”) are the n, design variables;

¢,, ¢; and ¢, are unknown coefficients; and ¢ is an error. The second
order model of Eq. (3.1) has n, =(n, +1)(n, +2)/2 regression coefficients.

For n; sample data points, Eq. (3.1) can be written in a matrix form as

=[x+ {e} (3.2)

where vector {y} has n; dimensions, and the matrix [X] is a [n; X 1,] matrix.
We can determine the vector of regression coefficients {c} using the method
of least squares so that L, norm of the error vector {&} is minimized. The least

square estimator is defined as

= (3.3)



The least square estimator must satisfy zero as following,

{2 f o] b} o L) - o G4)

Oc

Thus, the regression coefficients {c} is determined as,

b= (T )" [xT (3.5)

3.1.2 Artificial Neural Network

ANN model in this study consists of three layers — input, output and
hidden layers as shown in Fig. 3.2. The transfer function, S(x) connecting

information of between neurons in layers is a sigmoid function such as Eq.

(3.6).

S(x) = (3.6)

—-X

l1+e

Neurons in the hidden and in the output layers are calculated as Eq. (3.7)

and (3.8).
Hj = SHidden[cj +Zainij = H =0 X (37)
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Yk = SOumut {dk +ijkHj] :>Y = (DOutautH (38)
J

Where, X is the input variables vector, Y is the output variables vector and
H is the vector of the hidden nodes. The a, b, ¢, d and @ mean weights of
neurons. Using above equations, the correlation of input variables (design
variables or flow condition; X) and output variables (unknown variables of
the reduced order model; Y) is replaced with weights of ANN (®uiddens
®0utout)-

Because output variables can be variously formulated as cross and power
terms of input variables, it is difficult to determine the form of output
variables as polynomial expressions. ANN transmits the linear combination of
input variables to a hidden layer by a transfer function, and then the linear
combination of values in a hidden layer is propagated to an output layer. That
is, ANN itself can select terms that represent output variables due to its
structure as mentioned before. The weight of ANN obtained from a series of
this procedure determines whether input variables are mutually independent
or not.

Levenberg-Marquardt algorithm is a variation of Newton’s method that
was designed for minimizing functions that are sums of squares of other
nonlinear functions. This is very well suited to neural network training where
the performance index is the mean squared error. This algorithm finds an
optimum by searching along direction that a gradient descends through

sensitivity information and a modified Hessian matrix [74].
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3.2 Design of Experiment (DOE)

Design of experiment (DOE) is the design by information-gathering
exercise in the design space that is the region where design variables exist.
The simplest way to improve surrogate model accuracy is screening
experiment points as much as possible. Full factorial design extracts a large
number of experiment points to reproduce a real design space more accurately.
2k and 3k full factorial design is the most widely used, and they extract 2" and
3" number of combinations of n design variables. However, as n becomes
large the evaluation of both 2" and 3" full factorial design becomes impractical.
A full factorial design is used for ten or fewer design variables.

In order to reduce the number of the required numerical experiments,
another DOE known as central composite design (CCD) may be used. In CCD
a 2" full factorial experimental design is employed along with 2n “star” design
points and one or more “center” design points. A three variables CCD is
shown in Fig. 3.3.

In this experimental design, the star points lie outside the boundary
created by 2" full factorial design points. The distance from the star points to
the center of the CCD typically varies from 1.0 to N Using the response
data from 2" +2n+1 experiments specified by a CCD, a quadratic response
surfaces may be constructed. As with 2" and 3" full factorial designs, the
number of required CCD experiments also becomes impractical as #n becomes
large.

Therefore, D-Optimal design is more frequently used for the large number

of design variables. D-Optimal experimental designs provide an attractive
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method for creating experimental designs inside an irregularly shaped design
space. In addition, D-Optimal experimental designs require fewer than
2" +2n+1 response values needed for central-composite experimental

designs. A sample D-Optimal design is shown in Fig. 3.3.
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3.3 Analysis of Variance (ANOVA)

After estimating the coefficients in the response surface (RS) model,
analysis of variance and regression analysis produce a measure of uncertainty
in the coefficients. This uncertainty estimation is provided by ¢-static defined

as:

C;_
t:/—l j=1,...,n

V&I X X))

(3.9)

Where 6? is the estimation of variance. Coefficients with low values for
the t-static are not accurately predicted. Allowing poorly estimated terms to
remain in the RS model may reduce the prediction accuracy of the model.

One of important statistical parameters is the coefficient of determination,
R’, which provides a summary statistic that measures how well the regression

equation fits the data. It is given as,

»_ SSR _, _ SSE .10
SSTO ~ SSTO

Where, SSTO means the total sum of squares and SSE is error sum of
squares.

However, a large value of R’ does not necessarily imply that the
regression model is a good one. Adding a variable to the model will always
increase R’, regardless of whether the additional variable is statistically

significant or not. Thus it is possible for models that have large value of R’ to
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yield poor predictions of new observations of the estimates of the mean
response. Because R’ always increases as we add terms to the model, some

regression model builders prefer to use an adjusted R’ statistic defined as,

2
Rw =

n.—n

s re

SSE/(n,—n,.) 1_[ n,—1

- SSTO/(n,—1) J(l I G-1D

Where SSE is the error sum of squares and SYY is the total sum squares.
Typical values of R, are from 0.9 to 1.0 when the observed response values

are accurately predicted.
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3.4 Monte-Carlo Simulation (MCS)

In this study, rapid collection of the whole design space information is
important so that Monte-Carlo simulation (MCS) should be performed to an
approximated model. In case of the function composed of algebraic
expression, it is not a big issue, but solving the partial differential equation
(PDE) like Euler equations, it could take from several times to a few days to
get a single output. Therefore, if it is not an algebraic expression, it is efficient
to construct surrogated model, e.g. 2nd order polynomial or neural network.
By performing the MCS to the constructed approximate models, the ratio of
occupation of the feasible region in the design space (probability of success;
POS) and reliability index (k) of the each sample are calculated. MCS is also
applied to evaluating the distribution of the objective functions and the
constraints. Because required time of function evaluation is reduced with
surrogate model, about 2*° (about one million) number of the sample points
are used for accuracy of the MCS. Sample points are randomly generated with

the uniform distribution and the standard normal distribution.
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3.5 Calculate the probability of success

Joint probability formulation is needed to evaluate the probability that
satisfies simultaneously the distribution of the joint random variables.
Typically, it was used to two formulations that the joint probability model and
the empirical probability function. This density function is an analytical
probability model that represents the joint distribution from given

corresponding means and standard deviations and represented by:

_ 1 1 X~ Hy >
fXY(x’y) 27TGXGYWGXP{2p2 _2[( GX ) (3 12)
o, o, o,

Where, for random variables X and Y, uy and uy are the means, oy and oy
are the standard deviations, and p is correlation coefficient. Limited
information is only required for this model, which guarantees the flexibility
for the application. However, in the case of aircraft design that is complex
system with many design variables, it is difficult to obtain correlation
coefficient. If the number of the random variables is 7, correlation coefficient

should be calculated as many as the combination selecting » among n (I <r <

>.,C =Y ,C -n=2"-n (3.13)
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On the other hand, the empirical distribution function is based on
empirically collected data samples. Since this model is not needed the
correlation coefficient, it is more useful than the analytic model. In addition to,
the empirical model has the most accurate joint distribution prediction,
because it does not rely on any approximation methods to generate the
criterion statistics needed.

The empirical function is depend on sample data and is not concerned
about the distribution of random variables. If sample data is enough, then the
joint distribution can be predicted accurately. But if too many, much time is
spent in the design process.

The joint probability mass function is defined by

1 n
f(xl’XZ’.“’xm)zzzl((aH’ail’.“’aim):(xlﬁxlﬁ.uﬁxm))
i=1

1 for(a, <x,,a, <x,,+,a, <Xx,)

in n

0 otherwise

I((amaizf"ﬂaim) =(x17x27.“7xm))={
(3.14)
Where, a; is the sample values derived from a sampling method such as

MCS and x; is random variables.

The joint probability distribution function is similarly given by
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1 7
f()cl,xz,m,xm)=;Z:I(a,.1 <X,a, <X,,0,a, SX,)
i=1

1 for(a, <x,,a,, <x,,-:-,a, <X,)

in n

I(a, <x,,a,<x,,-,a, <x,)= ]
0 otherwise

(3.15)

In this paper, a; is predicted values of the objective function from MCS
and x; is 1 in the case of satisfying all constraints and 0 otherwise.
The joint probability of success is the probability that all constraints is

satisfied and is defined by

1 M
babili =— > I(Z
probability of success v Z (

J=1

jminSZjSijax) (316)

for the empirical distribution function with M = number of samples,
Zmax
probability of success = L f(Z2)dz (3.17)

for the joint probability model. Generally, as the probability of success is
higher, the feasible region is larger.

Fig. 3.4 is shown geometrically the probability of success with two
objective functions [75]. It is decided by overlapping high humps in the

interested region and the ring is the same probability.
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3.6 Chebyshev Inequality Condition

For the MDO problem, there are not enough information and knowledge
about the given design problem at the initial design phase, in most cases. In
the worst case, designer cannot define suitable range of design variables at the
initial design phase due to above reason. As a result, there can be no feasible
region within the design space. Therefore, initial design space which has no
feasible region or has just tiny feasible region should be rearranged into the
proper design space to include feasible region for the success of design.

Chebyshev inequality condition is applied to the modification of the
design space in order to improve the feasibility of the design space.

Chebyshev inequality condition can be written as:

2

P{Ix—,u|38}21—z—2 (3.18)

Where u is the mean value, o is the standard deviation of the random
variable x and ¢ is arbitrary positive range. If x has normal distribution and &

equals 20, the probability can be calculated as:
P{x—n|<20}=2G(2)~1=0.9545 (3.19)

In a word, the probability that x exists inside the interval (-2¢;, 20) is about
95%. However, if the distribution of the random variable is unknown,

adjusted Chebyshev inequality condition for the uniform distributed random
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variables is used. For the uniform distributed random variables, the
probability that x exists inside the interval (-3, 30) is at least 8/9. If the mean
and standard deviation values of the design variables which exist on the
feasible design space can be obtained, designer can rearrange the design space
into the improved feasible region using Chebyshev inequality condition as in

Fig. 3.5.
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3.7 Reliability Index

POS is calculated by the number of the samples which satisfy all the given
constraints through spraying about one million samples into the design space.
If the feasible region is very small or even it does not exist, several millions of
samples are not enough to find the feasible region from the design space
exactly. However reliability index based method proposed in this study can
search the feasible design space efficiently, even though there is no feasible
region within the initial design space. The reliability index at the sampled
point defined as Eq. (3.20) is calculated by using the Monte Carlo simulation
and surrogate model. Even though the feasible region cannot be found exactly,
approximate location of the feasible region can be inferred with reliability

index.

ko=—<L  i=1em (3.20)

In above equation, g; means i-th constraint, o,; means deviation of g; and m
means the number of constraints. Each g; value at sampled design point can be
easily evaluated via Monte-Carlo simulation using surrogate model. If g; is
negative, it satisfies the constraint and o,; shows the variation of g;caused by
disturbance of input. Therefore, the reliability index (k;) at the sampled point
physically means the distance of the sampled point from the boundary of g;. In
short, if k; of a sampled point is positive, it satisfies constraint g; and as the

value of k;is larger, the sample is farther from the boundary of g. On the
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contrary, if k;is negative, it does not satisfy g; and as the value of k;is smaller,
the sample exists farther from the region which satisfies g;. From k; which has
these characteristics, each sample should choose the minimum £; value as a
representative so that it can be estimated whether the sample exists in the
feasible region or not.

Using the decided reliability index, temporary mean w, should be chosen
as shown in Eq. (3.21). This means that the input value which has the largest &
value among the reliability indexes (k) of each sample is taken as the mean
(uy) of the feasible region and at the same time, choosing the largest £ among

critical & values.

U, = argmax (min k,.) ;o oi=1m (3.21)

xelinputof MCS sample}

As shown in Fig. 3.6 (a), if the design space includes the feasible region
completely, the mean of the feasible region, the mean of the input and the
mean from the reliability index are close together. However, as shown in Fig.
3.6 (b), if the design space does not cover the real feasible region, the mean of
the input could show some difference with the mean of the real feasible region
whereas the mean defined in Eq. (3.21) could approach to the mean of the real
feasible region. Therefore, deciding the mean as shown in Eq. (3.21) is more

efficient way to search the real feasible region than just using the input mean.
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Chapter 4. Design Space Exploration and

Rearrangement Results and Discussion

In this chapter, design space exploration method using surrogate model
and MCS will be proposed. Using surrogate model and MCS, probabilistic
quantities and qualities of the design space and all variables are efficiently
investigated. With these probabilistic data from DSE, feasibility of the design
space is investigated and then rearranges the design space into the updated
space which has higher feasibility. To update design variable range,
Chebyshev inequality condition and reliability index (RI) is adopted to
determined new design space.

This method is applied to the design optimization problem of the exact
function with two variables, and from this problem, it will be confirmed that
this method has a capability of including the feasible region laying the outside
of the initial design space. Finally, the proposed method will be applied to the
design optimization problem coupled disciplines of aerodynamics, structure,
and performance, and from these results, it will be showed that this method

can search for better solution than an optimum in the initial design space
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4.1 DSE and Rearrangement of the Design space to
Improve the Feasibility with Chebyshev Inequality

DSE and rearrangement procedure using Chebyshev inequality is shown
in Fig. 4.1. At the very first, define the problem and the initial range of design
space, and then surrogate model of the defined problem is constructed to
consider the efficiency of evaluation during whole design process. Then
Monte-Carlo simulation (MCS) is implemented to obtain the probabilistic
quantities and qualities of the design space with constructed surrogate model.
Through the Monte-Carlo simulation, probabilistic and statistic quantities of
the design space such as probability of success (POS), reliability index value,
mean or deviation of design variables can be calculated. In the case of
Chebyshev inequality based method, convergence check procedure is directly
done using calculated POS and mean values of the present design space. If the
present design space satisfies convergent criteria, rearrangement iteration
finishes instantly and optimization process will start. On the other hand,
rearrangement procedure based on Chebyshev inequality condition will be
performed to update the whole design variables range with calculated mean
and deviation value of the current feasible region, and then next iteration will
start for updated design space. Through a number of iteration, the design

space steadily converges into the higher feasible region.
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4.1.1 Test Functions

For the validation of the proposed design space exploration and
rearrangement method, Goldstein function and Branin function are selected.
These functions are the representative test functions for the MDO problem
which have nonlinear characteristics and multiple local optima and global
optimum simultaneously. For the validation of proposed method, test
functions are subjected to relatively simple constraints to remove the absence
of feasible region on the design space. Moreover, these simple constraint

functions make design problem into the closed form.

4.1.1.1 Goldstein Function

Goldstein function which has two variables (x;, x,) and four local optima
was selected as test function, and two constraint functions (g;, g.) was

considered as following.

f={+(x +x, +1)°(19=14(x, + x,) +3(x, + x,)°)}
{30+ (2x, =3y, + > (18 —16(2x, —3y,) + 3(2x, —3y,)*)},
(where, y, =x, +x,) 4.1)
g,=05(x, +1.4)* +x, <0
g, =(x,—02)’ +x, -1.5<0

Goldstein function has the global optimum value at (0,-1) located in the
feasible design space, and three local optima exist simultaneously as shown in

Fig. 4.2.
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Among those local optima, a local optima exists on the feasible region at
(-0.6, -0.4) as shown in Fig. 4.3. Therefore, optimum value of the initial
design space is -0.6, -0.4)" = 30.

To perform DSE and rearrangement using Chebyshev inequality, the
initial design space has been defined as shown in table 4.1. POS of the initial
design space is about 2.53%. After eight iterations, the converged design
space includes whole feasible region as in Fig. 4.3. During the iteration, each
variables mean and POS have been changed as in Fig. 4.4 and POS has been

increased up to 15.26%.

4.1.1.2 Branin Function
Branin function has two variables (x;, x;) and three optima at (-t , 12.275),
(m , 2.275) and (9.42478, 2.475) with f{x; x;)=0.397887. Two constraint

functions (g;, g2) have been considered as following.

51 , 5 ? 1
Fx,x,) = %, ——5x +=x, -6 | +10/1-— |cos(x,)+10
ar /4 8

gl(xl,xz)zé(xl—3)2+6+x2£0 4.2)

2
g2(xl,x2)=7(xl —5)2 -x,<0

Branin function has three optima and their values are equal, but only one

optima locates on the feasible region at (r , 2.275) as shown in Fig. 4.5.
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The initial design space has been defined as shown in table 4.2. POS of
the initial design space is about 6.01%, and optimum of the initial design
space is f{2, 4) ~6.4482.

After nine iterations, converged design space includes whole feasible
region like the Goldstein function case (Fig. 4.6). During the iteration, each
variables mean and POS have been changed as in Fig. 4.7 and POS has been
increased up to 30.43%. Besides, the optimum of the converged design space

is f{m, 2.275)" ~0.3979 that is one of the three optima.

4.1.1.3 Collaborative Optimization (CQO) of Goldstein Function with
Chebyshev Inequality Condition

Collaborative optimization (CO) is a multi-level decomposed optimization
methodology for a large-scale MDO. CO is known to have computational and
organizational advantages. Its decomposed architecture removes a necessity
of direct communication among disciplines, and guarantees their autonomy.
CO decomposes the design problem into system level and subsystem level as
shown in Fig. 4.8.

In case of CO, definition of design optimization problem is shown in Fig.
4.9 and the relation of variables among the system and the subsystems are
arranged in table 4.3. As shown in Fig. 4.9 and table 4.3, by adding algebraic
formula y,=x,+x,, an interdisciplinary variable is generated, which an output
of a subsystem is the input of the other subsystem.

To exploit Chebyshev inequality based method, initial range was defined

from -1 to 1 for all design variables. Result of CO is shown on the Z-space in
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Fig. 4.10. In this case, the global optimum has been included within the initial
design space and the converged design space at the same time.

In this case, converged space covered whole feasible space also. In table
4.4, CO result of the Goldstein function has been described. Through the
iteration, POS has been increased from 0.32% to 34.94% in Z-space and the
global optimum has been found at (0, -1) in both of them. Consequently, it is

confirmed that the proposed method can be applied to the CO appropriately.
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4.1.2 MDO of the Aircraft Wing

4.1.2.1 Aero-structural Optimization of the Supersonic Fighter Wing
with High Fidelity Analysis

The proposed method has been applied to the aero-structural
multidisciplinary optimization of the supersonic fighter wing. Since the
aerodynamics is coupled with structure and constraints are complicatedly
connected to each other, it is one of the most representative MDO problems
which correspond with real aircraft wing design. Three-dimensional Euler
code in aerodynamic analysis and nine-node shell mixed FEM code in
structural analysis are used. Sweep angle, aspect ratio, twist, reference area
and taper ratio of the wing which are defined the wing platform, thickness of
root lower skin, tip lower skin, root upper skin and tip upper skin are selected
as the design variables (See Fig.4.11 and table 4.5). Lift, drag, lift to drag ratio,
area of the wing and the displacement of the wing tip are selected as
constraint functions. Lift, lift to drag ratio and wing area must be larger than
the baseline, but drag and the displacement of the wing tip must be smaller

than the baseline.

Objective : maximize(L/D)
Subject to : Lift > Lift
Wing Area > Wing Area

L/D> L/DbaselinE’ 4.3)
Dl"ag < Dragbaseline’ '

baseline >

baseline >

ATip displacement < 0.05x (Tip displacement, )
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Since the number of design variables is more than previous examples, we
calculated the probability of success from 10’ sample points uniformly
distributed. In the initial design space, the probability of success is 0.00195%.
After 8 iterations, the probability of success is converged with same procedure
as the previous example. The probability of success is increased by 30.93% in
the changed design space and history of the POS is represented in Fig. 4.12.
At the initial design space, the probability distribution of each design variable
shows irregular distribution as shown in Fig. 4.13, whereas regulated
probability distributions are represented in Fig. 4.14 at the converged design
space. Fig. 4.15 and 4.16 represent the ranges of both initial and final design
variables and optimized wing planforms at each design space. Compared to
initial design space, the ranges of sweep angle, aspect ratio, twist and area are
reduced, but others are expanded to outside of the initial design space in Fig.
4.15.

To compare the C, distributions of the optimized wing, the initial design
space optimal wing has relatively wider negative C, region on the upper
surface than the optimized wing of the converged design space as shown in
Fig. 4.17. Moreover, the optimized aspect ratio of the initial design space is
bigger about 8.2% than the optimized aspect ratio of the converged design
space (see table 4.6). Along the spanwise direction, C, distributions are
compared in Fig. 4.18. Each airfoil sections are located on the root, 25% and
85% of the span. For the optimized wing cases, there is no significant change
of the C, distribution from first airfoil section to third airfoil section. But the
C, distributions of the baseline wing show considerable change as the distance

from the wing root increases. C, distribution of the third airfoil section shows
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drastic pressure rise on the upper surface. It causes loss of the aecrodynamic
performance of the baseline wing. Consequently, optimized wings have a
tendency to avoid such drastic pressure change, and then their leading edge
sweep angles have been changed to get larger sweep back angle.

Hence, optimized lift to drag ratio of the initial design space has more
improved results than the converged design space. As in table 4.6, lift to drag
ratio maximized in each design space is increased to 27.76% at the initial
design space and to 18.40% at the converged design space with respect to the
baseline, but the initial design space result seriously violated the tip
displacement constraint. In fact, the probability of success is too low at the
initial design space, and it means that the initial space has no feasible regions.
Fig. 4.19 and 4.20 show the probability density function and cumulative
distribution function of lift to drag ratio. Same as previous examples, the
increase of the probability can be verified from 48.81% to 95.0%.

According to presented results, the proposed probabilistic approach to
improve the feasibility of the design space can be successfully applied to the
aerodynamic-structural multidisciplinary design optimization of the wing.
And it produced better optimized solutions in the converged design space than

in the initial design space.

4.1.2.2 Aero-structural Optimization of the Transonic Wing with Low
Fidelity Analysis
The proposed method is applied to the aero-structural multidisciplinary

optimization of the transonic wing. Vortex Lattice Method (VLM) code in
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aerodynamic analysis and wing-box model in structural analysis are used.
Semi-span, taper ratio, leading edge sweep angle, t/c at root and t/c at tip of
the wing are selected as the design variables, which are in table 4.7 and Fig.
4.21 Lift to drag ratio, lift, drag, weight and area of the wing are selected as
objective function and constraints. Lift to drag ratio, lift and wing area must
be larger than the baseline, but drag and weight must be smaller than the

baseline.

Objective : maximize(L/ D)

Subjectto : L/D>L/D Lift > Lift
Wing Area > Wing Area
Weight < Weight

baseline ®

baseline * (44)
Drag < Dragbaseline 2

baseline ®

baseline

Because only 42 points are success out of 2*° (about 1,000,000) points, the
probability of success in the initial design space is 0.0042% and probability
distribution of each design variables are represented in Fig. 4.22. Chebyshev
inequality condition is used to modify the initial design space. Because the
distribution of design variables in case of success is unknown, modify the
boundaries of design variables using 3o to contain 89% of the feasible region.
The probability of success in the changed design space is grown up to
4.2442%. And the distribution of design variables is approach to normal
distribution. So we modify the design space using 2o to maintain nearly
constant ranges of the design variables and to contain 95% out of the range of
success. This process is repeated until the increase of POS is less than 1%.

The POS in the converged design space is grown up to 18.8853%, and the
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distributions of design variables in converged space are represented in Fig.
4.23. Fig. 4.24 represents the ranges of both initial and final design variables.
Compared to initial random design space, the ranges of semi-span, t/c(root),
and L.E. Sweep are reduced, but taper ratio and t/c(tip) are expanded. Fig.
4.25 shows optimized wing planforms in initial design space and converged
design space.

To investigate the POS of objective function, Fig. 4.26 and Fig. 4.27
represent the probability density function and cumulative distribution function
of lift to drag ratio. In Fig. 4.26, most values of the objective function are on
the infeasible region at the initial design space, but at the converged design
space, most values of the objective function move to the feasible region. In
Fig. 4.27, the probability of success in initial space, 32.38%, is dramatically
increase in converged space, 73.83%, by rearranging of the design space.

When the problem maximizing lift to drag ratio is solved in the initial and
converged design space, the optimal point is different in each case. If the
converged design space shrinks into the initial space, the optimal point is
almost the same. But, if the converged design space is extended to the outside
of the initial space, it can be verified that the optimal point is located at the
new space. In addition, it can be verified that optimized lift to drag ratio of the
initial and converged design space is improved with respect to the base line
design by 7.34 %, 10.88 % each. This means the altered design space includes

a proper optimal point but the initial design space doesn’t. (See table 4.8)
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4.1.2.3 CO of the Transonic Wing with Low Fidelity Analysis

In this study, CO is applied to the wing design for a commercial aircraft of
DC-9, considering aerodynamics, structure, and performance disciplines

To exploit multidisciplinary design optimization of transonic aircraft wing,
the design formulation is specified as following. In this study, the design

objective is maximization of the flight range:

Range=SIF/C-g-ln{W;J (4.5)

Eq. (4.5), Brequet range equation, includes lift to drag ratio (L/D)
represented the aerodynamic performance and weights (W;, W) estimated
from the structure analysis. Because cruise velocity (V), specific fuel
consumption (SFC) and the initial aircraft weight (W;) are constant, L/D has to
be increased and the aircraft weight after finishing its mission (/;) must be
decreased to maximize range. While range is maximized, six constraints as

follows should be satisfied.

L/D>L/D
c,<C

baseline

D, baseline

Area > Area,,,,, (4.6)
W one <W.

wing wing , baseline
W < W/ue[, baseline

Sfuel
\Ad <0.05d

tip tip, baseline
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The initial design variables rage is described in table 4.9. The initial value
of each design variable is determined based on DC-9 specification. For this
problem, the flight condition should be like following. The aircraft cruises at
7,620 m (25,000ft) above the ground with Mach number 0.75. Angle of attack
is considered to be zero and take-off gross weight is 49,000 kg (108,000 Ib).
Definition of design optimization problem is shown in Fig. 4.28, and all
system variables are depicted in table 4.10.

As a result, POS of design space has been increased from 0.13% to 38.0%
and optimum result of the converged design space represents 12.4% improved
range than baseline wing (see table 4.11 and 12). The converged design space
has been rearranged into the varied direction for each design variable as in Fig.
4.29. Especially, converged design spaces of taper ratio and thickness to chord
ratio at root have been moved right or left side of the initial design space. And
also, converged design space optimum exists out of the initial design space.
Moreover in Fig. 4.30, PDF of lift to drag ratio shows improved POS from
49.8% to 77.3%.
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Fig.4.9 CO formulation of Goldstein function
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Table 4.1 Design space and POS of the Goldstein function

X1 X2 Optimum POS(%)
Initial f(-0.6,-0.4)*
(-1~1) (-0.5~1.5) 2.5298
space =30.0
Converged f0,1)*
(-1.21~0.55) (-1.92~0.18) 15.2562
space =3.0
Table 4.2 Design space and POS of the Branin function
X1 X2 Optimum POS(%)
Initial f2,4)*
(-3~2) (4~9) 6.0865
space =6.4482
Converged f(m,2.275)*
(-0.348~8.711) | (-1.457~7.565) 30.4336
space =0.3979
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Table 4.3 Summary of the input & output variables

Xi X F
System Z; n/a 7 n/a
Subsystem 1 X X2 Vi n/a
Subsystem 2 X n/a Vi f

Table 4.4 Design space and POS of the CO (Goldstein function)

7, Z, Optimum | POS(%)

Initial
(-1.00 ~1.00) (-1.00 ~1.00) A0,-1)*=3 | 0.3160

space

Converged
(-1.4876 ~0.8269) | (-2.0270 ~-0.4037) | f(0,-1)*=3 | 34.9440

space
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Table 4.5 Range of design variables at initial design space (M.=0.87)

Lower Upper
Design Variables Baseline
limit limit
L.E. sweep Initial 30 40
35
angle (°) Converged 32.027 40.762
Initial 2.5 4.5
Aspect ratio 3
Converged 3.606 4.158
Initial -5 0
Twist angle (°) -2.5
Converged -2.995 -2.423
Initial 229.5 280.5
Wing area (ft%) 255
Converged 253.27 274.15
Initial 0.2162 0.2642
Taper ratio 0.2402
Converged 0.176 0.253
ROOtLower Skin Initial 0 0.2
0.1
Thickness (inch) Converged 0.114 0.431
TipLower Skin Initial 0 0.2
0.1
Thickness (inch) Converged 0.087 0.407
ROOtUpper Skin Initial 0 0.2
0.1
Thickness (inch) Converged 0.117 0.380
TipUpper Skin Initial 0 0.2
0.1
Thickness (inch) Converged 0.053 0.400
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Table 4.6 Results of optimization (M.=0.87)

Design variables Initial space Converged
Baseline
& Objective function optimum space optimum
L.E. sweep angle (°) 35 40 40.19
Aspect ratio 3.5 4.5 4.158
Twist angle (°) -2.5 -2.84 -2.83
Wing area (ft%) 255 255.02 262.88
Taper ratio 0.2402 0.2415 0.2219
Rooty ower skin Thickness
0.1 0.0353 0.2896
(inch)
TiprLowerskin Thickness (inch) 0.1 0.1164 0.2638
Ro0typper skin Thickness
0.1 0.1186 0.2622
(inch)
Tipupper skin Thickness (inch) 0.1 0.2000 0.2406
L/D 37.79 48.28 44.75
AL/D(%) 27.76 18.40
6.158e- 1.113e-
Tip Displacement 6.403e-002
002 001
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Table 4.7 Initial and converged design space (M.=0.75)

Design variables Lower limit | Baseline Upper limit
Initial space 35.456 53.184
Semi span 46.655
Converged space 44.830 50.620
Initial space 0.152 0.228
Taper ratio 0.2
Converged space 0.207 0.299
L.E. sweep Initial space 19.6 29.4
24.5
angle Converged space 23.820 24.833
Initial space 0.1104 0.1656
t/c at root 0.1310
Converged space 0.1119 0.1244
Initial space 0.0696 0.1044
t/c at tip 0.0830
Converged space 0.0931 0.1190
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Table 4.8 Result of optimization (M.=0.75)

Design variables Initial design Converged design
Baseline
& Objective function space optimum space optimum
semi-span (ft) 46.6550 45.5841 44.8299
Taper ratio 0.2 0.228 0.2987
sweep angle (deg) 24.5 24.1784 23.9414
t/c at root 0.131 0.1186 0.1125
t/c at tip 0.083 0.1044 0.1112
L/D 19.3620 20.7843 21.4693
AL/D (%) 7.34 10.88
Table 4.9 Range of design variables
Design Variables Min. Baseline Max.
Span (ft) 41.989 46.655 51.320
Sweep angle (deg) 22.050 24.500 26.950
Taper ratio 0.184 0.204 0.224
t/c at wing root 0.118 0.131 0.144
t/c at wing tip 0.075 0.083 0.091
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Table 4.10 Summary of variables for CO

system sub 1. sub 2. sub 3.
span Z1 X1 X1 n/a
sweep 72 X2 X2 n/a
taper ratio Z3 X3 X3 n/a
t/c root 74 X4 X4 n/a
t/c tip 75 X5 X5 n/a
L/D Z6 Y1 n/a X1
Co n/a Y2 n/a n/a
Area n/a Y3 n/a n/a
Wiing n/a n/a Y1 n/a
Wil Z7 n/a Y2 X2
dyip n/a n/a Y3 n/a
Range F n/a n/a Y1
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Table 4.11 Comparison of initial & converged design spaces

Initial space Converged space

span 41.989 ~ 51.320 45.363 ~ 46.054

sweep 22.050 ~ 26.950 25.250 ~ 30.044
taper ratio 0.184 ~ 0.224 0.233 ~0.291
t/c root 0.118 ~0.144 0.104 ~ 0.125
t/c tip 0.075 ~ 0.091 0.058 ~0.109

L/D 0.000 ~ 36.361 17.355 ~22.851
Wit (10%) 0.000 ~ 4.626 2.137~2.333

feasibility 0.1272 % 38.3769 %

Table 4.12 Comparison of the optimum values

Initial space Converged space
span 46.258 45.325
sweep 23.462 25.723
taper ratio 0.224 0.282
t/c root 0.124 0.110
t/c tip 0.089 0.084
Range 1768.8 1862.4
6.8 % 12.4%
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4.2 DSE and Rearrangement of the Design space to
Improve the Feasibility with Reliability Index

Earlier proposed design space rearrangement method based on Chebyshev
inequality condition is performed along with solid line procedure as shown in
Fig. 4.31. This early proposed method is relatively simple iterative algorithm,
but probabilistic evaluation and rearrangement of the design space can be
successively done by using Chebyshev inequality. Even though probabilistic
distributions of the design variables are absolutely unknown, Chebyshev
inequality condition for uniform distributed random variables provides
reasonable basis for the rearrangement of the design space. However, if the
feasible region doesn’t exist within the initial design space, mean and
deviation values of the feasible region cannot exist. As a result, Chebyshev
inequality cannot be applied. Furthermore, if there exists very small feasible
region within the initial design space, iteration number will increase
unnecessarily to find converged design space. To overcome these problems,
reliability index which includes geometric information among the whole
design points and constraint functions has been introduced. In Fig. 4.31,
hatched box shows replaced procedure to obtain mean and deviation using the
reliability index based approach. Even though feasible region does not exist
within the design space, mean and deviation value of the design variables

could be evaluated and determined efficiently with newly proposed method.
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4.2.1 Test Functions

To compare reliability index (RI) based method to Chebyshev inequality
(CI) based method, same test functions those are Goldstein function and
Branin function are adopted with same problem. In addition, additional test
case to validate the ability of RI based method is exploited starting on the
unfeasible region: Chebyshev inequality based method cannot perform DSE

and rearrangement.

4.2.1.1 Goldstein function

H Start on feasible region

The design optimization problem was performed using the both formal
design space defining method and the RI based method in this study
concerned with the initial design space setting x; and x; into (-1, 1) and (-0.5,
1.5). Fig. 4.32 shows the procedure of automatic rearrangement of the design
space and it is identified that the RI based method includes more feasible
region than the CI based method does when observing the 2™ design space.

As explained in numerical approach, the former method uses only
information of the feasible region in the design space and the newly proposed
method uses approximate information of global feasible region so that the
position of the center (mean value) of the new method is more close to the
center of the whole feasible region. Therefore, the 2™ design space is defined
that the new method includes more feasible region comparing with the CI
based method.

In Fig. 4.33, the five iterations are required to converge and the RI based

method 1s more efficient about 30%. POS is also increased from 2.53% to
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14.10% (table 4.13). Since both proposed methods are subjected to the same
constraint function and have same objective, same number of function
evaluations has been required for single sampling point in both methods. At
every rearrangement iteration loop, same number of total sampling points has
been used to carry out Monte-Carlo simulation, so total number of function
evaluations per iteration is equal. Hence, additional algebraic calculations to
obtain reliability index and temporary mean are required to newly proposed
method. But it is relatively small and negligible in comparison with function
evaluation via Monte-Carlo simulation.

So to speak, it is confirmed that the design space which contains the entire
feasible region is automatically rearranged with relatively low computation
than CI based method. While optimization is performed in the initial design
space, only the local minimum f{-0.6,-0.4) = 30 is found but in the converged
design space which contains the global optimum f{0,-1) = 3, higher quality of

optimal solution can be acquired.

B Start on infeasible region

This case is the same design optimization problem but only the initial
design space is different as setting x; and x, into 0 ~ 1(table 4.14). Because
there is no feasible region in this space, automatic rearrangement of the design
space is impossible with the CI based method. However, in the RI based
method, rearrangement of the design space is possible because of the
reliability index which reveals information of the whole feasible region. As
shown in Fig. 4.34, the RI based method has information that the position of

the whole feasible region in the initial design space is located in the lower left
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so that movement to the 2™ design space is possible. For this reason, even
though the designer defines the wrong design space due to the lack of
knowledge or due to the mistake, the RI based method proposed in this study
can automatically rearrange the design space.

Fig. 4.35 shows the feasibility (%) of the design space for this case and
shows the similar iteration number with above case. Moreover, there was no
optimum in the initial design space but in the converged design space, it is

found that two optima f{0,-1) = 3 and f{-0.6, -0.4) = 30 exist

4.2.1.2 Branin Function

H Start on feasible region

This case is also same problem with CI base method. Comparing with CI
based method, it has been converged into almost same design space as shown
in Fig. 4.36 and table 4.15 and required iteration numbers decrease about 30%

(see Fig. 4.37)

H Start on infeasible region

Starting design space of this case is (-5<x1<0, 5<x2<10) and it is
infeasible region (see Fig. 4.38). Just like Goldstein function case, RI based
method can find converged space which has same improved POS and design
variables range with starting on feasible region case, as described in table 4.16.

Furthermore, location and variable range of the starting design space is not
a problem for RI based method as shown in Fig. 4.39. All test cases

converged same design space, regardless of starting location (see table 4. 17).
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According to the above results, it is confirmed that RI based method is useful

and robust for DSE and rearrangement of the design space.

4.2.1.3 Collaborative Optimization (CQO) of Goldstein Function with
Reliability Index

B Start on feasible region

In case of CO, definition of design optimization problem is same as
section 4.1.1.3. The initial design space is summarized in table 4.18. If the
range of the interdisciplinary variable z, (y;) is specified like in the table 4.18,
the range of y, in the subsystem 1 becomes to -2 ~ 2. Because it includes the
initial specified range -1 ~ 1, both the system and the subsystems have the
common region and CO can be performed without any trouble to find the
optimal solution. However, the design space does not contain the entire
feasible region therefore; there is possibility that a higher quality of optimum
solution could exist in the feasible region outside of the design space.

Fig. 4.40 shows the result of performing design space exploration in the z-
space which consists of the system variable. Comparing with the former MDF
result(sec 4.1.1.1 and 4.2.1.1), it is confirmed that the design space of this
case is specified as a larger one. The reason is estimated that the system does
not deal with x;, x, variables directly but indirectly as z;, z, (y;/=x;+x>)
variables. As a result, the design space is converged to a larger one than the x;
and x;, of former case.

Fig. 4.41 shows the feasibility (%) of the design space of this case and

total 7 iterations were performed. It needs a little more iterations than the
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former examples of RI based method for Goldstein function and this is
because the system does not use feasible region information directly but
presume the feasible region from information of subsystem design space. Also,
high feasibility close to 0.6 is caused by regarding the common design space

of the subsystems as the feasible region.

B Start on infeasible region

In this case, there is no feasible region in the initial design space and the
range of the design variables (z;, z», x;) is varied from 1 to 2 (table 4.19).
There is no common space between the interdisciplinary variables (y;) and z,
because y, is 2 ~ 4 in this range. Therefore, it is impossible to perform CO.
However, if the design space is rearranged by the proposed method in this
work, the design optimization can be executed properly due to existence of
the common space between y; and z,.

Fig. 4.42 shows the procedure of design space automatic rearrangement of
this case. Just like above case, it is found that the design space includes the
whole feasible region. Total 17 iterations have been performed in this
procedure. Because the initial design space does not include any feasible
region, about 7 iterations were consumed to find this feasible region. (Fig.
4.43)

Comparing with results of section 4.2.1.1, it took more iteration to find the
feasible region and this is also caused by the lack of direct information from
the feasible region. By adding the procedure of exploring the feasible region,

the range of z; variable presumed largely and consequently, the larger design
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space is defined than above case and the feasibility is confirmed as a low

value 0.35.
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4.2.2 CO of the Transonic Wing with Low Fidelity Analysis Using
RI Based Method

This section’s CO problem is under same condition with section 4.1.2.3.
To consider the efficiency of design procedure, artificial neural network
(ANN) model has been constructed. In this study, ANN model consists of
three layers — input, output and hidden layers.

Since single analysis of this study requires relatively short time than other
CFD analysis code based on Euler or Navier-Stokes governing equations, 5’
experimental points have been used for training of ANN model to obtain
improved result. ANOVA results of the constructed model are shown in table
4.20. As shown in table 4.20, maximum root mean square error (RMSE) is
less than 0.02415 and minimum R’ is more than 0.995. According to above
result, constructed model ensures reliable prediction of the objective and
constraint functions. Moreover, sensitivity of the defined design variables to
the objective and constraints function is shown in Fig. 4.44. It is clear that the
Semi-span length is the most effect on the whole response, but t/c at tip is the
least. Even so, it can be confirmed that L/D and Wj,., increase or decrease
according to the change of t/c at tip. As stated above, defined design variables
are adequate for aircraft wing design problem. SQP method that is one of the
widely used gradient based optimization method has been applied to
efficiently find optimal solution.

Fig. 4.45 shows the converged design space by the proposed method.
White rectangles are the initial design space, and hatched rectangles mean the
converged one. Circles on horizontal axis indicate optimum point in the

converged design space. The design space of semi-span, W, L/D, and range
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are shrunk comparing with the initial design space, and those of taper ratio
and t/c at tip are extended. The design space of the sweep angle and t/c at root
are moved toward upper bound and lower bound of the initial design space,
respectively. With above results, flexibility and degree of freedom to
rearrange the design space of the proposed method can be verified. In general,
as rearrangement iteration progressed, other design space exploration and
rearrangement method moved toward biased direction. Table 4.21 summarizes
optimal points obtained in the initial and the converged design space. The
objective function, range is improved by 4.6% in the initial design space, but
by 8.2% in the converged design space. However, due to the instable
characteristic of CO, W, increases by 2.0% in the initial design space and
3.8% in the converged design space. Since each discipline is absolutely
disconnected on subsystem level, matching condition must be introduced on
system level optimization. So, equality constraint necessarily required on
system level and it is very difficult to directly concern for most gradient based
optimization algorithm. Hence, converts equality constraint to separated
inequality constraints and deals with them. On this process, there is the
potential that the opposite tolerances of separated inequality conditions
produce unpredictable error and accumulate it. Even though optimal result
violates Wj, constraint, its amount is relatively small as compared with
improvement of objective function. Considering instable characteristic of CO,
this result can be acceptable.

From these results, it can be confirmed that have the ratio of infeasible
region in the initial design space is more than those in the converged design

space for semi-span, Wy, L/D, and range. In case of t/c at root, optimal point

- 108 -



is laying on the outside of the initial design space, and the design space
obtained from this proposed method offers the opportunity searching for

better solution than optimum in the initial design space.
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Table 4.13 Design space and POS of the Goldstein function with RI based

method (start on feasible region)

X1 X2 POS(%)
Initial space -L, 1) (-0.5, 1.5) 2.5298
Converged space (-1.17, 0.63) (-2.10, 0.12) 14.0962

Table 4.13 Design space and POS of the Goldstein function with RI based

method (start on infeasible region)

X1 X2 POS(%)
Initial space 0, 1) 0, 1) 0.
Converged space (-1.17, 0.66) (-2.14, 0.12) 13.7216

Table 4.15 Design space and POS of the Branin function with RI based

method (start on feasible region)

X1 X2 POS(%)
Initial space (-3,2) 4,9) 6.0865
Converged space | (-0.349, 8.711) (-1.456, 7.565) 30.4354

Table 4.16 Design space and POS of the Branin function with RI based

method (start on infeasible region)

X1 X2 POS(%)
Initial space (-5,0) (5, 10) 0.
Converged space | (-0.348, 8.711) (-1.456, 7.564) 30.4390
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Table 4.17 Comparison of the initial and converged design space with respect

to the starting location

Case Total Iter. Init. Space Conv. Space

-5<x1<0 -0.348<x1< 8.711

1 6
5<x2<10 -1.456<x2<7.564
3<x1<5 -0.349<x1<8.711

2 7
8<x2<13 -1.456<x2<7.564
8<x1<15 -0.349<x1<8.711

3 7
-4<x2<-1 -1.456<x2<7.565
-9<x1<-2 -0.349<x1< 8.711

4 8
-8<x2<-1 -1.456<x2<7.564

Table 4.18 the range of the design variables (system and subsystems)

variables min. max.
z1 -1 1
System

72 -1 1

x1 -1 1
Subsystem 1.

x2 -1 1

x1 -1 1
Subsystem 2.

yl -1 1
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Table 4.19 The range of the design variables (system and subsystems)

variables min. max.
z1 1 2
System

72 1 2

x1 1 2
Subsystem 1.

x2 1 2

x1 1 2
Subsystem 2.

yl 1 2

Table 4.20 ANOVA results of constructed ANN model.

RMSE R2

Range 0.0141982 0.9984
L/D 0.01730317 0.9976
Cr 0.00741811 0.9996
Cp 0.02414505 0.9953
Area 0.0047938 0.9998
W ing 0.01296684 0.9987
Wiiel 0.00919147 0.9993
dip 0.00589646 0.9997
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Table 4.21 Results of the design optimization in the initial and converged

design space.

Initial Converged
Baseline
Design Space Design Space
Semi-span (m) 14.220 14.190 14.113
Sweep angle (deg) 24.50 25.324 26.218
Taper ratio 0.204 0.210 0.220
t/c root 0.131 0.123 0.118
t/c tip 0.0830 0.0878 0.0845
L/D 18.181 19.014 19.681
Wi (kg) 10491.592 10704.780 10895.289
Range (km) 3068.022 3208.589 3321.190
Improvement of
0 % 4.58% 8.25%

Range
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4.3 Discussion

In this chapter, the Chebyshev inequality based method and the reliability
index based method for the design space exploration and rearrangement have
been proposed, and have been applied to a number of the test cases for
investigation of the utility.

For the Goldstein function and the Branin function, the initial design
spaces of the both proposed methods have converged into the equivalent
design space under the same starting condition. However, RI based method
requires fewer number of iterations to find the converged design space in the
majority of cases. Moreover, RI based method can find the converged design
space under the starting condition on the infeasible region. For the
aerodynamic-structural multidisciplinary design optimization of the aircraft
wing, both methods have successfully converged into the higher feasible
design space, also. Even the case of CO of the transonic wing, appropriate
design space can be found using the proposed methods.

Since the geometrical information included in the RI based method, more
appropriate mean and deviation value of the feasible region can be obtained
regardless of the location and size of the initial design space, and it promotes
the efficiency and the robustness of the rearrangement process. Though,
starting on the infeasible region, unexpected additional iteration is required to
rearrange the design space into the feasible region. It is caused by the lack of
information of the feasible region at the initial design space. Due to the

unclear mean and deviation value of the feasible region, the initial design
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space must be moved to the feasible direction by the size of the initial design
space, and it aggravates the convergence efficiency.
Consequently, it is verified that the proposed methods have the ability and

the utility of the systematic rearrangement of the design space.
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Chapter 5. Conclusions and Future Works

In this study, design space exploration and rearrangement method to
include more feasible region in the design process is suggested. To examine
the validity of this method, two design variable function problem with the
initial design space which has feasible region and infeasible region is applied
to MDF and CO problems. Moreover, this method is applied to CO problem
of the aircraft wing which three disciplines such as aerodynamics, structure
and performance are combined to show its utility for complex and practical
problem. As a result, the following conclusions can be made;

(1) It is confirmed that whole feasible region can be covered with this
method by several design space rearrangement process. Reliability index
proposed an appropriate mean value as the indicator for searching feasible
region. In both MDF and CO application, this method suggested a design
space which includes valid feasible region though it did not have any feasible
region in the initial design phase.

(2) This approach is expanded into the multi-level application and it can
mitigate the difficulty for defining the design space with incomplete
information of a system and subsystems (disciplines). Each discipline
searches for the design space satisfying its own constraints and the system
controls the design space from subsystems’ design space. This procedure
plays a part in the supplementation of incomplete information of a system and

subsystems.
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(3) The proposed method in this study offers higher possibility to obtain
the global optimum. As appears out of Goldstein and aircraft wing problems,
this method is identified to suggest the superior optimum value in the
rearranged design space to the one from initial design space as more feasible
region is included. In case of practical aircraft wing design problem, the
objective function range achieved 8% performance improvement in the
converged new design space while 4% performance improvement is shown in

the initial design space.

Although accomplished sturdy about the design space exploration and
rearrangement, there are numbers of future works as ever.

The most studies are concentrating on the closed and convex type design
problems to avoid the complexity of the MDO problem. Though, in the
practical design problem, there exist the design problem which has
unconnected multiple feasible region. For this case, established study cannot
provide the robust and reliable DSE and rearrangement strategy. Hence,
proposed method should be extended to consider the unclosed and concave
design problems.

And also, total efficiency of the DSE framework should be reconsidered to
improve convergence efficiency of the rearrangement process. Appropriate
DOE method is required to reduce building time and cost of surrogate model

which take the most of calculation time and cost.
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