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ABSTRACT

Unified Higher-Order Beam Analysis
for Multiply-Connected Thin-walled
Box Beams

Soomin Choi
School of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

Both the consideration of significant higher-order deformation degrees and the
derivation of exact matching conditions among field variables at a joint are
required to establish a one-dimensional beam model applicable to thin-walled box
beam systems. Especially when three or more box beams are multiply-connected at
a joint, significantly flexible behavior is observed near the joint that dominates the
structural responses of the entire system. Moreover, the flexibility of the joint
varies considerably depending on the number of beam members connected at the
joint and the joint angles among the members. Because of the difficulties, no one-
dimensional beam analysis method has yet been proposed that can capture the

structural responses of the box beams-joint systems accurately. With this



background, this study proposes a unified one-dimensional higher-order beam
analysis approach for the first time that is applicable to the multiply-connected box
beams-joint systems under both out-of-plane loads and in-plane loads. It is worth
mentioning that the concept of so-called “edge resultants” as well as conventional
(sectional) resultants are employed to derive physically correct equilibrium
conditions at a joint and that the exact joint matching conditions are theoretically
derived by applying an energy method to the equilibrium conditions. The derived
matching conditions are valid even when any number of beams meet at any angle.
In addition, higher-order deformation degrees (e.g. bending warping, bending
distortion, and etc.) are newly introduced or redefined that are essential to represent
the exact joint flexibility of considered systems. The accuracy and validity of the
proposed analysis method are checked by comparing the present approach based

results and the shell analysis results for various box beams-joint systems.

Keywords: thin-walled box beam, higher-order beam theory, joint equilibrium,
joint matching condition
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Fig. 6.9 Cross-sectional deformations which are coupled with the rigid-body

rotations at a joint: (a) torsional distortion y, (b) bending warpings Wll,
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CHAPTER 1.
OVERVIEW

Thin-walled closed beams show relatively high bending and torsional rigidities
compared to other types of beams with identical mass, and thus those beams have
been widely used as principle load carrying members of automotive body
structures to meet the requirements of lightweight vehicle design. Because of their
hollow cross-section, however, cross-sectional deformations are easily accompanied
when those beams are deformed, and the cross-sectional deformations cause highly
flexible and complicated behavior of the thin-walled closed beams. Especially
when three or more thin-walled closed beams meet at a joint, the cross-sectional
deformations of those beams are further amplified near the joint, and thus
significantly flexible behavior determining the rigidity of whole structure is
observed near the joint. Meanwhile, classical beam theories such as Euler or
Timoshenko beam theory cannot deal with those significant flexibilities caused by
cross-sectional deformations, and for this reason, and for this reason, some
difficulties that the classical beam theories overestimate the stiffness of automotive
body structure, e.g. under body structure and side frame shown in Figs. 1(a, b) have
been founded (one can see those difficulties by comparing the classical beam
analysis results with the accurate results obtained by ABAQUS shell analysis given

in Figs. 2(a, b)).



(@) (b)

Fig. 1.1 multiply-connected thin-walled beam structures (a) underbody structure,
(b) side frame.

From those difficulties of the classical beam theories, there have been efforts
to develop one-dimensional beam analysis applicable to multiply-connected thin-
walled closed beam structures such as automobile body structures. Initial studies
employed the classical beam theories and expressed the joint flexibilities by
introducing some artificial joint models composed of rigid sections and rotational
springs. Thereafter, some analysis approaches based on the classical beam theories
introduced joint stiffness elements obtained from the detailed shell joint model as a
way to involve the joint flexibilities in their approaches. Recently, higher-order
beam theories considering significant cross-sectional deformations as additional
degrees of freedom have been developed, and some analysis method theoretically
expressing the joint flexibilities without using artificial concepts have been
proposed based on the higher-order beam theories (the detailed descriptions with
respect to those previous studies are given in Chapters. 2~4). Despite all these

efforts, however, there is no one-dimensional beam analysis method consistently
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applicable to various multiply-connected thin-walled closed beams because the
flexible responses of the joints vary considerably depending on the number of
beams connected to the joint, the joint angles among those beams and the
dimensions of cross-sections of those beams. With this background, therefore, a
higher-order beam analysis method consistently applicable to various multiply-
connected thin-walled box beams will be proposed for the first time in this study.
The underbody structure of vehicle subjected to out-of-plane loads is shown in
Fig. 1(a), and the torsional rigidity of the underbody structure can be evaluated
under the given boundary condition. To exactly interpret multiply-connected box
beams under out-of-plane loads such as the problem given in Fig. 1(a), the higher-
order beam theory considering torsional warping and distortional deformations of
box beam cross-section as independent field variables in addition to rigid body
motions of cross-section, i.e. vertical displacement, bending/shear rotation and
torsional rotation is employed in this study. The key is finding exact matching
conditions among all field variables of the box beams meeting at a joint. To
determine theoretically correct joint matching conditions, we first derive exact
matching conditions for two box beams meeting at an angled joint of magnitude ¢,
the joint matrix T(¢) representing joint matching conditions is exactly derived by
considering some essential conditions which T(¢) must hold, and the detailed
procedures are given in Chapter 2. Subsequently, the equilibrium conditions at a
joint of multiply-connected box beams among generalized forces, which are work

conjugates of the field variables, are derived from the joint matrix T(¢), and



consequently the desired joint matching conditions for multiply-connected box
beams are exactly derived by applying energy method to those equilibrium
conditions (the detailed procedures are given in Chapter 3). Observing the results
shown in Fig. 2(a), one can find that the proposed one-dimensional analysis can
interpret the response on the underbody structure as accurately as ABAQUS shell
analysis.

The side frame of vehicle subjected to in-plane loads is shown in fig. 1(b), and
the bending rigidity of side frame can be calculated through the given boundary
condition. One-dimensional analysis method for multiply-connected box beams
subjected to in-plane loads such as the problem given in Fig. 1(b) is also developed
in this study based on the approaches established in those studies concerning out-
of-plane loads. Because the significant cross-sectional deformations inducing the
joint flexibilities of multiply-connected box beams under in-plane loads are not
clearly found, the cross-sectional deformations such as extensional warping,
extensional distortion, bending warping, bending distortion and etc. are
theoretically derived in this study, and a higher-order beam theory considering
those cross-sectional deformations as independent field variables in addition to the
rigid body motions of cross-section, i.e. longitudinal displacement, transverse
displacement and in-plane bending/shear rotation is newly established (the details
can be found in Chapter 4 and 5). Thereafter, the joint matrix T(¢) representing the
joint matching conditions for two box beams meeting at an angled joint of

magnitude ¢ under in-plane loads is exactly derived by considering some essential



conditions T(¢) must hold; in in-plane loading case, more considerations and cares
are required because more cross-sectional deformations of further complicated
deformation patterns are considered, and the detailed procedures are given in
Chapter 4. Equilibrium conditions of generalized forces at a joint of multiply-
connected box beams under in-plane loads are exactly derived from the matrix
T(¢), and exact joint matching conditions consistently applicable to multiply-
connected box beams under in-plane loads are theoretically derived by applying
energy method to those equilibrium conditions; the details are given in Chapter 5.
Observing the results given in Fig. 2(b), one can also find that the proposed method
can interpret the behavior of side frame as accurately as ABAQUS shell analysis.
As mentioned above, an exact higher-order beam analysis method for
multiply-connected thin-walled box beams is newly developed in this study. In
addition, theoretically correct equilibrium conditions of generalized forces and
matching conditions of field variables at a joint of multiply-connected box beams
are determined for the first time. The proposed derivation approaches of those
conditions are expected to be an important building block for expanding the scope
of structures that can be interpreted by using the higher-order beam analysis to

multiply-connected three dimensional thin-walled closed beams.



CHAPTER 2.
Higher-Order Beam Analysis for Two Box Beams-
Joint Systems Subjected to Out-of-Plane Bending

and Torsion

2.1 Introduction

This work is concerned with the analysis of thin-walled box beams connected
through angled joints under out-of-plane bending and torsion as depicted in Fig. 2.1.
The analysis will be carried out by higher-order beam theories that employ five

kinematic variables representing sectional warping (U ) and distortion ( ) in

addition to the standard Timoshenko kinematic variables such as vertical bending

deflection (7 ), bending/shear rotation ( S ), and torsional rotation (). The

displacements or deformations of the cross section of a box beam corresponding to
the five kinematic variables are illustrated in Fig. 2.2. The importance of
considering warping and distortion in thin-walled closed beams has been addressed
in earlier investigations [1-9] and several forms of higher-order theories have been
developed for straight box beams [1, 3, 5, 8, 10, 11].

Nevertheless, there is no box beam theory based theoretical method to exactly
match the degrees of freedom at an angle joint where two straight box beams are
connected. The significant local effects appearing near joints of thin-walled box

beams have been pointed out in several investigations [12—16]. The joint-related
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Fig. 2.1 Thin-walled box beams connected at an angled joint.

investigations using a higher-order beam theory were first given by Jang et al. [17-
19], but the approach used an approximate technique that minimizes the difference
between three-dimensional displacements in the sections of two beams connected
at an angled joint. On the contrary, we aim to derive the exact condition relating
the field variables of one box beam to those of another box beam at the joint using
a higher-order beam theory [20].

In deriving the joint matching condition, we will employ the higher-order
beam theory given in [17] which employs the above-mentioned five field variables.

The joint matching condition can be expressed by a 5x5 transformation matrix

T(¢) (¢: joint angle) relating U, and U, as U,=T(¢)-U, where U, =
{V, B, 0, U, ;(}; (p=1, 2)is the field variable vector of Beam p. For a later use,

we introduce the symbol Fp = {P, M, H, B, Q}; to denote the generalized force

vector, which is the work conjugate of U, . Here, P, M, and H denote vertical



shear force, bending moment, and twisting moment, respectively. Note that they all
have resultants. On the other hand, the bimoment B and transverse bimoment Q
have no resultant, i.e., they represent self-equilibrated terms. In case of the Euler or
Timoshenko beam, a 3x3 transformation matrix involving only {V, S, 8} can
be derived only by considering equilibrium conditions. Since warping and
distortion that are self-equilibrated deformations are also used in a thin-walled box
beam theory, however, additional conditions must be used. To derive all
components of the 5x5 T matrix, we propose to consider the following three

additional conditions in addition to the equilibrium conditions.

(1) Because B, and Q, have no resultant, P,, M,, and H#, should not be
coupled with B, and (), at the joint of two box beams.

(2) At the so-called intersection points of two box beams at an angled joint,
the three- dimensional displacements should be continuous.
(3) A fundamental transformation rule T(¢)-T(—¢)=1 (I: identity matrix)

must be satisfied for any value of ¢.

(4) Another fundamental transformation identity T(¢)-T(¢)=T(2¢) must
hold.
Conditions (3) and (4) seem to be trivial, but they play critical roles in determine
all 5x5 elements exactly.

To check the validity of the derived transformation matrix T(¢), two case



problems will be examined. Because the problems to be considered were also
solved by an approximate method, the accuracy by the present exact condition may
be better demonstrated. The converged finite element results obtained with the

ANSYS shell elements [21] will be used as the reference results.

2.2 Higher-Order Beam Theory for Straight Box Beams

A higher-order beam theory for a rectangular box beam in [10, 17] will briefly
explained as a basis for all subsequent analyses. As depicted in Fig. 2.2, each edge

has its own coordinate (7, s); the tangential coordinate, s, is measured along the

contour (or center line) of the wall starting from the center, and the normal
coordinate, n, is measured by the outward normal distance from the contour. The

three-dimensional displacements of a point on the contour can be expressed in
terms of the five one-dimensional field variables, U={V, B, 6, U, y}',as
u,(s,2) =y, V(@) +y) ()B(2) +y, ()0(2) +y, (U (2) +y () x(2) (2.1a)
u (s,2) =y (HV (@) +y! ()P +y! ()02 +y ! (HU(2) +y () x(z) (2.1b)
u.(s,2) =yl (W (D) +ywl () BE) +y ()02 +y! (HU ) +y () x(z) (2.1¢)
where z is the axial coordinate, and u,, u,, and u. are the tangential, normal, and
axial displacements of the point on the contour, respectively. In Eq. (2.1), w/(s)
(i=n,s,z;a=V, B, 0, U, y) represent the deformation of the cross section

along the i-coordinate corresponding to the unit magnitude of field variable « .
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Fig. 2.2 (a) Coordinate system and (b—f) displacements/deformations of the beam
section corresponding to the field variables (V, g, 6, U, y).

The explicit expressions of y“(s) are given in Appendix.
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contour by n on the cross section, {i,, u_, i_} , can be written as

u(n, s, z)=u/ s, z)—n

i,(n, s, z)=u,s,z)=y, V+yl - 0+y’ yx

du,(s, z) B

ds
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i (n,s,z)=uls,z)=y’ -B+y. U (2.2¢)
where the term (—n du (s,z)/ds) in Eq. (2.2b) is needed to consider the bending

effect of the cross-section wall.

One can derive the expressions for the dominant components of strain from

{gss > €

sz

&.} Eq.(2.2a) and stress {0, O

sz

o_} by using constitutive relation.

Then, from the principle of minimum potential energy, one can derive the

governing equations for V, £, 6, U, and y (see [10, 17] for the explicit forms
of equations) and also define the work conjugates of the field variables, F =
{P,M,H, B, Q}":
PZJ.O'ZSl//:dA , M :J.UZZl//fdA , H ZJ.GZSl/lfdA ,
4 y 4

2.3)
B= J.azzy/sudA , 0= J.azsl//fdA
A A4

As defined in Introduction P, M, H, B, and O denote the one-dimensional

force measures representing vertical force, bending moment, twisting

moment, bimoment, and transverse bimoment respectively.

2.3 Derivation of the Exact Joint Matching Condition

Thin-walled box beams (indicated by Beam 1 and Beam 2 in Fig. 2.1) meet each

other at an angle of ¢ inthe x—z plane. The relation between the field variable

vector U, of Beam 1 and U, of Beam 2 may be expressed in terms of a

12



transformation matrix T(¢) such that

U, =T($)U, (4.42)
or
V tll tlZ t13 t14 tlS V
ﬂ t21 t22 t23 t24 125 ﬁ
9 = t31 t32 t33 134 t35 9 (44b)
U t4l t42 ZL43 t44 t45 U
l 2 _t51 t52 153 t54 t55 J Z 1

The matrix T depends not only on ¢ but also on the box beam geometry (such

as b (width), & (height), and ¢ (thickness) defined in Fig. 2.1), but it will be simply

written as T(¢) to emphasize its dependence on ¢ .
Before using the four propositions given at the end of Introduction, we first

recall the well-known relation. If U, and U, arerelated by T(¢) by Eq. (2.4a),
F, and F arerelated as
F,=TF =T " ($)F, (2.5)

Equation (2.5) is the direct consequence of the virtual work conservation at the

joint such that
F'sU, =F,sU, (2.6)
where U, denotes the variationof U, (p=1, 2).

Another well-known relation is the force/moment equilibrium at a joint:
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P 1 0 0 P
My =10 cos¢g —sing|{M 2.7)
H 0 sing cos¢g ||H

2 1

Because B and (Q represent self-equilibrated bimoments, they do not

appear in the equilibrium relation, Eq. (2.7). Now let us consider the four

conditions proposed in Introduction to determine all of the 5x5 components of

T($) [20].

2.3.1 Proposition 1: Consideration of No Resultant by B and Q

First of all, we observe that torsional ( B) and transverse (Q ) bimoments are in a
state of self-equilibrium. This observation implies that the generalized force terms

(P, M,, H,) in Beam 2 should not be affected by the self-equilibrated force

terms (B, Q,) of Beam 1. Therefore, the relations between F, and F, should be

written as
Pl [t 0 0 0 ojP
M 0 cos¢g —sing EO Oi M
Hp =[0 sing cosg 10 03 H (2.8)
Bl |o o o o ollB
0], ¢ o o o o]0,

In Eq. (2.8), the zeros appearing inside the dotted rectangle are the consequences of

the above-mentioned observation while 10 solid circles represent the elements to

be determined. Noting that the transformation matrix appearing in Eq. (2.8)is T ,

14



which is equal to T by Eq. (2.5), one can show that the matrix T must take

the following form;

1 0 0 t, t
0 cos¢ -—sing t, t,
T=|0 sing cos¢g ¢, ¢, 2.9
0 0 0 Ly s
0 0 0 t, t

where the ten components of that the matrix T (¢,, ¢, ) are the quantities

142

that cannot be determined from the equilibrium consideration.

2.3.2 Proposition 2: Three-Dimensional Displacement Continuity

at the Intersection Points

In theory, the three-dimensional displacements at every point of the common
interfacing region of Beams 1 and 2 should be continuous. However, it is not
possible to strictly impose the continuity condition because only a finite number of
one-dimensional field variables are used in the box beam theory. To use the one-
dimensional beam theory for the joint, let us consider the top view of the connected
beams in the x—z plane in Fig. 2.3(a). Here, two beams are assumed to penetrate
each other so that the centers of the cross sections of the two beams meet at Point 4.
From the three-dimensional view of the cross sections shown in Fig. 2.3(b), in fact,
two beams meet at 4 and B. Note that Points 4 and B lie on Edge 2 and 4 of the

contours (center lines) of two beam cross sections, respectively.

15 ;
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Cross section 2

U, = {szﬂzyoz,Uzylz}
"1

Cross section 1 &
U, = {Vpﬂvap(]pll}

Fig. 2.3 (a) the top view of the beam centerlines in the x—z plane with an
indication of the assumed common intersection point 4 (b) beam cross sections
passing though the common intersection points 4 and B (The generalized force
quantities having non-zero resultants are shown.).

Let us now consider the three-dimensional continuity at 4:

(1;Z e+ ﬁsgv + ﬁzgz )Beam 1 = (ﬂngn + ﬂsgv + ﬁzgz )BeamZ (2 10)

16 rhy B o
M2 &t



where ¢ is the unit base vector along the local coordinate axis ¢ (g =n, s, z).

and e

Beam 1 ~4 | Beam

Using the relation between ¢,

, (see Fig. 2.3(b))

g" Beam 1 = g” Beam 2 (2 1 la)
s lpeam1 = s leam 2 €08 ¢ 7 lpeam 2 sin ¢ (2' 1 lb)
€ leam1 — S lpeam2 Sin¢ te, Beam 2 COS¢ (2' 1 lc)
the displacement components of Beams 1 and 2 are related at 4 as
7 [Beam 2 = IZ” Beam 1 (2 123)
0|y, =0, cosg+i |  sing (2.12b)
i, =~ U | SIN@G+i | cos@ (2.12¢)

To find the relations between U and U, from Eq. (2.12), Eq. (2.2) and the

formula in Appendix are used to calculate the displacement components at Point 4

of Beams 1 and 2:

. i . h, bh  _ h

PointA|  :u, =V, u :EHI —ml.a U, :Eﬂ] (2.13)
: _ . h bh _h

PointA|, i, =V,, i, =202 =B, (2.14)

Substituting Egs. (2.13, 2.14) into Eq. (2.12) and using Eq. (2.4) with T in Eq.

(2.9) yield

v, =7, (2.15)
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2b

t,, =0, t,, = sin ¢ (2.16)
2b 2b
134 thsw f35 Zm(lss —COS¢) (217)
Inserting the results in Egs. (2.15—2.17 ) into T(¢) in Eq. (2.9) gives
10 0 0 0 ]
2b
0 cos¢g -—sing 0 sin ¢
b+h
T(¢) = : 2b 2b (2.18)
0 sin oS —t, —(t..—cos¢)
’ P en panls Y
0 t44 t45
_O 0 0 t54 ISS J
Now T(¢) has only 4 undetermined components: ¢,,, f,,, ¢, and ¢;.

2.3.3 Proposition 3: Use of the Relation T(¢) - T(-¢) =1

Here, we use a fundamental relation T(¢)-T(—¢)=1 where I is an identity
matrix. To find T(—¢), the schematic figures shown in Fig. 2.4 will be used.
Figure 2.4(a) shows two beams connected at a positive angle of ¢ while the first
figure in Fig. 2.4(b) sketches two beams connected at a negative angle, —¢. As
indicated in Fig. 2.4(b), the two beams connected at a negative angle may be
viewed as two beams connected at a positive angle of ¢ in a rotated coordinate
system (X, y,z) by 180" from the ( x, y, z) coordinate system such that

X=-x,y=—y,andz =z (2.19)

18



U,= T(_¢)U1

(b)

(©

Fig. 2.4 Description of the procedure to obtain T(—¢): (a) T(¢) relation for a
positive ¢ (b) T(—¢) defined for a negative ¢, which can be derived from T(¢)
defined in a different coordinate system.

If the field quantities defined in the (X, y,Z) coordinate system are denoted by

U= {17, ,3, 6, U, 71", the relation between U, and sz is given by
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U, =T($)U, (2.20)
By examining the section displacements or deformations shown in Figs. 2.2 (b—f),

one can show that
V=-V,B=-B, 0=0,W=W, j=y 2.21)
To find the last two relations in Eq. (2.21), one must note that the deformation

patterns of W and y shown in Figs. 2.2 (e; f) under the rotation produce the
same deformation patterns, resulting in W =W and 7 = y. Substituting Eq.
(2.21) into Eq. (2.20) and doing some algebra to write Eq. (2.20) as U, =

T(-¢)U, where U={+V, +5, 0, U, ;(}T,one can identify T(-¢) as

10 o o0 o] [t o 0 0 0 |
0 cos¢g sing —t, -—t, 0 cos¢g sing 0 —2-sin ¢
T(-¢)=|0 —sing cos¢ ¢, t, |=|0 —sing cos¢ =i, =(t, —cosg)
0 0 0 ¢, .| |0 o0 0o 1, ‘,
K 0 0 L, t, | |0 0 0 L, t, ]
(2.22)

To use the fundamental transformation relation of T(g@)-T(-¢)=1, we

multiply T(¢) in Eq. (2.18) and T(-¢) in Eq. (2.22):

1 00 0 0 1 0 000
01 0 0 0 01 0 0O
T(#) - T(-¢)=|0 0 1 2Lt (t,+t,) 2@, +t,t,-)|={0 0 1 0 0
0 0 0 £, +t.t, t,o(t, +1) 00010
10 0 0 1,0, +t,) fi+tt, | [0 0 0 0 1
(2.23)
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From Eq. (2.23), the following four relations for the undetermined components (¢, ,

etc.) are derived:

t,, +t.t, =1 (2.24a)
1, +15)=0 (2.24b)
t,(t, +1)=0 (2.24¢)

t2 4+t t, =1 (2.244d)

The solutions that satisfy Eq. (2.24) may not be unique. To deal with this issue, a
fundamental multiplication relation valid for any transformation matrix is used as

the following proposition, Proposition 4.

2.3.4 Proposition 4: Use of the Relation T(¢)-T(4) =T(2¢)

Finally, we consider another fundamental relation, T(¢)-T(¢) = T(2¢). By using

Eq. (2.18), one can write T(¢)-T(#) explicitly as

1 0 0 0 0
0 cos(2¢) —sin(2¢) 0 2b-sin(2¢)
T(@)- T(@)=|0 sin(2¢) cos(2¢) %tﬂ (t, +1t5) %((t:5 +1,t,5)—cos(2¢))
0 0 0 1+t t,(t, +1t)
|0 0 0 t,(t, +1) to +t, s, ]

(2.25)
Observe that the expressions involving ¢,,, ¢, t,, and ¢, in Eq. (2.25) are

44> bas> bsao

exactly the same as those derived as Eq. (2.24) from Proposition 3. Therefore, one
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can finally express T(2¢) =T(¢) - T(¢) as, without any unknowns,

1 0 0 0 0
0 cos(2¢) —sin(2¢) 0 Z2-sin(2¢)
T(2$)=| 0 sin(2¢) cos2g) 0 2= (1—cos(2¢)) (2.26)
0 0 0 1 0
0 0 0 0 1 |

Putting ¢ instead of 2¢ in Eq. (2.26) yields the exact expression of T(¢) such

that
4 2 B () 0 0 0 4
yij yij 0 cos¢g —sing 0  Zsing B
Or =T(#)16 =[0 sing cosg 0 Z(1-cosg)|q60; (227)
U U 0 0 0 1 0 U
X, ), [0 0 0 0 1 1),

Equation (2.27) shows that the distortion ( y,) of Beam 1 affects the bending/shear
rotation ( f3,) and torsional rotation ( ¢,) of Beam 2 at the joint. On the other hand,
the warping (U,) of Beam 1 is not coupled with any other deformation but is

directly transmitted only to the warping (U, ) of Beam 2. Although the final form

of the transformation matrix T of the thin-walled box beam theory is simple and

compact, the exact derivation is given here for the first time.

2.4 Numerical Examples

Two case studies, considered earlier by Jang et al. [19], will be performed to
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demonstrate the accuracy and validity of the derived transformation T . The
present T matrix will be used in the one-dimensional finite element method
employing the five kinematic variables. Since the higher-order box beam finite
element implementation is a standard procedure, the detailed steps to obtain the

numerical results will be omitted.

2.4.1 Case Study 1: Two Box Beams Connected at an Angled

Joint

As the first case study, the beam structures shown in Fig. 2.1 are analyzed for

various joint angles ¢ and aspect ratios of the cross section. Some of the beam

dimensions are fixed to be r=2mm and L=1000 mm and the material
properties are £ (Young’s modulus) =200 GPa and v (Poisson’s ratio) = 0.3. The
one end of the structure is clamped and the other end, denoted as C, is subjected to
a vertical force, P =100 N. The cross section C is assumed to be rigid ( no
warping or distortion). To check the accuracy of the present approach using the
derived T matrix, the displacements obtained by the proposed approach are
compared with those by ANSYS shell elements [21]. The results are also compared
with those based on the same higher-order beam theory incorporating the joint-
displacement minimization technique (Jang et al. [19]). Also, the displacements by
the standard Timoshenko beam elements are plotted for comparison.

Figure 2.5 shows the axial distributions of the five field variables for the case of
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b=50mm, h=100mm, and ¢ =60". The numbers of the discretizing finite
elements are 60 for the present beam analysis and 3,960 for the shell analysis. In
Fig. 2.5, the results by the present approach are virtually identical to those by the
shell calculation while the Timoshenko beam results are quite off from the shell
results. Two-beam structures having different joint angles were also investigated
and the numerical results are plotted in Fig. 2.6 and Fig. 2.7. The responses of the
field variables for different aspect ratios of the cross section, =50 mm and
h =150 mm are also illustrated in Fig. 2.8. The results by the present approach
agree well with the shell element results compared with the results by the
Timoshenko theory and those by Jang et al. [19]. Although not presented here, the
present approach was shown to produce accurate results for box beams of different

aspect ratios with various joint angles.
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Fig. 2.9 A thin-walled beam structure having three angled joints under a bending
moment M (L = Lo =Lz =Ls= 1000 mm, ¢ =—45°, ¢ =20°, M=—-100 Nm).

2.4.2 Case Study 2: Four Box Beams Serially Connected at

Angled Joints

Figure 2.9 illustrates a structure of four thin-walled box beams connected at three
joints. The dimensions of the cross sections of all beams are 5 =50 mm,
h =100 mm, and ¢ =2 mm . The material properties are the same as those in the
previous case study. The one end of the structure is clamped while the other end is
subjected to a bending moment, M =100 N-m. The cross section of the loaded
end is assumed to be rigid. Figure 2.10 shows that the axial variations of
V, B, 0, U, and y . Unlike the results predicted by the approach by Jang et al. [19]
or the Timoshenko beam theory, the present results match the shell finite element
results well. The studies with beams of other cross sectional geometries and joint
angles also confirmed the superior accuracy of the thin-walled beam analysis using

the exact transformation derived in the present work.
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2.5 Conclusions

The transformation matrix relating the field variables of a higher-order thin-walled
box beam theory at angled joints was derived in an exact form. The proposed
conditions to determine unknown elements of the transformation matrix were
shown to be sufficient for box beams connected at angled joints that are subject to
out-of-plane and torsional loads. With the derived matrix, we were able to explain
the interaction between the field variables of the two beams connected at an angle
joint. Specifically, the distortion of one beam is coupled with the bending/shear and
torsional rotations of the other while the warping deformation of one beams is not
coupled with other field variables of the other beam but only with the warping
deformation of the other beam. The present derivation of the joint matching
condition is expected to serve as an important building block to expedite the
research on higher-order beam theories for arbitrarily-shaped, connected thin-

walled beams.

Appendix
The section shape functions  ’s are explicitly given. The index j indicates the

edge number of the beam cross section.

w, (s,)=0 (j=1,3) and (-D""? (j=2, 4 (2.A1)
w! (s)=(DY"? (j=1,3) and 0 (j=2, 4 (2.A2)
w!(s)=0, w'(s)=0, yw'(s)=0 (2.A3,4,5)
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v’ (s,)= (D", (j=1, 3) and (—1)“’“% (=24 (2.A6)

w! (s,)=-s, (2.A7)
0 b . ho
v, (S‘,-)=5 (/=1, 3) and 5 (J=2,4) (2.A8)
w!(s)=0, v,/(s)=0, v/ (s)=0 (2.A9, 10, 11)
v b . h .
V. (sj):Esj (j=1, 3) and —Esj (j=2,4) (2.A12)
wis) e 2R 13y and — 0 22 g
’ h(b+h) ' b+h ’ b(b+h) = b+h '’
(2.A13)
bh bh
“(s)=—— (j=1,3) and —— (j=2, 4 2.A14
w!(s)) i (Jj ) D (J ) ( )
w’(s,)=0 (2.A15)
where
h h b b
-—<5,s, < and ——<5,,5, <—
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CHAPTER 3.
Higher-Order Beam Analysis for Multiply-Connected
Box Beams-Joint Systems Subjected to Out-of-Plane

Bending and Torsion

3.1 Introduction

The behavior of thin-walled box beams is quite flexible in comparison with the
analysis result obtained by classical Euler and Timoshenko beam theories (see, e.g.
[1, 2]) because cross-sectional deformations not covered by those classical theories
easily appear in thin-walled box beams. Especially when those box beams meet at a
joint, the magnitudes of cross-sectional deformations near the joint region are
further amplified, and that causes the joint region to exhibit significant flexibilities.
For this reason, the behavior of thin-walled box beam structures having joints
shows big difference from the predicted result based on the classical beam theories.
To overcome the difficulty that the classical beam theories overestimate stiffness
for thin-walled box beam structures (or members), researchers have developed one-
dimensional higher-order beam theories [3-10] that consider cross-sectional
deformations as independent degrees of freedom. Because higher-order
deformations such as warping and distortion do not produce any resultants,
determining the joint matching relations among all the degrees of freedom of box

beams connected at a joint is a difficult problem. Especially when the box beam
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structures are subjected to out-of-plane bending and torsion, distortion is found to
be complicatedly coupled with other degrees of freedom at the joint. However,
there has been no dedicated research to investigate how they are coupled. In fact,
there is no exact analysis method based on higher-order beam theories that is
applicable to structures with “three” or more thin-walled box beams subjected to
out-of-plane loads that are connected at a joint. With this background, we propose
an exact analysis approach for the first time, applicable for cases of three or more
box beams-joint structures under out-of-plane loads.

First, it is worth mentioning the previous researches trying to express the joint
flexibilities of thin-walled box beam structures by using one-dimensional beam
theories. Initial studies based on the classical beam theories introduced some joint
models with rotational springs to account for those flexibilities [11-13]. El-Sayed
[11] proposed a joint model with torsional springs to represent the flexible
responses of a joint under out-of-plane loads, and Lee and Nikolaidis [12] proposed
a joint model consisting of springs and rigid sections to consider additional joint
coupling effects. Thereafter, Becker et al. [14] suggested a method using structural
dynamics for evaluating the stiffness of a joint. Recently, Refs. [15, 16] proposed
joint concept modeling approaches reducing the shell element based detailed joint
into a super element through static or dynamic reduction techniques. However, the
joint flexibilities caused by the cross-sectional deformations vary considerably
depending on both the number of box beams connected to the joint and the joint

angles among those box beams, and thus it is difficult to develop a consistent joint
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model applicable to various joints by using the classical beam theories.

If there existed a beam theory considering the significant cross-sectional
deformations as additional degrees of freedom, one can capture the flexible
responses of thin-walled box beam members or structures without employing any
artificial concepts. Vlasov [3] theoretically defined the warping deformation
resulting from twisting moment as a sectorial coordinate, and established a beam
theory for thin-walled beams including the warping as the additional degree of
freedom. To handle stress analysis, buckling analysis, dynamic analysis, etc., by
advanced beam theories, several analytic or semi-analytic methods have been
proposed such as an approach based on Saint Venant’s theory [17, 18], the
variational asymptotic method [19-21], Carrera’s unified formulation [22, 23], and
the GBT cross-section analysis [24, 25]. Especially for thin-walled closed section
beams including thin-walled box beams, Kim and Kim [6, 26-29] developed a
higher-order beam theory interpreting torsional behavior of those beams correctly.
In this regard, they recognized the importance of considering accurate distortional
deformations in addition to the warping deformations and proposed a semi-
analytical method to determine those cross-sectional modes. In recent years,
developments of higher-order beam models have been reported to analyze the
stress distribution or nonlinear behavior of thin-walled box beam members.
Genoese et al. [8, 30] proposed a mixed beam model considering warping modes
derived from their Saint Venant theory based approach and having a mixed

formulation with the independent description of stress and displacement fields.
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Ferradi and Cespedes [9, 31] proposed a method calculating distortion modes
through the modal analysis of cross-section decomposed with beam elements and
derived relevant warping modes by using their proposed equilibrium scheme.
Vieira et al. [10, 32] derived a generalized eigenvalue problem calculating
uncoupled warping modes through the assumption of in-plane rigid cross-sections
and suggested a higher-order beam model considering those warping modes.

As higher-order beam theories including the effects of cross-sectional
deformations were established, efforts to theoretically express the joint flexibilities
of thin-walled beam structures have been followed. Especially concerning the joint
of thin-walled open section beams, many researches defining the compatibility of
degrees of freedom have been proposed [33-38]. Vacharajittiphan and Trahair [33]
investigated the warping restraint/transmission at the joint of two I-section
members and found the influence of distortion on the warping transmission.
Baigent and Hancock [34] determined the equilibrium condition at the joint of two
asymmetric section members by transforming force terms on the centroid and the
shear center to the member origin axes and derived corresponding displacement
relations at the joint including warping coupling effects. In addition, they proposed
a modeling technique to consider the effects of different joint types and eccentric
restraint. Based on the researches above, Basaglia et al. [37] have recently derived
extended displacement relations applicable to the joint of multiple open section
members and determined the warping transmission for various types of joint.

Subsequently, they established a Generalized Beam Theory (GBT) based analysis
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method interpreting various buckling behavior of thin-walled open section beam
structures by considering additional displacement constraints at some specific
points around the joint [38].

In thin-walled closed section beam structures, meanwhile, the complicated
responses of joints are also induced by the distortional deformation. Therefore, the
consideration of the effects of distortion as well as warping on the joint flexibilities
is important. Especially in the case of box beams, the joint flexibilities observed
under out-of-plane loads are mainly generated by the coupling of distortion with
other degrees of freedom because the location of the centroid is identical to that of
the shear center. Therefore, some efforts defining those effects of distortion have
been made to express the joint flexibilities of box beams subjected to out-of-plane
loads correctly [39-43]. Jang et al. [39-41] matched the displacements of two box
beams connected at a joint on an imaginary joint section and determined joint
matching conditions by solving an optimization problem which minimizes
differences between the displacements of two box beams on the imaginary joint
section. On the other hand, Choi et al. [42] proposed exact matching conditions at
the joint of two box beams to capture the joint behavior comparable with that
predicted by detailed shell analysis. In case of three or more box beams-joint
structures, the methods for two box beams-joint structures in Refs. [39-42] may be
used, but the joint stiffness is found to be overestimated. The reason is that the
deformation of the joint is excessively constrained and thus higher-order

deformations such as warping and distortion cannot be properly developed at the
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joint.

From the observations above, a new approach to theoretically derive joint
matching conditions is required in order to develop exact higher-order beam
theory-based analysis applicable to three or more box beams-joint structures.
Especially when the joint is defined as a point box beam members being connected
to, similar to classical beam theories or Refs. [39-42], there is no research so far
which gives exact matching conditions defined at that joint point. From the
observation that two adjacent box beam members always share one common edge
near the joint, Jang et al. [43] have recently proposed joint matching conditions
defining three-dimensional displacement continuity between those two members
along the actual location of common edge, and analyzed three box beams-joint
structures under out-of-plane loads by employing those matching conditions. Since
the joint is described as several scattered points, however, equilibriums of the
resultant forces or moments cannot be held exactly at the joint, and that builds in
errors in the analyses.

In this study, three or more box beams-joint structures under out-of-plane
bending or torsion will be analyzed by using a higher-order beam theory. The
unique contribution of this investigation is to derive the exact matching relations
among all field variables of box beams meeting at the joint. Figure 3.1 shows a
three or more box beams-joint structure. Only a portion of the structure, such as
Beam i-1, Beam i, and Beam i+1 (i>2) is depicted, for convenience. It is

assumed that all the box beams in Fig. 3.1 are placed on the same plane, and also
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Fig. 3.1 Three or more thin-walled box beams-joint structures (only a portion of
the structure such as Beam i-1, Beam i, and Beam i+1 (i > 2), is depicted, for

convenience.).

assumed that their width, height, and thickness are equal to b, 4, and ¢, respectively.
In this study, in order to interpret the box beams-joint structure depicted in Fig. 3.1
by using the higher-order beam theory, the connectivity between box beams is
modeled as shown in Fig. 3.2. As with the classical beam theories or Refs. [39-42],
the point where all the box beams converge is defined as the joint (strictly speaking,
the joint refers to the point where the central axes of box beams meet). Shared Side

Edge i-1 in Fig. 3.1, which is shared by Beam i-1 and Beam i (i >2), is extended
and represented in Fig. 3.2 by Edge M, M, in Beam i-1 and Edge NN, i' in

Beam i separately. So, in this study, Edge M, M, and Edge Nl,Ni' are
considered as if they were attached rigidly to each other (by an imaginary rigid

body).
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Fig. 3.2 (a) Beam modeling for the three or more box beams-joint structures
(Edge M;.1\M’i.; of Beam i-1 and Edge N;N;” of Beam i (i > 2) are considered as if
they were connected rigidly to each other (by an imaginary rigid body).), (b) the
top view of beam modeling (Edge M;.1M i, of Beam i-1 and Edge N:N;’ of Beam i
are extended and separated from Shared Side Edge i-1 (i > 2) in Fig. 3.1.).

Therefore, although Edge M, M/, and Edge N,N, are separated from each
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other, both the equilibrium between the forces and the continuity between the
displacements, which are generated at each of those edges, can be considered.

As mentioned above, the key of this study is to find joint matching conditions
among field variables that can be applied to the three or more box beams-joint
structure. To this end, joint equilibrium conditions among generalized forces,
which are the work conjugates of the field displacement variables, will be precisely
defined first. Then, taking into account the defined equilibrium conditions and the
principle of virtual work together, joint matching conditions among field variables
will be theoretically derived. In this process, note that the work conjugates of the
field variables representing the cross-sectional warping and distortion do not
generate any resultant forces or moments acting on the cross-section, but do

generate stress resultants acting on each of the edges. Therefore, if the equilibriums

on the edges (Edge M, M|, Edge N,N/, etc.) are considered in addition to the

resultant forces and moments equilibriums, then generalized forces equilibrium
conditions which are consistently valid for the three or more box beams-joint
structures can be determined. Although the purpose of this study is to derive
equilibrium conditions or matching conditions applicable to the three or more box
beams-joint structures, the derived conditions should also be valid for the two box
beams-joint structures in order for this approach to be reasonable. According to this
observation, we derive more generalized matching conditions on the basis of Choi
et al. [42] who derived the exact matching conditions with respect to two box

beams-joint structures. More detailed procedures will be given after the
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fundamentals of higher-order beam theory for straight thin-walled box beams are
presented. In order to verify the validity of the proposed joint matching conditions,
two case studies including T-joint problems will be examined. The accuracy of the
proposed analysis method will be checked by comparison with the results of

ABAQUS shell analysis [44].

3.2 Higher-Order Beam Theory for Straight Thin-Walled Box

Beams

First, a higher-order beam theory for straight thin-walled box beams, which is
required if we are to interpret three or more box beams-joint structures, is
introduced (see Refs. [6, 39] for more details).

In this study, it is assumed that the box beams-joint structures are subjected to
out-of-plane bending or torsion, so five functions of the axial coordinate z are

considered for one-dimensional field variables of the higher-order beam theory:

vertical bending deflection U, (z) , bending/shear rotation 6 (z) , torsional
rotation 6 (z), warping W(z), and distortion y(z) [39, 42]. Rigid-body motions
of the box beam cross-section represented by U, (z), 6,(z), and 6.(z) or cross-

sectional deformations represented by W(z)and y(z) are illustrated in Figs.

3.3(a) and 3.3(b), respectively.
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Fig. 3.3 (a) Rigid-body motions of the box beam cross-section represented by the
field variables: vertical bending deflection U,, bending/shear rotation €., and

torsional rotation €., (b) deformations of cross-section represented by the field

variables: warping ¥ and distortion y.

In the higher-order beam theory, three-dimensional displacements of a point
located on the contour line of the box beam cross-section can be expressed as

U.,0.,0.,W, " [6]:

yo Yxo Yzo

follows, by using one-dimensional field variables U = {

u,(s, 2)= vy, (9)-U,(2)+ y () 0,(2)+ y (5)-0.(2)+ w), () W(2)+ y [ (s) 2(2)
(3.1a)
u. (s, z)= l//g’ (s)-U,(2)+ l//f* (5)-6.(2)+ y/f: () 0.(2)+yw! () W(2)+wi(s) x(2)
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(3.1b)
u(s, 2)=y." (s)-U,(2)+ w2 (5)-0,(2)+ p (s)-0.(2)+ w () W(2)+ w7 (s) x(2)
(3.1¢)

where n and s represent a normal coordinate and a tangential coordinate defined on

the contour line, respectively (see Fig. 3.2(a) for the positive directions of # and s).
In Eq. 3.1), w;(s) (p=n,s,z; a=U,,0,60,,W, y), which are shape

functions of s, are introduced to describe the displacement or deformation of the
cross-section. Therefore, 7 (s) represent the displacement in the p direction
generated on the cross-section with respect to the unit magnitude of field variable
a [39]. The explicit expressions of 7 (s) are given in Appendix A.

Considering the Kirchhoff-Love plate theory [45], the three-dimensional
displacements (i, i, i) of a generic point located away from the contour line by

n can be expressed as follows, by using (u,, u_, u_) in Eq. (3.1):

~ - 0 . 0
u,(n,s,z)=u,, u(n,s,z)=u, —n&, u(n,s,z)=u,—n “y (3.2)
’ ‘ os 0z

where —n-(0u,/0s) and —n-(0u,/0z) represent displacements in the s direction

and the z direction respectively, occurring as the normal to the contour line is

rotated. Dominant or non-vanishing strains (&, £_, 7, ) at a generic point can be
derived from (#,,4 ,4 ) in Eq. (3.2), and dominant or non-vanishing stresses

(o, 0

552 zz?

o) can be determined by applying the derived strains (&, ¢_, .. ) to
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the stress-strain relations.
In this study, the following two equations are used as the stress-strain relations

in order to define the dominant stresses ( o

582

o.., o, ) precisely; either

zz %

E
ss = %(8&9 + ngz )’ O-zz = ﬁ(‘gzz + Vgss )’ O-sz = G}/sz (333)

or

o,=E¢,, o.=Es., 0.=Gy, (3.3b)

where E, G, and, v represent Young’s modulus, shear modulus, and Poisson’s
ratio, respectively.

According to Kim and Kim [6], the dominant stresses derived from (6, W, y)

that represent torsion of the box beam are defined by using the stress-strain

relations in Eq. (3.3a). According to the Timoshenko beam theory (see e.g. [2]) the

dominant stresses derived from (U, 6, ) that represent bending of the box beams

are defined by using the stress-strain relations in Eq. (3.3b). Deriving the dominant

strain associated with (U, 6,), only (¢_, y,.) have non-zero values and & =0.

Therefore, only (o, o, ) are defined as dominant bending stresses, as with the

Timoshenko beam theory, through the relations in Eq. (3.3b).

Using the displacements, strains, and stresses defined at a generic point, the
three-dimensional total potential energy for the straight thin-walled box beam can
be defined. Then, carrying out the surface integral for the cross-section S and

applying the principle of minimum total potential energy, one can derive the one-
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dimensional higher-order beam theory for the straight thin-walled box beam (see
Refs. [6, 39] for the detailed procedures).

The derived higher-order beam theory is expressed by the relationship between

the one-dimensional field variables Uand generalized forces F={F,, M , M_,

B, 0" which are work conjugates of U . The generalized forces F are defined

as:

F,= [y dsdn, M, =|[(c.p?)dsdn, M. =|[(oy")dsdn,

A . ’ (3.4)
B= J.J' (Gzzy/:y) den7 Q = J.I(GZYV/YZ) dsdl’l

S s

where Fy, M., M_, B, and QO denote one-dimensional force measures representing

vertical force, bending moment, twisting moment, longitudinal bimoment, and

transverse bimoment, respectively.

3.3 Derivation of the Exact Joint Matching Conditions

With respect to analysis of three or more box beams-joint structures by using the
higher-order beam theory introduced in the previous section, the key is to define
the exact joint matching conditions among the field variables which represent the
behavior of the joint correctly.

After explaining the difficulties whereby the stiffness of the joint is

overestimated when the matching conditions proposed in Refs. [39, 42] are directly
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Fig. 3.4 Two thin-walled box beams-joint structures.

extended to three or more box beams-joint structures, we will propose and derive
the exact joint matching conditions, which are applicable to three or more box
beams-joint structures [46].

Concerning the two box beams-joint structure depicted in Fig. 3.4, the field

variables of Beam &k (k =1, 2) are represented as,

U, ={U,)s (0 (0. W, 1} (3.5)
In Choi et al. [42], joint matching conditions between U, and U, are exactly

defined by introducing joint matrix T. Through the various box beams-joint
examples, it was shown that the matching conditions can describe the response of
the joint precisely as interpreted by the shell elements.

When a two box beams-joint structure is modeled as shown in Fig. 3.5 by

adopting the same procedure as the modeling in Fig. 3.2, the matching conditions
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z,/
V F,
Y global /
Edge 1 /_|& Edge 2
xglobal [ lfl 1
X, E Edge 3 ¥,
L Edge 1
2 7 Edge 4 R g
global ’,' _ ¢1 T
L — 2l
M2 Vi ’ g —______--‘L\'I -
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M, __N': ------ Edge 3
M, g
2N Edge 4
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Z,
X
xglobal
i—) Zylobal
yglohal £
4
M,
4 Beam 1
-
Shared Side N,
Edge 2

Fig. 3.5 (a) Beam Modeling for the two box beams-joint structures (Edge MM’
of Beam 1 and Edge N.N,’ of Beam 2 are considered as if they were connected
rigidly to each other (by an imaginary rigid body), and Edge NiN,” of Beam 1 and
Edge M>M’; of Beam 2 are also considered as if being connected rigidly to each
other (by an imaginary rigid body).), (b) the top view of beam modeling (Shared
Side Edge 1 in Fig. 4 is extended and represented by Edge MM’ of Beam 1 and
Edge N>N>’ of Beam 2 separately, and Share Side Edge 2 in Fig 4 is also extended
and represented by Edge NiN,” of Beam 1 and Edge M>M", of Beam 2 separately.).

between U, and U, can be expressed as follows by using the joint matrix T
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proposed in Choi et al. [42]: (However, concerning the modeling in Fig. 3.5, the
constraint conditions between Edge M M, and Edge N,N,” or between Edge

M,M, and Edge N,N, were not considered when the following matching

conditions are defined.)

U,=T(¢,-¢,)-U, (3.6a)
or
A B
)] B0 0 0 0 1 [@)
6,), 0 cos(g,—¢) —sin(g,—¢)i10 3o7) 1sin(g, — 4,)} 6,),
(ez ) 2 0 Sin(¢2 - ¢1) COS(¢2 - ¢1 0 _(%) AL+ COS(¢2 - ¢1) (Hz )1
W, 0 0 0 1 0 /4
X K 0 0 0 -1 V4
C (3.6b)

where ¢, (k=1,2) represents the angle between the axial coordinate z, of

Beam k and z,,, in Fig. 3.5 (see Fig. 3.5(b) for the positive directions), and

global
(¢, —¢,) in Eq. (3.6) denotes the joint angle of the two box beams-joint structure.
Observing the joint matrix T(¢#, —¢), its submatrix A represents the matching

conditions among rigid-body motions. Submatrix B represents additional rigid-

body motions ((6,),, (6.),) of Beam 2 generated by the higher-order deformations
(W,, x,) of Beam 1, and submatrix C represents the matching conditions among
higher-order deformations (W, y ).

If one wishes to directly extend the matching conditions in Eq. (3.6) for the

three or more box beams-joint structure in Fig. 3.2, it could be written as:
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U = T(¢1 _¢i—1)’Uz‘—1 > U, = T(¢i+] _¢H)'UH > U, = T(¢i+] _¢1) U, (3.7)
where ¢, (k=i-1,i,i+1; i>2) refers to the angle between the axial coordinate

z, of Beam k and z,,, and U, refers to the field variables of Beam k as

defined with respect to the two box beams-joint structure. If the matching
conditions in Eq. (3.7) are applied, the relations among y, |, 7,, and, y,,,, which
are distortional deformation measures of Beam i-1, Beam i, and Beam i+1,
respectively, will be expressed as (see submatrix C of joint matrix T):
Xi=Xis  Xea =X X =X (3.8)
Because the relations in Eq. (3.8) should be satisfied for arbitrary
Xi1» X:» and, .., the relations eventually represent y, , =y, = x,,, =0.
Observing submatrix B in joint matrix T, on the other hand, it can be seen

that rigid-body motions (U,,0,,6.) of a beam connected to the joint are

additionally induced by distortional deformation y as well as rigid-body motions

of adjacent beams. Therefore, when the matching relations such as Eq. (3.8)

(i.e. x,, = x = x., =0) are applied to the three or more box beams-joint structure,

those relations overestimate the stiffness of the joint, and it is not possible to obtain
an accurate result. For the same reason, when the matching conditions proposed in
Jang et al. [39] are extended to the three or more box beams-joint structure, the
stiffness of the joint again tends to be overestimated (see Ref. [43] for more details).

Therefore, the joint matching conditions proposed in Refs. [39, 42] cannot be
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directly extended to the three or more box beams-joint structure, and a new
approach that is different from the existing methods should be developed, to deal
with the three or more box beams-joint structure.

The matching conditions among field variables that contain higher-order
deformations (W, y ) were determined mostly on the basis of the continuity among
the three-dimensional displacements occurring at the joint [39-41, 43]. Since the
higher-order deformations (W, y ) represent highly complex three-dimensional
displacements which are very different for each edge, as depicted in Fig. 3.3(b), the
continuity among the three-dimensional displacements occurring at the joint of the
three or more box beams-joint structure cannot be satisfied precisely when they are
treated at a single joint point (or line) within the scope of the higher-order beam
theory. Therefore, rather than considering the continuity among three-dimensional
displacements directly, we propose in this study a method to derive the matching
conditions by first deriving equilibrium conditions among the generalized forces

(F,,M,, M_, B,Q) of each beam at the joint. Using the generalized force

matching conditions, we then derive the continuity conditions for the generalized
displacements (or field variables), which are energy conjugates of those forces.

If the joint is considered simply as a point, the terms (£, M, M) producing
resultants can be expressed as a resultant force or moment, as shown in Fig. 3.6.
But (B, Q), which do not produce any resultant, cannot be expressed as a resultant

force or moment acting on a point. In order to overcome this difficulty, we propose
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to express (B, O ), which are defined on the section, as so-called edge resultants as
depicted in Fig. 3.7(a). Note that (B, Q) can produce non-zero resultants on each
edge of the section, those resultants will be called edge resultants. This new
approach is proposed in this study for the first time, and is an important step
towards the derivation of the matching conditions for the generalized
displacements at the joint.

As (B, Q) are represented by the edge resultants, (F,, M, M) having net

resultants over the section can be also represented by edge resultants defined on
each edge, as demonstrated in Fig. 3.7(b). In the subsequent discussions, the non-

vanishing resultants defined over the section will be referred to as “sectional”

resultants. After all, a new method to represent (F,, M ,M_, B, Q) by edge

resultants and to additionally consider equilibriums among edge resultants at the

J X X
. T o U B )

(a) (b) (©

Fig. 3.6 Resultants (or sectional resultants) acting on the entire cross-section that
are produced by the generalized forces: vertical force F,, bending moment M ,,
and twisting moment M ..
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edges shared by adjacent beams such as Edge M, M/

.., Edge NN/, etc. will be
employed to derive the joint equilibrium conditions among generalized forces. It is
worth emphasizing once again that this method is the key in a derivation of the

joint matching conditions among generalized displacements (or field variables) at

the joint where three or more box beams meet.

3.3.1 Sectional and Edge Resultants Produced by Generalized

Forces

Prior to dealing with the generalized forces equilibriums, the stresses which
generalized forces induce on the section will be introduced, and from those stresses,
sectional or edge resultants will be derived. According to the higher-order beam
theory, the stresses on the section vary linearly in the normal direction to the
contour. However, the variance of the stresses along the normal direction is quite
small, and the small amount of the variance is also eliminated through the surface
integral, so the sectional or edge resultants will be defined by using the stresses on
the contour.

According to the higher-order beam theory, dominant stresses (o_, o, 0., )

on the contour can be related to the displacements as

o..(s, 2)= Ey" (s)-e;(z)+1izw (5)-W'(2) (3.99)
-V

o,.(s,2)=0 (3.9b)

54



b
o= B
h(b+h)

Ff =——
y ¥ 5(2) 2h Q
h

X MB - " X 0 1
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Fig. 3.7 (a) Edge resultants acting on each edge of the cross-section that are
produced by the self-equilibrated generalized forces: longitudinal bimoment B
and transverse bimoment Q, (b) edge resultants acting on each edge of the cross-
section that are produced by the generalized forces having nonzero resultants:
vertical force F,, bending moment M ,, and twisting moment M -

0., (5,2) =Gy, (5)-U, (2) +y! (5)-0,(2) +y (5)- 0. (2)

+yl () W (D) +y ! (s) 7'(2)}
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where (')z? and ()'z?. Whereas (g//:]"',l//f:,l//j‘) in Eq. (3.9c) are
s z

orthogonal to each other, (7%, ") can be expressed in terms of (y.", w®, y?)

b—h .. . .
because =g//§/"', y! = ﬂl//ff +w? (see the explicit expressions of y ’s in
J’_

Appendix A). Therefore, o_(s,z) in Eq. (3.9¢) can be written as a function of

only (y", w?, y7)as:

6.5, 2) = GLy" (5) U, (2)+ 6.(2)} + 1™ ()10 (2) + z;’“ W (o))

+h (3.10)
+y ()X () +W(2)}]
By applying o_ in Eq. (3.9a) and o, in Eq. (3.10) to the definitions of the

generalized forces in Eq. (3.4) and carrying out the surface integral for the cross-

section S, they can be expressed in terms of generalized displacements as

F (2)= j j o..(s, 2)-w () dsdn

s b+h

+y? -y Ay + W] dsdn (3.11a)
[[aty v U, +6.}] dsdn
S

=GJ, {U, (2)+0,(2)}
The second line in Eq. (3.11a) can be reduced to the third line because of the

orthogonality conditions such that _[ _[ v’y dsdn=0, I _[ w? -y dsdn=0
N N

see Appendix A). In addition, the orthogonality condition between (%, ") is
(see App gonality 78N 7
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also satisfied as given in Appendix A. When those orthogonality conditions are

used, the expressions for the remaining generalized forces can be simplified as

M (2)=[[o.(s, 2)-y’(s) dsdn=EJ,, 6, (2) (3.11b)

M.(2)=[[ o, (s, 2)-y (s) dsdn = GJ,, {0, (z)+ P2y Gle)
S : b+h

w _E
B(z)_jsjazz(s, 2)-y! (s) dsdn =— (3.11d)

0(2) = [[ 0., (s, 2)-y (s) dsdn = GJ, {1 (2) + W (2)} (3.11¢)

where J, (f=F,M_,M_, B,Q) denoting the moment of inertia for the

generalized force S is defined as

~ ([0 dsdn, g, = ([ dsdn, J,, = [ dsdn,
Jy=[[@"y dsdn, 7, =[[ () dsdn (3.12)

Considering the relations between generalized forces and field variables that are
given in Eq. (3.11), o_ in Eq. (3.9a) and o_ in Eq. (3.10) can be written in
terms of generalized forces as

M, (z) ()W

0.5 )=0 vt =MDy FOyr ey s

6. (5, 2) =0 + 0 + 60 = J( P I LLEC >}+{Q( Jyr(s))
3 Ju, Jo

(3.13b)
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where (o, o) in Eq. (3.13) represent the stresses on the contour that generalized

zz?

forces produce, and especially o’ (S = F,,M M., B, Q) represents the stress

produced by the generalized force f . Therefore, employing the stresses at

arbitrary coordinates (s, z) that are given in Eq. (3.13), edge resultants produced by
the generalized forces can be obtained.
If one obtains first the sectional resultants from Egs. (3.13a, b) through surface

integral, non-zero resultants obtained from Egs. (3.13a, b) are represented

obviously by ( F,, M , M_) only. Note that the contribution of the stresses

(o

zz %

o), which are generated by (B, Q), to (F,, M, M) is zero. Since (B, Q)
do not produce any net resultants on the section as observed above, ( B, Q) will be
expressed by using edge resultants.

Now, it will be shown how to obtain the edge resultants that generalized force

b (B= Fy, M_,M_, B, Q) produces. Stresses on (s, z) induced by those forces

are given in Eq. (3.13), so edge resultants can be obtained by integrating stresses

on each edge. The non-zero edge resultants determined from the stresses in Eq.

(3.13) are axial force F”

.., tangential force F, 7, and normal moment Af”

s(j)° n(Jj)

(B=F,M_M_ B,Q),and are defined as

Fz(ﬁj)z IJ. o’ dsdn, st/): ” Gfs dsdn, Mf(j)= ﬂ s-c’ dsdn  (3.14)

Edge j Edge j Edge j

Therefore, the edge resultants by the generalized force S can be determined by

58 .



using Eq. (3.14). For example, the edge resultants acting on Edge 1 (see Fig. 3.2)

are determined as, by carrying out the integration in Eq. (3.14),

0 (3.15a)

M h

F =0, Fg =0, M= oM (3.15b)

1

M> = MZ = — M: p—
Py =0 By = Mo M =0 (3.15¢)
h

Fi,=0, Fg, =0, My, = MB (3.15d)

1

Q0 _ 0 _ 0 _

Fq=0,  Fg= Z_bQ, M, =0 (3.15¢)

where b and 4 denote the width and the height of the box beam cross-section
respectively, as mentioned in Introduction. The edge resultants above can be

expressed schematically by forces or moments on each edge, as depicted in Fig. 3.7.

3.3.2 Generalized Forces Equilibrium Conditions

Now, the exact equilibrium conditions among generalized forces at the joint will be
derived by considering the equilibriums of the edge resultants given in Fig. 3.7 in
addition to those of the sectional resultants given in Fig. 3.6. To this end, the results
given in Choi et al. [42] will be utilized. Because those results in Choi et al. [42]
were derived without considering the concept of edge resultants proposed in this

study, we will first interpret the results from the viewpoint of equilibrium
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conditions of the sectional and edge resultants; this step is crucial to extend the
results by Choi et al. [42] to joint structures involving more than two box beams.
Concerning the two box beams-joint structure depicted in Fig. 3.5, the

equilibrium conditions between the generalized forces of Beams 1 and 2, F, and
F,, can be written as

T (4, -¢,) F +F,=0 (3.16)
where T is the joint matrix given in Eq. (3.6) and F, (k =1, 2) is defined as

Fk:{(Fy)k’(Mx)k7(Mz)k’Bk’Qk}T (3.17)
The matrix T ' (g, —¢,), the transpose of the inverse of T(¢, —¢,), transforms

the generalized force F, into the force based on the local coordinate system of
Beam 2 (x,, y,, z, ). Because the equation given in Eq. (3.16) is derived from the
displacement continuity and other geometrical conditions without considering the
concepts of sectional and edge resultants, the result will be now interpreted in

terms of the sectional and edge resultants.

If we write Eq. (3.16) explicitly as

(M), cos(¢, —¢,)—(M.),sin(p, —¢)+(M,), =0 (3.18a)
(M,),sin(¢, —¢,)+(M_),cos(¢, —¢)+(M.), =0 (3.18b)
B +B,=0 (3.18c¢)
(F,),+(F,),=0 (3.18d)
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_b_h(M ), sin (¢, — ¢1)_ (M) {1+cos(d, —¢)}—0,+0,=0 (3.18¢)

one can rewrite Egs. (3.18a-¢) as, in terms of the sectional and edge resultants,

(M), cos(p, —¢,)—(M,),sin(p, —¢,)+(M,), =0 (3.19a)

(M,),sin(¢, —¢,)+(M.),cos(¢, —¢,)+(M.), =0 (3.19b)

~{—L B} +1{- B,}=0 (3.19¢)
h(b+h) ' h(b+h) ? '

{ ( )1 (M )1 Ql} { (F)z (M )2 Qz}:() (3.194d)

1 1 ~
{E(Fy)l—m( D= Q1}+{ (F),+ (M)z Qz}—O (3.19)

Note that Egs. (3.19a, b) are equal to Egs. (3.18a, b), and that Eq. (3.19¢) can be
obtained through multiplying Eq. (3.18c) by —-b4/{h(b+h)}. Meanwhile, Eq.

(3.18e) can be simplified to

{—f—”( ), Ql}{ (M)2 0,1=0 (3.20)
+h

because —%{(Mx)1 sin(¢, =)+ (M), cos(¢, —¢,)} in Eq. (3.18¢) is equal to

2b
ﬂ(M ), according to Eq. (3.18b). Therefore, Egs. (3.19d, ¢) can be obtained,

first by multiplying Egs. (3.18d) and (3.20) by 1/2 and 1/(2b) respectively, and

then adding or subtracting those two expressions.

Let us interpret Eq. (3.19) in terms of the sectional and edge resultants. First,
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Egs. (3.19a, b) represent equilibrium conditions in terms of the sectional resultants

(M, M,); Eq. (3.19a) represents the moment equilibrium in the x, direction, and
Eq. (3.19b) represents the moment equilibrium in the z, direction (see Fig. 3.5 for
the positive directions of x, and z,). Therefore, it can be found from Egs. (3.19a,

b) that the resultant moment equilibriums should be satisfied at the joint depicted in
Fig. 3.5. For our later extension to the case when more than two box beams meet at
a joint, the equilibrium conditions in Egs. (3.19a, b) can be expressed as, based on

the global coordinate system ( Xyu.1> Ygiobat> Zetobal ):

M, )+ (M

Xglobal

),=0 (3.21a)

Xglobal )

M. )i+M_ ),=0 (3.21b)

Zglobal

where (M . ), and (M, ), (k=1,2) aredefinedas

M, ),=(M,),cos¢, +(M,),sing, (3.22a)

Xglobal

(MZglobal ), =—(M,),sing, +(M ), cos@, (3.22b)
The symbols (M, ), and (M. ), represent the resultant moments of Beam &

inthe x direction and in the z

dobal direction, respectively.

global

Examining Eqgs. (3.19c-e), one can see that they represent equilibrium
conditions in terms of edge resultants depicted in Fig. 3.7. In order to interpret the
meaning of the equilibrium conditions given in Egs. (3.19c-e), the connectivity

between the edges of Beam 1 and those of Beam 2 at the joint shown in Fig. 3.5
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should be investigated first because, unlike the sectional resultants defined for the
entire cross-section, the edge resultants are defined for each edge of the section. In

Fig. 3.5, Edge M N, and Edge M,N, that represent Edge 2 of Beam 1 and

Beam 2 respectively meet at the joint. Similarly, Edge M,'N, and Edge M, N,

that are Edge 4 of Beam 1 and Beam 2 respectively meet at the joint. Therefore, the
equilibrium conditions can be considered among the edge resultants acting on Edge
2 of Beam 1 and Beam 2 or among those acting on Edge 4 of Beam 1 and Beam 2.
Because the remaining edges (Edge 1 and Edge 3 of Beam 1 and Beam 2) are
not connected to each other in the model introduced to interpret the two box
beams-joint structure shown in Fig. 3.5, it is necessary to define how those edges

are connected. In this study, the connectivity among those edges is determined

based on the actual joint connectivity depicted in Fig. 3.4. Edge M, M, and Edge

N,N, in Fig. 3.5 representing Edge 1 of Beam 1 and Edge 3 of Beam 2
respectively are extended and expressed separately from Shared Side Edge 1 in Fig
3.4. Therefore, Edge M, M, and Edge N,N, can be considered as if they were
connected rigidly to each other (by an imaginary rigid body) although they are
separated. Likewise, because Edge NN, and Edge M,M, in Fig. 3.5

representing Edge 3 of Beam 1 and Edge 1 of Beam 2 respectively are extended
and separated from Shared Side Edge 2 in Fig. 3.4, they can be also considered as
if they were connected rigidly to each other. Considering such rigid connections,

the equilibrium among the edge resultants defined on Edge 1 of Beam 1 and on
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Edge 3 of Beam 2 can be considered, and the equilibrium among those on Edge 3
of Beam 1 and on Edge 1 of Beam 2 can also be considered.
Based on the edge connectivities explained above, Eq. (19¢) can be written as

the normal moment equilibrium on Edge 2 or Edge 4 as:
(M, ), +(M, ), =0 (3.23a)
(M, 3)), +(M, ), =0 (3.23b)
where (M, ,)), and (M), (k=1,2) aredefined as

b b

—— ; M =—— B 3243,]3
hb+h) " Moo )e hb+h) " ( )

(Mn(Z))k =

The symbols (M, ,)), and (M, ), represent the normal moment components

of Beam & on Edge 2 and Edge 4, respectively (see the edge resultants given in Fig.
3.7). Therefore, it can be found from Eq. (3.19¢) that the equilibrium for the normal

moments defined on Edge j, (j, =2, 4) should be satisfied at the joint in Fig. 3.5.

Equations (3.19d, e) can be written as the equilibrium among tangential edge

forces defined on Edge 1 and Edge 3 of two beams:

(F,), —(Fy5), =0 (3.25a)
~(Fah +(F ), =0 (3.25b)
where (F,), and (F,), (k=1,2) aregivenby

1 1 1
(Fio) =5(Fy)k +m(Mz)k +2—ka (3.26a)
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1 1 1
(Fia) i =—5(Fy)1 +b+—h(Mz)1 +EQ1 (3.26b)

The symbols (F,,), and (F|s), represent the tangential forces of Beam k on

Edge 1 and Edge 3, respectively (see the edge resultants given in Fig. 3.7). In
deriving Egs. (3.25a, b), care should be taken over the sign, because the positive
tangential directions of Edge 1 and Edge 3 are opposite (see Fig. 3.2). Equations

(3.25a, b) represent equilibriums in the y,,, direction, which is the same as the

tangential direction of Edge 1.

The analysis thus far reveals that the five equations in Eq. (3.18) taken from
Choi et al. [42] correspond to two equilibrium conditions involving sectional
resultants and three equilibrium conditions involving edge resultants. For a later
extension to three or more box beams-joint structures, they are rewritten in terms of

sectional and edge resultants as

M, D+, ), =0 (3.27a)

M. )+, ),=0 (3.27b)

M), + (M, 5), =(M, ), +(M, ), =0 (3.27¢)
(Fp)h —(F3)), =0 (3.27d)

—(F,a) + (Fy), =0 (3.27¢)

Let us now consider the extension of Eq. (3.27) to the structure that

N (N 23) box beams are connected at the joint shown in Fig. 3.2. Because Eq.
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(3.27) is defined as the equilibrium conditions for sectional and edge resultants, Eq.
(3.27) is easy to be extended for the joint where three or more box beams meet.

In order to determine the equilibrium conditions for edge resultants,
connectivity among the edges of NV box beams at the joint should be investigated.

Since Edge j, (j,=2,4) of N box beams meet at the joint (see Fig. 3.2),

equilibrium among (M,  .,) of N box beams can be considered. Connectivity

n(jp)
among the remaining edges can be determined by considering the actual joint
depicted in Fig. 3.1. For two adjacent box beams (Beam k (k=1,2,---, N) and
Beam k+1; Beam N+1 refers to Beam 1), Edge 1 of Beam k& and Edge 3 of Beam
k+1 can be considered as if they were connected rigidly to each other. Therefore,
the equilibrium between (F,)), and (F,),,, canbenow considered.

Based on the connectivity among edges of box beams explained above, the
generalized forces equilibrium conditions at the joint of N (N >3) box beams-

joint structure can be written as follows by extending the equilibrium conditions for

sectional resultants or edge resultants given in Eq. (3.27):

N
D (M, ) =0 (3.28a)
— global
N
D (M, ), =0 (3.28b)
— global
N N
Z (Mﬂ(z))k = Z (Mn(4))k =0 (328C)
k=1 k=1
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(Fs(l))i - (Fv(z))m =0
(3.28d)
(i:Naturalnumber, 1<i< N )

where Egs. (3.28a-c) express the equilibrium conditions in which all ((M

)

Xglobal

(M, ), (M) (j,=2,4)) defined in N box beams participate, regardless of

the number of box beams meeting at the joint, and Eq. (3.28d) represents the

equilibrium condition between F, acting on the edges of the adjacent two beams

Beam i and Beam i+1 (1<i< N ). Therefore, Eq. (3.28d) consequently represents
N number of equations, and Egs. (3.28a-d) are expressed by N+3 number of
equations for the case that N box beams meet at the joint. In case of N =2, Eq.

(3.28d) recovers Egs. (3.27d, e).

3.3.3 Field Variables Joint Matching Conditions
Using the generalized forces equilibrium conditions defined above, let us now
derive the joint matching conditions among field displacement variables

(U,,0.,0.,W, y). Because the field variables are the work conjugates of the

¥ X
generalized forces, one can associate them with the generalized forces by
considering the principle of virtual work that the sum of virtual works is zero. In
what follows, we will theoretically derive the matching conditions among field
variables from the generalized forces equilibrium conditions.

For the derivation, the joint matching conditions among field variables of
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Beam 1 and Beam 2 shown in Fig. 3.5 will be examined first by using the
equilibrium conditions in Eq. (3.27) derived for two-beam joints. Then the
conditions will be extended for the three or more box beams-joint structures. (In
theory, the field variables matching conditions may be derived directly from Eq.
(3.28), but the derivation is found to be too complex to employ.)

Referring to the two box beams-joint structure depicted in Fig. 3.5, consider
F, and U, (k=1,2) denoting the generalized forces and field variables of Beam

k, respectively. In terms of F, and U, (k=1,2), the principle of virtual work at

the joint can be expressed as

SO [y = (SF)TU, + (5F)TU, =0 (3.29)

pa
Equation (3.29) shows the sum of (6W'|,.,, ), Which is complementary virtual
work of Beam £, is zero [47], where OF, refers to the admissible virtual force of
Beam k. Because oF, and OF, comply with the equilibrium conditions in Eq.
(3.27), OF, and OF, must satisfy the following relation:

M, -0F +M,; -JF, =0 (3.30a)

or
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1
S O O

S O O w= o=

D= =

Eq. (3.31) yields

2

DWW | geums) =M, -0F) (M;"-U, -M;"-U,)

k=1

=My, -6F) (M -U)+ (Mg -6F,)" (M, -U,)=0

sing,
cos g
0

1
b+h

1
b+h

sin @,
cos ¢,
0

P
b+h

1
b+h

where the matrices M, and M,

using the matrix M, in Eq. (30):

five independent equilibrium conditions.

)
1

25 |

5(Fy)l
(M),
o(M.),
5B,
50,
o(F,),
o(M,),
o(M,),
5B,
50,

S O O o O

2O i) = (SF) (M -M;1)- U, +(5F,)" (M, -M;)- U,

=(6F) {Mg -(M; -U, -M; -U,)}=0
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(3.30b)

are invertible because Eq. (3.30) represent

In order to apply the equilibrium conditions of SF, and OF, given in Eq.

(3.30) to Eq. (3.29), let us first express (SF,)' U, (k=1,2) in Eq. (3.29) as, by

(3.31)

According to Eq. (3.30), the relation between (M, -OF, ) and (M, -JF,) in Eq.

(3.31) is expressed as (Mg, -6F,)=—(Mg -JF). Thus, applying this relation to

(3.32)



Because Eq. (3.32) should be satisfied for arbitrary OF,, it can be found that
{M; - (M, -U,—-M,'-U,)} in Eq. (3.32) should be zero. Note that the matrix
M; is invertible as mentioned above. Therefore, the following relation must hold:

M;"-U =M;"U, (3.33)

Equation (3.33) represents the matching conditions to be met among the field
variables when the equilibrium conditions in Eq. (3.27) are satisfied at the joint in

Fig. 3.5. Based on the definitions of M, and M, in Eq. (3.30), Eq. (3.33) can

be explicitly written as
(©,),co54, +(0,),sing =(0 ),cosp, +(0,), sing, (3.34a)

—(©,),sing +(0,),cosg =—(0,),sing, +(0.), cos¢, (3.34b)

©,;,)1 =©,)),  (;=2,4) (3.34c¢)
U ==, (3.34d)
_(Us(3))] = (Us(1))2 (3.34¢)

where ©,,0_,0,,,0,,,U,,and U, are defined as

2b

0,=0; 6,=0 -——— 3.35a, b

X X z z b_}_hl ( )
h(b+h

0,0 =0,4 =~ b )W (3.35¢, d)

Ug=U,+by; Uy =-U, +by (3.35¢, f)

Although the expressions in Eq. (3.34) look different from the matching
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conditions in Eq. (3.6) that Choi et al. [42] proposed, Eq. (3.34) represents the
same relations among the field variables as those in Eq. (3.6); Eq. (3.6) can be
derived directly from Eq. (3.34). While Eq. (3.6) was derived by taking directly
into account the various conditions for the displacements, Eq. (3.34) derived in this
study is obtained from the generalized forces equilibrium conditions and the
principle of virtual work. The advantage of using Eq. (3.34) over Eq. (3.6) is that
the specific formula by Eq. (3.34) can be directly extended to the case of three or
more box beams-joint structures.

In order to extend the results in Eq. (3.34) for the joint where three or more
box beams meet, the meaning of the matching conditions in Eq. (3.34) should be
understood. Equations (3.34a, b) represent the continuity conditions among the
work conjugates of the resultant moments considered in the equilibrium conditions
in Eq. (3.27a, b). Therefore, (® ), and (®.), (k=1,2) in Egs. (3.34a, b) will
be called the sectional effective rotation of Beam £ at the joint in the x, direction

and in the z, direction respectively, as depicted in Fig. 3.8(a, b). Based on this

observation, it can be found that Eq. (3.34a) represents the continuity condition

between (®, ), =(0,),cosg, +(0,),sing, ( k=1,2), which denotes the

Xglobal

sectional effective rotation of Beam £ in the x, direction. Likewise, Eq. (3.34b)

global

represents the continuity condition between (©. ), =—(®,),sing, +(0,),

cos ¢,
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Fig. 3.8 Sectional displacements or edge displacements of Beam & (k=1, 2, ..., N)
associated with the generalized displacements (or field variables) joint matching
conditions: (@) sectional effective rotation (® ) in the x; direction, (b) sectional
effective rotation (® .); in the z; direction, (c) edge rotation (® @)+ of Edge 2 in
the yx direction and edge rotation (® ,4) x of Edge 4 in the — yx direction, (d) edge
displacement (U 41))« of Edge 1 in the y; direction and edge displacement (U y3))x
of Edge 3 in the — yx direction

(k=1,2), which denotes the sectional effective rotation of Beam £ in the z,,,

direction.
On the other hand, Eq. (3.34c¢) corresponds to the continuity condition between

the work conjugates of the normal moments M, (j;=2,4) shown in Eq.
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(3.27¢). Therefore, Eq. (3.34¢) is a statement of the continuity condition between

(®n(./1))k (k=1,2) which are the rotations of Edge Ji of Beam k in the normal

direction as depicted in Fig. 3.8(c).

Lastly, Egs. (3.34d, e) represent the continuity conditions between the work
conjugates of the tangential forces £, (/,=1,3) shown in Egs. (3.27d, e).
Therefore, (U,), and (Ugs), (k=1,2) in Egs. (3.34d, e) denote the
displacements of Edge 1 and Edge 3, respectively, in the tangential direction as
depicted in Fig. 3.8(d). Because the positive tangential directions of Edge 1 and
Edge 3 are along +y, =+Vuoa a0d =Y, ==V » respectively (see Fig. 3.2),
care should be taken over the sign. Thus, it can be found that Eq. (3.34d, e) express

the continuity conditions with respect to the y,, axis.

Let us now derive the desired joint matching conditions at the joint where N

(N >3) box beams are connected, as shown in Fig. 3.2. As argued in the derivation
of the generalized forces equilibrium conditions at the joint, Edge j, (j, =2,4)

of Beam k (k=1,2, -, N) all meet each other at the joint, so continuity among

©,)) (k=L2,-+, N) can be considered. The continuity conditions between

U,y and (Ugs)),.; can also be considered because Edge 1 of Beam £

(k=1,2,--, N) and Edge 3 of Beam k+1 (Beam N+1 refers to Beam 1) are

regarded as being connected rigidly.

Using the edge connectivities just explained above and generalizing the
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displacement continuity conditions (34) for N =2 to the case of N>3, the

following relations can be obtained:

©,,) =0, ),==(0, ), (3.:36a)
©,, =0 )=—=(0, ) (3.36b)
©,,,) =0,;)), ==,y (j;=2,4) (3.36¢)

Ui ==U,s))i (1<k<N) (3.36d)

Equations (3.36a, b) represent the continuity conditions for the sectional effective

rotations of N box beams in the x direction and in the z direction,

global global

respectively. Equation (3.36¢) is the continuity condition for the edge rotations in

the normal direction on Edge j, (j, =2,4) of N box beams. On the other hand,
Eq. (3.36d) is the continuity condition between the edge displacements in the .,
direction on Edge 1 of Beam & and Edge 3 of Beam £k+1 (1< k< N). Therefore,
the independent number of equations from Eq. (36) becomes 3x(N—-1)+N

=4N —3. The consistency between the force equilibrium equations, Egs. (3.28a-d)
and the displacement continuity equations, Eqs. (3.36a-d) at the joint is

demonstrated in Appendix B.

3.4 Numerical Analysis

For the N ( N >3) box beams-joint structure under out-of-plane bending or torsion,

the numerical method to analyze the response of the structure using the higher-
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order beam theory and the exact matching conditions given in Eq. (3.36) will now
be introduced. Then, some numerical examples will be analyzed by using the
proposed analysis method. By comparing the present results with those obtained by
ABAQUS shell analyses or by Timoshenko beam analyses, the validity and

accuracy of the proposed method will be demonstrated.

3.4.1 Finite Element Equations
The finite element equations for Beam £ (k =1, 2, -, N) among N box beams

connected at the joint will be presented by using the stiffness matrix for the box
beam element given in Appendix C. The stiffness matrix for the beam element can
be derived on the basis of Refs. [6, 26], and piecewise linear interpolation will be
employed to interpolate displacement variables (see Appendix C). The resulting
finite element equation becomes

K, -d, =f, (3.37)
where K,,d,,and f, in Eq. (3.37) refer to the stiffness matrix, the nodal

displacement vector, and the nodal force vector for Beam £k, respectively.
Assembling all finite element equations for N box beams in numerical order, the
finite element equations for the N box beams-joint structure can be determined:

K., -d f

total

(3.38)

total ~ eotal =

If » number of nodes are used to model the N box beams-joint structure,

d_ .andf

total > " total ? total

K in Eq. (3.38) denote 5nx5n total stiffness matrix, 5nx1
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total nodal displacement vector, and 5xnx1 total nodal force vector, respectively.
The next step is to impose the matching conditions for nodal displacements of N
box beams at the joint.

The proposed exact matching conditions of Eq. (3.36) can be applied to the
finite element equations by using the method of Lagrange multipliers [48], an
optimization method to find the maximum or minimum value of a function subject
to equality constraints. Associated with this study, a problem to minimize the total
potential energy of the N box beams-joint structure subject to the joint matching
conditions in Eq. (3.36) is solved by employing the method of Lagrange multipliers.

To facilitate subsequent analysis, the matching conditions in Eq. (3.36) are

expressed as equality constraints for d as

total

Sd_ =0 (3.39)

total
where S is a (4N —3)x(5n) matrix and Eq. (3.39) yields (4N -3) independent
equations. By introducing the Lagrange multiplier A, the following Lagrangian

I, can be defined:

L

I, (s 1) =3 0K s A +37S d)  (340)

total 7 total " total total ~ total

According to the method of Lagrange multipliers, the stationary conditions of II,
yields

o,
od

f

total

—0; Kyl —fou +27S=0 (3.41a)

total
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AL

a;\’ total :0 (341b)

The nodal displacement vector in Egs. (3.41a, b), d satisfies the matching

total ?
conditions in Eq. (3.36) and minimizes the potential energy of the N box beams-
joint structure. Therefore, Eqgs. (3.41a, b) represent the finite element equations for
the N box beams-joint structure that include the matching conditions in Eq. (3.36).

Finally, Egs. (3.41a, b) can be expressed as a matrix equation as

ktotal S ! dtotal ftotal
= 3.42
{ S 02 0 (342

If proper boundary and loading conditions are prescribed, d (and A ) can be

total
determined from Eq. (3.42). Because the solution procedure is a standard one, no

further discussion on numerical analysis will be necessary.

3.4.2 Numerical Examples

Several examples will be analyzed by using the finite element equations given in
Eq. (3.42). The validity of the proposed approach will be demonstrated by
comparing the results with those obtained from ABAQUS shell elements or
Timoshenko beam elements. Because the joint flexibility is highly dependent upon
the number of box beams connected at the joint, the joint angles among those
beams, and the width and height (or aspect ratio) of the box beam cross-section, we
will examine their effects on the solutions or the mechanical behavior of three or

more box beams-joint structures.
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Although box beam sections of different widths » and heights / are considered

within a range 50mm < b, # < 200mm, converged analysis results can be obtained

with 40 beam elements regardless of those changes. Meanwhile, in two-

dimensional ABAQUS shell analysis, 12.5mm x 12.5mm square shell elements

are mainly used to obtain converged analysis results. For example, if the

dimensions of each box beam are width b=50mm, height #=100mm, and
length L =1000mm, it was found that the converged results were obtained if
(4+8+4+ 8)x80=1920 shell elements were used to model the box beam in

consideration.

Case Study 1: T-Joint Structure. A T-joint structure as depicted in Fig. 3.9(a)
is considered in the first case study. The T-joint structure is a special case of three
box beams-joint structures in that the influence of the cross-sectional deformations
on the behavior of the joint is significantly displayed. Therefore, it is difficult to
predict the behavior of that structure correctly by a classical beam theory, and
efforts to express the flexibility of the T-joint structure by introducing artificial

joint elements were reported [11, 12, 16].
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Fig. 3.9 Numerical results for the T-joint structure under vertical force £, =100 N:

(a) problem description (L=1000 mm, =100 mm, 4=50 mm, =2 mm, ¢ = 90°),
(b) vertical bending deflection U,, (¢) bending/shear rotation @, (d) torsional
rotation 8., (e) warping W, (f) distortion .
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For the first example, the T-joint problem introduced in Jang et al. [43] is used.

Beam 1 and Beam 3 are placed parallel to z and the joint angle of Beam 2,

global »

#,,1s 90°. All the box beams that make up the T-joint structure are identical. The

length of those beams is L =1000 mm, and the width (), height (%) and thickness
(t) of those beams are =100 mm, 2=50 mm, and #=2 mm, respectively.
The material properties of those beams are Young’s modulus FE =200 Gpa and

Poisson’s ratio v=0.3. The ends of Beam 1 and Beam 3 denoted by A and C are
fixed, and the end of Beam 2 denoted by B is subjected to a vertical force

(F,), =100 N. The loaded end B is assumed to be rigid.

The results are given in Figs. 3.9(b-f) (the results include those by the
approach in Jang et al. [43]). In the plot, the range of the axial coordinates,

(k=1 k; k=1,2,3), corresponds to Beam k. Observing the results based on those

from the shell analysis, one can find that the analysis using the Timoshenko beam
theory overestimates the stiffness of the T-joint structure, as mentioned in
Introduction. In contrast, one can find that the approaches from this study or from
Jang et al. [43] provide more precise results because the influence of the cross-
sectional deformations are considered in those approaches. Especially, it can be
seen that the approach proposed in this study, which employs the theoretically
derived joint matching conditions, can predict the behavior of the T-joint structure

as accurately as predicted by the shell analysis.
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Fig. 3.10 (@) Numerical results for the T-joint structures shown in Fig. 9(a) with
various widths () and heights (%) of the cross-section (or aspect ratios /4/b) raging
from 5=200 mm, =50 mm (4/b=50/200) to 5=50 mm, /=200 mm (h/b=200/50),
(b) numerical results for the T-joint structures shown in Fig. 9(a) with various
joint angles ¢ > of Beam 2 ranging 10° < ¢, <90°.

Next, we check whether or not accurate results can still be provided by the
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proposed approach when either b or & of the cross-section or ¢, (which is the

joint angle of Beam 2) is changed for the T-joint structure given in Fig. 3.9(a).
Problems defined by changing b and % of the previous T-joint problem in a range
from 5=200mm, 2=50mm (4#/b=50/200) to b=50mm, #=200mm (h/b
=200/50) are first solved, and the results are given in Fig. 3.10(a). The graph in

Fig. 3.10(a) represents the variation in the vertical bending deflection (U,), of the

end B when the aspect ratio (/4 /) of the cross-section is varied. From the results,
it can be found that the proposed approach can provide accurate results for the box
beams-joint structures with sections of various widths or heights.

Problems defined from the first T-joint example by replacing b and % of the

section as b=50mm, #=100mm and changing ¢, in a range from 10° to

90° are also solved, and the results are given in Fig. 3.10(b). The graph in Fig.

3.10(b) represents the variation in the vertical bending deflection (U,), of the end

B when ¢, is increased. From the results, it can be found that the proposed

approach can also provide accurate and reliable results for the box beams-joint
structure with various joint angles.

Case Study 2: N Thin-Walled Box Beams-Joint Structure. Box beams-joint
structures involving several box beams are considered; see Fig. 3.11(a). To date, a
beam theory-based analysis method applicable to complex box beams-joint

structures, such as the one shown in Fig. 3.11(a), has not been proposed.
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Fig. 3.11 Numerical results for the box beams-joint structures with various
numbers of box beams (N) ranging 3< N <8.

The joint angle of Beam & (k =1, 2, - --, 8) in the beams-joint structure of Fig,
. 360 . .
3.11(a) is ¢, = (?)x(k—l) , so the angle between two adjacent beams is

uniformly 45°. All box beams constituting the structure are identical. The length

of those beams is L =1000 mm, and the dimensions of the beam cross-sections are
b=100 mm, 4 =50 mm, and =2 mm, respectively. The material properties of
those beams are Young’s modulus E =200 Gpa and Poisson’s ratio v=0.3. The
end of Beam 1 denoted by A is subjected to a twisting moment (M), =100 N-m,

and is assumed to be rigid. The ends of the other box beams (B-H) are all fixed.
The results are given in Figs. 3.11(b-f). As in Fig. 3.9, the range of the axial

coordinates, (k—1,k; k=1, 2,---,8), corresponds to Beam %. Examing the results
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on the basis of those from the shell analysis, the analysis using the Timoshenko
beam theory highly overestimates the stiffness of the structure, as observed in the
previous result. However, the proposed method can predict the response of the
structure almost as accurately as those from the shell analysis, even though the
number of box beams connected at the joint is significantly increased.

We now investigate if accurate results can be still obtained by the proposed
method when the number of box beams connected at the joint is changed. To do
this, problems that are defined based on the first example in Case study 2 are varied
by changing the number of box beams connected at the joint, i.e. N is in a range

360
3< N <8. The joint angle of Beam k (k=1,2,---, N)is ¢, :(T)X(k_l)’ and

360, .
the angle between the two adjacent beams is uniformly (7) .

The results are given in Fig. 3.12. The graph in Fig. 3.12 represents the

variation of torsional rotation (6.), at the end A of Beam 1 when N is increased.

From the results, it can be found that the proposed approach can provide accurate
results for a box beams-joint structure composed of various numbers of box beams.
Lastly, the problem with more complicated boundary conditions as depicted in Fig.
3.13(a) is considered; the structure shown in Fig. 3.13(a) is equal to the structure in
the first example of case study 2. Observing the result given in Figs. 3.13(b-f), it
can be found that the proposed approach can provide the correct result even where

complicated boundary conditions are considered.
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Figure 3.13 Numerical results for the eight box beams-joint structure with more

complicated boundary conditions: (a) problem description (L=1000 mm, 5=100

mm, A=50 mm, =2 mm, ¢ = 45° (k=1, 2, ..., 8)), (b) vertical bending deflecttion
U,, (c) bending/shear rotation 6, (d) torsional rotation 8., (e) warping W, (f)

distortion y.
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3.5 Conclusions

When a three or more box beams-joint structure is subjected to out-of-plane
bending or torsion, an analysis method based on the one-dimensional beam theory
that is capable of analyzing the response of the structure is established. To take into
account the influence of cross-sectional deformations on the behavior of the box
beams-joint structure, the one-dimensional higher-order beam theory considering
the warping and distortional deformations of the section as independent degrees of
freedom is employed. The key in developing the one-dimensional analysis method
for the box beams-joint structures is to determine the joint matching conditions
among the field variables of the higher-order beam theory in which the warping
and distortional deformations are included. In order to determine the exact joint
matching conditions, joint equilibrium conditions of the generalized forces that are
work conjugates of the field variables were first derived. Summarizing the process
briefly, the generalized forces were expressed by the sectional resultants acting on
the entire cross-section or the edge resultants acting on the edge of the section.
Then, joint equilibrium conditions for the sectional resultants or edge resultants
were determined based on the results in Choi et al. [42], and extending those
conditions, the joint equilibrium conditions for the generalized forces that can be
applied to the three or more box beams-joint structures were derived. Thereafter,
considering the principle of virtual work at the joint in addition to the determined
joint equilibrium conditions, the joint matching conditions for the field variables

that are applicable to the three or more box beams-joint structures were exactly
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derived.

Several numerical examples were solved by using the method proposed in this
study, and the results were compared with those obtained by ABAQUS shell
elements. For those examples, it was demonstrated that the proposed method can
predict the behavior of the three or more box beams-joint structures as accurately
as the shell finite element method, regardless of the number of box beams
connected at the joint, the joint angle among the box beams, and the width or
height of the section of the box beams. Comparing with a shell based method, the
proposed analysis method has advantages such as convenience for modeling, the
ease of modeling changes, and significantly fast analysis. Therefore, introducing
the proposed analysis method in the initial design stage of a vehicle, the initial
design model of the vehicle that meets the design criteria can be determined
quickly, and a better initial design model can be expected when employing an
analysis method with optimization design techniques. In addition, the methodology
for deriving the joint matching conditions can be expected to be an important
foundation for expanding the scope of structures that can be interpreted by using
the higher-order beam theory-based approach to a three-dimensional box beams-

joint structure.
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Appendix A

The explicit expressions of the shape functions w7 (s) (p=n,s,z; a=U,0,
6., W, y) that are introduced in the higher-order beam theory to describe the

displacements or deformations of the cross-section are given. The shape functions

w, (s) are separately defined on each edge for convenience; w7 (s;) (=12,

3,4) denotes the shape function defined on Edge j. The coordinate s; is based on

the center of Edge j and is measured along the contour of Edge ;.

v, (s,)=0 (for j=1,3) and (=D)V™? (for j=2, 4)

w (s)=(-DU"? (for j=1,3) and 0 (for j=2, 4) (3.Al)
v (s,)=0 (for j=1,2,3,4)

v, (s)=0 (for j=1,2,3,4)

v (s,)=0 (for j=1, 2,3,4) (3.A2)

W) =00, (for j=13) and (D22 (for j=2, 4

W, (s,)=-s, (for j=1,2,3,4)
w (sj)zg (for j=1, 3) and % (for j=2, 4) (3.A3)
W (s,)=0 (for j=1, 2,3, 4)
v, (s,)=0 (for j=1,2,3,4)
w! (s,)=0 (for j=1, 2,3, 4) (3.A4)
b . h .
'/’ZW(S,-)ZES]- (for j=1, 3) and _Esj (for j=2, 4)
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4 s 2b+h

‘(s )= n (for j=1, 3
ViD= ey T s o et/ =)
4 o b2 or =2, 4)
b(b+h)’ b+h '’
bh bh
_ o for j=1,3) and ——
wi(s,) Py (for j ) an P
w7 (s,)=0 (for j =1, 2,3, 4)

1253 —

(for j=2, 4)

(3.A5)

25 04 =

h h b b
where s, (j=1,2,3,4)are in the range of _E<S s <E and _E<S 5, <—.

One can show the following orthogonality relation between (yw*, w):

ot )2 (5) dsdn= ST v ) s, dsdni =0

J=l Edgej

(3.A6)

Likewise, one can also show the orthogonality conditions among (l//SU" , l//f" N}

o v s) dsdn = S J[ v w5 dsdny =0

J=l Edgej

(=U,.0., y;a,=

Appendix B

Uya z9 Z’ a] iaZ)

(3.A7)

In Appendix B, it will be shown that the sum of the virtual works for N (N >3)

box beams is zero at the joint in Fig. 3.2 when both the equilibrium conditions in

Eq. (3.28) and the matching conditions in Eq. (3.36) are satisfied among N box

beams at the joint.

If multiplying each condition in Eq. (3.28) by the admissible virtual
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, 00

Zglobal n(ji)°

displacement associated with Eq. (3.36) (o C 00 oU,,, ) and

adding those products, the resulting equation should be always zero regardless of

the virtual displacements

N N
5(®xgloba] )P x {Z (nglobal )k } + 5(®Zgloba1 )P x { Z (Mzglobal )k }
k=1 k=1

+ §(®n(j|))px{Z_:(Mn(jl))k} (3.B1)
+ 2[5(U5(1))k X{(Fs(l))k _(F;(B))kﬂ 11=0

1

where 6(®, ),,0(0. ), and 5(©, ), represent the virtual displacements

of an arbitrary box beam, Beamp (1< p < N). Because the virtual displacements

introduced in Eq. (3.B1) satisfy the matching conditions in Eq. (3.36), Eq. (3.B1)

can be expressed as

N N
Z 5(®xg]0bal )k X (nglobal )k + Z 5(®Zgloba] )P x (Mzglobal )k
k=1

k=1

N

+Zé‘(®n(h))k X(Mn(jl))k (3B2)
=l

N

+ Z[é‘(Us(l))k X(F )i 10U 5000 x (Fya))i 11=0
=

1
When 6(U,;))i, X (F3))s 0 Eq. (3.B2) is replaced by 6 (U, 3,), X (F3)); » Eq.

(3.B2) becomes (because Beam N+1 denotes Beam 1)
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N N

Z 5(®xglobal )k x (nglobal )k + Z 5(®Zglobal )P X (Mzglcba] )k

k=1 k=1
N

+25(®n(h))k X(Mn(jl))k (3B3)
=1

N

+ 2[5 U)X (F))p 0 U)X (Fy3)), 1= 10
=

1
Because the virtual displacements and the generalized forces in Eq. (3.B3) are
the same as the expressions in Eq. (3.34) and in Eq. (3.27), respectively, Eq. (3.B3)

can be rewritten in matrix form as, by employing the matrix M, (k=1,2,--, N),

S (M, -5U,)" (M, -F,)= Y (5U,)' (M, -M, )-F, =3 (8U,)'F, =0 (3.4)

k=1 k=1
Consequently, it can be found from Eq. (3.B4) that the sum of (S5U,)"F,
(k=1,2,--, N), representing the virtual work of Beam £, vanishes at the joint

when the conditions in Eq. (3.28) and Eq. (3.36) are satisfied at the joint.

Appendix C

The total potential energy of the box beam ( z, < z < z, ) can be defined as

n:%ﬂqjqj dAdz—[(o.i, +0.i,)7 dA

zs7s
N

122 r\2 ’ 2 2 "2
= j (BJ,,(0))+GI, (U0 +ECG +EL, V) 5y

+GJ, (0. + %W)2 +GJ,(W+ ') +GCy(x') }dz
: +

—[FyUy +M 6O +M.6, +BW+Q;(];2
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where J, (f=F,M_ M, B,Q) represents the moment of inertia for the

generalized force f as defined in Section 3. 1, and the expressions of

JFJ,’ s I s 5> I G and C, in Eq. (3.C1) are given by

2
T = [J dsan=2ht, g, = [ dsn =22,
N N
272
T = [y dsin="1C20 g = ([ dsan = 2O,
g N * o (3.C2)
_ l 2 _ Z _ . .. 2 _ t
JQ—J;I(WS dsdn=="—"=, Cl_jsj(n ;) dsdn=———
3 2 2
c2=”(2n-¢/;)2dsdn=2’ (b* +4bh + %)
& 15(b+h)

According to Refs. [6, 26], the field variables U(z) of the one-dimensional
box beam finite element (z, <z <z,) can be expressed in terms of the nodal
displacement vector d and the linear shape function N (<& is a nondimensional

coordinate in axial direction, and —1< £ <1 in the box beam element).

U(z)=N-d;
U,(z)
0,:)
e X 0 0 0 o X 0o o o ol]l@)
o] [0 5 0 0 0o o E o o of"@
0.)p=0 0o == 0 0o o o X 0 o 5((22‘))
@l lo 0 0 50 0 0 0 B oo,
@) 10 0 0 0 5 o0 0 0 0 g
W(z,)
x(2,)
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(3.C3)
Deriving the one-dimensional finite element equation for the box beam element by
applying the principle of minimum total potential energy, the resulting matrix
equation is of the following form:
f=K-d (3.C4)
where f refers to the nodal force vector, as follows.

f={F,(2), M (), M_.(2), B(2), O(z)), F,(2,), M (2,), M_(2,), B(2,), O(z,)}

(3.C5)
The stiffness matrix K defined from the procedure above is as:
K, K
K:{ 1" 12} (3.C6)
sym K,
where the definitions of submatrix K,,, K,, and K,, areas
[ Gy, GJp, 7
= 0 0 0
Gl EJ
—~+—=0 0 0
Gy, (b-h)GJy,
I(11 = - — W O (3C7a)
(b=hY Gl Gy EJy, GJy
Sym ey T3 tTr T2
E\C, G(Jp+Cy)
L B
Gy, GJp, 7
—— - 0 0 0
GJp, Gl EJy,
5 ——— 0 0 0
GJy. (b=h)GJ
(b=h)Glly, | Glly  EJ, GJy
0 0 6(b+h)* 6 ! 2
GJy E|IC, G(Jp+Cy)
.0 0 R T
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I refers to the length of the box beam element (/ =z, —z,), and E, =

el " GJp,

1 >0 0 0
GlJ, . EJ,
Ly 0 0
_ Gy, (b=h)GJ
Ky, 7 2(b+h) 0 (3.C7¢)
(b=hY'Gl\, Gl | EJ, Gl
sym 3(b+h) 7t 7
E|IC, G(Jp+Cy)
L 3 / J

1-v*'
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CHAPTER 4.
Higher-Order Beam Analysis for Two Box Beams-
Joint Systems Subjected to In-Plane Bending and
Axial Loads

4.1 Introduction

Inconsistent with the hypothesis introduced in the classical Euler and
Timoshenko beam theories (see e.g. Refs [1, 2]) is the fact that cross-
sectional deformations are easily found in thin-walled box beams. Thus
thin-walled box beams show much more flexible behavior than the analysis
results from use of the classical beam theories would suggest. Especially,
when two box beams are connected at an angled joint as depicted in Fig. 4.1,
highly flexible behavior is observed near the joint region [3, 4]. This is
because the cross-sectional deformations of the two box beams are further
amplified at the joint, and the actual behavior of the two box beams-joint
system in Fig. 4.1 is considerably different from that predicted by the
classical beam analysis due to joint flexibility.

Because the classical beam theories inevitably overestimate the stiffness
of thin-walled box beam structures (or members), one-dimensional higher-

order beam theories have been developed that include additional degrees of
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freedom accounting for flexibility of thin-walled box beams caused by
cross-sectional deformations [5-13]. In higher-order beam theory, however,
defining matching conditions among the degrees of freedom at the joint is
difficult because the cross-sectional deformations that do not produce any
non-zero resultants are also considered for the matching. Moreover, the
fundamental cross-sectional deformations of the box beam members that
cause the flexibility of the joint are not clearly identified for the in-plane
loading boundary conditions. For these reasons, no one-dimensional
analysis method based on the higher-order beam theory has yet been
proposed that can interpret the exact behavior of the two box beams-joint
system shown in Fig. 4.1 when in-plane loads are applied. Given these

circumstances, we propose a new higher-order beam analysis method that is

B~

=2
g ‘
h

Thin-Walled Box Beam

Fixed

.....

Shared

Shared Side Edge 1

Side Edge 2

Fig. 4.1 Two thin-walled box beams-joint structure subjected to in-plane bending
and tensile loads.
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capable of capturing the responses of the two box beams-joint system under
in-plane loads accurately.

First, let us review some previous approaches that tried to express the
joint flexibility of thin-walled beam systems correctly by using the one-
dimensional beam theory. Initial studies that were based on the classical
beam theories regarded the connectivity among thin-walled beam members
at a joint to be semi-rigid and proposed some artificial joint spring models to
reflect the joint flexibility [14, 15]. Chang [14] introduced a joint model
using a rotational spring to relate the in-plane bending moment with the
bending rotation at the joint. Lee and Nikolaidis [15] proposed a joint model
consisting of some rotational springs and a rigid section based on their
assumption that the rotation center of each beam member should be located
away from the joint. Meanwhile, Bylund [16] proposed a dynamic joint
method which evaluates the stiffness of the joint by using eigenvalues and
eigenmodes. Refs. [17, 18] suggested approaches to represent the stiffness
of the joint with a super element; according to their approaches, the super
element can be obtained by applying the static or dynamic reduction
techniques to a joint model based on shell elements. However, because joint
flexibility of a thin-walled beams-joint system is largely dependent on joint

angles among beam members and the aspect ratios of beam cross-sections at
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the joint, it is difficult to define an artificial joint model that would be
consistently applicable to the systems of various joints.

Because a beam theory that can theoretically deal with the additional
flexibility of thin-walled beam members or structures without using
artificial concepts is needed for accurate, consistent analysis, higher-order
beam theories that consider the cross-sectional deformations in addition to
the rigid-body motions as independent degrees of freedom have been
proposed. Based on the fundamental theory of thin-walled beams established
by Vlasov [5], several analytic or semi-analytic methods that calculate the
higher-order deformation modes of various thin-walled members have been
proposed such as an approach based on Saint Venant’s theory [19, 20], the
variational asymptotic method [21-23], Carrera’s unified formulation [24,
25], and the GBT cross-section analysis [26, 27]. Especially for thin-walled
members of closed sections including thin-walled box beams, Kim and Kim
[7, 28, 29] developed a higher-order beam theory (HoBT) which can
interpret the responses of those beam members under a twisting moment as
correctly as the shell analysis. Based on the HoBT, Kim and Kim [30] and
Heo et al. [31] proposed topology and shape optimization approaches of
thin-walled closed beam sections. Kim and Kim [8, 32] extended the scope

of the higher-order beam analysis to thin-walled curved box beams. In
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particular, they introduced a bending distortion of an hourglass shape to
represent the additional flexibility that is observed in thin-walled curved box
beams under in-plane loads [8]. Several higher-order beam models have
been developed in recent years to analyze the stress field or nonlinear
behavior of thin-walled box beam members. A mixed beam model with the
independent description of stress and displacement fields was proposed by
Genoese et al. [11, 33] who took into account the warping modes derived
from their approach based on Saint Venant’s theory. Ferradi et al. [12, 34]
proposed a higher-order beam elements that incorporates distortion modes
calculated by the modal analysis of beam cross-section decomposed with
one-dimensional elements along with warping modes derived by their
proposed equilibrium scheme. A higher-order beam model for the analysis
of prismatic thin-walled members was suggested by Vieira et al. [13, 35]
who considered uncoupled warping and distortion modes derived by their
proposed eigenvalue problem.

As higher-order beam theories capable of capturing the flexible
responses of thin-walled beam members accurately are available, efforts to
theoretically represent the joint flexibility of thin-walled beam systems have
been followed. Especially for the joint of thin-walled open section members,

many researches defining the compatibility conditions among kinematic
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variables have been proposed [36-40]. Vacharajittiphan and Trahair [36]
studied the warping transmission/restraint as well as the influence of
distortion on the warping transmission at the joint of two doubly symmetric
I-section members. For the joint of two asymmetric open section members,
Baigent and Hancock [37] derived the matching relations among the
kinematic variables including warping from the equilibrium conditions
determined by transforming force terms acting on the shear center and the
centroid onto the member origin axes. Moreover, they suggested modeling
techniques for the systems with various joint types and eccentric restraints.
Based on the aforementioned results, Basaglia et al. [39] have recently
derived the extended matching relations including the warping transmission
for the joint of multiple open section beams. Thereafter, a Generalized Beam
Theory (GBT) based one-dimensional approach for the analysis of various
buckling behavior of thin-walled open section beam systems has been
established by employing some additional displacement constraints at
specific points of the joint Camotim and Basaglia [40].

In the case of thin-walled closed section beam systems, on the other
hand, the distortional deformation, not significant in open section beams, is
also responsible for flexible responses observed near joints. Thus, an

investigation for the effects of distortion as well as warping on the joint
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flexibility should be conducted. Moreover, the mechanical principles of the
joint flexibility observed in two box beams-joint systems subjected to in-
plane loads are different from those associated with the torsional warping
(or warping transmission) which has been mainly investigated by the earlier
works introduced above. For these reasons, no existing higher-order beam
analysis has predicted the structural responses of two box beams-joint
systems comparable with the plate/ shell analysis results when in-plane
loads are applied. Recently, Jang and Kim [41] have proposed an analysis
method based on a HoBT for two box beams-joint systems under in-plane
loads. They established a HoBT that incorporates the bending warping
representing the shear deformation of box beam section under transverse
shear force [19] as well as the bending distortion proposed in [8] and
developed approximate joint matching conditions among the kinematic
variables. In their work, the three-dimensional displacements of two box
beams were matched on the virtual joint section and then an optimization
problem that minimizes the differences among those three-dimensional
displacements was solved. The limitation of this approach is that the
mechanical behavior of the joint cannot be accurately captured because the
matching conditions were not exact. The section shape of the bending

warping was also approximate one, so it should be further elaborated.
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Edge 2

(b)

Fig. 4.2 (a) Beam modeling for the two box beams-joint structure (Edge MM’ of
Beam 1 and Edge M>M’, of Beam 2 are considered as if they were rigidly
connected to each other by an imaginary rigid body, and Edge NiN,” of Beam 1
and Edge N>N>’ of Beam 2 are also considered as if being rigidly connected to
each other by an imaginary rigid body.), (b) the top view of beam modeling
(Shared Side Edge 1 in Fig. 4.1 is extended and separated as Edge MM’ of Beam
1 and Edge M>M’; of Beam 2, and Shared Side Edge 2 in Fig. 4.1 is also extended
and separated as Edge NiN;’ of Beaml and Edge N.N,’ of Beam 2.).
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Therefore, in order to precisely predict the behavior of two box beams-joint
systems under in-plane loads using a higher-order beam theory, a new HoBT
employing correctly-defined sectional shapes corresponding to higher-order
degrees of freedom is required. Also, we need to derive the exact joint
matching conditions among the kinematic variables.

In this study, we aim to develop a new HoBT and derive exact joint
matching conditions to precisely analyze the structural response of a two

box beams-joint system under axial force F,, transverse force F , and in-

plane bending moment M, as depicted in Fig. 4.1. Beam 1 and Beam 2 are

located on the same plane, and their widths, heights, and thicknesses are
equal to b, A, and ¢ respectively. For analyses based on the HoBT, we model
the joint connectivity between Beam 1 and Beam 2 as shown in Fig. 4.2. As
with classical beam theories, Jang and Kim [41], and Choi et al. [42], two
beams converge to one point, and the point is defined as a joint (strictly, the
joint refers to the point where the central axes of the two beams meet).
Special efforts are made to establish the exact the joint matching conditions
in which the continuity along the shared edges of the two beams meeting a
joint should be considered. The details will be be presented in Section 4.4.
The key contributions of this study are i) the establishment of a new

higher-order beam theory that considers sufficient higher-order deformation
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degrees to express the flexible responses of the two box beams-joint systems
under in-plane loads correctly, and ii) the theoretical derivation of the joint
matching conditions among the field variables of the newly established
HoBT. To do this, a HoBT incorporating the cross-sectional deformations of
Fig. 4.3(b) in addition to the rigid-body motions of Fig. 4.3(a) will be
established. The deformation shapes in Fig. 4.3(b) are theoretically derived
by analyzing the mechanical responses of the box beam member when in-
plane loads are applied. It is emphasized that the so-called bending
distortion y, is newly proposed here and that its importance in predicting
correct structural behavior of box beams-joint systems is recognized for the
first time.

Whereas Jang and Kim [41] employed some approximate techniques to
define the joint matching conditions, the exact matching conditions to be
derived for the present case considering in-plane bending and axial loads are
inspired by the exact matching conditions derived for box beams-joint
systems under out-of-plane loads [42]. In Choi et al. [42], a transformation
matrix was introduced to represent the joint matching conditions, and a
theoretical approach to derive the exact matching conditions was developed
by considering some essential conditions that the transformation matrix

must obey in addition to the equilibrium conditions and the continuity
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conditions at the joint. Therefore, the approach proposed in Choi et al. [42]
will be extended in this study to derive the joint matching conditions for the
in-plane loading case. Following this strategy, the matching conditions
between the six field variables (U_, U, -, y,) of Beam 1 and Beam 2 in Fig.
4.1 will be newly derived in terms of a 6x6 transformation matrix T(g)
(¢: the joint angle (see Fig. 4.2)). The construction of the transformation
matrix for the present case dealing with in-plane bending and axial loads is
much more difficult than that for the earlier case dealing with out-of-plane
loads because the number of cross-sectional deformations for this case is
larger and their shapes are much more complicated. In particular, contrary to
the result in Choi et al. [42], the higher-order deformation degrees of Beam
1 and Beam 2 are coupled at the joint when in-plane loads are applied, and
mechanical behavior of the higher-order deformations should be fully
analyzed to determine those coupling relations. In this study, those relations
are exactly derived within the developed HoBT by considering edge-wise
equilibrium conditions with the concept of so-called “edge resultants” [43].
The details about the derivation of T(¢) will be given in Section 4.4.

To check the validity of the higher-order beam theory that is newly
established in this study, a case study will be examined first, in which

straight thin-walled box beams with various aspect ratios of their cross-
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sections are considered. To demonstrate the accuracy and the effectiveness
of the proposed analysis approach using the theoretically derived joint
matching conditions, two case studies will be investigated by using box
beams-joint systems having various joint angles and cross-section aspect
ratios. In each case study, the accuracy of the proposed approach will be

checked by comparison with the ABAQUS shell analysis results [44].

4.2 Higher-Order Beam Theory for Straight Thin-Walled Box

Beams

In order to interpret the two thin-walled box beams-joint structure shown in Fig.
4.1 precisely without using any artificial concepts, a higher-order beam theory
which considers the primary cross-sectional deformations associated with the joint
flexibility as the independent field variables and represents their mechanical
behavior correctly is required.

To analyze the structure mentioned above, Jang and Kim [41] suggested the
higher-order beam theory which includes the bending warping observed in the
straight thin-walled box beams under in-plane bending loads (£, M) in addition
to the bending distortion proposed in Kim and Kim [8], and they proved that the
flexibility of the joint can be theoretically expressed by those cross-sectional
deformations. However, the definition of the bending warping is mechanically

incorrect because the shape of that is assumed by observation, and another primary
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cross-sectional deformation (referred as bending distortion y, in this study) that

should be considered together in order to express the additional flexibility of thin-
walled beam correctly in not involved. Consequently, the higher-order beam theory

proposed by Jang and Kim [41] cannot precisely represent the behavior of the
straight thin-walled box beams under (F,, M), and that theory overestimates the
bending rigidity of those box beams.

Therefore, a new higher-order beam theory considering six displacements or

deformations of the box beams such as axial displacement U_, transverse
displacement U, , in-plane bending/shear rotation 6,, bending distortion y,,

bending warping W,, and bending distortion y, as independent degrees of
freedom will be established. Rigid-body motions of the box beam represented by

(U.,U,,0,) are illustrated in Fig. 4.3(a), and cross-sectional deformations

represented by ( y,, W,, y,) are illustrated in Fig. 4.3(b). », and W, represent
the primary cross-sectional deformations associated with the additional flexibility
of straight thin-walled box beams subjected to (F,, M), and y, represent the
local deformation near the joint generated by the equilibrium at the joint.

In order to define those cross-sectional deformations as one-dimensional field
variables of higher-order beam theory, shape functions representing their
deformation patterns shown in Fig. 4.3(b) are employed. While the previous studies

[16, 17] assumed the shape functions through observation, the shape functions will

111



(b)

Fig. 4.3 (a) Rigid-body motions of the box beam cross-section represented by the
field variables: axial displacement U., transverse displacement U, and in-plane
bending/shear rotation &,, (b) deformations of cross-section represented by the

field variables: distortion yi, warping W, and distortion p».

be theoretically derived in this study to define the higher-order beam theory
precisely. In particular, y, was not considered in the previous studies [8, 41], and
%, 1is first introduced in the higher-order beam theory to exactly describe the
bending rigidity of thin-walled box beams and the additional flexibility represented

by W,.
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Based on Refs. [7, 43], the one-dimensional higher-order beam theory
considering the six rigid motions and cross-sectional deformations shown in Fig.
4.3(a, b) as the field variables will be defined in this section. The shape functions
for ( x,, W,, g, ) will be theoretically derived in the next section.

When one-dimensional field variables of the higher-order beam theory are

expressed as the functions of axial coordinate z, U(z)={U_(2),U (2), 6, (2),

2.(2), W,(2), x,(2)}", three dimensional displacements of a point located on the

contour line of the box beam cross-section can be written as follows by using U

[7].
u, (s, 2) =y, () U (2)+y [ () 1, (2) + ¥ (5)- 2,(2) (4.1a)
(s, 2) =y (s)-U, () +y 2 () () + w2 () 1,(2) (4.1b)
u. (s, 2) =y ()-U.(2)+y! (5)-0,(2) +y!" () W,(2) (4.1¢)

Where n and s represent the coordinates in normal and tangential directions defined
on the contour line respectively (the positive directions of coordinate » and s on
each edge are given in Fig. 4.2(a)).

u,(s,z) (p=n,s,z) in Eq. (4.1) represent the displacement in p direction

generated at the point (s, z ) on the contour line. As shown in Fig. 4.3, (U_, 0 , W))

zo Yyo
represent the displacements or deformations on axial direction, and (U, z,, x,)

represent those on the x — y plane. Accordingly, u_ in Eq. (4.1c) is expressed by

z

(U.,0,,W),and (u,, u,)in Egs. (4.1a, b) are expressed by (U _, z,, 1,)-

z2 Yy»
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we(s)y (p=n,s,z2;a=U_,U,0,, x,W, x,) in Eq. (4.1) are the shape
functions which describe the deformation shape of field variable « shown in Fig.
4.3, and y“(s) denote the displacement in p direction generated on the contour
line by the unit magnitude of « . The explicit expressions of y«(s) are given in

Appendix A.

When the Kirchhoff-Love plate theory [45] is considered, three dimensional
displacements at a generic point which is located away from the contour line by n

can be written as follows by using (u,, u_, u_) in Eq. (4.1).

u,(n,s,z)=u,s,z)= l//nU*' U +yh -y +y? -y, (4.2a)

ou,(s,z)
os (4.2b)
=y Uyl g+l =y Uyl g+l 1)

u (n,s, z)=u/ (s, z)—n

ou,(s,z)
oz (4.2¢)
=yl U, +y? 0, +y! W —n(yl U +y? g +w? )

u,(n,s,z)=u/s,z)—n

where (") and ()’ denote (")=o()/os and ()’ =0()/0z respectively.
—-n-(0u,/0s) and —n-(0u,/0z) in Egs. (4.2b, c) represent the displacement in s
and z directions respectively which arise from the rotation of the normal to the
contour line.

According to the Kirchhoff-Love plate theory [45], the dominant strains

(&, €., 7, ) that occur at the same point can be defined from Eq. (4.2) as:
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ou. . . ..
g,(n, s, Z)=a—;=!//f' A U4 7 ey (4.3a)

0 , '
gzz(nis’ Z): ;Z:l//ij:.Uz +l//zo)9} +l//leVVll
iz

(4.3b)
—n(, U +y? - vl x)

ou. ou
ys:(na S, Z)Z_A'i_
Oz

4

U ’ ’ .0,
=y U +yl -y +y. -0
Os Vol T T TV R (4.3¢)

'H//zW] VV] _2’1(‘/}5] '7(1"“/./52 'Zzl)

where nonzero terms are given in Eq. (4.3) among the strains obtained from the

displacements in Eq. (4.2). Subsequently, the dominant stresses (o

552

c.,0,) at

zz %

the same point can be defined from (¢, ¢_, y._) in Eq. (4.3) by employing the

stress-strain relations as:

o, (n,s,z2)= L2 gyl U vyl 0 vyl W)

1-v?
(@l AR vy U vt ) v ")y
(4a)

E
1-v?

o.(n,5,2)=E(y! U )+ —{ (! -0, +y! - W+wy? - 1)

(4b)
—n(y) U vyl vwP g v v )}

o.(n,s, Z):G{‘//;/x 'Ux' 2 'er +‘/./fy -0, ""//ZWI W =2n(y; 'Zl' +y '7(2')}

(4¢)
where E, G,v represent Young’s modulus, shear modulus, Poisson’s ratio,
respectively.

To define those stresses in Eq. (4.4) more precisely, two different stress-strain
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relations given below are employed.

E E
O-ss = 2 (gss + ngz )’ O-zz = 2 (gzz + Vgss )’ O-sz = G]/sz (53)
I-v 1-v
or
O-ss = Egss > Gzz = Egzz > Gsz = G)/sz (5b)

The dominant stresses generated by (U, Hy, Xi» W, x,) which describe the

bending behavior of box beam are defined by using the relations in Eq. (4.5a)

because y, represent the Poisson’s effect [1] under the bending loads (£, M ).

Meanwhile, only U, is considered for the tensile or compressive behavior of

box beam, and the cross-sectional deformation representing the Poisson’s effect [1]

under the axial load F, is not included. Thus, the dominant stresses generated by
U. are defined by using the relations in Eq. (4.5b). As given in Eq. (4.3), the

nonzero strain generated by U_ is only &_, and the dominant stress o_ which

is equal to the stress in the classical beam theory is defined through Eq. (4.5b) (see
Eq. (4.4b)).

Using the displacements, strains, and stresses given in Egs. (4.2-4), one can
define the three dimensional total potential energy for the straight thin-walled box
beam [7]. Subsequently, carrying out the surface integral for the cross-section S
and applying the principle of minimum total potential energy, the exact higher-
order beam theory employed in this study can be obtained (the detailed procedure

is given in Appendix B). The newly established higher-order beam theory is
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expressed as the relations between the field variables U and the generalized

forces ¥=(F,F.,M,  0O.B,0,}",and F isdefined as follows.

F =™y dsdn,  F,=[[ (o) dsdn, M, =[[(c.y) dsdn
s S :

0 =|[[(o.wr)dsan, B =[[(oy)dsdn, Q= [[o.(~ny) dsdn (4.6)
s S :

where F, F, and M represent resultant forces or moments such as axial force,

transverse force, and in-plane bending moment respectively. On the contrary, the

others denote self-equilibrated terms; B, represent longitudinal bimoment, and

(Q,, O, ) represent transverse bimoments.

4.3 Derivation of Cross-Sectional Deformations (y1, W1, }2)
The use of accurate shape functions w(s) associated with the higher-order
deformation degrees ( y,, W,, x,) is crucial in order to capture the flexible

behavior of thin-walled box beams. Unlike earlier works [8, 41], we use a

theoretical approach for accurate derivation of w(s) for ( y,, W, y,) and present

newly-derived results [50].

4.3.1 Shape Function of j
According to the classical beam theory [1, 2], the axial stress o_. generated at a

point on the contour line by the in-plane bending moment M can be written as:
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_M,()
o.(s,2)= ] x{=x(s)} 4.7)

where [ represent the moment of inertia for M , and x(s) denotes the x
coordinate of the point at (s,z). By o_ given in Eq. (4.7), the strain &_ is
generated, and simultaneously the strain & expressed as follows is also
generated by the Poisson’s effect [46].

% _ VMy(Z)
E EI

x{x(s)} (4.8)

£,(s,2) =~V

According to Ref. [46], &_ given in Eq. (4.8) causes the cross-sectional

Ss

deformation representing anticlastic curvature, and this deformation is considered

in this study as the field variable y,.
When u»* denotes the displacement associated with y, in s direction on the
contour line, u# generated from & given in Eq. (4.8) satisfies the following

equation.

oul(s,z) vM (z)
Os EI

x{x(s)} (4.9)

In addition, wu# satisfies u? (s, z)=w?* (s)- x,(z) according to Eq. (4.1). When
this relation is substituted into the Eq. (4.9), the following equation concerning

w7 (s) can be obtained.

opl(s)

B x{x(s)} (4.10)
Os

where B represents the proportional constant.
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w?(s) will be exactly determined based on Eq. (4.10). When x(s;)
represents the x coordinate of a point (s;, z) on the Edge j (=1, 2, 3, 4) (see Fig.

4.2(a)), x(s;) can be expressed as:

X(S1):§s x(s,)==5,, X(S3)=—§, x(s,)=s, (4.11)

where b represents the width of cross-section as mentioned in Introduction (the

height of cross-section is written by #). The coordinate s; (j=1,2,3,4) is
measured from the center of Edge j as shown in Fig. 4.2(a), and thus s, has the

h b b
following range: —ES s, 8 <— and —ES Sy, 8, <3

Substituting x(s) in Eq. (4.11) into Eq. (4.10) and carrying out the
integration for the coordinate s, y (s,) on Edge j (j=1,2,3,4) can be

expressed as:

* b * 1
wi(s)=h X{Esl""cl}s wl(s,)=h X{_5S22+C2},
b { (4.12)
'//51(53):P1*X{_5S3+C3}a l//f'(s4):R*X{ES42+C4}

where C,, C,, C,, and, C, represent the integration constants.
From the observation that o_ in Eq. (4.7) is symmetric with respect to
the x-axis, one can find that the shape of y, generated by o_ should be

symmetric associated with the x-axis. To satisfy the x-axis symmetry,
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therefore, w7 (s,) and w7 (s;,) in Eq. (4.12) should meet the following
odd function conditions, respectively.

wi(s)=-yl(=s), wi(s) ==y (=s;) (4.132)
In addition, the displacements in x direction on Edge 2 and Edge 4 represented by

w?(s,) and wZ*(s,) respectively should be equal to meet the x-axis symmetry.
Because the positive directions of s, and s, are —x and +x respectively
(see Fig. 4.2(a)), the symmetry condition can be written as follows.
pi(s,=s)=—yl (s, ==s") (4.13b)
where s represents an arbitrary constant within a range —(b/2)<s’ <(b/2).
The integral constants (C, ~ C,) which satisfy the x-axis symmetry conditions
given in Egs. (4.13a, b) are as:
C =C=0 (4.14a)
C,=-C, (4.14b)
Meanwhile, w# in Eq. (4.12) should satisfy the following orthogonality
conditions with " and y* so that the relation given in Eq. (4.1b) is defined
correctly [5, 7].

[Jwi)-wi(s)da=0 (4.15a)

N

[l v da=0 (4.15b)

N

Regardless of 7, the condition in Eq. (4.15b) is satisfied by itself since
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w?(s)=0 as given in Appendix A. The orthogonality condition given in Eq.
(4.15a) means that the cross-sectional deformation represented by y, does not
involve any rigid-body motion in x direction. (C,, C,) meeting the condition in Eq.

(4.15a) are as follows.

C,=—, C,=—— (4.16)

From the conditions for the x-axis symmetry and the orthogonality with U,
all the constants (C, ~ C,) in Eq. (4.12) are determined. The constant P in Eq.

(4.12) determine the scale of cross-sectional deformation represented by the unit

magnitude of y,,and B"=6/4" will be used in this study.

When u# is generated on the contour line, u»* is accompanied by the
continuity at the corner j where Edge j and Edge j+1 (j =1, 2, 3, 4; Edge 5 denotes
Edge 1) meet [6]; the u? generated on Edge 2 and Edge 4 are symmetric with

respect to the x-axis as shown in Fig. 4.4(a), so the continuity at the corner j

(j=1,2,3,4)is satisfied by itself without having »* when u? are generated
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u”(s,) (Edge 2) corner
P> At E P ’u:_:.-:‘:) ContinUity

Y { L 1
"I y ‘|I
X | ,|
z i \ l g !
4l v E X E : n
wis) gtz M (5,)
(Edge 3) 1 | i (Edge 1)
u’(s,) (Edge 4) I ~~~~~~~~~~ :," l
(a) (b)

Fig. 4.4 (a) Displacements in s direction on Edge 2 and 4 represented by y1, (b)

displacements in s direction on Edge 1 and Edge 3 represented by i and
displacements in »n direction on the entire cross-section accompanied by the

continuity condition at each corner.

on Edge 2 and Edge 4. However, u? generated on Edge 1 and Edge 3 are anti-
symmetric with respect to y-axis as shown in Fig. 4.4(b), so one can find that »*
should be accompanied to meet the continuity at the cornerj (j =1, 2, 3, 4).

When u* =y?#(s)- y,(z) are generated on the contour line of Edge 1 and
Edge 3, linear displacements u* =y * (s)- y,(z) are generated on the contour line
of Edge 2 and Edge 4 as shown in Fig. 4.4(b) to satisfy the following displacement

continuity at the corner.

b h b h
u;' (s, :_E):u;ﬁ (s, :E)’ uy' (s, :E):_uf] (5 :_E) (4.17a)
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b h b h
uy (s, = _5) =ul (s, :5)’ uy (s, :E) =—uf (s, = —5) (4.17b)

When y 7 (s, ) at the Edge j, (j, =2,4) are assumed as the following linear
functions,

wi(S,)=ayS, +ay,, wi(s,)=a,s,+a, (4.18)
those 471 (s,) (Jj; =2,4) can be determined by considering the displacement
conditions given in Eq. (4.17), and consequently («,,, a,,, a,,, a,,) in Eq. (4.18) are

as follows.

3 3
ay =—7> a, =0, ay =7 a, =0 4.19)

In addition to the displacement continuity, the following angle and moment
continuities should also be satisfied at the corner according to Ref. [7]. For this

reason, the parabolic displacements u* are accompanied on Edge 1 and Edge 3

as shown in Fig. 4.4(b).

uh (s, = g) = (s, = —g), ub (s, = —g) —un (s, = 2),
(4.20a)
wi (s, =Dy =ur (s, =2, wpr sy =ty =mun (s, =-2)
" 2 g 2 " 2 y 2
h h b
ﬁzll (Sl = 5) = ﬂzll (S2 = __)5 ﬂzZI (Sl = _E) = ﬂzll (s4 = E)D
(4.20b)

NS NS

B =—D = 5= D B =)= B 5 =)

123



Mz;a (s, zg) :]\7[211 (s, = _g), Mzzl (s, = _g) :MZJ:] (s, :é)’

5 . 5 (4.20c)
lel (S3 = _5) = lel (Sz = E)a lel (S3 = E) = lel (S4 = _E)
where g~ (s,) and A7 (s,) atEdgej(j=1,2,3,4)aredefined as
ou (s;) _ Ef OPul(s))
i(s)=—20 MA(s)=ox—as (421ab)

The symbols g« (s,) and A77(s,) represent the bending rotation and bending
moment in z direction, respectively [7]. The moment A7 #(s,) in Eq. (4.21b) is

approximately defined by the classical beam theory, and ¢ in Eq. (4.21b) represents

the thickness of Edge ;.

When y» (s, ) atthe Edge j, (/,=1,3) are assumed as the following 4t
order even functions which meet the x-axis symmetry condition,

wh(s)=a,s  +a,s’ +a,,  wh(sy)=ay,s, +a,s, +ag, (4.22)

wi(s,) (Jj,=13) in Eq (422) can be determined by employing those

continuity conditions given in Eq. (4.21), and consequently (a,,, a,,, a,;, a;,,

a,,, a,;) in Eq. (4.22) are as follows.

} 3 } 9 . _8b” +15K°
ot R’ " 160> 4.23)
3 9 8b* +15h°
A T
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4.3.2 Shape Function of W

The shape of the bending warping degree introduced in the earlier work [41] was
only approximate so that there are cases where the analysis results are so accurate.
For this reason, the shape function " for the bending warping W, will be re-
derived in this study from a theoretical approach [50].

When the transverse force F, is applied to the thin-walled box beam, the in-
plane bending moment M satisfying the equilibrium of is M /0z+F, =0

accompanied, and thus o_ given in Eq. (4.7) is applied to the contour line of

cross-section. However, o satisfies (0o_,/0z)#0 in this case because

zz

(@M, /8z)#0.

Meanwhile, the following equilibrium condition always holds between the
dominant stresses o, and o according to Ref. [47] when any distributed loads
are not applied.

b0, %9, (4.24)
oz 0s

Considering the equation above, one can find that o, is generated on the contour
line when F, is applied, and the following condition to theoretically derive o
can be obtained from Eq. (4.24).

oo oo 1 M ,(z)

s __ zz ___(

_EG@)
s o T )X{—x(s)}——l {—x(s)} (4.25)

o., meeting the condition in Eq. (4.25) produces the shear strain y_=o0_/G

125



along the contour line, and consequently W, depicted in Fig. 4.3(b) occurs on the
box beam by y_ [2, 19]. Therefore, o satisfying the condition in Eq. (4.25)
will be theoretically derived first, and subsequently ! representing the shape of
W, will be derived based on the obtained o, .

When o_(s;,z) represents o at Edge j (j=1,2,3,4), the following
o_(s;, z) satisfying Eq. (4.25) can be obtained through integration (see Eq. (4.11)

for x(s;) at Edge)).

o,.(s,z)= £ ><{—2S1 +C 1, 0,.(8,),2)= £ ><{ls22 +C,},
F’ b2 FI 21 (4.26)
o (85, 2) =#x {Es3 +(~?3}, 0. (84, 2) =%Z)x{—§s42 +C4}

where (C,, C,, C,, C,) represent the integration constants. o

zs

in Eq. (4.26) is
symmetric with respect to x-axis because F, inducing o is applied along the x-

axis. Considering this symmetry condition, the constant (C~'1 ~ C~'4) in Eq. (4.26)

satisfy the following conditions (see Eq. (4.13) for the x-axis symmetry at each
edge).

C=C=0; C,=-C, (4.27a, b)

In addition, o, in Eq. (4.26) should meet the continuity condition

0.(8;5 2) | comerj = O (1115 Z) | comer; @t the corner j (j=1,2,3,4). This condition

can be obtained from the consideration on the shear flow continuity between
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txo_(s;,z) at Edgejand txo_(s;,,z) at Edgej+1 (Edge 5 denotes Edge 1)

at the corner j [22]. Although the shear stress at Edge j is linearly distributed in

thickness direction, the effect is eliminated through the integration, and the shear

flow at Edge j is expressed as #xo_(s;, z) . The constants C, and C, which

satisfy the continuity condition of o are as:

2 2
o b2k s b+ 20k 4.28)

S T 8
Asaresult, o_(s;,z) atEdgejproducedby F, canbe given as follows.

F.(z) 1 b* +2bh

F (z b
o-zs(slﬂz): x[( )X{_Esl}, GZS(SZ,Z): X{Eszz_T}a
2 (4.29)
£(2) (b F(z2)_, 1, b +2bh
GZA'(S_“”Z):T)X{ESZ}’ O-Z.V(S4’Z):.TX{_5S42+ 8 }

In the higher-order beam theory, on the other hand, o on the contour line
produced by F. can be written as follows by using the field variables U(z) and
the shape functions w(s).

0 (5, 2) =Gy U +y? -0, +yP -z +y! W} (4.30)
According to the higher-order beam theory, y, by the Poisson’s effect and 1, by
the shear strain are appeared in addition to the rigid-body motion (U,, 6,) in the
box beam when F, is applied, and referring to the Eq. (4.4c), one can fine that
o., on the contour line (n=0) produced by (U _, 8 , x,, W,) can be written as Eq.

zs x> 7y

(4.30).

127 :



The shape functions (y/‘fj*,t//f"',y/fl,y/f/') in Eq. (4.30) represent the

/4

distribution of o_, and those functions except y!" are previously determined

(although the procedures to define (l//ﬁjx , l//fy) are not given, their definitions are so

obvious since they represent the rigid-body motions). Considering the additional

condition that o_ in Eq. (4.30) is equal to the previously determined o in Eq.
(4.29), therefore, ! (s) can be precisely derived.

From the equality condition between o in Egs. (4.29) and (4.30) at Edge j
(j=1,2,3,4), the following conditions which " (s )-W,(z) should meet at the
Edge j can be obtained (see Appendix A for the explicit expressions of

(Wg‘ > l//fyv l//xZ] ))

P ) @) = (2 o FD 4 2 () (31a)

R (s2>-VK(z)=<§s;)-{éﬂ(z>+h%z{(z>}

b*+2bh 1 b’ (4.31b)
+{- *8 R +U/@-0,0) 52/ ()
7 (5) - W(2) = (P A F ()42 5 (2 @310)
v, (S 1 = 73 Gl - e X .

R (s4>-VK(z>=(—%sf)-{éw)%z{(z)}

b* +2bh 1 : b
3 an(z)+Ux (z)—Gy(Z)—W}(] (2)}

(4.31d)

_{_

The conditions in Eq. (4.31) should hold for arbitrary coordinate (s, z ), and the
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functions of s and z given in Eq. (4.31) are independent each other. Thus, the

conditions with respect to " (s) can be obtained through the comparison among

the functions of s.

First, comparing those functions of s, given in Eq. (4.31a), one can find that

w! (s,) should meet the following condition at Edge 1.
W, " b
w.'(s)=h x (_5S1) (4.32a)

where P, represents the proportional constant, and substituting the condition in

Eq. (4.32a) into Eq. (4.31a), the following relation among the functions of z can be

obtained.
P*W(z)—lF(z)+£ "(2) (4.32b)
2 Gl JE X .
In sequence, substituting the relation in Eq. (4.32b) into Eq. (4.31b) (i.e.,
o . . 1 6 )
substituting P W,(z) into {an(Z)+h—2 2 (2)} in Eq. (4.31b)) and then

comparing those functions of s,, one can find that i (s,) at Edge 2 should

meet the following relation.
. * 1 *
vyl (s)) - B X(Eszz):f)z (4.33a)

where P, represent the proportional constant. Likewise, it can be seen through

substituting the relation in Eq. (4.33a) into Eq. (4.31b) that the following relation

among those functions of z must hold.
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Fx(z)+U;(z)—0y<z)—fW;a’(z)} (4.33b)

b* +2bh 1

PW(2) =1~ e

Lastly, when those functions of z given in Egs. (4.32b) and (4.33b) are substituted
into Egs. (4.31¢c) and (4.31d) respectively, the following relations for " (s,) and

w1 (s,) can be obtained.

. * b . * 1 *
I//ZWI (s;)=F X(Esz)s ‘//ZW1 (s)— B, X(_Esf):_a (4.34)
wi(s,) at Edgej (j=1,2,3,4) which satisfy the relations derived above

can be expressed as:

* b ~ * 1 ~ ~
V/ZW1(31):Pz X{_Zs1z+a11}> V/ZWI(Sz)sz X{gsz3+a2252+a21}’
(4.35)
. b N . 1 - -
V/ZWI(S3):P2 X{ZS32+‘Z31}: ‘//ZWI(S4):P2 x{—gs43—a22S4+a41}

where a,, =(P’/PR),and (a4, a,,, a,,, 4,, ) represent the integration constants.
When " (s, z) =y (s)-W,(z) denotes the axial displacement on the
contour line represented by W, , the displacement continuity condition
U (0 2) Lcomers = 42 (510 ) lcomer;  DEIWED 2 (s, z) on  Edge j and
uli(s,,,z) on Edge jt1 at the corner j (j=1,2,3,4) must hold, and
consequently the following conditions with respect to "i(s) given in Eq. (4.35)

can be obtained.
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vl =)=yl =0, vl =)=yl (s =)
(4.36)

h b b
v (s =)=yl == vl s =D =yl (5 =-2)

/4

Meanwhile, y!" in Eq. (4.35) should meet the following orthogonality
conditions with " and y/g so that the relation given in Eq. (4.1c) is defined
correctly (see Appendix A for the explicit expression of (.7, t//f” ).

[[vli@) v aa=0;  [[y!)pl(s)dd=0  (437a,b)

s s
where Egs. (4.37a) and (4.37b) mean that the cross-sectional deformation
represented by W, does not include any rigid-body translation in z direction and
any rigid-body rotation in y direction, respectively.

Considering those conditions given in Egs. (4.36) and (4.37), the constants
(d,,, @y, ay,, ay,, d,,) in Eq. (4.35) which meet those conditions are obtained as
follows.

. b(=2b +15bk* +15K°)

a,=—a , a,, =0,
= 240(b + 3h) il s
. =b =5 h+10K° . '
a = > a, =0
40(b +3h)

The constant P, in Eq. (4.35) determine the scale of cross-sectional deformation
represented by the unit magnitude of W,, and P"=16/bh*> will be used in this

study.
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4.3.3 Shape Function of

Kim and Kim [8] established a HoBT incorporating y, in order to express the
flexibility of curved box beams, and later Jang and Kim [41] also used the same
form of y, proposed by Kim and Kim [8]. Because the form of y, in Kim and
Kim [8] involved some approximation ignoring the exact mechanics, there is a
need to derive the exact form of y, especially for accurate analysis of box beams
meeting at a joint. A new derivation will be presented below [50].

First of all, we note that unlike y, and W, considered above, y, does not

appear in a straight box beam subjected to (£, M ). In other words, the sectional
deformation associated with y, shown in Fig. 4.3(b) only appears if two or more

box beams meet at a joint with nonzero joint angles. In fact, y, represents the

local deformation observed near the joint of a two box beams-joint system under
in-plane loads [41]. The shape function of y, can be theoretically derived by
considering the deformation patterns developed to satisfy the equilibrium state at
the joint of two box beams. We will show later that in addition to the equilibrium
conditions among sectional (or common) resultant forces or moments, the
equilibrium conditions among the so-called edge resultants on Edge 1 and Edge 3

produced by (M , B, O,) can be considered at the joint. The detailed accounts of

the edge resultants will be given in Section 4.4.4. Here, we simply remark that the

edge resultants are the resultants evaluated separately for each edge. Therefore,
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four sets of edge resultants can be defined for a given generalized force. Figure 4.8

suggests that M and B, all produce edge resultant forces sz o (J=13; 8=

M, B)) parallel to the axial direction on Edge 1 and Edge 3. (For instance, F’ M

2(3)
denotes the force resultant along the axial direction z defined on Edge 3 by the

sectional resultant moment A .) Therefore, the sectional deformation associated

with y, can be generated in the process of achieving the equilibrium with respect
to those edge resultants if a box beam meets another box beam at a joint with a
non-zero joint angle.

Due to the edgewise equilibrium condition stated above, uniformly distributed
loads on Edges 1 and 3, as depicted in Fig. 4.5(a), can be developed, which in turn

induce y,. Figure 4.5(a) suggests that the edge resultants inducing y, are in the
—x and +x directions on Edge 1 and Edge 3 respectively. Therefore, the shape
function w2 (s) of y, can be determined as the deformed shapes due to the

uniformly-distributed external loads depicted in Fig. 4.5(a). Although the
displacements in the s direction can be accompanied on Edge 2 and Edge 4 due to
compression, w?(s)=0 1is assumed in this study because the scale of
displacements in the s direction is relatively very small compared to the scale of
displacements in the # direction.

Using the symmetry of the applied loads with respect to both x and y axes in

Fig. 4.5(a), one can define a bending problem depicted in Fig. 4.5(b). It models
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Fig. 4.5 (a) Distributed loads boundary condition and accompanied cross-
sectional deformation y, at the joint, (b) proposed equivalent problem to
determine the deformation of y» on the portion (the first quadrant) of the cross-
section theoretically

only a portion of the cross-section (the first quadrant) with roller support conditions
at its both ends. In the model, Edge 1 and Edge 2 are assumed to behave as beams,
and their mechanics responses can be analyzed by using the classical Euler beam

theory [1] as

. L WGb+h), o hShh), 12 439
w0 D) = ) ey O T 3sapa sy e 1) (4.3%)
W b*h? 12
X2 = §_ 2 ol 439b
u”(s,, z2)={ 24(b+h)(S2) +96(b+h)} {Ez3 q(z)} ( )

where u,(s,, z) represents the displacement in the n direction generated on

Edge j under the boundary conditions depicted in Fig. 4.5(b) and the ranges of the
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coordinate s; on Edge j (j=1,2) are 0<s <(h/2) and —(b/2)<s,<0,

respectively.
When the external loads depicted in Fig. 4.5(a) are applied on the cross-section

at a joint of two box beams, the displacement % generated on the whole cross-
J P P

section of a box beam meeting at a joint can be determined by using Egs. (4.39a, b)

and the symmetry conditions with respect to s, =0 and s, =0. Due to the
symmetry, u# generated on Edge 1 for —h/2<s <h/2 and Edge 2 for

-b/2<s,<b/2 are expressed by even functions of s, (i=1,2), and thus u?*

on the entire range of Edge 1 and Edge 2 are exactly the same as «* given in Egs.

(4.39a, b). Moreover, ©* on Edge 3 is equal to »* on Edge 1 by the y-axis
symmetry, and »* on Edge 4 is equal to »* on Edge 2 by the x-axis symmetry.
Using the expression u”(s;, z) =y (s,) x,(2) (j=1,2,3,4) for Edge j, the

shape function > (s;) canbe now written as follows:

sy P e gy L ECEER) o B(Sh+R) 4.40
Vi) =B ) e e Y T 3saa ) (4.40a)
) e bR
72 = Xy—— 2 —_— 4.40b
Vi ) =E o ) TS (4.400)
i Lo HEGbER) L Kb+ h) 440
wi(sy) =P, x{ 24(53) +—48(b+h) (s5) —384(b+h)} (4.40c)
. w bR
72 = Xy—— 2 —_— 4.40d
wi(sy) =P x{ 24(b+h)(s4) +96(b+h)} ( )
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The constant P, in Eq. (4.40) determines the scale of cross-sectional deformation
represented by the unit magnitude of y,, and P, ={384(b+h)}/{h*(5b+h)}

will be used in this study.

4.4 Derivation of Joint Matching Conditions

In the previous section, a new HoBT was proposed in which the shape functions

are newly defined compared with earlier works [8, 41] and y,(z) is included as

an additional degree of freedom for the analysis of box beams-joint systems. We

will now establish a method analyze the structural behavior of two box beams-joint

systems under in-plane loads ( £, F,, M ) by using the newly-derived HoBT. The

key for the joint analysis is how to derive the exact matching conditions among the

field variables (U_,U_, -, y,) of Beam 1 and those Beam 2 at a beam joint.

Because coupling phenomena at a joint are very complicated and also because no
HoBT capable of handling mechanical behavior of thin-walled box beams at a joint,
no theoretical method to exactly determine those joint matching conditions has
been proposed. In this respect, the exact matching conditions will be derived in this
study for the first time [50]. The present derivation is inspired by the exact
matching method developed by Choi et al. [42] for box beams-joint systems under
out-of-plane loads. However, additional considerations must be made to derive the
exact joint matching conditions for box beams-joint systems under in-plane

bending and axial loads because the required degrees of freedom ( y,, W, x,)
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involve much more complicated deformations than those involved in the problems
considered by Choi et al. [42]. The detailed explanations for those additional
considerations will be given below.
When the field variables of Beam & (k =1, 2) are expressed as follows,
U, =AU W 0, (s i ()37 (4.41)
the matching conditions between U, and U, at the joint shown in Fig. 4.2 can

be expressed as follows.

U, =T(®)-U, (4.42a)
or
(U.), KT Ly hy b tm_ U
U,), Ly ty by by by b ||(U),
0,), _ Ly by Ly Ly Ly L |](6), (4.42b)
(1) Ly Lo Ly Ly ls L || ()
(M), Lyt s Ly I s || ()
(22), o lo la la T ] (22

where ¢ represent the joint angle between Beam 1 and Beam 2 (see Fig. 4.2(b)
for the positive direction of ¢ ), and T(¢) denotes the 6x6 joint matrix
representing the joint matching conditions between U, and U, . In this study, we
will determine the joint matrix T(¢) which is valid for arbitrary joint angle ¢

and express the joint flexibility exactly. To do this, the following four propositions

which T(¢) should meet are defined, and the closed form of T(¢) will be

derived based on those propositions.
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4.4.1 Proposition 1: Consideration of Zero Resultant by (Q1, B1, 02)

Taking into account the joint matching conditions given in Eq. (4.42) and the
principle of virtual work together, the equilibrium conditions among the
generalized forces F which are the work conjugates of those field variables in Eq.

(4.42) can be also expressed by using T(¢). Therefore, the equilibrium conditions

among the resultant forces or moments which must hold at the joint will be

considered in Proposition 1, and some part of T(¢) will be determined through

this consideration.

When the generalized force of Beam % () is expressed as follows,

F, = {(F)s (F s (M), (Q)s (B)s (Q), ) (4.43)
the following equation meaning that the sum of virtual works of Beam 1 and Beam
2 are zero at the joint can be obtained from the principle of virtual work.

(6U))'F, +(SU,)'F, =0 (4.44)
where 60U, and SU, represent the virtual displacements of Beam 1 and Beam 2,
respectively. Expressing 6U, as T '(¢)-6U, by using Eq. (4.42) and then
substituting that expression into Eq. (4.44), the following equation can be obtained.

(SU,) (T (¢)-F +F,)=0 (4.45)
Since Eq. (4.45) should be always satisfied for arbitrary virtual displacement 6U,,
one can eventually obtain the following equilibrium condition between F, and F,

at the joint.
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T (¢)-F,+F,=0 (4.46)
Let us consider now the resultant forces or moments equilibrium conditions

between F, and F, at the joint. It is worth mentioning that (Q,, B,, O,) among
the generalized forces F which are the work conjugates of ( y,, W,, x,) are the

self-equilibrated forces not producing any resultant forces or moments. Based on

such characteristics, one can find that ((Q,),, (B8,),, (Q,),) of Beam 1 calculated at

the joint cannot affect on the equilibrium among the resultant forces or moments of

Beam 1 and Beam 2 at the joint, and that ((F)),, (F,),, (M ),) of Beam 2 are not
generated by ((Q,),, (B)),, (Q,),) [42]. Therefore, the resultant forces or moments
equilibrium conditions between F, and F, are simply given as the vector
relations using (cosg, sing, etc.) among ((F.);, (F,),, (M ,),) (k=1,2) having

nonzero resultants, and consequently Eq. (4.46) should be written as follows from

the consideration above.

[cosg sing 010 0 0((F), (F), 0

~sing cosp 010 0 O} | (F) | || [0
0 0 59__0__9: M), JM): )0 (4.47)
° o e o o oo (Ql)l (Ql)z 0
. ° e o o o (Bl)l (Bl)2 0

. ° s ¢ o o o] (0,), (9,), 0

where the parts expressed by dot (e) represent the elements of T~ ' to be

obtained, and the elements in the dotted box are zero since ((Q,),, (B,),, (Q,),)

cannot affect on the resultant forces or moments equilibrium.
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Therefore, identifying the form of T~" from the relation between F, and
F, given in Eq. (4.47) and then deriving T from T ', the matching relation

between U, and U, can be written as:

U.), [ cosg sing 0 1, s he || (U
U,), —sing cos¢ 0 1, 15 b ||(U,),
@:l_| 0 0 1 h nonl||@) )
(1) 0 0 0 7, ts ||
("), 0 0 0 1, 5 t || (),
(12), L 0 0 0 15 I Tss | (1),

4.4.2 Proposition 2: Displacement Continuity at the Intersection Point A
and B

From the modeling shown in Fig. 4.2, the appearance of connection between the
cross-sections of Beam 1 and Beam 2 at the joint is described in more detail in Fig.
4.6. As shown in Fig. 4.2(a) or Fig. 4.6, Beaml and Beam2 meet each other at the
intersection points A and B which are located at the center of Edge 2 and Edge 4 of
each beam respectively. Therefore, some of ¢, (m=12,---,6;n=4,5,6) in
Eq. (4.48) will be determined in Proposition 2 by using the continuity conditions
for the displacements of two beams calculated at the points A and B. However, the
displacement fields on Edge 2 and Edge 4 are very complicated in the higher-order

beam theory because the shape functions of ( y,, ,, x,) are represented by high-

order polynomial functions. Thus, (i, u_) representing the average displacements
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0,),,(8,),

Beam 1

Beam 2

¢

Fig. 4.6 Intersection points A and B at the joint between the cross-sections of
Beam 1 and Beam 2 and the continuity conditions among displacements or
rotations generated on those intersection points A and B

for the entire Edge 2 or Edge 4 will be used instead of (u_, u_) given in Eq. (4.1) to

avoid defining the very localized displacement continuity conditions.

For example, the average displacements (u , u,) in s and z direction for the
entire Edge 2 are as:

u(z2)=-U,(2); u.(2)=U.(2) (4.49a, b)

where (u, u,) can be obtained as follows from the displacements (u_, u_) on Edge
2 given in Eq. (4.1)

0(2)= [ w(s,2)ds,/ | ds,; ()= [ wls, 2)ds,/ [ ds, (4.50ab)

Edge?2 Edge?2 Edge2 Edge2

The displacement continuity condition between (i, u, ) of Beam 1 and Beam 2
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at the point A can be written as:

(u,),(e,); + (i), (e.), = (1), (e,), + (11 ), (e,), (4.51)
where (u,), and (e,), (p=s,z;k=1,2) represent the average displacement
and the unit vector in p direction defined on the point A of Beam £, respectively.
The relations among (e,), (p=s, z; k=1, 2) at the point A can be written as (see
Fig. 4.6):

(e.), =(e.),cosp+(e,),sing; (e), =—(e.),sing+(e,),cos¢ (4.52a,b)

, and substituting the relations given in Eq. (4.52a, b) into the continuity condition

in Eq. (4.51), one can obtain the following matching conditions between U, and
U,.

U.), =(U.),cos¢+U,)sing, (U,),=—(U.)sing+ (U, ) cos¢ (4.53a,b)

All terms of U considered in this study are symmetric with respect to the x-axis

(see Fig. 4.3(a, b)). Therefore, the continuity conditions among (u,, u#, ) defined on

the point B are exactly equal to those conditions defined on the point A, and no
additional conditions are obtained from the continuity conditions on the point B.
The continuity condition for the displacement u, generated on the points A
and B are additionally considered in Choi et al. [42] since they include the rigid-
body motion in y direction as the field variable. On the other hand, the continuity

condition for u, will not be employed in this study because the displacement u,

on the points A and B are represented only by y,, and because the magnitude of
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u, is very small compared to that of (u , u_). Instead, the continuity condition
between the average rotation 6 in n direction generated on the points A and B of

Beam 1 and Beam 2 will be employed together in this study because the rigid-body

rotation in y direction is considered as the field variable 6, .
For example, the average rotation @, in n direction for the entire Edge 2 is as:

2 g2
g —g +30h =07,

"7 5bh(b+3h) (4.59)
Through multiplying s, to the displacement u_(s,,z) on Edge 2 given in Eq.
(4.1) and then carrying out the line integration, the translation component of
u_(s,,z) can be eliminated, and the integration quantity with respect to the

rotation of the entire Edge 2 are calculated as follows (see Appendix A for the

explicit expressions of = (s,), l//f 7(8,), v (s,)).

I s, -u_(s,, z) ds,

Edge?2
=U.(2) [ 5,0 (5,)ds, +0,(2) [ 5,92 () ds, +W(2) [ 5,97 (s,) s,
Edge?2 Edge?2 Edge?2
b 4(5h* = b*
—Dyx g, + 2O =)
12 5bh(b +3h)

(4.55a)

The average rotation @, in n direction for the entire Edge 2 can be defined as

follows by using the integration quantity calculated in Eq. (4.55a), and

consequently @ given in Eq. (4.54) can be obtained.
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I S, - u_(S,, z) ds, = .[ s, (s,-0,(2))ds, = (%)xgn(z) (4.55b)

Edge? Edge?
Equation (54) shows that the effect 1 by in addition to that by ¢, is appeared in
the average rotation in n direction of Edge 2.
The continuity condition between 6, of Beam 1 and Beam 2 at the point A
can be written as:
@)1 (e,), =(8,),(e,) (4.56)
where (0,), and (e,), (k=1,2) represent the average rotation and the unit
vector in n direction defined on the point A of Beam k. The following relation can

be obtained from Eq. (4.56) because (e,), =(e,), at the point A (see Fig. 4.6).

45K —b?)
Sbh(b + 3h)

45K —b?)

4.57
5bh(b +3h) (7, 457)

0,), + "), =(0,), +

Meanwhile, (W), =t,,(x,), +ts(W)), +t5(x,), must hold from the relation given
in Eq. (4.48), and substituting that relation into Eq. (4.57), (6,), can be expressed

as:

45K —b*)

- - - 4.58
5bh(b+3h){ t54(ﬂ(1)1+(1 t55)(VVl)1 tss(lz)l} ( )

(gy)z = (Hy )+

When the continuity condition for @ is considered at the point B, the same

matching relation obtained from the continuity condition at the point A is derived.
Substituting the matching conditions given in Egs. (4.53a, b) and Eq. (4.58)

into Eq. (4.48), one can obtain the following matching conditions between U,
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and U, meeting the proposition 1 and 2.

), [ cos¢ sing 0 0 0 0 ),
U,), —sing cos¢g O 0 0 0 U,),
(ay )2 — 0 0 I - 2/(72,52;;’;; lsy ‘5‘/(51?}2;12 (1 —lss ) _%tss (ey )1
(1), 0 0 0 t, tys Ly (0
"), 0 0 0 te tes t "
(-] | o 0 0 ly ls te L)
(4.58)

4.4.3 Proposition 3: Use of the Relations T(¢p=0")=1, T(¢)-T(-¢)=1I,
and T(4)-T(4) = T(29)
To determine T(¢4) valid for arbitrary joint angle ¢, the relation T(¢)-T(4,) =
T(¢ +¢,) should hold for arbitrary angles ¢ and ¢, . Thus, employing
T(¢p=0)=1, T(¢)- T(-¢)=1, T(P)-T(¢)=T(2¢) which are the special cases
for the mentioned relation, some ¢, (m=4,5,6;n=4,5,6)inEq. (4.59) will be
determined in this study. In this regard, the relation T(¢=0")=1 represents that
the structure shown in Fig. 4.2 is converged into the straight box beam when the
joint angle ¢=0°.

Referring to Fig. 4.7, let us first determine the form of T(-¢) . Figure 4.7(a, b)
represent the two thin-walled box beams-joint structures with joint angle +¢ and
—¢, respectively. If the structure shown in Fig. 4.7(b) is rotated 180 degrees in z,

direction, the structure can be regarded the structure having the joint angle +¢
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U,=T(¢)-U,

X

i

M

(b)

(©

Fig. 4.7 Description of the procedure to determine the form of T(-¢): (@) matching
conditions of T(¢) for a positive joint angle +¢, (b) T(-¢) defined for a negative
joint angle —¢ , (c) T(¢) defined for the structure having a positive joint angle +¢
and a different coordinate system ( x, y, 2)
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and the rotated local coordinates of Beam 1 and Beam 2 as depicted in Fig. 4.7(c).

When U . (k=1,2) represents the field variables of Beam k defined by the local

A

coordinate ( X,, ¥,, Z, ) shown in Fig. 4.7(c), the matching condition between U,

and ﬁz at the joint can be written as:

A A

U, =T(¢) U, (4.60)
Meanwhile, the coordinate (x,, J,, 2,) (k=1,2) shown in Fig. 4.7(c) can be

related with the coordinate ( x,, y,, z, ) in Fig. 4.7(a) as:

A

X, ==X, V==V, Z2,=2 (4.61)
Considering those relations given in Eq. (4.61), one can also relate the field
variables ﬁk (k=1,2) with the field variables U, (see the positive directions

of those field variables shown in Fig. 4.3(a, b)).

U.), =), (U),=-U), ), ==,

R R A (4.62)
==, W) ==M)s ()i =1

Substituting Eq. (4.62) into Eq. (4.60) and then organizing the relations with

respect to U, and U,, one can obtain the matching relation U, =T(-¢)-U, for
the structure shown in Fig. 4.7(b). T(—¢) obtained through this observation can

be expressed as the following form.
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[cos¢ —sing 0 0 0 0
sing cos¢g O 0 0 0
T(—¢) = 0 0 - :ZZ'EZI?ZI 54 :LZ?Z;;’Z; (I=155) 222?21?2 Lss (4.63)
0 0 0 1y [45 _t46
0 0 0 ls, Lss —Ls6
L 0 0 0 Lo ~les Les i

Comparing T(—¢) given in Eq. (4.63) with T(¢) given in Eq. (4.59), one can
find that (z,,, t,5, 2, ts5, ¢, ) are even functions, and that (7, , ?,,, #,; ) are odd

46>

functions among the undetermined components ¢, (m=4,5,6;n=4,56) in
T(9).

By the way, T(¢) representing the so-called coordinate transformation matrix
should meet the periodicity T(¢+360°)=T(¢#), and thus it can be found that ¢
(m=4,56,n=4,56) in Eq. (4.59) should be expressed by the trigonometric
functions (cosg@, sing) and constants. Moreover, the symmetry condition above

and the condition T(¢=0")=1 should be also satisfied. Therefore, 7,, ~7,, can

66

be written as follows from those considerations.

t,(@)=1orcosd, t,(¢)=1orcosd, t,(¢)=1orcos¢g (4.64a)

tis(#) =tis(1-cosg), t5,(4)=15,(1-cosg) (4.64b)

Lio(P) = ligSing, 15(P) = 15SING, 15, (P) =lg,sing, 1(P) =15 sing (4.64c)

The diagonal terms (¢, ., t,;) of T(#) should be 1 or cos¢ as given in Eq.

(4.64a) because those terms are even functions and should meet the condition

t, (#=0)=1 (m=4,5,6). Among the off-diagonal terms of T(¢), (z,s, ts,)
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should be the functions of (1—cos¢ ) as given in Eq. (4.64b) because they are even

functions and should meet the condition ¢, (4=0") =0 (m,n=4,5; m#n), and

* *

t,s, t., in Eq. (4.64b) represent the proportional constants. The remained off-

diagonal terms (1., ts, ¢,

tis) of T(¢) should be the functions of (sing) as
given in Eq. (4.64c) because they are odd functions and should hold the condition
t, (p=0)=1, (¢=0)=0 (m=4,5), and ¢, 1., t,.t, in Eq (4.64c)
represent the proportional constants either.

Considering Eq. (4.64), ((x,),,» #,),, (x,),) of Beam 2 generated at the joint

by ((x,),» W), , (x,),) of Beam 1 can be written as:

(1), Ly tzs (I-cosg) t:e sing | | (1),
(W), [ =| tzs (1= cosg) tas tesing | (W), (4.65)
(1), t;t sin ¢ tzs sin¢g Tss (1)

where (y,), and (y,), (k=1,2) represent the displacements on the x, —y,
plane of Beam k, and (W,), (k =1, 2) represent the axial displacements of Beam k
(see Fig. 4.3(b)). Considering these displacement patterns of ( y,, W, y,) in

addition to the connectivity between the cross-sections of Beam 1 and Beam 2
shown in Fig. 4.6, one can find some contradictory relations between the
displacements perpendicular to each other from Eq. (4.65). For example, the

direction of displacements generated on Beam 2 by (W) (1-cos¢) and of

(7,),sing Beam 1 is perpendicular to the direction of (y,),, and thus (y,),
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cannot be generated by the relations given in Eq. (4.65) with ((W,),, (x,),) of
Beaml. Likewise, the directions of displacements generated on Beam 2 by

(7)), (1—cos¢) and (y,),sing of Beam 1 are perpendicular to the directions
(W), and (y,),, respectively. Among those displacement relations given in Eq.
(4.65), therefore, (y,), of Beam 2 should be decoupled with (), and (y,), of
Beam 1, and (%), and (y,), of Beam 2 should be decoupled with (y,), of
Beam 1. Consequently, the following results can be obtained from this observation.
tys =t =t =t,=0 (4.66)

Subsequently, the conditions T(¢)-T(—¢)=1 and T(¢) T(¢)=T(2¢) will
be employed to obtain some of the undetermined ¢, . First, let us call the matrix
given in Eq. (4.65) as T, (#) representing the submatrix of T(¢). From the
conditions T(@)-T(-¢)=1 and T(g) -T(¢)=T(2¢) , it can be found that

eventually T, (¢#) T, (-¢)=1 and T, (¢) T, (#)=T,, (2¢) should be

satisfied.

Using Eqgs. (4.65) and (4.66), the condition T, (¢) T, (—=#)=1 can be

written as:
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ty 0 0 Tt 0 0

0 t tising|| 0 s ~t,,sing
0 t,sing tes 0 —t,sing Ly
) (4.67)
(t,,) 0 0

S = O
- o O

1
2 * % ) * .
= 0 (fss)" —tsglessin™ @ —t sing(lss — 1) |=| 0

0 tesSiNP(ts —to)  (te) —tigtessin®@| |0

, and considering the diagonal components in Eq. (4.67), one can find the following
relations.
(t,) =1; () —(t) =0 (4.68a, b)
Since (t,,, ¢, t ) satisfies Eq. (4.64a), (¢,,, s, t,;) can be expressed as follows by
considering Eq. (4.64a) together with Egs. (4.68a, b).
ty =1t =t (4.69a, b)
When (1¢,,, ts, t,, ) meet the relations given in Eq. (69a, b), the relations for the off-
diagonal components given in Eq. (4.67) are also satisfied.
Utilizing the results given in Eqs. (4.69a, b), T, (¢)- T, (#) =T, (2¢) can
be written as:

1 0 0 1 0 0
0 t, tysing|0 t, tgsing

0 ¢, sing tss 0 ¢, sing tis

1 0 0 1 0 0
=0 (ts5) +ttessin’ @ 2t t,, sing =0 ts(29) 2t cos gsin ¢
0 2.t sing (ts) +titissin® g | |0 2t cosgsing ts(29)
(4.70)

where #, is 1 or cos¢ according to Eq. (4.64a). If ¢, is assumed to be 1, the
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following results are obtained from the relations between the components of (2, 3)
or (3, 2) in Eq. (4.70).
2t sing(1—cosg)=0, 2t sing(l—cosg)=0 4.71)

Since Eq. (4.71) should be satisfied for arbitrary joint angle ¢, =0, and

;6 = f;
thus T, (#) =1. This represents the contradictory result that ((x,),, (#)),, (x,),)
of Beaml] are equal to ((y,),, (W,),, (x,),) of Beam 2 regardless of the joint angle

between two beams, and the flexibility of the joint appeared by the effects of cross-
sectional deformations cannot be expressed through this matching conditions.

Therefore, ¢, should take the following form:

55
tys =COs¢ (4.72)

, and when ¢, in Eq. (4.72) is substituted for Eq. (4.70), the following relation

between ¢, and ¢, can be obtained from the relation with respect to the

components of (2, 2) or (3, 3) in the matrix.

tigtes =—1 (4.73)

The matching conditions between U, and U, which satisfy all the conditions

with respect to T(¢) considered in Proposition 3 are as:
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[ cos¢ sing 0
@), —sing cos¢g O
U, 0 01
(Hy )2 —
N 00
oy, | 000
(22)> 0 0 0

0 0 0
0 0 0
4(5h>=b?) 4(5h2=b*) * .
0 Sbh(b+3h) (1 —COos ¢) " Sbh(b+3h) lss SIN ¢
1 0 0
0 cos ¢ t.sing
1 .
0 ———sing cos¢
56 J

U.),
U,
0,),
(o
"),

()

(4.74)

It can be seen that the matching conditions given in Eq. (4.74) are valid for any

joint angle ¢, because T(¢) in Eq. (4.74) satisfies T(¢)-T(¢,)=T(¢ +¢,) for

arbitrary ¢ and ¢,,

4.4.4 Proposition 4: Equilibrium Condition on Edge 1 or Edge 3

When the matching conditions given in Eq. (4.74) are satisfied at the joint,

the following equilibrium conditions between F and F, should hold

according to Eq. (4.46).

[ cos¢ sing 0
—sing cos¢ 0
0 0 1
0 0 0
0 0 S (i-cosg)
[0 0 g

0 0 0

1 0 0 (My ) +
1 (Ql )l

0 cos¢p  —sing (B),

0 —t;) sing  cos¢ ] (@)

(£)),
(£,
M),
(@),
(B)),
(@),

S O O O o O

(4.75)

Subsequently, the equilibrium conditions given in the fifth and sixth rows in Eq.
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(4.75) can be expressed as:

(— 4 (M ), 4 (B, beos g +ti*<Qz)1 sing + {~ 450 (M), +(B),} =0

" Sbh(b+3h) 5bh(b+3h)
56
(4.76a)

M), (B sing +(0), cosg+(0,), =0 (476b)

Sbh(b+3h)
56 56

where the relation (M), +(M,), =0 obtained from the third row in Eq. (4.75) is
employed in Eq. (4.76a).
Equations (76a, b) show that the additional equilibrium conditions among

(M, B, Q,) should be satisfied at the joint as well as two equilibrium conditions
with respect to the resultant forces (F,, ) and one equilibrium condition with
respect to the resultant moment M . In this regard, (B,, O, ) produce the so-called

edge resultants for each edge of the cross-section although they do not produce any
resultant for the entire cross-section (this phenomenon has been found for the first
time by Choi and Kim [43] dealing with the interpretation for the thin-walled beam
structure subjected to out-of-plane loads).

Figure 4.8 shows the edge forces or the edge moments that are generated on

M

each edge of the cross-section by My,Bl, and Q,. For example, M,

represents the edge moment in 7 direction that is generated on Edge 4 by M~ (the

detailed procedures in derivation of those edge resultants are given in Appendix C).

Strictly speaking, O, produces the edge moment a2 (j=1,2,3,4)inz
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M, b

n(2) = —M\'
2(b+3h)
y
‘ 3h
¥ > Fl =————M,
. . >0 T Tty
FMl ——FMV
(3 z(1)
M, M,
Mn(4) = _Mn(2)
(a)
5 15bK°
"85k -k
v
ix ] . Fj]) =4(51‘hszh“bz)3l
T
z(3) z(1)
M!?(IM = _MJ?(JZ)
(b)
7o _ 3h(5b + h) 0
y ,,(’(” 16b(b+h) >
N
3h(5b+h
4)( ]E:%) == ( ) Qz
A 16b(b + h)
O _ 0
Fn(3) - Fn(l)
0, _ 10
EM) - F;uz)
(©)

Fig. 4.8 Edge resultants acting on each edge of the cross-section that are produced
by the generalized forces: in-plane bending moment A,, longitudinal bimoment
Bj and transverse bimoment Q>
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Fig. 4.9 (a) Distributed axial moment m? on the cross-section generated by the
shear stress o2 of Q,, (b) effective distributed normal force f% acting on

Edge 1 generated by the distributed moment %

direction for each edge (Fig. 4.9(a)). According to the Kirchhoff-Love plate theory

[45], however, a2 =~ eventually produces the effective edge forces g2
(j=1,2,3,4)in n direction by the principle given in Fig. 4.9(b).

Considering Egs. (4.76a, b), those forces represented by {— 4(5”2'Z’Z)My +B}

S5bh(b+3h)

and {L* 0O, } should be placed on the same plane and should be perpendicular to
t

56
each other. From this observation, one can find that Eqs. (4.76a, b) represent the
equilibrium conditions among those edge resultants shown in Fig. 4.8 that are
generated on Edge 1 or Edge 3. Although Edge 1 and Edge 3 of two beams are
located apart from each other in Fig. 4.2, the connectivity among those edges can

be defined by referring to Choi and Kim [43]. In other word, Shared Side Edge 1 at

the actual joint shown in Fig. 4.1 is extended and divided into Edge M, M, and
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Edge M,M, in the modeling shown in Fig. 4.2 which represent Edge 1 of Beam
1 and Beam 2, respectively, and thus Edge 1 of two beams at the joint can be
regarded as if they are connected each other by a rigid body. Applying the same
perspective to Shared Side Edge 2 shown in Fig. 4.1, Edge 3 of two beams at the
joint can be also regarded as if they are rigidly connected each other. Therefore, the
equilibrium conditions among the edge resultants generated on Edge j, (j, =1, 3)
of Beam 1 and Beam 2 can be considered at the joint.

The equilibrium conditions defined on Edge 1 and Edge 3 are equal to each

other, and those conditions are expressed as:

(= (M), + 73555 (B,), }eos g~ (T (0, }sin g

5 (4.77a)
+i- b(b+3h) (M )+ 4GH 1) (B),}=0

_{ b(b+3h) (M )1 4(511511 bz (B )1 }Sll’l¢ {féll(,ill:Z)) (QZ )1 }COS¢ { ?g;j:ﬁ:; (Qz )2 } = O

(4.77b)

It can be seen that Egs. (4.77a, b) are equal to Eqs. (4.76a, b) multiplied by

2
4(SIhSZh o Therefore, the constant ¢, in Egs. (4.76a, b) can be determined

through the comparison with Egs. (4.77a, b), and the value of ¢, is as:

o ZObh(ngh) 2 “4.78)
(5b + h)(5h> —b*)

, and the exact matching conditions between U, and U, can be obtained by

substituting ¢, in Eq. (4.78) into Eq. (4.74), and those conditions are as:
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[ cos sin 0 0 0 0
AR @)
W) —sing cos¢g 0 O 0 0 W)

x/2 2 32 n . /1
(ey )2 3 0 0 10 :Z/S/t}(lb+fh; (1 — oS ¢) %51n¢ (ey)l
()| | 0 0 01 0 0 (0

20bh(b+h) .
"), 0 0 00 cos¢ “ S S e | 7)),
(12), I 0 0O 00 —(szg';;(fb"j;fz)sinqzﬁ cos ¢ | (22
(4.79)

4.5 Numerical Examples

The finite element equations of the HoBT for thin-walled box beams under in-
plane bending and axial loads are given by Egs. (4.B4-4.B6) in Appendix B and the
exact joint matching equations are newly derived as Eq. (4.79). Because the
procedure to analyze box beams-joint systems by using the higher-order beam
theory and the joint matching conditions is exactly the same as the standard
procedure using the finite element analysis based on the classical beam theories
[48], the detailed descriptions for the analysis procedure will be omitted. The
accuracy and effectiveness of the derived equations will be demonstrated in this
section.

First, straight box beams with various aspect ratios of cross-sections will be
analyzed. With this case study, we aim to examine if the proposed higher-order
beam equations can capture correctly the additional flexibility of those straight box
beams as well as the global responses. The second case study is concerned with the

analysis of two box beams-joint systems with various joint angles and aspect ratios
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of cross-sections. In this case study, the validity of the derived joint matching
conditions of Eq. (4.79) will be mainly examined. It will test if the effects of the
joint flexibility induced by higher-order deformations can be accurately captured
by the proposed one-dimensional analysis approach.

All of the analysis results by the proposed approach are checked through
comparing them with those of ABAQUS shell analysis, Timoshenko beam analysis,
and also the analysis method by Jang and Kim [41] when applicable.

Case Study 1: Straight Thin-Walled Box Beams. In this case, we deal with
the analysis of straight thin-walled box beams to check the accuracy of the newly
derived HoBT. To this end, we ignore Beam 2 so that we can consider the situation
where there is only Beam 1 in Fig. 4.2, a straight thin-walled box beam. For this
case, the length (L) and the thickness (f) of Beam 1 are L=1000 mm and
t =2 mm . The material properties of Beam 1 are Young’s modulus E =200 Gpa
and Poisson’s ratio v =0.3. One end of Beam 1 is fixed as shown in Fig. 4.2, and
the other end of Beam 1 is subjected to a transverse force (£ ), =100 N. The
loaded end is assumed to be rigid. The examples with various cross-sections for
this structure will be analyzed by using the finite element equations of one-
dimensional higher-order beam theory given in Eq. (4.B4-4.B6), and the results
will be compared with those by the mentioned other analysis approaches.

To obtain sufficiently converged results, 60 beam elements are used in one-

dimensional beam analysis approaches for the modeling of Beam 1; although
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various cross-sections with different widths and heights are considered, the
converged results can be obtained by using 60 beam elements regardless of those
changes. In two-dimensional shell analysis, 12.5mm x 12.5mm square element is
used for the modeling of Beam 1. The number of shell elements used is different
depending on the dimensions of the cross-section, and to model Beam 1 with the
width =50 mm and the height #=100 mm, for example, (4+8+4+8)x80
=1920 shell elements are used.

The analysis results for Beam 1 with »=50 mm and % =100 mm are given
in Figs. 4.10(a-f). Each graph in Figs. 4.10(a-f) represents the magnitude of each

field variable calculated along the z —axis. Only the results with respect to the
rigid-body motion (U_, U,, 6, ) are considered among the results by Jang and Kim

[41] because the shapes of the cross-sectional deformations considered in Jang and

Kim [41] are somewhat different with ( y,, W], x,) in this study. Observing the

results based on those obtained by the shell analysis, one can find that the
Timoshenko beam analysis cannot include the effects of the cross-sectional
deformations although the bending rigidity of the box beam is correctly captured,
and that the approach proposed by Jang and Kim [41] which includes the effects of
the cross-sectional deformations cannot correctly express the bending rigidity of

the box beam. Meanwhile, the proposed higher-order beam analysis can exactly
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Fig. 4.10 Numerical results for the straight box beam (L=1000 mm, 5=50 mm,
h=100 mm, =2 mm) under transverse force F'x =100 N: (@) axial displacement
U., (b) transverse displacement U,, (c¢) in-plane bending /shear rotation, (d)
distortion 1, (¢) warping W1, (f) distortion yp».
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Fig. 4.11 Numerical results for the straight box beam (L=1000 mm, 5=50 mm,
h=100 mm, =2 mm) under transverse force 'y =100 N: (@) axial displacement
U., (b) transverse displacement U., (¢) in-plane bending /shear rotation, (d)
distortion yi, (¢) warping W1, (f) distortion p»

express not only the bending rigidity of the box beam but also the additional
flexibility of the box beam by the cross-sectional deformations.

In sequence, the problems defined from the previous example by changing b
and /4 of Beam 1 in a range from b=125mm, #=50mm (A4/b=50/125) to
b=50mm, A=125mm (A/b=125/50) are solved, and the results are given in
Fig. 4.11. The graph in Fig. 4.11 represents the variation in the transverse
displacement (U), of the loaded end when the aspect ratio (4 /b) of the cross-
section is varied. From the results, one can find that the proposed higher-order
beam analysis can provide the accurate bending behaviors for the box beams with

cross-sections of various widths and heights.
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Case Study 2: Two Box Beams-Joint Structures. The examples concerning
the two thin-walled box beams-joint structures shown in Fig. 4.2 will be considered
in the case study 2; the length (L) and thickness (¢) of two beams are L =1000 mm
and #=2 mm . The material properties of two beams are Young’s modulus
E =200 Gpa and Poisson’s ratio v=0.3. One end of the structure is fixed as
shown in Fig. 4.2, and the other end of the structure, denoted as D, is subjected to

the in-plane bending moment (M), =1 N-m. The loaded end is assumed to be

rigid. The number of elements used to model the Beam k& (k =1, 2) is equal to that
for Beam 1 in Case Study 1.

The problem with »=50 mm, 2#=100 mm for two beams and the joint
angle ¢ =90 is considered for the first example, and the results are given in Fig.
4.12(a-f). The range of the axial coordinate (k—1, k) (k=1,2) in the each graph
given in Fig. 4.12(a-f) represent the magnitude of each field variable for Beam k
calculated along the axial direction. Likewise, the magnitudes of the rigid-body

motions (U_, U,, 6,) among the analysis results by Jang and Kim [41] are plotted

in Fig. 4.12(a-c). Observing the results based on those from the shell analysis, it
can be found that the Timoshenko beam analysis overestimates the stiffness of the
structure as mentioned in Introduction. In contrast, one can find that the analysis
methods proposed in this study and Jang and Kim [41] can express the flexibility of
the structure more correctly because those methods consider the effects of the

cross-sectional deformations. Especially it can be found that the accurate analysis
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Fig. 4.12 Numerical results for the two thin-walled box beams-joint structure (L=
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moment M, =100 N-m: (@) axial displacement U., (b) transverse displacement U
x (¢) in-plane bending /shear rotation, (d) distortion yi, (e) warping Wi, (f)
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results which are almost equal to the results by the shell analysis can be obtained
through the proposed approach.

Problems defined from the first example by changing ¢ in a range
10° < ¢ <90° are solved, and the results are given in Figs. 4.13(a, b). The graph in
Fig. 4.13(a) represents the variation in the transverse displacement (U, ), of the
loaded end when the joint angle ¢ is varied. The percentage errors for the results
of one-dimensional beam analyses are calculated based on the result by the shell
analysis and are given in Fig. 4.13(b). From those results given in Figs. 4.13(a, b),
it can be found that the proposed approach can provide the accurate results for the
two box beams-joint structure with various joint angles.

Problems defined from the first example by changing the aspect ratio (4/b) in a
range from bH=125mm, A=50mm (A/b=50/125) to b=50mm, A=
125mm (Ah/b=125/50) are also considered and the results are given in Fig.

4.14(a, b). The graph in Fig. 4.14(a) represents the variation in the transverse

displacement (U, ), of the loaded end when the aspect ratio (4/b) is varied, and

the graph given in Fig. 4.14(b) represents the percentage errors for the results of
one-dimensional analyses with respect to the result by the shell analysis. From
those results given in Figs. 4.14(a, b), one can also find that the proposed approach
can give the accurate results for the two box beams-joint structure with various

aspect ratios of the cross-section.
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Fixed

Fig. 4.15 Serially connected four box beams-joint structure (L=1000 mm, =50
mm, A=100 mm, =2 mm, ¢ = — 45°, ¢,=45° ¢ 3= — 45°) subjected to in-plane
force F. =100N

Case Study 3: Serially Connected Four Box Beams-Joint Structures. When
several thin-walled box beams are serially connected in a zigzag form as shown in
Fig. 4.15, the warping for Beam 2 and Beam 3 cannot be determined by Jang and
Kim [41], and thus the structure given in Fig. 4.15 cannot be interpreted by Jang
and Kim [41]. Therefore, it will be check whether the structure given in Fig. 4.15
can be interpreted by using the proposed approach. The length of those beams is
L =1000 mm, and the width (), height (%), and thickness (¢) of those beams are
b=50mm, A=100 mm, and ¢=2 mm. The material properties of those beams

are Young’s modulus E =200 Gpa and Poisson’s ratio v =0.3. The joint angles

shown in Fig. 4.15 are ¢ =-45", ¢, =45°, ¢, =—45". One end of this structure is

fixed, and the other end is subjected to the in-plane force (F)), =(100/ V2 )N and
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Fig. 4.16 Numerical results for the serially connected four box beams-joint

structure given in Fig. 15: (@) axial displacement U., (b) transverse displacement

U, (c) in-plane bending /shear rotation, (d) distortion yi, (e) warping Wi, (f)

distortion p».
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(F), =(100/\/§ )N . The loaded end is assumed to be rigid. The number of
elements used to model the Beam £ (k =1, 2, 3, 4) is equal to that for Beam 1 in

Case Study 1.

The results for the considered example are given in Fig. 4.16(a-f). The range of
the axial coordinate (k—1, k) (k =1, 2, 3, 4) in the each graph given in Fig. 4.16(a-
f) represent the magnitude of each field variable for Beam k calculated along the
axial direction. Observing the results based on those obtained by the shell analysis,
it can be found that the proposed approach can provide the correct result even

though more complicated structure is considered.

4.6 Conclusions

The exact one-dimensional beam analysis method applicable to the two thin-walled
box beams-joint structures subjected to in-plane loads is established. To deal with
the effects of the cross-sectional deformations on the flexibility of the box-beams
joint structures, we first identified the dominant cross-sectional deformations and
their shapes theoretically, and then we newly defined the higher-order beam theory
employing those dominant cross-sectional deformations as the additional field
variables. With respect to the development of the one-dimensional analysis method
for the box beams-joint structures, the key is determining the mechanically correct
joint matching conditions among the field variables. In this regard, the joint matrix

T representing the joint matching conditions was employed in this study, and the
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closed form of the matrix T was exactly derived by utilizing the essential
conditions that T should hold. Various numerical examples were considered to
check the validity of the higher-order beam theory and the joint matching
conditions proposed in this study, and we demonstrated through these numerical
examples that the proposed higher-order beam theory can express both the bending
rigidity and the additional flexibility of the box beams accurately, and that the
proposed joint matching conditions can consistently represent the exact flexibility
of the joint of the box beams-joint structure with various aspect ratios of the beam
cross-section and various joint angles. The theoretical approaches proposed in this
study to determine the exact joint matching conditions for the exact shapes of the
cross-sectional deformations are expected to serve as important building blocks in
the expansion of the higher-order beam analyses for arbitrary shaped thin-walled

beams-joint structures.

Appendix A
The explicit expressions of the shape functions we(s) (p=n,s,z; a=U_U_,
0., x> W, x,) are given below. As mentioned in Section 3, y(s,) (j=1,2,3,4)

represents the shape function defined on Edge j of the cross-section, and the

coordinate s, measured from the center of Edge j has the following range:
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wli(s)=1 (for j=1, 2,3, 4) (4.A1)

v, (s)=(-DV™"? (for j=1,3) and 0 (for j=2, 4)

. , (4.A2)
v, (s,)=0 (for j=1,3) and (-1 (for j=2, 4)

w? (s)=(- 1)““)/2 (for j=1,3) and (-)V 75, (for j=2, 4) (4.A3)

. 3 9 8b* +15h° .
vl (s,)= (DU x {h4sf-2hzs,2-+ o (orj=L3
=(-DH"? x{—sj} (for j=2, 4)
h , (4.A4)
b4 j— 6 j
vl () =DV X )} (for /=1, 3)
=(-DV"?x {( ) (— —Z)} (for j=2, 4)
27 24
w - 16 b b(—zb3 +15bh* +15h°) .
s ) = (—1)UD2 « 242 1 =1, 3
w.'(s;)=(1) (bhz) { 22006 130 y (forj )
16 1 ~b* —5b*h+10h°
— (=2 34 . for j=2, 4
RV T Y77 S L A

(4.A5)

384(b + h) 14 HGbEh) o B (Shth)

7 (s : for j=1, 3
Vi )= h*(5b+ h) YR 48(b+h) 384(b+h)} (for 7 )
3 213
_3Bdbrn) K R for f=2, 4
T h*GSb+h)y | 24(b+h) T 96(b+h)
v (s)=0 (for j=1,2,3,4)
(4.A6)

One can show the following orthogonality conditions among (.-, t//j" L
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vt @-v o) dsdn = S w5t ) dsdny =0

J=1" Edgej
[Ty @y dsdn= 3 [[ w5y (s dsdni =0 a.am
S J=l Edgej
(¢ Z,GJ,WI;az U., 0 Wi o #a,)

, and one can also show the following orthogonality conditions between (y/;j"‘ Wi

”1// (5)- w7 (s) dsdn—Z{ jj Wl (s,)wi(s,) dsdny =0  (4.A8)

J=l Edgej

Appendix B

Employing the displacement (i, ., ), the strain (¢, ¢_, 7, ) and the stress

o)

zz?

(o

KOR

o, ) given in Egs. (4.2-4), the total potential energy of the straight thin-

walled box beam ( z, < z < z, ) can be written as:

n:%zﬂ%g,j dAdz ~ j(o i, +0i,)" dA

zs s

:—I{EJ U.) +EJ, {(6,) —2v(6, )( T+ (hz PN

+EJ, W Y +EC(1) +EC,(1,) (4.B1)
, AB +158Y) .8
+GJ, U -0, -2 D) e G -
Pl m o ) o =)

+4GC,(y, ) +4GJ, (1)) }dz
-[FU. +FU . +M,0,+ O, +BW, + 0, 1,12

where the potential energy expressed by the second derivatives of the field
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variables U such as (U.", z,", z,”) are not considered since the linear shape

function N will be employed (see Eq. (4.B2)), The relations W’fr" =y, yh =

3 3
—h—621//f” and " = —%%@ —%yj;ﬂ (see Appendix A) are considered

in the derivation of the potential energy above. The symbol J, (B=F,F, M,
0., B,, 0,) in Eq. (4.B1) represents the moment of inertia for the generalized force

f, and the expressions of JFZ , JFX, JMV , JQ. , JB] , JQ2 ,C,, C, and C, are given as:

i =[[ly dsdn=20b+h), T, = [ dsdn=2b1,
N N

bt(b +3h) b1(b* +15h°)

104*

2

Ju, = ﬂ (w?)? dsdn = R ”(z//f‘ ) dsdn =
S S

1 8¢(b° +10b°h—70b°h* +210bh° +1054°
T =[[ ! dsin = : ),
5 1575h* (b +3h)
3 3 2 2 3
Jy :”(n‘y./fz)zdsdnzm& (2h +18?h +51b2h+35b)
s 315h*(5b +h)

. 361° 5126 (h* + Tbh + 6b%)
C=\(n-v*"Ydsdn=—"r, C,=||(n-v"*) dsdn=
1 ISI( V') s 2 ISI( V') 158 (5b+ h)’
. £ (102h + 210b)
— )2 —
C, _jsj (n-y )’ dsdn =——"
(4.B2)

According to Refs. [7, 49], the field variables U(z) of the one-dimensional
box beam element ( z; <z<z,) can be written with respect to the nodal
displacement vector d and the linear shape function N (& represent a non-

dimensional coordinate in z direction, and has the range —1<&<1 in the box
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beam element).

U(z)=N-d;
U.(z)
U.(z)
0,(z)
U.z)) [5 0 0o 0 o0 o0 0 0 0 0]|xn@G
U.(2) 0 55 0 0 0 0 0 2% 0 0 0 O0]Ws)
(| [0 0 55 0 0 0 0 0 = 0 0 0] xn=)
@[]0 0 0 X 0 0 0 0 0 Z 0 0]||U.(z)
W (z) 0 0 0 0 5 0 0 0 0 0 Z 0/Ulz)
L@ [0 0 0 0 0 5 0 0 0 0 0 L6
21(2,)
Wi(z,)
2,(2;)
(4.B3)

Deriving the one-dimensional finite element equation for the straight box
beam element through the principle of minimum total potential energy, the
resulting matrix equation is written in the following form:

f=K-d (4.B4)
where f represent the nodal force vector, and is written as:

f= {Fz(zl)a F;-(Z1), My(zl)’ Q](Z1)> B1(Z1), Qz(zl)a Fz(zz):

T (4.BS5)
F(2,), M (2,), O/(2,), B(2,), O1(2,)}
, and the stiffness matrix K derived from the procedure above is written as:
K = {K“ K”} (4.B6)
sym K22

where the definitions of submatrix K,,, K,, and K,, areas
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where the symbol / represents the length of the box beam element (/ = z,

C e, _
=0 0 0 0 0
Gl GJp, 0 (B +158*)GJ 0
! 2 156h% (b+3h)
IGly, By, 3VE Ty, 2B +15K)IG 0
3 ! " 45bh* (b+3h)
K, = (4.B7a)
Gy, N IEC, N 12E,J), N 4G, 2GJy, 0
1 3 Iz 1 3b
svm 16(0* +151°) IGT, 64IGTy,  EJy, 0
Yy 67562 h* (b+3h)? 27h% !
4Gy,
L [

EJp. ]
=0 0 0 0 0
0 GJp, GJp, 0 (B +151°)GJ 0

! 2 15bh% (b+3h)
0 Gy, IGTr,  Eidy, 3VE Ty, (B +155)IGJ ., 0
) 6 1 2 TSI (b3l
K. = h 45bh* (b+3h)
12
0 0 _ WEJy, Gl + IE,C, + GIEy,  4Gle,  2GJg, 0
n? ! 6 n ! 3b
(B +158)GI (B +15)IGT 26y, 8ISV IGT, 320Gy Ep 0
T T UShE (b+3h) 4B (b+3h) D 67567 (b+3h)? w1
4GJy,
0 0 0 0 0 -
(4.B7b)
e, _
— 0 0 0 0 0
G, GJp, 0 (B> +151) G 0
! 2 156h% (b+3h)
IGJp, By, 3vEJy, 26 +151)IGJ 0
3 ! " 45bh> (b+3h)
K, = (4.B7¢)
Gy, + IE,C, . V2UEJy,  4Gle,  2G), 0
1 3 I 1 3b
svm 16(0* +151°) IGT ;. 64IGTy,  EpJy, 0
y 67562 h* (b+3h)* 27h° !
4Gy,
L [

—z,),and

E

the symbol E, refersto E 21—2.

-V
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Appendix C

According to the higher-order beam theory, the dominant stress (o_, o )

zz

generated on the contour line (7 =0) of the cross-section can be written as:

0.(s, )= Byl -U)+- E -0/ +y - wirwir z)  (4Cla)
_y .
0 (5,2) =Gy U/ +yf -y +yl -0, +y" W) (4.C1b)

The derivative terms (17", %, ") in Eqs. (4.Cla, b) can be related with other

. . . 6 o
shape functions (l//‘f/*' , l//f" ,wh, g//zW‘ ) as 1//5" = —gz/f-‘ , h=- l//f} ,and y! =

”

3 3
M +5h) v _16 4 (See Appendix A), and thus Egs. (4.Cla) and (Clb)

T1sbi(b+3h) " 6b
can be rewritten as below.

’ 6 ’
w0 —v—x)+y! W'} (4.C2a)

o.(s,2)=EW" U+ h

1-v?

3 3
o.(s,2)=G[y" (U -0, - 4(b” +5h7)

, 16
2 TR ) gy - 2] (4.02b
e T ETETS vl 7 31 ( )

Substituting (o _, o, ) in Egs. (4.C2a, b) into the definitions of generalized forces

F given in Eq. (4.6) and carrying out the surface integral for the cross-section S,
one can obtain the following relations between the generalized forces F and the

field variables U.
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F.(2)=|[o.(s, 2)-y" (s) dsdn

E , , 6
L AR VT i)

:ijwaf WU

+y !yl W} dsdn (4.C3a)
= [[Ely? -y (U }1 dsdn
S

EJ, U/ (2)}
The second line in Eq. (4.C3a) can be reduced as the third line by the orthogonality

conditions such as Hl//ff s dsdn=0 and .Ul//zW‘ -w’: dsdn=0 (See Appendix
S S

A). Moreover, the orthogonality condition between (l//SU “,wA) can be also

considered as given in Appendix A, and considering those orthogonality conditions,

the remained generalized forces except (, can be express as:

4b* +5h%)

5o b ram )

F.(2)=[[o.,(s, 2) -y (s) dsdn =GJ, {U ()= 0,(2) —

(4.C3b)

M (2)=[[o.(s, 2)-w? (s) dsdn=——J, 16, ()~ vh%)a (2)} (4.C30)

1—v?

0.2)=[[0.(5, 20977 (5) dsdn =Gy {2 ()- W@} (4C3)

B(2)=|[o.(s, 2)-w!(s) dsdn=——J, (W/(2)} (4.C3¢)

1-v?
where J, (f=F,F,M, Q,B)) represent the moment of inertia for the

generalized force S, and the explicit expressions for J, are given in Appendix
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Substituting those results given in Eq. (4.C3) into Eq. (4.C2), (0, 0., ) on the

zz

contour line can be expressed in terms of the generalized forces as:

M (z B
o (s,z)= O'f; + O'Z“ + O'i‘ = iz)y/f (s)+ ﬁwf" (s)+ ﬁwfyl (s) (4.C4a)
F. JM‘. B,
c.(s,z)=0+0% = MI//SU (s)+ %1//? (s) (4.C4b)
A . A o Jo

where o’ ( B=F,F,M,Q,B) represent the stress on the contour line

produced by the generalized force f . Therefore, one can define the edge

resultants of S generated on each edge by using o”.

Meanwhile, the definition of Q, given in Eq. (4.6) is different with those
considered above because y,, the work conjugate of (,, represents the

deformations only in n direction. Unlike the procedure introduced above, thus,

o_(n,s, z) given in Eq. (4.4c) should be substituted into the definition of Q, in

Eq. (4.6), and through that the following result can be obtained.
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0, =[[ o (-ny ) dsdn
N
=J[Guwl ) U v i)
S
AR G0 N A SR 4.C3)
+(2ny ) (mmy ) g+ (2 () - g dsdn
[[Gt2ny2)-(~mj)- {2, ] dsdn
N

=2GJ,, {1, (2)}
The second line in Eq. (4.C5) can be reduced as the third line because most of the

integral terms in the second line are eliminated through the integral in # direction

or by the orthogonal condition such as H(l/)f' )-(y?) dsdn=0. The symbol J,
N

in Eq. (4.C5) represents the moment of inertia for @, and the definition of J, 1is

given in Appendix B. When the result given in Eq. (4.C5) is substituted into Eq.
(4.6¢), the stress o2 generated by (Q, can be also obtained as:
0% n. 5. 2= 2 (ny o) (4.Co)
JQz
To investigate the meanings of the equilibrium conditions given in Egs. (4.76a,

b), the edge resultants generated by (M, B, O,) will be defined by utilizing

M, B,
(0.",0.)

zz %

0'32) in Egs. (4.C4) and (4.C6). According to Choi and Kim [43], the
non-zero resultants on Edge j (j =1, 2, 3, 4) determined by ¢”* ( B =M, B))are

axial force £/ , tangential force £/ , and normal moment a7/ . and can be

s()? n(j)’

defined as below.
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ﬂ o’ dsdn, Eﬁ)— ” o’ dsdn, Mf('j) H s-o’ dsdn (4.C7)

Edge j Edge j Edge j
As with Choi and Kim [43], the distribution of O'ZAZ'" represented by wf” is

simply expressed in terms of the constant or the linear function on each edge as

given in Appendix A, and thus the edge resultants of M shown in Fig. 4.8 can be

obtained by substituting O'jf" in Eq. (4.C4a) into Eq. (4.C7). On the contrary, the
distribution of & represented by ! is expressed by the highly complicated

polynomial functions as given in Appendix A. For this reason, as in Session 4.2,
care should be taken when the edge resultants of B, are determined; otherwise,
underestimated edge resultants are calculated, and thus the incorrect equilibrium
conditions concerning (M, B, O,) which is different with those given in Egs.
(4.76a, b) is derived.

To calculate the correct edge resultants of B, the following &2 is employed

instead of &” givenin Eq. (4.C4a).

Go(s, z)=

BJ(Z) 7" (5) (4.C8a)

By
where 7! (s;) (j=1,2,3,4) represents the average distribution of o7 on

Edgej, and is defined as:

_ 2b(5h* —b*) .
7" G-z, 2008 70 ) for j=1.3 4.C8b
(s;))=(D 15h(b +30) (for j=1,3) ( )
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45K —b?)

for j=2,4 4.C8¢
“Sohprams /=29 (4.C8c)

7L (s,) = (=D x

The definition of " (s;) given in Eqgs. (4.C8b) and (4.C8c) are determined by
employing the concepts introduced in Egs. (4.50) and (4.55), respectively. The

symbol J given in Eq. (4.C8a) can be defined by using i/, (s ) as:

Ty, = [[ @y dsdn (4.C8d)

The edge resultants of B, calculated by substituting &” in Eq. (4.C8a) into Eq.
(4.C7) are shown in Fig. 4.8, and one can find that those edge resultants are
correctly determined because the equilibrium conditions concerning (M, B))
shown in Fig. 4.8 are consistent with those given in Egs. (4.76a, b).

Meanwhile, the following distributed axial moment m2 (s, (j=1,2,3,4)

is generated on Edge j by the stress &% as shown in Fig. 4.9(a).

nis)= | neol an=-p BB ) (4.09)

Edge j
According to the Kirchhoff-Love plate theory [45], the effective distributed normal

force fn( 2 (s;) (j=1,2,3,4) is also generated on Edge j from the axial moment

m2 (s,) by the principle shown in Fig. 4.9(b), and is defined as:

6mz%)(s)_ £ 0,02, ..,
f;l(]) Os __EZ{ v, (Sj)} (4C10)

Therefore, the non-zero edge resultants of Q, associated with the equilibrium
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conditions given in Egs. (4.76a, b) is the effective normal force F%,and F2 on

Edgej (j=1, 2, 3, 4) can be defined by using fn%)(sj) in Eq. (4.C10) as:

5 = I fot(s;) ds, (4.C11)

Edge j
However, underestimated edge resultants of (, are also calculated when f; 0
given in Eq. (4.C10) is employed as with the case of edge resultants of B,, and

thus the following £ is used in place of 2.

1) = —f—z%i—(z){ Gy (s} (4.C12a)
QZ

where 77 (s ) (j=1,2,3,4) represents the average distribution of f % on

Edgej, and is defined as:

32b

Ty )= 1 j = 1, 3 4C12b
W, (s)) G (for j ) ( )
G (s )= 2 (for j=2,4) (4.C12¢)
" n(sh + b

The definition of 7% (s;) given in Egs. (4.C12b, c) are determined through the
concept introduced in Eq. (4.50). The symbol J, o, nEq. (4.C12a) can be defined
by using 7 (s;) as:

To = [[n-[*y dsdn = [[{n-(s-§77)} dsdn (4.C12d)

where "> (s,) (j=1,2,3,4) can be written as /*(s,)=s, -7 (s,) because
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X2
V.

(s;) represent the odd functions. The edge resultants of O, calculated by

substituting £% in Eq. (4.C12a) into Eq. (4.C11) are shown in Fig. 4.8.
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CHAPTERSS.
Higher-Order Beam Analysis for Multiply-Connected
Box Beams-Joint Systems Subjected to In-Plane

Bending and Axial Loads

5.1 Introduction

The response of thin-walled beams is highly flexible than the analysis result
obtained by classical Euler and Timoshenko beam theories (see, e.g. [1, 2]) since
cross-sectional deformations not handled by those classical theories easily appear
in thin-walled beams. Moreover, when thin-walled beams are connected at a joint,
the magnitudes of cross-sectional deformations near the joint region are further
amplified. For this reason, the joint region exhibits significant flexibilities, and the
behavior of thin-walled beam structures having joints shows significant difference
from the predicted result based on the classical beam theories. From the motivation
that the classical beam theories overestimate stiffness of thin-walled beam
structures, one-dimensional higher-order beam theories [3-9] considering the
flexibilities of thin-walled beams caused by cross-sectional deformations have been
developed. However, higher-order deformations which do not produce any
resultants are considered together as additional degrees of freedom of the higher-
order beam theories, and thus determination of the joint matching relations among

all the degrees of freedom of the beams connected at the joint is a highly difficult
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problem. Because of such difficulties, therefore, there is no exact analysis method
using higher-order beam theories applicable to structures with three or more thin-
walled beams meeting at a joint (referred to hereinafter in this paper as “three or
more thin-walled beams”) subjected to in-plane loads. With this background, we
propose an exact analysis approach for the first time, applicable to the mentioned
three or more thin-walled beams-joint structures under in-plane loads.

First, we introduce some previous one-dimensional beam theory-based
researches having been tried to interpret the flexible responses of the thin-walled
beams-joint structures. Initial studies, which were based on the classical beam
theories, regarded the connectivity among thin-walled beams at the joint as semi-
rigid connection and proposed some artificial joint spring models to reflect the joint
flexibility on their analysis approaches [10-12]. Chang [10] proposed a joint model
employing a rotational spring which can be used to define the flexible relation
between in-plane bending moment and its accompanied bending rotation at the
joint, and Lee and Nikolaidis [12] proposed another joint model consisting of some
rotational springs and a rigid section based on the assumption that the rotation
center of each beam should be located away from the joint. Subsequently, Bylund
[13] proposed the Dynamic Joint Method for determining the stiffness of the joint
using eigenvalues and eigenmodes of the structure considered, and recently
Donders et al. [14] suggested the method to represent the stiffness of the joint as
the super element obtained by applying the Guyan reduction method to the detailed

shell joint model. Because the flexibility of the joint is highly dependent upon the
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aspect ratio of cross-section of the beams meeting at the joint and the joint angle
among those beams, however, it is difficult to determine an approximate joint
model consistently applicable to the thin walled beams-joint structures with various
joints.

If there existed a beam theory including the effects arising from the cross-
sectional deformations, then capturing the flexible responses of thin-walled beams-
joint structure would be possible without employing artificial joint concepts.
Therefore, there have been efforts to include some significant cross-sectional
deformations as independent degrees of freedom in addition to conventional rigid-
body motions of a beam cross-section, and consequently higher-order beam
theories were proposed [3-9]. Vlasov [3] proposed a theoretical approach in
determining the cross-sectional warping deformations of thin-walled beams
subjected to twisting moment, and established the fundamental theories to include
these sectional deformations as the additional degrees of freedom. Kim and Kim [6]
developed the higher-order beam theory for thin-walled closed beams subjected to
twisting moment which can interpret the responses of those beams as correctly as
the shell analysis, and Kim and Kim [15, 16] extended the coverage of the higher-
order beam theory to the thin-walled curved box beams.

Some efforts to theoretically represent the flexible responses of the joint
appeared in the thin-walled box beams-joint structures without using artificial joint
concepts have been followed based on the higher-order beam theories [17-23].

Especially, Choi and Kim [23] defined fundamental conditions regarding a higher-
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Fig. 5.1 Three or more thin-walled box beams-joint structures (only a portion of
the structure such as Beam i-1, Beam i, and Beam i+1 (i > 2), is depicted, for
convenience.).

order beam theory which must meet at a joint, and derived exact joint matching
conditions applicable to the two box beams-joint structures under in-plane loads
through a theoretical approach using those fundamental conditions. Moreover, Choi
and Kim [23] demonstrated that analysis based on their proposed joint matching
conditions can interpret responses of the joint as accurately as those by shell
analysis. Although Choi and Kim [23] determined joint matching conditions with
respect to two box beams-joint structures under in-plane loads and verified their
results by obtaining meaningful analysis responses for various numerical examples,
there still exists the difficulty that stiffness of the joints is overestimated when
expanding their proposed matching conditions directly to three or more thin-walled

box beams-joint structures. That is because those matching conditions excessively
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constrain the joint to be deformed, and higher-order deformations cannot be
properly generated at the joint. From the observations above, a new approach to
theoretically determine joint matching conditions is required in order to establish
exact higher-order beam theory-based analysis approach applicable to three or
more thin-walled box beams-joint structures under in-plane loads.

Three or more box beams-joint structures under in-plane bending or
longitudinal force will be analyzed in this study by using a higher-order beam
theory. The unique contributions of this investigation are to newly establish a
higher-order beam theory having 11 field variables which are all required in order
to represent the flexibilities of the joint theoretically, and are to derive the exact
matching relations among those 11 field variables of box beams meeting at the
joint. Figure 5.1 shows a three or more box beams-joint structures. Only a portion
of the structure, such as Beam i-1, Beam i, and Beam i+1 (;>2) is depicted, for
convenience. It is assumed that all the box beams in Fig. 5.1 are placed on the same
plane, and also assumed that their width, height and thickness are equal to b, # and
t, respectively. In order to interpret the box beams-joint structure shown in Fig. 5.1
using the higher-order beam theory, the joint connectivity between box beams is
modeled as shown in Fig. 5.2. The joint where all the box beams converse is
defined as the joint (strictly, the joint refers to the point where the central axes of

box beams meet). As with Refs. [22, 23], in addition, Edge M, M/, and Edge

N.N, are considered as if they were attached rigidly to each other (by an
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Fig. 5.2 (a) Beam modeling for the three or more box beams-joint structures
(Edge M;.1\M’i.; of Beam i-1 and Edge N;N;” of Beam i (i > 2) are considered as if
they were connected rigidly to each other (by an imaginary rigid body).), (b) the
top view of beam modeling (Edge M;.1M i, of Beam i-1 and Edge N:N;’ of Beam i
are extended and separated from Shared Side Edge i-1 (i > 2) in Fig. 5.1).

imaginary rigid body) because Shared Side Edge i-1 in Fig. 5.1, which is shared by
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Beam i-1 and Beam i (;>2), is extended and represented in Fig. 5.2 by Edge
M, M, inBeam i-1 and Edge N,N/ in Beam i separately. Therefore, both the
equilibrium between the forces and the continuity between the displacements,
which are generated at Edge M, M/, and Edge N.N/, can be considered

although those edges are separated from each other.
To establish the higher-order beam theory applicable to the three or more box
beams-joints structures under in-plane loads, we will introduce the higher-order

deformations ( x|, W', ', W, x,. Wy, x5» x, ) shown in Fig. 5.3(b) as the
independent field variables in addition to the rigid-body motions shown in Fig.
5.3(a). Choi and Kim [23] theoretically defined the shape of the higher-order
deformations ( x*, W%, y,) (see Fig. 5.3(c) for ( x*, W,*)) and demonstrated that
the higher-order beam theory including ( 2, W,%, y, ) are sufficient to interpret the

flexible behavior of the two box beams-joint structure under in-plane loads.
However, the matching conditions between Beam i and Beam i+1 (7 > 2 ) should be
independent with those between Beam i and Beam i-1 for three or more box

beams-joint structures, and thus ( y,, W,, y,) should be additionally included in
the higher-order beam theory. Moreover, ( y/, W', », W), which represent more
detailed field variables set regarding to the cross-sectional deformations ( x#, W,*)
describe, are considered instead of ( ., W;*) in order to develop more accurate

one-dimensional analysis approach for three or more box beams-joint structures.
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To derive exact joint matching conditions among those 11 field variables
applicable to three or more box beams-joint structures, joint equilibrium conditions
among generalized forces, which are the work conjugates of the field displacement
variables, will be precisely defined first. Then, taking into account the defined
equilibrium conditions and the principle of virtual work together, the desired joint
matching conditions among field variables will be theoretically derived. Note that
the work conjugates of the field variables representing the higher-order
deformations do not generate any resultant forces or moments acting on the cross-
section, but do generate resultant stresses acting on each of the edges as

demonstrated in Choi and Kim [22]. If the equilibrium conditions on the edges
(Edge M, M|, , Edge N.N/, etc.) are considered in addition to the resultant

forces and moments equilibrium conditions, therefore, generalized forces
equilibrium conditions which are consistently valid for the three or more box
beams-joint structures can be determined. Although the purpose of this study is to
derive equilibrium conditions or matching conditions applicable to the three or
more box beams-joint structures, the derived conditions should also be valid for the
two box beams-joint structures in order for this approach to be reasonable.
According to this observation, we derive more generalized matching conditions on
the basis of Choi and Kim [23] who derive the exact matching conditions regarding
to the two box beams-joint structures. In order to verify the validity of the proposed
joint matching conditions, two case studies will be examined. The accuracy of the

proposed analysis method will be checked by comparison with the results of
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ABAQUS shell analysis [24].

5.2 Higher-Order Beam Theory for Straight Thin-Walled Box

Beams

In order to interpret the three or more box beams-joint structures under in-plane
loads precisely without employing any artificial concepts, a higher-order beam
theory which includes the significant higher-order deformations associated with the
flexibilities of the joint as independent field variables is required. Choi and Kim
[23] theoretically defined the higher-order deformations ( x#, W%, x,) shown in
Fig. 5.3(b, c) and established the higher-order beam theory including ( %, W%, x,)
which are applicable to the two box beams-joint structures under in-plane loads.
However, it can be found that the analysis approach proposed by Choi and Kim [23]
underestimate the joint flexibility of the three or more box beams-joint structures
under in-plane loads and that one of the reasons for that difficulty is a rack of the
higher-order deformations such as ( y,, W,, y,) with respect to determination of
the joint matching conditions between Beam i and Beam i+1 (; > 2 ) independently
with those between Beam i and Beam i-1.
Therefore, we will newly establish a higher-order beam theory considering 11

displacements of deformations of the box beams such as axial displacement U_,

transverse displacement U, in-plane bending/shear rotation 6, , distortions
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Fig. 5.3 (a) Rigid motions of the box beam cross-section represented by the field
variables: axial displacement U. , transverse displacement Ux and in-plane
bending/shear rotation €, (b) Deformations of cross-section represented by the
field variables: distortions (71!, ¥1% x2, x3, x4) and warpings (W1, W%, W), (c)
Deformations of cross-section represented by the field variables: distortion y®
and warping W,2.
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(x's 27 22» 250 2, ) and warpings (W', W;>, W,). Note that ( x¢, W;*) proposed
by Choi and Kim [23] are divided into more detailed higher-order deformations
(x, W', x2,w?) in this study to represent accurate flexible joint behavior
although theoretically reasonable joint matching conditions can be determined
using ( x*, W;*).

In order to define those cross-sectional deformations as one-dimensional field
variables of higher-order beam theory, shape functions representing the
deformation patterns shown in Fig. 5.3(b) are employed, and thus the shape
functions for ( y,, W,, y,) which are newly introduced as the independent field
variables of the proposed higher-order beam theory will be theoretically derived in
this study. Based on Refs. [6, 22, 23], the one-dimensional higher-order beam
theory considering the 11 rigid motions and cross-sectional deformations shown in
Fig. 5.3(a, b) as the field variables will be defined in this section, and subsequently
the theoretical approach to derive the shape functions for ( y,,W,, y,) will
introduced in the next section.

When one-dimensional field variables of the higher-order beam theory are

expressed as the functions of axial coordinate z, U(z)={U.(2), U (2), 0, (2),

212 W (@), 22(2), W), 2,(2), Wa(2), 7:(2), 2,(2)}" . the  three-dimensional
displacements of a point located on the contour line of the box beam cross-section

can be written as follows by using U [23].
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1,5, D)= (U v (- 2@+ v () 72(2) 1)
N AOR RO OR AL O A

u, (5, 2)= P (5)-U (2)+ w2 (s)- 21 (2)+ w2 (5)- 22 (2)+ w2 (s) 1,(2) (5.1b)

u_(s, 2)= y (s)-U.(2)+ y? (5)-6,(2)+ v (5)- W (2)

. (5.1¢)
F Yl () W)+ ! (5)-Wi(2)

where 7 and s represent a normal coordinate and a tangential coordinate defined on

the contour line, respectively (see Fig. 5.2(a) for the positive directions of » and s).
The symbols yi(s) ( p=n,s,z; a=U, 0,6, ., W',z W>, 1,, W,,
Xs» X4 ), which are functions of s, are introduced in Egs. (5.1a-c) to describe the

displacements or deformations of the box beam cross-section. The meaning of the

symbol w(s) is the displacement in the p direction generated on the cross-
section with respect to the unit magnitude of the field variable «. The explicit
expressions of the shape functions /(s) are given in Appendix A.

Considering the Kirchhoff-Love plate theory [25], the three dimensional
displacements (i, i , i, ) of a generic point located away from the contour line by
n can be expressed as, by using (u,, u_, u_) given in Egs. (5.1a-c):

i,(n, s, 2)=u,(s,2) =y’ U +wl -yl vwl v wh -y vyt g,

(5.2a)

wU U vyl g w g,

i, (1, 5, 2) =, (s, 2) - n 2l
A Os

(5.2b)
_”(l/./f1 '7(11 + l//f Xt ‘//54 '14)
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ou,(s,z)
0z
=y Uyl 0+l Wy Wy W,

u_(n,s,z)=u,s,z)—n

—n(y,) U +wl g +vl g +wl e vl i)
(5.2¢)

where the symbols (") and ()" denote (")=o()/os and ()'=0d()/0z ,
respectively. The displacement terms —n-(0u,/0s) and —n-(0u,/0z) given in

Egs. (5.2b, ¢) represent the displacement in s and z directions respectively which
arise from the rotation of the normal to the contour line.

The dominant and nonzero strains (&

552

£, 7, ) that occur at the same point

can be derived from Egs. (5.2b, ¢) as, according to the Kirchhoff-Love plate theory

[25]:

S

au ;2 o y .oyl . .
s Ry 2R A N R A R/ R A R

8ss(n’ S’ Z) =

(5.3a)

6 ' ’ 1 ’ 2 ' !
e.(n,s, Z)=§=W§’Z-Uz +yl 0yl Wy W W) (5.3b)

6~ a~ ’ . 1 ’ A 2 ’ .2
Ve(n, s, 2)= ;;S +%=l/f§’“ L R R R AR Y e A

w2t gy g v 1)
(5.3¢)

Subsequently, the dominant and nonzero stresses (o

s8 2

o.., o, ) at the same point

zz?

can be defined from (&

559

£, 7, ) given in Egs. (5.3a-c) by employing the stress-

strain relations as:
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E

+y W ey Wy WO —n (G ) G X))

0. (n, 5, 2) =W Ay g v U vyl 6]

(5.4a)

05,2 =y Uy 0wy Wy,

V@AY P ) i 2]
(5.4b)
0. (n,5,2)=Gly) U/ 4yl -0, +y 2 1 +y! Wyl W

AR AR A (S AR R A ZeR MY
(5.4¢)
where E, G,v represent Young’s modulus, shear modulus, Poisson’s ratio,
respectively. The following stress-strain relations under the plane stress assumption

are employed in derivation of those stresses above because each edge of the box

beam cross-section is a thin plate.

RAY zzZ

Oy = ILZ(SSS + ngz )’ 0, = liz(gzz + vgss )’ O-sz = Gysz (55)
-V -y

Using those displacements, strains and stresses defined at a generic point,
three-dimensional total potential energy for the straight box beam can be defined,
and then carrying out the surface integral for the cross-section S and applying the
principle of minimum total potential energy, one can derive the one-dimensional
higher-order beam theory for the straight box beam (see Refs. [6, 22, 23] for the

detailed procedures).
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The derived higher-order beam theory is expressed by the relation between the

field variables U and generalized forces F={F,F, M, 0., B,0, B, 0,

B,, Q,, 0,}" which are work conjugates of U. The generalized forces F are

defined as:
F.=[[(o.y)dsdn,  F =[[(op")dsdn, M, =[[(o.y) dsdn,
Q= ff (o) dsdn, By = }j (o) dsdn, O :}j (o.y?") dsdn,
B} = IS [(o.yp™") dsdn, 0, = j} (o) dsdn, B, = I}(GZZW:VZ) dsdn,
g S s

0, =|[o. (ny) dsdn, 0, =[[o,(n-y*) dsdn

(5.6)

where (F_, F,, M ) represent resultant forces or moments such as axial force,

transverse force, and in-plane bending moment, respectively. On the contrary, the

other forces represent self-equilibrated terms; ( O/, O}, Q,, 0;, O, ) represent

transverse bimoments, and ( B!, B}, B,) represent longitudinal bimoments.

5.3 Derivation of Cross-Sectional Deformations (y,, w,, z,)

To represent the flexible responses of thin-walled box beams-joint structure
correctly, theoretically reasonable shape functions w(s) for ( y,, W,, y,) are

should be employed in the higher-order beam theory. For this reason, w(s) for

(%, W,, x,) used in this study are theoretically determined, and the derivations for
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those shape functions will be introduced in this section.

5.3.1 Shape Function of y,

The axial stress o_ generated at a point on the contour line by the axial force F,

can be written as, according to the classical beam theory [1, 2],

o.(s,2)= % (5.7)

where A4 represent the area of the box beam cross-section. From o_ given in Eq.
(5.7), the strain &_ is generated, and simultaneously the strain & expressed as
follows is also accompanied by the Poisson’s effect [2].

o vF.(z)
E(s,z2)=—v—=E2=——— 5.8
(8, 2) B A (5.8)

The strain ¢ given in Eq. (5.8) causes the cross-sectional deformation
representing Poisson’s mode according to Ref. [2], and this deformation is
considered in this study as the field variable y,.

When u? denotes the displacement associated with y, in s direction on the
contour line, u? generated from & given in Eq. (5.8) satisfies the following
equation.

ouf(s,z) _ VF.(2)
Os EA

(5.9)

In addition, u? satisfies u? (s, z)=w/(s)- x,(z) according to Eq. (5.1), and
thus substituting this relation into Eq. (5.9), the following equation regarding to
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w/ (s) can be obtained.

V43
WEE)_ pe (5.10)
Os

where P" represents the proportional constant. Carrying out the integration for

1

coordinate s, consequently y 7 (s,) onEdge; (j=1,2,3,4) canbe expressed as:

'//slz(s1)=P1*X{Sl+C1}a l//fz(sz):Pl*x{SzJ"Cz}’ (5.11)
I//SZZ(S3)=Pl*X{Ss+C3}: l//slz(s4)=P1*x{S4+C4}

where C,, C,, C,, and, C, represent the integration constants.
From the observation that ¢ in Eq. (5.7) is symmetric with respect to both x

and y axes, one can find that the shape of y, generated by o_ should be

symmetric regarding to both x and y axes. To satisfy the mentioned symmetry

condition, therefore, the constants ( C, ~ C, ) should meet the following relations.
¢ =C; C,=C, (5.12)
In addition, y” should satisfy the following orthogonality conditions with

so that the relation given in Eq. (5.1b) is defined correctly [3, 22, 23].

[Jve @ v’ ) da=0 (5.13)

The orthogonality condition above means that the higher-order deformation y,

does not involve any rigid-body motion in x direction, and the values for the

constants (C,, C;) can be determined as, through the orthogonality conditions

given in Eq. (5.13),
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C,=C=0 (5.14)
Likewise, one can also consider the following orthogonality condition of y, with

respect to the rigid-body translation in y direction

[Jwz ) wl(s)daa=0 (5.15)
S
where the definition of (s;) onEdgej(/j=1,2,3,4)areas

po(s)=10 () =00 w0 (s) =10 ) (s)=0  (5.16)

The symbol (s;) represents the displacement of Edge j when the cross-

section is rigidly translated in y direction. Using the orthogonality condition given
in Eq. (5.15), the values for the remained constants (C,, C, ) are determined as:

C,=C,=0 (5.17)

From the symmetry conditions with respect to x and y axes and the orthogonality

conditions with the rigid-body motions in x and y directions, all the constants

*

(C, ~C,)in Eq. (5.11) are determined. The constant B~ in Eq. (5.12) determine

1
the scale of the cross-sectional deformation represented by the unit magnitude of

7,-and P"=-2/h will be used in this study.

When u? is generated on the contour line, »* is accompanied by the
continuity at the corner j where Edge j and Edge j+1 (j =1, 2, 3, 4; Edge 5 denotes
Edge 1) meet. Because of that »* generated on Edge 1 and Edge 3 are identical,

and that »* generated on Edge 2 and Edge 4 are also identical, each edge is
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rigidly translated in —n direction, and the shape functions w7 (s;) (j=1,2,3,4)

describing the translation of Edge j are given in Appendix A.

5.3.2 Shape Function of W,
According to the higher-order beam theory, O, denoting the work conjugate of

7, generates the following shear stress ¢ on the contour line (see Section 3. 1).

O'z% (s, z)= Q2—(Z)l//j‘2 (s) (5.18)
JQz

The shear stress o2 given in Eq. (5.18) produces the shear strain y% =¢% /G
along the contour line, and consequently W, shown in Fig. 5.3(b) occurs on the
box beam by < [2]. When u”2(s, z) represents the axial displacement on the
contour line represented by #,, the following condition which (s, z) should
meet can be defined from Eq. (5.18).

o _ 0wl _0,(2)

= Os GJ,,

W (s) (5.19)

Since u!>(s, z) =y (s)-W,(z) as given in Eq. (5.1c), the following equation

regarding to the shape function y(s) of W, canbe obtained from Eq. (5.19).

oy (s)

= B xy 2 (s) (5.20)
Os ‘

where P, represents the proportional constant. Carrying out the integration for

coordinate s, consequently /"> (s,) onEdge; (=1, 2,3, 4) can be expressed as:
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* 1 * 1
V/zWZ(Sl):Pz X{__512+C1}: W:V2(S2)=P2 x{——s22+C2},
h h
i i (5.21)
'//ZW2 (53):P2*X{_ZS32 +C}, l//ZWZ (54):P2*X{_ZS42 +C,}

where (C,, C,, C,, C,) represent the integration constants.
w” (s,) (J=L2,3,4)in Eq. (5.21) should be symmetric with respect to x-
axis and y-axis because distribution of &% along the contour line satisfy those

symmetry conditions. Considering the mentioned symmetry conditions, one can

find the following relations associated with the constants (C, ~ C, ) in Eq. (5.21).
¢ =C; C,=C, (5.22)
In addition, the displacement continuity condition u)*(s 5 2) | comer ;=

U (51115 2) | eomer; DEtween u!?(s;, z) onEdgejand u)*(s,,,,z) onEdge;+1 at

the corner j (j=1, 2, 3,4) must hold, and consequently the following conditions

with respect to "2 (s) given in Eq. (5.21) can be obtained.

vl (s, :—2) =yl (s, =——2), (s, :E) =y (s, :_E)’
(5.23)

h b b
wl (s ZE)ZV/ZWZ(& :_E)’ v (s, ZE)ZWZWZ(Sl Z—E)

",

Meanwhile, !> in Eq. (5.35) should meet the following orthogonality

condition with = so that the relation given in Eq. (5.1c) is defined correctly.

JJ v @)yl (s) da=0 (524)

N

where Eq. (5.24) means that the cross-sectional deformation represented by W,
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does not include any rigid-body translation in z.

Considering the conditions of !> given in Eqgs. (5.22-24), the constants
(C, ~ C,)in Eq. (5.21) meeting those conditions can be determined as:

3 273 3 a2 73
C =C, :_M; C,=C, _ 2k =3bh-b (5.25)
12h(b + ) 12h(b + )

The constant P, in Eq. (5.21) determine the scale of cross-sectional deformation
represented by the unit magnitude of W,, and P =4/#4 will be used in this

study.

5.3.3 Shape Function of x,

To define the edge forces in n direction on Edge 1 and Edge 3 independently, y,

representing antisymmetric deformation of the box beam cross-section with respect
to y-axis as shown in Fig. 5.3(b) should be introduced in the higher-order beam

theory. As with the field variable y,, deformation of the box beam cross-section in
n direction is represented by y,, and one can assume the shape function , # (s,)

on Edgej (j=1,2,3,4) as follows.

W (Sl):a11(31)4 ""112(5"1)2 +a; (5.26a)

wii(sy)=a, (s, )3 +ay(s,) (5.26b)

Wi (53):_011(53)4 _a12(33)2 — a3 (5.26¢)

W (53):_‘121(33)3 —ay(s;) (5.264)
206 =



where w7 (s;) (j=1,2,3,4) satisfy both the symmetric and antisymmetric
conditions with respect to x-axis and y-axis respectively. When
ut(s,z)=yr*(s) y,(z) refers to the displacement on the contour line in n
direction represented by y,, one can consider the following displacement

continuity conditions.

ut (s, =t—,2)=0; u*(s,=0or i%,z)zo;

(5.27)

o> =

ut(s;,=t—,z)=0; uf“(s4=00rig,2)=0

In addition, the following angle and moment continuities should also be satisfied at

the corner according to Ref. [6].

B =D BE =m0, B = B =),

(5.28a)
Brs === pr =D, B =)= s =)
z 3 2 z 2 2 > z 3 2 z 4 2
Mz;m (s, :ﬁ) :MZJm (s, :_é), M;m (s, :_ﬁ) :Mz;m (s, :2)’
2 . i , 2 (5.28b)
M7 (sy = —5) =MP(s,= E)’ M7 (sy = E) =M% (s, = —5)
where pr(s,) and i77(s,) atEdge;j(j=1,2,3,4)aredefined as
a X4 ) _ 3 62 Xa )
pris) =B ) s EL M) (s 50 )

Os E Os®

The symbols B (s;) and M# (s;) represent the bending rotation and bending

moment in z direction, respectively [6] . The moment M * (s ;) in Eq. (5.28b) is
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approximately defined by the classical beam theory, and ¢ in Eq. (5.28b) represents

the thickness of Edge ;.
wit(s;) (j=1,2,3,4) given in Eq. (5.26) can be determined through those

continuity conditions given in Egs. (5.27-5.29) as:

b(b +3h)

2oy P i . 3b(b+h), , bh(=5b-3h)
wii(s) =P x{ YE (s)" + ah (s))" + ) } (5303)
. , b
wi(sy) =B x{(s;) —T(SQ)} (5.30b)
pit )= B 2O syt - 2O gy L BREZI (5300
wi(s) =P x{=(s,) +%(s4)} (5.30d)

The constant P in Eq. (5.30) determine the scale of cross-sectional deformation

represented by the unit magnitude of y,, and P’ = R will be used in

> bh(5b+3h)

this study.

5.4 Derivation of the Exact Joint Matching Conditions

With respect to analysis of three or more box beams-joint structures by using the
higher-order beam theory established in the previous section, the key is to define
the exact joint matching conditions among the field variables which represent the
behavior of the joint correctly.

After explaining the difficulties whereby the stiffness of the joint is
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overestimated when the matching conditions proposed in Choi and Kim [23] are
directly extended to three or more box beams-joint structures, we will propose and
derive the exact joint matching conditions, which are applicable to three or more
box beams-joint structures.

Concerning the two box beams-joint structure shown in Fig. 5.4, the field

variables of Beam & (k =1, 2)) employed in Choi and Kim [23] are represented as,

U, ={U.),, U 0, (XE)es ) ()T (5.31)

A

In Choi and Kim [23], joint matching conditions between ﬁl and U, are

exactly defined by introducing joint matrix T. Through the various box beams-
joint examples, it was shown that the matching conditions can describe the
response of the joint precisely as interpreted by the shell elements.

When a two box beams-joint structure is modeled as shown in Fig. 5.5 by

adopting the same procedure as the modeling in Fig. 5.2, the matching conditions

between U, and U, can be expressed as follows by using the joint matrix T

proposed in Choi and Kim [23]: (However, concerning the modeling in Fig. 5.5,
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Fig. 5.4 Two thin-walled box beams-joint structures.

the constraint conditions between Edge MM, and Edge N,N,” or between

Edge M,M, and Edge N,N,| were not considered when the following matching

conditions are defined.)
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Fig. 5.5 (a) Beam Modeling for the two box beams-joint structures (Edge MM’
of Beam 1 and Edge N.N,’ of Beam 2 are considered as if they were connected
rigidly to each other (by an imaginary rigid body), and Edge NiN,” of Beam 1 and
Edge MM’ of Beam 2 are also considered as if being connected rigidly to each
other (by an imaginary rigid body).), (b) the top view of beam modeling (Shared
Side Edge 1 in Fig. 5.4 is extended and represented by Edge MM’ of Beam 1
and Edge N>N>’ of Beam 2 separately, and Share Side Edge 2 in Fig 5.4 is also
extended and represented by Edge NiN:’ of Beam 1 and Edge M>M", of Beam 2
separately.).
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where the definitions of submatrix A, B and C are as

COS(¢2 - ¢1) Sin(¢2 - ¢|) 0

A=|—sin(¢,—¢) cos(4—¢4) 0 (5.32¢)
0 0 1
0 0 0
B=|0 0 0 (5.32d)
0 :I(zfa?bjh; (1+cos(4, — ) (bff;ﬁ?fs’;lh) sin(¢, —4,)

-1 0 0
C=0 —cos(¢, — @) (szf:::(s};hl )S n(¢, —¢) (5.32¢)
0 (51;;;}2(5:”1)1) )Sm(¢2 $) —cos(¢, —¢,)

where ¢, (k=1 2) represents the angle between the axial coordinate z, of Beam
kand z,,, inFig 5.5 (see Fig. 5.5(b) for the positive directions), and (¢, —¢,) in
Eq. (5.32) denotes the joint angle of the two box beams-joint structure. Observing
the joint matrix T(¢@, —¢), its submatrix A represents the matching conditions
among rigid-body motions. Submatrix B represents additional rigid-body motion
((6,),) of Beam 2 generated by the higher-order deformations ((#%),, (x,),) of
Beam 1, and submatrix C represents the matching conditions among higher-order
deformations ( {, W%, x3).

If one wishes to directly extend the matching conditions in Eq. (5.32) for T-

joint structure, for example, it could be written as:

ﬁzzT(¢2_¢1)’ﬁla IAJ3:T(¢3_¢2)'IAJ2= IA-]1=T(¢1_¢3)'ﬁ3 (5.33)
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where the joint angles (4, ¢,, ¢,) in Eq. (5.33) are ¢, =0", ¢, =90°, ¢, =180" in
T-joint structure. If the matching conditions in Eq. (5.32) are applied, the relations
among (x%),, (xf),,and, (x{),, will be expressed as:

D) == =) (D =-(); (5.34)
Because the relations in Eq. (5.34) should be satisfied for arbitrary
(X&) (xf),,and, (), , the relations eventually represent (yf), =(x%),=
(1), =0.

Likewise, the relations among (¢, y, ) of three box beams will be expressed

as:
W2, =20 D ()5 (1), = =S (79, (5.35a)
WE)y =D (1), s (2)y == (79, (5.35b)
W =55 (1) = (1), (5.35¢)

The relations given in Egs. (5.35a-c) should also be satisfied for arbitrary

(*5),, (x3), ) of Beam k (k=1,2,3), the relations eventually represent

(VV1g)1 Z(VVfg)z :(mg)3 =0 and (Z3)1 :()53)2 :(13)3 =0.
Observing submatrix B in joint matrix T, on the other hand, it can be seen

that rigid-body motions (6,) of the beams connected to the joint are additionally

induced by higher-order deformations (%, y,) as well as rigid-body motions (6, )

of adjacent beams. Therefore, when the matching relations such as Egs. (5.34) and
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(35) (i.e. all the higher-order deformations of three box beams are zero) are applied
to the T-joint structure, those relations overestimate the stiffness of the joint, and it
is not possible to obtain an accurate result.

Observing the results in Choi and Kim [23], the joint matching conditions
defined on Edge 1 are equal to those defined on Edge 3 because the higher-order
deformations ( x°, W, y;) having y-axis antisymmetric deformation pattern are
only employed. To define the joint matching conditions on Edge 1 and Edge 3
independently, therefore, the higher-order deformations ( y,, W,, y,) having y-axis
symmetric deformation patterns should be employed together. From the same
reason, when the matching conditions given in Eq. (5.32) are extended to the three
or more box beams-joint structure, the stiffness of the joint again tends to be
overestimated. Therefore, the joint matching conditions proposed by Choi and Kim
[23] cannot be directly extended to the three or more box beams-joint structure, and
a new approach that is different from the existing methods should be developed, to
deal with the three or more box beams-joint structure under in-plane loads.

To develop a new analysis approach applicable to three or more box beams-
joint structure under in-plane loads, we will first define the equilibrium conditions

among the generalized forces (F,, F,, M, OF, Bf, 0,, B,, 0;, O,) of each beam
at the joint. Choi and Kim [22] demonstrated that the self-equilibrated forces

(Of, Bf,0,, B, 0;, 0,) produce non-zero resultants on each edge of the box

beam cross-section, and Choi and Kim [23] found the equilibrium conditions
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among (F,, F,, M, OF, Bf, O;) of two beams at the angled joint. Based on Refs.

[22, 23], therefore, we will derive for the first time the equilibrium conditions
applicable to the three or more box beams-joint structures. Subsequently, applying
the principle of virtual work to the equilibrium conditions we determined, we will
derive the exact joint matching conditions for the generalized displacements (or

field variables) which are energy conjugates of those generalized forces.

5.4.1 Sectional and Edge Resultants Produced by Generalized Forces
Prior to dealing with the generalized forces equilibriums, the stresses which
generalized forces induce on the section will be introduced, and from those stresses,
sectional or edge resultants will be derived.

According to Eq. (5.4), dominant stresses (o _, o, ) on the contour (»=0) can

zz

be related to the displacements as:

E

WU vyl 0wyl WE eyl W v gt i )
(5.36a)

o._(s,2)= "

o (5, 2)=G(y U +yZ yf +yr g +yl 0 +y!" WE g W)
(5.36b)

The derivative terms (7", y}f‘g , Wk, ' w!>) in Egs. (5.36a, b) can be related

z z

with other shape functions (', y”, w2, y! w2, y" ) as yl =—y

g 6 o . 2 4b* +5n°) 16
D=——y, gl =Syl o 0 720 U Pyn and y =
L N S Ty ey v
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4 . . . .
Zl//fz (see the explicit expressions of  ’s in Appendix A), and thus Eqgs. (5.36a,

b) can be rewritten as:

E y 2 6 . , ,
0. (5, ) =— ! U —v=p)+y! (0, —v—=2)+y!" Wyl W)

l-v h h2
(5.37a)
3 3
15bh7 (b +3h) (5.37b)

16 4
A E —an} wi Ay, +— W}]

Substituting (o_, o) in Egs. (5.37a, b) into the definitions of generalized

forces F given in Eq. (5.6) and carrying out the surface integral for the cross-
section S, one can obtain the following relations between the generalized forces F

and the field variables U.

F.(z)= jj 0. (s, 2) -y (s) dsdn

' 2 6
zU:'{Uz _Vzlz}*'l//f {‘9 _thll}
+w; -w:’f AWE Yyl oy Y dsdn (5.382)
- ([t ! —vzzz 1] dsdn
- h
E
=1 (2)}

The second line in Eq. (5.38a) can be reduced as the third line by the orthogonality

conditions such as w” oyl dsdn=0 " Y dsdn=0 and
z ¥4 WZ WZ
S S

”t//ZW2 -wY: dsdn=0 (See Appendix A). Moreover, the orthogonality condition
S

216



among (", l//flg, w) can be also considered as given in Appendix A, and
considering those orthogonality conditions, the remained generalized forces except

(0, O,) can be express as:

4b* +5h%)

ot ram

F(2)=[[o.(s, 2)-y!" (s) dsdn=GJ, {U, (2)-0,(2) -

(5.38b)

M, (2)=[[o.(s, 2)-y? (5) dsdn = zl f(2)) (5.380)
07 ()= [[or, (5,20 (5) dsin = GJQIg{zf'(z)—gmz)} (5.384)

Bf(2)= jjazz(s 2)y (s) dsdn =——J, W (2)] (5.38¢)

0.2)= [[o. (s, 207 0) dsdn =G 1! )+ W)} (538D

(5.38g)

B,

" _E
Bz<z):jsjozz(s, 2) -yl (s) dsdn = —

where J, (B=F,F,M,Of, Bf,Q,, B)) represent the moment of inertia
for the generalized force /S, and the explicit expressions for J, are given

in Appendix A.
Substituting those results given in Eq. (5.38) into Eq. (5.37), (o.., 0.,)

on the contour line can be expressed in terms of the generalized forces as:
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M2, .
£y BBy (9 Q)

_ __F. M, Bf B, _
Gzz(S5 Z)_O-;z +Gzz +Gzz +Gzz -

wE 2() W2
w.' (s)+ T, (s)

F, M, J,g]g B,
(5.39)
o.(s,z)=0l +O'Q1 +02 Z}i’}—(z)l//g (s)+ Ql( )t// ()+Q2( ) v (s) (5.39b)
F, ng Qz

where o’ (S =F,F,M,QOf, Bf,Q,, B)) represent the stress on the contour

line produced by the generalized force f. Therefore, one can define the edge

resultants of S generated on each edge by using o”.

Meanwhile, the definitions of (Q,, Q,) given in Eq. (5.6) are different with those
considered above because ( y;, 7, ), the work conjugate of (Q,, Q,) respectively,

represent the deformations only in # direction. Unlike the procedure introduced

above, thus, o_(n, s, z) ata generic point located away from the contour line by
n should be substituted into the definition of Q,, O, in Eq. (5.6), and through that
the following result can be obtained.
= [[ oy ) dsdn
N
= [[ Gty - mi2) Uy - (mp )0, + - (mi )
N

" ) WE w2 g+ (g )W

+(2n G ) () g+ (2 ) () (5.40a)
+(=2ny ) (~myr ) )} dsdn

= [[GL-2ny7)- (=ny)- {2, 1] dsdn

=2GJ, {1; (2)}
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The second line in Eq. (5.40a) can be reduced as the third line because most of the

integral terms in the second line are eliminated through the integral in » direction

or by the orthogonal conditions such as ﬂ(v'/flg)'(vlffs)dsdnzo and
N

J.I(t/'/f“)-(l/)f-‘) dsdn =0 . In addition, the orthogonality conditions such as

N

J.J‘(l/)f'g )-(y*) dsdn=0 and H(l/’/f‘ )- (@) dsdn=0 can be also considered as

N N

given in Appendix A, and considering those orthogonality conditions, (, can be

expressed as:
0, =|[ o (-mjr*) dsdn
S
~ ([ Gty - m) U, + i (mi2)-0, + (-
N

) WE (g )+ ()W
+ (2 (g ) i (2n ) () g (5.40b)
+(=2nyr ) (~nyr ) - ) Y dsdn
= [[GL(2ny ) - (=mpr2)-{ 2, V] dseln
S

=2GJ,, {7/ (2)}
The symbols (J,, , J, ) in Egs. (5.40a, b) represent the moment of inertia for
0,, O, respectively and the definitions of (J,, , J,, ) are given in Appendix A.

When the results given in Egs. (5.40a, b) are substituted into Eq. (5.6¢), the stresses

(62, 0% ) which are generated by (Q,, Q,) can be also obtained as:
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02 (n,5,2)= L2y 51} (5.41a)
JQ3

02 (n,5,2) =L )y (5.41b)
JQ4

First, it will be shown how to obtain the edge resultants of generalized force f,
(B, = F., F,, M) which have conventional or sectional resultants as shown in Fig.

5.6. Stresses on (s, z) induced by those forces are given in Eq. (5.39), and edge
resultants of those forces can be obtained by integrating stresses on each edge

according to Choi and Kim [22]. The non-zero edge resultants determined from the

tangential force F /., and normal

. . ﬂl
stresses in Eq. (5.39) are axial force F >

z2(J)?

moment Mn’:'j) (B, =F., F,, M), and are defined as

A
FZ(/’) s(J) n(j) —

Edge j Edge j Edge j

= [[ o asan, Ff = [[ of dsdn, M[, = [[ s-0f dsdn (542)

A X x X
. T e T e Y

(a) (b) (©

Fig. 5.6 Resultants (or sectional resultants) acting on the entire cross-section that
are produced by the generalized forces: vertical force F,, bending moment M ,,
and twisting moment M ..
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On the contrary, the distribution of o (8, = QF, B, 0,, B,) represented by
the shape function (' or ) of the work conjugate @, (a, = y*, WE, y,, W,)
is expressed by the highly complicated polynomial functions as given in Appendix
A. For this reason, care should be taken when the edge resultants of g, are
determined according to Choi and Kim [23]. To calculate the correct edge
resultants of B, (B, =0%, Bf, OQ,, B,), the following &% or &% is employed

instead of o2 or o’ giveninEq. (5.39).

" (s, z)= '82( )_“2 (s) (5.43a)
Ip,
5 (s, 2)= 22D g () (5.43b)

I,
where w*(s;) (j=1,2,3,4) represents the average distribution of o” on

Edgej, and is defined as:

h a2 3b
— 1 ] ==<s. <0)=(-1 (j1+1)/2>< ,
l//5 ( J | 2 S.h ) ( ) _4h
R 4 h ] 3b
v (s, 1055, <) = (=) D=1 (5.4

v (s,)=0  (j,=2,4)

e, 2b(5h* =b%)
15h(b +3h)
4(5h1° —bz)s
Sbh(b+3h)

g (s ) =(-1Y (for j, =1,3)
(5.44b)

7 (s,) =(=D)" 7 x (for /,=2,4)
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_ h 1 _ hooo1 _
[//Slz(sjl|——£sjl£0)=—’ l//sb(Sjl|OSSJ.IS—)=—— (i=13)
2 2 27 2
; ; . f (5.44c¢)
v (s, |_ESS12 30)=Ea pi(s, |0<s, SE):_E (,=2,4)
_w, 2b(h—b .
76, = 202 (dorji=13)
2h-b) (5.44d)
v, (s,)=— 5 (for j, =2, 4)

The definitions of > (s,) (e, =xf, x,; j=1,2,3,4) given in Eqgs. (5.44a, ¢)

arc as:

—Q h 0 a 0

7G5y | =5 s, <0)= LG5, ds, /[ ds,,
- s (5.45a)
7 (s, 10, <) =[G, dsy /[ Lds, (i=13)

— b o, 0
7 Gs, 1= s, <0 =[G, ds, /[ ds,
5 bz ) ’ (5.45b)
75, 1055, <) =[lwes, ) ds, /[ ds, (,=2.4)
, and the definitions of @ (s,) (a, =W*,W,; j=1,2,3,4) given in Eqgs. (5.44b,
d) are as:
v (s)=[we (s, ds, /| ds, (5.46a)
or
v (s) =4[5, we sy ds, 1 (s,)ds,}-s, (5.46b)
where w*(s;) is obtained through Eq. (5.46a) when w’*(s;) is an even

function. Otherwise, Eq. (5.46b) is employed to determine 7 (s;).
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Fig. 5.7 (a) Edge resultants acting on each edge of the cross-section that are
produced by the self-equilibrated generalized forces: transverse bimoment (Q:5,
0>, 03, Os4) and longitudinal bimoment (B:%, B>), (b) Edge resultants acting on
each edge of the cross-section that are produced by the generalized forces having
nonzero resultants: longitudinal force F, , transverse force Fx , in-plane bending
moment M.

The symbol J 5, (B, =Bf, B,) given in Eq. (5.43a) can be defined by using
1/72% (Sj) (az :VVlgn VVZ) as:

T, = [[ @) dsdn (5.47a)

, and the symbol J, 5 (B, =0F,Q,) given in Eq. (5.43b) can be defined by using
1/7:2 (Sj) (az :Zlga Zz) as:

T, = [ @) dsdn (5.47b)

The edge resultants of f, ( B, =0, Bf,Q,, B, ) calculated by substituting

(&%, 5% ) in Egs. (5.43a, b) into Eq. (5.42) are shown in Fig. 5.7(a).

zz

On the other hand, the following distributed axial moment mz’fj)(sj)

(B, =0,,0,; j=1,2,3,4)is generated on Edge j by the stress &” [23].

3
Sz

mly(s)="| n-o dn:—f—zﬂ}—;z){wgs (s))} (5.48)

Edge j

where «, = y,, 7, . According to the Kirchhoff-Love plate theory [25], the

effective distributed normal force f,f})(sj) (j=1,2,3,4) is also generated on
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Edge j from the axial moment m?” (s;) by the principle given in Choi and Kim

2(1)

[23], and is defined as:

omt(s;) _ £ By(2)
Os 12 J,

Sl (s) =~ (v, (s))} (5.49)

Therefore, the effective normal force F” concerning the joint equilibrium
conditions can be defined as the non-zero edge resultant of f, according to Choi

and Kim [23], and F(/) on Edge j (j=1,2,3,4) can be defined by using
f;z(/)(Sj) in Eq. (5.49) as:

Efy= [ 1) ds, (5.50)

Edge j

According to Choi and Kim [23], however, underestimated edge resultants of f,

are calculated when £/ given in Eq. (5.49) is employed, and thus the following

fﬁ (B, =0,, 0,) are used in place of 12

r B (2)

7o) =137

(7 (s} (5.51)

where " (s,) (a3 =15, 745 j=1,2,3,4) represent the average distribution of

7 on Edge j, and are defined as:

- 32b
T8 = e (for j=1,3)
l (5[’3; ") (5.52a)
e (s )= ———— for j=2,4
W, (s)) b h) (for j )
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ZL (fOI' ] = 1, 3)
h*(5b+3h) (5.52b)

i (s;)=0 (for j=2,4)

T (5)= (D" x

The definitions of * (s;) (ay=xs 245 7=12,3,4) given in Egs. (5.52a, b)
are as:

v (s,)= [ (s,) ds, /| ds, (5.53)
,and the symbol J 5 InEq. (5.51) can be defined by using Ve (s ;) as

T, = [[ -7y dsdn = [[ tn-(s-§7) ) dsdn (5.54)

where 1/7;’3(sj) (=15 2,57=12,3,4 j=1,2,3,4) can be written as
W (s =5, (s ;) because W (s ;) represent the odd functions. The edge
resultants of £, (5, =0,, O,) calculated by substituting fnﬂ > in Eq. (5.51) into

Eq. (5.50) are shown in Fig. 5.7.

5.4.2 Generalized Forces Equilibrium Conditions
The equilibrium conditions among generalized forces F={F,6 F.,M '

0%, B%,0,,B,,0,,0,}" at the joint will be derived by considering the

equilibriums of the edge resultants given in Fig. 5.7 in addition to those of the

sectional resultants given in Fig. 5.6. To this end, the joint equilibrium conditions

among the generalized forces (F, F,, M, OF, Bf, O;) proposed by Choi and Kim
[23] will be utilized; we will first interpret those results from the viewpoint of
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equilibrium conditions of the sectional and edge resultants, and then we will extend
those results for the joint equilibrium conditions with respect to the generalized
forces F={rF,F, M, , Of, Bf, 0, B, 0,0} -

Concerning the two box beams-joint structure depicted in Fig. 5.5, the joint

equilibrium conditions proposed by Choi and Kim [23] can be written as:

(F.),cos(g, =)+ (F,),sin(p, —¢) +(F.), =0 (5.55a)
_(Fz)l Sin(¢2 _¢1) + (Ec)l COS(¢2 _¢1) + (Fr)z =0 (5-55b)
(M), +(M,), =0 (5.550)
(OF), —(©F), =0 (555d)
JLL(M,), {~1-cos(d, - §,)} + (BY), cos(, — ¢))

Sh+h)(Sh>—b? (5.55¢)

- 20b)h((b+h) : (Qy),sin(@, —¢,)—(Bf), =0
_%(My )1 Sin(¢2 - ¢1) (szf,ff((jzh)b )(Bg )1 Sm(¢2 ¢1) (5,55f)

+ (Q3 )1 COS(¢2 - ¢1) - (Q3 )2 =0

, and one can rewrite Egs. (55a-f) as, in terms of the sectional and edge resultants

shown in Fig. 5.6 and 5.7,
(F.),cos¢, —(F,),sing, +(F), cosg, —(F,),sing, =0 (5.56a)

(Fz)l Sin¢1 +(E()1 COS¢1 +(FZ)2sin¢2 +(Fx)2COS¢2 =0 (5.56b)

(M), +(M,),=0 (5.56¢)
h g _i 2) —
%(Ql )1 3b (Q1 )2 0 (556d)
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) 2 3h(5b+h)
{- 1,(1;3:3}1 (M )+ 4(51,15211,,,2 (Bf), jcosg, —{~ 16b(b:h) (0,), }sing,
2 3h(5b+h)
+ {b(b+3h (M ), — 4(51;152117[)2) (Bf), }cosg, — 161;(1:1;) (Q,), }sing, =0

(5.56¢)

2 : 3h(5b+h)
{ 1,(1,3113}, (M )1 4(51,152}17})2 (B1g )1 }Sln ¢1 + { Iﬁb(bih) (Q3 )1 }COS ¢1
2 : 3h(5b+h)
+ {b(b+3h (M )2 4(51,152117[72) (Blg)z }Sm ¢2 + { 16b(b:}: (Q3 )2 }COS ¢2 =0

(5.56f)

Equation (5.56a-c) can be obtained from Egs. (5.55a-c) and represent the

equilibrium conditions among the sectional resultants ( F, F,, M ) shown in Fig.
5.6 defined with respect to the global coordinate system ( X,u.> Vyiobat> Zgiobat )-

On the other hand, Egs. (5.56d-f) represent the equilibrium conditions

concerning the edge resultants (Qf, B?, O, ) shown in Fig. 5.7. Equation (5.56d)
can be obtained from Eq. (5.55d) by multiplying (4 /3b), and one can find that Eq.

(5.56d) represents the equilibrium condition between the edge resultant F%') of

Beam 1 and FQl

., of Beam 2. Equations (5.56e, f) can be obtained from Egs.

(5.55¢, 1), and one can fine that Eq. (5.56e, f) represent the equilibrium conditions

W, FS L FE2) of Beam 1 and (F.y, F2 , F2

o) Foiyys F3)) of Beam 2 (Because the

among ( F,
edge forces (FZ, F*, F* | F%) in Eqgs. (5.56d-f) are antisymmetric with respect

to y-axis, Eq. (5.56d) can represents the equilibrium condition between F< of

s(3)

Beam 1 and F<

w1, of Beam 2, and Eqs. (5.56¢, f) can represent the equilibrium
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.. M, BE
conditions among ( F. 3, F.},,

o M, Bf 0
F3) of Beam 1 and (F, ), F.()), Fq)

) of Beam 2 as
well).

Note that generalized forces (7, F,, M, Of, Bf, ©,) are sufficient to express

equilibrium conditions for the two box beams-joint structure as demonstrated by
Choi and Kim [23]. However, the equilibrium conditions among edge resultants
defined on Edge 1 and Edge 3 are no more identical, and thus additional
generalized forces (Q,, B,, Q,) should be employed together in order to express
the equilibrium conditions on Edge 1 and Edge 3 independently.

Based on the previous observation for Egs. (5.56a-f), one can determine the

following equilibrium conditions among ( 7, F., M, OF, Bf, O,, B,, O,, O, )

regarding to the two box beams-joint structure:

(Fo ) +(F, ).=0 (5.57a)
FhTE, =0 (5.57b)
M, Ih+M, ) =0 (5.57¢)
(Fiy) —(Fi3), =0 (5.57d)

(F o+ 5).=0 (5.57¢)
(Faoh+(F ). =0 (5.571)
~(Fy) +(Fy)), =0 (5.57g)

F o+ F, ),=0 (5.57h)
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(F 1h1(3))1 ( xlbl(l))Z (5571)
where (F;E’“‘b"" )k ’ (F;%l“h'd‘ )k ? (Myglubal )k ? (F s(1) )k ’ (F elobat (1) )k ’( Xgiobat (1) )k s (F s(3) )k ) ( Zgiobat (3) )k

and (F, ), for Beamk (k=1,2) are defined as

(F;Ibl) :(F;)k COS¢k _(Ec)k Sin¢k (5583)
(F,,. )i =(F), sing, +(F,), cosg, (5.58b)
(M, =(M,), (5.58¢)

h Jx
= (O 55— 5.58d
(Fs(l))k 3b (Q1 )k 2(1)3 +h3) (Qz)k ( )

2
(Fzglobal(l))k ={- b(b3+h3h) (My e * 4(Slhszh ) (Bf ), + 4(112 ;,z (B,),}cosg,

3h(5b+h) 3(5b+3h) (5'586)
—-{- 16b(b+1) (D) +— 15— (Qy), }sing,

(F;global(l))k { b(b+3h)(M )k 4(51}152}’ bZ (Bg)k 4(h32h2b2 (B )k}S1n¢k (5 58f)
+{- TZZE?Z:Z; Q) + 3(51b6+b3h) (O,), fcosg,

Fo) =20 I (5.589)

( s(}))k —_E(Q1 )k 2(b3 Th )(Qz)k -20g

(F;global(S))k = {%(My )k - 4(Sl;z}fhz) (Blg )k 4(h2 2 )(B )k}COS ¢k (5 58h)

~Tasn (O + e (Q,), ysing,
(F o) = (i (M), =545 (B, + 5045 (B,), sing, 5.580)

h(5b+h) 3(5b 3h)
+{ 16b(b:h) (Oy), +—e72(0,), }cos g,

The symbols (F, ), and (F

global

), (k=1,2) represent the sectional resultant

direction and x

forces of Beam k in z elobal

slobal direction, respectively, and the
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symbol (M, ), represent the sectional resultant moment of Beam & in y,

direction. Meanwhile, the symbol (F| ), (j=1,3;k=1,2) represents the edge

h
resultant force on Edge j (especially 0<s, < 5) of Beam £ in s direction, and the

symbols (F, ), and (F, ), (j=13;k=1,2) represent the edge resultant

direction and x,

forces on Edgej of Beam kin z elobal

global direction, respectively.

Let us now consider the extension of Eq. (5.57) to the structure that

N (N 23) box beams are connected at the joint shown in Fig. 5.2. Because Eq.

(5.57) is defined as the equilibrium conditions for sectional and edge resultants, Eq.
(5.57) is easy to be extended for the joint where three or more box beams meet.
In order to determine the equilibrium conditions for the edge resultants

(F

s(j)? F;glwaal )

yand F )) (j=1,3), connectivity among Edge 1 or Edge 3 of N

Fytoba (J

box beams at the joint should be investigated. According to Choi and Kim [22],
connectivity among those edges can be determined by considering the actual joint
depicted in Fig. 5.1. For two adjacent box beams (Beam £k (k=1,2,---, N) and
Beam k+1; Beam N+1 refers to Beam 1), Edge 1 of Beam k& and Edge 3 of Beam
k+1 can be considered as if they were connected rigidly to each other. Therefore,

the equilibrium between ( (F,));, (F., o) and (£, ) ) and ( (Fg))p,

(F

z,

a3 e @nd (F ) ) can be now considered.

Based on the connectivity among edges of box beams explained above, the
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generalized forces equilibrium conditions at the joint of N (N >3) box beams-

joint structure can be written as follows by extending the equilibrium conditions for

sectional resultants or edge resultants given in Eq. (5.57):

N
Y (F, )=0 (5.59)
= ‘global
N
D (F =0 (5.59b)
= ‘global
N
Z(Mylbl)k:o (559C)
k=l e
(Fi) i = (F)) i =0 (5.59d)
(Fzgmm(l))k + (Fzgk,ba] (3))k+1 =0 (5.59¢)

(Fxglobal (1) ) k + (F’fg1oba1(3) ) kel T 0

(5.599)
(i:Naturalnumber, [Si<N)

where Eqgs. (5.59a-c) express the equilibrium conditions in which all

((r ydefined in N box beams participate, regardless of the

Zglobal

) (F,, )0 (M,

number of box beams meeting at the joint. Meanwhile, Eq. (5.59d-f) represent the
equilibrium conditions between the edge resultants of the adjacent two beams
Beam i and Beam i+1 (1< < ~ ). Therefore, Eq. (5.59d-f) consequently represent
3N number of equations, and Egs. (5.59a-f) are expressed by 3N+3 number of
equations for the case that N box beams meet at the joint. In case of N =2, Eq.

(5.59d-f) recovers Egs. (5.57d-1).
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5.4.3 Field Variables Joint Matching Conditions

Using the generalized forces equilibrium conditions defined above, let us now

derive the joint matching conditions among field displacement variables

U={U.,U,0, x5, W&, 2,,W,, %:» 2. }" . Because the field variables are the

work conjugates of the generalized forces, one can associate them with the
generalized forces by considering the principle of virtual work that the sum of
virtual works is zero. In what follows, we will theoretically derive the matching
conditions among field variables from the generalized forces equilibrium
conditions.

For the derivation, the joint matching conditions among field variables of Beam
1 and Beam 2 shown in Fig. 5.5 will be examined first by using the equilibrium
conditions in Eq. (5.57) derived for two-beam joints. Then the conditions will be
extended for the three or more box beams-joint structures. (In theory, the field
variables matching conditions may be derived directly from Eq. (5.59), but the
derivation is found to be too complex to employ.)

Referring to the two box beams-joint structure depicted in Fig. 5.5, consider

F, and ﬁk (k=1,2) denoting the generalized forces and field variables of Beam

k, respectively. In terms of l~7k and ka (k=1,2), the principle of virtual work at

the joint can be expressed as
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2 ~ ~ ~ ~
Z(é‘W,|Beamk) = (5F1)TU1 + (5F2)T Uz

k=1

=0

(5.60)

Equation (5.60) shows the sum of (6W'|,.,, ), Which is complementary virtual

work of Beam £, is zero [26], where §Fk refers to the admissible virtual force of

Beam k. Because 5F1 and 5F2 comply with the equilibrium conditions in Eq.

(5.28), 5F1 and 5l~72 must satisfy the following relation:

M, -SF, +M, -SF, =0

where My and M; are defined as
MFl =
cos¢ —sing, 0 0 0 0 0 0
sing, cosg, 0 0 0 0 0 0
0 0 1 0 0 0 0 0
va o
0 0 0 m 0 YR 0 0
3k 154° 3n’ 3h(Sb+h) s _
0 0 T cosg O 4(5;,27;,2)COS¢1 0 4(,;,};)005?51 Toh sin g,
3k : 154° . 357 . _ 3h(Sb+h)
0 b(Mh)smyﬁl 0 4(5h2—b2)S1n¢1 0 4(hzibz)smyﬁl ToboTh 0s @,
3
0 0 0 -4 0 -
3b 26° +h) 0 0
3h s 30% _ 3h(Sb+h) - _
0 0 b(b+3h)cos¢l 0 4(Shzibz)cosﬁ 4(hzibz)cos¢1 T sin g,
3h : _ 15K : 30 : 3h(5b+h)
i 0 0 b(Mh)sm¢1 0 4(5/12—b2)S1n¢1 4(htb2)sm¢1 T 0s @,
234
T
P |

3(5b+3h)

3(5b+3h)

(5.61)

0
0

sin g,

0s ¢,
0

16b

16b

3(5b+3h) -
16b sin ¢1

3(5b+3h)

16b

cos ¢,

(5.62a)



cos¢, —sing, 0 0 0 0 0 0 0
sing, cosg, 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
3
0 0 0 -4 0 -t 0 0 0
3b 267+
35 _ 154> 352 _ 3h(5b+h) - _ 3(5b+3h) -
0 0 oo cos¢g, 0 —4(5,127]12)cos¢2 0 4(,12,,,1)COS¢2 o sing, —=-—sing,
3h : _ 15K : 3’ : 3h(Sb+h) 3(5b+3h)
0 0 b(b+3h)51n¢2 0 4(5/xz—b2)81n¢2 0 4(}124]2)51n¢2 T cos ¢, o COS @,
3
0 0 0 L 0 -t 0 0 0
3b 206°+h)
___3h 15h° 347 3h(5b+h) - _3(5b43h) s
0 0 —b(Mh)cosqﬁ2 0 —4<5,,2,b2)cos¢2 0 4(hzibz)cosqﬁz b sing, o sing,
3h : 154 : 30° . _ 3h(sb+h) 3(5b+3h)
i 0 0 —b(b+3h)s1n¢2 0 4(5h2—bz)SIn¢2 0 4(},z,bz)sm¢z b cos ¢, o COS &,
(5.62b)

The matrices M; and M, above are invertible because Eq. (5.61) represents
nine independent equilibrium conditions.

In order to apply the equilibrium conditions of 5131 and 5132 given in Eq. (5.61) to
Eq. (5.60), let us first express (SF,)" U, (k=1,2) in Eq. (5.60) as, by using the
matrix M, inEq. (5.62):

2 ~ ~ ~ ~
DO o) = (6F) (M5 -M)- U, +(8F)" (M5, M) U,
[ (5.63)
= (MFI '5F1)T (MEIT ‘U))+ (N[F2 -OF, )T (M;,T -U,)=0
According to Eq. (5.61), the relation between (M, -SF ) and (M, .6F,) in Eq.
(5.63) is expressed as (M, -OF,) = -(M,, -6F,). Thus, applying this relation to

Eq. (5.63) yields
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3 (O ) = O, -0 (M0, =M 0) o
= (OF) My, - (M, -0, =M, T-U,)}=0

Because Eq. (5.64) should be satisfied for arbitrary SF,, it can be found that

My - (M,;"-U, —-M,' -U,)} in Eq. (5.64) should be zero. Note that the matrix

M; is invertible as mentioned above. Therefore, the following relation must hold:

M,."-U,=M,"-T, (5.65)

Equation (5.65) represents the matching conditions to be met among the field
variables when the equilibrium conditions in Eq. (5.57) are satisfied at the joint in

Fig. 5.5. Based on the definitions of M, and M, in Egs. (5.62a, b), Eq. (5.65)

can be explicitly written as

(U.), cos ¢ —(U,),sing = (U.), cos ¢, —(U,), sin g, (5.66a)
U, ) sing, +(U,), cos ¢ =(U.,),sing, +(U,), cos ¢, (5.66b)
©,),=0,), (5.66¢)

U ==WUys), (5.66d)

U.hcosg = (U, ) sing = (U 3)), cos4, = (U, 3), sing, (5.66¢)
U.hsing + (U ), cos¢ = (U 3)),sing, + (U 3)), cos g, (5.661)
_(Us(z))l = (US(1)) 2 (5.66g)

(Uz(3))l cosg — (Ux(3))l sing, = (Uz(l))Z cosg, — (Ux(l))Z sing, (5.66h)
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(UZ(S))1 sing, + (UX(S))1 cosg = (Uz(l))2 sing, + (Um))2 cos ¢,

where © , U, U ), U, U, U, and U, ;) are defined as

2 2
L=, + 2O D)
* " Sh(b® +3bh)

Y Y
Us(l) :E;ﬁg _h—3)(2; Us(}) Z_E;ﬁg - e X
26 -5K) . AW -bY),
Vors==g W=
AL —5HY) 2K —D)

8b(b +h) 8

0= Ssham P 343 Y
8b(h+h) 8h

0= 3pshe ) P 35b13m)

(5.66i)

(5.67a)

(5.67b, ¢)

(5.67d)

(5.67¢)

Although the expressions in Eq. (5.66) look different from the matching

conditions that Choi and Kim [23] proposed, Eq. (5.66) represents the same

relations among the field variables (U_,U_, 6, y°, W2, as those in Eq. (5.32);
g z x ¥ /1/1 1 Z3

the joint matching conditions in Eq. (5.32) can be derived directly from Eq. (5.66).

On the other hand, the advantage of using Eq. (5.66) is that the specific formula by

Eq. (5.66) can be directly extended to the case of three or more box beams-joint

structures.

In order to extend the results in Eq. (5.66) for the joint where three or more

box beams meet, the meaning of the matching conditions in Eq. (5.66) should be
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understood. Equations (5.66a, b) represent the continuity conditions among the

rigid-body displacements U, and U, shown in Figs. 5.8 (a, b). It can be found

that Eq. (5.66a) represents the continuity condition between (U, ), = (U.),

al

cosg, —(U,),sing, (k=1,2), which denotes the rigid-body motion of of Beam k

in the z direction. Likewise, Eq. (5.66b) represents the continuity condition

global

), =U.),sing, + (U, ), cosg, (k=1,2), which denotes the rigid-

al

between (U,

body motion of Beam £ in the x

o direction. Equation (5.66¢) represents the

continuity condition among the work conjugates of the resultant moments

considered in the equilibrium conditions in Eq. (5.57¢). Therefore, (®,), in Eq.

(5.66¢) will be called the sectional effective rotation of Beam £ at the joint in the y,

direction, as depicted in Fig. 5.8(c), and it can be found that Eq. (5.66¢) represents

the continuity condition between (e, ), =(®,), (k=1,2), which denotes the

sectional effective rotation of Beam k in the y,,, direction.

Meanwhile, Egs. (5.66d, g) corresponds to the continuity conditions between

the work conjugates of the tangential forces £, ;) (j=1,3) shownin Egs. (5.57d,
g). Therefore, (U,), and (Ugs), (k=1,2) in Egs. (5.66d, g) denote the

displacements of Edge 1 and Edge 3, respectively in the tangential direction as
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Fig. 5.8 Sectional displacements or edge displacements associated with the
generalized displacements (or field variables) joint matching conditions: (a)
sectional displacement (U,)x in z; direction, (b) sectional displacement (Uy)x in
xx direction, (c) sectional rotation (¢,)« in yx direction (d) edge displacements
(Usy)k, (Usz))x of Edge 1 and Edge 3 in s direction (e) edge displacements (Ux))x,
(Usy3))k of Edge 1 and Edge 3 in z; direction and (f) edge displacements (Uxy)x,
(Uxa))x of Edge 1 and Edge 3 in x4 direction

depicted in Fig. 8(d). Because the positive tangential directions of Edge 1 and Edge

3 are along +y, =+Vypa a0d —Y, ==Yy, respectively (see Fig. 5.2), care

should be taken over the sign. Thus, it can be found that Egs. (5.66d, g) express the

continuity conditions with respect to the y .~ axis.

Lastly, Eqs (5.66e, f, h, i) represent the continuity conditions between the

work conjugates of the edge resultants shown in Egs. (5.57¢, f, h, i). Therefore,

240



U, and (U,;), (j=1,3; k=12) in Egs. (5.66¢, f, h, i) denote the
displacements of Edge j in z direction and x direction respectively direction as
depicted in Figs. 5.8(e, f). It can be found that Egs. (5.66e, h) represent the
continuity conditions between (U, ;) =U,))cosg, —(U, ), sing, (=1,
3;k=12), and that Egs. (5.66f, i) represent the continuity conditions between
U,k =WU.)esing + Uy))cosg, (j=1,3;k=12).

Let us now derive the desired joint matching conditions at the joint where N
(~ =3) box beams are connected, as shown in Fig. 5.2. As argued in the derivation

of the generalized forces equilibrium conditions at the joint, the continuity

conditions between ((U, ), (Uzg]uhm“))k, (ng.oha.(l))k) and ((U,3))4s1 (Uzgh,bal(s))kw

) can be considered because Edge 1 of Beam k (k=1,2, -, N) and

(O
Edge 3 of Beam k+1 (Beam N+1 refers to Beam 1) are regarded as being
connected rigidly.

Using the edge connectivity just explained above and generalizing the
displacement continuity conditions given in Eq. (5.66) for » =2 to the case of

N =3, the following relations can be obtained:

(Uzgznhaz )1 = (Uzg/oba[ )2 == (Uzg/nlml )N (5683)

(ng/n/mz )] = (nglnha[ )2 == (Ux!,’/nhal )N (568b)

(G)yglubal )l = (®ygluhal )2 == (®ygloha] )N (568C)
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U == WUy (5.68d)

Uk =W 3)k (5.68¢)

(U pa ke =W )i (5.680)

Equations (5.68a, b) represent the continuity conditions for the rigid-body

direction and in the x

displacements of N box beams in the z global

global direction,

respectively, and Eq. (5.68c) represent the continuity condition for the sectional

effective rotations of N box beams in the y,,, direction. On the other hand, Egs.

(5.68d-f) are the continuity conditions between the edge displacements on Edge 1

of Beam k& and Edge 3 of Beam k+1 (1< k< N). Therefore, the independent

number of equations from Eq. (5.68) becomes 3x(N —-1)+3N =6N 3.

5.4.4 Use of more precise field variables (', w/, 2, w?)

According to the joint matching conditions given in Eq. (5.68), the rigid-body

rotations (6,) of the box beams connected at the joint are additionally generated by
higher-order deformation (W,*) as well as rigid-body motions (6,) of adjacent

beams. To interpret the exact joint flexibility, therefore, higher-order deformations

(Wll, le) representing more accurate bending warping should be employed

instead of (W*). Meanwhile, it can be found that theoretically reasonable shape

3 3
function " of W® is related with that of y/ as y" :_M%{&
: 15bh” (b +3h)
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—ggx/fl . Therefore, bending distortions ( ;(11 , }(12) should be also employed instead

of (%) in order to define theoretically valid (W', W’).

As shown in Choi and Kim [23], the bending distortion y represents the
cross-sectional deformation generated by the Poisson’s effect when in-plane

bending moment M, is applied. Thus, we introduce a new set of bending

distortions ( ;(11, ;(12) representing the cross-sectional deformations induced by the
Poisson’s effect on Edge 1, 3 and on Edge 2, 4, respectively. The shape functions

y? (s,), y (s;) onEdge;(j=1,2,3,4) satisty the following conditions:
2 _ ey b .ot ;
i) =D (=L gl s)=0 (=24 (5.6%)

I (s)=0 (G=L3); ¥ (s)=(-D"xs,  (j=2,4)  (5.69)
Considering the symmetry conditions and the orthogonality conditions proposed in

Choi and Kim [23], one can determine the shape functions y# , w# (the explicit
expressions of 4 y# are given in Appendix A).
According to Choi and Kim [23], the bending warping W represents the

cross-sectional deformation generated by the shear stress when transverse force F,

is applied. The following shear stress is defined when the field variables

(U,,0,, . w') are employed to represent the in-plane bending deformations

243 :



o,.(s,2)=

£@) 54 Qj,“ 2 (s) (5.70)

F ol
, and the primary bending warping Wl1 having the relation

Vel L o —i%z'l can be obtained (see Choi and Kim [23] for the

b(b+ 3h) h
detailed procedure). Subsequently, when the field variables (U, 0,, 41, W', »7,
w?) are employed to represent the in-plane bending deformation, the following

shear stress 1s defined

F.(2) W (5)+ 92 v (s)+ 9@ v

£ Q,‘ Qﬁ

o,(s,2)=

(s) (5.71)

, and the secondary bending warping le , which represents the higher bending

warping deformation, can be derived. The shape function " of W, satisfies

8 4 . 4(h+2b
the relation " = 5(//5/ h -yl %ws‘ (see Choi and Kim [23] for the

detailed procedure). The explicit expressions of "' " are given in Appendix

A.
When ( )(11, }(12) are employed instead of ( x¢), it can be found that )(11
represents the edge displacements of () with respect to the joint matching

relations, and thus the definitions of U ., U

s> Usay in Egs. (5.66, 5.68) can be

expressed in terms of ( ;(11 , }(12) as:
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b +n b +n
Uy 2111 _le; Uss) Z_le _le (5.72)

When (W', W) are employed instead of (W®), one can see that both
(W', W) represent the edge displacements of (W*) with respect to the joint
matching relations, and thus the definitions of ©,, U, U,, in Egs. (5.66, 5.68)

can be expressed in terms of (W,', W) as:

4h v 4h

O =0 +— W ———W, 5.73
Y 'V+b(b+3h)l 5% (5.732)
2 32
Uz<1>=zml—2(b+3h)mz+2(h zb)VVz;
3 15b 3h (5.73b, ¢
2 2 . , C
UZ(3):_gml+2(b+3h)m2+2(h 2b)W2
3 15b 3h

5.5 Numerical Analysis
The finite element equations for Beam £ (k=1, 2, -, N) among N box beams
connected at the joint can be defined as, by using the stiffness matrix for the
straight box beam element (z, <z<z,) (see Refs. [7, 22, 23] for the detailed
derivation),

K, -d =f, (5.74)
where K,,d,,andf, in Eq. (5.74) refer to the stiffness matrix, the nodal
displacement vector, and the nodal force vector for Beam £k, respectively.

Assembling all finite element equations for N box beams in numerical order, the
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finite element equations for the N box beams-joint structure can be determined:

K, d.,;,=f

total ~ ™ total total (575)
If » number of nodes are used to model the N box beams-joint structure,

K ..d . andf

total > " total * total

in Eq. (5.75) denote 11nx11n total stiffness matrix, 11nx1
total nodal displacement vector, and 11nx1 total nodal force vector, respectively.

The next step is to impose the matching conditions for nodal displacements of N
box beams at the joint.

The proposed exact matching conditions of Eq. (5.68) can be applied to the
finite element equations by using the method of Lagrange multipliers [27], an
optimization method to find the maximum or minimum value of a function subject
to equality constraints. Associated with this study, a problem to minimize the total
potential energy of the N box beams-joint structure subject to the joint matching
conditions in Eq. (5.68) is solved by employing the method of Lagrange multipliers.

To facilitate subsequent analysis, the matching conditions in Eq. (5.68) are

expressed as equality constraints for d as

total

S-d_, =0 (5.76)

total —

where S is a (6N —3)x(11n) matrix and Eq. (5.76) yields (6~ —3) independent

equations. By introducing the Lagrange multiplier A, the following Lagrangian

II, can be defined:

L

1
HL (dtotal P ;") = EdtZtathotaldtotal - dt—(l;talftotal + )"T (S : dtotal) (577)
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According to the method of Lagrange multipliers, the stationary conditions of II,
yields

o,
od

d f

total

+27S=0 (5.78a)

= 0’ Ktotal total

total

om, =0;S-d
A

~0 (5.78b)

total

The nodal displacement vector in Egs. (5.78a, b), d satisfies the matching

total 2
conditions in Eq. (5.68) and minimizes the potential energy of the N box beams-
joint structure. Therefore, Eqs. (5.78a, b) represent the finite element equations for
the N box beams-joint structure that include the matching conditions in Eq. (5.68).

Finally, Egs. (5.78a, b) can be expressed as a matrix equation as

k total ST dtotal ftotal
= 5.79
{ s 0| 0 579

If proper boundary and loading conditions are prescribed, d,, (and i) can be

determined from Eq. (5.79). Because the solution procedure is a standard one, no

further discussion on numerical analysis will be necessary.

5.5.1 Numerical Examples

Several examples will be analyzed by using the finite element equations given in
Eq. (5.79). The validity of the proposed approach will be demonstrated by
comparing the results with those obtained from ABAQUS shell elements or

Timoshenko beam elements. Because the joint flexibility is highly dependent upon
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the number of box beams connected at the joint, the joint angles among those
beams, and the width and height (or aspect ratio) of the box beam cross-section, we
will examine their effects on the solutions or the mechanical behavior of three or
more box beams-joint structures.

Although box beam sections of different widths » and heights / are considered

within a range 50mm < b, 2 <150mm, converged analysis results can be obtained

with 40 beam elements regardless of those changes. Meanwhile, in two-

dimensional ABAQUS shell analysis, 12.5mm x 12.5mm square shell elements

are mainly used to obtain converged analysis results. For example, if the

dimensions of each box beam are width 5=50mm, height #=100mm, and
length L =1000mm, it was found that the converged results were obtained if
(4+8+4+ 8)x80=1920 shell elements were used to model the box beam in

consideration.
Case Study 1: Three Box Beams-Joint Structure. A three box beams-joint
structure as depicted in Fig. 5.9(a) is considered in the first case study.

For the first example, the three box beams-joint structure with the joint angles
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Fig. 5.9 Numerical results for the three box beams-joint structure under transverse

force (Fy)1i=100 N: (a) problem description (Li=L,=L;=1000 mm, »=50 mm,

250



h=100 mm, =2 mm, ¢= 90°, ¢,=210°, ¢3= 330°), (b) axial displacement U, (c)
transverse displacement Uy, (d) in-plane bending/shear rotation 6, (e) distortion
1-1 yp', (f) warping 1-1 W', (g) distortion 1-2 y% (h) warping 1-2 W% (i)
distortion 2 y, (j) warping 2 W>, (k) distortion 3 y3, (1) distortion 4 y..

# =90°, ¢, =210" and ¢, =330° as shown in Fig. 5.9(a) is considered. All the box

beams that make up the mentioned structure are identical. The length of those

beams is L =1000 mm, and the width (b), height (%) and thickness (f) of those
beams are b=50 mm, 42=100 mm, and #=2 mm, respectively. The material
properties of those beams are Young’s modulus £ =200 Gpa and Poisson’s ratio
v =0.3. The ends of Beam 2 and Beam 3 denoted by B and C are fixed, and the

end of Beam 1 denoted by A is subjected to a transverse force (), =100 N . The

loaded end A is assumed to be rigid.
The results are given in Figs. 5.9(b-1). In the plot, the range of the axial

coordinates, (k—1, k; k=1, 2,3), corresponds to Beam k. Observing the results

based on those from the shell analysis, one can find that the analysis using the
Timoshenko beam theory overestimates the stiffness of the three box beams-joint
structure, as mentioned in Introduction. In contrast, one can find that the proposed
approaches employing the theoretically derived joint matching conditions can
predict the behavior of the three box beams-joint structure as accurately as
predicted by the shell analysis.

Next, we check whether or not accurate results can still be provided by the

251 :



x10°

2 60
Shell (ABAQUS) o
15 AN
% Present

401 Timoshenko beam ‘,-"‘

/

Timoshenko beam .

Transverse displacement of the end of Beam 1

20F
05 Present
10
0'— - - . 0'— = - .
50/150 50/100 50/50 100/50 150/50 50/150 50/100 50/50 100/50 150/50
Aspect Ratio( h/b) Aspect Ratio (h/b)
(a) (b)

Fig. 5.10 (a) Numerical results for the three box beams-joint structures shown in
Fig. 5.9(a) with various widths (o) and heights (h) of the cross-section (or aspect
ratios A/b) raging from =150 mm, #=50 mm (4/6=50/150) to H=50 mm, ~=150
mm (4/b=150/50), (b) percent errors for one-dimensional analyses with respect to
the result from shell analysis.

=15l 50

g

m

b Shell (ABAQUS)

2 Present 40y

o Timoshenko beam

z 1t

5 g 301

g 5

5 e E

3 p L = 20p -

:_; 05} "/“,,/ Timoshenko beam

g ",,-“" 10} Present

z . . /\/

= 0 10 20 30 40 S0 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Joint Angle Joint Angle
(a) (b)

Fig. 5.11 (a) Numerical results for the three box beams-joint structures shown in
Fig. 5.9(a) with various joint angles ¢ of Beam 1 ranging 0° < ¢, <90° (b)

percent errors for one-dimensional analyses with respect to the result from shell
analysis.
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proposed approach when either b or /4 of the cross-section or ¢, (which is the joint
angle of Beam 1) is changed for the three box beams-joint structure shown in Fig.

5.9(a). Problems defined by changing b and % of the previous problem in a range
from b=150mm, A=50mm (A/b=50/150) to 6H=50mm, 2z=150mm (& /
b=150/50) are first solved, and the results are given in Figs. 5.10(a, b). The
graph in Fig. 5.10(a) represents the variation in the transverse displacement (U)),
of the end A when the aspect ratio (4 /5) of the cross-section is varied, and the
graph in Fig. 5.10(b) represent the percent error of the one-dimensional analysis
results with respect to the shell result. From those graphs, it can be found that the

proposed approach can provide accurate results for the box beams-joint structures

with sections of various widths or heights.

Problems defined from the first example by changing ¢, in a range from 0°

to 90° are also solved, and the results are given in Figs. 5.11(a, b). The graph in

Fig. 5.11(a) represents the variation in the transverse displacement (U,), of the
end A when ¢, is increased, and the percent error of the one-dimensional analysis

results with respect to the shell result is shown in Fig. 5.11(b). From those results,
it can be found that the proposed approach can also provide accurate and reliable
results for the box beams-joint structure with various joint angles.

Case Study 2: N Thin-Walled Box Beams-Joint Structure. Box beams-joint

structures involving several box beams are considered; see Fig. 5.12(a).
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Fig. 5.12 Numerical results for the eight box beams-joint structure under

transverse force (Fy)1=100 N: (a) problem description (L=1000 mm, #=50 mm,
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h=100 mm, =2 mm, @= 45° (k=1, 2, ..., 8)), (b) axial displacement U., (c)
transverse displacement Uy, (d) in-plane bending/shear rotation 6, (e) distortion
1-1 yp', (f) warping 1-1 W', (g) distortion 1-2 y% (h) warping 1-2 W% (i)
distortion 2 y, (j) warping 2 W>, (k) distortion 3 y3, (1) distortion 4 y..

The joint angle of Beam k (k=1, 2, -, 8) in the beams-joint structure of Fig.

360
5.12(a) is ¢, z(?)x(k—l), so the angle between two adjacent beams is

uniformly 45°. All box beams constituting the structure are identical. The length
of those beams is L =1000 mm, and the dimensions of the beam cross-sections are
b =50 mm, #=100 mm, and # =2 mm, respectively. The material properties of
those beams are Young’s modulus £ =200 Gpa and Poisson’s ratio v =0.3. The

end of Beam 1 denoted by A is subjected to a transverse force (F. ), =100 N, and

is assumed to be rigid. The ends of the other box beams (B-H) are all fixed.
The results are given in Figs. 5.12(b-1). As in Fig. 5.9, the range of the axial

coordinates, (k—1,k; k=1,2,--,8), corresponds to Beam k. Examining the

results on the basis of those from the shell analysis, the analysis using the
Timoshenko beam theory highly overestimates the stiffness of the structure, as
observed in the previous result. However, the proposed method can predict the
response of the structure almost as accurately as those from the shell analysis, even
though the number of box beams connected at the joint is significantly increased.

We now investigate if accurate results can be still obtained by the proposed
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Fig. 5.13 (a) Numerical results for the box beams-joint structures with various
numbers of box beams (N) ranging 3< N <8, (b) percent errors for one-

dimensional analyses with respect to the result from shell analysis.

method when the number of box beams connected at the joint is changed. To do
this, problems that are defined based on the first example in Case study 2 are varied
by changing the number of box beams connected at the joint, i.e. N is in a range
3< N <8. The joint angle of Beam k (k=1,2,--, N)is ¢, =(360/N)x(k-1),
and the angle between the two adjacent beams is uniformly (360/ N)°.

The results are given in Fig. 5.13. The graph in Fig. 5.13 represents the
variation of torsional rotation (6.), at the end A of Beam 1 when N is increased.
From the results, it can be found that the proposed approach can provide accurate
results for a box beams-joint structure composed of various numbers of box beams.

Lastly, the problem with more complicated boundary conditions as depicted in Fig.

5.14(a) is considered; the structure shown in Fig. 5.14(a) is equal to the structure in
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Fig. 5.14 Numerical results for the eight box beams-joint structure with more
complicated boundary conditions: (a) problem description (L=1000 mm, 5=50
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mm, A=100 mm, =2 mm, @= 45° (k=1, 2, ..., 8)), (b) axial displacement U, (c)
transverse displacement Uy, (d) in-plane bending/shear rotation 6,, (e) distortion
1-1 p', (f) warping 1-1 W', (g) distortion 1-2 x?, (h) warping 1-2 W%, (i)
distortion 2 y, (j) warping 2 W>, (k) distortion 3 y3, (1) distortion 4 y..

the first example of case study 2. Observing the result given in Figs. 5.14(b-]), it
can be found that the proposed approach can provide the correct result even where

complicated boundary conditions are considered.

5.6 Conclusions

When a three or more box beams-joint structure is subjected to in-plane bending or
longitudinal force, a one-dimensional analysis method being capable of interpreting
the flexible response of the structure is established. To take into account the
influence of cross-sectional deformations on the flexible response of the joint, the
higher-order beam theory considering those cross-sectional deformations as
independent degrees of freedom is employed; To represent accurate joint flexibility,
extensional warping W, , extensional distortion y, and bending distortion y,
are newly introduced in this study, and more precisely determined bending

warpings (W', W;) and bending distortions (%, 7;) are employed instead of

(x%, W) in Choi and Kim [23]. The main difficulty in developing the desired

analysis method is to determine the joint matching conditions among the 11 field

variables of the employed higher-order beam theory. To derive the exact joint
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matching conditions, joint equilibrium conditions of the generalized forces

F={F,F.,M,QOFf Bf, 0O, B,, 0,, 0,}" Which are work conjugate of the field
variabless U={U.,U,, 0, x5 WE, 20 Was 255 24} were  first  derived.

Summarizing the procedure briefly, each force of F was expressed by the
traditional (sectional) resultants acting on the entire cross-section or the so-called
“edge resultants” [22] acting on the edge of the section. Then, joint equilibrium
conditions concerning those sectional resultants or edge resultants were found
based on the results in Choi and Kim [23], and extending those conditions, the joint
equilibrium conditions applicable to three or more box beams-joint structures were

derived. Considering the principle of virtual work, thereafter, the joint matching

conditions for U that are capable of representing the flexible response of the three
or more box beams-joint structure were theoretically derived from the determined

equilibrium conditions. Lastly, the desired joint matching conditions for

U={U. U6, x W, 2. W, 2., W,, 25 ¥, }' are derived from those for U
z x y 1 1 1 1 2 2 3 4

through the comparison between ( y,, W, , W) and ( x%, W ). Several

numerical examples checking the accuracy and the validity of the proposed method
were considered, and it was demonstrated that the proposed method can interpret
the response of the three or more box beams-joint structures under in-plane loads
as accurately as the ABAQUS shell analysis, regardless of the number of box
beams, the joint angles, and the aspect ratios of the box beams cross-section. The

proposed method has advantages against the shell analysis such as convenience for
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modeling, the ease of modeling changes and significantly fast analysis. When
introducing the proposed method with optimization design techniques, therefore, a
faster and efficient initial design process of vehicle can be expected. In addition,
the proposed methodologies for determining the higher-order deformation degrees
or for deriving the joint matching conditions can be expected to be important
foundations for expanding the scope of structures interpreted by using the higher-
order beam theory-based method to a general three-dimensional thin-walled

beams-joint structure.

Appendix A

Explicit expressions for the shape function we(s) (p=n,s,z; a=U_U,,
0, - W, 25 W, 2. Wy, %5, ¥, ) are given. For convenience, we(s) are
separately defined on each edge, and y<(s,) (j=1 2,3, 4) represent the shape
function on Edge j. The tangential coordinate s, is measured from the center of

Edge j along the contour line.

wl(s,)=1 (for j=1,2,3,4) (5.Al)
w (sj)z(—l)(f’”/2 (for j=1,3) and 0 (for j=2, 4) (5.A2)
v’ (s.)=0 (for j=1,3) and (-2 (for j=2, 4)

s J

W (5= (DL (o j=1,3) and (<D, (for j=2, 4) (5A3)
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y - 2 3 5h
2 _ (j=D/2 4 .
wi(s)=(1" X{WS,- _ES?+§} (for j=1, 3)
2
= (- X{Zsj} (for j=2, 4) (5.A4)
y - 2
wi(s)=(=D"""? A8 (for j=1, 3)
=0 (for j=2, 4)
\ g 4 W (b+h
V5= (- s —ﬁ} (for j =1, 3)
(5.A5)
g 4 "
S O S A S S for j=2, 4
(=1 ( hz) { b(b+3h)s’} (for j=2, 4)
i (s,) = (-2 (for j=1, 3)
-0 (for j=2, 4)
v (5)=0 (for j=1,3 A9
a 12 1 b’ .
= (- (3 {—ESJ-Z o (ori=2.4)
W2y = (_1\U-D2 4 , K .
VI 5= (DU (-] - T (for j=1, 3)
20
~ 4 2h*(h+2b h*(Sh+6b
= (=172 x(—h—2)><{— (b4 )sj3 + (10b2 )sj} (5.A7)
(for j=2, 4)
b
we(s)) == (for j=1, 3)
=-1 (for j=2, 4) (5.A8)
) 2
wi(s;) :_Zsj (for j =1, 2,3,4)
. 8. 1, 2b°-3bW -1
D )=(—5)x{=s +————— for j =1,
w.(s;)=( hz) {2, 24+ 1) } (for j 3) 5.9
8 1, 2h-3b*h-b '
=(——)x g 2T for j =
( hz) {2Sj TS } (for j=2, 4)
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384k L HCbE G HGbER, gy g

“(s )= X{——s5" + ;
Vi s) h*(5b+ h) g% 48(b+h) ' 384(b+h)
3 273
- 3§4(b+h)><{— W o, bk } (for j=2, 4)
WSb+h) " 24(b+h) 7 96(b+h)
v (s)=0 (for j=1,2,3,4)
(5.A10)
W (s )= (DU (o 32 }X{_b(b +33h) oy 3b(b+h) E _bh(5b+3h)}
! bh(5b+3h) 2h ! 4h 7 32
(for j=1, 3)
. 32 b’
N O T S . S NV B for j=2, 4
=D x4 bh(5b+3h)} =75t (for j )
W (s,)=0 (for j=1,2,3,4)
(5.Al1)
i h< <h d b< <
where the ranges of s, (j=1,2,3,4)are EPR Ry an —E_sz,s4_5.

The following orthogonality conditions hold among (y%-, w? , w™', ™, w")

[Jwe )y pe(s)y dsdn=34 [] we(s) -y (s)) dsdn} =0

(5.A12)

(a,a,=U., 0 W?, lea Wy, #2a,)

y 2

,and (Y, w4, w# | w7 ) also meet the following orthogonality conditions.

[[we ) we(s) dsdn =334 [y (s))-p" (5,) dsdn} =0

(5.A13)

(g, 0, =U,, 10, 205 205 05 = aty)
Lastly, one can show that the following orthogonality conditions hold between
(w2, wi)
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JJCnry-mgey dsdn =3 [[ o) (i) dsdni =0 (5.A14)

J=l Edgej
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CHAPTER 6.
Applications

6.1 Modal Analysis

A high computational cost is required to calculate natural mode shapes and
frequencies of a thin-walled box beams-joint system using the detailed shell model.
If the proposed one-dimensional approach can be applicable to the modal analysis
of the box beams-joint system, the advantage of the proposed approach against the
detailed shell analysis will be even more pronounced.

The modal analysis of the underbody structure shown in Fig. 6.1 is conducted
by using the proposed analysis method. Sixteen field variables introduced in
Chapter 3 and Chapter 5 are employed as the degrees of freedom of the higher-
order beam theory, and the joint matching conditions derived in Chapter 3 and
Chapter 5 are applied. The mass matrix for the box beam element is derived by

following the procedure given in Jang and Kim [1].The material density p of the

Fig. 6.1 a simplified beam model of the underbody structure

267



box beam is 7850 kg/m’. To check the accuracy of the proposed method, the

analysis results of the proposed method are compared with those obtained by the

detailed shell analysis and the Timoshenko beam analysis.

Table. 6.1 Modal analysis results for the underbody structure shown in Fig. 6.1

Mode Shell Proposed Timoshenko
(ABAQUS)  method beams

1 out-of-plane 1* torsional mode 16.913 16.486 (2.5%) 34.072 (101.5%)
2 out-of-plane 1% bending mode 22.042 22.488 (2.0%) 37.978 (72.3%)
3 out-of-plane 2" torsional mode 38.930 38.276 (1.7%)  74.172 (90.5%)
4 in-plane 1* bending mode 51.091 52.217 (2.2%)  65.723 (28.6%)
5 out-of-plane 2" bending mode 53.236 54.367 (2.1%) 91.972 (72.8%)
6 in-plane 2™ bending mode 72.009 72.921 (1.3%) 93.262 (29.5%)
7 out-of-plane 3™ torsional mode 82.772 82.906 (0.2%) 142.03 (71.6%)
8 in-plane 1% extensional mode 99.366 100.88 (1.5%) 126.21 (27.0%)
9 out-of-plane 1% local bending mode 114.44 115.55 (1.0%) 158.26 (38.3%)
10 in-plane 3™ bending mode 123.22 123.20 (0.1%) 168.72 (36.9%)

Average Error (Maximum Error) - 1.4% (2.5%) 56.9% (101.5%)

Observing the results given in Table. 6.1, the Timoshenko beam model
significantly overestimates the dynamic stiffness of the underbody structure (the
maximum error is 101.5%). In addition, the order of the lowest 10 natural modes is
calculated incorrectly. Meanwhile, one can find that the proposed approach can
predict the natural frequencies for the lowest 10 modes of the beam-joint system
accurately (the maximum error is 2.5%). Through the example study, therefore, it
can be found that the one-dimensional analysis method established in this study can

be applicable to the modal analysis of thin-walled box beam structures.
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The box beams connected at a joint are assumed to be identical in this study.
However, the proposed analysis method is applicable to the box beams-joint
systems consisting of the box beams with different cross-section dimensions. The
joint matching conditions for the mentioned systems are identical, except that the
common width b and height # of the cross-section are substituted by the width b
and the height 4 (k=1, 2, ..., N; N>3) of each beam member (e.g. beam k).

To check the validity of the proposed method, the modal analysis of the T-joint
structure shown in Fig. 6.2 is conducted. The widths of Beam 1 and 2 are b= b=
0.1 m, and the heights of those beams are /1= 4,= 0.05 m. The width and height of
Beam 3 are b3 = 0.075 m and /43 = 0.05 m, respectively. The dimensions of the T-
joint structure considered in this study are identical to those composed with
Rockers and B pillar in the simplified side frame structure [2].The analysis results

of the proposed method are compared with those obtained by the detailed shell

Free

Fig. 6.2 T-joint structure consisting of the box beams with different cross-section
dimensions
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analysis and the Timoshenko beam analysis.

Table. 6.2 Modal analysis results for the T-joint structure shown in Fig. 6.2

Mode Shell Proposed Timoshenko
(ABAQUS)  method beams

1 in-plane 1* bending mode 86.887 86.786 (0.1%) 92.625 (6.6%)

2 out-of-plane 1% bending mode 90.372 88.097 (2.5%) 91.511 (1.3%)

3 out-of-plane 1* torsional mode 105.79 104.85 (0.9%) 249.49 (135.8%)

4  out-of-plane 2" torsional mode 129.21 122.77 (5.0%) 263.84 (104.2%)

5 in-plane 2™ bending mode 134.70 134.91 (0.2%) 137.27 (1.9%)

6 out-of-plane 3" torsional mode 232.94 233.78 (0.4%) 466.37 (100.2%)

7 out-of-plane 4" torsional mode 246.63 248.15 (0.6%) 530.19 (115.0%)

8 out-of-plane 2" bending mode 269.58 267.97 (0.6%) 633.81 (135.1%)

9 out-of-plane 3™ bending mode 302.06 299.56 (0.8%) 639.06 (111.6%)

10 out-of-plane 5% torsional mode ~ 321.65 318.64 (0.9%) 828.10 (157.8%)

Maximum Error - 5.0% 157.8%

Observing the results given in Table. 6.2, the Timoshenko beam model
overestimates (more than twice) the dynamic stiffness of the T-joint structure and
calculates the order of the lowest 10 natural modes incorrectly. On the other hand,
the proposed method can interpret the accurate dynamic responses of the T-joint
structure comparable to those by the shell analysis (the maximum error is 5.0%).
Through the example case, therefore, one can find that the proposed approach is
applicable to the box beams-joint systems consisting of different box beam
members.

Some case studies for the T-joint structures (Fig. 6.3) are conducted to check
the limitations of the proposed analysis method. The three box beams of the T-joint

structures are assumed to be identical. The box beam member of the length
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Beam 3

Fig. 6.3 T-joint structures consisting of three identical box beams

L=500 mm, width 5= 50 mm, height #=50 mm, and thickness /=1 mm is considered
as the reference (or standard) member for the case studies based on Ref. [2].
The limitation of the beam length to width ratio (L/b) is investigated through

the modal analysis of the T-joint structures. The range of L/b for the considered T-

S

» 40F

2

5

]

&en L

§ 30

>

<

é 20 Lowest 3 modes

Té Lowest 10 modes

<

g 10k applicable

=]

= R\
0

1 2.5 5 7.5 10 20 50 100 200
Length Width Ratio (L/b)

Fig. 6.4 Modal analysis errors for the T-joint structures with various length-width
ratios (L/b)
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joint structures is 1< L/b <200, and other dimensions of the beam members are
equal to those of the reference member.

The average errors of the predicted natural frequencies for the lowest three and
ten modes are given in Fig. 6.3. Those errors are calculated based on the results by
the shell analysis. The errors of the proposed method are around 2% when the ratio
L/b is greater than ten. It is worth mentioning that the results of the proposed
method are converged to those of the Timoshenko beam analysis when the ratio L/b
is greater than 100 and that the results of the shell analysis are also converged to
those of the Timoshenko beam analysis because the effects of the cross-sectional
deformations are attenuated. Therefore, one can find that the proposed method does
not have the upper limit for the beam length to width ratio L/b.

Meanwhile, the errors are increased rapidly when the ratio L/b is less than five.
The reason is that the joint part becomes relatively larger in the T-joint structures
when L/b<5 while the joint is still modeled as a common point in the proposed
method (the structural elements are normally regarded as the beams when L/6>10).
Therefore, it can be found that the proposed method cannot give accurate responses
of the box beam systems when the ratio L/b of the box beams is less than 5.

The limitation of the thickness (¢) is investigated for the next case study. The
range of ¢ for the considered T-joint structures is 0.01 mm< ¢ <20 mm. The length is
L=1000 mm and the other dimensions of box beam cross-section are equal to those
of reference member and the length L of the box beams is L=1000 mm. Likewise,

the modal analysis of the T-joint structures are conducted and the results of the
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Fig. 6.5 Modal analysis errors for the T-joint structures with various thickness ¢

proposed method are compared with those by the shell analysis.

The average errors of the predicted natural frequencies for the lowest three and
ten modes of the considered T-joint problems are given in Fig. 6.4. Observing the
results, one can find that the proposed method do not have the limit for the box
beam thickness ¢. Interestingly, the lowest ten modes are the local modes
representing the vibrations of the box beam edges when the thickness ¢ is 0.01 mm
while the effects of the cross-sectional deformations are attenuated when £10 mm,
and it is shown that the proposed method can express the behavior of the box beam
system in both the limit cases.

Lastly, the limitation for the aspect ratio (4/b) of the box beam cross-section is
investigated. The range of (4/b) for the considered T-joint structures is 1/10< 4/b
<10, and other dimensions of the beam members are commonly L=1000 mm and =

1 mm.
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Fig. 6.6 Modal analysis errors for the T-joint structures with various aspect ratios
(h/b)

The average errors of the predicted natural frequencies for the lowest three and
ten modes of the considered T-joint problems are given in Fig. 11. Observing the
results, one can find that the proposed method can capture the accurate dynamic
behavior of the box beam systems even though the limit case of the aspect ratio 4/b
is considered (the average errors of the lowest three and ten modes are 6.5% and
3.6% respectively when A/b =10). Therefore, this case study shows that the

proposed method do not have the limit for the aspect ratio 4/b of box beam cross-

section.

6.2 Extended Higher-Order Beam Model for the 3D Thin-

Walled Box Beams-Shells Structures.

The proposed one-dimensional analysis can be employed for the accurate and
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Free

Fig. 6.7 A three-dimensional three box beams-joint system

efficient analysis and design of the automotive whole body structures if the
analysis method is applicable to the three-dimensional box beams-joint systems. To
this end, the exact matching conditions at a joint of the box beams being located in
three-dimensional space are required. To check the possibility that the proposed
approach for the derivation of the joint matching conditions can be extended to the
joint of the three-dimensional box beams-joint systems, the joint matching
conditions for the system shown in Fig. 6.7 are derived by employing the proposed
approach. The higher-order beam theory considering torsional warping and
distortion (Fig. 6.8) in addition to the six Timoshenko beam kinematic variables (or
rigid-body motions) is employed. The distinctive feature of the joint matching
conditions derived for the joint shown in Fig. 4 is that the torsional warping as well
as the torsional distortion is coupled with the variables of the box beam rigid-body

motions. The approach proposed in this paper is directly employed to the derivation
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of the matching conditions although additional considerations are introduced to
derive the joint matching conditions including those coupling relations.

The modal analysis of the system shown in Fig. 6.7 is conducted to check the
validity of the derived joint matching conditions, and the results of the proposed

method are compared with those obtained by the shell analysis and the Timoshenko

Table. 6.3 Modal analysis results for the three-dimensional three box beams-joint

system shown in Fig. 6.7

Mode (S[:lg; QUS) Proposed method Timoshenko beams
1 43.8 47.0 (7.4%) 69.9 (59.6%)
2 56.3 57.2 (1.6%) 72.2 (28.2%)
3 66.1 65.7 (0.6%) 85.7 (29.6%)
4 267.1 266.1 (0.4%) 274.9 (2.9%)
5 290.1 291.7 (0.5%) 323.8 (11.6%)
6 318.4 319.4 (0.3%) 331.5 (4.1%)
7 321.7 320.6 (0.3%) 394.7 (22.7%)
8 408.4 405.8 (0.6%) 468.9 (14.8%)
9 414.0 420.3 (1.5%) 512.3 (23.7%)
10 476.0 475.7 (0.1%) 632.9 (33.0%)
Maximum - 7.4% 59.6%
Error
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beam analysis.

Observing the results shown in Table. 6.3, one can find that the proposed
method can calculate the lowest 10 natural frequencies of the considered system as
accurately as those obtained by the shell analysis while the Timoshenko beam
analysis highly overestimates the stiffness of the considered system. Because only
two cross-sectional deformations (i.e. torsional warping and distortion) are
considered as the higher-order deformation degrees among those introduced in this
study, slightly inaccurate natural frequency of the first mode is calculated by the
proposed method. More accurate result can be expected when more higher-order
deformation degrees are employed. Through this example study, one can find that
the one-dimensional analysis method established in this study can be extended for
the analysis method of three-dimensional thin-walled box beam structures.

The automobile body structures can be simplified as the structures consisting
of thin-walled box beams and shells [2]. Because the stiffnesses of the body
structures such as the torsional stiffness are varied significantly depending on the
presence or absence of the shells [2], establishing the analysis method for the
structures consisting of box beams and shells is important to evaluate the static or
dynamic stiffnesses of the body structures correctly.

Using the proposed one-dimensional approach, one can establish the analysis
method for the box beams-shells structures modeling the box beams-joint system
parts by the higher-order beam elements and modeling the shell parts by the

detailed shell elements. The key problem in regard of this study is defining the
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matching conditions between the degrees of the higher-order beam elements and
those of the shell elements at the intersections of the box beams and the shells. The
higher-order beam theory employed in this study can express the three-dimensional
displacements (i,, i, i ) at a generic point (#, s, z) on the box beam member
using the one-dimensional field variables and their shape functions. For examples,

the three-dimensional displacements (i,

n o us’

u_) expressed by the one-dimensional

field variables U={U, 0., 0., W, 7" representing the out-of-plane deformations

x> Yzo

are as:
~ ~ ul’l ~ un
u,(n,s,z)=u, u/ns,z)y=u —n—=, u(n,s,z)=u —n—= (6.1)
‘ ‘ 0os 0z

where (u,, u , u_) represent the displacements on the contour line (# =0 ), and they

are defined as:

u, (5, 2)=," (5)-U,(2)+ ¥, (5)-0,(2)+ ;7 (5)-0.(2) + ) (5)- W (2)+ w7 (s)- 2(2)
(6.2a)

u (s, 2)= . () U, (@) + y () 0.+ () 0.+ p () W (@) + y () 2(2)
(6.2b)

u (s, )=y (9)-U,(2)+ y (5)-0,(2)+ y ()-0.(2)+ " () W () + w2 (s) 2(2)
(6.2¢)

Therefore, one can define the matching conditions between the degrees of the

box beam elements and those of the shell elements at the intersections by using the

three-dimensional displacements given in Eq. (6.1) [3].
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6.3 Optimization of Thin-Walled Box Beams-Joint Systems

Using the Higher-Order Beam Analysis

A one-dimensional analysis approach being able to capture the behavior of thin-
walled box beam structures correctly is required to carry out the design
optimization of the thin-walled box beam structures. The classical Timoshenko
beam analysis may be employed in the optimization of the box beam-joint system,
but a reliable optimum solution cannot be expected because the responses of the
system are not correctly evaluated. In fact, Kim et al. [4] have recently shown that
two optimal solutions are obviously different when the same topology optimization
problem is solved by using two different analysis approaches: the higher-order
beam analysis [5] and the Timoshenko beam analysis, and they have proven the
superiority of the design results obtained by the higher-order beam analysis through
the comparison of the performances of the two design results by using the detailed
shell analysis. Because the higher-order beam analysis being able to capture the
accurate behavior of the beam-joint systems consisting of more than four box
beams and under both in-plane and out-of-plane loads is finally established in this
study, therefore, more advanced topology designs can be obtained by employing
the proposed analysis method to the topology optimization of thin-walled box
beam structures.

Meanwhile, there is a difficulty in the topology optimization using the higher-

order beam theory that the joint matching conditions should be redefined when
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some of box beams connected at a joint are disappeared in the process of the
topology optimization. To solve this problem, Kim et al. [4] considered the
combinations of the joint matching conditions for all possible connectivity of the
box beams meeting at a joint, and employing the stacking method, they established
the design approach which can automatically consider the appropriate joint
matching conditions even though the connectivity of the box beams at a joint is
varied in the optimization process. However, the number of box beams connected
at a joint is limited to four or less in Kim et al. [4] because the combinations of the
joint matching conditions are significantly increased when more than four box
beams are connected at a joint. Therefore, additional considerations are required to
establish a design approach applicable to more general topology optimization of

the thin-walled box beam structures.

6.4 Adjustment of the Joint Matching Conditions Based on

the Experimental Results

There have been efforts [6-8] to establish the analysis methods which can predict
accurate responses of vehicle body structures comparable to the experiment results
by using the joint springs. Those rotational spring concepts are mainly applied to
the kinematic variables which represent the rotations of the box beam cross-section
to express the additional joint flexibilities.

On the other hand, it has been shown in this study that the additional rotations of
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box beam cross-sections at the joints are induced by the coupling effects with the

higher-order deformation degrees. The coupling relations which are theoretically

derived in this study are as:
2b
(©,),=(00,); (0,),=(00.), - Xk (6.3a)
b+h

4h (6.3b)

4h 4
(®y)k _(ey)k +M(VV1 )k 5h>

W),
where ((@,),,(®,),,(®.), ) represent the magnitudes of the cross-sectional

rotations of Beam k (k=1, 2, ..., N; N>3) at a joint. One can find that additional

rotation in z-direction at a joint is induced by the torsional distortion j» and that
additional rotation in y-direction at a joint is induced by the bending warpings W11

and le (Fig. 6.9). Therefore, the accurate responses of the box beams-joint

systems comparable to the experimental results can be obtained by the proposed

method if the magnitudes of ( ¢, Wll, le ) generated at the joints of the actual box

\
|
T——

i
|
\
\

(b)

(a)

Fig. 6.9 Cross-sectional deformations which are coupled with the rigid-body

rotations at a joint: (a) torsional distortion y, (b) bending warpings W11 , le
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beam structures can be exactly evaluated by the proposed method. Due to various
factors, however, the magnitudes of ( %, Wll, le) at an actual joint could be

different with those calculated by the proposed numerical approach, and an

accurate analysis model can be established by applying the correction factors to the

variables ( 7, W, W) in the proposed method. The correction factors for

(7, Wll, le ) can be exactly obtained through the approaches given in Refs. [6-8].
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