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ABSTRACT 

 

Torsional wave scattering theory in a pipe and  

notch defect characterization  

using multiple torsional wave modes 

 

 

Kwon, Young Eui 

School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

 

This work is concerned with the development of quantitative characterization of a 

part-circumferential notch defect in a pipe. Although there are some works that 

dealt with notch size estimation, there still remain issues to be addressed for full 

characterization. The aim of this study is to develop a notch characterization 

method for considerably-improved characterization of notch defects in a pipe. For 

the characterization, we propose to utilize only the first torsional wave mode at a 

frequency higher than the second cut-off frequency and measures reflections of 

multiple torsional wave modes (the first, second and third modes). No earlier 
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method used higher torsional wave modes although there were some attempts to 

use higher flexural wave modes. The advantage of using torsional wave modes 

over other modes is that they are axisymmetric; the magnitudes of reflection 

coefficients, regardless of mode orders, increase linearly with the central angle of a 

notch defect. Therefore, the ratios between the magnitudes of the reflected wave 

modes can be directly used for defect characterization. Specifically, the depth and 

length of a notch defect can be estimated from the reflection coefficient ratios of 

the second mode to the first mode and third mode to the first mode while the 

central angle of a notch can be predicted from the fact that the magnitude of the 

reflection coefficient of the torsional modes always linearly varies with the central 

angle. 

For quantitative characterization of the size of a notch defect, reference data for a 

notch defect are needed. Unlike previous methods that demand three-dimensional 

simulations, the developed method requires only axisymmetric results because all 

torsional wave modes are axisymmetric. Thus, we only need a defect scattering 

theory only for axisymmetric torsional waves. By using this theory, equi-reflection 

coefficient ratio contours for second and third torsional wave modes are prepared 

and used for the defect characterization. To use the constructed contours, one needs 

to measure experimental signals but before they are used, they are processed by the 

dispersion compensation method because of dispersion. With the compensation 

method, dispersions from higher-order torsional wave modes are suppressed and 

the signals right at the moment of reflection can be traced back. The compensated 

signals are then used in using the refection coefficient ratio contours. The 

developed axisymmetric notch scattering theory is checked experimentally. For the 
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validation, several defect characterization experiments were conducted in a pipe 

having artificial notch defects. 
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CHAPTER 1. 

Introduction 

 

 

 

1.1 Motivation 

Cylindrical structures have been broadly used in many industrial sites such as gas 

or oil pipe lines. These infrastructures cause enormous social dislocation when they 

are under serious damage by defect such as corrosion or crack. Thus a method to 

nondestructively diagnose defective pipeline installed in a system has been 

required and researched [1-9]. Among various pipe inspection methods [10-16], 

guided wave technique has been preferred owing to its own merits; rapid and long 

range inspection [14, 17-19]. A fundamental matter of inspecting is that to generate 

a guided wave for measuring the reflected waves from the defect. The existence of 

defect and its axial location can be found via this guided wave based inspection. 

 

Although guided wave based pipe inspection technique has the advantage in 

examination speed, there is a limit that it is unable to obtain detailed information 

about the defect such as size and shape. In order to overcome these problems, 

roughly two kinds of researches have been developed. The first type is imaging 

technique and the second type is analysis for reflection coefficients of various 

guided wave modes. Imaging of pipeline structure has a good advantage not only to 

demonstrate the presence or location of the defect but also to identify the size or 
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shape of it [20-22]. However experiment and imaging process are time consuming 

and required complex devices and the number of transducers. Researches for the 

reflection coefficients of various guided wave modes have been conducted 

changing notch parameter [23-25]. Although various kinds of researches have been 

established, there is no research which quantitatively predicts all parameter of 

notch defect. The fact that the length of notch defect is quantitatively predicable 

has been reported [23-26]. For the other variables of notch such as depth and 

circumferential extent, patterns of reflection coefficients for specific guided wave 

modes have been observed. Besides quantitative size estimation method for a part 

circumferential notch defect has not been established yet. In this research to 

strengthen advantages of guided wave based inspection, reflection coefficients 

based defect characterization method has been investigated. 

 

Previous works concerned with reflection coefficients for a notch defect have 

analyzed reflection coefficients with respect to the incident wave; longitudinal 

mode, L(0,2), or the lowest torsional mode, T(0,1) [23-25, 27]. The symbols L, T 

and F (for later) denote longitudinal, torsional and flexural modes, respectively. 

And the first and second indexes represent the harmonic number of circumferential 

variation and a counter variable respectively, by following Silk and Bainton [28]. 

When an incident L(0,2) or T(0,1) reaches at the part circumferential notch defect, 

not only reflection of L(0,2) or T(0,1) itself but also reflection of the flexural 

modes according to mode conversion occur. For the circumferential extent, the 

facts that reflection coefficient of L(0,2) or T(0,1) shows linear trend to the 

circumferential extent of a notch. On the other hand amount of the reflected 
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flexural modes repeatedly increase and decrease as the circumferential extent of 

notch defect increases, depending on circumferential order m have been reported. 

This phenomenon is caused by differences of circumferential mode shapes. 

Otherwise the longitudinal and torsional wave have uniform mode shape in the 

circumferential direction, the flexural modes have non-uniform mode shape which 

can be represented as trigonometric function of mθ, where m denotes 

circumferential order [29, 30]. For the depth of a notch defect, reflection 

coefficients of longitudinal and torsional wave modes have monotonically 

increasing tendency.  

 

But most established researches have dealt with parametric studies about notch 

defect, not suggested complete method to characterize size of a part circumferential 

notch. Because each mode (among longitudinal and flexural modes, or torsional 

and flexural modes) has similar (not the same) mode shape in the thickness 

direction, reflection coefficients of each mode do not have significant differences 

with respect to the thickness of the notch defect. From these results, it has been 

only to demonstrate potential of notch characterization; selection of one (or some) 

candidate among the references obtained by three-dimensional simulation. 

However this probability for notch characterization has not been considerably 

advanced into integrated sizing method for notch depth and circumferential extent. 

Because there is no clear index between shape of notch defect (depth and 

circumferential extent) and mode shape of reflected waves (longitudinal and 

flexural modes, or torsional and flexural modes). Compare with the notch length 

case that length of a notch defect can be easily estimated through measuring 
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reflection coefficients for incident waves having different frequencies. Notch 

length and wavelength have a close relation independently from notch depth and 

circumferential extent. Moreover, using flexural waves causes another problem, 

need of three dimensional references. To characterize notch size based on reflection 

coefficients, pre-calculated references are necessary. By the way, because flexural 

modes are non-axisymmetric, three-dimensional analysis which needs heavy 

computing resources and time are necessary. 

 

To overcome the limitations of previous researches and to investigate a new notch 

defect estimation method, reflection coefficients, of only the torsional wave modes 

which are axisymmetric, based notch defect characterization method which needs 

only two-dimensional reference is developed in this study.  

 

 

1.2 Research Objectives 

The main objectives of this research are two folds: one is to estimate size of a part 

circumferential defect in a simple experiment and the other is to investigate 

axisymmetric notch defect scattering theory which will be used as a reference. And 

this research also includes development of subsidiary objective for crack 

characterization such as experimental system, signal processing technique and size 

estimation algorithm. 

 

Objective 1: Development of the axisymmetric notch defect scattering theory 

As a reference to characterize size of a part circumferential notch defect, the 

axisymmetric notch defect scattering theory is proposed. Through this theory 
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reflection coefficient map for a notch defect having various depth and length can be 

calculated. And through supplemental processing in Fourier domain reflected 

signal at the moment of reflection for each torsional wave mode can be obtained 

for a specific input pulse (in this research, Gabor pulse). 

 

Objective 2: Ratio between reflection coefficients 

A new concept, ratio between reflection coefficients, is proposed to predict size of 

notch defect especially depth and length. Because only the torsional wave modes 

which are axisymmetric are measured, effect of central angle of notch defect can be 

ignored. Using this, size of the notch defect can be characterized from the two-

dimensional (axisymmetric) notch scattering theory. 

 

Objective 3: Signal processing; dispersion compensation 

Unlike the lowest torsional wave having non-dispersive property, higher torsional 

modes are dispersive which cause that signal of reflected higher torsional wave 

modes spread. Thus signal processing to reduce effect of dispersion property 

should be employed. To this end, dispersion compensation method [31] is applied 

which can suppress dispersion phenomena and trace back the signals right at the 

moment of reflection. By utilizing this, experimental results can be compared with 

reference signals. 

 

Objective 4: Development of notch defect size estimation algorithm 

By putting together previous objectives, size estimation algorithm for a part 

circumferential notch defect is investigated. Size of the notch defect can be 

quantitatively identified with one single experiment. This characterization 

algorithm is constructed with ease as can evaluate directly.  
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Objective 5: Experimental validation and real notch defect characterization 

The proposed theory needs to be validated experimentally. And through the 

proposed notch characterization algorithm, artificial notch defects are predicted 

quantitatively.  

 

 

1.3 Outline of Thesis 

In Chapter 2, the theoretical backgrounds of the stepped rod scattering theory are 

reviewed. From this, stepped pipe scattering theory is developed. Definition of the 

power normalized mode shape function for the torsoinal wave modes is presented 

and modal analyses will be carried out to calculate reflection coefficients of each 

reflected or transmitted wave mode. The proposed stepped pipe scattering theory is 

validated numerically. Signal processing technique, dispersion compensation, is 

applied to numerical result to compare with the results of scattering theory. 

 

In Chapter 3, stepped pipe scattering theory presented in Chapter 2 is expended to 

axisymmetric notch scattering problem. To this end multiple scattering of stepped 

pipe case is considered. Notch scattering theory is validated by two-dimensional 

finite element simulation. 

 

In Chapter 4, effect of the central angle of notch defect is analyzed first. To this end, 

three dimensional numerical simulations are carried out. Through the results, a 

new-concept ratio between reflection coefficients is introduced. Using these ratios, 

which are independent to the central angle of notch defect, possibility of notch 



7 

defect characterization is presented. 

 

In Chapter 5, size estimation method for a notch having known length cases is 

presented. This method is validated experimentally and usefulness of proposed 

method is verified.  

 

In Chapter 6, crack characterization method presented in chapter 5 is expended to 

the full characterization. The algorithm for notch defect estimation is proposed 

which is validated experimentally. Defect characterization experiments are 

conducted in a pipe having artificial notch defects. At the end of this chapter, 

limitations and supplementations for the proposed method are presented. 

 

In Chapter 7, the conclusion remarks for this research will be presented. 
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CHAPTER 2. 

Stepped pipe scattering theory 

Equation Chapter (Next) Section 1 

Equation Chapter (Next) Section 2 

 

In this chapter, scattering phenomena for a stepped pipe will be carried out. To this 

end previous research about a stepped rod problem [32] will be reviewed in section 

2.1. This theory will be extended to a stepped pipe problem in section 2.2 which is 

purpose of this chapter. In section 2.3, results of stepped pipe scattering theory 

compared with finite element simulation will be represented. 

 

2.1 Back ground theory in stepped rod scattering problem 

In this section, stepped rod scattering theory [32] that has been previously reported 

is reviewed with some change of several notations to reinforce contents of a 

stepped pipe scattering theory in the next section. 

 

2.1.1 Definition of the power normalized mode shape function 

The displacement of the torsional waves, in the cylindrical coordinate system 

shown in figure 2.1 for a uniform homogeneous rod having radius R, can be written 
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 ( ) ( ), exp ( z- t)u r t u r jθ ξ ω=


 (2.1) 

uθ , mode shape function, can be given by suppressing exponential part 

 
2

0 0

1

,              0,
( ),     0,s r r

A K r s
u

A k J k r sθ

 == 
>

 (2.2) 

where s denotes number of mode, 2 2 2
0 rK kξ = − , 0 / tK Vω= , /r sk Z R= , and Zs 

is the s-th zero of 2 ( )J Z . tV  and ω  are shear wave velocity and angular 

frequency, respectively.  

Total power of a given mode can be expressed as 

 
2

0 0

R
P p r dr d

π
θ= ∫ ∫ , (2.3) 

where p denotes Poynting vector in the z direction represented as 

 ( )*1
2 z

p v T= − ⋅ . (2.4) 

By substituting equation (2.4) to (2.3) and using definition of velocity and stress 

components which are well organized to match the current conditions 

( )4,  zv u t T T u zθ µ= ∂ ∂ = = ∂ ∂ , we can write total power P for any given mode s  

 , ,0

R

s sP u u rdrθ θπωµξ= ∫  (2.5) 

where µ  is shear modulus having 2
tVµ ρ= . Magnitude of mode shape function, 

A0 and As, in equation (2.2) can be decided to define total power P for all s values 
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1,         for propagating modes,

,              for cut-off modes.
P

j
=

−




 (2.6) 

This condition was chosen to satisfy that wave number ξ  should be real positive 

for propagating modes or negative imaginary for cut-off modes. Finally power 

normalized mode shape function can be obtained by adjusting this condition with 

respect to equation (2.2) (see reference [32] for details). The magnitudes (A0 for the 

lowest mode and As for s-th mode, s > 1) of each power normalized mode shape 

function and power normalized mode shape functions are as followings 

 0 3 2

2
,    =0,t tV V

A s
Rω πρ

=  (2.7) 

 
1 2

,     >0,
( )s

t s s s

A s
V Z J Z πρω ξ

=  (2.8) 

 
( )

( )
( )( )

( )
1 2 123

1

2 ,                0,
1 2

,       0,1
s

t s
s

r R s
u Z Z r R

X sV Z X J Z
θ

πρ

=

= ×
>−







 (2.9) 

where X indicates normalized frequency parameter, 0tX R V K Rω= = . 

 

2.1.2 Modal scattering analysis 

The power normalized mode shape function is applied to scattering problem 

defined as shown in figure 2.2. A solid rod having a circular cross section with a 

discontinuity at z = 0 is considered. Radius of left part and right part are indicated 
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by Rl and Rr, respectively. The subscripts l and r refer to the left and right part of 

solid rod which will be used below in other variables. In this chapter, the case of 

l rR R>  will be considered. When number of modes N is considered, the scattering 

can be described by 

 

[ ] [ ]

[ ] [ ]

1 1

2 2

11 12

1 1

2 21 22 2

.

l l
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   
    
    
    
    
    
    
   
   
      

 

 

 (2.10) 

The second indexes of a and b, from 1 to N, indicate the mode number and each of 

the sub-matrices is an N N×  matrix. When waves income from both sides, two 

boundary conditions must be satisfied at the step as following: 

(a) for r < Rr, continuity of displacement and stress, and 

(b) for r > Rr, surface traction is equal to zero. 

Displacement u and stress T which will be suppress the coordinate suffixes θ  and 

z, will be considered. The displacement and stress of incoming wave on the left 

side,  and a a
l lu T , can be expanded in eigenmodes, 

 
, , ,

, 44 , , , ,

exp( ),

exp( ),

a
l l i l i l i

i
a

l l i l i l i l i l i
i i

u a u j z

T T jc a u j z

ξ

ξ ξ

= −

= = − −

∑

∑ ∑
 (2.11) 

where, ,l ia  indicates the amplitude of the i-th incoming mode incoming in the left 

part. The outgoing wave in the left part can be obtained similarly, 
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, , ,

, 44 , , , ,

exp( ),

exp( ),

b
l l i l i l i

i
b

l l i l i l i l i l i
i i

u b u j z

T T jc b u j z

ξ

ξ ξ

=

= =

∑

∑ ∑
 (2.12) 

Incoming and outgoing waves in the right part can be written very similarly 

(omitted here). Now, boundary condition as mentioned before for the velocity and 

stress at z = 0 (step position) is applied such as 

    a b a b
l l r r rj u j u j u j u r Rω ω ω ω+ = + < , (2.13) 

 
,      < 

0,     

a b
a b r r r

l l
r

T T r R
T T

r R
 +

+ = 
>

. (2.14) 

These equations are expanded in eigenmodes as followings 

 , , , , , , , , ,,     l i l i l i l i r i r i r i r i r
i i i i

j a u j b u j a u j b u r Rω ω ω ω+ = + <∑ ∑ ∑ ∑  (2.15) 

 

44 , , , 44 , , ,

44 , , , 44 , , , ,     ,

0,      .

l i l i l i l i l i l i
i i

r i r i r i r i r i r i r
i i

r

jc a u jc b u

jc a u jc b u r R

r R

ξ ξ

ξ ξ

− +

 − <= 
 <

∑ ∑

∑ ∑  (2.16) 

Equation (2.15) is multiplied by , 44 , ,
1 1
2 2r m r m r mT jc uξ− =  where ,r mT  is the 

relevant stress component of mode m in the right part. This party will be integrated 

over the cross section 0 rr R< <  after complex conjugated; 

 

* *
44 , , , , 44 , , , ,0 0

* *
44 , , , , 44 , , , ,0 0

.

r r

r r

R R

r m l i l i r m r m l i l i r m
i i

R R

r m r i r i r m r m r i r i r m
i i

c a u u rdr c b u u rdr

c a u u rdr c b u u rdr

π ωξ π ωξ

π ωξ π ωξ

+

= +

∑ ∑∫ ∫

∑ ∑∫ ∫
 (2.17) 
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By complex conjugating and adjusting , , 0r m r mQ Kξ= , the normalized wave 

number, equation (2.17) can be represented 

 

* *
44 , , , , 44 , , , ,0 0

* *
44 , , , , 44 , , , ,0 0

.

r r

r r

R R

r m l i l i r m r m l i l i r m
i i

R R

r m r i r i r m r m r i r i r m
i i

c Q a u u rdr c Q b u u rdr

c Q a u u rdr c Q b u u rdr

π ω π ω

π ω π ω

+

= +

∑ ∑∫ ∫

∑ ∑∫ ∫
 (2.18) 

This equation can be changed to 

 * * * *
, , , , , , , , ,r m im l i r m im l i r m r m r m r m

i i
Q L a Q L b P a P b+ = +∑ ∑  (2.19) 

by introducing Lim, 

 2
44 0 , , , ,0 0

,r rR R

im l i r m t l i r mL c K u u rdr V u u rdrπ ω πρ ω= =∫ ∫  (2.20) 

the real overlap integral. Similar formulas for equation (2.16), multiplying 

*
, ,

1 1
2 2l m l mv j uω− =  and integrating over 0 lr R< < , are applied which yield 

 , , , , , , , , .l m l m l m l m r i mi r i r i mi r i
i i

P a P b Q L a Q L b− + = −∑ ∑  (2.21) 

Equations (2.19) and (2.21) are used to find the scattering parameters of stepped 

rod system after dividing the equation (2.19) by *
,r mP : 

 
, , , , , ,

, , , , , , , ,

,

.

r m im l i r m r m im l i r m
i i

l m l m r i mi r i l m l m r i mi r i
i i

Q L b b Q L a a

P b Q L b P a Q L a

− = − −

+ = +

∑ ∑

∑ ∑
 (2.22) 

Note that b can be determined by solving equation (2.22) which is infinite set of 

linear equation when a's are known, the magnitude of each incident wave mode. 2N 
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equations should be considered to determine 2N mode, N-th mode for outgoing 

wave toward both sides. For N=3 case as an example, equation (2.22) can be 

written 

 

,1 11 ,1 21 ,1 31
,1

,2 12 ,2 22 ,2 32 ,2

,3,3 13 ,3 23 ,3 33

,1
,1 ,1 11 ,1 12 ,1 13

,2
,2 ,2 21 ,2 22 ,2 23

,3 ,3 31 ,3 32 ,3 33

1 0 0

0 1 0

0 0 1

0 0
0 0
0 0

 −
 
 −
 
 −
 
 
 
 
  

r r r
l

r r r l

lr r r

r
l r r r

r
l r r r

r
l r r r

Q L Q L Q L b
Q L Q L Q L b

bQ L Q L Q L
bP Q L Q L Q L
bP Q L Q L Q L
bP Q L Q L Q L ,3

,1 11 ,1 21 ,1 31

,2 12 ,2 22 ,2 32

,3 13 ,3 23 ,3 33

,1 ,1 11 ,1 12 ,1 13

,2 ,2 21 ,2 22 ,2 23

,3 ,3 31 ,3 32 ,3 33

1 0 0

0 1 0

0 0 1

0 0
0 0
0 0

 
 
 
 
 
 
 
 
  

 − − −
 
 − − −

− − −= 



 

r r r

r r r

r r r

l r r r

l r r r

l r r r

Q L Q L Q L

Q L Q L Q L

Q L Q L Q L

P Q L Q L Q L
P Q L Q L Q L

P Q L Q L Q L

,1

,2

,3

,1

,2

,3

.

 
 
              

l

l

l

r

r

r

a
a
a
a
a
a

(2.23) 

 

2.2 Stepped pipe scattering theory 

 

2.2.1 Power normalized mode shape function 

Stepped pipe scattering theory can be obtained by very similar procedure with 

stepped rod problem reviewed in section 2.1 because rod and pipe show analogous 

physical phenomena. The biggest different part is mode shape function as showed 

before in equation (2.2). In the pipe problem, mode shape function can be written 

as following [33] 
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 2
0 0 ,       0,K r su Aθ ==  (2.24) 

 1 1( ) ( ),       0.s r r s r ru A k J k r B k Y k r sθ = + >  (2.25) 

Equation (2.24) and (2.25) denote the lowest torsional wave mode and higher 

torsional modes, respectively. Where Ji and Yi denote first and second kind of the 

Bessel function for order i. The next step is to induce power normalized mode 

shape function like equation (2.9). As with the previous course, the condition 

represented in equation (2.6) will be applied to equation (2.5) to obtain power 

normalized mode shape function of a pipe structure. In this section a pipe having 

inner radius Ri and outer radius R is considered. For the lowest torsional wave 

mode, total power P can be written as following using equation (2.24) 

 2 4 3
, , 0 0 .

i i

R R

s sR R
P u u rdr A K r drθ θπωµξ πωµξ= =∫ ∫  (2.26) 

Note that the lowest torsional wave mode is always propagating mode, so that total 

power P always have the value of 1. From that the equation (2.26) always has the 

value of 1, one can determine constant A0 of power normalized mode shape 

function of the first torsional wave mode as following equations 

 ( )3 2 6 4 4
0 0

1 1
4t iV A K R Rπρ − = , (2.27) 

 
( )

2
0 3 6 4 4

0

4

t i

PA
V K R Rπρ

=
−

, (2.28) 

 
( )0 3 4 4

0

2 1

t t i

A
V K V R Rπρ

=
−

. (2.29) 
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For the second and higher torsional wave mode, equation (2.25) looks like it has 

two unknown coefficients, the number of unknown can be reduced by applying 

traction free boundary condition at r = Ri and R. Starting with stress component 

rT θ  to apply traction free boundary condition, rT θ  can be written 

 r
u u uT r

r r r r
θ θ θ

θ µ µ
∂∂    = = − +   ∂ ∂   

. (2.30) 

By adjusting derivative of Bessel function as following 

 [ ]1 1
1( ) ( ) ( )
2

d Z x Z x Z x
dx ν ν ν− += − , (2.31) 

where Z denotes the first kind Bessel function for the order ν , equation (2.30) can 

be represented  

 
( )

( )

2 2
0 1 2

0 1 2

( ) ( ) ( )
2

( ) ( ) ( )
2

s r r r r r r

r
s r r r r r

rA rk J k r k J k r rk J k r

rkB rk Y k r Y k r rk Y k r

µ

µ

− + +

+ − + +
. (2.32) 

And equation (2.32) can be written  

 [ ]2 2
2 2( ) ( )r r s r s rT r k A J k r B Y k rθ µ= +  (2.33) 

by adjusting characteristic of Bessel function, 

 1 12 ( ) [ ( ) ( )]vZ x x Z x Z xν νν − += + . (2.34) 

Two linear equation for As and Bs can be obtained by applying boundary condition 

at the inner and outer surface; 0     ( , )r iT r R Rθ = = , as followings 
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 2 2

2 2

( ) ( ) 0,
( ) ( ) 0,

s r i s r i

s r s r

A J k R B Y k R
A J k R B Y k R

+ =
+ =

 (2.35) 

which can be represented in matrix form  

 2 2

2 2

( ) ( )
0

( ) ( )
sr i r i

sr r

AJ k R Y k R
BJ k R Y k R
  

=  
   

. (2.36) 

To satisfy equation (2.36) determinant of the matrix in the left part should be zero 

which means characteristic equation. And As and Bs are dependent which are 

satisfying following condition 

 2 2( ) ( ) 0r i s r i sJ k R A Y k R B+ = . (2.37) 

Finally, mode shape function for the higher torsional mode can be expressed with 

one coefficient As 

 ( )1 2 2 1( ) ( ) / ( ) ( )s r r r i r i r rJ k r J k R Y k R k Y k ru A kθ  −  = −  (2.38) 

Now the coefficient As should be defined to satisfy that total power becomes 1 or -j 

for propagating mode or non-propagating mode respectively. Similarly with 

equation (2.26)-(2.29) total power P can be obtained using equation (2.38). To this 

end, integral shown in following equation should be solved. 

 [ ]22 2
, , 2 1 2 1( ) ( ) ( ) ( )

i i

R R

s s s r r i r r i r rR R
u u rdr A k Y k R J k r J k R k Y k r rdrθ θ = −∫ ∫ . (2.39) 

This integral can be solved using established integral table of Bessel functions [34, 

35] as following 
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 { }2 2 2
1 1

1( ) ( ) ( ) ( )
2

z

v v v vC kt tdt z C kz C kz C kz− += −∫  (2.40) 

where Cv is a cylindrical function such as 

 ( ) ( ) ( )v v vC z AJ z BY z= + . (2.41) 

Now, equation (2.39) can be solved as 

 { }2 2 2 2
1 0 2

1 ( ) ( ) ( )
2

i

R

s r r r r
R

A k r C k r C k r C k r −  
. (2.42) 

And by substituting the integration constants and introducing Cn which denotes 

 2 2( ) ( ) ( ) ( ) ( )n r r i n r r i n rC k r Y k R J k r J k R Y k r= − , (2.43) 

with a condition of 

 2 2( ) ( ) 0r i rC k R C k R= = , (2.44) 

equation (2.42) can be written 

 2 2 2 2 2 2
1 1

1 ( ) ( )
2 s r r i r iA k R C k R R C k R −  . (2.45) 

Thus, total power P can be written 

 2 2 2 2 2 2
1 1

1 ( ) ( )
2 s r r i r iP A k R C k R R C k Rπωµξ  = −  . (2.46) 

As mentioned before, for normalization of each torsional mode, the total power P 

should be 1 or -j for propagating or non-propagating mode. Therefore magnitude of 

each torsional mode As should be 
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2 2 2 2

1 1

1 2
( ) ( )

s
t r r i r i

A
V k R C k r R C k Rπωρ ξ

=
 − 

. (2.47) 

The power normalized displacement function for the higher torsional modes, 

therefore, are given by 

 

[ ]

2 2 2 2
1 1

2 1 2 1

1 2
( ) ( )

                              ( ) ( ) ( ) ( )

t r i r i

r i r r i r r

V R C k R R C k R

Y k R J k r J k R k Y k r

uθ πωρ ξ
×

 − 

−

=
. (2.48) 

Finally, the power normalized mode shape function can be found that can be 

written 

 

[ ]

3 2 4 4
0

2 2 2 2
1 1

2 1 2 1

2                                                            0
( )

1 2
( ) ( )

                              ( ) ( ) ( ) ( )        0

t i

t r i r i

r i r r i r r

r s
V K R R

V R C k R R C k R

Y k R J k r J k R k Y k r s

uθ

πρ

πωρ ξ

 = −

 ×  − 

− >

=



.(2.49) 

To verify obtained power normalized mode shape function represented in equation 

(2.49) mode shape of the second and fifth mode are shown in figure 2.3. Mode 

shapes in an aluminum pipe having 70-mm diameter and 13-mm thickness are 

considered. For comparison, commercial tool DISPERSE [36] is used. Each curve 

in figure 2.3 was normalized with respect to its own maximum value. From the 

figure 2.3 it is confirmed that driven power normalized mode shape function is 

appropriate.  

2.2.2 Modal scattering analysis 
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The power normalized mode shape function is now used to find scattering matrix 

for a stepped pipe problem shown in figure similarly with section 2.1.2. A 

schematic of stepped pipe problem is shown in figure 2.4. Outer radius of the left 

part and right part are denoted Rl and Rr, respectively. For convenience, a stepped 

pipe which has the same inner radius Ri will be considered in this section. Every 

procedure to obtain scattering matrix is the same with the section 2.1.2, established 

in the previous paper, except power normalized mode shape function and integral 

section. The power normalized mode shape function is shown in equation (2.49) 

and integral section is changed starting from Ri not zero in the rod case. Thus the 

final result shows the same thing in equation (2.23) only the differences in 

definition of Lim, 

 2
, ,

r

i

R

im t l i r mR
L V u u rdrπρ ω= ∫ . (2.50) 

The integral section of P is also changed, but the values of P are always 1 or -j for 

the propagating modes or non-propagating modes.  

To obtain frequency response of the stepped pipe scattering, examples for 

aluminum pipes having 22-mm inner radius Ri and 35-mm outer radius of the left 

part Rl, three cases of outer radius of the right part Rr = 32, 29, and 26 mm, were 

considered. For an incident first torsional wave mode in a left part, magnitude of 

the reflected wave modes were calculated. Re-expressed it as the form in equation 

(2.23), 
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,1 11 ,1 21 ,1 31
,1

,2 12 ,2 22 ,2 32 ,2

,3,3 13 ,3 23 ,3 33

,1
,1 ,1 11 ,1 12 ,1 13

,2
,2 ,2 21 ,2 22 ,2 23

,3 ,3 31 ,3 32 ,3 33

1 0 0

0 1 0

0 0 1

0 0
0 0
0 0

r r r
l

r r r l

lr r r

r
l r r r

r
l r r r

r
l r r r

Q L Q L Q L b
Q L Q L Q L b

bQ L Q L Q L
bP Q L Q L Q L
bP Q L Q L Q L
bP Q L Q L Q L

 −
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 −
 
 −
 
 
 
 
  
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,1 11 ,1 21 ,1 31

,2 12 ,2 22 ,2 32

,3 13 ,3 23 ,3 33

,1 ,1 11 ,1 12 ,1 13

,2 ,2 21 ,2 22 ,2 23

,3 ,3 31 ,3 32 ,3 33

1 0 0

0 1 0

0 0 1

0 0
0 0
0 0

r r r

r r r

r r r

l r r r

l r r r

l r r r

Q L Q L Q L

Q L Q L Q L

Q L Q L Q L

P Q L Q L Q L
P Q L Q L Q L

P Q L Q L Q L

 
 
 
 
 
 
 
 
  

 − − −
 
 − − −

− − −= 



 

1
0
0
0
0
0

 
 
 
 
 
 
 
    

. (2.51) 

Note that only al,1 is 1 and all the other a's are zero to express that only the first 

torsional mode in the left part propagate to the step in a pipe. Reflection and 

transmission coefficients of each wave modes can be obtained respectively from 

bl's and br's represented in a matrix form as following 

 

,1

,2

,3 1

,1

,2

,3

1
0
0
0
0
0

l

l

l
b a

r

r

r

b
b
b

M M
b
b
b

−

   
   
   
   

=   
   
   
   

     

. (2.52) 

Here, Ma and Mb denote the matrix in the right side and right side in equation (2.51) 

respectively. The results of reflection coefficients for the first and second torsional 

mode, bl,1 and bl,2, are shown in figure 2.5 and 2.6. From figure 2.5, reflection 

coefficients of the first torsional mode show that reflection from stepped pipe 

occurs more when the depth of step becomes larger. This is reasonable inferred 
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from the fact that as the size of the defect is large reflection is large. The resonance 

effects at the cut-off frequencies are also observe. In figure 2.5, peaks near 120 kHz 

and 230 kHz occur which are first and second cut-off frequency of the 13-mm 

thickness pipe. At the cut-off frequency cut-off mode diverges, this makes 

resonance phenomena. In figure 2.6, because the cut-off frequency of the second 

torsional mode is near 120 kHz, reflection coefficients under cut-off frequency are 

set to be zero. 

 

2.3 Validation with numerical simulation 

 

2.3.1 Numerical analysis 

To verify proposed stepped pipe scattering theory, numerical simulation will be 

carried out. COMSOL multiphysics [37] was used for the numerical model 

represented in figure 2.8 for Ri = 22 mm and Rl = 35 mm. Here, partial differential 

equation for the axisymmetric torsional wave problem, 

 
2 2 2

2 2 2 2 2

1 1

t

u u u u u
r r r r z V t
θ θ θ θ θ∂ ∂ ∂ ∂
+ − + =

∂ ∂ ∂ ∂
, (2.53) 

were solved by PDE module in COMSOL. Gabor pulse, which is good for energy 

concentration with respect to a specific frequency, was used as an input pulse with 

200-kHz center frequency at the excitation line. The shape of input Gabor pulse 

and its Fourier transform are shown in figure 2.9. Time transient finite element 
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analyses were carried out with respect to 1-mm maximum mesh size and 0.05-μs 

time interval. To generate only the lowest torsional mode, distributed loading was 

excited at the excitation line in figure 2.8. This distribution is formed linear 

function which is the mode shape of the first torsional wave mode. When the 

specific mode shape is loaded, that mode can be generated alone virtually. As an 

example 6-mm step depth case is considered here, and its measured signal is 

presented in figure 2.10. The signal is normalized by the magnitude of the input 

signal (even not shown in the figure). Note that the excited frequency of 200 kHz is 

located between the first and the second cut-off frequency (see figure 2.7), the first 

and second torsional mode would be reflected. In the figure 2.10, a sharp signal is 

the first torsional mode and a spread one is the second one. Because the second 

torsional mode has dispersive property otherwise the first torsional mode is non-

dispersive.  

Now, let us back to the results of the stepped pipe scattering theory. Reflection 

coefficients for the 6-mm step depth case are shown as dotted lines in figure 2.6 

and 2.7. These results should be compared with the results obtained by numerical 

analyses like one represented in figure 2.10. The main differences occur because 

the results obtained by scattering theory are under time-harmonic assumption. 

Otherwise, the results obtained numerically are based on time transient analysis 

which uses Gabor pulse as an input signal. Thus the method to make reflection 

signal from scattering theory should be applied. It is possible by inverse Fourier 

transform after multiplying FFT result of input pulse in the Fourier domain. Figure 

2.11 shows result of multiplying frequency response from stepped pipe represented 

in figure 2.5 (result of the first torsional mode) and FFT of input Gabor pulse 
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represented in figure 2.9(b). Reflected signal can be calculated after inverse Fourier 

transform of this, and the results of the first and second torsional wave modes are 

shown in figure 2.12. The numbers expressed by T1 and T2 denote reflection 

coefficient of the first and second torsional wave modes, respectively. Note that 

these signals are reflected signals at the reflective moment. 

 

2.3.2 Signal processing: dispersion compensation 

Let us start with the results of the numerical simulation represented in figure 2.10. 

Because the second torsional mode has dispersive property, second mode signal 

shows increasing aspect. Therefore judgment of reflection coefficient of the second 

torsional mode is difficult. Moreover dispersive signal changes its shape when 

propagating along a pipe. Generally magnitude of dispersive signal becomes 

smaller during propagation because of wave diffusion. Thus the method to compare 

magnitude of the dispersive signal; reflected second torsional mode here, to 

obtained signal from stepped pipe scattering theory represented in figure 2.12, 

should be employed. To this end, dispersion compensation method [31] which has 

been reported will be employed. Although the detailed procedure is well presented 

in [31], brief review will be shown from now on with some notation changes.  

Let us assume there is measured guided wave mode of interest ( ),u x t  excited 

from an input signal ( )f t , where t and x is time and propagating distance of the 

guided wave respectively. ( ),u x t  can be represented 
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 ( ) ( )( ), ( ) ,i k x tu x t F e dω ωω ω
∞

−

−∞

= ∫  (2.54) 

where, ( )k ω  is the wave number as a function of frequency ω  and ( )F ω  is 

the Fourier transform of ( )f t . 

And there is ( )g t , received time signal apart from transducer to x, which should 

be a function of propagation distance and compressed it dispersion. Now if one 

propagates ( )g t  as -x, back propagating, dispersion compensated time signal 

( )h x  can be calculated; 

 ( ) ( ) ( ) ( ),0 ik xh x u x G e dωω ω
∞

−

−∞

= − = ∫ , (2.55) 

where ( )G ω  is the Fourier transform of ( )g t . The integration variable ω  

should be change from ω  to k using the relation; 

 
( )
( )

gr

ph

d v dk

v k

ω ω

ω ω

=

=
 (2.56) 

where vgr, vph denote the group and phase velocities of the mode, respectively. 

Using equation (2.55), needs more numerical implementation, dispersion signal can 

be compressed if dispersion relation ( kω − ) is already known.  

In this section, dispersion relation of an aluminum pipe is already known, 

dispersion compensation of obtained signal is possible. A clamped signal from 

original signal shown in figure 2.10 for the second torsional wave mode is 

represented in figure 2.13(a). This signal is compensated using equation (2.55) and 
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the result is shown in figure 2.13(b). The signals which are obtained by scattering 

theory and by numerical analysis after dispersion compensation are shown in figure 

2.14 together. From the figure it is confirmed that dispersion compensation method 

works well and obtained signals from scattering theory and numerical analysis after 

dispersion compensation show good agreement. 

 

2.3.3 Numerical validation 

For numerical validation of proposed stepped pipe scattering theory, 2-dimensional 

time transient finite element analyses were carried out for the numerical mode 

explained in section 2.3.1 and figure 2.8. Depth of step is changed from 1 to 13 mm 

in 1-mm interval. Calculated reflection coefficients of the first and second torsional 

wave mode are represented in figure 2.15 in addition reflection coefficients 

obtained from scattering theory. Note that the results of the numerical simulation 

were obtained after dispersion compensation. At first, it is validated that the results 

of numerical simulation and scattering theory show good agreement from figure 

2.15. Two reflected modes, the first and second torsional wave mode, show 

deferent aspect for change of step depth. The first mode shows increasing tendency, 

otherwise, reflection coefficient of the second mode grows up until 5-mm step 

depth and decreases. The results can be explained from the mode shapes of two 

torsional wave modes shown in figure 2.16. The mode shape of the first torsional 

mode is linear which has uniform sign, whereas that of the second one consists of 

function which changes sign on the way. This difference of two modes causes 

different reflection coefficient patterns 
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Figure 2. 1. Definition of the cylindrical coordinate system 
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Figure 2. 2. Definition of geometry of stepped rod. a and b denote incoming and 

outgoing waves, and l and r mean left and right part of stepped rod respectively 
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Figure 2. 3. Mode shapes of the (a) second and (b) fifth torsional wave modes 

obtained by the proposed equation (1.49) and commercial tool DISPERSE which 

are denoted by solid and dotted line, respectively. 
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Figure 2. 4. Definition of a stepped pipe for a stepped pipe scattering theory having 

the same inner radius Ri.  
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Figure 2. 5. Frequency response of the reflected first torsional wave mode for the 

incident first torsional wave mode at the stepped pipe having step depth ds = 3, 6 

and 9 mm. 
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Figure 2. 6. Frequency response of the reflected second torsional wave mode for 

the incident first torsional wave mode at the stepped pipe having step depth ds = 3, 

6 and 9 mm. 
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Figure 2. 7. Dispersion relation of the torsional waves in an aluminum pipe. 
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Figure 2. 8. Schematics of FEM model for stepped pipe scattering problem.  
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Figure 2. 9. (a) Shape of Gabor pulse with 200-kHz center frequency and (b) its 

Fourier transform result. 
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Figure 2. 10. Result of the finite element analysis for the model in figure 2.8 with 

ds = 6 mm. The signal was normalized by the magnitude of the input signal. 
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Figure 2. 11. Result of multiplying frequency response from stepped pipe 

represented in figure 2.5 (result of the first torsional mode) and FFT of input Gabor 

pulse represented in figure 2.9(b). 
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Figure 2. 12. Reflected signals of the (a) first and (b) second torsional wave mode 

calculated by inverse Fourier transform for the product of stepped pipe FRF results 

and FFT of the input Gabor pulse. An example is shown in figure 2.11 for the first 

torsional wave case. 
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Figure 2. 13. (a) A clamped second torsional wave signal from calculated signal 

shown in figure 2.10. (b) Dispersion compensated signal of (a).  
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Figure 2. 14. The signals which are obtained by (a) scattering theory and by (b) 

numerical simulation. The result of (b) are obtained after dispersion compensation. 
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Figure 2. 15. Reflection coefficients of the first and second torsional wave modes 

which are obtained by scattering theory (represented as Th) and numerical 

simulation (represented as Sim). 
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Figure 2. 16. Mode shape in the thickness direction for the first and second 

torsional wave modes. 
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CHAPTER 3. 

Scattering analysis from an axisymmetric notch defect in a pipe 

Equation Section (Next) 

 

 

In this chapter, stepped pipe scattering theory proposed in chapter 2 will be 

expended to axisymmetric notch scattering case. To this end multiple scattering of 

the stepped pipe scattering theory will be carried out in section 3.1. The results will 

be validated by numerical simulation in section 3.2. Finally, axisymmetric notch 

defect theory will be validated experimentally in section 3.3. The proposed 

axisymmetric notch scattering theory will be used as a reference to characterize 

size of notch defect. There are also some researches which are concerned with 

scattering of guided wave such as hybrid semi-analytical finite element methods 

[38-41] numerical eigen mode extraction method [42-48]. In this research, through 

dispersion compensation process of measured signal, notch size estimation is 

possible by directly comparing with the proposed scattering theory. 

 

3.1 Axisymmetric notch scattering theory 

Definition of an axisymmetric notch defect problem is shown in figure 3.1(a) for a 

pipe having outer radius of R and inner radius of Ri. Because a target notch is 

axisymmetric, two variables; notch depth (dN) and length (LN), can define notch 
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geometry. Scattering at the notch defect can be treated multiple scattering of 

stepped pipe as shown in figure 3.1(b). Before starting details about axisymmetric 

notch scattering, two matrices; scattering matrix S and propagation matrix P, are 

introducing as followings; 

 1[ ] [ ] [ ]b aS M M−=  (3.1) 

 

0

1

0

1

0 0 0
0 0 0

[ ]
0 0 0

0 0 0

jK L

j L

jK L

j L

e
e

P
e

e

ξ

ξ

−

−

−

−

 
 
 =
 
 
  

, (3.2) 

where Ma and Mb are defined in equation (2.52) and P is an example for the case of 

two modes consideration. Total reflected signal can be expressed in the synthesis of 

multiple scattered signals. Here, the process of obtaining the first and second 

reflected signals will be presented. The first reflected signal can be easily obtained 

using equation (2.52), note that it is the same with reflection of the stepped pipe 

scattering problem; 

 
_ step1

_ step1

[ ]
l l

r r

a b
S

a b

      × =   
      

 

 

, (3.3) 

here, _ step1lb


 is reflection coefficients vector of the first reflected signal; 

 _ step1 1st_reflb b=
 

. (3.4) 

Note that every components of the input wave vectors la


 and ra


 has zero value 

except the first component of la


 to express incident first torsional wave only in 
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the left. Transmitted wave vector _ step1rb


 is used input vector from left in the next 

step; propagation step. Phase change caused by propagation in the notch is 

considered in this step using propagation matrix P; 

 
_ step1 _ step2

_ step2

0
[ ]

0
l r l

r r

a b b
P

a b

   = =   × =   
=      

  

 

. (3.5) 

Input vector in right part, ra


, should be zero for the definition of the propagation 

form left to right. In addition, reflection to the left direction, _ step2lb


, is also zero. 

This step2 can be expressed simply; 

 { } { }_ step1 _ step2r rP b b  × = 
 

 . (3.6) 

where P  denotes  

 
0

1

0
0

jK L

j L

e
P

e ξ

−

−

 
=  
 

  (3.7) 

which is also an example of the two mode case. The propagating wave is now 

reflected and transmitted at the right edge. Here, stepped pipe has thin left part and 

thick right part which is opposite to step1. The case that incident wave from the left 

reflects to the left direction should be considered. To this end scattering matrix S 

should be obtained again. To avoid this, the direction of stepped pipe in step3 is 

changed; for the incident wave from the right, reflected wave to the right direction 

will be considered in a stepped pipe having thick left part and thin right part. In a 

matrix form it can be written 
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_ step3

_ step2 _ step3

0
[ ]

l l

r r r

a b
S

a b b

   =   × =   
=      

 

  

. (3.8) 

Note that _ step3lb


 and _ step3rb


 denote transmitted and reflected waves, 

respectively. The transmitted wave is not interest in this research, reflected wave 

will be used in the next step. Step4 is propagating step which is similar to step2 but 

only the direction is changed as from right to left for the incident wave of _ step3rb


; 

 
_ step4

_ step3 _ step4

0
[ ]

0
l l

r r r

a b
P

a b b

   =   × =   
= =      

 

  

. (3.9) 

The final step, step5, _ step4lb


 is incident wave from right; 

 
_ step5

_ step4 _ step5

0
[ ]

l l

r l r

a b
S

a b b

   =   × =   
=      

 

  

. (3.10) 

The transmitted signal _ step5lb


 becomes the second reflected signal; 

 _ step5 2nd_reflb b=
 

. (3.11) 

And reflected signal _ step5rb


 will be used as an input vector to calculate the next 

reflected signal; la


 in equation (3.3). These procedure are repeated until the 

reflected signal is smaller than 0.01 of the magnitude of the first reflected signal. 

Each reflected signal should be converted to time signal, presented in section 2.3.1 

and figure 2.9 to 2.11. Here input Gabor pulse, which is the same with that in 

figure 2.9 having 200-kHz center frequency, will be considered. As an example 2-

mm notch depth (dN) and 7-mm length (LN) case was carried out. The signals of the 
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first, second, and third reflection are represented in figure 3.2. Figure 3.2(a) and (b) 

represent the first and second torsional wave mode, respectively. Each torsional 

mode, the first, second, and third reflected signals become smaller when more 

reflection is repeated. The reflected signals are summed up to represent reflection 

signal as shown in figure 3.3. 

 

3.2 Numerical validation 

Presented axisymmetric notch scattering in a pipe problem should be validated its 

compatibility. To this end numerical simulation was carried out using COMSOL 

multiphysics [37]. The used mode is the same with that in section 2.1.2. As notch 

defects notch depth (dN) is changed from 1 to 13 mm and notch length (LN) is 

changed from 1 to 20 mm with 1-mm interval, respectively. As an example, 2-mm 

notch depth (dN) and 7-mm length (LN) case is carried out and presented in figure 

3.3 which result of scattering theory. Figure 3.3(a) and 3.3(b) represent reflected 

signal of the first and second torsional wave, respectively. Note that, simulation 

result went through dispersion compensation procedure. The figure 3.3 shows that 

the results of proposed axisymmetric notch scattering theory and numerical 

simulation show good agreement. To identify appearance of the reflection 

coefficients, LN = 2 and 7 mm cases are presented in figure 3.4. The solid lines 

represent the results obtained by scattering theory and the dotted lines represent the 

result obtained by numerical simulation. Two figures, figure 3.4(a) and (b), show 

compatibility of the axisymmetric notch scattering theory and numerical simulation. 

Similarly to the previous results; stepped pipe scattering theory shown in figure 
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2.15, reflection coefficient of the first torsional wave mode shows increasing 

tendency and that of the second torsional wave mode increases and then decreases 

although there is some difference. In order to understand effect of notch length (LN), 

reflection coefficients with respect to notch length are presented in figure 3.5. 

When notch depth is small enough, fluctuation phenomena of the reflection 

coefficients vary greatly. Otherwise, in case of the second torsional wave mode, 

when notch depth is small or large much fluctuation phenomena appears but less 

fluctuation is shown in medium depth of notch. It can be said that fluctuation 

occurs more when reflection coefficient is small. Because the reason of fluctuation 

occurrence is synthetic of multiple reflections, bigger change of reflection 

coefficient with respect to notch length (LN) appears. Reflection coefficients with 

respect to notch depth (dN) and length (LN) for axisymmetric notch cases can be 

represented as reflection maps as shown in figure 3.6 which can be applied to 

estimate size of notch defect in a pipe. 
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Figure 3. 1. (a) Definition of an axisymmetric notch defect problem and (b) 

schematics of multiple scattering at the notch defect. 
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Figure 3. 2. Multiple scattering at a notch defect as shown in figure 3.1(b) for the (a) 

first and (b) second torsional wave modes. 
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Figure 3. 3. Reflected wave of the (a) first and (b) second torsional wave modes 

obtained by simulation (with dispersion compensation) and notch scattering theory. 
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Figure 3. 4. Reflection coefficients of the first and second torsional wave mode for 

the axisymmetric notch length of (a) 2 mm and (b) 7 mm.  
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Figure 3. 5. Reflection coefficients of the (a) first and (b) second torsional wave 

mode for length of the axisymmetric notch. Numbers in the legend denote notch 

depth in mm.  
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Figure 3. 6. Reflection maps of the (a) first and (b) second torsional wave modes 

for an axisymmetric notch having depth (dN) and length (LN). 
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CHAPTER 4. 

Effect of the central angle of notch and  

ratio of reflection coefficients 

Equation Section (Next) 

 

 

Until now, research for scattering from an axisymmetric notch defect in a pipe was 

carried out. To estimate part circumferential notch, three-dimensional analyses not 

axisymmetric case should be considered. To this end, in this chapter, relation 

between the central angle of a part circumferential notch defect and reflection 

coefficient of each torsional mode will be demonstrated. Definition of the target 

notch defect is shown in figure 4.1 which are depth (dN), length (LN) and central 

angle (θN). First of all three dimensional transient finite element analyses for notch 

defects which have different central angle (θN) were carried out using commercial 

FEM tool (ABAQUS). After that, magnitude of the reflection coefficient with 

respect to the central angle (θN) will be presented. Lastly, the ratio Rij, ratio of i-th 

torsional mode to the j-th torsional mode, will be proposed which is independent to 

the central angle (θN). This result can be used to characterize size of notch defect in 

the next chapter. 

 

4.1 Finite element models 

Numerical analyses based on the three-dimensional transient finite element method 
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were carried out by using ABAQUS [49]. Geometry of analysis model, are 

illustrated in figure 4.2. An aluminum pipe with 1.5-m length, 70-mm outer 

diameter and 13-mm thickness was considered. A notch defect is located 0.83-m 

away from left side. To generate only the first torsional wave mode surface traction 

across the pipe thickness at the left end (gray-colored in figure 4.2) was loaded as 

the same with the mode shape of the first torsional mode with the Gabor pulse 

having a center frequency of fc = 320 kHz. Incident and reflected signals were 

measured by storing displacement in the circumferential direction on each node at 

the left edge (dotted in figure 4.2), and then all recorded signals were summed 

together to obtain the axisymmetric torsional modes only and eliminate flexural 

modes. Through this process only the axisymmetric modes; the first and second 

torsional modes in this case, can remain but all the flexural modes are canceled out. 

In analyzed pipe (13 mm) with 320 kHz frequency, the first, second and third 

torsional mode can exist as dotted lined in figure 2.7. Thus three modes can be 

expected to be reflected when the first torsoinal wave mode reflects at the notch 

defect. All pipe structure was constructed of hexagonal meshes having average size 

of 1 mm and analyzed with 0.01 μs time step. For the notch with 6-mm depth (dN) 

and 10-mm length (LN), central angle (θN) had been changed from 50° to 300° in 

addition to 360° (total 7 cases). 

 

4.2 Numerical results 

The measured signals are shown in figure 4.3. Each signal was normalized by 

incident signal. Thus the magnitude of each reflected mode can be treated as 



58 

reflection coefficient. T1, T2 and T3 indicate the reflection coefficient of the first, 

second and third torsional mode, respectively. From the figure, size of signals is not 

changed but conservation of wave form can be confirmed. The results of reflection 

coefficients for notch defects which have different central angle (θN) but the same 

depth (dN) and length (LN) obtained by numerical analyses are represented in figure 

4.4. The solid lines are virtual lines connecting origin and the results of 360° case. 

The dots indicate simulated reflection coefficient of each torsional mode. From the 

results the linearity of the reflection coefficients of each torsional wave mode to the 

central angle (θN) of notch defect is verified. It was already studied that the 

reflection coefficient of the first torsional wave mode is a roughly linear function of 

the circumferential extent of part circumferential notch defect [14, 25]. In addition, 

it is turned out that the second and third torsional modes have same relation in this 

research. The reason of proportional phenomenon of the reflection coefficients of 

each torsional wave mode to the central angle (θN) can be found in circumferential 

mode shapes. Two modes; the first and second torsional modes, have the same 

uniform circumferential mode shape which responses same aspect of reflection 

coefficients for the central angle of a part circumferential notch defect. 

 

4.3 Magnitude of reflection coefficient and ratio of reflection 

coefficients 

This time, relation between the magnitudes of each reflection coefficient and size 

of a notch especially central angle (θN) will be demonstrated. To predict it, let us 

define modified reflection coefficient ( )
_ mod
i

jT  by multiplying ( )2 i
jπ θ  to the 
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original reflection coefficient ( )i
jT . Where, index i means central angle (θN) case 

(i.e., i = 1, 2 and 3), and j means torsional wave mode; 1 and 2. Thus, the modified 

reflection coefficient ( )
_ mod
i

jT  can be written as following, 

 ( )( ) ( ) ( )
_ mod 2i i i

j j NT T π θ= ×  (4.1) 

The modified reflection coefficients ( )
_ mod
i

jT  are the same with each other though 

different central angle cases (i.e., different i for the same j). From the results, it is 

revealed that the magnitudes of each reflection coefficient are proportional to the 

central angle (θN) of a part circumferential notch. The fact that both reflection 

coefficients of the first and second torsional modes are proportional to the central 

angle (θN) of part circumferential notches can provide a new variable Rmn which 

means the ratio of the reflection coefficients of the m-th torsional mode to the n-th 

torsional mode as following, 

 /mn m nR T T=  (4.2) 

To find more significant consequence, let us consider two different arbitrary central 

angle cases, ( )a
Nθ  and ( )b

Nθ . From the previous results, it is clear that each 

modified reflection coefficient of j*-th mode from i = a and i = b cases is the same, 

i.e., 

 * *
( ) ( )
_ mod _ mod
a b

j j
T T= . (4.3) 

Return to the concept of Rmn, the ratio of the second mode to the first mode with 

respect to the ( )a
Nθ  case can be written as followings after applying equation (4.1) 
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( )
( )

( ) ( ) ( )( )
_ mod _ mod( )

( ) ( )( ) ( )
_ mod_ mod

2

2

a a aa
N m ma m

mn a aa a
n nN n

T TTR
T TT

θ π

θ π

×
= = =

×
 (4.4) 

Equation 4.4 can be expressed as followings after applying the equality of modified 

reflection coefficient (equation (4.3)) 

 
( ) ( ) ( )
_ mod _ mod ( )
( ) ( ) ( )
_ mod _ mod

a b b
m m bm

mna b b
n n n

T T T R
T T T

= = =  (4.5) 

Consequently, 

 ( ) ( ) ( , )a b
mn mn mn N NR R R d L= =  (4.6) 

From the equation (4.6), it is revealed that Rmn is independent to the central angle 

(θN) but dependent to the depth (dN) and length (LN) of a part circumferential notch 

defect. Some results for the cases of LN = 2 mm with the Gabor pulse having 200-

kHz center frequency are represented in figure 4.5. These results clear show the 

ratio of reflection coefficients is independent to the central angle (θN) of a part 

circumferential notch defect. This result indicates new algorithm to characterize 

size of a part circumferential notch defect by considering ratios of reflection 

coefficients of the torsional waves from a notch defect which are independent to 

the central angle (θN).  
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Figure 4. 1. A target part-circumferential notch defect defined as depth (dN), length 

(LN) and central angle (θN) 
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Figure 4. 2. Schematics and geometry of finite element model. 
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Figure 4. 3. Measured signals obtained by three dimensional finite element analysis 

for the model shown in figure 4.2. 
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Figure 4. 4. Numerical results of reflection coefficients for notch defects varying 

central angle (θN) 

  



65 

 

Figure 4. 5. Ratio of reflection coefficient of the 2
nd

 torsional mode to the 1
st
 

torsional mode for the cases of LN = 2 mm with the Gabor pulse having 200-kHz 

center frequency. 
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CHAPTER 5. 

Size characterization for a notch having known length 

Equation Section (Next) 

 

 

In this chapter, a new algorithm to characterize a part circumferential notch defect 

having known length. This is beginning research of notch characterization which 

has three unknown parameter (depth, length and central angle). The reason to 

choose known length case for a basic research is that it has been reported to 

estimate length of a notch defect through frequency changes of excitation wave 

[23-26]. Moreover, depth of a notch defect is much important than notch length in 

a view of pipe safety. At first, concept of the proposed method will be represented 

in section 5.1. And then results of numerical analyses for axisymmetric notch with 

varying depth will be firstly presented in section 5.2. By using these results, 

characterization of notch depth (dN) and central angle (θN) can be possible in 

section 4.3. Finally experimental validation to characterize notch depth (dN) and 

central angle (θN) quantitatively will be presented also in section 5.3. 

 

5.1 Concept 

As shown in equation 4.6, the ratio values of the torsional modes are independent 

with respect to the central angle (θN) of a part circumferential notch defect. From 

this, if one tries to use the ratios of reflection coefficients to characterize size of a 

notch defect, it is possible to escape from complex non-axisymmetric effect of 
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partial central angle (θN). As mentioned before, notch defect characterization 

researches using mode conversion to the flexural wave mode have been reported. 

Because target notch defect has non-axisymmetric geometry, flexural wave mode 

should be reflected although only the first torsional wave mode is used as input 

wave mode. The torsional wave has uniform circumferential mode shape, 

otherwise flexural mode has circumferential mode shape of cosnθ for its 

circumferential order n. Because previous methods have used flexural modes, there 

is no choice to avoid complex three dimensional analyses which need lots of time 

and computational resources. But the proposed method uses only the axisymmetric 

torsional wave mode, only axisymmetric results are needed to characterize size of 

notch. This has a very significant advantage comparing with previous researches; 

need only the axisymmetric references. Now, let us begin with purpose of this 

chapter; notch defect size characterization for known length (LN) case. In this 

section, LN = 2 mm case will be considered. Because length of the target notch is 

already known, the ratio of reflection coefficients represented in equation (4.6) can 

be 

 ( , ) ( )mn mn N N mn NR R d L R d= =  (5.1) 

This means that the ratio of reflection coefficients is only the function of notch 

depth dN. In this case, only one ratio value is needed to find out notch depth. Thus 

only two wave modes, the first and second torsional wave modes, are necessary to 

characterize remain two parameters. It can be easily inferred; to examine the two 

variables two conditions are necessary. Now let us suppose notch depth dN was 

estimated using equation 5.1. The remain value is central angle (θN). This value can 
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be directly examined using equation 4.1. It has not been referred above, ( )
_ mod
i

jT  

indicates axisymmetric result of the j-th mode in case i, so that 

 ( ) ( )2( ) ( ) ( )
_ mod 2 Ni i i

j j N jT T T θ ππ θ == × =  (5.2) 

Thus the central angle can be calculated using  

 ( )2( ) ( )2 Ni i
N j jT T θ πθ π == ×  (5.3) 

Following two steps using equations (5.1) and (5.3), depth (dN) and central angle 

(θN) are easily estimated with only axisymmetric reference. 

 

5.2 Numerical analysis 

To characterize depth and central angle of a notch defect having known length, 

two-dimensional axisymmetric reference should be prepared. To this end, finite 

element analyses for an aluminum pipe having 70-mm diameter and 13-mm 

thickness were carried out for the model represented in figure 5.1. All pipe 

structure was constructed of triangular meshes having average size of 1 mm and 

analyzed with 0.01 μs time step. In this section, known notch length case, only two 

torsional wave modes (the first and second modes) are needed. Thus 200-kHz of 

the Gabor pulse is selected as an input pulse (see dispersion curve in figure 2.7). In 

this situation, excitation would be very important. Because the first and second 

torsional modes can propagate at the excitation frequency, both two modes are 

excited when general transducers are used. In this research phased meander array 

method was employed which can make only the first torsional wave mode in a pipe 
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at a frequency above the first cutoff frequency [50]. More so come out in the 

reference, to briefly explain about the method, two meander type magnetostrictive 

patch transducers are located at the specific location having distance of sT. And two 

transducers excite sequentially with specific time delay (td) for suppressing the 

second torsional mode and enhancing the first torsional mode. Time delay (td) and 

distance between the two transducers (sT) can be obtained by following equations 

[50], 

 2 2 2( )d p gt c cλ= −  (5.4) 

 2T d gs t c= ×  (5.5) 

The values of time delay (td) and distance of the two transducers (sT) were 

calculated as 13.2 μs and 32.16 mm for 200 kHz in a test pipe which has 70 mm 

diameter and 13 mm thickness. Where, cp2 and cg2 denote phase and group velocity 

of the second torsional mode which have a value of 3924 m/s and 2436 m/s. λ1 

and λ2 denote wave length of the first and second torsional mode respectively. How 

this method was applied is shown in figure 5.2. Note that even though figure 5.2(a) 

is drawn in three-dimensionally, numerical analyses were conducted in two 

dimensions with axisymmetric condition. As mentioned before two transmitters, Tr. 

1 and Tr. 2, are needed to excited only the first torsional wave. Each transmitter 

consists of two-finger meander coil, 4 individual lines, and three cycles of step 

function of 200 kHz frequency were loaded as concentrate force in the 

circumferential direction on each line. The excited functions of Tr. 1 and Tr. 2 are 

figured in figure 5.2(b). To find reflection coefficients, it is essential to measure 

magnitudes of each wave mode; incident first mode, reflected first mode and 
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second mode. However the second mode of the torsional wave is so dispersive that 

judgment of amplitude is ambiguous. Thus in this research, reflection coefficient of 

the first torsional wave mode (T1) and that of the second torsional wave mode (T2) 

were examined from extracted signals which has 200 kHz frequency constituent 

after undergoing short-time Fourier transform (STFT). Figure 5.3 shows an 

example signal of a part circumferential notch simulation which has thickness of 5 

mm. This signal was converted from original time magnitude signals through 

selecting 200 kHz frequency constituent after STFT. Reflection coefficient of the 

first and second torsional mode can be calculated by C1 (magnitude of the incident 

first torsional mode) dividing into T1 (reflected first torsional mode) and T2 

(reflected second torsional mode) represented in figure 5.3. 

Numerical simulation was conducted for depth of a notch defect (dN) changed from 

1 mm to 13 mm with 1 mm interval. After numerical simulation for the model 

mentioned before, the results are shown in figure 5.4. Reflection coefficients of the 

first torsional mode increase monotonically. In contrast, reflection coefficients of 

the second torsional mode show a tendency of increasing until near 5 mm depth 

and then decreasing. The results can be explained from the mode shapes of two 

torsional wave modes shown in figure 2.16 as mentioned before. In the previous 

researches [14, 23-25, 27], one can see very similar results with this. Note that they 

measured flexural modes instead of the second torsional mode and used 

circumferential extent as a variable. Comparing the two studies, the mode shapes of 

the first torsional mode in both circumferential and thickness direction have 

uniform sign but flexural mode and the second torsional mode have changes in sign. 

Similarity of the sign change of the mode shapes makes comparable trend of the 
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reflection coefficients. Detailed differences of the shapes induce the differences 

between the actual reflection coefficients.  

 

5.3 Application 

 

5.3.1 Experimental validation 

To validate finite element studies, experiments are also needed to be carried out. 

Schematics of experimental setup are shown in figure 5.5. Exact location of 

transmitter 1, 2, receiver and notch are the same in figure 5.1. To generate and 

measure torsional wave modes, magnetostrictive (MS) [51, 52] patch type 

transducers are employed. Each transmitters and a receiver consists of MS patches, 

permanent magnets and meander coils. For the transmitters, meander coil is so 

arranged as half wavelength of the first torsional mode to enhance the first 

torsional mode [53-56]. Unlike transmitters, only one line of coil is applied on a 

receiver in order to avoid overlapping effects of wavelength. To excite individual 

transmitters with a specific time delay (td), Field-programmable gate array (FPGA) 

modules (Cyclone, Altera Corp., Sna Jose, CA) were employed as a two-channel 

function generator and multi-channel power-amplifier which had been developed 

using several AD797 (Analog Device) was also employed. As experimental 

specimens, part circumferential notches for θN = 250°, LN = 2 mm and dN = 1, 3, 5, 

7 and 9 mm (i.e., 5 cases) were designed. To compare with experimental result, 

three-dimensional FEM simulation was carried out. The numerical model and 

geometry are the same in figure 5.1 and 5.3. Hexagonal meshes with average size 
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of 1 mm and 0.05-μs time interval are used for numerical analyses. The 

experimental results and simulation results are represented in figure 5.6. The 

reflection coefficients of the first torsional mode and second mode obtained by 

experiments are marked as triangle and square marker, respectively. The 

simulations results are represented by solid line and dashed line which indicate 

reflection coefficient of the first and second torsional wave modes, respectively. 

Even though these results are obtained for non-axisymmetric notch defect, θN = 

250°, the results shown in the figure 5.6 have the same tendency that in the figure 

5.4. As mentioned in Chapter 3, this phenomenon is due to effect of a central angle; 

reflection coefficient has linear relation with respect to the central angle of the 

notch defect. From the fact that reflection coefficients obtained by experiments and 

numerical analyses are in good agreement, the validity of the results are confirmed 

experimentally. 

 

5.3.2 Notch estimation algorithm 

If trying to infer from what we have studied so far, one can find some algorithm 

which can estimate depth and central angle of part circumferential notch which has 

specific axial extent (2 mm in this work). From now on, let us explain two-step 

algorithm to estimate depth and central angle of part circumferential notch defect. 

The algorithm consists of two steps; 

Step 1: Estimate depth using the ratio of reflection coefficients, 

Step 2: Estimate central angle from the magnitudes of each mode. 

Before applying this algorithm, experimental results should be obtained. In this 

section, for the example, numerical results in Fig. 5.8 will be used which have T1 = 
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0.1987, T2 = 0.1414, Ratio =0.7145 and treated as experimental results. 

Before describing in details about the algorithm, we will discuss how to get a 

reference for estimation of a notch defect. To diagnose size of a defect requires 

references and it is very important issue how to get this. In this research, to predict 

depth of the notch defect, the ratio of the reflection coefficients (T2/T1) which is the 

same regardless of the central angle is needed. Therefore it is possible to make a 

desired performance with only the result of 360° case. Also the central angle can be 

estimated by comparing with the result of 360° case. Note that two variables of a 

part circumferential notch; depth (dN) and central angle (θN), can be estimated by 

using only the result of axisymmetric case. In this 360° case, the defect is 

axisymmetric, it is possible to simplify the analysis to two dimensional not three 

dimensional requiring a lot of calculation time. 

Now, let us go back to the algorithm. The algorithm is represented in figure 5.7. A 

line in figure 5.7(a) and two lines in figure 5.7(b) are the results of 360° case. 

figure 5.7(a) represents Step 1; estimate depth using the ratio of reflection 

coefficients. As mentioned before, ratio of the reflected second mode to the first 

mode is the same despite different central angles. By comparing value of ratio 

obtained by experiment with 360° reference, depth of a part circumferential notch 

can be estimated. Going back to the example, the value of the ratio of reflection 

coefficients is 0.7145, consequently the depth of the notch can be estimated as 6 

mm as following arrows in figure 5.7(a). 

The second step is represented in figure 5.7(b). Obtained reflection coefficients 

from the example are marked, T1 = 0.1987 and T2 = 0.1414, in the figure. Central 

angle can be calculated by finding θN to match the value with one of 360° result 
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using the equation (5.3). Reflection coefficients of the first and second torsional 

mode in 360° case of 6 mm thickness are 0.3498 and 0.2932, respectively. Because 

we have two reflection coefficients; those of the first and second modes, equation 

(3) can be used twice. Estimated depth and ratio of two modes was adjusted in step 

1, however, two equations from the first and second mode give unique value of θ. 

In this example, θ = 250° is calculated. The example is the result of FE method so 

that estimated depth and central angle have exactly the same value. 

In order to validate the proposed algorithm, experiments for several part 

circumferential notch defects whose depth and central angle are listed in table 5.1 

were carried out. These notch defects also have 2 mm axial extent. Note that the 

four defects have same cross section area difficult to be distinguished from each 

other. The obtained experimental results; reflection coefficients of the first and 

second torsional modes and those ratio (T2/T1), are also provided in table 1. From 

these results depth and central angle of part circumferential notch can be estimated 

by following two-step algorithm explained before. 

 Estimated depth (dN), central angle (θN) and errors are listed in table 5.1. Mean 

error was calculated as 4.34 % and maximum error did not exceed 8 %. From the 

result, it is shown that proposed two-step algorithm works to estimate a part 

circumferential notch defect having known axial extant. 
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Case 

Estimation of dN Estimation of θN 

Given 
Estimated 

[error] 
Given 

Estimated 

[error] 

Case 1 4.04 mm 
4.35 mm 

[7.7 %] 
360° 343° [4.6 %] 

Case 2 6.00 mm 
6.38 mm 

[6.3 %] 
250° 247° [1.2 %] 

Case 3 7.29 mm 
6.84 mm 

[6.2 %] 
210° 219° [4.3 %] 

 

Table 5. 1. Size of the part circumferential notch defects of real and estimated 

experimentally. 
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Figure 5. 1. Schematics and geometry of FEM model for two-dimensional analysis. 
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Figure 5. 2. (a) Schematics of transmitter system, phased meander array method. 

For exciting frequency of fc = 200 kHz in a test pipe, wave length (λ1) is 15.7 mm 

and distance between two transducers (sT) is 32.16 mm. (b) Input signals of 

transmitter system. See figure 4.2 for geometry of the test pipe and location of 

transmitter, receiver and notch. 
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Figure 5. 3. Measured signals of numerical analysis for dN = 5 mm notch which 

was transformed by short-time Fourier transform and selected 200 kHz frequency 

constituent. 
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Figure 5. 4. Reflection coefficients obtained through STFT for a incident Gabor 

pulse with 200-kHz center frequency. 
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Figure 5. 5. Experimental setup. See the figure 5.1 and 5.2 for exact location of 

transmitter 1, 2, receiver and notch. 
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Figure 5. 6. (a) Simulation and experiment results of 250° notch case and (b) ratio 

of the second torsional mode to the first torsional mode. 
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Figure 5. 7. Schematics of two-step algorithm for estimating depth and central 

angle of a part circumferential notch. (a) Step 1 and (b) step 2. 
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CHAPTER 6. 

Part circumferential notch characterization 

Equation Section (Next) 

 

 

In this chapter, the algorithm to characterize a part circumferential notch defect 

having known length in previous chapter will be expanded for a part 

circumferential notch defect which has three unknown parameters (depth dN, length 

LN and central angle θN) to be characterized. In section 6.1 reflected coefficients 

which were calculated in CHAPTER 3 and expanded in three-dimensionally in 

CHAPTER 4 will be validated experimentally. And then an algorithm to 

characterize size of notch defect will be proposed in section 6.2. The proposed 

algorithm will be validated experimentally by real crack estimation in section 6.3. 

These procedures will be discussed in section 6.4 

 

 

6.1 Experimental validation of scattering theory for a part 

circumferential notch defect 

An axisymmetric notch scattering theory was carried out in CHAPTER 3. This 

theory is for axisymmetric notch which is not a part circumferential notch defect 

which is to be characterized in this research. Through CHAPTER 4 linearity of 

reflection coefficients of each torsional wave mode with respect to central angle (θN) 

was confirmed. Combining these two phenomenons scattering of a part 
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circumferential notch defect can be obtained. In this section this scattering theory 

for a notch defect will be demonstrate experimentally. 

 

6.1.1 Experimental setup 

Experiments were conducted with the environments as shown in figure 5.5. Almost 

all environments were the same with those in section 5.3 but transducer 

configuration was different represented in figure 6.1. Because experiments would 

be conducted with 333-kHz Gabor pulse, many torsional wave modes can exist 

until the third torsional wave mode. Thus, the method to send the first torsional 

wave only at a frequency higher than the second cut-off frequency at which the 

second and third torsional modes can propagate in addition to the first torsional 

wave mode should be employed. The employed method is similar to the way 

presented in section 5.2 and 5.3, phased meander array method [50]. But in contrast 

to the previous method, this time two torsional modes; the second and third modes, 

should be suppressed. Thus 4-channel transducers should be employed. Figure 6.1 

represents a 4-channel transducer array. Two transducers in each set, for example Tr. 

1 and Tr. 2 in Set 1, suppress the third torsional wave mode; each set generates 

signals consist of the first and second torsional wave modes with the conditions as 

followings 

 ( )13 3 3 3 12.02 mmg ps c cλ= − =  (6.1) 

 13 13 3 5.626 μsgt s c= × =  (6.2) 
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where, s13 and t13 denote distance of transducers in each Set and their time delay, 

respectively. 3λ , cg3 and cp3 are wave length, group velocity (2137 m/s), and phase 

velocity (4583 m/s) of the third torsional wave mode. And two sets which generate 

the first and second torsional wave modes (the third mode was suppressed) 

suppress the second wave mode with the conditions; 

 ( )12 2 2 2 61.66 mmg ps c cλ= − =  (6.3) 

 12 12 2 21.26 μsgt s c= × =  (6.4) 

where, s12 and t12 denote distance of Sets and their time delay, respectively. 2λ , cg2 

and cp2 are wave length, group velocity (2900 m/s), and phase velocity (3377 m/s) 

of the third torsional wave mode. After these procedures, only the first torsional 

wave mode propagates at a frequency higher than the second cut-off frequency. 

Each transducer is controlled by Field-programmable gate array (FPGA) modules 

(Cyclone, Altera Corp., Sna Jose, CA) which can enter time delay and magnitude 

for each transducer by the developed LABVIEW program. The configuration of the 

employed transducers, magnetostrictive patch type transducer, is the same is that 

explained in section 5.3.1. The measured signals underwent signal process; 

dispersion compensation which was explained in 2.3.2.  

 

6.1.2 Experimental Validation 

At first, validation of linearity of reflection coefficients with respect to central 

angle (θN) was carried out. Notch defects which have 6-mm notch depth (dN) and 6-
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mm notch length (LN) in common, and three central angle (θN) were conducted. As 

simulation results (represented by lines in figure 6.2), lines connecting from 

axisymmetric notch scattering theory to the origin were used. The experimental 

results are shown in figure 6.2. From the figure, linearity of the reflection 

coefficient of the torsional wave modes experimentally confirmed. For verification 

about effect of the notch depth (dN), notch defects which have 6-mm length (LN) 

and 200° central angle (θN) in common and three cases of notch depth (dN); 3, 6 and 

9 mm, were conducted. Because we analyzed only the axisymmetric notch 

scattering theory, to obtain part circumferential notch defect scattering the result 

should be changed from axisymmetric theory using linearity for central angle. 

Simulation results in figure 6.3 obtained by multiplying the results of axisymmetric 

theory by 360 200 360Nθ =




 . The experimental results are represented in figure 

6.3 which show good agreement with scattering theory. Finally, effect of notch 

length was confirmed. To this end, experiments for three notch defects having 6-

mm depth (dN) and 200° central angle (θN) in common and three defect length (LN); 

2, 6 and 10 mm were conducted. The same way in previous experiments, 

simulation results are multiplied by 360 200 360Nθ =




  to obtain part 

circumferential results. Both experimental and simulation results are shown in 

figure 6.4. The results are seemed to be good agreement between the experimental 

results and simulation results. But influence of the notch length is small, the results 

are not meaningful greatly. 
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6.2 Algorithm to estimate notch defect 

 

6.2.1. Estimation of the notch length for axisymmetric case 

In chapter 5.3, notch size characterization algorithm for known length case was 

carried out. Here, notch depth (dN) and length (LN) characterization will be 

proposed first. And then central angle (θN) can be easily estimated using linearity of 

reflection coefficients with respect to the central angle (θN). In figure 3.6 in chapter 

3.2, reflection maps were plotted for the first and second torsional wave mode. By 

using these results let us consider an example to characterize depth and length of 

notch defect. For the first example, 1 20.2833,  0.4780T T= = , will be considered 

where T1 and T2 are reflection coefficients of the first and second torsional wave 

modes respectively. The suggested two reflection coefficients were obtained by 

numerical simulation for an axisymmetric notch having 3-mm depth and 5-mm 

length. Now, one can plot contours of reflection maps which have the specific 

value of 1 20.2833,  0.4780T T= =  and these are represented in figure 6.5. Colors 

of two lines denote the value of reflection coefficients for each wave mode shown 

in a legend. From the figure, it is a matter of course that one can estimate the 

intersection as a candidate of defect geometry * *,  N Nd L  which are estimated depth 

and length respectively. These values are * *3 mm and 5 mmN Nd L= = , which are 

exactly the same with real notch size. Because these results are induced form 

numerical result which shows almost perfect agreement with reference scattering 

theory, size of notch is perfectly characterized. Let us consider the other example 

for an axisymmetric notch having 3-mm depth and length and the reflection 
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coefficients are 1 20.4868,  0.5353T T= = . Contours for these values are shown in 

figure 6.6. In contrast with previous example, this case has three different 

candidates; ( ) ( ) ( ) ( ), 3,3 ,  7,4  and 13,4N NL d = . To find an appropriate point 

among three candidates, shape of candidates is investigated shown in figure 6.7. 

Note that these signals were obtained from scattering theory for 

( ) ( ) ( ) ( ), 3,3 ,  7,4  and 13,4N NL d = . By comparing these signals and measured 

signal, an appropriate candidate can be chosen. The measured signal and that of 

candidates for the first and second torsional wave modes are shown in figure 6.8 

and 6.9, respectively. Measured signals are processed by dispersion compensation 

presented in section 2.3.2. The signals of the candidate 1 are the most similar to 

those of the measured signals. Thus candidate 1 is appropriate, which is the same 

with real size of notch defect. 

 

6.2.2. Notch size characterization using reflection ratio map 

In this section, notch characterization method for a part circumferential notch 

defect which has three geometric parameters to be inspected; depth dN, length LN 

and central angle θN. The characterization algorithm can be accomplished by 

putting together previous estimation method for a notch having known length and 

for a notch length in an axisymmetric case in section 5.3 and section 6.2.1, 

respectively. In previous section, to estimate depth and length of an axisymmetric 

notch defect, reflection coefficient maps were used. In contrast with previous 

method, in this case, depth and length of a part circumferential notch defect (not 
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axisymmetric) should be estimated. Thus ratios of reflection coefficients for each 

torsional wave modes should be calculated similar with proposed characterization 

method in section 5.3 known length case. The ratios R12 and R23 are  

 12 1 2R T T= , (6.5) 

 23 2 3R T T= , (6.6) 

where, T1, T2 and T3 indicate reflection coefficient of the first, second and third 

torsional wave mode, respectively. R12 and R23 are represented in figure 6.10. With 

this two ratio maps one can estimate depth and length of part circumferential notch 

in a similar method in section 6.2.1. And then central angle of a notch defect can be 

estimated by comparing reference results obtained axisymmetric scattering theory 

using equation (5.3). 

 

6.3 Part circumferential notch estimation 

As an example experimental result for a part circumferential notch which has 9-

mm depth, 6-mm length and 200° central angle. The experiments were carried out 

in the aforementioned environment in section 6.1.1. Note that excitation frequency 

is 333 kHz at which the first, second and third modes can exist. The measured 

signal is shown in figure 6.11. As mentioned before, two dispersive modes; the 

second and third modes, should be compensated its dispersion. In figure 6.11 

compensated signals after applying dispersion compensation method explained in 

section 2.3.2 are also represented. After going through such processes, reflection 

coefficients of each torsional wave mode can be obtained as 
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1 2 30.46,  0.182 and 0.144T T T= = = . From these values the ratios can be 

calculated as 12 232.527 and 1.264R R= = . Contours which have 

12 232.527 and 1.264R R= =  represented in figure 6.12. From the figure candidate 

* * and N Nd L  can be decided as * *=8.95 mm 6 mmN Nd L = . Now, to estimate central 

angle ( )*
Nθ  of defect, reflection coefficient of the first torsional wave mode 

obtained by axisymmetric scattering theory for =8.95 mm 6 mmN Nd L =  will be 

used which has a value of ( )2
1 0.6372NT θ π= = . From the equation (5.3) which is 

( )2( ) ( )2 Ni i
N j jT T θ πθ π == × , estimated central angle ( )*

Nθ  can be calculated as 

* 2 0.46 0.6372 198Nθ π= × =  . This estimated size ( )* * *, , (8.95,6,198)N N Nd L θ =  

shows that it is very similar to real defect size ( )
real

, , (9,6,200)N N Nd L θ = . Two 

experimental defect estimation results, including example before, are shown in 

table 6.1. The results show maximum deviation of 1 mm, 0.9 mm and 14° for notch 

depth, length and central angel, respectively. From the results, the proposed 

characterization method for a part circumferential notch defect is validated its 

effectiveness to make an accurate estimate of defect size. 
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6.4 Discussion 

Although defect characterization results in section 6.3 show accurate performance, 

this method does not guarantee a unique candidate for all defect size. To show this, 

another example which has 6-mm depth, 6-mm length and 200° central angle was 

conducted experimentally. In this case measured reflection coefficients of each 

torsional wave modes are 1 2 30.3667,  0.2525 and 0.0778T T T= = =  and ratios of 

reflection coefficients are obtained as 12 231.452 and 3.246R R= = . Contours about 

these ratios are represented in figure 6.13. As can be confirmed in the figure, this 

case has two candidates. In section 6.2.1, appropriate size could be selected among 

several candidates by comparing wave shape of measured signal and candidates. 

But comparison of signals is very hard in real experimental signal. Thus proposed 

characterization has limitation for uniqueness of candidate. However, the fact that 

length (LN) of notch defect can be easily estimated has been researched. Just by 

using simple frequency sweep experiments, one can find notch length. If notch 

length is predicted in advance, remain depth and central angle can be estimated by 

using known length notch characterization method proposed in CHAPTER 5. In 

this way, part circumferential notches including three notch cases in section 6.3 and 

6.4 were estimated with and the results are shown in table 6.2. The maximum 

deviation of notch depth (dN) and central angle (θN) does not exceed 0.563 mm and 

29°. From the results, effectiveness of the proposed notch characterization method 

is validated. 
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Case 1  

d
N 

= 9 mm  L
N
 = 6 mm  θ

N
 = 200°  

d
N
* = 8.95 mm  L

N
* = 6 mm  θ

N
* = 198 °  

Case 2  

d
N 

= 3 mm  L
N
 = 6 mm  θ

N
 = 200°  

d
N
* = 3.1 mm  L

N
* = 5.1 mm  θ

N
* = 186 ° 

 

Table 6. 1. Real notch defect size and estimated notch size. 
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LN (mm)  
given 

dN (mm) θN (°) dN* (mm) θN

* 
(°) ΔdN (mm) ΔθN (°) 

6 3 200 3.56 171  0.56 -29 
2 6 200 6.563 194  0.563 -6 
6 6 150 6.245 143  0.245 -7 
6 6 200 6.359 198  0.359 -2 
6 6 250 6.375 248  0.375 -2 

10 6 200 6.452 191  0.452 -9 
6 9 200 8.92 199  -0.08 -1 

 

Table 6. 2. Lists of the notch characterization for given notch length. ΔdN and ΔθN 

denote deviation of depth and central angle, respectively. 
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Figure 6. 1. Schematics of transducers for generating only the lowest torsional 

wave mode at a frequency above second cut-off frequency.  
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Figure 6. 2. Experimental results for central angle (θN) of the notch defect having 

6-mm depth and 6-mm length. Lines connect from result axisymmetric notch 

scattering theory (360°) to the origin. 
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Figure 6. 3. Experimental and theoretical results for notch defects having 6-mm 

length and 200° central angle. Simulation results are obtained by multiplying the 

results of axisymmetric theory by 360 200 360Nθ =




 . 
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Figure 6. 4. Experimental results for notch defects having 6-mm depth and 200° 

central angle. Simulation results are multiplied by 360 200 360Nθ =




  to obtain 

part circumferential results 
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Figure 6. 5. Contour plot of reflected first and second torsional wave modes for an 

axisymmetric notch having 3-mm depth and 5-mm length. 
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Figure 6. 6. Contour plot of reflected first and second torsional wave modes for an 

axisymmetric notch having 3-mm depth and 3-mm length. 
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Figure 6. 7. Shapes of candidates for the (a) first and (b) second torsional wave 

modes. Three candidates denote ( ) ( ) ( ) ( ), 3,3 ,  7,4  and 13,4N NL d = . 

  



101 

 

Figure 6. 8. Measured signal and that of candidates for the first torsional wave 

modes. 
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Figure 6. 9. Measured signal and that of candidates for the second torsional wave 

modes. 
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Figure 6. 10. Ratio of (a) the first torsional mode to the second one and (b) the 

second one to the third one. 
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Figure 6. 11. The measured signal for the notch defect notch which has 9-mm depth, 

6-mm length and 200° central angle. Two dispersive modes; the second and third 

modes, should be compensated its dispersion. 
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Figure 6. 12. Contour plots of ratios of R12 and R23 which are experimental results 

for a notch defect having 9-mm depth, 6-mm length and 200° central angle. 
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Figure 6. 13. Contour plots of ratios of R12 and R23 which are experimental results 

for a notch defect having 6-mm depth, 6-mm length and 200° central angle. 
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CHAPTER 7. 

Conclusions 

 

 

 

Quantitative characterization method of a part-circumferential notch defect which 

is defined as depth, length and central angle is developed. Three reflected torsional 

wave modes, from the first to third, are measured with respect to the incident first 

torsional wave mode. Ratios between three torsional modes are used to directly 

characterize depth and length of notch defect and then central angle can be 

predicted using linearity between the reflection coefficients and central angle of 

notch defect. As a reference, axisymmetric notch scattering theory is investigated. 

Schematic explanatory for whole procedure of the proposed notch characterization 

method as followings; 

1) Need in advance 

- Geometry of test pipe (Radius and thickness) 

- Properties of test pipe (including dispersion relation) 

2) Experiments 

- Excite only the first torsional wave mode at a frequency above second  

  cut-off frequency 

- Measure the first, second and third torsional wave modes 
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3) Signal processing 

- Dispersion compensation method to obtain reflection coefficients of   

  dispersive modes (the second and third modes) 

4) Estimation of depth and length 

- Two ratios between three reflection coefficients 

- Constructive contours of ratios from reference having the values obtained  

  through experiment 

- Intersections can be candidates 

- Additional consideration of signal shapes for non-unique cases 

5) Estimation of central angle 

- Comparison reflection coefficients to references (under axisymmetric  

  assumption) using linearity between the reflection coefficients and central  

  angle of notch defect. 

Unfortunately, the proposed method occasionally predicts a couple of candidates. 

Because signal comparing to overcome this needs particular efforts and precise 

experiments, selection of proper values among candidates is sometimes unavailable. 

In this case, if one applies existing method to characterize notch length (using 

several waves with difference frequencies), depth and central angle can be uniquely 

predicted. 

Through practical experiments for the artificial notch defects, the effectiveness of 

the proposed method has been demonstrated.  
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ABSTRACT (KOREAN) 

 

비틀림파의 산란 이론과 복수의 비틀림  
모드를 활용한 노치 결함의 정량화 기법 

 

Torsional wave scattering theory in a pipe and  

notch defect characterization  

using multiple torsional wave modes 

 

 

권 영 의 

서울대학교 대학원 

기계항공공학부 

 

본 연구는 배관에서 부분 노치 결함을 정량적으로 평가하기 위한 기법의 

개발을 다루었다. 지금까지 노치 결함의 크기를 평가하기 위한 연구들이 

수행되어 왔지만, 결함의 모든 정보를 정량적으로 평가 할 수 있는 방법

은 보고되지 않았다. 부분 노치 결함의 크기를 진단 할 수 있는 획기적

으로 향상된 방법을 고안하기 위해서, 3차 모드까지 존재하는 주파수 영

역에서 비틀림파의 1차 모드만을 선별적으로 가진하고 결함으로부터 반

사되는 1, 2, 3차 비틀림 모드를 측정하는 방법을 제안하였다. 기존에 
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굽힘파를 이용하는 연구들은 있었으나, 고차의 비틀림 모드를 사용하는 

방법은 존재하지 않았다. 복수의 비틀림 모드를 사용하는 경우에는 모든 

비틀림 모드가 축 대칭이기 때문에 반사 계수의 크기가 노치 결함의 중

심각에 비례하여 증가한다는 장점이 있다. 그러므로 비틀림 모드들의 반

사 계수의 비(比)를 고려하면 이 값이 노치 결함의 중심각과는 무관한 

결과를 나타내어 결함의 깊이와 길이를 직접적으로 정량화하는데 이용할 

수 있다.  

결함의 크기를 정량화 하기 위해서는 결함에 대한 기준 정보 (reference)

가 필요하다. 기존에 굽힘파를 사용하는 연구들은 삼차원 해석 결과를 

기준으로 필요로 했지만, 본 연구에서는 축대칭인 비틀림파만을 사용하

기 때문에 축 대칭 노치 결함에 대한 기준 정보만 필요로 한다. 이를 위

해 본 연구에서는 새롭게 축대칭 부분 노치의 산란 이론을 제시하였다. 

이를 이용하여 반사 계수들의 비에 해당하는 등-반사계수 윤곽선(equi-

reflection coefficient contour)을 그리면 결함의 깊이와 길이를 예측

할 수 있다. 비틀림파의 고차 모드는 분산 특성을 갖기 때문에 고차 모

드들의 반사 계수를 구하기 위해서는 분산 보상 방법(dispersion 

compensation method)을 적용하여야 한다. 이 방법을 통해 결함에서 반

사되는 순간 각 모드의 크기와 형태가 어떻게 나타나는지 계산할 수 있

다. 개발된 축대칭 노치 분산 이론은 실험적으로 검증되었다. 실제 노치 

결함의 정량화 실험을 통하여 제안된 방법의 효율성을 입증하였다.  
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