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Abstract

Integrated Topology Optimization

for Construction Equipment Frame

Sung Kyu Kwak

Department of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

The research in this dissertation aims to develop an integrated structural topology
optimization method applicable to the design of a construction equipment frame. There
are two major design issues existing in the industry; one is the simultaneous design of an
actuator layout and structural topology of the frame and the other, to consider the
manufacturing aspect of the topology optimization result. The embedded actuators in the
construction equipment, such as steering cylinders in a wheel loader, transmit external
forces to the frame. Because the location of an actuator acts as a loading point in the
structure, the optimized structure can be significantly affected by the loading location.
Moreover, when the actuator layout is not yet determined at the early concept stage of the
frame design, the location of the actuator is allowed to move in a designated design
domain. This motivates simultaneous optimization of a loading point and structural
topology and this study presents a method to achieve this goal. There have been a few

related efforts about the simultaneous optimization of a loading point and structural



topology, but the loading point is limited only along a given line or boundary. Even if an
optimized layout is found through topology optimization, the actual manufacturing of an
optimal structure by welding is a major obstacle because the welding path by the
optimization is unrealistic. To overcome this difficulty, we propose a so-called plate- like
topology optimization, which extracts the topological layouts of nodal design variables
projected on the specified plane along the pre-determined direction. This approach makes

the topologically optimized results amenable to the welded structure.

The simultaneous optimization method of a loading point and structural topology and the
method to consider the weld manufacturability are implemented by using Matlab and
Abaqus. After verification examples are considered, the optimal design of a wheel loader
frame is dealt with in order to show the practicality of the proposed method in industrial

engineering problems.

Keywords: Topology optimization, Simultaneous optimization, Movable load,
Stiffness design, Weld manufacturing constraint

Student Number: 2011-31289
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Chapter 1.

Introduction

Topology optimization [1-3] is a well-established and innovative design methodology
successfully applied in various areas of industry. The concept of topology optimization is
recognized as structural layout optimization to find such an optimized material
distribution in the design domain to maximize the performance function (e.g. structural
stiffness) with satisfying constraints such as specified volume and modal frequency.
Although important achievements continue to motivate further studies about the
applications of topology optimization and its capabilities in solving complex engineering
design problems [4-23], but unfortunately there are little works reported in the design of
construction equipment frame. Recently, the regulation of greenhouse gas emission and
efforts for reduction of the total cost ownership require fundamental re-design of the
frame structure. Weight reduction maintaining the structural performance becomes an
important topic in this situation, and thus, topology optimization as an innovative design

methodology gets much attention than ever before.

There are some issues in the application of the topology optimization to the construction
equipment industry. Figure 1.1 shows a typical wheel loader, one of widely used
construction equipment, and the frame of a wheel loader. Generally, construction
equipment has actuators for the operation of desired work, and therefore, the load

transmitted from them configures fundamental load cases of the frame. In this situation,

1



the location of actuators can change the structural topological layouts considerably. If
there is a freedom in the early conceptual design stage to modify the actuator layout for
the structural performance, we should consider the determination of the structural layout
and the actuator layout at the same time. This first issue requires the simultaneous
optimization method for the structural design and actuator layout. Another issue is about
manufacturing aspect because the frame of construction equipment is mainly composed
of relatively thin plates. It is usually fabricated by the seam-weld process which is
difficult to effectively derive the detailed shape design from the result of the topology
optimization, which is a truss structure typically. In this study, topology optimization
method considering above mentioned issues is investigated for the application to the

design of the construction equipment frame.

Fig. 1.1 lllustration of a wheel loader

In the standard structural topology optimization, it is common to find out the optimal
material layout with all loading conditions, such as the magnitude, direction and location

of an applied load, specified [2, 4, 6, 16, 18]. This kind of formulation has been widely
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accepted in various applications. But, the simultaneous optimization of the actuator
position and structural topology corresponds to the determination of the loading location
in standard structural optimization problem because actuators transmit the load the frame
structure. As the actuator layout changes, the specific loading location in the frame can
be considered to move. Therefore, we propose to relax the topology optimization

problem by allowing the applied load to move in the design domain.

There were some earlier works related to the present subject. Simultaneous design of
boundary and structural topology [24] was developed by adding spring element to the
possible points for the boundary in continuum domain. Support location design problem
in the topology optimization framework [25] was considered to determine the discrete
optimal support location to maximize structural compliance. For the simultaneous design
of the loading condition and structure, Fuchs and Moses [26] first suggested a topology
optimization by the SIMP (Solid Isotropic Material with Penalization) method to
minimize the structural compliance with a load that is allowed to move along the loading
direction. Alternative or extended methods were also investigated using ESO
(Evolutionary Structural Optimization) method [27, 28]. In these works, the notion of a
transmissible load was introduced to define a load of a given magnitude and direction
which can move along its line of action [29, 30]. Most recently, Zhang et al. [31]
considered movable cases by allowing the loading location to move along any specific
loading line including a boundary line of the design domain. While the aforementioned
researches were apparently concerned with the simultaneous optimization of a structural

topology and loading location moving in the line, no work has been reported to deal with
3



the case where the loading location can freely move to any location within a design
domain. The simultaneous optimization problem considered in this study, as
schematically illustrated in Fig. 1.2, is to determine a loading location and structural
topological layout for compliance minimization under a general movable load condition;
while the magnitude and direction of an applied load is fixed, the location of an applied
load is allowed to move anywhere, actually any node, inside the discretized design
domain or along its domain boundary. To be able to solve this type of problems, a new

method will be developed and tested in this study.

Candidate loading points

Prix

candidate loading point . —
(anywhere in 2D or 3D domain) Connectivity design

Fig. 1.2 Schematic illustration of the proposed simultaneous optimization

There have been several efforts [32-35] for the manufacturing constraint, such as casting,
extrusion and draw direction, in the topology optimization. Among them, topology
optimization method suggested by Leiva [33] has the similar characteristics applicable to
the welded structure. While the method is originally for the casting constraint in the
topology optimization, it can generate plate-like structure rather efficiently which is
necessary for the welded structure. From this point, modifications and extensions of the

plate-like topology optimization method are implemented in this study.



For the specific optimization problem motivated by the actual engineering practice,
structural design of the construction equipment frame, large size of problem should be
treated efficiently. Thus, the developed optimization method should be implemented with
the commercial finite element analysis software, e.g. Abaqus. In this work, in-house
topology optimization code using the Matlab - Abaqus interface is developed and tested
for the design of a wheel loader frame. A simplified design example of a wheel loader
frame hosting a steering actuator is actually solved here, which will clearly demonstrate

the usefulness of the present investigation.

In chapter 2, standard topology optimization problem for a typical wheel loader frame is
formulated and numerical studies are conducted using the commercial optimization
software OptiStruct. The design issues in the application of the standard topology
optimization are discussed. Feasibility study for the proposed simultaneous optimization

is checked in the wheel loader frame model.

Chapter 3 is mainly dedicated to the proposition of new topology optimization method of
simultaneous determination of an actuator position and structural topological layouts.
Specific modeling technique for the correct load transfer in the movable loading location
design problem is described. Moreover, formulation for the simultaneous optimization is
proposed. The developed optimization method is verified and validated with several
benchmark problems. A design example of simplified wheel loader frame in two-
dimensional domain is demonstrated to show the possibility to the engineering practices.

Examples in three-dimensional domain are then followed.

5



In chapter 4, topology optimization method considering weld manufacturability is
developed with the use of the Matlab — Abaqus interface. Thereafter, integrated with the
simultaneous optimization method developed in chapter 3, design examples of the
simultaneous optimization of an loading location and structural topology considering
weld manufacturability are demonstrated. One of the examples is a simplified structural
design of actual wheel loader frame. The usefulness of the proposed optimization method

will be revealed in this chapter.

Finally, conclusion of the thesis is made in chapter 5.



Chapter 2.

Standard topology optimization and designissues

2.1 Chapter overview

In this chapter, standard topology optimization of a wheel loader frame is studied and
related issues in the application to the construction equipment frame will be discussed. A
wheel loader frame, as shown in Fig. 2.1, is fabricated by conventional welding process;
the results from standard topology optimization should be interpreted to the detailed
welded structure by the design engineer. Possibilities of standard topology optimization
to the practical design of frame structure should be checked in the view point of the
manufacturability. In the next section, standard topology optimization problem for the
wheel loader frame to enhance the performance of the structure will be examined and

discussed.

Moreover, similar design issues of wheel loader frames can be found through comparison
with several typical frames. They are actuator (steering cylinder) layout design and
section shape of the side member in the frame structure. The actuator layout corresponds
to the loading location in the design domain as mentioned in the previous chapter. The
latter issue is related to the manufacturing aspect because the section shape of side
member in frame structure should be so determined as to be fabricated with the welding

process.



The issue of manufacturability is obvious, but impact of the actuator layout on the
structural topology of the frame should be checked previously. Before detailed
description on the simultaneous optimization of a actuator layout and structural topology,

feasibility study on the layout design of the frame structure will be made in this chapter.

Fig. 2.1 lllustration of a typical wheel loader frame
2.2 Finite element model setup of a wheel loader frame

Figure 2.2 shows the finite element model of a typical wheel loader rear frame. For the
purpose of topology optimization, design domain is filled with continuum elements in
order to assign as much freedom as possible to the optimization algorithm. There are
several main components mounted on the frame; cabin, hydraulic tank, fuel tank, axle,
engine, transmission, and counter weight. They are connected via rigid elements in Fig.

2.2. Specific value of the mass and inertia of these components cannot be listed due to
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the security reason of the manufacturing company. The typical load cases for the static
analysis, which comes from the major deflection mode of the frame, is shown in Fig. 2.3.
Numerical values of the load cases are not detailed also. Works loads are transmitted to
the pin joints in the front part of the frame and steering cylinder forces, to the brackets in
the both side of the front part. Fatigue strength is not considered in this study, because the
object of this study is to maximize the structural stiffness. It is more general to consider

the fatigue resistance in size/shape optimization stage [5].

[ Design domain
B Non-Design domain

Fig. 2.2 Finite element model of a wheel load frame

Design domain of the topology optimization corresponds to the orange-colored region
and non-design domain is red-colored in the finite element model in Fig. 2.2. Room for
engine and transmission is removed from the design domain. Note that layouts of the
main components including steering cylinders are maintained during the optimization
process because they are not the scope of this study. The finite element mode| setup has

been made using Altair HyperMesh 12, and Altair OptiStruct 12, is utilized for the

9
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topology optimization. The whole domain is composed of 80,120 CHEXA elements [36]

and 93,320 nodes and material properties are given below.

- Young’s Modulus: 2.1x10°

- Poisson’s ration: 0.3

- Density:7.8x10°°

Load case 1. out-of-plane bending% Load case 2. torsion

Load case 3. lateral bending I Load case 4. local mode
Load casé.S. Iéteral benbdirngbllr Loéd caée 6. Iextehsioﬁ |

- o

Fig. 2.3 Summary of static load conditions
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2.3 Standard topology optimization of a wheel loader frame

2.3.1 Topology optimization formulation

Topology optimization is carried out using the finite element model depicted in Fig. 2.2.
In this work, the SIMP (Solid Isotropic Material with Penalization) method [1-4] is
employed throughout the study. The scope of the topology optimization is to find the
optimum material distribution in a structure. To achieve this, the relative element-based
material density which is allowed to vary continuously during the optimization process is

introduced as the design variables in the SIMP method as
Ej(pj)=pjpEO (i=12,...N,), (2.1)
where p; (o, <p;<1) is the density design variable of the j-th continuum element,

E, is the nominal value of E when p;=1 and p is the penalty factor.

In the topology optimization with Optistruct, specific parameters setup is listed in the
following. Other parameter values are remained as OptiStruct default [36] throughout
this chapter.

- SIMP penalty parameter: 3

- Minimum member size control: three times of the average element size

- Symmetry constraint in the x-direction

The structural topology optimization with modal frequency constraints can be formulated

n



using two kinds of optimization problems: one is to minimize the combined compliance
index [36] with the constraint functions of volume fraction and 1** eigenfrequency. The
combined compliance index means the scalar sum of static compliances and reciprocal
eigenvalues as in Egs. (2.2) and (2.3). The other is to minimize the sum of static
compliances with constraints of volume fraction and 1% ~ 3" eigenfrequncies as in Egs.

(2.4) and (2.5):

e . 1 6 T 3 1
Minimize EZi:lfi u; +NORMZJ=1/1— (2.2)

eRNe .
P j

Ne
subjectto D' pV, 1V, <1
j=1 )

(2.3)
f>f
or
Minimize 126 fTu (2.4)
peRMe 2 i=1 1 7
NE
subject to pV IV <1
JZ=1: o (2.5)

f,>f (i=1273)

In the above equation, A, is the j—theigenvalue, V" denotes volume constraint, f;

represents the lower bound of j —th eigenfrequency constraint, and NORM is a scaling
factor to calibrate the numerical order between compliance and reciprocal eigenvalue

calculated at initial iteration. The value of f; is the same as those of the current frame.

12



2.3.2 Numerical results and discussion

The topology optimization results by Egs. (2.2)~(2.5) are shown in Fig. 2.3, where

design variables above p; =0.3 are displayed. Modal frequencies in the case of

minimizing combined compliance index as shown in Fig. 2.3(a) are higher than those in
Fig. 2.3(b). This is due to the objective function as combined compliance index in which

it is included to maximize the fundamental eigenfrequencies.

Notice that the truss structures, typical results of the standard topology optimization, are
appeared. These kind of topological layouts are hardly possible to interpret to the welded
structures which are mainly composed of relatively thin plates. One can get some
information where to reinforce or not from the results in Fig. 2.4, but that’s not sufficient
because we cannot decide where to start the specific plate section and where to end.
Moreover, it is impossible to realize X-shape cross member by means of the welding.
Thus, weld manufacturability is the critical issue in the topology optimization for the

construction equipment frame.

It is worth to discuss another issue in the topology optimization results illustrated in Fig.
2.5, which represent the steering cylinder dependent structure. In a wheel loader, steering
mechanism is operated using embedded hydraulic cylinders which transmit the steering

forces to the frame.
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Fig. 2.4 Standard topology optimization results of a wheel loader frame (a) minimizing
combined compliance index, and (b) minimizing compliance with modal
frequency constraints.
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In the structural point of view, the location of the steering cylinder acts as a loading point
to the frame and that is why the load path is generated along the steering cylinder
mounting bracket. From this result, there can be chances to optimize the cylinder location.
In fact, there is some freedom in the early conceptual design stage to adjust the actuator
layout for the structural performance or the manufacturing cost. The location of the
actuator can be determined clearly in the simple structure. But, as complex as the
structure becomes, the location of the cylinder may not be determined by the engineering
intuition. Therefore, systematic design process for the determination of topological

layout of the frame structure and actuator mounting location is important.

Fig. 2.5 Steering cylinder dependent structure of a wheel loader frame in side view (a)
for the case of Fig. 2.4(a), and for the case of Fig. 2.4(b).
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2.4 Designissues and feasibility study

2.4.1 Designissues related to topology optimization for a wheel loader frame

Figure 2.6 shows the structural design of two different types of wheel loader frames.
From the design benchmarking, one can also find the major design issues for the wheel

loader frame as following:

e« How can determine the location of steering cylinder and layouts of

frame structure simultaneously?

« What is the optimal section design of the side member?

The first question corresponds to the simultaneous design of the loading point and
structural topology, while the second one is about manufacturing aspect in the topology
optimization. Until now, there has been little works about the former issue; a feasibility

study is followed in the following section.
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Fig. 2.6 Design of different types of wheel loader frames (a) for the case of front steering
cylinder and plate-type side member [37], and (b) for the case of side inner

steering cylinder and box-type side member [38].
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2.4.2 Feasibility study of structural topology optimization considering

loading location

Figure 2.7 demonstrate the results of the topology optimization of a wheel loader frame
when the location of the steering cylinder bracket is modified to move 600mm backward
(—y direction) compared to the finite element model in the Fig. 2.2. Optimization setup
and parameters are the same as the case in section 2.3.1 except the actuator position. The
results, displayed in Fig. 2.4 and Fig 2.7, clearly show that the compliance values are
improved by 7% in average. Additionally, the structural layouts in the front area of the
frame appear to be more simple and efficient. From this simple numerical test, the
feasibility of the simultaneous optimization between a loading point and structural

topology can be assured.
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Fig. 2.7 Standard topology optimization results of a wheel loader frame with modified
steering cylinder position (a) for minimizing combined compliance index, and (b)

for minimizing compliance with eigenfrequency constraints.
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Chapter 3.

Simultaneous optimization of a loading location and structural

topology

3.1 Chapter overview

In this chapter, as schematically illustrated in Fig. 3.1, a simultaneous optimization
method to determine a loading location and structural topological layout for compliance
minimization under a more general movable load condition is proposed; while the
magnitude and direction of an applied load is fixed, the location of an applied load is
allowed to move anywhere inside the design domain or along its domain boundary. To be

able to solve this type of problems, a new method will be developed and tested in this

study.
P Magnitude & direction: given
Location: not specified
A D A D
| Shaa * b ik *
1 1 | 1
1 1 ) I P ]
1 1 Compliance ! 1
: ! minimization | \
: 1 + : 1
1 : Loading location 1 \
] ! determination | !
1 1 I 1
'B 1C 'B 1C
I TIITIITIITIIIITIITI VTSI Vet

Fig. 3.1 Schematic representation of simultaneous optimization of the structural topology

and loading location
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One of the main issues in this study is the modeling of a load that can freely move to any
point in a designated region. A new proposition is to introduce two conceptually-different
design domains, one to determine the optimal loading point and the other to determine
the optimal structural layout. The structural compliance as a whole will be used as a
performance measure in the topology optimization setup. While the design domains are
conceptually different, they share the same nodes so that the applied load is correctly
transmitted to a structural layout to be optimized. Because the applied load is allowed to
move, the correct load transmission requires a special attention. So, a new modeling
technique is developed in this study where spring elements are used to discretize the
domain for determining the loading location and continuum elements, to discretize the
domain for determining the structural layout. By using the two-design domain method, it
is convenient to move the applied load anywhere in the design domain without
generating unwanted moment resultants, which may be otherwise difficult to suppress.

The detailed explanations on this issue will be given in the next section.

Another issue is related to solution convergence. It is related to the different
characteristics of the design variables, density and spring stiffness. The different
contributions to the structural compliance of the spring and continuum elements also
could make stable solution convergence difficult. Therefore, a multi-objective
formulation with the objective functions in logarithm form is proposed for stable solution

convergence.

This chapter is organized as follows. In the following section, the modeling technique
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and the analysis method dealing with the movable load condition will be developed.
Section 3.3 presents the optimization formulation to perform the simultaneous
optimization of an optimal structural layout and loading location. Numerical case studies,
including a simplified version of a wheel loader frame design problem, are presented in

the next section and concluding remarks are then followed.

3.2 Modeling and analysis

3.2.1 Two design domain-based modeling technique

For the simultaneous optimization of a structural layout and loading location, the concept
of two conceptually-different design domains is introduced, one for the determination of
the loading location and the other for the determination of the optimal structural layout.
In this approach, the problem to determine the optimal loading location is converted to a
problem to connect a load initially at an arbitrary location to a node of the optimal
loading location inside a domain as illustrated in Fig. 3.2. The design domain Q' (which
will be referred to as the loading domain) in Fig. 3.2(a) is a domain introduced to
determine the load location; it is used to find the single connectivity between the applied
load assigned at an arbitrary location and a node of the optimal loading location inside
Q'. The design domain ©* (which will be referred to as the structural domain) is a
domain used to find an optimal structural layout. Although the coordinates of the nodes
used to discretize the two design domains are exactly the same, the two-different design
domain concept is intentionally introduced. To present the proposed modeling approach
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clearly, suppose that the loading case in which a \ertical load of a given magnitude is

applied to a design domain, i.e., P=(0,P).

Applied load (© : Possible loading locations

E at arbitrary location
yL

Connectivity

3E HEBE R '. determination
at me

_—/—'—‘-
Load connectivity mesh with node m' Structural mesh with node n/
(=1,...N,m e 02) (i=1,.. Ny, J=1,...Ne, e £, O < 0F)
(a) (b)

Fig. 3.2 The proposed two-domain modeling: (a) Discretized loading design domain by
spring elements connecting the applied load, and (b) discretized structural
design domain.

As illustrated in Fig. 3.2(a), the symbol m' is the i-th node representing one of
possible loading locations in Q'. The total number of possible loading locations is
denoted by N,. On the other hand, Fig. 3.2(b) shows the structural domain Q°
discretized by quadrilateral elements. The symbol n' is the i-th node in @° and N,
denotes the total number of nodes. In dealing with @°, however, it will be more
convenient to use N, to denote the total number of elements because the density-based

topology optimization will be used for the structural part. Note that the coordinates of
23



node m' are set to be the same as those of n' because Q' is always a subset of Q°
(Q' ¢ ©°). With this setting, it is straightforward to transmit the applied load applied at
m' directly to n' of the structural design domain. Although two design domains are

used for conceptual convenience, the actual loading location moves freely around in the

design domain.

For streamlined determination of the optimal loading location, it is assumed at the

beginning of optimization iterations that all m'’s are connected to the applied load P
of a given magnitude and direction through spring elements. At the initial state of the
simultaneous optimization, the load can be located at any arbitrary position but it is
easier to locate it outside the domain @° without loss of generality. Only six spring

connections are sketched in Fig. 3.2(a) for clear illustration of the spring element
connections in Q'. The connection from the load to m' is controlled by the value of its
spring stiffness (k;) which is interpolated as

k()= s'ky (I=12,..N,), (3.0)
where u (i, <14 <1) is the design variable assigned to the i-th connecting spring
element and 7 is the penalty parameter. The nominal spring stiffness is denoted by k,,

the value of which will be discussed in section 3.4. The notion of the spring elements to
represent connectivity was used for different purposes in some earlier topology

optimization problems [10, 21].

A special attention is needed in order to correctly transfer the applied load P to any node
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(m"). This means that the loading direction should not be changed and also no additional
resultant, in particular, the moment resultant, should be produced by improper load

transfer. To fulfill these requirements, the following approach is developed.

First, the stiffness of the i-th spring element is defined as
k' = (k. k)" = (0, ki (14))" 3.2)
where k, and k, isthe x-and y-directional stiffness, respectively. For the problem

in consideration, k, =0 is imposed because the load is applied along the vertical
direction, i.e., the y -direction. (If the load is applied along the x -direction,
k' = (k. (24),0)" will be used.) Conceptually, this mode ling technique is equivalent to use

roller supports at m'. If k, is not set to be zero, the load transferred to node m' could

produce any other load such as a nonzero moment applied atany node.

Next, the displacements of nodes m' and n' occupying the same coordinates must be
coupled to transfer the applied load specified in Q' to a structure defined in Q°.
Specifically, the following conditions will be

Uy

=u]  (i=12..N). (3.3)

To address the importance of the three above-mentioned technique, the connectivity
models without and with the proposed techniques are illustrated in Fig. 3.3(a) and Fig.

3.3(b), respectively. In the illustration, the applied load P is assumed to be connected to
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m°® which is coupled with n°. (Here, the value of , =1 implies the state of connection

and the value of , =, , the state of disconnection.) The model in Fig. 3.3(a) not
imposing k! =0 and u;“i =u;‘i will generate an additional resultants, which should not

be applied to the structure; only the vertical force should be non-vanishing. If the
proposed techniques as described in Fig. 3.3(b) are used, only the vertical force is
correctly transmitted to the structure to be optimized. Although only the vertical loading
case is considered as an illustration, the proposed techniques can be extended for any

load type.

¥
IJ. =)Umfr1
« (1#9)

Incorrect resultant force| +
unwanted resultant moment

F.u Faut Fac¥

(@) (b)

Fig. 3.3 Illustration of load transferring issue: (a) Erroneous generation of the resultant if
the load is directly connected to the nodes of the load domain, and (b) correct
transfer of the applied load to the nodes of the load domain and thus to the nodes
of the structural domain .
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Regarding the topology optimization modeling for the structural part defined in Q°, the
standard density-based approach [1] is used. Thus, Young’s modulus of continuum
element j in Fig. 3.2(b) is interpolated as

Ej(pj):pjpEO (1=12....N,), (3.4)

where p; (p,, <p;<1) is the density design variable of the j -th continuum element,

E, is the nominal value of E when p, =1 and p is the penalty factor.

3.2.2 Finite element formulation for the two design domain-based model

Since the construction of the finite element system equation is well established, the finite

element equation is simply given below without any detailed derivation:

F=Ku=(K, +K)u, (3.9)
where F is the global force vector. The global nodal displacement vector u is defined
as u={u, u}’ where u, and u, are the nodal displacement vectors defined in Q'
and Q°, respectively. The global stiffness matrix K consists of two system matrices

K, and K, resulting from the discretization of Q' and ©°:

N, . Ne .
K=K, +K,=A K"+ A k{, (3.6)

it it
where k' and k! denote the i-th spring and j-th continuum element stiffness
matrices, respectively. For the case of vertical applied load (the y-directional load), the
expression of k' is the same as Eq. (3.2). In Eq. (3.6), A denotes the element assembly

operator. If the condition given by (3.3) is written in matrix form,
27



Cu=0, (3.7)

If the Lagrange multiplier & is introduced to handle (3.7), equations (3.5) and (3.7) can

< SR =

A few remarks regarding the size of the system matrix may be made. In most of practical

be put into the following form:

engineering problems, the domain size of @' is much smaller than @° because the
candidate loading points are usually limited. Therefore, the increase in the degrees of
freedom in (3.8) is marginal. On the other hand, the use of (3.8) based on the two
conceptual design domains facilitates the control of the convergence in the topology

optimization problem as shall be seen later with numerical case studies.

3.3 Topology optimization formulation

Based on the two conceptual design domain method presented in the previous section,

the following multi-objective formulation is proposed for the simultaneous optimization:

Minimize % (u,p) =In[{C, (n,p) +1}{C,(m.p) +1} ]=In(C, +1)+In(C, +1) ~ (3.9)

peR™  peR™e

Ne
subjectto  V(p)=D_p\V,/V, <1, (3.10)
i1
Ny
S(w=> <1, (3.1)
i=1
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SR WIENERS (312)

minS iS max:]' i:1121”'1N
Honin < 15 < 1 (_ ) (3.13)
pmingpjgpmax:]' (J:]"Z""’Ne)

with p={p11p2-"'vae}T and H={/'ﬁvﬂ2-'”v/"N,}T'

In Eq. (39), C, and C, denote the compliances of the discretized spring and

continuum element systems defined in @' and Q°, respectively. They are defined as

€, (0.p) =2 (1)K (1)U, () (3.14)

C. (1) =S4 (1. K. (U (09). (3.15)

Now, the role of each function defined in (3.14) and (3.15) will be examined. First, the

objective function ¥ consists of the product of C, and C, because its minimization

is equivalent to the maximization of the structural stiffness. The minimization of C,
helps push the design variables x4 (i=1---N,) towards their lower () and upper

(., =1) bounds although explicit penalty functions will be also introduced as Eq. (3.12).

The logarithm form of the product of C, and C, in the definition of ¥ is employed

to adjust a balance between C, and C, because the sizes of Q' and Q° are different

and the number of the candidate loading points in Q' can vary depending on problems.

Also, due to the coupling between different types of optimizations, the determinations of
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the loading location and optimal topological structural layout, a balance between the
sensitivities of C, and C, should be made. As the effectiveness of the logarithmic

form of a product of two functions was demonstrated by Kim and Kim [39] for a similar
issue, the logarithmic form of the objective function given in Eq. (3.9) is used. More

discussions on this form will be given later.

The constraint function Eqg. (3.10) is simply the statement of a volume constraint where
Vv, and V" denote the volume of the j-th continuum finite element and the allowed

total volume. Equations (3.11) and (3.12) altogether ensure that the applied load be

connected to a single node in 2'. The reason to use two constraint functions (3.11) and

(3.12) is that the success of the present simultaneous optimization heavily depends on the

state of the single connection between the applied load and a node in (2'. Because

optimal structural layouts depend critically on the applied load, the correct transfer of the
load to the structure is critical. For instance, if the load is connected to multiple nodes
even with small values of 4, the obtained layout could be quite different from the true
optimal layout. Therefore, we introduced the two conceptual domain method to ensure

that the applied load is transmitted to a single point in the structure. Instead of Eq. (3.11),

N,
following form may be considered as an alternative: S(p) = z <1+ . < (N, -1).

i=1
Although compliance in the load domain C, plays the role to push x towards either

4 OF ., the explicit penalty function Q controls the convergence speed of the load
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design variable g . It makes possible to success the simultaneous optimization if the

upper bound & is selected properly. The upper bound ¢ in Eq. (3.12) should be zero

theoretically, but the use of too small values result in pre-matured solutions. Its value
should be tuned to improve solution convergence so that ; takes oneither »_ or 4

at the optimum. Our numerical studies suggest that the values of § ranging between 0.3
and 0.8 yield satisfactory results (All the results of the numerical studies are listed in

Appendix. Al).

For the update of design variables (4 and p;), the sensitivities of the objective

function is calculated by using the adjoint method [40]:

Gl (1) GK'(“)u,—xT oK,

o 2(C,+D) ' op o
(3.16)
o¥(up) 1 ur K, (p) u, =37 oK (p) u,
op 2(C,+1) op op
In equation (3.16), the adjoint variable A is defined as
oY . o oY
8 E[—K 1(u,p)} =K 1(»&)(—)
ou ou
(3.17)

— K—l( p) KI (")ul (H:P) + Ks (p)us (llaP)
t CI (“’p)+1 Cs (H,P)"‘l '

As remarked earlier, the proposed form of the objective function has an adaptive scaling
effect in the sensitivity calculation at every iteration. If the compliance C, becomes

larger, sensitivities the objective function in Eq. (3.9) gets less sensitive to the variations
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of the C, because of the normalization factor C, in the denominator of Eq. (3.17), and

vice versa.

3.4 Numerical examples

In this section, numerical examples will be considered to show the validity and
effectiveness of the proposed method. Several case studies having different conditions on

the allowed range of the location of the applied load are considered.

In Case 1, the load is allowed only along the direction of the applied load — this recovers
the problem solved in Fuchs and Moses [26]. Case 2 deals with the problem where the
applied vertical load can move along the upper boundary of the design domain. So the
moving path is perpendicular to the loading direction — a similar problem was solved in
[31]. Moreover, the case when the applied load can move around in a designated two-
dimensional domain is considered in case study 3. The specific problem motivated by an
actual industrial application is the simultaneous optimization of the structural topology
and the actuator loading position for a simplified wheel loader frame - this is a new type
of problems, not solved or considered earlier. Finally, extension to movable load

examples in the three-dimensional structural domain is followed.

To check if the proposed method is indeed effective, a set of standard structural topology
optimization problems considering all possible loading locations for a load of a given

magnitude and direction was solved and compared their best solution with the optimized
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solution obtained by the proposed simultaneous optimization. To update the design
variables, the method of moving asymptotes [41] is employed as the gradient based
optimization algorithm. In order to avoid the checkerboard and mesh-dependent problem,
a density filter technique [42] is applied with the filter radius being three times the

average element size in all examples. Note that the spring elements in the loading domain
are not filtered. Also the values of . =p.. =0.001 for the lower bounds and 7=p=3

for the penalty parameters are used throughout the present investigation.

3.4.1 Case study 1: loading point moving along the given load direction

As the first case, consider the simultaneous design problem, in which the load is allowed

only along the direction of the applied load under the volume constraint ratio V= 10%.
Figure 3.4(a) illustrates the design domain and the line along which the applied vertical
load can move. The bottom side ends are simply supported. The structural domain is
discretized by 96x96 4-node plane stress elements. The thickness is taken to be 10 mm.
In this case, the loading domain consists only of a vertical line which is discretized by 49
candidate nodes marked by circles in Fig. 3.4(a). The node number varies from 1 to 49

from the bottom. The material properties of the continuum elements are given by

Young’s modulus E, =210 GPaand Poisson’s ratio v =0.3.

To determine the nominal value of k;, some care must be taken. It is found through

numerical tests that if the value of k, ranges between 10" to 10 times smaller than the
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diagonal stiffness of the continuum element; successful optimization result can be
obtained because the spring element do not affect the stiffness in the continuum domain
significantly (More details on the parameter study is summarized in Appendix. Al.). A
similar approach was used by Buhl [24] who solved the simultaneous topology
optimization of structures and supports in which the structural domain is not perturbed
significantly by a proper choice of the stiffness of spring elements. The initial values of

all design variables are set to be p -v* and 1 ;=1/'N,. In this problem, the upper

bound value of §=0.7 was found to yield good convergence.

Figure 3.4(b) shows the result giving the smallest value of C_ by the standard structural
topology optimization. It is the best one among all results obtained for the problems
under different loading locations assigned at m' (i=1,--,N, =49 ). The result in Fig. 3.4(b)
is the optimal layout obtained when the load is directly applied at m* (corresponding
the variable states of , =y, except u, =u. =1). Figure 3.4(c) shows the optimized
structural layout by the proposed simultaneous optimization formulation. The bold line in
the middle is the link connecting the applied load and m*. The comparison of Fig. 3.4(b)
and Fig. 3.4(c) shows that the present formulation produces the same topological layout
and identifies the optimal loading location as in Fuchs and Moses [26]. The compliance

values are almost identical (3.296 vs. 3.299).

The iteration histories are plotted in Fig. 3.5. The decrease pattern of the objective

function ¥ is shown in Fig. 3.5(a). It also shows intermediate structural layouts and
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loading locations. At the very beginning of the optimization process, the load design

variables decrease to satisfy the explicit penalty constraint in Eq. (3.14), resulting in the
increase of C,. Otherwise, the objective function is rather monotonically reduced. Figure

3.5(b) also exhibits the stable convergences of the constraint functions v,S and Q.

P =1000N
C.=3.296 C.=3.299

96 x 96 | Possidle
mesh i, loading
N, =49 K locations

1000mm & 1000mm

(a) (b) ()

Fig. 3.4 Case study 1 for a vertically-movable load: (a) Design domain with prescribed
load/boundary conditions, (b) the best result from standard structural topology
optimization considering all possible loading locations, and (c) the result by the

proposed simultaneous optimization method.
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Fig. 3.5 Iteration history for case study 1: (a) The objective function with intermediate

layouts, and (b) the constraint functions.

3.4.2 Case study 2: loading point moving perpendicular to the load direction

In this case, the applied load is allowed to move along the perpendicular direction to its
loading direction. Two problems illustrated in Fig. 3.6(a) and Fig. 3.8(a) will be solved.
The problem defined in Fig. 3.8(a) differs from that in Fig. 3.6(a); the problem depicted
in Fig. 3.8(a) has a non-design domain (such as a service area of a wheel loader frame)

inside the rectangular design domain.

+ Case Study 2-A
The structural design domain given in Fig. 3.6(a) is discretized with 32x80 4-node plane

stress elements (thickness 10mm). In this problem, we considered only 4 unevenly-
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spaced candidate loading locations along the top horizontal boundary where a vertical
force is applied. If the candidate loading points were evenly spaced, two central points
would be optimal. Because we aim to find only one optimal loading point, we
intentionally use unevenly-spaced candidate loading locations. The distances from the

left side to the candidate locations are specified in Fig. 3.6(a). The material properties

and optimization parameters are the same as those used in Case Study 1 except V" =30%.

Figure 3.6(b) shows all of the optimized structural layouts by the standard topology
optimization when the load is applied at 4 different locations lying along the boundary.

Obviously, the optimized layouts differ depending on the loading locations. The smallest
value of C, is found when the applied load is at m?. The optimized result by the
proposed simultaneous optimization formulation is shown in Fig. 3.6(c). It is virtually
identical to the layout shown in Fig. 3.6(b) for the applied load at m*. The iteration

history plot as shown in Fig. 3.7 exhibits stable convergence behavior of the objective

and constraints.
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Fig. 3.6 Case study 2-A for a horizontally-movable load: (a) Design domain with
prescribed load/boundary conditions, (b) All of the results from standard

topology optimization considering all possible loading locations, and (c) the

result by the proposed simultaneous optimization method.
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Fig. 3.7 Iteration history for case study 2-A: (a) The objective function with intermediate

layouts, and (b) the constraint functions.
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e Case Study 2-B

This problem depicted in Fig 3.8(a) deals with more realistic situations where the
rectangular design domain has a non-design domain in it. The size of the non-design
domain is stated in Fig. 3.8(a). In this case, 21 evenly-spaced candidate loading locations
are considered along the top horizontal boundary where a vertical force is applied. The

structural domain is composed of 40x100 elements. The material property and the initial

values of the design variables are same as those in Case Study 1 but V =20 %. The

value of §=0.3 was found to yield satisfactory results for this problem.

Figure 3.8(b) shows the best solution at m* among all possible optimal layouts for
loads applied at all possible candidate locations. The optimized layout shown in Fig.
3.8(c) is obtained by the proposed simultaneous optimization method. The two results are
almost identical. The compliance value (C,) by the proposed method is slightly better

than that by the standard structural topology optimization with a fixed load. The iteration

histories in Fig. 3.9 exhibit the same convergence behavior as found in earlier problems.
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Fig. 3.8 Case study 2-B for a horizontally-movable load: (a) Design domain having a
non-design domain and prescribed load/boundary conditions, (b) the best result
from standard topology optimization considering all possible loading locations,

and (c) the result by the proposed simultaneous optimization method.
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Fig. 3.9 Iteration history for case study 2-B: (a) The objective function with intermediate
layouts and (b) the constraint functions.
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3.4.3 Case study 3: loading point moving in a two-dimensional region

The simultaneous design problem where two multi-load cases are illustrated in Figs. 3.10
and 3.13 is considered. The design domain is a simplification of a wheel loader frame
with an embedded steering actuating cylinder. Obviously, the optimal frame layout
should be found. Also, the position of the steering cylinder which determines the loading
location of the steering force within a frame should be determined in an early concept

design stage.

e Case Study 3-A

The rectangular domain shown in Fig. 3.10 has a few non-design domains as in the actual
design. Among the two load cases, load case 1 in Fig. 3.10(a) considers a movable
steering force acting horizontally at one of the candidate loading points marked with
circles. A fixed horizontal force in the rear region of the design domain is also considered
as a part of load case 1. On the other hand, the load case load case 2 in Fig. 3.10(b) has
workloads only. (These loads are some of the typical loads that should be considered in

the frame design.) In defining the structural compliance C,, the structural compliances

under each load cases are equally weighted.

The left arrow of magnitude of P=2000 N in load case 1 stands for a steering cylinder
load. There are 16 candidate loading points. They are equally distanced vertically and
uniformly distributed horizontally behind the rectangular non-design domain. The

coordinates of some candidate points are given in Fig. 3.10(a). The volume constraint
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ratio is V'=30%. The bound value of 5=03 for (3.14) was found to be suitable.

Material properties and other parameters are the same as in the previous problems.
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Fig. 3.10 Case study 3-A for a movable load in a given two-dimensional region: (a) Load
case 1 consisting of the horizontal movable load P with a non-movable load and

(b) load case 2 consisting of non-movable workloads only.
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Figure 3.11(a) shows the best result among all results obtained by the standard structural
topology optimization for loads separately applied at all of the candidate locations. So,
16 structural topology optimization cases must be solved. All of these 16 results can be
seen in the Appendix. A2. The optimized result by the proposed simultaneous
optimization of the structural layout and loading location is shown in Fig. 3.11(b). The

topological layouts between the two results are not 100% identical, but the topologies of
the main load-carrying members are almost the same. Also, the values of C, by the two

results are sufficiently close to each other.

While the result in Fig. 3.11(a) requires 16 topology optimization runs, the present
formulation yielded the result by one optimization run. To find the optimal loading
location and corresponding structural topology, total CPU time increases proportional to
the number of the candidate loading locations in case of the standard topology
optimization with pre-determined loads. On the other hand, the proposed simultaneous
design method can optimize the loading location and structural topology at the same time.
Its CPU time does little depend on the number of the candidate loading points. To show
the effectiveness of the simultaneous design, total CPU time for the optimization is
compared in the following.
- Standard topology optimization with 16 pre-determined load cases: 13,132 sec
- Proposed simultaneous optimization: 1,664 sec
Although proposed simultaneous optimization requires parameter tuning, for example,

k, in Eq. (3.1) and ¢ in Eq. (3.12), sufficient efficiency can be assured. According to
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the parameter studies in Appendix. A.1, the range of tuning parameter is relatively small.

C.=48.766
(a)

C.=48.801
(b)

Fig. 3.11 The optimized layouts for case study 3-A: (a) The best result from standard
structural topology optimization considering all possible loading locations, and

(b) the result by the proposed simultaneous optimization method.




The iteration histories and intermediate layouts during optimization iterations are shown
Fig. 3.12(a). The values of the constraint functions shown in Fig. 3.12(b) converge to the

target values stably.
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Fig. 3.12 Iteration history for case study 3-A: (a) The objective function, and (b) the

constraint functions.

e Case Study 3-B

In this case, the simultaneous optimization with three load cases is demonstrated.
There is horizontal cylinder load similar to the previous case study as shown in Fig.
3.13(a), vertical cylinder load in Fig. 3.13(b) and workloads in Fig. 3.13(c). The size
of the structural design domain and the support locations are the same as the case
study 3-A in Fig. 3.10, unless otherwise specified in Fig. 3.13. Weighting factors of
the each load cases are equals to one for the compliance calculation. There are 25
possible loading locations equally spaced. Material properties and optimization
parameters are the exactly same with the case study 3-A.
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Fig. 3.13 Case study 3-B for a movable load in a given two-dimensional region: (a) Load
case 1 consisting of the horizontal movable load P with a non-movable load, (b)
load case 2 consisting of the vertical movable load P with a non-movable load
and, (c) load case 3 consisting of non-movable workloads only.
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Figure 3.14(a) depicts the simultaneous optimization result for the example shown in Fig.
3.13. If we discretize the load domain more with 81 candidate loading points, almost
same results can be obtained as displayed in Fig. 3.11(b); the determined loading point is
in the same location and topological layouts in the structural domain also almost identical.
These results show the effectiveness of the developed simultaneous optimization method.
Although the load domain is discretized with more candidate loading points, consistent
solution can be obtained. Notice that the optimal loading location is determined at the
point in the upper right corner in the load domain. One may expect the optimal loading
location could be determined at the point in the lower right corner close to the support
point. But, the loading point determination under complex conditions, such as multiple
load and complex geometry, is very difficult to find with the engineering intuition. In this

situation, the proposed method can be utilized efficiently.
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C.=80.199
(b)

Fig. 3.14 The optimized layouts for case study 3-B using the proposed simultaneous
optimization method with (a) 25 candidate loading points, and (b) with 81

candidate loading points.

3.4.4 Case study 4: 3-dimensional examples

« Case Study 4-A

Figure 3.15(a) shows the example which is 3-dimensional version of Fig. 3.4. In this case,
the external load should be transmitted to one of 21 candidate loading locations along the
external load direction. The structural domain is composed of 40x40x40 elements. The

material properties and optimization parameters are same as those in Case Study 1 in Fig.
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3.4. Figure 3.15(b) shows the best solution among all possible optimal layouts for loads
applied at all possible candidate locations. The iteration histories and intermediate
layouts during optimization iterations are shown Fig. 3.16(a). The values of the

constraint functions shown in Fig. 3.16(b) converge to the target values stably.

£ =5000N

40 x40 x40 mesh
N,=21

(a) (b)

Fig. 3.15 Case study 4-A for a 3-dimensional version of case study 1 in Fig. 3.4: (a)
Design domain with prescribed load/boundary conditions, and (b) the result by

the proposed simultaneous optimization method.
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Fig. 3.16 Iteration history for Case study 4-A: (a) The objective function, and (b) the
constraint functions.

e Case Study 4-B

Figure 3.17(a) shows the example which is 3-dimensional version of Fig. 3.6. In this case,
the external load is transmitted to one of 16 candidate loading locations on the
perpendicular plane to external load. The structural domain is composed of 32x32x64

elements. The material properties and parameters in optimization setup are the same as

those in case study 2-A in Fig. 3.6, but \7=20 %. Figure 3.17(b) shows the optimal
solution by the developed simultaneous optimization method. In this problem, the
optimal loading location and the structural topology are similar to that in case study 2-A
shown in Fig. 3.6(c). The iteration histories and intermediate layouts during optimization
iterations are shown Fig. 3.18(a) and the constraint functions in Fig. 3.18(b) converge to

the target values stably.
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Fig. 3.17 Case study 4-B for a 3-dimensional version of case study 2-A in Fig. 3.6: (a)
Design domain with prescribed load/boundary conditions, and (b) the result by

the proposed simultaneous optimization method.
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Fig. 3.18 lIteration history for case study 4-B: (a) The objective function, and (b) the

constraint functions.
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3.5 More discussions on the determination of the optimal loading location

So far, the developed simultaneous optimization method of the loading location and
structural topology is based on the single loading point determination. It is because we
focus on the concern to the practical engineering problem such as the determination of
the optimal actuator location in the construction equipment frame. However, if upper
bound of the constraint function, S(u) in Eq. (3.11), is modified or we define the
problem as the symmetric load condition, design of multiple loading location can be
possible. Case studies for the multiple loading point design are described in Appendix. B.
These kinds of problems are, for example, as bellows:

- One applied load is connected to two optimized locations under symmetric load

condition. In this case, load design variable 4 is converged to the values of 0.5

and 0.5.
- Two applied load is converged to two load location. In this case, the upper
bound of Eq. (3.11) should be modified to the value of 2. But, meaningful

solution can be obtained only under special design condition.

The effectiveness and usefulness is demonstrated and validated through various types of
case studies. Extension to the multiple load case and three-dimensional structural domain
problem can be treated without any difficulties. Modeling technique using the spring
elements for the load connectivity has the great advantage in dealing with large size of
engineering design practices because the implementation with the commercial finite

element software is rather straightforward.
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Although there are some inefficiency in form of the global stiffness equation using the
Lagrange multiplier in Eq. (3.8) because it does not guarantee it positive definite, this is
not the critical issue when the proposed method is implemented with the efficient

commercial finite element analysis solver.

There are two tuning parameters in the proposed method. Careful selection of the
parameters should be made, but their ranges are relatively small and typical ranges are
suggested in Appendix. A.1. It is more efficient to do parameter study using the proposed
method than to run the standard topology optimization for all the candidate loading

locations.

The developed simultaneous optimization method is the gradient-based optimization,
therefore, global optimal solution is not guaranteed. Global search algorithm such as the
genetic algorithm can be adapted as a hybrid formulation. For example, loading point
determination is optimized by the genetic algorithm and structural topology optimization
is performed by the gradient method. Hybrid formulation is expected to be more effective

when the candidate loading points become extremely large..
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Chapter 4.

Integrated topology optimization considering actuator layout and

weld manufacturability

4.1 Chapter overview

In this chapter, topology optimization technique for the simultaneous design of actuator
layout and structure is integrated with weld manufacturability. There are two major
issues in the application of the topology optimization framework to the frame structure of
construction equipment. The first one was addressed in the previous chapter. As
mentioned earlier, topology optimization with weld manufacturability in an early design
stage is not the case of welding line reduction and welded joint specification; this is the
problem of interpreting optimization results so effectively as to adapt them to the detailed
design. In this point of view, manufacturing requirement such as avoiding typical truss

structure should be investigated.

Among the previous works related to the manufacturing constraints of topology
optimization, a method to extract optimal plate-like structures from a solid mesh [33] is
most relevant to the weld manufacturability issue. Although the main idea comes from
those of casting manufacturing constraint [32, 34], it generates similar material layout
effectively similar to the welded structures consisting of several plates. In this study, a

method of dividing the whole design domain into several subdomains and then projecting
54



the element design variables on the nodes of pre-defined plane is suggested.

To deal with sufficiently large size of problem for actual engineering practices, an
interface between commercial CAE software (such as ABAQUS) and optimization code
(developed in this investigation by MATLAB) is necessary. Thereby, the topology
optimization framework using the ABAQUS-MATLAB interface is developed and
verified throughout this chapter. Integrated with the simultaneous optimization of a
loading point and structural topology, a topology optimization method providing plate-
like structures is implemented. Several numerical examples are treated to show the
validness of the developed code, such as compliance minimization problems and a

problem of simplified version of a wheel loader frame with a modal frequency constraint.

The procedure of topology optimization for welded structures using the ABAQUS-
MATLAB interface is shown in the next section. The integration with the simultaneous
optimization technique of a loading point determination and structural topological
layouts is followed in the following. The proposed integrated topology optimization

method is verified through several design examples.
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4.2 Topology optimization for welded structure

4.2.1 Plate-like topology optimization

The standard topology optimization problem is stated as:

Min. FTu

peR"

s. t. fve <V
2p , (4.1)

F=K(p)u

min < pe < pmax
where, F is the applied load vector, K is the global stiffness matrix and u is the
global displacement vector. The volume of element e is denoted by v* and p..., O

is the minimum and maximum allowable element density. Typically, the results of
topology optimization in Eq. (4.1) are usually truss-like structure, as can be seen in the
previous chapter. To avoid the formation of interior cavities, an extraction method to
parameterize the design domain as to produce plate-like shapes can be formulated. Figure

4.1 illustrates a schematic diagram of the proposed plate-like shape extraction method.

The design domain @ is divided into subdomains ¢ (i=1,..,N,) as shown in Fig.
4.1(a), and pre-determined extraction directions n, and projected planes S, are set up
for the design variable parameterization in . . The element design variables p°* in o
are so projected into S, as to have the same value along the direction of n, as depicted
in Fig. 4.1(b). Therefore, same design variables p° along the extraction direction in

each subdomain can be ensured. Fig. 4.1(c) illustrates typical plate-like conceptual image

of the topological layout in the form of plate-like structural layouts under a bending load.
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Independency of the size and shape of mesh in topology optimization is achieved by
filtering techniques [42-44]. In this study, the density filter with physical length scale and
linear projection function [43] is employed. The concept of density filter is schematically

shown in Fig. 4.2.

@ (f)zg)ﬂ'! = p::m (pig)!?} = p::m @ (f)ig)sj = p::m @ (ng)S} = p::m
@ (Pf)@ = p::mf (fjfe)!}} = p:mc @ (pie)sf = p::zrc (fjie)s} = priar
e A OhRhRhsS
NSNS N AR
\EQ\ E\ T
R N N R Y S
N AR §
Sh NN .
Subdomain _(% [_),2 Plane Sj Sz
Direction n, n, Direction n, n,

(a) (b)

Example : Bending

(€)

Fig. 4.1 lllustration of extracting plate-like structure in topology optimization by (a)
dividing the entire domain into subdomains and setting extracting direction in
each subdomain, and (b) projecting element design variables on the pre-defined
plane and extracting it along the given direction. Typical plate-like shape of

topological layout is (c).
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Nodal densities p; are the design variables in this method with the density filter; they

should be converted into element densities p° to enforce physical meaning. In a
conversion process, the projection scheme, not influenced by mesh size, is based on a
physical length scale r., . The projection functions should be constructed so that this
parameter is equivalent to the minimum allowable radius. In Fig. 4.2(a), a circle of
effective radius r,, centered at the centroid of element e is visualized to indicate the
circular subdomain ©° contributed to the computation of p°. A linear projection

function performing a weighted average of the eligible nodal design variables determines

a magnitude of 1 at the element centroid and decreases linearly to 0 over r., —asshown
in Fig 4.2(b). This weight functions is defined by

r.—r

mn___ if xeQf

W(X - ?e) = Fonin J (423.)
0, otherwise

r= || X=X°|<r. : (4.2b)

where, X° stands for the centroid of the element e . The element density p° in Fig. 4

can be defined by

2 jee PIWX; =XF)
- e
2 e WX, —X°)

e

(4.3)
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min|

2xr

min

(@ (b)

Fig. 4.2 Schematic concept of the density filter: (a) nodes inside the domain are used in

the projection scheme, and (b) the weight function for the linear projection.

Incorporating with the density filter, the problem of topology optimization in Eq. (4.1)

now can be expressed as a function of the nodal design variables (p ), to enforce the
results of topology optimization in the form of plate-like shape.

Min. F'u

(Pn )SERH

st. 3 o (o) Ve <V

ee

F=K((p,);)u
(pn)min < (pn )s < (pn)max

(4.4)
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4.2.2 Topology optimization using Matlab-Abaqus interface

The plate-like topology optimization code is implemented using the interface between

Matlab and Abaqus. The procedure to carry out the topology optimization is summarized

in Fig. 4.3. Notice that this in-house code is utilized for the integration of the

optimization method developed in chapter 3 (simultaneous optimization of a loading

point and structural topology) and the plate-like topology optimization method for the

welded structure. Practical applications such as the design problem of construction

equipment frame require efficient commercial FE solver for the large scale problem up to

millions of degree of freedom. Abaqus is one of widely used commercial finite element

solver.

-
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.
Local K matrix l
Matlab
Read Input File
. Set extract direction
element density(p) \_ |
N
Matlab
Global K matrix
Assembly
\
Global K matrix
Update - l
Density Abaqus
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Analysi
L / Analysis
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s
Matlab
Optimization
.

Set up original input deck / initial analysis

Export local stiffness matrix from ABAQUS

Import FE model data from ABAQUS input deck

Set extract directions for the case of
plate-like topology optimization

SIMP penalization
Export global stiffness matrix to ABAQUS

Update design variables in original input deck

Assembly system of equations

Analysis at every iteration step

Enforce density filter
Sensitivity analysis

MMA iteration & design variable update

Fig. 4.3 Topology optimization procedure using Matlab - Abaqus interface



The interface is accomplished by the use of Python scripts for Abaqus [45]. The results of
the topology optimization, the element-wise density design variable, are provided as the
format of an Abaqus ODB output database file. This file can be read more conveniently
by the commercial FE post processing software such as Altair HyperView because the

treatment of the user-defined density variable is more straightforward.

Two types of optimization problems are examined in this section. One is compliance
minimization problem with volume constraint and the other is, with constraints of
volume and 1* eigenfrequency. Formulations for the former are in Eq. (4.1) for the case
of standard topology optimization and in Eq. (4.4) for the case of plate-like topology
optimization, respectively. The latter formulation for the standard topology optimization

with 1° eigenfrequency constraint is expressed as

Min. F'u

peR"

s.t. Zpeve <V’

(@)? 2 (ay)" : (4.5)
F=K(p)u
Kg =w’Mg, i=1,.N

min < pe = Prmax
where, »’ is the i-th eigenvalue and ¢ the corresponding eigenvector, and M s
the global mass matrix. Eigenfrequency f, can be calculated from the relation

o =2rxf.. Likewise, the plate-like topology optimization problem minimizing structural

compliance with volume and modal frequency constraint can be formulated as Eq. (4.6).
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Min. F'u

(Pn)sERn

st. 3 p°((p,). v SV

ee

(@ (p,).)* 2 (@1 (p,),)? : (4.6)
F=K((p,),)u

K((P) )4 = o’M((p,).)¢h,  i=L..N

(On)min < (215 < (00 e

The gradient-based optimizer MMA [41] is used throughout this work. Sensitivity
analysis should be made to update the design variable. Sensitivities of structural

compliance C=F"u, objective function in Eq. (4.1) is well-known [4, 24, 40, 43] in the

following form as

o« _ —u’ Klp) u. @.7)
op op

In the equation (4.7), the global stiffness matrix K with the SIMP penalization is

expressed by
Ne
K=> p’k!, (4.8)
i=1

where p is the SIMP penalty parameter, k? denotes the i-th element stiffness matrix,

and N, is total number of finite elements in the design domain. The sensitivity

expression of compliance in nodal design variables in Eq. (4.7) is calculated using Egs.

(4.3), (4.7) and (4.8) as

0C___ . OK((®,)) %

—ppT oK((p,);) ,_9p"
o(p, ) op,)s  Ap,)s op,)s  op,)s

. 4.9)
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Before dealing with the sensitivity expression in modal frequency problems, it is
worthwhile to discuss the issue, which is one of main problem in the topology
optimization of modal frequencies; possibility of localized modes in low density areas [7,
13, 46]. Localized mode can occur in areas that are near minimum densities during the
optimization process because they are very flexible compared to elements with full
densities. This localized mode should be prevented by specialized SIMP penalization
scheme; otherwise they control the lowest eigenmode of the whole structure. In the study,
material interpolation scheme suggest by Du and Olhoff [7] is applied to remove them.
The global mass matrix M of the finite element with the SIMP penalization can be

expressed in the same manner with Eg. (4.8) as
N, N,
M :Zmi (pi)zzpiqm? , (4.10)
i=1 i=1

where m, represents the i-th element mass matrix, m{ denote the i-th element mass
matrix corresponding to fully solid material, and q is the SIMP penalty parameter for

the mass matrix. To eliminate the localized eigenmodes, Eq. (4.10) is replaced by Eaq.

(4.12) in order to set the element mass very low value via a higher penalization parameter

in subregions with low local density and ensure C' continuity of the interpolation

model as

pm;, p>01

, 4.1
(©p +e,p )M, p <01 o

m; (Pi)z{

where the coefficients are ¢, =6x10° and ¢, =-5x10°.
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The sensitivity of eigenvalue «° for the standard topology optimization [7, 13, 40] can

be obtained by

a_w.z_ T aK(p)_ » OM(p)
B _¢,[ » o jqﬁ" 4

Likewise, the sensitivity equation of plate-like topology optimization is expressed by

2 e
0w _ ﬂ(éK«pn)s)_ o alvl((pn)s)j P (4.13)
a(pn)s a(pn)s a(pn)s o(pn)s

In equations (4.12) and (4.13), the derivatives of the matrices K and M can be
calculated explicitly from the SIMP penalization model in Egs. (4.8) and (4.11).

Therefore, the sensitivity expression of Egs. (4.12) and (4.13) becomes

2
o _ o [ oped XKD _ 2o Mj 4, (4.14a)
op op ap

aall2 T (;}lfaK((pn )s)_ -« @M( én ) -ape . 414b
ﬂ(p(pn)s ooy ~of b ) T S)]%pn( (4.140)

4.2.3 Numerical examples

In this section, numerical examples will be considered to verify the validness and
effectiveness of the proposed method. Three case studies having different geometry and
load condition are presented. In case 1, compliance minimization for L-type beam is
examined. Comparison is made between the results of the commercial optimization
software, Altair OptiStruct, and those of the developed in-house code with Matlab-

Abaqus interface. Case 2 is a kind of a feasibility test whether the proposed method can
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be applied to the frame structures or not. Compliance minimization for a simple ladder
type frame structure is investigated. In case 3, simplified example of a wheel loader
frame design will be demonstrated to show the possibility of application to the actual
engineering practice. Compliance minimization problem with constraints of volume and
1** modal frequency is formulated, as described in Egs. (4.5) and (4.6). As mentioned

earlier, the density filtering technique with the minimum allowable radius r; s

applied. Note that the values of o =(0.)rm =1 Puin =(0)mn =0.001 and p=3 for the

penalty parameters are used throughout this section.

o Case Study 1
The design domain given in Fig. 4.3 is divided into 3 sub domains for the plate-like
topology optimization. One of 3 sub domains is a sub domain utilized for the connection
area between @ and «,, thus remains as the region where the standard topology
optimization scheme is applied. On the other hand, in case of the standard topology
optimization as formulated in Eq. (4.1), the whole domain is used as the design domain.
Information of the finite element analysis is in the following.
- Finite element model information

Element type in Abaqus: C3D8 [45]

Element type in OptiStruct: CHEXA [36]

Number of Elements: 72,000

Number of Nodes: 79,821
Young’s Modulus:  2.1x10°

65



Poisson’s ratio: 0.30

Density p,: 7.9 <10 ~°

Topology optimization parameters are summarized below. The optimized problem for
case study 1 is formulated as Eq. (4.1) in the standard topology optimization case and Eq.
(4.4) in the plate-like topology optimization case.

- Optimization information

Upper bound of volume constraint V™:  0.10xV°

Filter radius r, : 7.5 (1.5 times of the average element size)

Figure 4.5 shows the distribution of the element density (po° >0.2) of the standard

topology optimization results. The result by using OptiStruct is illustrated in Fig. 4.5(a)
and one by the developed code with Matlab-Abaqus interface is depicted in Fig. 4.5(b).
The element density contour of the result by the similar process using OptiStruct (with
extrusion manufacturing constraint [36]) with the plate-like topology optimization is in
Fig. 4.6(a). Figure 4.6(b) shows the result by the developed code. The density
distribution agrees reasonably with each other. These results demonstrate the validity of

the developed in-house code.
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Fig. 4.4 Case study 1 for plate-like topology optimization in L-shape domain
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Fig. 4.5 Standard topology optimization results for case study 1 (a) by OptiStruct, and (b)
by the developed code using Matlab-Abaqus interface.
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Fig. 4.6 Plate-like topology optimization results for case study 1 (a) by OptiStruct, and (b)
by the developed code using Matlab-Abaqus interface.
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e Case Study 2

The design domain given in Fig. 4.7 is divided into 13 sub domains for the case of plate-
like topology optimization and extract directions are illustrated also. There are two
directions of extraction, those of @ ~, are Xx—direction and the others y —direction.
In case of the standard topology optimization, the whole domain is used as the design
domain. Information of the finite element analysis and parameters on topology
optimization is summarized in the following. The formulation is the same as Eqgs. (4.1)

and (4.4).

Subdomain 2, ~ 2,, Subdomain 2,, ~ 2,

£f=(0.0.—10.000) Direction Direction
_( » U T4, ) ni:(I:O,O)T nj:(O,],O)T

Fig. 4.7 Case study 2 for plate-like topology optimization in ladder-shape domain
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- Finite element model information
Element type in Abaqus: C3D8
Number of Elements: 22,000

Number of Nodes: 26,499

Young’s Modulus: 2.068x10™
Poisson’s ratio: 0.29
Density p,: 7820

- Optimization information

Upper bound of volume constraint V" 0.15xV°

Filter radius r,,, : 0.15 (1.5 times of the average element size)

Figure 4.8 shows the distribution of the element density (p°>0.3) of the topology
optimization results. The result of the standard topology optimization case is illustrated
in Fig. 4.8(a) and one by the plate-like topology optimization is depicted in Fig. 4.8(b).
Definitely, the result in Fig. 4.8(b) can provide much better convenience to interpret to
the detailed design process when the result is preferred to be manufactured by the
welding process. In this example, cross members make little contribution to the bending

stiffness, therefore they disappeared in both cases shownin Fig. 4.8(a) and 4.8(b).
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Fig. 4.8 The topology optimization results for case study 2 (a) by the standard method,
and (b) by the plate-like method.
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e Case Study 3

Figure 4.9 shows the example of simplified wheel loader frame structure. The design
domain is divided into 7 sub domains for the plate-like topology optimization and
corresponding extract directions are given in Fig. 4.9(a). Two load cases, one is shown in
Fig. 4.9(a) and the other in Fig. 4.9(b), are defined in this example. Information of the
finite element analysis and parameters on topology optimization is summarized in the
following. The formulation is same as Eq. (4.5) and (4.6) for the standard topology

optimization and plate-like one, respectively.

- Finite element model information
Element type in Abaqus: C3D8
Number of Elements: 11,480

Number of Nodes: 14,441

Young’s Modulus: 2.06x10°

Poisson’s ration: 0.29
Density p,: 7.8 <0 ~°
- Optimization information
Upper bound of volume constraint V": 0.25xV°
Lower bound of 1* eigenvalue ()?: 2x7zx(E0 H)

Filter radius r;,: 75 (1.5 times of the average element size)
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£, =(20000,0,0)"

f, = (-10000,0,0)"

Subdomain 2, ~ 2,
Direction n = (1,0,0)"

.—L fix 1-dof spring element oo Rigid element
(@)

f, = (5000,0,-1000)"
L =(=5000,0,0)"

f, = (=3000,0,0)"

Fig. 4.9 Case study 3 for a simplified wheel loader frame domain: (a) load case 1
including illustration of sub domains for the plate-like topology optimization,
and (b) load case 2
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Figure 4.10 shows the distribution of the element density (p°>0.3) of the topology

optimization results. The result of the standard topology optimization case is illustrated
in Fig. 4.10(a) and one by the plate-like topology optimization is depicted in Fig. 4.10(b).
Definitely, the result in Fig. 4.8(b) shows more possibility of interpretation to the welded
structure design than that of the standard topology optimization. Although there is
advantage in manufacturing point of view, the value of objective function (compliance) is
a bit higher in the result of the plate-like topology optimization. Notice that there is a
trade-off between the manufacturability and the structural performance. The constraint
functions of volume and 1** eigenvalue become both active, which is, 1% modal frequency

attained 50 Hz.
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Fig. 4.10 Topology optimization results for case study 3 (a) by the standard method, and
(b) by the plate-like method.
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4.3 Integrated topology optimization for a frame structure

4.3.1 Implementation of simultaneous optimization of a loading location and

structural topology

The topology optimization method developed in chapter 3, which is, the simultaneous
optimization of a loading point and structural topology, is integrated with the plate - like
topology optimization method described in section 4.2. Overall procedures are basically
same as described in Fig. 4.3, but some care must be taken due to the special modeling
technique and formulation of the simultaneous design optimization problem suggested in

chapter 3.

The loading point connection is proposed to be modeled by 1-dof spring element in
section 3.2., and the stiffness of the spring element is suggested to be lower than 10% of
the maximum diagonal term of the continuum element stiffness. This relatively low
spring stiffness makes the fundamental eigenvalues of the whole system very low
compared to those of the continuum structure. In this situation, one cannot select the
exact eignemode to be optimized. To overcome this difficulty, independent ABAQUS
input deck for the modal analysis is prepared during the optimization. Spring elements
are removed in independent modal input deck because the eigenmode in continuum
structure alone is practically important in the optimization process. The spring elements
are required only for the load connectivity in the static analysis. Due to this additional
modal input deck, total analysis cost may increase but, we do not suffer from considering

the coupling eigenmode between continuum structure and spring elements for the load
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connectivity. This modified procedure is summarized in Fig. 4.11.

r \
Abaqus +  Set up original input deck / initial analysis
Initial Analysis »  Export local stiffness / mass matrix from ABAQUS
\ J
Local K matrix §
Matlab ) - Import FE model data from ABAQUS input deck
Read Input Fi|E_ +  Set extract directions for the case of
element density(p) \. S5 Tl AT plate-like topology optimization
>
4 .
+  SIMP penalization
Matlab . .
Gllslyal] 2/ bl muat +  Export global stiffness / mass matrix to ABAQUS
\ Assembly )+ Update design variables in modified static input deck
[ Update Global K / M matrix +  Update design variables in modified modal input deck
Density
y ( Abaqus N - Assembly system of equations
User-defined Assembly +  Static analysis at every iteration step
Static Analysis
\ Modal Analysis ) Modal analysis at every iteration step
vol, u, sensw't\'w't\'esi
( ) + Enforce density filter
Ma!:lal? +  Sensitivity analysis
Optimization
\ J * MMA iteration & design variable update

Fig. 4.11 Modified procedure for the integrated topology optimization

Thus, proposed integrated topology optimization is formulated as

Minimize  In[{C, (i (p,),) +1} {C. (. (p,),) +1} |, (4.15)

peRM, (p,),eR™Ne

subject to V(p) = ipj ((p,),)V; 1V, <1
(@ (Pa)s)* 2 (@ (p,),)°

N, (4.16)
S(w) = Z:ui <1

QW) =Dt A1) <8

For simplicity, governing equation and side constraints were omitted in Egs. (4.15) and

(4.16).
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4.3.2 Numerical examples

Two case studies for validation of the integrated topology optimization are considered.
The first is the similar one as in Fig. 3.17, the other is for the simplified wheel loader
frame example which is treated in Fig. 4.9. From these examples, one can find the
usefulness of the proposed integrated topology optimization. The values of
Prooe = P )vex =L Prin = (0n)min =0.001 and p=p=3 for the penalty parameters are used

throughout these examples.

e Case Study 1

The structural and load design domains are given in Fig. 4.12, which is the same domains
discussed in Fig. 3.17 except the element discretization of the structural domain. The
whole structural domain is divided into 5 sub domains for the plate-like topology
optimization and the loading location can move to one of 16 candidate loading points on
top surface. The extract directions of the plate-like topology optimization are all z—
direction. Information of the finite element analysis and parameters on topology

optimization is summarized in the following.

- Finite element model information
Element type in Abaqus: C3D8
Number of Elements: 2,000
Number of Nodes: 2,542

Young’s Modulus:  2.1x10°
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Poisson’s ration: 0.3

Density p,: 7.8 x10 °

Stiffness of the spring element k;: 4x10°

- Optimization information

Upper bound of volume constraint V™: 0.25xV/°

Lower bound of 1* eigenvalue (w;)?: 2x7zx(160 H}

Upper bound of explicit penalty function &:0.7

Filter radius r_,, : 15 (1.5 times of the average element size)

£ =(0,0,-5000)"

1000x1000x2000
10 X10 x20 mesh
N,=16

Subdomain 2, ~ Q.

Direction _
n =(0,0,1)

Fig. 4.12 Case study 1 for the integrated topology optimization; a horizontally-movable

load case in Fig. 3.17
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Figure 4.13 shows the distribution of the element density (p°>0.3) of the topology

optimization results. The result of the standard topology optimization case is shown in
Fig. 4.13 and one by the plate-like topology optimization is depicted in Fig. 4.14. The
simultaneous optimization of a loading point determination and structural topology is
clearly achieved in both results and the plate-like topology optimization can be seen in
Fig 4.14. The result in Fig. 4.14 provides possibility of interpretation to the welded
structure design than that of the standard topology optimization case in Fig. 4.15. Also,
the value of objective (compliance) is a little higher in the result of the plate-like

topology optimization due to the “plate-like” shape constraint.

Contour Plot
Tata-bli(Scalar value)
Simple Average
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7.780E-01 4 '
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[5.561 EO1
445101
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1.1256-03

Max = 1.000E+00
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Min = 1.125€-03
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C =4.908
f,=163.5Hz

(a) (b)

Fig. 4.13 Result of the integrated topology optimization for case study 1: standard case in
(@) front iso view, and (b) rear iso view..
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Fig. 4.14 Result of the integrated topology optimization for case study 1: standard case in

(a) front iso view, and (b) rear iso view.

e Case Study 2

The problem description given in Fig. 4.15 is similar one discussed in Fig. 4.9. The
structural design domain, loading condition and finite element modeling information are
the same with the case in Fig. 4.9, except the external load f, , corresponding to cylinder
force, is connected to 32 candidate loading locations. Because of the symmetry of
cylinder load, two loading locations should be simultaneously determined with the
structural topology. Thus, upper bounds of constraint functions in Eq. (4.16) are modified
to two times of the case in Fig 4.9. Different numbers of sub domains are considered in
this case. The case shown in Fig. 4.15(a) is 5 sub domains modeling as shown in Fig.
4.9(a), but Fig. 4.15(b) shows 16 sub domain modeling case. The extract directions of the

plate-like topology optimization are all x- direction. Information of the topology
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optimization parameters is summarized in the following.

- Optimization information
Stiffness of the spring element k: 1x10°

Upper bound of volume constraint V" 0.25xV/°

Lower bound of 1% eigenvalue (w;)?: 2x7zx(E0 H)
Upper bound of load sum S(u): 2.0

Upper bound of explicit penalty function &:1.4

Filter radius r,;,: 75 (1.5 times of the average element size)

The result in Fig. 4.16(a) shows that optimal loading point is determined at m* position,

but that in Fig. 4.16(b) represent the loading point determination at m® location. It
means that the optimal loading location and structural topology depend on sub domain
numbers in the plate-like topology optimization method. A couple of parameter studies
may be required for the best selection of the sub domains. It can be also regarded as a
design option according to the manufacturing strategy or design concept. The structural
topological layouts in Fig. 4.16(a) are somewhat similar to those depicted in Fig. 4.10(b),
but the front part of the frame structure is completely different due to the different
loading location of the cylinder load. Moreover, structural layouts in Fig. 4.16(b)
demonstrate new design of a wheel loader frame using the proposed method. Therefore,
from the above examples, it can be successfully shown that simultaneous optimization of

a loading location and structural topology can provide new design concept with enhanced
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performance and the plate-like optimization method helps interpret the result of the

topology optimization to the detailed welded structure more effectively.

5 16
5 12

4 S
m’ m

N, =32
13

10,000 n’ m’ Subdomain €2, ~ £2,

Direction n =(1,0,0)"

(@)

Subdomain €2, ~ €2,
Direction n =(1,0,0)"

(b)

Fig. 4.15 Case study 2 for the integrated topology optimization; a simplified wheel
loader frame design in Fig. 4.9.
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Fig. 4.16 The result of the integrated topology optimization for case study 2: a simplified
wheel loader frame case with (a) 7 sub domains, and (b) 16 sub domains.
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Chapter 5.

Conclusion

In this work, integrated topology optimization method to cope with two major structural
design issues for the construction equipment, such as a wheel loader frame, was
investigated. Simultaneous optimization method of a loading location and structural
topology for the optimal design of the frame structure hosting an actuator was integrated
with the so-called plate-like topology optimization to deal with the manufacturing issue
for the welded structure. The effectiveness and usefulness of the proposed method was
demonstrated with the design problem of simplified wheel loader frame motivated from

an actual engineering practice. The summary of details is presented in the following.

First, a method to find simultaneously the optimal structural topological layout and the
loading location for a load of a given magnitude and direction was newly developed.
Unlike previous studies focused on movable loads along a designated path line, the
proposed method considered an applied load possibly moving around in the designated
design domain. The key idea in the proposed approach was to conceptually decouple the
loading design domain and the structural design domain. The former was used to
determine the loading location by varying the stiffness of the spring elements connecting
the applied load and a target node in the design domain and the latter, to determine the
optimal structural topological layouts by varying the element density of the structural

design domain.
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In the proposed approach, the applied load and the candidate loading nodes were
assumed to be connected through spring elements the stiffness of which is interpolated
by the topological design variable. Because the applied load can move virtually to any
nodes in the load design domain, the simple-minded direct connection of the load to the
candidate loading node will produce additional unwanted resultants such as a moment. It
was shown that if the connecting stiffness has the non-vanishing component only in the
direction parallel to the direction of applied load so that only the displacement
components in the direction at the candidate nodes are allowed to exist, the applied load
can be correctly transferred to the desired node of the structural domain. Also the
functional form of the objective function, which is given by the product of the
compliance of the connecting springs and that of the structural layouts, was carefully
selected; the selected logarithm function adaptively balanced the sensitivities of the two
dissimilar compliances. Several case studies in two-dimensional domain were tested with
various movable load conditions - the applied vertical load can move vertically,
horizontally or arbitrarily within a designated domain. As a specific problem, the design
of a simplified wheel loader frame and the determination of the actuator location in the
frame, which is a new problem motivated directly from industrial applications, were
made simultaneously and the optimized result was found to be consistent with the
optimized one obtained by an extensive search with varying possible loading locations.
Extension of the developed method to the case studies in the three-dimensional design
domain was then verified. Although the developed simultaneous optimization was based
on the gradient-based method which cannot guarantee the global optimum solution and

had some tuning parameters, possibilities to the practical application were validated by
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the above mentioned case studies.

Thereafter, topology optimization considering weld manufacturability was achieved with
the extraction of plate-like topological layouts, generated by projecting the design
variables in the structural domain to the pre-determined plane of the sub domains in the
domain, to the given directions. In the method, mesh-independent nodal design variables
were used. The results of the design examples showed practically more effective material
layouts to be interpreted to the welded structure than those of the standard topology
optimization in spite of a trade-off between manufacturability and structural performance.
Moreover, computational cost of the plate-like topology optimization could be somewhat
lower because the number of design variables was reduced due to the projection method

on the plane of sub domains.

Finally, the simultaneous optimization method of a loading location and structural
topology was put together with the plate-like topology optimization method. The
developed topology optimization methods were implemented using the interface between
Matlab and Abaqus for the effective application to the practical large-scale problem, such
as the structural design of a construction equipment frame. The usefulness of the
integrated topology optimization code was validated by a couple of design examples one
of which was the problem of a simplified wheel loader frame. The structural layouts of
the optimized result showed the possibilities of the new frame design that can be
interpreted to the welded structure, which could not be efficiently expected otherwise.

From the success in this kind of problem, the proposed integrated topology optimization
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method could pave the way for practical engineering applications. This work can also be
utilized to the concept design of a welded structure hosting an actuator as well as of a

construction equipment frame.
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Appendix A.

Numerical studies in the simultaneous optimization of a loading

location and structural topology

A.l. Parameter study for the spring stiffness and the explicit penalty
constraint

There are two tuning parameters in the simultaneous optimization formulation for a
loading location and structural topology. They are nominal spring stiffness k, in Eqg.

(3.1) and the upper bound & of the explicit penalty constraint function in Eq. (3.12).
The results from wide range of parameter studies for the proper selection of these tuning
parameters are summarized in Figs. A.1~A.4., indicating successful optimization the blue
colored combination. Red colored combinations mean bad results of optimization. The

parameter studies are performed for the case studies described in section 3.4. Without

loss of generality, the value of k; is scaled with the maximum value of the diagonal

stiffness k, in the continuum element. The suggested values of these parameters are in
the following:

- The upper bound & is dependent to the problem definition. But, the value of

0.3 or 0.8 yields satisfactory results generally.

- The value of k, ranges between 1 to 10* times smaller than the diagonal
stiffness of the continuum element yields satisfactory results always if ¢ is
properly chosen, but the value lower than 0.1k, is suggested because the spring

element can perturb the stiffness in the continuum domain otherwise.
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Fig. A.1 Parameter study results of the tuning parameters, k, and &, for the example in

Fig. 3.4

Fig. A.2 Parameter study results of the tuning parameters, k, and &, for the example in

Fig. 3.6
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Fig. A.3 Parameter study results of the tuning parameters, k, and &, for the example in
Fig. 3.8

Fig. A.4 Parameter study results of the tuning parameters, k, and &, for the example in

Fig. 3.10
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A.2. Standard topology optimization results under pre-determined loading
for the 2D wheel loader case in Fig. 3.10

All of the results investigated by the standard topology optimization for the pre-
determined load applied at every candidate loading locations are summarized in Fig. A.5
~A.6. The entire results have 16 topology optimization sets and the efficiency of the
proposed simultaneous optimization can be calculated directly from the sum of cost of
the entire pre-determined loading cases.

- Sum of the cost for all of pre-determined loading: 13,583 sec

- Simultaneous optimization of a loading point and structural topology: 1,650 sec
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________________________________________________________________________________________________________________________________________

Fig. A.5 Standard topology optimization results under pre-determined loading for the 2D

wheel loader case in Fig. 3.10: m'~ m°
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Fig. A.6 Standard topology optimization results under pre-determined loading for the 2D

wheel loader case in Fig. 3.10: m’~ m*
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Appendix B.

Case studies of the simultaneous optimization of multiple loading

locations and structural topology

Case studies for the multiple loading determination problems will be demonstrated in this

section. Two kind of typical example are as follows.

B.1. Two optimal loading locations under symmetric condition

The problem depicted in Fig. B.1(a) is the same structural design domain with extended
loading domain. The loading domain is composed of 189 possible loading points inside
the structural design domain. The applied load is acting vertically. Informations of finite

element modeling, material properties and optimization parameters are listed below.

The bottom side ends are simply supported.

- The structural domain: 96x96 4-node plane stress elements. Thickness=10 mm.

- Young’s modulus E; =210 GPa and Poisson’s ratio v =0.3.

- Candidate loading points are horizontally equally spaced from the 33" node to
the 65™ node to the positive x-direction so as to be totally 9 candidate points in
the x-direction.

- Candidate loading points are vertically equally spaced from y=0 to y=1000 to

the positive y-direction so as to be totally 21 candidate points in the y-direction.

- The nominal value of k, is 10™ times smaller than the diagonal stiffness of the
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continuum element.

- The constraint are V" =10% and S(p)<1

- Density filter with filter radius, rmin=2.

- Initial values of all design variables are settobe p, =v* and u=1/N,.

- The upper bound value of §=0.7. This value should be selected to be feasible if
load design variables converges to the value, x# ;=05 and x ;=05 (= j).

Figure B.1(b) shows the optimization results. Note that x,=05 and u ,,=05 . The

structural compliance in the structural domain is much lower than the value in Fig. 3.4(b)
(2.361 vs. 3.299). This is evident because distributed load is more favorable for the

structural compliance.

P = 1000N
96 x 96 POS?ible
mesh L oot
N,=189
100005t 1000mm
A
y

A > U

(a) (b)

Fig. B.1 Two optimal loading points under symmetric loading condition: (a) Design
domain with prescribed load/boundary conditions, (b) the result by the proposed
simultaneous optimization method.
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B.2. Two optimal loading locations determination problem

The problem depicted in Fig. B.2(a) is the design domains for the two optimal loading
locations determination. In the symmetric model or simple loading model, the optimal
loading points tend to be split into outside locations; therefore, special design domain is
as devised as the optimal loading points to be split. The loading domain is composed of
26 possible loading points on the top line of the structural design domain. The applied
load is acting vertically. Informations of finite element mode ling, material properties and
optimization parameters are listed be low. Data are the same as the case study B.1, unless
otherwise specified.
- The structural domain: 100x50 4-node plane stress elements.
- Candidate loading points are horizontally equally spaced from x=0 to x=2000
on the top line (y=1000) to the positive x-direction so as to be totally 26
candidate points in the x-direction.
- Non-design domain: X;=(0, 500), X,=(700, 900), X;=(1200, 500), X,=(1600,
900)
- Candidate loading points are vertically equally spaced from y=0 to y=1000 to

the positive y-direction soas to be totally 21 candidate points in the y-direction.

_ The constraint are V" =30% and S(m)<£2

- Density filter with filter radius, rmin=1.3.

- The upper bound value of &6=0.6. This value should be relaxed because two

loading points are to be determined.
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Figure B.2(b) shows the optimization results. Note that , =10 and . ,=1.0. Note that

while the load design variables are equally converged to 1.0, the loads transmitted by the

load design variable are different due to the support condition. The load transmitted by

the u, isabout374 and ,,, 626.

P =1000N

X2 X4
Xu 1000mm

X 3
y 40 x 100 mesh

s =10, =10

N,=21
X
2000mm C,=2.408
(a) (b)

Fig. B.2 Two optimal loading points under two applied load: (a) Design domain with
prescribed load/boundary conditions, (b) the result by the proposed

simultaneous optimization method.
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