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Abstract 

Integrated Topology Optimization 

for Construction Equipment Frame 

 

Sung Kyu Kwak 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

The research in this dissertation aims to develop an integrated structural topology 

optimization method applicable to the design of a construction equipment frame. There 

are two major design issues existing in the industry; one is the simultaneous design of an 

actuator layout and structural topology of the frame and the other, to consider the 

manufacturing aspect of the topology optimization result. The embedded actuators in the 

construction equipment, such as steering cylinders in a wheel loader, transmit external 

forces to the frame. Because the location of an actuator acts as a loading point in the 

structure, the optimized structure can be significantly affected by the loading location. 

Moreover, when the actuator layout is not yet determined at the early concept stage of the 

frame design, the location of the actuator is allowed to move in a designated design 

domain. This motivates simultaneous optimization of a loading point and structural 

topology and this study presents a method to achieve this goal. There have been a few 

related efforts about the simultaneous optimization of a loading point and structural 
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topology, but the loading point is limited only along a given line or boundary. Even if an 

optimized layout is found through topology optimization, the actual manufacturing of an 

optimal structure by welding is a major obstacle because the welding path by the 

optimization is unrealistic. To overcome this difficulty, we propose a so-called plate-like 

topology optimization, which extracts the topological layouts of nodal design variables 

projected on the specified plane along the pre-determined direction. This approach makes 

the topologically optimized results amenable to the welded structure. 

 

The simultaneous optimization method of a loading point and structural topology and the 

method to consider the weld manufacturability are implemented by using Matlab and 

Abaqus. After verification examples are considered, the optimal design of a wheel loader 

frame is dealt with in order to show the practicality of the proposed method in industrial 

engineering problems. 

 

 

Keywords: Topology optimization, Simultaneous optimization, Movable load,  

Stiffness design, Weld manufacturing constraint 

Student Number: 2011-31289 



 

iii 
 

Contents 

 

Abstract.......................................................................................... i 

List of Figures .............................................................................. vi 

 

Chapter 1. Introduction ................................................................ 1 

 

Chapter 2. Standard topology optimization and design issues ...... 7 

2.1 Chapter overview .......................................................................................... 7 

2.2 Finite element model setup of a wheel loader frame ......................................... 8 

2.3 Standard topology optimization of a wheel loader frame ................................. 11 

2.3.1 Topology optimization formulation ...................................................... 11 

2.3.2 Numerical results and discussion..........................................................13 

2.4 Design issues and feasibility study.................................................................16 

2.4.1 Design issues related to topology optimization for a wheel loader frame .16 

2.4.2 Feasibility study of structural topology optimization considering loading 

location .............................................................................................18 

 

Chapter 3. Simultaneous optimization of a loading location and 

structural topology ................................................... 20 

3.1 Chapter overview .........................................................................................20 

3.2 Modeling and analysis ..................................................................................22 

3.2.1 Two design domain-based modeling technique ......................................22 

3.2.2 Finite element formulation for the two design domain-based model........27 

3.3 Topology optimization formulation................................................................28 

3.4 Numerical examples .....................................................................................32 

3.4.1 Case study 1: loading point moving along the given load direction .........33 



 

iv 
 

3.4.2 Case study 2: loading point moving perpendicular to the load direction ..36 

3.4.3 Case study 3: loading point moving in a two-dimensional region............41 

3.4.4 Case study 4: 3-dimensional examples..................................................48 

3.5 More discussions on the determination of the optimal loading location ............52 

 

Chapter 4. Integrated topology optimization considering actuator 

layout and weld manufacturability........................... 54 

4.1 Chapter overview .........................................................................................54 

4.2 Topology optimization for welded structure....................................................56 

4.2.1 Plate-like topology optimization...........................................................56 

4.2.2 Topology optimization using Matlab-Abaqus interface ..........................60 

4.2.3 Numerical examples ............................................................................64 

4.3 Integrated topology optimization for a frame structure ....................................77 

4.3.1 Implementation of simultaneous optimization of a loading location and 

structural topology .............................................................................77 

4.3.2 Numerical examples ............................................................................79 

 

Chapter 5. Conclusion................................................................. 86 

 

Appendix A. Numerical studies in the simultaneous optimization 

of a loading location and structural topology  ...... 90 

A.1. Parameter study for the spring stiffness and the explicit penalty constraint......90 

A.2. Standard topology optimization results under pre-determined loading for the 2D 

wheel loader case in Fig. 3.10......................................................................93 

 

Appendix B. Case studies of the simultaneous optimization of 

multiple loading locations and structural topology



 

v 
 

 .............................................................................. 96 

B.1. Two optimal loading locations under symmetric condition .............................96 

B.2. Two optimal loading locations determination problem ...................................98 

 

References ................................................................................. 107 

 

Abstract (Korean) ..................................................................... 107 

 



 

vi 
 

List of Figures 

 

Fig. 1.1 Illustration of a wheel loader .......................................................................... 2 

Fig. 1.2 Schematic illustration of the proposed simultaneous optimization ..................... 4 

Fig. 2.1 Illustration of a typical wheel loader frame...................................................... 8 

Fig. 2.2 Finite element model of a wheel load frame .................................................... 9 

Fig. 2.3 Summary of static load conditions .................................................................10 

Fig. 2.4 Standard topology optimization results of a wheel loader frame (a) minimizing 

combined compliance index, and (b) minimizing compliance with modal 

frequency constraints. ..................................................................................14 

Fig. 2.5 Steering cylinder dependent structure of a wheel loader frame in side view (a) 

for the case of Fig. 2.4(a), and for the case of Fig. 2.4(b). ...............................15 

Fig. 2.6 Design of different types of wheel loader frames (a) for the case of front steering 

cylinder and plate-type side member [37], and (b) for the case of side inner 

steering cylinder and box-type side member [38]. ..........................................17 

Fig. 2.7 Standard topology optimization results of a wheel loader frame with modified 

steering cylinder position (a) for minimizing combined compliance index, and (b) 

for minimizing compliance with eigenfrequency constraints.  ..........................19 

Fig. 3.1 Schematic representation of simultaneous optimization of the structural topology 

and loading location .....................................................................................20 

Fig. 3.2 The proposed two-domain modeling: (a) Discretized loading design domain by 

spring elements connecting the applied load, and (b) discretized structural 

design domain. ............................................................................................23 

Fig. 3.3 Illustration of load transferring issue: (a) Erroneous generation of the resultant if 

the load is directly connected to the nodes of the load domain, and (b) correct 

transfer of the applied load to the nodes of the load domain and thus to the nodes 

of the structural domain . ..............................................................................26 

Fig. 3.4 Case study 1 for a vertically-movable load: (a) Design domain with prescribed 

load/boundary conditions, (b) the best result from standard structural topology 

optimization considering all possible loading locations, and (c) the result by the 



 

vii 
 

proposed simultaneous optimization method.  .................................................35 

Fig. 3.5 Iteration history for case study 1: (a) The objective function with intermediate 

layouts, and (b) the constraint functions. ........................................................36 

Fig. 3.6 Case study 2-A for a horizontally-movable load: (a) Design domain with 

prescribed load/boundary conditions, (b) All of the results from standard 

topology optimization considering all possible loading locations, and (c) the 

result by the proposed simultaneous optimization method. ..............................38 

Fig. 3.7 Iteration history for case study 2-A: (a) The objective function with intermediate 

layouts, and (b) the constraint functions. ........................................................38 

Fig. 3.8 Case study 2-B for a horizontally-movable load: (a) Design domain having a 

non-design domain and prescribed load/boundary conditions, (b) the best result 

from standard topology optimization considering all possible loading locations, 

and (c) the result by the proposed simultaneous optimization method.  .............40 

Fig. 3.9 Iteration history for case study 2-B: (a) The objective function with intermediate 

layouts, and (b) the constraint functions. ........................................................40 

Fig. 3.10 Case study 3-A for a movable load in a given two-dimensional region: (a) Load  

case 1 consisting of the horizontal movable load P with a non-movable load and 

(b) load case 2 consisting of non-movable workloads only. .............................42 

Fig. 3.11 The optimized layouts for case study 3-A: (a) The best result from standard 

topology optimization considering all possible loading locations and (b) the 

result by the proposed simultaneous optimization method. ..............................44 

Fig. 3.12 Iteration history for case study 3-A: (a) The objective function, and (b) the 

constraint functions.  .....................................................................................45 

Fig. 3.13 Case study 3-B for a movable load in a given two-dimensional region: (a) Load  

case 1 consisting of the horizontal movable load P with a non-movable load, (b) 

load case 2 consisting of the vertical movable load P with a non-movable load, 

and (c) load case 3 consisting of non-movable workloads only. .......................46 

Fig. 3.14 The optimized layouts for case study 3-B using the proposed simultaneous 

optimization method with (a) 25 candidate loading points, and (b) with 81 

candidate loading points. ..............................................................................48 



 

viii 
 

Fig. 3.15 Case study 4-A for a 3-dimensional version of case study 1 in Fig. 3.4: (a) 

Design domain with prescribed load/boundary conditions, and (b) the result by 

the proposed simultaneous optimization method.  ...........................................49 

Fig. 3.16 Iteration history for case study 4-A: (a) The objective function, and (b) the 

constraint functions.  .....................................................................................50 

Fig. 3.17 Case study 4-B for a 3-dimensional version of case study 2-A in Fig. 3.6: (a) 

Design domain with prescribed load/boundary conditions, and (b) the result by 

the proposed simultaneous optimization method.  ...........................................51 

Fig. 3.18 Iteration history for case study 4-B: (a) The objective function, and (b) the 

constraint functions.  .....................................................................................51 

Fig. 4.1 Illustration of extracting plate-like structure in topology optimization by (a) 

dividing the entire domain into subdomains and setting extracting direction in 

each subdomain, and (b) projecting element design variables on the pre-defined 

plane and extracting it along the given direction. Typical plate-like shape of 

topological layout is (c). ...............................................................................57 

Fig. 4.2 Schematic concept of the density filter: (a) nodes inside the domain are used in 

the projection scheme, and (b) the weight function for the linear projection.  ....59 

Fig. 4.3 Topology optimization procedure using Matlab - Abaqus interface ..................60 

Fig. 4.4 Case study 1 for plate-like topology optimization in L-shape domain ...............67 

Fig. 4.5 Standard topology optimization results for case study 1 (a) by OptiStruct, and (b) 

by the developed code using Matlab-Abaqus interface....................................68 

Fig. 4.6 Plate-like topology optimization results for case study 1 (a) by OptiStruct, and (b) 

by the developed code using Matlab-Abaqus interface....................................69 

Fig. 4.7 Case study 2 for plate-like topology optimization in ladder-shape domain ........70 

Fig. 4.8 Topology optimization results for case study 2 (a) by the standard method, and (b) 

by the plate-like method. ..............................................................................72 

Fig. 4.9 Case study 3 for a simplified wheel loader frame domain: (a) load case 1 

including illustration of sub domains for the plate-like topology optimization, 

and (b) load case 2 .......................................................................................74 

Fig. 4.10 Topology optimization results for case study 3 (a) by the standard method, and 



 

ix 
 

(b) by the plate-like method. .........................................................................76 

Fig. 4.11 Modified procedure for the integrated topology optimization .........................78 

Fig. 4.12 Case study 1 for the integrated topology optimization; a horizontally-movable  

load case in Fig. 3.17 ...................................................................................80 

Fig. 4.13 Result of the integrated topology optimization for case study 1: standard case in 

(a) front iso view, and (b) rear iso view. .........................................................81 

Fig. 4.14 Result of the integrated topology optimization for case study 1: plate-like case 

in (a) front iso view, and (b) rear iso view. .....................................................82 

Fig. 4.15 Case study 2 for the integrated topology optimization; a simplified wheel loader 

frame design in Fig. 4.9. ...............................................................................84 

Fig. 4.16 Result of the integrated topology optimization for case study 2: a simplified 

wheel loader frame case with (a) 7 sub domains, and (b) 16 sub domains.........85 

Fig. A.1 Parameter study results of the tuning parameters, 0k  and  , for the example in 

Fig. 3.4 ........................................................................................................91 

Fig. A.2 Parameter study results of the tuning parameters, 0k  and  , for the example in 

Fig. 3.6........................................................................................................91 

Fig. A.3 Parameter study results of the tuning parameters, 0k  and  , for the example in 

Fig. 3.8........................................................................................................92 

Fig. A.4 Parameter study results of the tuning parameters, 0k  and  , for the example in 

Fig. 3.10......................................................................................................92 

Fig. A.5 Standard topology optimization results under pre-determined loading for the 2D 

wheel loader case in Fig. 3.10: m
1
~ m

8
 ..........................................................94 

Fig. A.6 Standard topology optimization results under pre-determined loading for the 2D 

wheel loader case in Fig. 3.10: m
9
~ m1

 ..........................................................95 



 

1 
 

Chapter 1.  

 

Introduction 

 

Topology optimization [1-3] is a well-established and innovative design methodology 

successfully applied in various areas of industry. The concept of topology optimization is 

recognized as structural layout optimization to find such an optimized material 

distribution in the design domain to maximize the performance function (e.g. structural 

stiffness) with satisfying constraints such as specified volume and modal frequency. 

Although important achievements continue to motivate further studies about the 

applications of topology optimization and its capabilities in solving complex engineering 

design problems [4-23], but unfortunately there are little works reported in the design of 

construction equipment frame. Recently, the regulation of greenhouse gas emission and 

efforts for reduction of the total cost ownership require fundamental re-design of the 

frame structure. Weight reduction maintaining the structural performance becomes an 

important topic in this situation, and thus, topology optimization as an innovative design 

methodology gets much attention than ever before.  

 

There are some issues in the application of the topology optimization to the construction 

equipment industry. Figure 1.1 shows a typical wheel loader, one of widely used 

construction equipment, and the frame of a wheel loader. Generally, construction 

equipment has actuators for the operation of desired work, and therefore, the load 

transmitted from them configures fundamental load cases of the frame. In this situation, 
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the location of actuators can change the structural topological layouts considerably. If 

there is a freedom in the early conceptual design stage to modify the actuator layout for 

the structural performance, we should consider the determination of the structural layout 

and the actuator layout at the same time. This first issue requires the simultaneous 

optimization method for the structural design and actuator layout. Another issue is about 

manufacturing aspect because the frame of construction equipment is mainly composed 

of relatively thin plates. It is usually fabricated by the seam-weld process which is 

difficult to effectively derive the detailed shape design from the result of the topology 

optimization, which is a truss structure typically. In this study, topology optimization 

method considering above mentioned issues is investigated for the application to the 

design of the construction equipment frame. 

 

 

Fig. 1.1 Illustration of a wheel loader 

 

In the standard structural topology optimization, it is common to find out the optimal 

material layout with all loading conditions, such as the magnitude, direction and location 

of an applied load, specified [2, 4, 6, 16, 18]. This kind of formulation has been widely 
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accepted in various applications. But, the simultaneous optimization of the actuator 

position and structural topology corresponds to the determination of the loading location 

in standard structural optimization problem because actuators transmit the load the frame 

structure. As the actuator layout changes, the specific loading location in the frame can 

be considered to move. Therefore, we propose to relax the topology optimization 

problem by allowing the applied load to move in the design domain. 

 

There were some earlier works related to the present subject. Simultaneous design of 

boundary and structural topology [24] was developed by adding spring element to the 

possible points for the boundary in continuum domain. Support location design problem 

in the topology optimization framework [25] was considered to determine the discrete 

optimal support location to maximize structural compliance. For the simultaneous design 

of the loading condition and structure, Fuchs and Moses [26] first suggested a topology 

optimization by the SIMP (Solid Isotropic Material with Penalization) method to 

minimize the structural compliance with a load that is allowed to move along the loading 

direction. Alternative or extended methods were also investigated using ESO 

(Evolutionary Structural Optimization) method [27, 28]. In these works, the notion of a 

transmissible load was introduced to define a load of a given magnitude and direction 

which can move along its line of action [29, 30]. Most recently, Zhang et al. [31] 

considered movable cases by allowing the loading location to move along any specific 

loading line including a boundary line of the design domain. While the aforementioned 

researches were apparently concerned with the simultaneous optimization of a structural 

topology and loading location moving in the line, no work has been reported to deal with 
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the case where the loading location can freely move to any location within a design 

domain. The simultaneous optimization problem considered in this study, as 

schematically illustrated in Fig. 1.2, is to determine a loading location and structural 

topological layout for compliance minimization under a general movable load condition; 

while the magnitude and direction of an applied load is fixed, the location of an applied 

load is allowed to move anywhere, actually any node, inside the discretized design 

domain or along its domain boundary. To be able to solve this type of problems, a new 

method will be developed and tested in this study. 

 

 

Fig. 1.2 Schematic illustration of the proposed simultaneous optimization 
 

There have been several efforts [32-35] for the manufacturing constraint, such as casting, 

extrusion and draw direction, in the topology optimization. Among them, topology 

optimization method suggested by Leiva [33] has the similar characteristics applicable to 

the welded structure. While the method is originally for the casting constraint in the 

topology optimization, it can generate plate-like structure rather efficiently which is 

necessary for the welded structure. From this point, modifications and extensions of the 

plate-like topology optimization method are implemented in this study.  
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For the specific optimization problem motivated by the actual engineering practice, 

structural design of the construction equipment frame, large size of problem should be 

treated efficiently. Thus, the developed optimization method should be implemented with 

the commercial finite element analysis software, e.g. Abaqus. In this work, in-house 

topology optimization code using the Matlab - Abaqus interface is developed and tested 

for the design of a wheel loader frame. A simplified design example of a wheel loader 

frame hosting a steering actuator is actually solved here, which will clearly demonstrate 

the usefulness of the present investigation. 

 

In chapter 2, standard topology optimization problem for a typical wheel loader frame is 

formulated and numerical studies are conducted using the commercial optimization 

software OptiStruct. The design issues in the application of the standard topology 

optimization are discussed. Feasibility study for the proposed simultaneous optimization 

is checked in the wheel loader frame model. 

  

Chapter 3 is mainly dedicated to the proposition of new topology optimization method of 

simultaneous determination of an actuator position and structural topological layouts. 

Specific modeling technique for the correct load transfer in the movable loading location 

design problem is described. Moreover, formulation for the simultaneous optimization is 

proposed. The developed optimization method is verified and validated with several 

benchmark problems. A design example of simplified wheel loader frame in two-

dimensional domain is demonstrated to show the possibility to the engineering practices. 

Examples in three-dimensional domain are then followed. 
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In chapter 4, topology optimization method considering weld manufacturability is 

developed with the use of the Matlab – Abaqus interface. Thereafter, integrated with the 

simultaneous optimization method developed in chapter 3, design examples of the 

simultaneous optimization of an loading location and structural topology considering 

weld manufacturability are demonstrated. One of the examples is a simplified structural 

design of actual wheel loader frame. The usefulness of the proposed optimization method 

will be revealed in this chapter. 

 

Finally, conclusion of the thesis is made in chapter 5. 
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Chapter 2.  

 

Standard topology optimization and design issues 

 

2.1 Chapter overview 

 

In this chapter, standard topology optimization of a wheel loader frame is studied and 

related issues in the application to the construction equipment frame will be discussed. A 

wheel loader frame, as shown in Fig. 2.1, is fabricated by conventional welding process; 

the results from standard topology optimization should be interpreted to the detailed 

welded structure by the design engineer. Possibilities of standard topology optimization 

to the practical design of frame structure should be checked in the view point of the 

manufacturability. In the next section, standard topology optimization problem for the 

wheel loader frame to enhance the performance of the structure will be examined and 

discussed.  

 

Moreover, similar design issues of wheel loader frames can be found through comparison 

with several typical frames. They are actuator (steering cylinder) layout design and 

section shape of the side member in the frame structure. The actuator layout corresponds 

to the loading location in the design domain as mentioned in the previous chapter. The 

latter issue is related to the manufacturing aspect because the section shape of side 

member in frame structure should be so determined as to be fabricated with the welding 

process. 
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The issue of manufacturability is obvious, but impact of the actuator layout on the 

structural topology of the frame should be checked previously. Before detailed 

description on the simultaneous optimization of a actuator layout and structural topology, 

feasibility study on the layout design of the frame structure will be made in this chapter. 

 

 

Fig. 2.1 Illustration of a typical wheel loader frame 

 

2.2 Finite element model setup of a wheel loader frame 

 

Figure 2.2 shows the finite element model of a typical wheel loader rear frame. For the 

purpose of topology optimization, design domain is filled with continuum elements in 

order to assign as much freedom as possible to the optimization algorithm. There are 

several main components mounted on the frame; cabin, hydraulic tank, fuel tank, axle, 

engine, transmission, and counter weight. They are connected via rigid elements in Fig. 

2.2. Specific value of the mass and inertia of these components cannot be listed due to 
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the security reason of the manufacturing company. The typical load cases for the static 

analysis, which comes from the major deflection mode of the frame, is shown in Fig. 2.3.  

Numerical values of the load cases are not detailed also. Works loads are transmitted to 

the pin joints in the front part of the frame and steering cylinder forces, to the brackets in 

the both side of the front part. Fatigue strength is not considered in this study, because the 

object of this study is to maximize the structural stiffness. It is more general to consider 

the fatigue resistance in size/shape optimization stage [5]. 

 

 

Fig. 2.2 Finite element model of a wheel load frame 

 

Design domain of the topology optimization corresponds to the orange-colored region 

and non-design domain is red-colored in the finite element model in Fig. 2.2. Room for 

engine and transmission is removed from the design domain. Note that layouts of the 

main components including steering cylinders are maintained during the optimization 

process because they are not the scope of this study. The finite element model setup has 

been made using Altair HyperMesh 12, and Altair OptiStruct 12, is utilized for the 
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topology optimization. The whole domain is composed of 80,120 CHEXA elements [36] 

and 93,320 nodes and material properties are given below. 

- Young’s Modulus: 52.1 10  

- Poisson’s ration: 0.3 

- Density: 97.8 10  

 

 

Fig. 2.3 Summary of static load conditions 
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2.3 Standard topology optimization of a wheel loader frame 

 

2.3.1 Topology optimization formulation 

 

Topology optimization is carried out using the finite element model depicted in Fig. 2.2. 

In this work, the SIMP (Solid Isotropic Material with Penalization) method [1-4] is 

employed throughout the study. The scope of the topology optimization is to find the 

optimum material distribution in a structure. To achieve this, the relative element-based 

material density which is allowed to vary continuously during the optimization process is 

introduced as the design variables in the SIMP method as 

0( ) ( 1,2,..., )p

j j j eE E j N   ,                   (2.1) 

where j  ( min 1j   ) is the density design variable of the j -th continuum element, 

0E  is the nominal value of E  when 1j   and p  is the penalty factor.  

 

In the topology optimization with Optistruct, specific parameters setup is listed in the 

following. Other parameter values are remained as OptiStruct default [36] throughout 

this chapter. 

- SIMP penalty parameter: 3 

- Minimum member size control: three times of the average element size 

- Symmetry constraint in the x-direction 

 

The structural topology optimization with modal frequency constraints can be formulated 
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using two kinds of optimization problems: one is to minimize the combined compliance 

index [36] with the constraint functions of volume fraction and 1
st
 eigenfrequency. The 

combined compliance index means the scalar sum of static compliances and reciprocal 

eigenvalues as in Eqs. (2.2) and (2.3). The other is to minimize the sum of static 

compliances with constraints of volume fraction and 1
st
 ~ 3

rd
 eigenfrequncies as in Eqs. 

(2.4) and (2.5): 

 

6 3

1 1

1 1
Minimize

2  

 
ρ R

f u
Ne

T

i ii j
j

NORM


                                (2.2)

*
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subject to / 1
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j j s

j

V V

f f









,                            (2.3) 
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6

1

1
Minimize

2 


ρ R

f u
Ne

T

i ii
                                                   (2.4) 

*

1

*

subject to / 1

( 1,2,3)

eN

j j s

j

j j

V V

f f i






 


.                        (2.5) 

In the above equation, j  is the thj  eigenvalue, *V  denotes volume constraint, 
*

jf  

represents the lower bound of thj  eigenfrequency constraint, and NORM is a scaling 

factor to calibrate the numerical order between compliance and reciprocal eigenvalue 

calculated at initial iteration. The value of 
*

jf  is the same as those of the current frame. 
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2.3.2 Numerical results and discussion 

 

The topology optimization results by Eqs. (2.2)~(2.5) are shown in Fig. 2.3, where 

design variables above 0.3j   are displayed. Modal frequencies in the case of 

minimizing combined compliance index as shown in Fig. 2.3(a) are higher than those in 

Fig. 2.3(b). This is due to the objective function as combined compliance index in which 

it is included to maximize the fundamental eigenfrequencies.  

 

Notice that the truss structures, typical results of the standard topology optimization, are 

appeared. These kind of topological layouts are hardly possible to interpret to the welded 

structures which are mainly composed of relatively thin plates. One can get some 

information where to reinforce or not from the results in Fig. 2.4, but that’s not sufficient 

because we cannot decide where to start the specific plate section and where to end. 

Moreover, it is impossible to realize X-shape cross member by means of the welding. 

Thus, weld manufacturability is the critical issue in the topology optimization for the 

construction equipment frame. 

 

It is worth to discuss another issue in the topology optimization results illustrated in Fig. 

2.5, which represent the steering cylinder dependent structure. In a wheel loader, steering 

mechanism is operated using embedded hydraulic cylinders which transmit the steering 

forces to the frame. 
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Fig. 2.4 Standard topology optimization results of a wheel loader frame (a) minimizing 

combined compliance index, and (b) minimizing compliance with modal 

frequency constraints. 
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In the structural point of view, the location of the steering cylinder acts as a loading point 

to the frame and that is why the load path is generated along the steering cylinder 

mounting bracket. From this result, there can be chances to optimize the cylinder location. 

In fact, there is some freedom in the early conceptual design stage to adjust the actuator 

layout for the structural performance or the manufacturing cost. The location of the 

actuator can be determined clearly in the simple structure. But, as complex as the 

structure becomes, the location of the cylinder may not be determined by the engineering 

intuition. Therefore, systematic design process for the determination of topological 

layout of the frame structure and actuator mounting location is important. 

 

 

Fig. 2.5 Steering cylinder dependent structure of a wheel loader frame in side view (a) 

for the case of Fig. 2.4(a), and for the case of Fig. 2.4(b). 
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2.4 Design issues and feasibility study 

 

2.4.1 Design issues related to topology optimization for a wheel loader frame  

 

Figure 2.6 shows the structural design of two different types of wheel loader frames. 

From the design benchmarking, one can also find the major design issues for the wheel 

loader frame as following: 

• How can determine the location of steering cylinder and layouts of 

frame structure simultaneously? 

• What is the optimal section design of the side member? 

 

The first question corresponds to the simultaneous design of the loading point and 

structural topology, while the second one is about manufacturing aspect in the topology 

optimization. Until now, there has been little works about the former issue; a feasibility 

study is followed in the following section. 
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Fig. 2.6 Design of different types of wheel loader frames (a) for the case of front steering 

cylinder and plate-type side member [37], and (b) for the case of side inner 

steering cylinder and box-type side member [38]. 

 

 



 

18 
 

2.4.2 Feasibility study of structural topology optimization considering 

loading location  

 

Figure 2.7 demonstrate the results of the topology optimization of a wheel loader frame 

when the location of the steering cylinder bracket is modified to move 600mm backward 

( y direction) compared to the finite element model in the Fig. 2.2. Optimization setup 

and parameters are the same as the case in section 2.3.1 except the actuator position. The 

results, displayed in Fig. 2.4 and Fig 2.7, clearly show that the compliance values are 

improved by 7% in average. Additionally, the structural layouts in the front area of the 

frame appear to be more simple and efficient. From this simple numerical test, the 

feasibility of the simultaneous optimization between a loading point and structural 

topology can be assured. 
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Fig. 2.7 Standard topology optimization results of a wheel loader frame with modified 

steering cylinder position (a) for minimizing combined compliance index, and (b) 

for minimizing compliance with eigenfrequency constraints. 
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Chapter 3.  

 

Simultaneous optimization of a loading location and structural  

topology 

 

3.1 Chapter overview 

 

In this chapter, as schematically illustrated in Fig. 3.1, a simultaneous optimization 

method to determine a loading location and structural topological layout for compliance 

minimization under a more general movable load condition is proposed; while the 

magnitude and direction of an applied load is fixed, the location of an applied load is 

allowed to move anywhere inside the design domain or along its domain boundary. To be 

able to solve this type of problems, a new method will be developed and tested in this 

study. 

 

 

Fig. 3.1 Schematic representation of simultaneous optimization of the structural topology 

and loading location 



 

21 
 

One of the main issues in this study is the modeling of a load that can freely move to any 

point in a designated region. A new proposition is to introduce two conceptually-different 

design domains, one to determine the optimal loading point and the other to determine 

the optimal structural layout. The structural compliance as a whole will be used as a 

performance measure in the topology optimization setup. While the design domains are 

conceptually different, they share the same nodes so that the applied load is correctly 

transmitted to a structural layout to be optimized. Because the applied load is allowed to 

move, the correct load transmission requires a special attention. So, a new modeling 

technique is developed in this study where spring elements are used to discretize the 

domain for determining the loading location and continuum elements, to discretize the 

domain for determining the structural layout. By using the two-design domain method, it 

is convenient to move the applied load anywhere in the design domain without 

generating unwanted moment resultants, which may be otherwise difficult to suppress. 

The detailed explanations on this issue will be given in the next section.  

 

Another issue is related to solution convergence. It is related to the different 

characteristics of the design variables, density and spring stiffness. The different 

contributions to the structural compliance of the spring and continuum elements also 

could make stable solution convergence difficult. Therefore, a multi-objective 

formulation with the objective functions in logarithm form is proposed for stable solution 

convergence.  

 

This chapter is organized as follows. In the following section, the modeling technique 
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and the analysis method dealing with the movable load condition will be developed. 

Section 3.3 presents the optimization formulation to perform the simultaneous 

optimization of an optimal structural layout and loading location. Numerical case studies, 

including a simplified version of a wheel loader frame design problem, are presented in 

the next section and concluding remarks are then followed.  

 

3.2 Modeling and analysis 

 

3.2.1 Two design domain-based modeling technique  

 

For the simultaneous optimization of a structural layout and loading location, the concept 

of two conceptually-different design domains is introduced, one for the determination of 

the loading location and the other for the determination of the optimal structural layout. 

In this approach, the problem to determine the optimal loading location is converted to a 

problem to connect a load initially at an arbitrary location to a node of the optimal 

loading location inside a domain as illustrated in Fig. 3.2. The design domain l  (which 

will be referred to as the loading domain) in Fig. 3.2(a) is a domain introduced to 

determine the load location; it is used to find the single connectivity between the applied 

load assigned at an arbitrary location and a node of the optimal loading location inside 

l . The design domain s  (which will be referred to as the structural domain) is a 

domain used to find an optimal structural layout. Although the coordinates of the nodes 

used to discretize the two design domains are exactly the same, the two-different design 

domain concept is intentionally introduced. To present the proposed modeling approach 
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clearly, suppose that the loading case in which a vertical load of a given magnitude is 

applied to a design domain, i.e., (0, )PP . 

 

 

Fig. 3.2 The proposed two-domain modeling: (a) Discretized loading design domain by 

spring elements connecting the applied load, and (b) discretized structural 

design domain. 

 

As illustrated in Fig. 3.2(a), the symbol im  is the i -th node representing one of 

possible loading locations in l . The total number of possible loading locations is 

denoted by lN . On the other hand, Fig. 3.2(b) shows the structural domain s  

discretized by quadrilateral elements. The symbol in  is the i -th node in s  and sN  

denotes the total number of nodes. In dealing with s , however, it will be more 

convenient to use eN  to denote the total number of elements because the density-based 

topology optimization will be used for the structural part. Note that the coordinates of 
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node im  are set to be the same as those of in  because l  is always a subset of s  

( l s  ). With this setting, it is straightforward to transmit the applied load applied at 

im  directly to in  of the structural design domain. Although two design domains are 

used for conceptual convenience, the actual loading location moves freely around in the 

design domain.  

 

For streamlined determination of the optimal loading location, it is assumed at the 

beginning of optimization iterations that all im ’s are connected to the applied load P  

of a given magnitude and direction through spring elements. At the initial state of the 

simultaneous optimization, the load can be located at any arbitrary position but it is 

easier to locate it outside the domain s  without loss of generality. Only six spring 

connections are sketched in Fig. 3.2(a) for clear illustration of the spring element 

connections in l . The connection from the load to im  is controlled by the value of its 

spring stiffness ( ik ) which is interpolated as  

0( ) ( 1,2,... )i i i lk k i N   ,                       (3.1) 

where 
i  ( min 1i   ) is the design variable assigned to the i -th connecting spring 

element and   is the penalty parameter. The nominal spring stiffness is denoted by 0k , 

the value of which will be discussed in section 3.4. The notion of the spring elements to 

represent connectivity was used for different purposes in some earlier topology 

optimization problems [10, 21]. 

 

A special attention is needed in order to correctly transfer the applied load P to any node 



 

25 
 

( im ). This means that the loading direction should not be changed and also no additional 

resultant, in particular, the moment resultant, should be produced by improper load 

transfer. To fulfill these requirements, the following approach is developed. 

 

First, the stiffness of the i -th spring element is defined as 

( , ) (0, ( ))i i i T T

x y i ik k k  k ,                     (3.2) 

where xk  and yk  is the x - and y -directional stiffness, respectively. For the problem 

in consideration, 0xk   is imposed because the load is applied along the vertical 

direction, i.e., the y -direction. (If the load is applied along the x -direction, 

( ( ),0)i T

i ik k will be used.) Conceptually, this modeling technique is equivalent to use 

roller supports at im . If xk  is not set to be zero, the load transferred to node im  could 

produce any other load such as a nonzero moment applied at any node.  

 

Next, the displacements of nodes im  and in  occupying the same coordinates must be 

coupled to transfer the applied load specified in l  to a structure defined in s . 

Specifically, the following conditions will be 

( 1,2,..., )
i im n

y y lu u i N  .                     (3.3) 

 

To address the importance of the three above-mentioned technique, the connectivity 

models without and with the proposed techniques are illustrated in Fig. 3.3(a) and Fig. 

3.3(b), respectively. In the illustration, the applied load P is assumed to be connected to 
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6m  which is coupled with 6n . (Here, the value of 1i   implies the state of connection 

and the value of 
mini  , the state of disconnection.) The model in Fig. 3.3(a) not 

imposing 0i

xk   and 
i im n

y yu u  will generate an additional resultants, which should not 

be applied to the structure; only the vertical force should be non-vanishing. If the 

proposed techniques as described in Fig. 3.3(b) are used, only the vertical force is 

correctly transmitted to the structure to be optimized. Although only the vertical loading 

case is considered as an illustration, the proposed techniques can be extended for any 

load type.  

 

 

Fig. 3.3 Illustration of load transferring issue: (a) Erroneous generation of the resultant if 

the load is directly connected to the nodes of the load domain, and (b) correct 

transfer of the applied load to the nodes of the load domain and thus to the nodes 

of the structural domain . 
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Regarding the topology optimization modeling for the structural part defined in s , the 

standard density-based approach [1] is used. Thus, Young’s modulus of continuum 

element j  in Fig. 3.2(b) is interpolated as 

 
0( ) ( 1,2,..., )p

j j j eE E j N   ,                   (3.4) 

where j  ( min 1j   ) is the density design variable of the j -th continuum element, 

0E  is the nominal value of E  when 1j   and p  is the penalty factor.  

 

3.2.2 Finite element formulation for the two design domain-based model 

 

Since the construction of the finite element system equation is well established, the finite 

element equation is simply given below without any detailed derivation:  

 ( )l s  F Ku K K u ,     (3.5) 

where F  is the global force vector. The global nodal displacement vector u  is defined 

as { }T

l su u u  where lu  and su  are the nodal displacement vectors defined in l  

and s , respectively. The global stiffness matrix K  consists of two system matrices 

lK  and sK resulting from the discretization of l  and s :  

1 1

l eN N
i j

l s s
i j 

    K K K k k ,                    (3.6) 

where i
k  and j

sk  denote the i -th spring and j -th continuum element stiffness 

matrices, respectively. For the case of vertical applied load (the y -directional load), the 

expression of i
k is the same as Eq. (3.2). In Eq. (3.6), Α  denotes the element assembly 

operator. If the condition given by (3.3) is written in matrix form,  
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 Cu 0 ,  (3.7) 

If the Lagrange multiplier ξ  is introduced to handle (3.7), equations (3.5) and (3.7) can 

be put into the following form: 

 
T     

    
    

u FK C

ξ 0C 0
.  (3.8) 

 

A few remarks regarding the size of the system matrix may be made. In most of practical 

engineering problems, the domain size of l  is much smaller than s  because the 

candidate loading points are usually limited. Therefore, the increase in the degrees of 

freedom in (3.8) is marginal. On the other hand, the use of (3.8) based on the two 

conceptual design domains facilitates the control of the convergence in the topology 

optimization problem as shall be seen later with numerical case studies. 

 

3.3 Topology optimization formulation 

 

Based on the two conceptual design domain method presented in the previous section, 

the following multi-objective formulation is proposed for the simultaneous optimization: 

      
,

Minimize ( , ) ln ( , ) 1 ( , ) 1 ln 1 ln 1
 

         
μ R ρ R

μ ρ μ ρ μ ρ
N Nl e

l s l sC C C C    (3.9) 

*

1

subject to ( ) / 1
eN

j j s

j

V V V


 ρ ,                                 (3.10) 

1

( ) 1
lN

i

i

S 


 μ ,                                      (3.11) 
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1

( ) (1 )
lN

i i

i

Q   


  μ ,                                 (3.12) 

 

 

min max

min max

1 1,2, ,  

1 1,2, ,

i l

j e

i N

j N

  

  

   

   
                    (3.13) 

              
1 2 1 2with { , , , } and { , , , }

e l

T T

N N        ρ μ .  

In Eq. (3.9), lC  and sC  denote the compliances of the discretized spring and 

continuum element systems defined in l  and s , respectively. They are defined as 

1
( , ) ( , ) ( ) ( , )

2

T

l l l lC μ ρ u μ ρ K μ u μ ρ ,                         (3.14) 

   
1

( , ) ( , ) ( ) ( , )
2

T

s s s sC μ ρ u μ ρ K ρ u μ ρ .                         (3.15) 

 

Now, the role of each function defined in (3.14) and (3.15) will be examined. First, the 

objective function   consists of the product of lC  and sC  because its minimization 

is equivalent to the maximization of the structural stiffness. The minimization of lC  

helps push the design variables 
i  ( 1, , li N  ) towards their lower (

min ) and upper 

(
max 1  ) bounds although explicit penalty functions will be also introduced as Eq. (3.12).  

 

The logarithm form of the product of lC  and sC  in the definition of   is employed 

to adjust a balance between lC  and sC  because the sizes of l  and s  are different 

and the number of the candidate loading points in l  can vary depending on problems. 

Also, due to the coupling between different types of optimizations, the determinations of 
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the loading location and optimal topological structural layout, a balance between the 

sensitivities of 
lC  and 

sC  should be made. As the effectiveness of the logarithmic 

form of a product of two functions was demonstrated by Kim and Kim [39] for a similar 

issue, the logarithmic form of the objective function given in Eq. (3.9) is used. More 

discussions on this form will be given later. 

 

The constraint function Eq. (3.10) is simply the statement of a volume constraint where 

jV  and 
*V  denote the volume of the j -th continuum finite element and the allowed 

total volume. Equations (3.11) and (3.12) altogether ensure that the applied load be 

connected to a single node in l . The reason to use two constraint functions (3.11) and 

(3.12) is that the success of the present simultaneous optimization heavily depends on the 

state of the single connection between the applied load and a node in l . Because 

optimal structural layouts depend critically on the applied load, the correct transfer of the 

load to the structure is critical. For instance, if the load is connected to multiple nodes 

even with small values of 
i , the obtained layout could be quite different from the true 

optimal layout. Therefore, we introduced the two conceptual domain method to ensure 

that the applied load is transmitted to a single point in the structure. Instead of Eq. (3.11), 

following form may be considered as an alternative:
min

1

( ) 1 ( 1)
lN

i l

i

S N 


    μ . 

Although compliance in the load domain lC  plays the role to push i  towards either 

min or 
max , the explicit penalty function Q controls the convergence speed of the load 
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design variable 
i . It makes possible to success the simultaneous optimization if the 

upper bound   is selected properly. The upper bound   in Eq. (3.12) should be zero 

theoretically, but the use of too small values result in pre-matured solutions. Its value 

should be tuned to improve solution convergence so that 
i  takes on either 

min or 
max  

at the optimum. Our numerical studies suggest that the values of   ranging between 0.3 

and 0.8 yield satisfactory results (All the results of the numerical studies are listed in 

Appendix. A1). 

 

For the update of design variables ( i  and j ), the sensitivities of the objective 

function is calculated by using the adjoint method [40]: 

( , ) 1

2( 1)

( , ) 1

2( 1)

T Tl l
l l l

l

T Ts s
s s s

s

C

C





 
 

   

 
 

   

K (μ) K (μ)μ ρ
u u λ u

μ μ μ

K (ρ) K (ρ)μ ρ
u u λ u

ρ ρ ρ

              (3.16) 

In equation (3.16), the adjoint variable λ  is defined as 

           

, ,

( ) ( , ) ( ) ( , )
, .

( , ) 1 ( , ) 1

T T

l l s s

l sC C

     
        

 
  

  

-1 -1

-1

λ K (μ ρ) K (μ ρ)
u u

K μ u μ ρ K ρ u μ ρ
K (μ ρ)

μ ρ μ ρ

             (3.17) 

As remarked earlier, the proposed form of the objective function has an adaptive scaling 

effect in the sensitivity calculation at every iteration. If the compliance lC  becomes 

larger, sensitivities the objective function in Eq. (3.9) gets less sensitive to the variations 
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of the 
lC  because of the normalization factor 

lC  in the denominator of Eq. (3.17), and 

vice versa. 

 

3.4 Numerical examples 

 

In this section, numerical examples will be considered to show the validity and 

effectiveness of the proposed method. Several case studies having different conditions on 

the allowed range of the location of the applied load are considered.  

 

In Case 1, the load is allowed only along the direction of the applied load – this recovers 

the problem solved in Fuchs and Moses [26]. Case 2 deals with the problem where the 

applied vertical load can move along the upper boundary of the design domain. So the 

moving path is perpendicular to the loading direction – a similar problem was solved in 

[31]. Moreover, the case when the applied load can move around in a designated two-

dimensional domain is considered in case study 3. The specific problem motivated by an 

actual industrial application is the simultaneous optimization of the structural topology 

and the actuator loading position for a simplified wheel loader frame - this is a new type 

of problems, not solved or considered earlier. Finally, extension to movable load 

examples in the three-dimensional structural domain is followed. 

 

To check if the proposed method is indeed effective, a set of standard structural topology 

optimization problems considering all possible loading locations for a load of a given 

magnitude and direction was solved and compared their best solution with the optimized 
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solution obtained by the proposed simultaneous optimization. To update the design 

variables, the method of moving asymptotes [41] is employed as the gradient based 

optimization algorithm. In order to avoid the checkerboard and mesh-dependent problem, 

a density filter technique [42] is applied with the filter radius being three times the 

average element size in all examples. Note that the spring elements in the loading domain 

are not filtered. Also the values of 
min min 0.001    for the lower bounds and 3p    

for the penalty parameters are used throughout the present investigation. 

 

3.4.1 Case study 1: loading point moving along the given load direction 

 

As the first case, consider the simultaneous design problem, in which the load is allowed 

only along the direction of the applied load under the volume constraint ratio 
*V  10%. 

Figure 3.4(a) illustrates the design domain and the line along which the applied vertical 

load can move. The bottom side ends are simply supported. The structural domain is 

discretized by 9696 4-node plane stress elements. The thickness is taken to be 10 mm. 

In this case, the loading domain consists only of a vertical line which is discretized by 49 

candidate nodes marked by circles in Fig. 3.4(a). The node number varies from 1 to 49 

from the bottom. The material properties of the continuum elements are given by 

Young’s modulus 0 210E   GPa and Poisson’s ratio  =0.3. 

 

To determine the nominal value of 0k , some care must be taken. It is found through 

numerical tests that if the value of 0k  ranges between 10
-1

 to 10
-4

 times smaller than the 
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diagonal stiffness of the continuum element; successful optimization result can be 

obtained because the spring element do not affect the stiffness in the continuum domain 

significantly (More details on the parameter study is summarized in Appendix. A1.). A 

similar approach was used by Buhl [24] who solved the simultaneous topology 

optimization of structures and supports in which the structural domain is not perturbed 

significantly by a proper choice of the stiffness of spring elements. The initial values of 

all design variables are set to be *

i V   and 1/i lN  . In this problem, the upper 

bound value of 0.7   was found to yield good convergence. 

 

Figure 3.4(b) shows the result giving the smallest value of 
sC  by the standard structural 

topology optimization. It is the best one among all results obtained for the problems 

under different loading locations assigned at im  ( 1, , 49li N   ). The result in Fig. 3.4(b) 

is the optimal layout obtained when the load is directly applied at 24m  (corresponding 

the variable states of 
mini   except 

24 max 1   ). Figure 3.4(c) shows the optimized 

structural layout by the proposed simultaneous optimization formulation. The bold line in 

the middle is the link connecting the applied load and 24m . The comparison of Fig. 3.4(b) 

and Fig. 3.4(c) shows that the present formulation produces the same topological layout 

and identifies the optimal loading location as in Fuchs and Moses [26]. The compliance 

values are almost identical (3.296 vs. 3.299). 

 

The iteration histories are plotted in Fig. 3.5. The decrease pattern of the objective 

function   is shown in Fig. 3.5(a). It also shows intermediate structural layouts and 
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loading locations. At the very beginning of the optimization process, the load design 

variables decrease to satisfy the explicit penalty constraint in Eq. (3.14), resulting in the 

increase of 
lC . Otherwise, the objective function is rather monotonically reduced. Figure 

3.5(b) also exhibits the stable convergences of the constraint functions ,V S  and Q . 

 

 

Fig. 3.4 Case study 1 for a vertically-movable load: (a) Design domain with prescribed 

load/boundary conditions, (b) the best result from standard structural topology 

optimization considering all possible loading locations, and (c) the result by the 

proposed simultaneous optimization method. 
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Fig. 3.5 Iteration history for case study 1: (a) The objective function with intermediate 

layouts, and (b) the constraint functions. 

 

 

3.4.2 Case study 2: loading point moving perpendicular to the load direction 

 

In this case, the applied load is allowed to move along the perpendicular direction to its 

loading direction. Two problems illustrated in Fig. 3.6(a) and Fig. 3.8(a) will be solved. 

The problem defined in Fig. 3.8(a) differs from that in Fig. 3.6(a); the problem depicted 

in Fig. 3.8(a) has a non-design domain (such as a service area of a wheel loader frame) 

inside the rectangular design domain.  

 

• Case Study 2-A 

The structural design domain given in Fig. 3.6(a) is discretized with 3280 4-node plane 

stress elements (thickness 10mm). In this problem, we considered only 4 unevenly-
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spaced candidate loading locations along the top horizontal boundary where a vertical 

force is applied. If the candidate loading points were evenly spaced, two central points 

would be optimal. Because we aim to find only one optimal loading point, we 

intentionally use unevenly-spaced candidate loading locations. The distances from the 

left side to the candidate locations are specified in Fig. 3.6(a). The material properties 

and optimization parameters are the same as those used in Case Study 1 except 
*V  30%. 

 

Figure 3.6(b) shows all of the optimized structural layouts by the standard topology 

optimization when the load is applied at 4 different locations lying along the boundary. 

Obviously, the optimized layouts differ depending on the loading locations. The smallest 

value of 
sC  is found when the applied load is at 2m . The optimized result by the 

proposed simultaneous optimization formulation is shown in Fig. 3.6(c). It is virtually 

identical to the layout shown in Fig. 3.6(b) for the applied load at 2m . The iteration 

history plot as shown in Fig. 3.7 exhibits stable convergence behavior of the objective 

and constraints.  
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Fig. 3.6 Case study 2-A for a horizontally-movable load: (a) Design domain with 

prescribed load/boundary conditions, (b) All of the results from standard 

topology optimization considering all possible loading locations, and (c) the 

result by the proposed simultaneous optimization method. 

 

 

Fig. 3.7 Iteration history for case study 2-A: (a) The objective function with intermediate 

layouts, and (b) the constraint functions. 
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• Case Study 2-B 

This problem depicted in Fig 3.8(a) deals with more realistic situations where the 

rectangular design domain has a non-design domain in it. The size of the non-design 

domain is stated in Fig. 3.8(a). In this case, 21 evenly-spaced candidate loading locations 

are considered along the top horizontal boundary where a vertical force is applied. The 

structural domain is composed of 40100 elements. The material property and the initial 

values of the design variables are same as those in Case Study 1 but 
*V  20 %. The 

value of 0.3   was found to yield satisfactory results for this problem.  

 

Figure 3.8(b) shows the best solution at 15m  among all possible optimal layouts for 

loads applied at all possible candidate locations. The optimized layout shown in Fig. 

3.8(c) is obtained by the proposed simultaneous optimization method. The two results are 

almost identical. The compliance value ( sC ) by the proposed method is slightly better 

than that by the standard structural topology optimization with a fixed load. The iteration 

histories in Fig. 3.9 exhibit the same convergence behavior as found in earlier problems. 
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Fig. 3.8 Case study 2-B for a horizontally-movable load: (a) Design domain having a 

non-design domain and prescribed load/boundary conditions, (b) the best result 

from standard topology optimization considering all possible loading locations, 

and (c) the result by the proposed simultaneous optimization method. 

 

 

Fig. 3.9 Iteration history for case study 2-B: (a) The objective function with intermediate 

layouts and (b) the constraint functions. 
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3.4.3 Case study 3: loading point moving in a two-dimensional region  

 

The simultaneous design problem where two multi-load cases are illustrated in Figs. 3.10 

and 3.13 is considered. The design domain is a simplification of a wheel loader frame 

with an embedded steering actuating cylinder. Obviously, the optimal frame layout 

should be found. Also, the position of the steering cylinder which determines the loading 

location of the steering force within a frame should be determined in an early concept 

design stage.  

 

• Case Study 3-A 

The rectangular domain shown in Fig. 3.10 has a few non-design domains as in the actual 

design. Among the two load cases, load case 1 in Fig. 3.10(a) considers a movable 

steering force acting horizontally at one of the candidate loading points marked with 

circles. A fixed horizontal force in the rear region of the design domain is also considered 

as a part of load case 1. On the other hand, the load case load case 2 in Fig. 3.10(b) has 

workloads only. (These loads are some of the typical loads that should be considered in 

the frame design.) In defining the structural compliance sC , the structural compliances 

under each load cases are equally weighted.  

 

The left arrow of magnitude of P  2000 N in load case 1 stands for a steering cylinder 

load. There are 16 candidate loading points. They are equally distanced vertically and 

uniformly distributed horizontally behind the rectangular non-design domain. The 

coordinates of some candidate points are given in Fig. 3.10(a). The volume constraint 



 

42 
 

ratio is *V 30%. The bound value of 0.3   for (3.14) was found to be suitable.  

Material properties and other parameters are the same as in the previous problems.  

 

 

Fig. 3.10 Case study 3-A for a movable load in a given two-dimensional region: (a) Load  

case 1 consisting of the horizontal movable load P with a non-movable load and 

(b) load case 2 consisting of non-movable workloads only. 
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Figure 3.11(a) shows the best result among all results obtained by the standard structural 

topology optimization for loads separately applied at all of the candidate locations. So, 

16 structural topology optimization cases must be solved. All of these 16 results can be 

seen in the Appendix. A2. The optimized result by the proposed simultaneous 

optimization of the structural layout and loading location is shown in Fig. 3.11(b). The 

topological layouts between the two results are not 100% identical, but the topologies of 

the main load-carrying members are almost the same. Also, the values of 
sC  by the two 

results are sufficiently close to each other.  

 

While the result in Fig. 3.11(a) requires 16 topology optimization runs, the present 

formulation yielded the result by one optimization run. To find the optimal loading 

location and corresponding structural topology, total CPU time increases proportional to 

the number of the candidate loading locations in case of the standard topology 

optimization with pre-determined loads. On the other hand, the proposed simultaneous 

design method can optimize the loading location and structural topology at the same time. 

Its CPU time does little depend on the number of the candidate loading points. To show 

the effectiveness of the simultaneous design, total CPU time for the optimization is 

compared in the following. 

- Standard topology optimization with 16 pre-determined load cases: 13,132 sec 

- Proposed simultaneous optimization: 1,664 sec 

Although proposed simultaneous optimization requires parameter tuning, for example, 

 in Eq. (3.1) and  in Eq. (3.12), sufficient efficiency can be assured. According to 0k 
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the parameter studies in Appendix. A.1, the range of tuning parameter is relatively small. 

 

 

 

 

Fig. 3.11 The optimized layouts for case study 3-A: (a) The best result from standard 

structural topology optimization considering all possible loading locations, and 

(b) the result by the proposed simultaneous optimization method. 

 

 

 



 

45 
 

The iteration histories and intermediate layouts during optimization iterations are shown 

Fig. 3.12(a). The values of the constraint functions shown in Fig. 3.12(b) converge to the 

target values stably.  

 

 

Fig. 3.12 Iteration history for case study 3-A: (a) The objective function, and (b) the 

constraint functions. 

 

• Case Study 3-B 

In this case, the simultaneous optimization with three load cases is demonstrated. 

There is horizontal cylinder load similar to the previous case study as shown in Fig. 

3.13(a), vertical cylinder load in Fig. 3.13(b) and workloads in Fig. 3.13(c). The size 

of the structural design domain and the support locations are the same as the case 

study 3-A in Fig. 3.10, unless otherwise specified in Fig. 3.13. Weighting factors of 

the each load cases are equals to one for the compliance calculation. There are 25 

possible loading locations equally spaced. Material properties and optimization 

parameters are the exactly same with the case study 3-A. 
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Fig. 3.13 Case study 3-B for a movable load in a given two-dimensional region: (a) Load  

case 1 consisting of the horizontal movable load P with a non-movable load, (b) 

load case 2 consisting of the vertical movable load P with a non-movable load 

and, (c) load case 3 consisting of non-movable workloads only. 
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Figure 3.14(a) depicts the simultaneous optimization result for the example shown in Fig. 

3.13. If we discretize the load domain more with 81 candidate loading points, almost 

same results can be obtained as displayed in Fig. 3.11(b); the determined loading point is 

in the same location and topological layouts in the structural domain also almost identical. 

These results show the effectiveness of the developed simultaneous optimization method. 

Although the load domain is discretized with more candidate loading points , consistent 

solution can be obtained. Notice that the optimal loading location is determined at the 

point in the upper right corner in the load domain. One may expect the optimal loading 

location could be determined at the point in the lower right corner close to the support 

point. But, the loading point determination under complex conditions , such as multiple 

load and complex geometry, is very difficult to find with the engineering intuition. In this 

situation, the proposed method can be utilized efficiently. 
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Fig. 3.14 The optimized layouts for case study 3-B using the proposed simultaneous 

optimization method with (a) 25 candidate loading points, and (b) with 81 

candidate loading points. 

 

 

3.4.4 Case study 4: 3-dimensional examples 

 

• Case Study 4-A 

Figure 3.15(a) shows the example which is 3-dimensional version of Fig. 3.4. In this case, 

the external load should be transmitted to one of 21 candidate loading locations along the 

external load direction. The structural domain is composed of 404040 elements. The 

material properties and optimization parameters are same as those in Case Study 1 in Fig. 
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3.4. Figure 3.15(b) shows the best solution among all possible optimal layouts for loads 

applied at all possible candidate locations. The iteration histories and intermediate 

layouts during optimization iterations are shown Fig. 3.16(a). The values of the 

constraint functions shown in Fig. 3.16(b) converge to the target values stably.  

 

 

 

Fig. 3.15 Case study 4-A for a 3-dimensional version of case study 1 in Fig. 3.4: (a) 

Design domain with prescribed load/boundary conditions, and (b) the result by 

the proposed simultaneous optimization method. 
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Fig. 3.16 Iteration history for Case study 4-A: (a) The objective function, and (b) the 

constraint functions. 

 

 

• Case Study 4-B 

Figure 3.17(a) shows the example which is 3-dimensional version of Fig. 3.6. In this case, 

the external load is transmitted to one of 16 candidate loading locations on the 

perpendicular plane to external load. The structural domain is composed of 323264 

elements. The material properties and parameters in optimization setup are the same as 

those in case study 2-A in Fig. 3.6, but 
*V  20 %. Figure 3.17(b) shows the optimal 

solution by the developed simultaneous optimization method. In this problem, the 

optimal loading location and the structural topology are similar to that in case study 2-A 

shown in Fig. 3.6(c). The iteration histories and intermediate layouts during optimization 

iterations are shown Fig. 3.18(a) and the constraint functions in Fig. 3.18(b) converge to 

the target values stably.  
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Fig. 3.17 Case study 4-B for a 3-dimensional version of case study 2-A in Fig. 3.6: (a) 

Design domain with prescribed load/boundary conditions, and (b) the result by 

the proposed simultaneous optimization method. 

 

 

Fig. 3.18 Iteration history for case study 4-B: (a) The objective function, and (b) the 

constraint functions. 
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3.5 More discussions on the determination of the optimal loading location 

 

So far, the developed simultaneous optimization method of the loading location and 

structural topology is based on the single loading point determination. It is because we 

focus on the concern to the practical engineering problem such as the determination of 

the optimal actuator location in the construction equipment frame. However, if upper  

bound of the constraint function, ( )S μ  in Eq. (3.11), is modified or we define the 

problem as the symmetric load condition, design of multiple loading location can be 

possible. Case studies for the multiple loading point design are described in Appendix. B. 

These kinds of problems are, for example, as bellows: 

- One applied load is connected to two optimized locations under symmetric load 

condition. In this case, load design variable 
i  is converged to the values of 0.5 

and 0.5. 

- Two applied load is converged to two load location. In this case, the upper 

bound of Eq. (3.11) should be modified to the value of 2. But, meaningful 

solution can be obtained only under special design condition. 

 

The effectiveness and usefulness is demonstrated and validated through various types of 

case studies. Extension to the multiple load case and three-dimensional structural domain 

problem can be treated without any difficulties. Modeling technique using the spring 

elements for the load connectivity has the great advantage in dealing with large size of 

engineering design practices because the implementation with the commercial finite 

element software is rather straightforward. 
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Although there are some inefficiency in form of the global stiffness equation using the 

Lagrange multiplier in Eq. (3.8) because it does not guarantee it positive definite , this is 

not the critical issue when the proposed method is implemented with the efficient 

commercial finite element analysis solver. 

 
There are two tuning parameters in the proposed method. Careful selection of the 

parameters should be made, but their ranges are relatively small and typical ranges are 

suggested in Appendix. A.1. It is more efficient to do parameter study using the proposed 

method than to run the standard topology optimization for all the candidate loading 

locations. 

 
The developed simultaneous optimization method is the gradient-based optimization, 

therefore, global optimal solution is not guaranteed. Global search algorithm such as the 

genetic algorithm can be adapted as a hybrid formulation. For example, loading point 

determination is optimized by the genetic algorithm and structural topology optimization 

is performed by the gradient method. Hybrid formulation is expected to be more effective 

when the candidate loading points become extremely large.. 
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Chapter 4.  

 

Integrated topology optimization considering actuator layout and 

weld manufacturability 

 

4.1 Chapter overview 

 

In this chapter, topology optimization technique for the simultaneous design of actuator 

layout and structure is integrated with weld manufacturability. There are two major 

issues in the application of the topology optimization framework to the frame structure of 

construction equipment. The first one was addressed in the previous chapter. As 

mentioned earlier, topology optimization with weld manufacturability in an early design 

stage is not the case of welding line reduction and welded joint specification; this is the 

problem of interpreting optimization results so effectively as to adapt them to the detailed 

design. In this point of view, manufacturing requirement such as avoiding typical truss 

structure should be investigated. 

 

Among the previous works related to the manufacturing constraints of topology 

optimization, a method to extract optimal plate-like structures from a solid mesh [33] is 

most relevant to the weld manufacturability issue. Although the main idea comes from 

those of casting manufacturing constraint [32, 34], it generates similar material layout 

effectively similar to the welded structures consisting of several plates. In this study, a 

method of dividing the whole design domain into several subdomains and then projecting 
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the element design variables on the nodes of pre-defined plane is suggested.  

 

To deal with sufficiently large size of problem for actual engineering practices, an 

interface between commercial CAE software (such as ABAQUS) and optimization code 

(developed in this investigation by MATLAB) is necessary. Thereby, the topology 

optimization framework using the ABAQUS-MATLAB interface is developed and 

verified throughout this chapter. Integrated with the simultaneous optimization of a 

loading point and structural topology, a topology optimization method providing plate-

like structures is implemented. Several numerical examples are treated to show the 

validness of the developed code, such as compliance minimization problems and a 

problem of simplified version of a wheel loader frame with a modal frequency constraint. 

 

The procedure of topology optimization for welded structures using the ABAQUS-

MATLAB interface is shown in the next section. The integration with the simultaneous 

optimization technique of a loading point determination and structural topological 

layouts is followed in the following. The proposed integrated topology optimization 

method is verified through several design examples. 
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4.2 Topology optimization for welded structure 

 

4.2.1 Plate-like topology optimization 

 

The standard topology optimization problem is stated as: 

*

min max

Min.

s. t.

( )

ρ R

F u

F K ρ u

n

T

e e

e

e

v V



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







 


,                          (4.1) 

where, F  is the applied load vector, K  is the global stiffness matrix and u  is the 

global displacement vector. The volume of element e  is denoted by ev  and 
min max,   

is the minimum and maximum allowable element density. Typically, the results of 

topology optimization in Eq. (4.1) are usually truss-like structure, as can be seen in the 

previous chapter. To avoid the formation of interior cavities, an extraction method to 

parameterize the design domain as to produce plate-like shapes can be formulated. Figure 

4.1 illustrates a schematic diagram of the proposed plate-like shape extraction method. 

The design domain   is divided into subdomains ( 1 )i di ,...,N   as shown in Fig. 

4.1(a), and pre-determined extraction directions in  and projected planes iS  are set up 

for the design variable parameterization in 
i . The element design variables e  in 

i  

are so projected into iS  as to have the same value along the direction of in  as depicted 

in Fig. 4.1(b). Therefore, same design variables e  along the extraction direction in 

each subdomain can be ensured. Fig. 4.1(c) illustrates typical plate-like conceptual image 

of the topological layout in the form of plate-like structural layouts under a bending load.
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Independency of the size and shape of mesh in topology optimization is achieved by 

filtering techniques [42-44]. In this study, the density filter with physical length scale and 

linear projection function [43] is employed. The concept of density filter is schematically 

shown in Fig. 4.2.  

 

 

Fig. 4.1 Illustration of extracting plate-like structure in topology optimization by (a) 

dividing the entire domain into subdomains and setting extracting direction in 

each subdomain, and (b) projecting element design variables on the pre-defined 

plane and extracting it along the given direction. Typical plate-like shape of 

topological layout is (c). 
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Nodal densities 
j  are the design variables in this method with the density filter; they 

should be converted into element densities e  to enforce physical meaning. In a 

conversion process, the projection scheme, not influenced by mesh size, is based on a 

physical length scale 
minr . The projection functions should be constructed so that this 

parameter is equivalent to the minimum allowable radius. In Fig. 4.2(a), a circle of 

effective radius 
minr  centered at the centroid of element e  is visualized to indicate the 

circular subdomain e

r  contributed to the computation of e . A linear projection 

function performing a weighted average of the eligible nodal design variables determines 

a magnitude of 1 at the element centroid and decreases linearly to 0 over 
minr  as shown 

in Fig 4.2(b). This weight functions is defined by 

min

min

, if
( )

0, otherwise

e

re

r r
x

rw





  



x x ,                    (4.2a) 

min

er r  x x             ,                    (4.2b) 

where, e
x  stands for the centroid of the element e . The element density e  in Fig. 4 

can be defined by 
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                           (4.3) 
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Fig. 4.2 Schematic concept of the density filter: (a) nodes inside the domain are used in 

the projection scheme, and (b) the weight function for the linear projection. 

 

 

Incorporating with the density filter, the problem of topology optimization in Eq. (4.1) 

now can be expressed as a function of the nodal design variables ( )n sρ  to enforce the 

results of topology optimization in the form of plate-like shape. 
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,                          (4.4) 
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4.2.2 Topology optimization using Matlab-Abaqus interface 

 

The plate-like topology optimization code is implemented using the interface between 

Matlab and Abaqus. The procedure to carry out the topology optimization is summarized 

in Fig. 4.3. Notice that this in-house code is utilized for the integration of the 

optimization method developed in chapter 3 (simultaneous optimization of a loading 

point and structural topology) and the plate-like topology optimization method for the 

welded structure. Practical applications such as the design problem of construction 

equipment frame require efficient commercial FE solver for the large scale problem up to 

millions of degree of freedom. Abaqus is one of widely used commercial finite element 

solver. 

 

 

Fig. 4.3 Topology optimization procedure using Matlab - Abaqus interface 
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The interface is accomplished by the use of Python scripts for Abaqus [45]. The results of 

the topology optimization, the element-wise density design variable, are provided as the 

format of an Abaqus ODB output database file. This file can be read more conveniently 

by the commercial FE post processing software such as Altair HyperView because the 

treatment of the user-defined density variable is more straightforward. 

 

Two types of optimization problems are examined in this section. One is compliance 

minimization problem with volume constraint and the other is, with constraints of 

volume and 1
st
 eigenfrequency. Formulations for the former are in Eq. (4.1) for the case 

of standard topology optimization and in Eq. (4.4) for the case of plate-like topology 

optimization, respectively. The latter formulation for the standard topology optimization 

with 1
st
 eigenfrequency constraint is expressed as 

*

*

min max
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,                        (4.5) 

where, 2

i  is the i -th eigenvalue and i  the corresponding eigenvector, and M   is 

the global mass matrix. Eigenfrequency if  can be calculated from the relation 

2i if  . Likewise, the plate-like topology optimization problem minimizing structural 

compliance with volume and modal frequency constraint can be formulated as Eq. (4.6).  



 

62 
 

( )

*

*

min max

Min.

 s.t. (( ) )

( ( ) ) ( ( ) )

(( ) )

(( ) ) (( ) ) , ,...

( ) ( ) ( )

ρ R

n

n n

n

n n

F u

ρ

ρ ρ

F K ρ u

K ρ M ρ

n
n s

T

e e

s

e

s s

s

s i i s i

n n s n

v V

i N





 

  

  











 

 


2 2

1 1

2 1

,             (4.6) 

 

The gradient-based optimizer MMA [41] is used throughout this work. Sensitivity 

analysis should be made to update the design variable. Sensitivities of structural 

compliance TC F u , objective function in Eq. (4.1) is well-known [4, 24, 40, 43] in the 

following form as 

 TC 
 

 

K(ρ)
u u

ρ ρ
.                           (4.7) 

In the equation (4.7), the global stiffness matrix K  with the SIMP penalization is 

expressed by 
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K k ,                             (4.8) 

where p  is the SIMP penalty parameter, 0

ik  denotes the i -th element stiffness matrix, 

and eN  is total number of finite elements in the design domain. The sensitivity 

expression of compliance in nodal design variables in Eq. (4.7) is calculated using Eqs. 

(4.3), (4.7) and (4.8) as  
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Before dealing with the sensitivity expression in modal frequency problems, it is 

worthwhile to discuss the issue, which is one of main problem in the topology 

optimization of modal frequencies; possibility of localized modes in low density areas [7, 

13, 46]. Localized mode can occur in areas that are near minimum densities during the 

optimization process because they are very flexible compared to elements with full 

densities. This localized mode should be prevented by specialized SIMP penalization 

scheme; otherwise they control the lowest eigenmode of the whole structure. In the study, 

material interpolation scheme suggest by Du and Olhoff [7] is applied to remove them. 

The global mass matrix M  of the finite element with the SIMP penalization can be 

expressed in the same manner with Eq. (4.8) as 

0

1 1

( )
e eN N

q

i i i i

i i

 
 

  M m m ,                      (4.10) 

where 
im  represents the i -th element mass matrix, 0

im  denote the i -th element mass 

matrix corresponding to fully solid material, and q  is the SIMP penalty parameter for 

the mass matrix. To eliminate the localized eigenmodes, Eq. (4.10) is replaced by Eq. 

(4.11) in order to set the element mass very low value via a higher penalization parameter 

in subregions with low local density and ensure 1C  continuity of the interpolation 

model as 
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where the coefficients are 5

1 6 10c    and 6

2 5 10c    . 
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The sensitivity of eigenvalue 2

i  for the standard topology optimization [7, 13, 40] can 

be obtained by  

2
2Ti

i i i


  
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ρ ρ ρ
.                 (4.12) 

Likewise, the sensitivity equation of plate-like topology optimization is expressed by 
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In equations (4.12) and (4.13), the derivatives of the matrices K  and M  can be 

calculated explicitly from the SIMP penalization model in Eqs. (4.8) and (4.11). 

Therefore, the sensitivity expression of Eqs. (4.12) and (4.13) becomes 

2
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4.2.3 Numerical examples 

 

In this section, numerical examples will be considered to verify the validness and 

effectiveness of the proposed method. Three case studies having different geometry and 

load condition are presented. In case 1, compliance minimization for L-type beam is 

examined. Comparison is made between the results of the commercial optimization 

software, Altair OptiStruct, and those of the developed in-house code with Matlab-

Abaqus interface. Case 2 is a kind of a feasibility test whether the proposed method can 
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be applied to the frame structures or not. Compliance minimization for a simple ladder 

type frame structure is investigated. In case 3, simplified example of a wheel loader 

frame design will be demonstrated to show the possibility of application to the actual 

engineering practice. Compliance minimization problem with constraints of volume and 

1
st
 modal frequency is formulated, as described in Eqs. (4.5) and (4.6). As mentioned 

earlier, the density filtering technique with the minimum allowable radius 
minr  is 

applied. Note that the values of 
max max min min( ) 1, ( ) 0.001n n        and 3p   for the 

penalty parameters are used throughout this section.  

 

• Case Study 1 

The design domain given in Fig. 4.3 is divided into 3 sub domains for the plate-like 

topology optimization. One of 3 sub domains is a sub domain utilized for the connection 

area between 
1  and 

2 , thus remains as the region where the standard topology 

optimization scheme is applied. On the other hand, in case of the standard topology 

optimization as formulated in Eq. (4.1), the whole domain is used as the design domain. 

Information of the finite element analysis is in the following.  

- Finite element model information 

Element type in Abaqus: C3D8 [45] 

Element type in OptiStruct: CHEXA [36] 

Number of Elements: 72,000 

Number of Nodes: 79,821 

Young’s Modulus: 
52.1 10  
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Poisson’s ratio: 0.30 

Density
0 : 97.9 10   

 

Topology optimization parameters are summarized below. The optimized problem for 

case study 1 is formulated as Eq. (4.1) in the standard topology optimization case and Eq. 

(4.4) in the plate-like topology optimization case. 

- Optimization information 

Upper bound of volume constraint *V :  0.10V
0
 

Filter radius
minr : 7.5 (1.5 times of the average element size) 

 

Figure 4.5 shows the distribution of the element density ( 0.2)e   of the standard 

topology optimization results. The result by using OptiStruct is illustrated in Fig. 4.5(a) 

and one by the developed code with Matlab-Abaqus interface is depicted in Fig. 4.5(b). 

The element density contour of the result by the similar process using OptiStruct (with 

extrusion manufacturing constraint [36]) with the plate-like topology optimization is in 

Fig. 4.6(a). Figure 4.6(b) shows the result by the developed code. The density 

distribution agrees reasonably with each other. These results demonstrate the validity of 

the developed in-house code. 
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Fig. 4.4 Case study 1 for plate-like topology optimization in L-shape domain 
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Fig. 4.5 Standard topology optimization results for case study 1 (a) by OptiStruct, and (b) 

by the developed code using Matlab-Abaqus interface. 
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Fig. 4.6 Plate-like topology optimization results for case study 1 (a) by OptiStruct, and (b) 

by the developed code using Matlab-Abaqus interface. 
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• Case Study 2 

The design domain given in Fig. 4.7 is divided into 13 sub domains for the case of plate-

like topology optimization and extract directions are illustrated also. There are two 

directions of extraction, those of 
1 10~   are x  direction and the others y  direction. 

In case of the standard topology optimization, the whole domain is used as the design 

domain. Information of the finite element analysis and parameters on topology 

optimization is summarized in the following. The formulation is the same as Eqs. (4.1) 

and (4.4). 

 

 

 

Fig. 4.7 Case study 2 for plate-like topology optimization in ladder-shape domain 
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- Finite element model information 

Element type in Abaqus: C3D8 

Number of Elements: 22,000 

Number of Nodes: 26,499 

Young’s Modulus: 112.068 10  

Poisson’s ratio: 0.29 

Density
0 : 7820  

- Optimization information 

Upper bound of volume constraint *V : 0.15V
0
 

Filter radius
minr : 0.15 (1.5 times of the average element size) 

 

Figure 4.8 shows the distribution of the element density ( 0.3)e   of the topology 

optimization results. The result of the standard topology optimization case is illustrated 

in Fig. 4.8(a) and one by the plate-like topology optimization is depicted in Fig. 4.8(b). 

Definitely, the result in Fig. 4.8(b) can provide much better convenience to interpret to 

the detailed design process when the result is preferred to be manufactured by the 

welding process. In this example, cross members make little contribution to the bending 

stiffness, therefore they disappeared in both cases shown in Fig. 4.8(a) and 4.8(b). 
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Fig. 4.8 The topology optimization results for case study 2 (a) by the standard method, 

and (b) by the plate-like method. 
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• Case Study 3 

Figure 4.9 shows the example of simplified wheel loader frame structure. The design 

domain is divided into 7 sub domains for the plate-like topology optimization and 

corresponding extract directions are given in Fig. 4.9(a). Two load cases, one is shown in 

Fig. 4.9(a) and the other in Fig. 4.9(b), are defined in this example. Information of the 

finite element analysis and parameters on topology optimization is summarized in the 

following. The formulation is same as Eq. (4.5) and (4.6) for the standard topology 

optimization and plate-like one, respectively. 

 

- Finite element model information 

Element type in Abaqus: C3D8 

Number of Elements: 11,480 

Number of Nodes: 14,441 

Young’s Modulus: 
52.06 10  

Poisson’s ration: 0.29 

Density
0 : 

97.8 10   

- Optimization information 

Upper bound of volume constraint *V : 0.25V
0
 

Lower bound of 1
st
 eigenvalue *( ) 2

1 : 2 (50 )Hz   

Filter radius minr : 75 (1.5 times of the average element size) 
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Fig. 4.9 Case study 3 for a simplified wheel loader frame domain: (a) load case 1 

including illustration of sub domains for the plate-like topology optimization, 

and (b) load case 2 
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Figure 4.10 shows the distribution of the element density ( 0.3)e   of the topology 

optimization results. The result of the standard topology optimization case is illustrated 

in Fig. 4.10(a) and one by the plate-like topology optimization is depicted in Fig. 4.10(b). 

Definitely, the result in Fig. 4.8(b) shows more possibility of interpretation to the welded 

structure design than that of the standard topology optimization. Although there is 

advantage in manufacturing point of view, the value of objective function (compliance) is 

a bit higher in the result of the plate-like topology optimization. Notice that there is a 

trade-off between the manufacturability and the structural performance. The constraint 

functions of volume and 1
st
 eigenvalue become both active, which is, 1

st
 modal frequency 

attained 50 Hz. 

  



 

76 
 

 

 

 

 

Fig. 4.10 Topology optimization results for case study 3 (a) by the standard method, and 

(b) by the plate-like method. 
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4.3 Integrated topology optimization for a frame structure 

 

4.3.1 Implementation of simultaneous optimization of a loading location and 

structural topology 

 

The topology optimization method developed in chapter 3, which is, the simultaneous 

optimization of a loading point and structural topology, is integrated with the plate-like 

topology optimization method described in section 4.2. Overall procedures are basically 

same as described in Fig. 4.3, but some care must be taken due to the special modeling 

technique and formulation of the simultaneous design optimization problem suggested in 

chapter 3. 

 

The loading point connection is proposed to be modeled by 1-dof spring element in 

section 3.2., and the stiffness of the spring element is suggested to be lower than 10% of 

the maximum diagonal term of the continuum element stiffness. This relatively low 

spring stiffness makes the fundamental eigenvalues of the whole system very low 

compared to those of the continuum structure. In this situation, one cannot select the 

exact eignemode to be optimized. To overcome this difficulty, independent ABAQUS 

input deck for the modal analysis is prepared during the optimization. Spring elements 

are removed in independent modal input deck because the eigenmode in continuum 

structure alone is practically important in the optimization process. The spring elements 

are required only for the load connectivity in the static analysis. Due to this additional 

modal input deck, total analysis cost may increase but, we do not suffer from considering 

the coupling eigenmode between continuum structure and spring elements for the load 



 

78 
 

connectivity. This modified procedure is summarized in Fig. 4.11. 

 

Fig. 4.11 Modified procedure for the integrated topology optimization 

 

Thus, proposed integrated topology optimization is formulated as 

  
, ( )

Minimize ln ( ,( ) ) 1 ( ,( ) ) 1
 
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For simplicity, governing equation and side constraints were omitted in Eqs. (4.15) and 

(4.16). 
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4.3.2 Numerical examples 

 

Two case studies for validation of the integrated topology optimization are considered. 

The first is the similar one as in Fig. 3.17, the other is for the simplified wheel loader 

frame example which is treated in Fig. 4.9. From these examples, one can find the 

usefulness of the proposed integrated topology optimization. The values of 

max max min min( ) 1, ( ) 0.001n n        and 3p    for the penalty parameters are used 

throughout these examples.  

 

• Case Study 1 

The structural and load design domains are given in Fig. 4.12, which is the same domains 

discussed in Fig. 3.17 except the element discretization of the structural domain. The 

whole structural domain is divided into 5 sub domains for the plate-like topology 

optimization and the loading location can move to one of 16 candidate loading points on 

top surface. The extract directions of the plate-like topology optimization are all z 

direction. Information of the finite element analysis and parameters on topology 

optimization is summarized in the following.  

 

- Finite element model information 

Element type in Abaqus: C3D8 

Number of Elements: 2,000 

Number of Nodes: 2,542 

Young’s Modulus: 
52.1 10  
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Poisson’s ration: 0.3 

Density
0 : 97.8 10   

Stiffness of the spring element 
0k : 54 10  

- Optimization information 

Upper bound of volume constraint *V : 0.25V
0
 

Lower bound of 1
st
 eigenvalue *( ) 2

1 : 2 (160 )Hz   

Upper bound of explicit penalty function  : 0.7 

Filter radius
minr : 15 (1.5 times of the average element size) 

 

 

Fig. 4.12 Case study 1 for the integrated topology optimization; a horizontally-movable  

load case in Fig. 3.17 
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Figure 4.13 shows the distribution of the element density ( 0.3)e   of the topology 

optimization results. The result of the standard topology optimization case is shown in 

Fig. 4.13 and one by the plate-like topology optimization is depicted in Fig. 4.14. The 

simultaneous optimization of a loading point determination and structural topology is 

clearly achieved in both results and the plate-like topology optimization can be seen in 

Fig 4.14. The result in Fig. 4.14 provides possibility of interpretation to the welded 

structure design than that of the standard topology optimization case in Fig. 4.15. Also, 

the value of objective (compliance) is a little higher in the result of the plate-like 

topology optimization due to the “plate-like” shape constraint.  

 

 

 

Fig. 4.13 Result of the integrated topology optimization for case study 1: standard case in 

(a) front iso view, and (b) rear iso view.. 
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Fig. 4.14 Result of the integrated topology optimization for case study 1: standard case in 

(a) front iso view, and (b) rear iso view. 

 

• Case Study 2 

The problem description given in Fig. 4.15 is similar one discussed in Fig. 4.9. The 

structural design domain, loading condition and finite element modeling information are 

the same with the case in Fig. 4.9, except the external load 
1f , corresponding to cylinder 

force, is connected to 32 candidate loading locations. Because of the symmetry of 

cylinder load, two loading locations should be simultaneously determined with the 

structural topology. Thus, upper bounds of constraint functions in Eq. (4.16) are modified 

to two times of the case in Fig 4.9. Different numbers of sub domains are considered in 

this case. The case shown in Fig. 4.15(a) is 5 sub domains modeling as shown in Fig. 

4.9(a), but Fig. 4.15(b) shows 16 sub domain modeling case. The extract directions of the 

plate-like topology optimization are all x  direction. Information of the topology 
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optimization parameters is summarized in the following.  

 

- Optimization information 

Stiffness of the spring element 
0k :  51 10  

Upper bound of volume constraint *V : 0.25V
0
 

Lower bound of 1
st
 eigenvalue *( ) 2

1 : 2 (50 )Hz   

Upper bound of load sum ( )S μ : 2.0 

Upper bound of explicit penalty function  : 1.4 

Filter radius
minr : 75 (1.5 times of the average element size) 

 

The result in Fig. 4.16(a) shows that optimal loading point is determined at 
14m  position, 

but that in Fig. 4.16(b) represent the loading point determination at 
16m  location. It 

means that the optimal loading location and structural topology depend on sub domain 

numbers in the plate-like topology optimization method. A couple of parameter studies 

may be required for the best selection of the sub domains. It can be also regarded as a 

design option according to the manufacturing strategy or design concept. The structural 

topological layouts in Fig. 4.16(a) are somewhat similar to those depicted in Fig. 4.10(b), 

but the front part of the frame structure is completely different due to the different 

loading location of the cylinder load. Moreover, structural layouts in Fig. 4.16(b) 

demonstrate new design of a wheel loader frame using the proposed method. Therefore, 

from the above examples, it can be successfully shown that simultaneous optimization of 

a loading location and structural topology can provide new design concept with enhanced 
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performance and the plate-like optimization method helps interpret the result of the 

topology optimization to the detailed welded structure more effectively. 

 

 

 

 

Fig. 4.15 Case study 2 for the integrated topology optimization; a simplified wheel 

loader frame design in Fig. 4.9. 
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Fig. 4.16 The result of the integrated topology optimization for case study 2: a simplified 

wheel loader frame case with (a) 7 sub domains, and (b) 16 sub domains. 
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Chapter 5.  

Conclusion 

 

In this work, integrated topology optimization method to cope with two major structural 

design issues for the construction equipment, such as a wheel loader frame, was 

investigated. Simultaneous optimization method of a loading location and structural 

topology for the optimal design of the frame structure hosting an actuator was integrated 

with the so-called plate-like topology optimization to deal with the manufacturing issue 

for the welded structure. The effectiveness and usefulness of the proposed method was 

demonstrated with the design problem of simplified wheel loader frame motivated from 

an actual engineering practice. The summary of details is presented in the following. 

 

First, a method to find simultaneously the optimal structural topological layout and the 

loading location for a load of a given magnitude and direction was newly developed. 

Unlike previous studies focused on movable loads along a designated path line, the 

proposed method considered an applied load possibly moving around in the designated 

design domain. The key idea in the proposed approach was to conceptually decouple the 

loading design domain and the structural design domain. The former was used to 

determine the loading location by varying the stiffness of the spring elements connecting 

the applied load and a target node in the design domain and the latter, to determine the 

optimal structural topological layouts by varying the element density of the structural 

design domain. 



 

87 
 

In the proposed approach, the applied load and the candidate loading nodes were 

assumed to be connected through spring elements the stiffness of which is interpolated 

by the topological design variable. Because the applied load can move virtually to any 

nodes in the load design domain, the simple-minded direct connection of the load to the 

candidate loading node will produce additional unwanted resultants such as a moment. It 

was shown that if the connecting stiffness has the non-vanishing component only in the 

direction parallel to the direction of applied load so that only the displacement 

components in the direction at the candidate nodes are allowed to exist, the applied load 

can be correctly transferred to the desired node of the structural domain. Also the 

functional form of the objective function, which is given by the product of the 

compliance of the connecting springs and that of the structural layouts, was carefully 

selected; the selected logarithm function adaptively balanced the sensitivities of the two 

dissimilar compliances. Several case studies in two-dimensional domain were tested with 

various movable load conditions - the applied vertical load can move vertically, 

horizontally or arbitrarily within a designated domain. As a specific problem, the design 

of a simplified wheel loader frame and the determination of the actuator location in the 

frame, which is a new problem motivated directly from industrial applications, were 

made simultaneously and the optimized result was found to be consistent with the 

optimized one obtained by an extensive search with varying possible loading locations. 

Extension of the developed method to the case studies in the three-dimensional design 

domain was then verified. Although the developed simultaneous optimization was based 

on the gradient-based method which cannot guarantee the global optimum solution and 

had some tuning parameters, possibilities to the practical application were validated by 
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the above mentioned case studies. 

 

Thereafter, topology optimization considering weld manufacturability was achieved with 

the extraction of plate-like topological layouts, generated by projecting the design 

variables in the structural domain to the pre-determined plane of the sub domains in the 

domain, to the given directions. In the method, mesh-independent nodal design variables 

were used. The results of the design examples showed practically more effective material 

layouts to be interpreted to the welded structure than those of the standard topology 

optimization in spite of a trade-off between manufacturability and structural performance. 

Moreover, computational cost of the plate-like topology optimization could be somewhat 

lower because the number of design variables was reduced due to the projection method 

on the plane of sub domains. 

 

Finally, the simultaneous optimization method of a loading location and structural 

topology was put together with the plate-like topology optimization method. The 

developed topology optimization methods were implemented using the interface between 

Matlab and Abaqus for the effective application to the practical large-scale problem, such 

as the structural design of a construction equipment frame. The usefulness of the 

integrated topology optimization code was validated by a couple of design examples one 

of which was the problem of a simplified wheel loader frame. The structural layouts of 

the optimized result showed the possibilities of the new frame design that can be 

interpreted to the welded structure, which could not be efficiently expected otherwise. 

From the success in this kind of problem, the proposed integrated topology optimization 
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method could pave the way for practical engineering applications. This work can also be 

utilized to the concept design of a welded structure hosting an actuator as well as of a 

construction equipment frame. 
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Appendix A.  

Numerical studies in the simultaneous optimization of a loading 

location and structural topology 

 

A.1. Parameter study for the spring stiffness and the explicit penalty 

constraint 
 

There are two tuning parameters in the simultaneous optimization formulation for a 

loading location and structural topology. They are nominal spring stiffness 0k  in Eq. 

(3.1) and the upper bound   of the explicit penalty constraint function in Eq. (3.12). 

The results from wide range of parameter studies for the proper selection of these tuning 

parameters are summarized in Figs. A.1~A.4., indicating successful optimization the blue 

colored combination. Red colored combinations mean bad results of optimization. The 

parameter studies are performed for the case studies described in section 3.4. Without 

loss of generality, the value of 0k  is scaled with the maximum value of the diagonal 

stiffness sk  in the continuum element. The suggested values of these parameters are in 

the following: 

- The upper bound   is dependent to the problem definition. But, the value of 

0.3 or 0.8 yields satisfactory results generally. 

- The value of 0k  ranges between 1 to 10
-4

 times smaller than the diagonal 

stiffness of the continuum element yields satisfactory results always if   is 

properly chosen, but the value lower than 0.1 sk  is suggested because the spring 

element can perturb the stiffness in the continuum domain otherwise.  
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Fig. A.1 Parameter study results of the tuning parameters, 0k  and  , for the example in 

Fig. 3.4 

 

 

Fig. A.2 Parameter study results of the tuning parameters, 0k  and  , for the example in 

Fig. 3.6 
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Fig. A.3 Parameter study results of the tuning parameters, 0k  and  , for the example in 

Fig. 3.8 

 

 

 

Fig. A.4 Parameter study results of the tuning parameters, 0k  and  , for the example in 

Fig. 3.10 
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A.2. Standard topology optimization results under pre-determined loading 

for the 2D wheel loader case in Fig. 3.10 
 

All of the results investigated by the standard topology optimization for the pre-

determined load applied at every candidate loading locations are summarized in Fig. A.5 

~A.6. The entire results have 16 topology optimization sets and the efficiency of the 

proposed simultaneous optimization can be calculated directly from the sum of cost of 

the entire pre-determined loading cases. 

- Sum of the cost for all of pre-determined loading: 13,583 sec 

- Simultaneous optimization of a loading point and structural topology: 1,650 sec 

  



 

94 
 

 

 

Fig. A.5 Standard topology optimization results under pre-determined loading for the 2D 

wheel loader case in Fig. 3.10: m
1
~ m

8
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Fig. A.6 Standard topology optimization results under pre-determined loading for the 2D 

wheel loader case in Fig. 3.10: m
9
~ m1 
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Appendix B.  

Case studies of the simultaneous optimization of multiple loading 

locations and structural topology 

 

Case studies for the multiple loading determination problems will be demonstrated in this 

section. Two kind of typical example are as follows. 

 

B.1. Two optimal loading locations under symmetric condition 

 

The problem depicted in Fig. B.1(a) is the same structural design domain with extended 

loading domain. The loading domain is composed of 189 possible loading points inside 

the structural design domain. The applied load is acting vertically. Informations of finite 

element modeling, material properties and optimization parameters are listed below. 

- The bottom side ends are simply supported.  

- The structural domain: 9696 4-node plane stress elements. Thickness=10 mm. 

- Young’s modulus 0 210E  GPa and Poisson’s ratio  =0.3. 

- Candidate loading points are horizontally equally spaced from the 33
th

 node to 

the 65
th

 node to the positive x-direction so as to be totally 9 candidate points in 

the x-direction. 

- Candidate loading points are vertically equally spaced from y=0 to y=1000 to 

the positive y-direction so as to be totally 21 candidate points in the y-direction. 

- The nominal value of 0k  is 10
-1

 times smaller than the diagonal stiffness of the 
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continuum element. 

- The constraint are 
*V  10% and ( ) 1S μ  

- Density filter with filter radius, rmin=2. 

- Initial values of all design variables are set to be *

i V   and 1/i lN  .  

- The upper bound value of 0.7  . This value should be selected to be feasible if 

load design variables converges to the value, 0.5i   and 0.5j  ,( )i j . 

Figure B.1(b) shows the optimization results. Note that 6 0.5   and 110 0.5  . The 

structural compliance in the structural domain is much lower than the value in Fig. 3.4(b) 

(2.361 vs. 3.299). This is evident because distributed load is more favorable for the 

structural compliance.  

 

 

Fig. B.1 Two optimal loading points under symmetric loading condition: (a) Design 

domain with prescribed load/boundary conditions, (b) the result by the proposed 

simultaneous optimization method. 
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B.2. Two optimal loading locations determination problem 

 

The problem depicted in Fig. B.2(a) is the design domains for the two optimal loading 

locations determination. In the symmetric model or simple loading model, the optimal 

loading points tend to be split into outside locations; therefore, special design domain is 

as devised as the optimal loading points to be split. The loading domain is composed of 

26 possible loading points on the top line of the structural design domain. The applied 

load is acting vertically. Informations of finite element modeling, material properties and 

optimization parameters are listed below. Data are the same as the case study B.1, unless 

otherwise specified. 

- The structural domain: 10050 4-node plane stress elements.  

- Candidate loading points are horizontally equally spaced from x=0 to x=2000 

on the top line (y=1000) to the positive x-direction so as to be totally 26 

candidate points in the x-direction. 

- Non-design domain: X1=(0, 500), X2=(700, 900), X3=(1200, 500), X4=(1600, 

900) 

- Candidate loading points are vertically equally spaced from y=0 to y=1000 to 

the positive y-direction so as to be totally 21 candidate points in the y-direction. 

- The constraint are 
*V  30% and ( ) 2S μ  

- Density filter with filter radius, rmin=1.3. 

- The upper bound value of 0.6  . This value should be relaxed because two 

loading points are to be determined. 
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Figure B.2(b) shows the optimization results. Note that 
15 1.0   and 

24 1.0  . Note that 

while the load design variables are equally converged to 1.0, the loads transmitted by the 

load design variable are different due to the support condition. The load transmitted by 

the 
15  is about 374 and 

24 , 626. 

 

 

Fig. B.2 Two optimal loading points under two applied load: (a) Design domain with 

prescribed load/boundary conditions, (b) the result by the proposed 

simultaneous optimization method. 



 

100 
 

References 

 

[1] Bendsøe, M.P., Optimal shape design as a material distribution problem.  Structural 

Optimization, 1989. 1(4): p. 193-202. 

 

[2] Bendsøe, M.P. and N. Kikuchi, Generating optimal topologies in structural design 

using a homogenization method. Computer Methods in Applied Mechanics and 

Engineering, 1988. 71(2): p. 197-224. 

 

[3] Zhou, M. and G.I.N. Rozvany, The COC algorithm, Part II: topological, geometrical 

and generalized shape optimization. Computer Methods in Applied Mechanics and 

Engineering, 1991. 89(1): p. 309-336. 

 

[4] Bendsøe, M.P. and O. Sigmund, Topology optimization: theory, methods and 

applications. 2003: Springer, Berlin. 

 

[5] Cavazzuti, M., et al., High performance automotive chassis design: a topology 

optimization based approach. Structural and Multidisciplinary Optimization, 2011. 44(1): 

p. 45-56. 

 

[6] Deaton, J.D. and R.V. Grandhi, A survey of structural and multidisciplinary 

continuum topology optimization: post 2000. Structural and Multidisciplinary 

Optimization, 2013. 49(1): p. 1-38. 



 

101 
 

[7] Du, J. and N. Olhoff, Topological design of freely vibrating continuum structures for 

maximum values of simple and multiple eigenfrequencies and frequency gaps.  Structural 

and Multidisciplinary Optimization, 2007. 34(2): p. 91-110. 

 

[8] Forcier, L.C. and S. Joncas, Development of a structural optimization strategy for the 

design of next generation large thermoplastic wind turbine blades.  Structural and 

Multidisciplinary Optimization, 2012. 45(6): p. 889-906. 

 

[9] Jang, G.W., M.S. Yoon, and J.H. Park, Lightweight flatbed trailer design by using 

topology and thickness optimization. Structural and Multidisciplinary Optimization, 2010. 

41(2): p. 295-307. 

 

[10] Kim, S.I. and Y.Y. Kim, Topology optimization of planar linkage mechanisms. 

International Journal for Numerical Methods in Engineering, 2014. 98(4): p. 265-286. 

 

[11] Kim, W., Y.H. Song, and J.E. Kim, Topology optimization of actuator arms in hard 

disk drives for reducing bending resonance-induced off-tracks. Structural and 

Multidisciplinary Optimization, 2012. 46(6): p. 907-912. 

 

[12] Krog, L., et al. Topology optimization of aircraft wing box ribs. in 10th 

AIAA/ISSMO MAO conference. 2004. Albany. 

 

[13] Pedersen, N.L., Maximization of eigenvalues using topology optimization. Structural 



 

102 
 

and Multidisciplinary Optimization, 2000. 20(1): p. 2-11. 

 

[14] Remouchamps, A., et al., Application of a bi-level scheme including topology 

optimization to the design of an aircraft pylon. Structural and Multidisciplinary 

Optimization, 2011. 44(6): p. 739-750. 

 

[15] Rietz, A., Weld optimization with stress constraints and thermal load. Structural and 

Multidisciplinary Optimization, 2012. 46(5): p. 755-760. 

 

[16] Rozvany, G.I.N., Aims, scope, methods, history and unified terminology of 

computer-aided topology optimization in structural mechanics. Structural and 

Multidisciplinary Optimization, 2001. 21(2): p. 90-108. 

 

[17] Sigmund, O., On the design of compliant mechanisms using topology optimization. 

Journal of Structural Mechanics, 1997. 25(4): p. 493-524. 

 

[18] Sigmund, O. and K. Maute, Topology optimization approaches. Structural and 

Multidisciplinary Optimization, 2013. 48(6): p. 1031-1055. 

 

[19] Stromberg, L.L., et al., Application of layout and topology optimization using 

pattern gradation for the conceptual design of buildings. Structural and Multidisciplinary 

Optimization, 2010. 43(2): p. 165-180. 

 



 

103 
 

[20] Xiao, D., et al., Application of topology optimization to design an electric bicycle 

main frame. Structural and Multidisciplinary Optimization, 2012. 46(6): p. 913-929. 

 

[21] Yoon, G.H. and Y.Y. Kim, Element connectivity parameterization for topology 

optimization of geometrically nonlinear structures. International Journal of Solids and 

Structures, 2005. 42(7): p. 1983-2009. 

 

[22] Zhu, J.H., et al., Structural topology optimization with constraints on multi-fastener 

joint loads. Structural and Multidisciplinary Optimization, 2014. 50(4): p. 561-571. 

 

[23] Zhu, J.H., W.H. Zhang, and L. Xia, Topology Optimization in Aircraft and 

Aerospace Structures Design. Archives of Computational Methods in Engineering, 2015. 

 

[24] Buhl, T., Simultaneous topology optimization of structure and supports. Structural 

and Multidisciplinary Optimization, 2002. 23(5): p. 336-346. 

 

[25] Jang, G.W., H.S. Shim, and Y.Y. Kim, Optimization of support locations of beam 

and plate structures under self-weight by using a sprung structure model. Journal of 

Mechanical Design, 2009. 131(2): p. 021005. 

 

[26] Fuchs, M.B. and E. Moses, Optimal structural topologies with transmissible loads. 

Structural and Multidisciplinary Optimization, 2000. 19(4): p. 263-273. 

 



 

104 
 

[27] Chiandussi, G., M. Codegone, and S. Ferrero, Topology optimization with optimality 

criteria and transmissible loads. Computers & Mathematics with Applications, 2009. 

57(5): p. 772-788. 

 

[28] Yang, X.Y., Y.M. Xie, and G.P. Steven, Evolutionary methods for topology 

optimisation of continuous structures with design dependent loads. Computers & 

Structures, 2005. 83(12-13): p. 956-963. 

 

[29] Rozvany, G.I.N. and W. Prager, A new class of structural optimization problems: 

optimal archgrids. Computer Methods in Applied Mechanics and Engineering, 1979. 

19(1): p. 127-150. 

 

[30] Rozvany, G.I.N. and C.M. Wang, On plane Prager-structures—I. International 

Journal of Mechanical Sciences, 1983. 25(7): p. 519-527. 

 

[31] Zhang, W.H., et al., Structural topology optimization: Extensibility and attainability. 

Science China Technological Sciences, 2014. 57(7): p. 1310-1321. 

 

[32] Harzheim, L. and G. Graf, Topshape: an attempt to create design proposals 

including manufacturing constraints. International Journal of Vehicle Design, 2002. 

28(4): p. 389-409. 

 

[33] Leiva, J.P. A Topology Optimization Method to Extract Optimal Beam-Like, Plate-



 

105 
 

Like, or Shell-Like Structures from a Solid Finite Element Mesh . in 3rd International 

Conference on Engineering Optimization. 2012. Rio de Janeiro, Brazil. 

 

[34] Leiva, J.P., B.C. Watson, and I. Kosaka. An analytical bi-directional growth 

parameterization to obtain optimal castable topology designs. in 10th AIAA/ISSMO 

symposium on multidisciplinary analysis and optimization. 2004. Albany, NY. 

 

[35] Zhou, M., et al. Progress in topology optimization with manufacturing constraints. 

in Proceedings of the 9th AIAA MDO conference AIAA-2002-4901. 2002. Atalanta, 

Georgia. 

 

[36] Altair OptiStruct, Optistruct 11 User’s manual. Altair Engineering Inc., Troy, MI, 

www.altair.com 

 

[37] Komatsu, Wheel Loader Catalog WA320-5. 2008, Japan. 

 

[38] Volvo Construction Equipment, Wheel Loader Catalog L250G. 2010, Seoul, Korea. 

 

[39] Kim, T.S. and Y.Y. Kim, Multiobjective topology optimization of a beam under 

torsion and distortion. AIAA journal, 2002. 40(2): p. 376-381. 

 

[40] Choi, K.K. and N.H. Kim, Structural sensitivity analysis and optimization: linear 

systems. Vol. 1. 2004: Springer, New York. 



 

106 
 

 

[41] Svanberg, K., The method of moving asymptotes—a new method for structural 

optimization. International Journal for Numerical Methods in Engineering, 1987. 24(2): p. 

359-373. 

 

[42] Bruns, T. and D.A. Tortorelli, Topology optimization of non-linear elastic structures 

and compliant mechanisms. Computer Methods in Applied Mechanics and Engineering, 

2001. 190(26): p. 3443-3459. 

 

[43] Guest, J.K., J.H. Prévost, and T. Belytschko, Achieving minimum length scale in 

topology optimization using nodal design variables and projection functions. 

International Journal for Numerical Methods in Engineering, 2004. 61(2): p. 238-254. 

 

[44] Sigmund, O. and J. Petersson, Numerical instabilities in topology optimization: a 

survey on procedures dealing with checkerboards, mesh-dependencies and local minima. 

Structural Optimization, 1998. 16(1): p. 68-75. 

 

[45] Dassault Systèmes Simulia. ABAQUS 6.12 Documentation, Providence, Rhode 

Island, USA, 2012. 

 

[46] Tcherniak, D., Topology optimization of resonating structures using SIMP method. 

International Journal for Numerical Methods in Engineering, 2002. 54(11): p. 1605-1622. 



 

107 
 

Abstract (Korean) 

건설기계 프레임의 통합 위상 최적화 

 

곽 성 규 

서울대학교 대학원 

기계항공공학부 

 

본 논문은 건설기계 프레임 설계 시에 적용할 수 있는 통합 위상 최적화 방

법론 개발을 목적으로 한다. 건설기계 프레임의 위상 최적화와 관련하여 두 

가지 주요 설계 이슈가 있으며, 이 중 한 가지는 액츄에이터(actuator)의 레이

아웃(layout)과 프레임의 구조 위상을 동시에 최적화하는 것이고, 나머지 한 

가지는 위상 최적화 결과의 제작 가능성을 확보하기 위한 방법에 대한 것이

다. 휠로더(wheel loader)에서의 조향 실린더와 같이, 건설기계에 내장된 액츄에

이터는 프레임에 외력을 전달하게 된다. 이 때, 액츄에이터의 위치가 프레임 

구조물에서 하중 점으로 작용하기 때문에, 그 위치에 따라 프레임의 구조 최

적화 결과가 크게 영향을 받을 수 있다. 또한, 액츄에이터의 배치가 아직 결

정되지 않은 프레임의 초기 개념설계 단계에서는, 액츄에이터의 위치가 지정

된 설계영역 내부에서 자유롭게 이동할 수 있다. 따라서, 하중의 위치와 구조 

위상에 대한 동시 최적화가 필요하며, 본 연구에서는 이를 위한 방법론을 제
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안한다. 하중의 위치와 구조 위상의 동시 최적화에 대한 소수의 관련 연구가 

있지만, 하중 점이 주어진 선 또는 경계를 따라 이동할 수 있는 경우로만 제

한되어 있는 실정이다. 한편, 위상 최적화를 통해 최적화된 레이아웃을 결정

한다 하더라도 일반적으로 위상 최적화에 의한 결과는 그 형태가 용접으로 

제작하기에 적절하지 않기 때문에, 최적화된 구조를 실제로 용접에 의해 제작

할 수 있는지가 주요한 기술 적용의 장애물이 된다. 이런 문제를 해결하기 위

하여 판재 형태의 위상 최적화(plate-like topology optimization) 기법, 즉, 특정 

평면으로 투영(projection)한 절점 설계변수(nodal design variable)의 위상을 사전

에 정해진 방향으로 추출(extraction)하는 방법을 제안한다. 이러한 접근 방법

으로 용접 구조물과 유사한 형태의 위상 최적화 결과를 기대할 수 있다. 

  

하중 점의 위치와 구조 위상의 동시 최적화 및 용접 제작 가능성을 고려한 

위상 최적화 기법을 개발하고, Matlab과 Abaqus를 이용하여 통합한다. 다양한 

예제를 통하여 제안한 방법론을 검증한 후, 휠로더 프레임의 최적 설계 문제

를 통하여 실제 산업계의 공학 문제로의 적용 가능성을 확인한다. 

 

 

 

 

주제어 : 위상  최적화, 동시  최적화, 이동  하중 , 강성  설계 , 용접  제작성 제한조건 
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