
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 

공학박사학위논문 

 

 

다중 연결된 직사각 박판보에 관한 

고차 보 이론 기반의 통합 해석 연구 
 

Unified Higher-Order Beam Analysis for 

Multiply-Connected Thin-Walled Box Beams 
 

 

 

 

 

 

2016년 2월 

 

 

 

 

 

서울대학교 대학원 

기계항공공학부 

최 수 민 



i 

ABSTRACT 
 

Unified Higher-Order Beam Analysis 
for Multiply-Connected Thin-walled 

Box Beams 
 

Soomin Choi 

School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 
 

Both the consideration of significant higher-order deformation degrees and the 

derivation of exact matching conditions among field variables at a joint are 

required to establish a one-dimensional beam model applicable to thin-walled box 

beam systems. Especially when three or more box beams are multiply-connected at 

a joint, significantly flexible behavior is observed near the joint that dominates the 

structural responses of the entire system. Moreover, the flexibility of the joint 

varies considerably depending on the number of beam members connected at the 

joint and the joint angles among the members. Because of the difficulties, no one-

dimensional beam analysis method has yet been proposed that can capture the 

structural responses of the box beams-joint systems accurately. With this 
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background, this study proposes a unified one-dimensional higher-order beam 

analysis approach for the first time that is applicable to the multiply-connected box 

beams-joint systems under both out-of-plane loads and in-plane loads. It is worth 

mentioning that the concept of so-called “edge resultants” as well as conventional 

(sectional) resultants are employed to derive physically correct equilibrium 

conditions at a joint and that the exact joint matching conditions are theoretically 

derived by applying an energy method to the equilibrium conditions. The derived 

matching conditions are valid even when any number of beams meet at any angle. 

In addition, higher-order deformation degrees (e.g. bending warping, bending 

distortion, and etc.) are newly introduced or redefined that are essential to represent 

the exact joint flexibility of considered systems. The accuracy and validity of the 

proposed analysis method are checked by comparing the present approach based 

results and the shell analysis results for various box beams-joint systems. 
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CHAPTER 1.  
OVERVIEW 

 

Thin-walled closed beams show relatively high bending and torsional rigidities 

compared to other types of beams with identical mass, and thus those beams have 

been widely used as principle load carrying members of automotive body 

structures to meet the requirements of lightweight vehicle design. Because of their 

hollow cross-section, however, cross-sectional deformations are easily accompanied 

when those beams are deformed, and the cross-sectional deformations cause highly 

flexible and complicated behavior of the thin-walled closed beams. Especially 

when three or more thin-walled closed beams meet at a joint, the cross-sectional 

deformations of those beams are further amplified near the joint, and thus 

significantly flexible behavior determining the rigidity of whole structure is 

observed near the joint. Meanwhile, classical beam theories such as Euler or 

Timoshenko beam theory cannot deal with those significant flexibilities caused by 

cross-sectional deformations, and for this reason, and for this reason, some 

difficulties that the classical beam theories overestimate the stiffness of automotive 

body structure, e.g. under body structure and side frame shown in Figs. 1(a, b) have 

been founded (one can see those difficulties by comparing the classical beam 

analysis results with the accurate results obtained by ABAQUS shell analysis given 

in Figs. 2(a, b)). 
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                (a)                                (b) 

Fig. 1.1 multiply-connected thin-walled beam structures (a) underbody structure, 
(b) side frame. 

 

From those difficulties of the classical beam theories, there have been efforts 

to develop one-dimensional beam analysis applicable to multiply-connected thin-

walled closed beam structures such as automobile body structures. Initial studies 

employed the classical beam theories and expressed the joint flexibilities by 

introducing some artificial joint models composed of rigid sections and rotational 

springs. Thereafter, some analysis approaches based on the classical beam theories 

introduced joint stiffness elements obtained from the detailed shell joint model as a 

way to involve the joint flexibilities in their approaches. Recently, higher-order 

beam theories considering significant cross-sectional deformations as additional 

degrees of freedom have been developed, and some analysis method theoretically 

expressing the joint flexibilities without using artificial concepts have been 

proposed based on the higher-order beam theories (the detailed descriptions with 

respect to those previous studies are given in Chapters. 2~4). Despite all these 

efforts, however, there is no one-dimensional beam analysis method consistently  
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(a) 

 

(b) 

Fig. 1.2 (a) analysis results of the vertical displacement (in y direction) for Beam 
AB in Fig. 1.1(a), (b) analysis results of vertical displacement (in y direction) for 
Beam AB in Fig. 1.1(b).. 
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applicable to various multiply-connected thin-walled closed beams because the 

flexible responses of the joints vary considerably depending on the number of 

beams connected to the joint, the joint angles among those beams and the 

dimensions of cross-sections of those beams. With this background, therefore, a 

higher-order beam analysis method consistently applicable to various multiply-

connected thin-walled box beams will be proposed for the first time in this study. 

The underbody structure of vehicle subjected to out-of-plane loads is shown in 

Fig. 1(a), and the torsional rigidity of the underbody structure can be evaluated 

under the given boundary condition. To exactly interpret multiply-connected box 

beams under out-of-plane loads such as the problem given in Fig. 1(a), the higher-

order beam theory considering torsional warping and distortional deformations of 

box beam cross-section as independent field variables in addition to rigid body 

motions of cross-section, i.e. vertical displacement, bending/shear rotation and 

torsional rotation is employed in this study. The key is finding exact matching 

conditions among all field variables of the box beams meeting at a joint. To 

determine theoretically correct joint matching conditions, we first derive exact 

matching conditions for two box beams meeting at an angled joint of magnitude φ; 

the joint matrix T(φ) representing joint matching conditions is exactly derived by 

considering some essential conditions which T(φ) must hold, and the detailed 

procedures are given in Chapter 2. Subsequently, the equilibrium conditions at a 

joint of multiply-connected box beams among generalized forces, which are work 

conjugates of the field variables, are derived from the joint matrix T(φ), and 
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consequently the desired joint matching conditions for multiply-connected box 

beams are exactly derived by applying energy method to those equilibrium 

conditions (the detailed procedures are given in Chapter 3). Observing the results 

shown in Fig. 2(a), one can find that the proposed one-dimensional analysis can 

interpret the response on the underbody structure as accurately as ABAQUS shell 

analysis. 

The side frame of vehicle subjected to in-plane loads is shown in fig. 1(b), and 

the bending rigidity of side frame can be calculated through the given boundary 

condition. One-dimensional analysis method for multiply-connected box beams 

subjected to in-plane loads such as the problem given in Fig. 1(b) is also developed 

in this study based on the approaches established in those studies concerning out-

of-plane loads. Because the significant cross-sectional deformations inducing the 

joint flexibilities of multiply-connected box beams under in-plane loads are not 

clearly found, the cross-sectional deformations such as extensional warping, 

extensional distortion, bending warping, bending distortion and etc. are 

theoretically derived in this study, and a higher-order beam theory considering 

those cross-sectional deformations as independent field variables in addition to the 

rigid body motions of cross-section, i.e. longitudinal displacement, transverse 

displacement and in-plane bending/shear rotation is newly established (the details 

can be found in Chapter 4 and 5). Thereafter, the joint matrix T(φ) representing the 

joint matching conditions for two box beams meeting at an angled joint of 

magnitude φ under in-plane loads is exactly derived by considering some essential 
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conditions T(φ) must hold; in in-plane loading case, more considerations and cares 

are required because more cross-sectional deformations of further complicated 

deformation patterns are considered, and the detailed procedures are given in 

Chapter 4. Equilibrium conditions of generalized forces at a joint of multiply-

connected box beams under in-plane loads are exactly derived from the matrix 

T(φ), and exact joint matching conditions consistently applicable to multiply-

connected box beams under in-plane loads are theoretically derived by applying 

energy method to those equilibrium conditions; the details are given in Chapter 5. 

Observing the results given in Fig. 2(b), one can also find that the proposed method 

can interpret the behavior of side frame as accurately as ABAQUS shell analysis. 

As mentioned above, an exact higher-order beam analysis method for 

multiply-connected thin-walled box beams is newly developed in this study. In 

addition, theoretically correct equilibrium conditions of generalized forces and 

matching conditions of field variables at a joint of multiply-connected box beams 

are determined for the first time. The proposed derivation approaches of those 

conditions are expected to be an important building block for expanding the scope 

of structures that can be interpreted by using the higher-order beam analysis to 

multiply-connected three dimensional thin-walled closed beams. 
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CHAPTER 2.  
Higher-Order Beam Analysis for Two Box Beams-

Joint Systems Subjected to Out-of-Plane Bending 

and Torsion 
 

2.1 Introduction 

This work is concerned with the analysis of thin-walled box beams connected 

through angled joints under out-of-plane bending and torsion as depicted in Fig. 2.1. 

The analysis will be carried out by higher-order beam theories that employ five 

kinematic variables representing sectional warping (U ) and distortion ( χ ) in 

addition to the standard Timoshenko kinematic variables such as vertical bending 

deflection ( V ), bending/shear rotation ( β ), and torsional rotation ( θ ). The 

displacements or deformations of the cross section of a box beam corresponding to 

the five kinematic variables are illustrated in Fig. 2.2. The importance of 

considering warping and distortion in thin-walled closed beams has been addressed 

in earlier investigations [1-9] and several forms of higher-order theories have been 

developed for straight box beams [1, 3, 5, 8, 10, 11]. 

Nevertheless, there is no box beam theory based theoretical method to exactly 

match the degrees of freedom at an angle joint where two straight box beams are 

connected. The significant local effects appearing near joints of thin-walled box 

beams have been pointed out in several investigations [12−16]. The joint-related 
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Fig. 2.1 Thin-walled box beams connected at an angled joint. 

 

investigations using a higher-order beam theory were first given by Jang et al. [17-

19], but the approach used an approximate technique that minimizes the difference 

between three-dimensional displacements in the sections of two beams connected 

at an angled joint. On the contrary, we aim to derive the exact condition relating 

the field variables of one box beam to those of another box beam at the joint using 

a higher-order beam theory [20]. 

In deriving the joint matching condition, we will employ the higher-order 

beam theory given in [17] which employs the above-mentioned five field variables. 

The joint matching condition can be expressed by a 5 5×  transformation matrix 

( )φT  ( φ : joint angle) relating 1U  and 2U  as 2 1( )φ= ⋅U T U  where p =U

{ }T,  ,  ,  ,  pV Uβ θ χ  ( 1,  2p = ) is the field variable vector of Beam p. For a later use, 

we introduce the symbol { }T,  ,  ,  ,  p pP M H B Q=F  to denote the generalized force 

vector, which is the work conjugate of pU . Here, P, M, and H denote vertical 
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shear force, bending moment, and twisting moment, respectively. Note that they all 

have resultants. On the other hand, the bimoment B and transverse bimoment Q 

have no resultant, i.e., they represent self-equilibrated terms. In case of the Euler or 

Timoshenko beam, a 3 3×  transformation matrix involving only { ,  ,  V β θ } can 

be derived only by considering equilibrium conditions. Since warping and 

distortion that are self-equilibrated deformations are also used in a thin-walled box 

beam theory, however, additional conditions must be used. To derive all 

components of the 5 5×  T  matrix, we propose to consider the following three 

additional conditions in addition to the equilibrium conditions. 

(1) Because 1B  and 1Q  have no resultant, 2 2 2,  ,  and P M H  should not be 

coupled with 1B  and 1Q  at the joint of two box beams. 

(2) At the so-called intersection points of two box beams at an angled joint, 

the three- dimensional displacements should be continuous. 

(3) A fundamental transformation rule ( ) ( )φ φ⋅ − =T T I  ( I : identity matrix) 

must be satisfied for any value of φ . 

(4) Another fundamental transformation identity ( ) ( ) (2 )φ φ φ⋅ =T T T  must 

hold. 

Conditions (3) and (4) seem to be trivial, but they play critical roles in determine 

all 5 5×  elements exactly. 

To check the validity of the derived transformation matrix ( )φT , two case 
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problems will be examined. Because the problems to be considered were also 

solved by an approximate method, the accuracy by the present exact condition may 

be better demonstrated. The converged finite element results obtained with the 

ANSYS shell elements [21] will be used as the reference results. 

 

2.2 Higher-Order Beam Theory for Straight Box Beams 

A higher-order beam theory for a rectangular box beam in [10, 17] will briefly 

explained as a basis for all subsequent analyses. As depicted in Fig. 2.2, each edge 

has its own coordinate  ( , )n s ; the tangential coordinate, s, is measured along the 

contour (or center line) of the wall starting from the center, and the normal 

coordinate, n, is measured by the outward normal distance from the contour. The 

three-dimensional displacements of a point on the contour can be expressed in 

terms of the five one-dimensional field variables,   

T{ ,  ,  ,  ,  }V Uβ θ χ=U , as 

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )V U
n n n n n nu s z s V z s z s z s U z s z= + + + +β θ χψ ψ β ψ θ ψ ψ χ  (2.1a) 

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )V U
s s s s s su s z s V z s z s z s U z s z= + + + +β θ χψ ψ β ψ θ ψ ψ χ  (2.1b) 

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )V U
z z z z z zu s z s V z s z s z s U z s z= + + + +β θ χψ ψ β ψ θ ψ ψ χ  (2.1c) 

where z is the axial coordinate, and us, un, and uz are the tangential, normal, and 

axial displacements of the point on the contour, respectively. In Eq. (2.1), ( )i sαψ

 ( ,  ,  ; ,  ,  ,  ,  )i n s z V Uα β θ χ= =  represent the deformation of the cross section 

along the i - coordinate corresponding to the unit magnitude of field variable α .  
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          (a)                    (b)                    (c) 

 

(d)                    (e)                     (f) 

Fig. 2.2 (a) Coordinate system and ( b–f ) displacements/deformations of the beam 
section corresponding to the field variables ( V, β, θ, U, χ ). 

 

The explicit expressions of  ( )i sαψ  are given in Appendix. 

The three-dimensional displacements of a generic point located away from the 

contour by n on the cross section, { ,  ,  }n s zu u u   , can be written as 

( ,  ,  ) ( ,  ) V
n n n n nu n s z u s z V= = + +⋅ ⋅ ⋅

θ χψ ψ θ ψ χ          (2.2a) 

( ,  )
( ,  ,  ) ( ,  ) Vn n

s s s s s

du s z d
u n s z u s z n V n

ds ds
= − = + + −⋅ ⋅ ⋅ ⋅

χ
θ χ ψ

ψ ψ θ ψ χ χ  (2.2b) 
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( ,  ,  ) ( ,  ) U
z z z zu n s z u s z U= = ⋅ + ⋅

βψ β ψ             (2.2c) 

where the term  (  ( , ) / )nn du s z ds−  in Eq. (2.2b) is needed to consider the bending 

effect of the cross-section wall. 

One can derive the expressions for the dominant components of strain from

{ ,  ,  }ss sz zzε ε ε  Eq. (2.2a) and stress { ,  ,  }ss sz zzσ σ σ  by using constitutive relation. 

Then, from the principle of minimum potential energy, one can derive the 

governing equations for ,  ,  ,  ,  and V Uβ θ χ  (see [10, 17] for the explicit forms 

of equations) and also define the work conjugates of the field variables, =F

  

T{ ,  ,  ,  ,  }P M H B Q : 

 ,   ,   ,  

 ,   

V
zs s zz s zs s

A A A

U
zz s zs s

A A

P dA M dA H dA

B dA Q dA

= = =

= =

∫ ∫ ∫

∫ ∫

β θ

χ

σ ψ σ ψ σ ψ

σ ψ σ ψ
        (2.3) 

As defined in Introduction ,  ,  ,  ,  and P M H B Q  denote the one-dimensional 

force measures representing vertical force, bending moment, twisting 

moment, bimoment, and transverse bimoment respectively. 

 

2.3 Derivation of the Exact Joint Matching Condition 

Thin-walled box beams (indicated by Beam 1 and Beam 2 in Fig. 2.1) meet each 

other at an angle of φ  in the x z−  plane. The relation between the field variable 

vector 1U  of Beam 1 and 2U  of Beam 2 may be expressed in terms of a 
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transformation matrix ( )φT  such that 

2 1( )=U T Uφ                        (4.4a) 

or 

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 552 1

t t t t tV V
t t t t t
t t t t t
t t t t tU U
t t t t t

=

    
    
           
    
    
        

β β

θ θ

χ χ

            (4.4b) 

The matrix T  depends not only on φ  but also on the box beam geometry (such 

as b (width), h (height), and t (thickness) defined in Fig. 2.1), but it will be simply 

written as ( )φT  to emphasize its dependence on φ . 

Before using the four propositions given at the end of Introduction, we first 

recall the well-known relation. If 2U  and 1U  are related by ( )φT  by Eq. (2.4a), 

2F  and 1F  are related as 

*  -T
2 1 1( )φ= =F T F T F                    (2.5) 

Equation (2.5) is the direct consequence of the virtual work conservation at the 

joint such that 

T T
1 1 2 2δ δ=F U F U                     (2.6) 

where pδ U  denotes the variation of pU  (  1, 2p = ). 

Another well-known relation is the force/moment equilibrium at a joint: 
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2 1

1 0 0
0 cos sin
0 sin cos

P P
M M
H H

= −
     
                 

φ φ

φ φ
             (2.7) 

Because B  and Q  represent self-equilibrated bimoments, they do not 

appear in the equilibrium relation, Eq. (2.7). Now let us consider the four 

conditions proposed in Introduction to determine all of the 5 5×  components of 

( )φT  [20]. 

 

2.3.1 Proposition 1: Consideration of No Resultant by B and Q 

First of all, we observe that torsional ( B ) and transverse (Q ) bimoments are in a 

state of self-equilibrium. This observation implies that the generalized force terms 

( 2 2 2,  ,  P M H ) in Beam 2 should not be affected by the self-equilibrated force 

terms ( 1 1,  B Q ) of Beam 1. Therefore, the relations between 1F  and 2F  should be 

written as 

2 1

1 0 0 0 0
0 cos sin 0 0
0 sin cos 0 0

P P
M M
H H
B B
Q Q

−

=

• • • • •

• • • • •

     
     
            

    
    
         

φ φ

φ φ           (2.8) 

In Eq. (2.8), the zeros appearing inside the dotted rectangle are the consequences of 

the above-mentioned observation while 10 solid circles represent the elements to 

be determined. Noting that the transformation matrix appearing in Eq. (2.8) is *T , 
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which is equal to T−T  by Eq. (2.5), one can show that the matrix T  must take 

the following form; 

14 15

24 25

34 35

44 45

54 55

1 0 0
0 cos sin
0 sin cos
0 0 0
0 0 0

t t
t t
t t
t t
t t

−
 
 
 
 
 
 
  

T =
φ φ

φ φ                (2.9) 

where the ten components of that the matrix T  ( 14 15 55,  , ,  t t t⋅ ⋅ ⋅ ) are the quantities 

that cannot be determined from the equilibrium consideration. 

 

2.3.2 Proposition 2: Three-Dimensional Displacement Continuity 

at the Intersection Points 

In theory, the three-dimensional displacements at every point of the common 

interfacing region of Beams 1 and 2 should be continuous. However, it is not 

possible to strictly impose the continuity condition because only a finite number of 

one-dimensional field variables are used in the box beam theory. To use the one-

dimensional beam theory for the joint, let us consider the top view of the connected 

beams in the x z−  plane in Fig. 2.3(a). Here, two beams are assumed to penetrate 

each other so that the centers of the cross sections of the two beams meet at Point A. 

From the three-dimensional view of the cross sections shown in Fig. 2.3(b), in fact, 

two beams meet at A and B. Note that Points A and B lie on Edge 2 and 4 of the 

contours (center lines) of two beam cross sections, respectively. 
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(a) 

 

(b) 

Fig. 2.3 (a) the top view of the beam centerlines in the x−z plane with an 
indication of the assumed common intersection point A (b) beam cross sections 
passing though the common intersection points A and B (The generalized force 
quantities having non-zero resultants are shown.). 

 

Let us now consider the three-dimensional continuity at A: 

Beam 1 Beam 2( ) ( )n n s s z z n n s s z zu e u e u e u e u e u e+ + = + +     

     

         (2.10) 
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where qe


 is the unit base vector along the local coordinate axis q  ( ,  ,  q n s z= ). 

Using the relation between 
Beam 1qe



 and 
Beam 2qe



 (see Fig. 2.3(b)) 

Beam 1 Beam 2n ne e=
 

                     (2.11a) 

Beam 1 Beam 2 Beam 2
cos sins s ze e e= −

  

φ φ              (2.11b) 

Beam 1 Beam 2 Beam 2
sin cosz s ze e e= +

  

φ φ              (2.11c) 

the displacement components of Beams 1 and 2 are related at A as 

Beam 2 Beam 1n nu u=                      (2.12a) 

Beam 2 Beam 1 Beam 1
cos sins s zu u u= +  φ φ             (2.12b) 

Beam 2 Beam 1 Beam 1
sin cosz s zu u u= − +  φ φ            (2.12c) 

To find the relations between 1U  and 2U  from Eq. (2.12), Eq. (2.2) and the 

formula in Appendix are used to calculate the displacement components at Point A 

of Beams 1 and 2: 

1 1 1 1Beam 1
Point A :  ,  ,  

2 2n s z

h bh h
u V u u

b h
= = − =

+
  θ χ β       (2.13) 

2 2 2 2Beam 2
Point A :  ,  ,  

2 2n s z

h bh h
u V u u

b h
= = − =

+
  θ χ β      (2.14) 

Substituting Eqs. (2.13, 2.14) into Eq. (2.12) and using Eq. (2.4) with T  in Eq. 

(2.9) yield 

2 1V V=                         (2.15) 
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24 25

2
0,  sin

b
t t

b h
= =

+
φ                   (2.16) 

34 54 35 55

2 2
,  ( cos )

b b
t t t t

b h b h
= = −

+ +
φ              (2.17) 

Inserting the results in Eqs. (2.15 2.17− ) into ( )T φ  in Eq. (2.9) gives 

54 55

44 45

54 55

1 0 0 0 0
2

0 cos sin 0 sin

( ) 2 2
0 sin cos ( cos )

0 0 0
0 0 0

b
b h

b b
t t

b h b h
t t
t t

−
+

−
+ +

 
 
 
 
 
 
 
 
 
 

T =

φ φ φ

φ
φ φ φ      (2.18) 

Now ( )T φ  has only 4 undetermined components: 44 45 54 55,  ,  ,  and t t t t . 

 

2.3.3 Proposition 3: Use of the Relation ( ) ( )⋅ − =T T Iφ φ  

Here, we use a fundamental relation ( ) ( )⋅ − =T T Iφ φ  where I  is an identity 

matrix. To find ( )−T φ , the schematic figures shown in Fig. 2.4 will be used. 

Figure 2.4(a) shows two beams connected at a positive angle of φ  while the first 

figure in Fig. 2.4(b) sketches two beams connected at a negative angle, −φ . As 

indicated in Fig. 2.4(b), the two beams connected at a negative angle may be 

viewed as two beams connected at a positive angle of φ  in a rotated coordinate 

system (   , ,x y z   ) by 180  from the (   , ,x y z ) coordinate system such that 

,  ,  and x x y y z z= − = − =                    (2.19) 
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(a) 

 

(b) 

 

(c) 

Fig. 2.4 Description of the procedure to obtain T(−φ): (a) T(φ) relation for a 
positive φ (b) T(−φ) defined for a negative φ, which can be derived from T(φ) 
defined in a different coordinate system. 

 

If the field quantities defined in the (   , ,x y z   ) coordinate system are denoted by 

=U   
T{ ,  ,  ,  ,  }V Uβ θ χ  

 , the relation between 1U  and 2U  is given by 
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2 1( )=U T U φ                       (2.20) 

By examining the section displacements or deformations shown in Figs. 2.2 ( b−f ), 

one can show that 

,  ,  ,  ,  V V W W= − = − = = =  

β β θ θ χ χ            (2.21) 

To find the last two relations in Eq. (2.21), one must note that the deformation 

patterns of W  and χ  shown in Figs. 2.2 (e; f ) under the rotation produce the 

same deformation patterns, resulting in W W=  and =χ χ . Substituting Eq. 

(2.21) into Eq. (2.20) and doing some algebra to write Eq. (2.20) as 2 =U

1( )φ−T U  where { }  

T,  ,  ,  ,  V U= + +U β θ χ , one can identify ( )−T φ  as 

24 25
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 (2.22) 

To use the fundamental transformation relation of ( ) ( )⋅ − =T T Iφ φ , we 

multiply ( )T φ  in Eq. (2.18) and ( )−T φ  in Eq. (2.22): 

2
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2
44 45 54 45 44 55

2
54 44 55 55 45 54

2 2
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     

T Tφ φ

 (2.23) 
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From Eq. (2.23), the following four relations for the undetermined components ( 44t , 

etc.) are derived: 

2
44 45 54 1t t t+ =                       (2.24a) 

45 44 55( ) 0t t t+ =                      (2.24b) 

54 44 55( ) 0t t t+ =                      (2.24c) 

2
55 45 54 1t t t+ =                      (2.24d) 

The solutions that satisfy Eq. (2.24) may not be unique. To deal with this issue, a 

fundamental multiplication relation valid for any transformation matrix is used as 

the following proposition, Proposition 4. 

 

2.3.4 Proposition 4: Use of the Relation ( ) ( ) (2 )⋅ =T T Tφ φ φ  

Finally, we consider another fundamental relation, ( ) ( ) (2 )⋅ =T T Tφ φ φ . By using 

Eq. (2.18), one can write ( ) ( )⋅T Tφ φ  explicitly as 

2
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 (2.25) 

Observe that the expressions involving 44 45 54 55,  ,  ,  and t t t t  in Eq. (2.25) are 

exactly the same as those derived as Eq. (2.24) from Proposition 3. Therefore, one 
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can finally express (2 ) ( ) ( )= ⋅T T Tφ φ φ  as, without any unknowns, 
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Putting φ  instead of 2φ  in Eq. (2.26) yields the exact expression of ( )T φ  such 

that 
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 (2.27) 

Equation (2.27) shows that the distortion ( 1χ ) of Beam 1 affects the bending/shear 

rotation ( 2β ) and torsional rotation ( 2θ ) of Beam 2 at the joint. On the other hand, 

the warping ( 1U ) of Beam 1 is not coupled with any other deformation but is 

directly transmitted only to the warping ( 2U ) of Beam 2. Although the final form 

of the transformation matrix T  of the thin-walled box beam theory is simple and 

compact, the exact derivation is given here for the first time. 

 

2.4 Numerical Examples 

Two case studies, considered earlier by Jang et al. [19], will be performed to 
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demonstrate the accuracy and validity of the derived transformation T . The 

present T  matrix will be used in the one-dimensional finite element method 

employing the five kinematic variables. Since the higher-order box beam finite 

element implementation is a standard procedure, the detailed steps to obtain the 

numerical results will be omitted. 

 

2.4.1 Case Study 1: Two Box Beams Connected at an Angled 

Joint 

As the first case study, the beam structures shown in Fig. 2.1 are analyzed for 

various joint angles φ  and aspect ratios of the cross section. Some of the beam 

dimensions are fixed to be 2 mmt =  and 1000 mmL =  and the material 

properties are E (Young’s modulus) = 200 GPa and ν  (Poisson’s ratio) = 0.3. The 

one end of the structure is clamped and the other end, denoted as C, is subjected to 

a vertical force, 100 NP = . The cross section C is assumed to be rigid ( no 

warping or distortion ). To check the accuracy of the present approach using the 

derived T  matrix, the displacements obtained by the proposed approach are 

compared with those by ANSYS shell elements [21]. The results are also compared 

with those based on the same higher-order beam theory incorporating the joint-

displacement minimization technique (Jang et al. [19]). Also, the displacements by  

the standard Timoshenko beam elements are plotted for comparison. 

Figure 2.5 shows the axial distributions of the five field variables for the case of 
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50 mmb = , 100 mmh = , and 60= φ . The numbers of the discretizing finite 

elements are 60 for the present beam analysis and 3,960 for the shell analysis. In 

Fig. 2.5, the results by the present approach are virtually identical to those by the 

shell calculation while the Timoshenko beam results are quite off from the shell 

results. Two-beam structures having different joint angles were also investigated 

and the numerical results are plotted in Fig. 2.6 and Fig. 2.7. The responses of the 

field variables for different aspect ratios of the cross section, 50 mmb =  and 

h = 150 mm  are also illustrated in Fig. 2.8. The results by the present approach 

agree well with the shell element results compared with the results by the 

Timoshenko theory and those by Jang et al. [19]. Although not presented here, the 

present approach was shown to produce accurate results for box beams of different 

aspect ratios with various joint angles. 
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                (a)                               (b) 

                (c)                               (d) 

 

 

 

 

 

 

Fig. 2.5 Numerical results for the two-beam structure in Fig. 2.1 with b = 50 mm, 
h = 100 mm, φ = 60o: (a) vertical bending deflection V, (b) bending/shear rotation 
β, (c) torsional rotation θ, (d) warping U, and (e) distortion χ. 
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                (a)                               (b) 

                (c)                               (d) 

 

 

 

 

 

 

Fig. 2.6 Numerical results for the two-beam structure in Fig. 2.1 with b = 50 mm, 
h = 100 mm, φ = 30o: (a) vertical bending deflection V, (b) bending/shear rotation 
β, (c) torsional rotation θ, (d) warping U, and (e) distortion χ. 
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                (a)                               (b) 

                (c)                               (d) 

 

 

 

 

 

 

Fig. 2.7 Numerical results for the two-beam structure in Fig. 2.1 with b = 50 mm, 
h = 100 mm, φ = 90o: (a) vertical bending deflection V, (b) bending/shear rotation 
β, (c) torsional rotation θ, (d) warping U, and (e) distortion χ. 
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                (a)                               (b) 

                (c)                               (d) 

 

 

 

 

 

 

Fig. 2.8 Numerical results for the two-beam structure in Fig. 2.1 with b = 50 mm, 
h = 150 mm, φ = 60o: (a) vertical bending deflection V, (b) bending/shear rotation 
β, (c) torsional rotation θ, (d) warping U, and (e) distortion χ. 
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Fig. 2.9 A thin-walled beam structure having three angled joints under a bending 
moment M (L1 = L2 = L3 = L4 = 1000 mm, φ1 = − 45o, φ2 = 20o, M = − 100 Nm). 

 

2.4.2 Case Study 2: Four Box Beams Serially Connected at 

Angled Joints 

Figure 2.9 illustrates a structure of four thin-walled box beams connected at three 

joints. The dimensions of the cross sections of all beams are 50 mmb = , 

100 mmh = , and 2 mmt = . The material properties are the same as those in the 

previous case study. The one end of the structure is clamped while the other end is 

subjected to a bending moment, 100 N mM = ⋅ . The cross section of the loaded 

end is assumed to be rigid. Figure 2.10 shows that the axial variations of 

,  ,  ,  ,  and V Uβ θ χ . Unlike the results predicted by the approach by Jang et al. [19] 

or the Timoshenko beam theory, the present results match the shell finite element 

results well. The studies with beams of other cross sectional geometries and joint 

angles also confirmed the superior accuracy of the thin-walled beam analysis using 

the exact transformation derived in the present work. 
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                (a)                               (b) 

                (c)                               (d) 

 

 

 

 

 

 

Fig. 2.10 Numerical results for the beam structure shown in Fig. 2.9: (a) vertical 
bending deflection V, (b) bending/shear rotation β, (c) torsional rotation θ, (d) 
warping U, and (e) distortion χ. 
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2.5 Conclusions 

The transformation matrix relating the field variables of a higher-order thin-walled 

box beam theory at angled joints was derived in an exact form. The proposed 

conditions to determine unknown elements of the transformation matrix were 

shown to be sufficient for box beams connected at angled joints that are subject to 

out-of-plane and torsional loads. With the derived matrix, we were able to explain 

the interaction between the field variables of the two beams connected at an angle 

joint. Specifically, the distortion of one beam is coupled with the bending/shear and 

torsional rotations of the other while the warping deformation of one beams is not 

coupled with other field variables of the other beam but only with the warping 

deformation of the other beam. The present derivation of the joint matching 

condition is expected to serve as an important building block to expedite the 

research on higher-order beam theories for arbitrarily-shaped, connected thin-

walled beams. 

 

Appendix 

The section shape functions ψ ’s are explicitly given. The index j indicates the 

edge number of the beam cross section. 

( 2)/2( ) 0  ( 1,  3)  and  ( 1)  ( 2,  4)V j
n js j j−= = − =ψ         (2.A1) 

( 1)/2( ) ( 1)   ( 1,  3)  and  0  ( 2,  4)V j
s js j j−= − = =ψ         (2.A2) 

( ) 0,  ( ) 0,  ( ) 0V
z j n j s js s s= = =β βψ ψ ψ          (2.A3, 4, 5) 
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( 1)/2 ( 2)/2( ) ( 1) s   ( 1,  3)  and  ( 1)   ( 2,  4)
2

j j
z j i

h
s j j− −= − = − =βψ    (2.A6) 

( )n j js s= −θψ                       (2.A7) 

( )   ( 1,  3)  and    ( 2,  4)
2 2s j

b h
s j j= = =θψ           (2.A8) 

( ) 0,  ( ) 0,  ( ) 0U U
z j n j s js s s= = =θψ ψ ψ       (2.A9, 10, 11) 

( )   ( 1,  3)  and    ( 2,  4)
2 2

U

z j j js
b h

s j s j= = − =ψ        (2.A12) 

3 3( )
4 2 4 2

  ( 1,  3)  and    ( 2,  4)
( ) ( )n j j j j js

b h b h
s s j s s j

h b h b h b b h b h
=

+ +
− + = − =

+ + + +
χψ

 (2.A13) 

( )   ( 1,  3)  and    ( 2,  4)s js
bh bh

j j
b h b h

= = − =
+ +

χψ       (2.A14) 

( ) 0z js =χψ                       (2.A15) 

where 

1 3 2 4,   and  ,
2 2 2 2

h h b b
s s s s− ≤ ≤ − ≤ ≤   
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CHAPTER 3.  
Higher-Order Beam Analysis for Multiply-Connected 

Box Beams-Joint Systems Subjected to Out-of-Plane 

Bending and Torsion 
 

3.1 Introduction 

The behavior of thin-walled box beams is quite flexible in comparison with the 

analysis result obtained by classical Euler and Timoshenko beam theories (see, e.g. 

[1, 2]) because cross-sectional deformations not covered by those classical theories 

easily appear in thin-walled box beams. Especially when those box beams meet at a 

joint, the magnitudes of cross-sectional deformations near the joint region are 

further amplified, and that causes the joint region to exhibit significant flexibilities. 

For this reason, the behavior of thin-walled box beam structures having joints 

shows big difference from the predicted result based on the classical beam theories. 

To overcome the difficulty that the classical beam theories overestimate stiffness 

for thin-walled box beam structures (or members), researchers have developed one-

dimensional higher-order beam theories [3-10] that consider cross-sectional 

deformations as independent degrees of freedom. Because higher-order 

deformations such as warping and distortion do not produce any resultants, 

determining the joint matching relations among all the degrees of freedom of box 

beams connected at a joint is a difficult problem. Especially when the box beam 
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structures are subjected to out-of-plane bending and torsion, distortion is found to 

be complicatedly coupled with other degrees of freedom at the joint. However, 

there has been no dedicated research to investigate how they are coupled. In fact, 

there is no exact analysis method based on higher-order beam theories that is 

applicable to structures with “three” or more thin-walled box beams subjected to 

out-of-plane loads that are connected at a joint. With this background, we propose 

an exact analysis approach for the first time, applicable for cases of three or more 

box beams-joint structures under out-of-plane loads. 

First, it is worth mentioning the previous researches trying to express the joint 

flexibilities of thin-walled box beam structures by using one-dimensional beam 

theories. Initial studies based on the classical beam theories introduced some joint 

models with rotational springs to account for those flexibilities [11-13]. El-Sayed 

[11] proposed a joint model with torsional springs to represent the flexible 

responses of a joint under out-of-plane loads, and Lee and Nikolaidis [12] proposed 

a joint model consisting of springs and rigid sections to consider additional joint 

coupling effects. Thereafter, Becker et al. [14] suggested a method using structural 

dynamics for evaluating the stiffness of a joint. Recently, Refs. [15, 16] proposed 

joint concept modeling approaches reducing the shell element based detailed joint 

into a super element through static or dynamic reduction techniques. However, the 

joint flexibilities caused by the cross-sectional deformations vary considerably 

depending on both the number of box beams connected to the joint and the joint 

angles among those box beams, and thus it is difficult to develop a consistent joint 
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model applicable to various joints by using the classical beam theories. 

If there existed a beam theory considering the significant cross-sectional 

deformations as additional degrees of freedom, one can capture the flexible 

responses of thin-walled box beam members or structures without employing any 

artificial concepts. Vlasov [3] theoretically defined the warping deformation 

resulting from twisting moment as a sectorial coordinate, and established a beam 

theory for thin-walled beams including the warping as the additional degree of 

freedom. To handle stress analysis, buckling analysis, dynamic analysis, etc., by 

advanced beam theories, several analytic or semi-analytic methods have been 

proposed such as an approach based on Saint Venant’s theory [17, 18], the 

variational asymptotic method [19-21], Carrera’s unified formulation [22, 23], and 

the GBT cross-section analysis [24, 25]. Especially for thin-walled closed section 

beams including thin-walled box beams, Kim and Kim [6, 26-29] developed a 

higher-order beam theory interpreting torsional behavior of those beams correctly. 

In this regard, they recognized the importance of considering accurate distortional 

deformations in addition to the warping deformations and proposed a semi-

analytical method to determine those cross-sectional modes. In recent years, 

developments of higher-order beam models have been reported to analyze the 

stress distribution or nonlinear behavior of thin-walled box beam members. 

Genoese et al. [8, 30] proposed a mixed beam model considering warping modes 

derived from their Saint Venant theory based approach and having a mixed 

formulation with the independent description of stress and displacement fields. 
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Ferradi and Cespedes [9, 31] proposed a method calculating distortion modes 

through the modal analysis of cross-section decomposed with beam elements and 

derived relevant warping modes by using their proposed equilibrium scheme. 

Vieira et al. [10, 32] derived a generalized eigenvalue problem calculating 

uncoupled warping modes through the assumption of in-plane rigid cross-sections 

and suggested a higher-order beam model considering those warping modes. 

As higher-order beam theories including the effects of cross-sectional 

deformations were established, efforts to theoretically express the joint flexibilities 

of thin-walled beam structures have been followed. Especially concerning the joint 

of thin-walled open section beams, many researches defining the compatibility of 

degrees of freedom have been proposed [33-38]. Vacharajittiphan and Trahair [33] 

investigated the warping restraint/transmission at the joint of two I-section 

members and found the influence of distortion on the warping transmission. 

Baigent and Hancock [34] determined the equilibrium condition at the joint of two 

asymmetric section members by transforming force terms on the centroid and the 

shear center to the member origin axes and derived corresponding displacement 

relations at the joint including warping coupling effects. In addition, they proposed 

a modeling technique to consider the effects of different joint types and eccentric 

restraint. Based on the researches above, Basaglia et al. [37] have recently derived 

extended displacement relations applicable to the joint of multiple open section 

members and determined the warping transmission for various types of joint. 

Subsequently, they established a Generalized Beam Theory (GBT) based analysis 



38 

method interpreting various buckling behavior of thin-walled open section beam 

structures by considering additional displacement constraints at some specific 

points around the joint [38]. 

In thin-walled closed section beam structures, meanwhile, the complicated 

responses of joints are also induced by the distortional deformation. Therefore, the 

consideration of the effects of distortion as well as warping on the joint flexibilities 

is important. Especially in the case of box beams, the joint flexibilities observed 

under out-of-plane loads are mainly generated by the coupling of distortion with 

other degrees of freedom because the location of the centroid is identical to that of 

the shear center. Therefore, some efforts defining those effects of distortion have 

been made to express the joint flexibilities of box beams subjected to out-of-plane 

loads correctly [39-43]. Jang et al. [39-41] matched the displacements of two box 

beams connected at a joint on an imaginary joint section and determined joint 

matching conditions by solving an optimization problem which minimizes 

differences between the displacements of two box beams on the imaginary joint 

section. On the other hand, Choi et al. [42] proposed exact matching conditions at 

the joint of two box beams to capture the joint behavior comparable with that 

predicted by detailed shell analysis. In case of three or more box beams-joint 

structures, the methods for two box beams-joint structures in Refs. [39-42] may be 

used, but the joint stiffness is found to be overestimated. The reason is that the 

deformation of the joint is excessively constrained and thus higher-order 

deformations such as warping and distortion cannot be properly developed at the 
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joint. 

From the observations above, a new approach to theoretically derive joint 

matching conditions is required in order to develop exact higher-order beam 

theory-based analysis applicable to three or more box beams-joint structures. 

Especially when the joint is defined as a point box beam members being connected 

to, similar to classical beam theories or Refs. [39-42], there is no research so far 

which gives exact matching conditions defined at that joint point. From the 

observation that two adjacent box beam members always share one common edge 

near the joint, Jang et al. [43] have recently proposed joint matching conditions 

defining three-dimensional displacement continuity between those two members 

along the actual location of common edge, and analyzed three box beams-joint 

structures under out-of-plane loads by employing those matching conditions. Since 

the joint is described as several scattered points, however, equilibriums of the 

resultant forces or moments cannot be held exactly at the joint, and that builds in 

errors in the analyses. 

In this study, three or more box beams-joint structures under out-of-plane 

bending or torsion will be analyzed by using a higher-order beam theory. The 

unique contribution of this investigation is to derive the exact matching relations 

among all field variables of box beams meeting at the joint. Figure 3.1 shows a 

three or more box beams-joint structure. Only a portion of the structure, such as 

Beam i-1, Beam i, and Beam i+1 ( 2i ≥ ) is depicted, for convenience. It is 

assumed that all the box beams in Fig. 3.1 are placed on the same plane, and also  
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Fig. 3.1 Three or more thin-walled box beams-joint structures (only a portion of 
the structure such as Beam i-1, Beam i, and Beam i+1 (i ≥ 2), is depicted, for 
convenience.). 

 

assumed that their width, height, and thickness are equal to b, h, and t, respectively. 

In this study, in order to interpret the box beams-joint structure depicted in Fig. 3.1 

by using the higher-order beam theory, the connectivity between box beams is 

modeled as shown in Fig. 3.2. As with the classical beam theories or Refs. [39-42], 

the point where all the box beams converge is defined as the joint (strictly speaking, 

the joint refers to the point where the central axes of box beams meet). Shared Side 

Edge i-1 in Fig. 3.1, which is shared by Beam i-1 and Beam i ( 2i ≥ ), is extended 

and represented in Fig. 3.2 by Edge 1 1i iM M− −′  in Beam i-1 and Edge i iN N ′  in 

Beam i separately. So, in this study, Edge 1 1i iM M− −′  and Edge i iN N ′  are 

considered as if they were attached rigidly to each other (by an imaginary rigid 

body). 
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(a) 

 

(b) 

Fig. 3.2 (a) Beam modeling for the three or more box beams-joint structures 
(Edge Mi-1M’i-1 of Beam i-1 and Edge NiNi’ of Beam i (i ≥ 2) are considered as if 
they were connected rigidly to each other (by an imaginary rigid body).), (b) the 
top view of beam modeling (Edge Mi-1M’i-1 of Beam i-1 and Edge NiNi’ of Beam i 
are extended and separated from Shared Side Edge i-1 (i ≥ 2) in Fig. 3.1.). 

 

Therefore, although Edge 1 1i iM M− −′  and Edge i iN N ′  are separated from each 
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other, both the equilibrium between the forces and the continuity between the 

displacements, which are generated at each of those edges, can be considered. 

As mentioned above, the key of this study is to find joint matching conditions 

among field variables that can be applied to the three or more box beams-joint 

structure. To this end, joint equilibrium conditions among generalized forces, 

which are the work conjugates of the field displacement variables, will be precisely 

defined first. Then, taking into account the defined equilibrium conditions and the 

principle of virtual work together, joint matching conditions among field variables 

will be theoretically derived. In this process, note that the work conjugates of the 

field variables representing the cross-sectional warping and distortion do not 

generate any resultant forces or moments acting on the cross-section, but do 

generate stress resultants acting on each of the edges. Therefore, if the equilibriums 

on the edges (Edge 1 1i iM M− −′ , Edge i iN N ′ , etc.) are considered in addition to the 

resultant forces and moments equilibriums, then generalized forces equilibrium 

conditions which are consistently valid for the three or more box beams-joint 

structures can be determined. Although the purpose of this study is to derive 

equilibrium conditions or matching conditions applicable to the three or more box 

beams-joint structures, the derived conditions should also be valid for the two box 

beams-joint structures in order for this approach to be reasonable. According to this 

observation, we derive more generalized matching conditions on the basis of Choi 

et al. [42] who derived the exact matching conditions with respect to two box 

beams-joint structures. More detailed procedures will be given after the 



43 

fundamentals of higher-order beam theory for straight thin-walled box beams are 

presented. In order to verify the validity of the proposed joint matching conditions, 

two case studies including T-joint problems will be examined. The accuracy of the 

proposed analysis method will be checked by comparison with the results of 

ABAQUS shell analysis [44]. 

 

3.2 Higher-Order Beam Theory for Straight Thin-Walled Box 

Beams 

First, a higher-order beam theory for straight thin-walled box beams, which is 

required if we are to interpret three or more box beams-joint structures, is 

introduced (see Refs. [6, 39] for more details). 

In this study, it is assumed that the box beams-joint structures are subjected to 

out-of-plane bending or torsion, so five functions of the axial coordinate z are 

considered for one-dimensional field variables of the higher-order beam theory: 

vertical bending deflection ( )yU z , bending/shear rotation ( )x zθ , torsional 

rotation ( )z zθ , warping ( )W z , and distortion ( )zχ  [39, 42]. Rigid-body motions 

of the box beam cross-section represented by ( ), ( ), and ( )y x zU z z zθ θ  or cross-

sectional deformations represented by ( ) ( )andW z zχ  are illustrated in Figs. 

3.3(a) and 3.3(b), respectively. 
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                                (a) 

 

 

 

 

 

(b) 

Fig. 3.3 (a) Rigid-body motions of the box beam cross-section represented by the 
field variables: vertical bending deflection Uy, bending/shear rotation θ x, and 
torsional rotation θ z, (b) deformations of cross-section represented by the field 
variables: warping W and distortion χ. 

 

In the higher-order beam theory, three-dimensional displacements of a point 

located on the contour line of the box beam cross-section can be expressed as 

follows, by using one-dimensional field variables T{ , , , , }y x zU Wθ θ χ=U  [6]: 

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y x zU W
n n y n x n z n nu s z s U z s z s z s W z s zθ θ χψ ψ θ ψ θ ψ ψ χ= ⋅ + ⋅ + ⋅ + ⋅ + ⋅

 (3.1a) 

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y x zU W
s s y s x s z s su s z s U z s z s z s W z s zθ θ χψ ψ θ ψ θ ψ ψ χ= ⋅ + ⋅ + ⋅ + ⋅ + ⋅  
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(3.1b) 

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y x zU W
z z y z x z z z zu s z s U z s z s z s W z s zθ θ χψ ψ θ ψ θ ψ ψ χ= ⋅ + ⋅ + ⋅ + ⋅ + ⋅  

(3.1c) 

where n and s represent a normal coordinate and a tangential coordinate defined on 

the contour line, respectively (see Fig. 3.2(a) for the positive directions of n and s). 

In Eq. (3.1), ( )p sαψ  ( , , ; , , , ,y x zp n s z U W= =α θ θ χ ), which are shape 

functions of s, are introduced to describe the displacement or deformation of the 

cross-section. Therefore, ( )p sαψ  represent the displacement in the p direction 

generated on the cross-section with respect to the unit magnitude of field variable 

α  [39]. The explicit expressions of ( )p sαψ  are given in Appendix A. 

Considering the Kirchhoff-Love plate theory [45], the three-dimensional 

displacements ( , ,n s zu u u   ) of a generic point located away from the contour line by 

n can be expressed as follows, by using ( , ,n s zu u u ) in Eq. (3.1): 

( , , ) , ( , , ) , ( , , )n n
n n s s z z

u uu n s z u u n s z u n u n s z u n
s z

∂ ∂
= = − = −

∂ ∂
     (3.2) 

where ( / )nn u s− ⋅ ∂ ∂  and ( / )nn u z− ⋅ ∂ ∂  represent displacements in the s direction 

and the z direction respectively, occurring as the normal to the contour line is 

rotated. Dominant or non-vanishing strains ( , ,ss zz szε ε γ ) at a generic point can be 

derived from ( , ,n s zu u u   ) in Eq. (3.2), and dominant or non-vanishing stresses 

( , ,ss zz szσ σ σ ) can be determined by applying the derived strains ( , ,ss zz szε ε γ ) to 
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the stress-strain relations. 

In this study, the following two equations are used as the stress-strain relations 

in order to define the dominant stresses ( , ,ss zzσ σ szσ ) precisely; either 

2 2( ), ( ),
1 1ss ss zz zz zz ss sz sz

E Ev v G
v v

σ ε ε σ ε ε σ γ= + = + =
− −

   (3.3a) 

or 

, ,ss ss zz zz sz szE E Gσ ε σ ε σ γ= = =             (3.3b) 

where , , ,andE G ν  represent Young’s modulus, shear modulus, and Poisson’s 

ratio, respectively. 

According to Kim and Kim [6], the dominant stresses derived from ( , ,z Wθ χ ) 

that represent torsion of the box beam are defined by using the stress-strain 

relations in Eq. (3.3a). According to the Timoshenko beam theory (see e.g. [2]) the 

dominant stresses derived from ( ,y xU θ ) that represent bending of the box beams 

are defined by using the stress-strain relations in Eq. (3.3b). Deriving the dominant 

strain associated with ( ,y xU θ ), only ( ,zz szε γ ) have non-zero values and 0ssε = . 

Therefore, only ( ,zz szσ σ ) are defined as dominant bending stresses, as with the 

Timoshenko beam theory, through the relations in Eq. (3.3b). 

Using the displacements, strains, and stresses defined at a generic point, the 

three-dimensional total potential energy for the straight thin-walled box beam can 

be defined. Then, carrying out the surface integral for the cross-section S and 

applying the principle of minimum total potential energy, one can derive the one-
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dimensional higher-order beam theory for the straight thin-walled box beam (see 

Refs. [6, 39] for the detailed procedures). 

The derived higher-order beam theory is expressed by the relationship between 

the one-dimensional field variables U and generalized forces { , , ,y x zF M M=F

T, }B Q  which are work conjugates of U . The generalized forces F  are defined 

as: 

( ) , ( ) , ( ) ,

( ) , ( )

y x zU
y zs s x zz z z zs s

S S S

W
zz z zs s

S S

F dsdn M dsdn M dsdn

B dsdn Q dsdn

θ θ

χ

σ ψ σ ψ σ ψ

σ ψ σ ψ

= = =

= =

∫∫ ∫∫ ∫∫

∫∫ ∫∫
 (3.4) 

where , , , , andy x zF M M B Q  denote one-dimensional force measures representing 

vertical force, bending moment, twisting moment, longitudinal bimoment, and 

transverse bimoment, respectively. 

 

3.3 Derivation of the Exact Joint Matching Conditions 

With respect to analysis of three or more box beams-joint structures by using the 

higher-order beam theory introduced in the previous section, the key is to define 

the exact joint matching conditions among the field variables which represent the 

behavior of the joint correctly.  

After explaining the difficulties whereby the stiffness of the joint is 

overestimated when the matching conditions proposed in Refs. [39, 42] are directly  
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Fig. 3.4 Two thin-walled box beams-joint structures. 

 

extended to three or more box beams-joint structures, we will propose and derive 

the exact joint matching conditions, which are applicable to three or more box 

beams-joint structures [46]. 

Concerning the two box beams-joint structure depicted in Fig. 3.4, the field 

variables of Beam k ( 1, 2k = ) are represented as, 

T{( ) , ( ) , ( ) , , }k y k x k z k k kU Wθ θ χ=U                (3.5) 

In Choi et al. [42], joint matching conditions between 1U  and 2U  are exactly 

defined by introducing joint matrix T . Through the various box beams-joint 

examples, it was shown that the matching conditions can describe the response of 

the joint precisely as interpreted by the shell elements. 

When a two box beams-joint structure is modeled as shown in Fig. 3.5 by 

adopting the same procedure as the modeling in Fig. 3.2, the matching conditions  
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(a) 

 

Fig. 3.5 (a) Beam Modeling for the two box beams-joint structures (Edge M1M’1 
of Beam 1 and Edge N2N2’ of Beam 2 are considered as if they were connected 
rigidly to each other (by an imaginary rigid body), and Edge N1N1’ of Beam 1 and 
Edge M2M’2 of Beam 2 are also considered as if being connected rigidly to each 
other (by an imaginary rigid body).), (b) the top view of beam modeling (Shared 
Side Edge 1 in Fig. 4 is extended and represented by Edge M1M’1 of Beam 1 and 
Edge N2N2’ of Beam 2 separately, and Share Side Edge 2 in Fig 4 is also extended 
and represented by Edge N1N1’ of Beam 1 and Edge M2M’2 of Beam 2 separately.). 

between 1U  and 2U  can be expressed as follows by using the joint matrix T



50 

proposed in Choi et al. [42]: (However, concerning the modeling in Fig. 3.5, the 

constraint conditions between Edge 1 1M M ′  and Edge 2 2N N ′  or between Edge 

2 2M M ′  and Edge 1 1N N ′  were not considered when the following matching 

conditions are defined.) 

2 2 1 1( )φ φ= − ⋅U T U                   (3.6a) 

or 

2 1
2

2 12 1 2 1 2 1
2

2 12 1 2 1 2 1

2 1

2 1

( ) ( )1 0 0 0 0
( ) ( )0 cos( ) sin( ) 0 ( ) {sin( )}
( ) ( )0 sin( ) cos( ) 0 ( ) {1 cos( )}

0 0 0 1 0
0 0 0 0 1

y y
b

x xb h
b

z zb h

U U

W W

θ θφ φ φ φ φ φ
θ θφ φ φ φ φ φ

χ χ

+

+

    
    − − − ⋅ −        = − − − ⋅ + −   

    
    
 −       

 (3.6b) 

where kφ  ( 1, 2k = ) represents the angle between the axial coordinate kz  of 

Beam k and globalz  in Fig. 3.5 (see Fig. 3.5(b) for the positive directions), and 

( 2 1φ φ− ) in Eq. (3.6) denotes the joint angle of the two box beams-joint structure. 

Observing the joint matrix 2 1( )φ φ−T , its submatrix A represents the matching 

conditions among rigid-body motions. Submatrix B represents additional rigid-

body motions ( 2 2( ) , ( )x zθ θ ) of Beam 2 generated by the higher-order deformations 

( 1 1,W χ ) of Beam 1, and submatrix C represents the matching conditions among 

higher-order deformations ( ,W χ ). 

If one wishes to directly extend the matching conditions in Eq. (3.6) for the 

three or more box beams-joint structure in Fig. 3.2, it could be written as: 

A B 

C 
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1 1 1 1 1 1 1 1( ) , ( ) , ( )i i i i i i i i i i i iφ φ φ φ φ φ− − + + − − + += − ⋅ = − ⋅ = − ⋅U T U U T U U T U  (3.7) 

where ( 1, , 1; 2)k k i i i iφ = − + ≥  refers to the angle between the axial coordinate 

kz  of Beam k and globalz , and kU  refers to the field variables of Beam k as 

defined with respect to the two box beams-joint structure. If the matching 

conditions in Eq. (3.7) are applied, the relations among 1 1, , ,andi i iχ χ χ− + , which 

are distortional deformation measures of Beam i-1, Beam i, and Beam i+1, 

respectively, will be expressed as (see submatrix C of joint matrix T ): 

1 1 1 1, ,i i i i i iχ χ χ χ χ χ− + − += − = − = −              (3.8) 

Because the relations in Eq. (3.8) should be satisfied for arbitrary 

1 1, , ,andi i iχ χ χ− + , the relations eventually represent 1 1 0i i iχ χ χ− += = = . 

Observing submatrix B in joint matrix T , on the other hand, it can be seen 

that rigid-body motions ( , ,y x zU θ θ ) of a beam connected to the joint are 

additionally induced by distortional deformation χ  as well as rigid-body motions 

of adjacent beams. Therefore, when the matching relations such as Eq. (3.8) 

( 1 1 0i.e. i i iχ χ χ− += = = ) are applied to the three or more box beams-joint structure, 

those relations overestimate the stiffness of the joint, and it is not possible to obtain 

an accurate result. For the same reason, when the matching conditions proposed in 

Jang et al. [39] are extended to the three or more box beams-joint structure, the 

stiffness of the joint again tends to be overestimated (see Ref. [43] for more details). 

Therefore, the joint matching conditions proposed in Refs. [39, 42] cannot be 
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directly extended to the three or more box beams-joint structure, and a new 

approach that is different from the existing methods should be developed, to deal 

with the three or more box beams-joint structure. 

The matching conditions among field variables that contain higher-order 

deformations ( ,W χ ) were determined mostly on the basis of the continuity among 

the three-dimensional displacements occurring at the joint [39-41, 43]. Since the 

higher-order deformations ( ,W χ ) represent highly complex three-dimensional 

displacements which are very different for each edge, as depicted in Fig. 3.3(b), the 

continuity among the three-dimensional displacements occurring at the joint of the 

three or more box beams-joint structure cannot be satisfied precisely when they are 

treated at a single joint point (or line) within the scope of the higher-order beam 

theory. Therefore, rather than considering the continuity among three-dimensional 

displacements directly, we propose in this study a method to derive the matching 

conditions by first deriving equilibrium conditions among the generalized forces 

( , ,y xF M , ,zM B Q ) of each beam at the joint. Using the generalized force 

matching conditions, we then derive the continuity conditions for the generalized 

displacements (or field variables), which are energy conjugates of those forces. 

If the joint is considered simply as a point, the terms ( , ,y x zF M M ) producing 

resultants can be expressed as a resultant force or moment, as shown in Fig. 3.6. 

But ( ,B Q ), which do not produce any resultant, cannot be expressed as a resultant 

force or moment acting on a point. In order to overcome this difficulty, we propose 
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to express ( ,B Q ), which are defined on the section, as so-called edge resultants as 

depicted in Fig. 3.7(a). Note that ( ,B Q ) can produce non-zero resultants on each 

edge of the section, those resultants will be called edge resultants. This new 

approach is proposed in this study for the first time, and is an important step 

towards the derivation of the matching conditions for the generalized 

displacements at the joint. 

As ( ,B Q ) are represented by the edge resultants, ( , ,y x zF M M ) having net 

resultants over the section can be also represented by edge resultants defined on 

each edge, as demonstrated in Fig. 3.7(b). In the subsequent discussions, the non-

vanishing resultants defined over the section will be referred to as “sectional” 

resultants. After all, a new method to represent ( ,yF , , ,x zM M B Q ) by edge 

resultants and to additionally consider equilibriums among edge resultants at the 

 

 

       (a)                    (b)                    (c) 

Fig. 3.6 Resultants (or sectional resultants) acting on the entire cross-section that 
are produced by the generalized forces: vertical force Fy, bending moment M x, 
and twisting moment M z. 



54 

edges shared by adjacent beams such as Edge 1 1i iM M− −′ , Edge i iN N ′ , etc. will be 

employed to derive the joint equilibrium conditions among generalized forces. It is 

worth emphasizing once again that this method is the key in a derivation of the 

joint matching conditions among generalized displacements (or field variables) at 

the joint where three or more box beams meet. 

 

3.3.1 Sectional and Edge Resultants Produced by Generalized 

Forces 

Prior to dealing with the generalized forces equilibriums, the stresses which 

generalized forces induce on the section will be introduced, and from those stresses, 

sectional or edge resultants will be derived. According to the higher-order beam 

theory, the stresses on the section vary linearly in the normal direction to the 

contour. However, the variance of the stresses along the normal direction is quite 

small, and the small amount of the variance is also eliminated through the surface 

integral, so the sectional or edge resultants will be defined by using the stresses on 

the contour. 

According to the higher-order beam theory, dominant stresses ( , ,zz ss zsσ σ σ ) 

on the contour can be related to the displacements as 

2( , ) ( ) ( ) ( ) ( )
1

x W
zz z x z

Es z E s z s W zθσ ψ θ ψ
ν

′ ′= ⋅ + ⋅
−

        (3.9a) 

( , ) 0ss s zσ =                        (3.9b) 
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(a) 

 

(b) 

Fig. 3.7 (a) Edge resultants acting on each edge of the cross-section that are 
produced by the self-equilibrated generalized forces: longitudinal bimoment B 
and transverse bimoment Q, (b) edge resultants acting on each edge of the cross-
section that are produced by the generalized forces having nonzero resultants: 
vertical force Fy, bending moment M x, and twisting moment M z 

 

( , ) { ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )}

y x zU
zs s y z x s z

W
z s

s z G s U z s z s z

s W z s z

′ ′= ⋅ + ⋅ + ⋅

′+ ⋅ + ⋅





θ θ

χ

σ ψ ψ θ ψ θ

ψ ψ χ
    (3.9c) 
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where 
()( )
s

• ∂
=

∂
 and 

( )( )
z

∂′ =
∂

. Whereas ( , ,y zU
s s s

θ χψ ψ ψ ) in Eq. (3.9c) are 

orthogonal to each other, ( ,x W
z z 

θψ ψ ) can be expressed in terms of ( , ,y zU
s s s

θ χψ ψ ψ ) 

because ,yx U W
z s z= = 

θψ ψ ψ z
s s

b h
b h

−
+

+
θ χψ ψ  (see the explicit expressions of ψ ’s in 

Appendix A). Therefore, ( , )zs s zσ  in Eq. (3.9c) can be written as a function of 

only ( , ,y zU
s s s

θ χψ ψ ψ ) as: 

( , ) [ ( ) { ( ) ( )} ( ) { ( ) ( )}

( ) { ( ) ( )}]

y zU
zs s y x s z

s

b hs z G s U z z s z W z
b h

s z W z

−′ ′= ⋅ + + ⋅ +
+

′+ ⋅ +

θ

χ

σ ψ θ ψ θ

ψ χ
 (3.10) 

By applying zzσ  in Eq. (3.9a) and zsσ  in Eq. (3.10) to the definitions of the 

generalized forces in Eq. (3.4) and carrying out the surface integral for the cross-

section S, they can be expressed in terms of generalized displacements as 

( ) ( , ) ( )

[ { } { }

{ }]

[ { }]

{ ( ) ( )}

y

y y yz

y

y y

y

U
y zs s

S

U U U
s s y x s s z

S
U

s s

U U
s s y x

S

F y x

F z s z s dsdn

b hG U W
b h

W dsdn

G U dsdn

GJ U z z

θ

χ

σ ψ

ψ ψ θ ψ ψ θ

ψ ψ χ

ψ ψ θ

θ

= ⋅

−′ ′= ⋅ ⋅ + + ⋅ ⋅ +
+

′+ ⋅ ⋅ +

′= ⋅ ⋅ +

′= +

∫∫

∫∫

∫∫
  (3.11a) 

The second line in Eq. (3.11a) can be reduced to the third line because of the 

orthogonality conditions such that 0yz U
s s

S

dsdn⋅ =∫∫ θψ ψ , 0yU
s s

S

dsdn⋅ =∫∫ χψ ψ  

(see Appendix A). In addition, the orthogonality condition between ( ,x W
z z
θψ ψ ) is 
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also satisfied as given in Appendix A. When those orthogonality conditions are 

used, the expressions for the remaining generalized forces can be simplified as 

( ) ( , ) ( ) ( )x

xx zz z M x
S

M z s z s dsdn EJ zθσ ψ θ ′= ⋅ =∫∫         (3.11b) 

( ) ( , ) ( ) { ( ) ( )}z

zz zs s M z
S

b hM z s z s dsdn GJ z W z
b h

θσ ψ θ −′= ⋅ = +
+∫∫   (3.11c) 

2( ) ( , ) ( ) ( )
1

W
zz z B

S

EB z s z s dsdn J W zσ ψ
ν

′= ⋅ =
−∫∫         (3.11d) 

( ) ( , ) ( ) { ( ) ( )}zs s Q
S

Q z s z s dsdn GJ z W zχσ ψ χ′= ⋅ = +∫∫       (3.11e) 

where ( , , , , )y x zJ F M M B Q=β β  denoting the moment of inertia for the 

generalized force β  is defined as 

2 2 2

2 2

( ) , ( ) , ( ) ,

( ) , ( )

y x z

y x z

U
F s M z M s

S S S

W
B z Q s

S S

J dsdn J dsdn J dsdn

J dsdn J dsdn

θ θ

χ

ψ ψ ψ

ψ ψ

= = =

= =

∫∫ ∫∫ ∫∫

∫∫ ∫∫
   (3.12) 

Considering the relations between generalized forces and field variables that are 

given in Eq. (3.11), zzσ  in Eq. (3.9a) and zsσ  in Eq. (3.10) can be written in 

terms of generalized forces as 

( ) ( )( , ) { ( )} { ( )}x x

x

M B Wx
zz zz zz z z

M B

M z B zs z s s
J J

θσ σ σ ψ ψ= + = +      (3.13a) 

( ) ( ) ( )( , ) { ( )} { ( )} { ( )}y yz z

y z

F UyM Q z
zs zs zs zs s s s

F M Q

F z M z Q zs z s s s
J J J

θ χσ σ σ σ ψ ψ ψ= + + = + +  

(3.13b) 
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where ( ,zz zsσ σ ) in Eq. (3.13) represent the stresses on the contour that generalized 

forces produce, and especially βσ  ( , , , ,y x zF M M B Q=β ) represents the stress 

produced by the generalized force β . Therefore, employing the stresses at 

arbitrary coordinates (s, z) that are given in Eq. (3.13), edge resultants produced by 

the generalized forces can be obtained. 

If one obtains first the sectional resultants from Eqs. (3.13a, b) through surface 

integral, non-zero resultants obtained from Eqs. (3.13a, b) are represented 

obviously by ( , ,y x zF M M ) only. Note that the contribution of the stresses 

( ,B Q
zz zsσ σ ), which are generated by ( ,B Q ), to ( ,yF ,x zM M ) is zero. Since ( ,B Q ) 

do not produce any net resultants on the section as observed above, ( ,B Q ) will be 

expressed by using edge resultants. 

Now, it will be shown how to obtain the edge resultants that generalized force 

β  ( =β , , , ,y x zF M M B Q ) produces. Stresses on (s, z) induced by those forces 

are given in Eq. (3.13), so edge resultants can be obtained by integrating stresses 

on each edge. The non-zero edge resultants determined from the stresses in Eq. 

(3.13) are axial force ( )z jF β , tangential force ( )s jF β , and normal moment ( )n jM β  

( , , , ,y x zF M M B Q=β ), and are defined as 

( ) ( ) ( ), ,z j zz s j zs n j zz
Edge j Edge j Edge j

F dsdn F dsdn M s dsdnβ β β β β βσ σ σ= = = ⋅∫∫ ∫∫ ∫∫   (3.14) 

Therefore, the edge resultants by the generalized force β  can be determined by 
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using Eq. (3.14). For example, the edge resultants acting on Edge 1 (see Fig. 3.2) 

are determined as, by carrying out the integration in Eq. (3.14), 

(1) (1) (1)
10, , 0
2

y y yF F F
z s y nF F F M= = =             (3.15a) 

(1) (1) (1)0, 0,
2( 3 )

x x xM M M
z s n x

hF F M M
h b

= = =
+

        (3.15b) 

(1) (1) (1)
10, , 0z z zM M M

z s z nF F M M
b h

= = =
+

          (3.15c) 

(1) (1) (1)0, 0,
( )

B B B
z s n

hF F M B
b b h

= = =
+

          (3.15d) 

(1) (1) (1)
10, , 0
2

Q Q Q
z s nF F Q M

b
= = =             (3.15e) 

where b and h denote the width and the height of the box beam cross-section 

respectively, as mentioned in Introduction. The edge resultants above can be 

expressed schematically by forces or moments on each edge, as depicted in Fig. 3.7. 

 

3.3.2 Generalized Forces Equilibrium Conditions 

Now, the exact equilibrium conditions among generalized forces at the joint will be 

derived by considering the equilibriums of the edge resultants given in Fig. 3.7 in 

addition to those of the sectional resultants given in Fig. 3.6. To this end, the results 

given in Choi et al. [42] will be utilized. Because those results in Choi et al. [42] 

were derived without considering the concept of edge resultants proposed in this 

study, we will first interpret the results from the viewpoint of equilibrium 
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conditions of the sectional and edge resultants; this step is crucial to extend the 

results by Choi et al. [42] to joint structures involving more than two box beams. 

Concerning the two box beams-joint structure depicted in Fig. 3.5, the 

equilibrium conditions between the generalized forces of Beams 1 and 2, 1F  and 

2F , can be written as 

T
2 1 1 2( )φ φ− − ⋅ + =T F F 0                   (3.16) 

where T  is the joint matrix given in Eq. (3.6) and kF  ( 1, 2k = ) is defined as 

T{( ) , ( ) , ( ) , , }k y k x k z k k kF M M B Q=F              (3.17) 

The matrix T
2 1( )− −T φ φ , the transpose of the inverse of 2 1( )−T φ φ , transforms 

the generalized force 1F  into the force based on the local coordinate system of 

Beam 2 ( 2 2 2, ,x y z ). Because the equation given in Eq. (3.16) is derived from the 

displacement continuity and other geometrical conditions without considering the 

concepts of sectional and edge resultants, the result will be now interpreted in 

terms of the sectional and edge resultants. 

If we write Eq. (3.16) explicitly as 

1 2 1 1 2 1 2( ) cos( ) ( ) sin ( ) ( ) 0x z xM M Mφ φ φ φ− − − + =       (3.18a) 

1 2 1 1 2 1 2( ) sin ( ) ( ) cos( ) ( ) 0x z zM M Mφ φ φ φ− + − + =       (3.18b) 

1 2 0B B+ =                       (3.18c) 

1 2( ) ( ) 0y yF F+ =                     (3.18d) 
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1 2 1 1 2 1 1 2
2 2( ) sin ( ) ( ) {1 cos( )} 0x z
b bM M Q Q

b h b h
φ φ φ φ− − − + − − + =

+ +
 (3.18e) 

one can rewrite Eqs. (3.18a-e) as, in terms of the sectional and edge resultants, 

1 2 1 1 2 1 2( ) cos( ) ( ) sin ( ) ( ) 0x z xM M Mφ φ φ φ− − − + =       (3.19a) 

1 2 1 1 2 1 2( ) sin ( ) ( ) cos( ) ( ) 0x z zM M Mφ φ φ φ− + − + =       (3.19b) 

1 2{ } { } 0
( ) ( )

b bB B
h b h h b h

− + − =
+ +

            (3.19c) 

1 1 1 2 2 2
1 1 1 1 1 1{ ( ) ( ) } { ( ) ( ) } 0
2 2 2 2y z y zF M Q F M Q

b h b b h b
+ + + − − =

+ +
 (3.19d) 

1 1 1 2 2 2
1 1 1 1 1 1{ ( ) ( ) } { ( ) ( ) } 0
2 2 2 2y z y zF M Q F M Q

b h b b h b
− − + + + =

+ +
 (3.19e) 

Note that Eqs. (3.19a, b) are equal to Eqs. (3.18a, b), and that Eq. (3.19c) can be 

obtained through multiplying Eq. (3.18c) by / { ( )}b h b h− + . Meanwhile, Eq. 

(3.18e) can be simplified to 

1 1 2 2
2 2{ ( ) } { ( ) } 0z z
b bM Q M Q

b h b h
− − + + =

+ +
         (3.20) 

because 1 2 1 1 2 1
2 {( ) sin ( ) ( ) cos( )}x z
b M M

b h
− − + −

+
φ φ φ φ  in Eq. (3.18e) is equal to 

2
2 ( )z
b M

b h+
 according to Eq. (3.18b). Therefore, Eqs. (3.19d, e) can be obtained, 

first by multiplying Eqs. (3.18d) and (3.20) by 1 / 2  and 1 / (2 )b  respectively, and 

then adding or subtracting those two expressions. 

Let us interpret Eq. (3.19) in terms of the sectional and edge resultants. First, 
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Eqs. (3.19a, b) represent equilibrium conditions in terms of the sectional resultants 

( ,x zM M ); Eq. (3.19a) represents the moment equilibrium in the 2x  direction, and 

Eq. (3.19b) represents the moment equilibrium in the 2z  direction (see Fig. 3.5 for 

the positive directions of 2x  and 2z ). Therefore, it can be found from Eqs. (3.19a, 

b) that the resultant moment equilibriums should be satisfied at the joint depicted in 

Fig. 3.5. For our later extension to the case when more than two box beams meet at 

a joint, the equilibrium conditions in Eqs. (3.19a, b) can be expressed as, based on 

the global coordinate system ( global global global, ,x y z ): 

global global1 2( ) ( ) 0x xM M+ =                  (3.21a) 

global global1 2( ) ( ) 0z zM M+ =                  (3.21b) 

where 
global

( )x kM  and 
global

( )z kM  ( 1, 2)k =  are defined as 

global
( ) ( ) cos ( ) sinx k x k k z k kM M Mφ φ= +             (3.22a) 

global
( ) ( ) sin ( ) cosz k x k k z k kM M Mφ φ= − +            (3.22b) 

The symbols 
global

( )x kM  and 
global

( )z kM  represent the resultant moments of Beam k 

in the globalx  direction and in the globalz  direction, respectively. 

Examining Eqs. (3.19c-e), one can see that they represent equilibrium 

conditions in terms of edge resultants depicted in Fig. 3.7. In order to interpret the 

meaning of the equilibrium conditions given in Eqs. (3.19c-e), the connectivity 

between the edges of Beam 1 and those of Beam 2 at the joint shown in Fig. 3.5 
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should be investigated first because, unlike the sectional resultants defined for the 

entire cross-section, the edge resultants are defined for each edge of the section. In 

Fig. 3.5, Edge 1 1M N  and Edge 2 2M N  that represent Edge 2 of Beam 1 and 

Beam 2 respectively meet at the joint. Similarly, Edge 1 1M N′ ′  and Edge 2 2M N′ ′  

that are Edge 4 of Beam 1 and Beam 2 respectively meet at the joint. Therefore, the 

equilibrium conditions can be considered among the edge resultants acting on Edge 

2 of Beam 1 and Beam 2 or among those acting on Edge 4 of Beam 1 and Beam 2. 

Because the remaining edges (Edge 1 and Edge 3 of Beam 1 and Beam 2) are 

not connected to each other in the model introduced to interpret the two box 

beams-joint structure shown in Fig. 3.5, it is necessary to define how those edges 

are connected. In this study, the connectivity among those edges is determined 

based on the actual joint connectivity depicted in Fig. 3.4. Edge 1 1M M ′  and Edge 

2 2N N ′  in Fig. 3.5 representing Edge 1 of Beam 1 and Edge 3 of Beam 2 

respectively are extended and expressed separately from Shared Side Edge 1 in Fig 

3.4. Therefore, Edge 1 1M M ′  and Edge 2 2N N ′  can be considered as if they were 

connected rigidly to each other (by an imaginary rigid body) although they are 

separated. Likewise, because Edge 1 1N N ′  and Edge 2 2M M ′  in Fig. 3.5 

representing Edge 3 of Beam 1 and Edge 1 of Beam 2 respectively are extended 

and separated from Shared Side Edge 2 in Fig. 3.4, they can be also considered as 

if they were connected rigidly to each other. Considering such rigid connections, 

the equilibrium among the edge resultants defined on Edge 1 of Beam 1 and on 
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Edge 3 of Beam 2 can be considered, and the equilibrium among those on Edge 3 

of Beam 1 and on Edge 1 of Beam 2 can also be considered. 

Based on the edge connectivities explained above, Eq. (19c) can be written as 

the normal moment equilibrium on Edge 2 or Edge 4 as: 

(2) 1 (2) 2( ) ( ) 0n nM M+ =                   (3.23a) 

(4) 1 (4) 2( ) ( ) 0n nM M+ =                   (3.23b) 

where (2)( )n kM  and (4)( )n kM  ( 1, 2)k =  are defined as 

(2) (4)( ) ; ( )
( ) ( )n k k n k k

b bM B M B
h b h h b h

= − = −
+ +

     (3.24a, b) 

The symbols (2)( )n kM  and (4)( )n kM  represent the normal moment components 

of Beam k on Edge 2 and Edge 4, respectively (see the edge resultants given in Fig. 

3.7). Therefore, it can be found from Eq. (3.19c) that the equilibrium for the normal 

moments defined on Edge 1j 1( 2, 4)j =  should be satisfied at the joint in Fig. 3.5. 

Equations (3.19d, e) can be written as the equilibrium among tangential edge 

forces defined on Edge 1 and Edge 3 of two beams: 

(1) 1 (3) 2( ) ( ) 0s sF F− =                    (3.25a) 

(3) 1 (1) 2( ) ( ) 0s sF F− + =                    (3.25b) 

where (1)( )s kF  and (3)( )s kF  ( 1, 2)k =  are given by 

(1)
1 1 1( ) ( ) ( )
2 2s k y k z k kF F M Q

b h b
= + +

+
           (3.26a) 
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(3) 1 1 1
1 1 1( ) ( ) ( )
2 2s k y zF F M Q

b h b
= − + +

+
          (3.26b) 

The symbols (1)( )s kF  and (3)( )s kF  represent the tangential forces of Beam k on 

Edge 1 and Edge 3, respectively (see the edge resultants given in Fig. 3.7). In 

deriving Eqs. (3.25a, b), care should be taken over the sign, because the positive 

tangential directions of Edge 1 and Edge 3 are opposite (see Fig. 3.2). Equations 

(3.25a, b) represent equilibriums in the globaly  direction, which is the same as the 

tangential direction of Edge 1. 

The analysis thus far reveals that the five equations in Eq. (3.18) taken from 

Choi et al. [42] correspond to two equilibrium conditions involving sectional 

resultants and three equilibrium conditions involving edge resultants. For a later 

extension to three or more box beams-joint structures, they are rewritten in terms of 

sectional and edge resultants as 

global global1 2( ) ( ) 0x xM M+ =                  (3.27a) 

global global1 2( ) ( ) 0z zM M+ =                  (3.27b) 

(2) 1 (2) 2 (4) 1 (4) 2( ) ( ) ( ) ( ) 0n n n nM M M M+ = + =          (3.27c) 

(1) 1 (3) 2( ) ( ) 0s sF F− =                    (3.27d) 

(3) 1 (1) 2( ) ( ) 0s sF F− + =                    (3.27e) 

Let us now consider the extension of Eq. (3.27) to the structure that 

( 3)N N ≥  box beams are connected at the joint shown in Fig. 3.2. Because Eq. 
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(3.27) is defined as the equilibrium conditions for sectional and edge resultants, Eq. 

(3.27) is easy to be extended for the joint where three or more box beams meet. 

In order to determine the equilibrium conditions for edge resultants, 

connectivity among the edges of N box beams at the joint should be investigated. 

Since Edge 1 1( 2, 4)j j =  of N box beams meet at the joint (see Fig. 3.2), 

equilibrium among (
1( )n jM ) of N box beams can be considered. Connectivity 

among the remaining edges can be determined by considering the actual joint 

depicted in Fig. 3.1. For two adjacent box beams (Beam ( 1, 2, , )k k N= ⋅⋅⋅  and 

Beam k+1; Beam N+1 refers to Beam 1), Edge 1 of Beam k and Edge 3 of Beam 

k+1 can be considered as if they were connected rigidly to each other. Therefore, 

the equilibrium between (1)( )s kF  and (3) 1( )s kF +  can be now considered. 

Based on the connectivity among edges of box beams explained above, the 

generalized forces equilibrium conditions at the joint of ( 3)N N ≥  box beams-

joint structure can be written as follows by extending the equilibrium conditions for 

sectional resultants or edge resultants given in Eq. (3.27): 

global
1

( ) 0
N

x k
k

M
=

=∑                     (3.28a) 

global
1

( ) 0
N

z k
k

M
=

=∑                     (3.28b) 

(2) (4)
1 1

( ) ( ) 0
N N

n k n k
k k

M M
= =

= =∑ ∑                (3.28c) 
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(1) (3) 1( ) ( ) 0

( : Naturalnumber, 1 )

s i s iF F

i i N

+− =

≤ ≤
  (3.28d) 

where Eqs. (3.28a-c) express the equilibrium conditions in which all (
global

( )xM

global 1( ), ( ), ( )z n jM M 1( 2, 4)j = ) defined in N box beams participate, regardless of 

the number of box beams meeting at the joint, and Eq. (3.28d) represents the 

equilibrium condition between sF  acting on the edges of the adjacent two beams 

Beam i and Beam i+1 (1 i N≤ ≤ ). Therefore, Eq. (3.28d) consequently represents 

N number of equations, and Eqs. (3.28a-d) are expressed by N+3 number of 

equations for the case that N box beams meet at the joint. In case of 2N = , Eq. 

(3.28d) recovers Eqs. (3.27d, e). 

 

3.3.3 Field Variables Joint Matching Conditions 

Using the generalized forces equilibrium conditions defined above, let us now 

derive the joint matching conditions among field displacement variables 

( , , , ,y x zU Wθ θ χ ). Because the field variables are the work conjugates of the 

generalized forces, one can associate them with the generalized forces by 

considering the principle of virtual work that the sum of virtual works is zero. In 

what follows, we will theoretically derive the matching conditions among field 

variables from the generalized forces equilibrium conditions. 

For the derivation, the joint matching conditions among field variables of 
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Beam 1 and Beam 2 shown in Fig. 3.5 will be examined first by using the 

equilibrium conditions in Eq. (3.27) derived for two-beam joints. Then the 

conditions will be extended for the three or more box beams-joint structures. (In 

theory, the field variables matching conditions may be derived directly from Eq. 

(3.28), but the derivation is found to be too complex to employ.) 

Referring to the two box beams-joint structure depicted in Fig. 3.5, consider 

kF  and kU  ( 1, 2k = ) denoting the generalized forces and field variables of Beam 

k, respectively. In terms of kF  and kU  ( 1, 2k = ), the principle of virtual work at 

the joint can be expressed as 

2
T T

Beam 1 1 2 2
1
( | ) ( ) ( ) 0k

k
Wδ δ δ

=

′ = + =∑ F U F U            (3.29) 

Equation (3.29) shows the sum of Beam( | )kW ′δ , which is complementary virtual 

work of Beam k, is zero [47], where kFδ  refers to the admissible virtual force of 

Beam k. Because 1Fδ  and 2Fδ  comply with the equilibrium conditions in Eq. 

(3.27), 1Fδ  and 2Fδ  must satisfy the following relation: 

1 21 2 0δ δ⋅ + ⋅ =F FM F M F                  (3.30a) 

or 
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1 1 1

1 1 1
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1 1 1
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     (3.30b) 

where the matrices 
1FM  and 

2FM  are invertible because Eq. (3.30) represent 

five independent equilibrium conditions. 

In order to apply the equilibrium conditions of 1Fδ  and 2Fδ  given in Eq. 

(3.30) to Eq. (3.29), let us first express T( ) ( 1, 2)k k k =F Uδ  in Eq. (3.29) as, by 

using the matrix 
kFM  in Eq. (30): 

1 1 2 2

1 1 2 2

2
T T T T T T

Beam 1 1 2 2
1

T T T T
1 1 2 2

( | ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0

k
k

Wδ δ δ

δ δ

− −

=

− −

′ = ⋅ ⋅ + ⋅ ⋅

= ⋅ ⋅ + ⋅ ⋅ =

∑ F F F F

F F F F

F M M U F M M U

M F M U M F M U
 (3.31) 

According to Eq. (3.30), the relation between (
1 1δ⋅FM F ) and (

2 2δ⋅FM F ) in Eq. 

(3.31) is expressed as 
2 12 1( ) (δ δ⋅ = − ⋅F FM F M F ) . Thus, applying this relation to 

Eq. (3.31) yields 

1 1 2

1 1 2

2
T T T

Beam 1 1 2
1

T T T T
1 1 2

( | ) ( ) ( )

( ) ( )} 0

k
k

Wδ δ

δ

− −

=

− −

′ = ⋅ ⋅ − ⋅

= ⋅ ⋅ − ⋅ =

∑ F F F

F F F

M F M U M U

F {M M U M U
    (3.32) 
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Because Eq. (3.32) should be satisfied for arbitrary 1Fδ , it can be found that 

1

T ⋅F{M
1 2

T T
1 2( )}− −⋅ − ⋅F FM U M U  in Eq. (3.32) should be zero. Note that the matrix 

1

T
FM  is invertible as mentioned above. Therefore, the following relation must hold: 

1 2

T T
1 2

− −⋅ = ⋅F FM U M U                     (3.33) 

Equation (3.33) represents the matching conditions to be met among the field 

variables when the equilibrium conditions in Eq. (3.27) are satisfied at the joint in 

Fig. 3.5. Based on the definitions of 
1FM  and 

2FM  in Eq. (3.30), Eq. (3.33) can 

be explicitly written as 

1 1 1 1 2 2 2 2( ) cos ( ) sin ( ) cos ( ) sinx z x zφ φ φ φΘ + Θ = Θ + Θ       (3.34a) 

1 1 1 1 2 2 2 2( ) sin ( ) cos ( ) sin ( ) cosx z x zφ φ φ φ− Θ + Θ = − Θ + Θ      (3.34b) 

1 1( ) 1 ( ) 2 1( ) ( ) ( 2, 4)n j n j jΘ = Θ =         (3.34c) 

(1) 1 (3) 2( ) ( )s sU U= −                    (3.34d) 

(3) 1 (1) 2( ) ( )s sU U− =                      (3.34e) 

where (2) (2) (1) (3), , , , , andx z n n s sU UΘ Θ Θ Θ  are defined as 

2;x x z z
b

b h
θ θ χΘ = Θ = −

+
              (3.35a, b) 

(2) (4)
( )

n n
h b h W

b
+

Θ = Θ = −               (3.35c, d) 

(1) (3);s y s yU U b U U bχ χ= + = − +            (3.35e, f) 

Although the expressions in Eq. (3.34) look different from the matching 
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conditions in Eq. (3.6) that Choi et al. [42] proposed, Eq. (3.34) represents the 

same relations among the field variables as those in Eq. (3.6); Eq. (3.6) can be 

derived directly from Eq. (3.34). While Eq. (3.6) was derived by taking directly 

into account the various conditions for the displacements, Eq. (3.34) derived in this 

study is obtained from the generalized forces equilibrium conditions and the 

principle of virtual work. The advantage of using Eq. (3.34) over Eq. (3.6) is that 

the specific formula by Eq. (3.34) can be directly extended to the case of three or 

more box beams-joint structures. 

In order to extend the results in Eq. (3.34) for the joint where three or more 

box beams meet, the meaning of the matching conditions in Eq. (3.34) should be 

understood. Equations (3.34a, b) represent the continuity conditions among the 

work conjugates of the resultant moments considered in the equilibrium conditions 

in Eq. (3.27a, b). Therefore, ( )x kΘ  and ( ) ( 1, 2)z k kΘ =  in Eqs. (3.34a, b) will 

be called the sectional effective rotation of Beam k at the joint in the kx  direction 

and in the kz  direction respectively, as depicted in Fig. 3.8(a, b). Based on this 

observation, it can be found that Eq. (3.34a) represents the continuity condition 

between 
global

( ) ( ) cos ( ) sinx k x k k z k kφ φΘ = Θ + Θ  ( 1, 2k = ), which denotes the 

sectional effective rotation of Beam k in the globalx  direction. Likewise, Eq. (3.34b) 

represents the continuity condition between 
global

( ) ( ) sin ( )z k x k k z kφΘ = − Θ + Θ

cos kφ  
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(a)                               (b) 

 

 

           (c)                               (d) 

Fig. 3.8 Sectional displacements or edge displacements of Beam k (k=1, 2, …, N) 
associated with the generalized displacements (or field variables) joint matching 
conditions: (a) sectional effective rotation (Θ x)k in the xk direction, (b) sectional 
effective rotation (Θ z)k in the zk direction, (c) edge rotation (Θ n(2)) k of Edge 2 in 
the yk direction and edge rotation (Θ n(4)) k of Edge 4 in the – yk direction, (d) edge 
displacement (U s(1))k of Edge 1 in the yk direction and edge displacement (U s(3))k 
of Edge 3 in the – yk direction 

 

( 1, 2)k = , which denotes the sectional effective rotation of Beam k in the globalz  

direction. 

On the other hand, Eq. (3.34c) corresponds to the continuity condition between 

the work conjugates of the normal moments 
1( ) 1( 2, 4)n jM j =  shown in Eq. 
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(3.27c). Therefore, Eq. (3.34c) is a statement of the continuity condition between 

1( )( ) ( 1, 2)n j k kΘ =  which are the rotations of Edge 1j  of Beam k in the normal 

direction as depicted in Fig. 3.8(c). 

Lastly, Eqs. (3.34d, e) represent the continuity conditions between the work 

conjugates of the tangential forces 
2( ) 2( 1, 3)s jF j =  shown in Eqs. (3.27d, e). 

Therefore, (1)( )s kU  and (3)( )s kU  ( 1, 2k = ) in Eqs. (3.34d, e) denote the 

displacements of Edge 1 and Edge 3, respectively, in the tangential direction as 

depicted in Fig. 3.8(d). Because the positive tangential directions of Edge 1 and 

Edge 3 are along globalky y+ = +  and globalky y− = − , respectively (see Fig. 3.2), 

care should be taken over the sign. Thus, it can be found that Eq. (3.34d, e) express 

the continuity conditions with respect to the globaly  axis. 

Let us now derive the desired joint matching conditions at the joint where N 

( 3N ≥ ) box beams are connected, as shown in Fig. 3.2. As argued in the derivation 

of the generalized forces equilibrium conditions at the joint, Edge 1j  ( 1 2, 4j = ) 

of Beam k ( 1, 2, ,k N= ⋅⋅⋅ ) all meet each other at the joint, so continuity among 

1( )( ) ( 1, 2, , )n j k k NΘ = ⋅⋅⋅  can be considered. The continuity conditions between 

(1)( )s kU  and (3) 3( )s kU +  can also be considered because Edge 1 of Beam k 

( 1, 2, ,k N= ⋅⋅⋅ ) and Edge 3 of Beam k+1 (Beam N+1 refers to Beam 1) are 

regarded as being connected rigidly. 

Using the edge connectivities just explained above and generalizing the 
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displacement continuity conditions (34) for 2N =  to the case of 3N ≥ , the 

following relations can be obtained: 

global global global1 2( ) ( ) ( )x x x NΘ = Θ = ⋅⋅ ⋅ = Θ              (3.36a) 

global global global1 2( ) ( ) ( )z z z NΘ = Θ = ⋅⋅ ⋅ = Θ              (3.36b) 

1 1 1( ) 1 ( ) 2 ( ) 1( ) ( ) ( ) ( 2, 4)n j n j n j N jΘ = Θ =⋅⋅ ⋅ = Θ =   (3.36c) 

(1) (3) 1( ) ( ) (1 )s k s kU U k N+= − ≤ ≤   (3.36d) 

Equations (3.36a, b) represent the continuity conditions for the sectional effective 

rotations of N box beams in the globalx  direction and in the globalz  direction, 

respectively. Equation (3.36c) is the continuity condition for the edge rotations in 

the normal direction on Edge 1 1( 2, 4)j j =  of N box beams. On the other hand, 

Eq. (3.36d) is the continuity condition between the edge displacements in the globaly  

direction on Edge 1 of Beam k and Edge 3 of Beam k+1 (1≤ k ≤ )N . Therefore, 

the independent number of equations from Eq. (36) becomes 3 ( 1)N N× − +

4 3N= − . The consistency between the force equilibrium equations, Eqs. (3.28a-d) 

and the displacement continuity equations, Eqs. (3.36a-d) at the joint is 

demonstrated in Appendix B. 

 

3.4 Numerical Analysis 

For the N ( 3N ≥ ) box beams-joint structure under out-of-plane bending or torsion, 

the numerical method to analyze the response of the structure using the higher-
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order beam theory and the exact matching conditions given in Eq. (3.36) will now 

be introduced. Then, some numerical examples will be analyzed by using the 

proposed analysis method. By comparing the present results with those obtained by 

ABAQUS shell analyses or by Timoshenko beam analyses, the validity and 

accuracy of the proposed method will be demonstrated. 

 

3.4.1 Finite Element Equations 

The finite element equations for Beam k ( 1, 2, ,k N= ⋅⋅⋅ ) among N box beams 

connected at the joint will be presented by using the stiffness matrix for the box 

beam element given in Appendix C. The stiffness matrix for the beam element can 

be derived on the basis of Refs. [6, 26], and piecewise linear interpolation will be 

employed to interpolate displacement variables (see Appendix C). The resulting 

finite element equation becomes 

k k k⋅ =K d f                        (3.37) 

where , , andk k kK d f  in Eq. (3.37) refer to the stiffness matrix, the nodal 

displacement vector, and the nodal force vector for Beam k, respectively. 

Assembling all finite element equations for N box beams in numerical order, the 

finite element equations for the N box beams-joint structure can be determined: 

total total total⋅ =K d f                      (3.38) 

If n number of nodes are used to model the N box beams-joint structure, 

total total total, , andK d f  in Eq. (3.38) denote 5 5n n×  total stiffness matrix, 5 1n ×  
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total nodal displacement vector, and 5 1n ×  total nodal force vector, respectively. 

The next step is to impose the matching conditions for nodal displacements of N 

box beams at the joint. 

The proposed exact matching conditions of Eq. (3.36) can be applied to the 

finite element equations by using the method of Lagrange multipliers [48], an 

optimization method to find the maximum or minimum value of a function subject 

to equality constraints. Associated with this study, a problem to minimize the total 

potential energy of the N box beams-joint structure subject to the joint matching 

conditions in Eq. (3.36) is solved by employing the method of Lagrange multipliers. 

To facilitate subsequent analysis, the matching conditions in Eq. (3.36) are 

expressed as equality constraints for totald  as 

total⋅ =S d 0                        (3.39) 

where S is a (4 3) (5 )N n− ×  matrix and Eq. (3.39) yields ( 4 3N − ) independent 

equations. By introducing the Lagrange multiplier λ , the following Lagrangian 

LΠ  can be defined: 

T T T
total total total total total total

1( , ) ( )
2L total = − + ⋅Π d λ d K d d f λ S d       (3.40) 

According to the method of Lagrange multipliers, the stationary conditions of LΠ  

yields 

T
total total total

total

0;L∂
= − +

∂
Π K d f λ S = 0
d

            (3.41a) 
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total0;L∂
= ⋅ =

∂
Π S d 0
λ

                  (3.41b) 

The nodal displacement vector in Eqs. (3.41a, b), totald , satisfies the matching 

conditions in Eq. (3.36) and minimizes the potential energy of the N box beams-

joint structure. Therefore, Eqs. (3.41a, b) represent the finite element equations for 

the N box beams-joint structure that include the matching conditions in Eq. (3.36). 

Finally, Eqs. (3.41a, b) can be expressed as a matrix equation as 

T
total totaltotal     

=    
    

d fk S
λ 0S 0

                (3.42) 

If proper boundary and loading conditions are prescribed, totald  (and λ ) can be 

determined from Eq. (3.42). Because the solution procedure is a standard one, no 

further discussion on numerical analysis will be necessary. 

 

3.4.2 Numerical Examples 

Several examples will be analyzed by using the finite element equations given in 

Eq. (3.42). The validity of the proposed approach will be demonstrated by 

comparing the results with those obtained from ABAQUS shell elements or 

Timoshenko beam elements. Because the joint flexibility is highly dependent upon 

the number of box beams connected at the joint, the joint angles among those 

beams, and the width and height (or aspect ratio) of the box beam cross-section, we 

will examine their effects on the solutions or the mechanical behavior of three or 

more box beams-joint structures. 
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Although box beam sections of different widths b and heights h are considered 

within a range 50mm , 200mmb h≤ ≤ , converged analysis results can be obtained 

with 40 beam elements regardless of those changes. Meanwhile, in two-

dimensional ABAQUS shell analysis, 12.5mm 12.5mm× square shell elements 

are mainly used to obtain converged analysis results. For example, if the 

dimensions of each box beam are width 50mmb = , height 100mmh = , and 

length 1000mmL = , it was found that the converged results were obtained if 

(4 8 4+ + + 8) 80 1920× =  shell elements were used to model the box beam in 

consideration. 

Case Study 1: T-Joint Structure. A T-joint structure as depicted in Fig. 3.9(a) 

is considered in the first case study. The T-joint structure is a special case of three 

box beams-joint structures in that the influence of the cross-sectional deformations 

on the behavior of the joint is significantly displayed. Therefore, it is difficult to 

predict the behavior of that structure correctly by a classical beam theory, and 

efforts to express the flexibility of the T-joint structure by introducing artificial 

joint elements were reported [11, 12, 16]. 
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              (a)                               (b) 

    

              (c)                               (d) 

    

              (e)                               (f) 

Fig. 3.9 Numerical results for the T-joint structure under vertical force Fy =100 N: 
(a) problem description (L=1000 mm, b=100 mm, h=50 mm, t=2 mm, φ 2= 90º), 
(b) vertical bending deflection Uy, (c) bending/shear rotation θ x, (d) torsional 
rotation θ z, (e) warping W, (f) distortion χ. 
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For the first example, the T-joint problem introduced in Jang et al. [43] is used. 

Beam 1 and Beam 3 are placed parallel to globalz , and the joint angle of Beam 2, 

2φ , is 90  . All the box beams that make up the T-joint structure are identical. The 

length of those beams is 1000 mmL = , and the width (b), height (h) and thickness 

(t) of those beams are 100 mmb = , 50 mmh = , and 2 mmt = , respectively. 

The material properties of those beams are Young’s modulus 200 GpaE = and 

Poisson’s ratio 0.3=ν . The ends of Beam 1 and Beam 3 denoted by A and C are 

fixed, and the end of Beam 2 denoted by B is subjected to a vertical force 

2( ) 100 NyF = . The loaded end B is assumed to be rigid. 

The results are given in Figs. 3.9(b-f) (the results include those by the 

approach in Jang et al. [43]). In the plot, the range of the axial coordinates, 

( 1, ; 1, 2, 3k k k− = ), corresponds to Beam k. Observing the results based on those 

from the shell analysis, one can find that the analysis using the Timoshenko beam 

theory overestimates the stiffness of the T-joint structure, as mentioned in 

Introduction. In contrast, one can find that the approaches from this study or from 

Jang et al. [43] provide more precise results because the influence of the cross-

sectional deformations are considered in those approaches. Especially, it can be 

seen that the approach proposed in this study, which employs the theoretically 

derived joint matching conditions, can predict the behavior of the T-joint structure 

as accurately as predicted by the shell analysis. 
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(a) 

 

(b) 

Fig. 3.10 (a) Numerical results for the T-joint structures shown in Fig. 9(a) with 
various widths (b) and heights (h) of the cross-section (or aspect ratios h/b) raging 
from b=200 mm, h=50 mm (h/b=50/200) to b=50 mm, h=200 mm (h/b=200/50), 
(b) numerical results for the T-joint structures shown in Fig. 9(a) with various 
joint angles φ 2 of Beam 2 ranging 10o ≤ φ 2 ≤90o. 

 

Next, we check whether or not accurate results can still be provided by the 
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proposed approach when either b or h of the cross-section or 2φ  (which is the 

joint angle of Beam 2) is changed for the T-joint structure given in Fig. 3.9(a). 

Problems defined by changing b and h of the previous T-joint problem in a range 

from 200mm, = 50mm ( / 50 / 200)b h h b= =  to 50mm, = 200mmb h=  ( /h b

200 / 50)=  are first solved, and the results are given in Fig. 3.10(a). The graph in 

Fig. 3.10(a) represents the variation in the vertical bending deflection 2( )yU  of the 

end B when the aspect ratio ( /h b ) of the cross-section is varied. From the results, 

it can be found that the proposed approach can provide accurate results for the box 

beams-joint structures with sections of various widths or heights. 

Problems defined from the first T-joint example by replacing b and h of the 

section as 50mm, = 100mmb h=  and changing 2φ  in a range from 10   to 

90   are also solved, and the results are given in Fig. 3.10(b). The graph in Fig. 

3.10(b) represents the variation in the vertical bending deflection 2( )yU  of the end 

B when 2φ  is increased. From the results, it can be found that the proposed 

approach can also provide accurate and reliable results for the box beams-joint 

structure with various joint angles. 

Case Study 2: N Thin-Walled Box Beams-Joint Structure. Box beams-joint 

structures involving several box beams are considered; see Fig. 3.11(a). To date, a 

beam theory-based analysis method applicable to complex box beams-joint 

structures, such as the one shown in Fig. 3.11(a), has not been proposed.  
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              (a)                                (b) 

     

              (c)                                (d) 

     

              (e)                                (f) 

Fig. Numerical results for the eight box beams-joint structure under torsional 
moment M z =100 N·m: (a) problem description (L=1000 mm, b=100 mm, h=50 
mm, t=2 mm, φ k= 45º (k=1, 2, …, 8)), (b) vertical bending deflecttion Uy. (c) 
bending/shear rotation θ x, (d) torsional rotation θ z, (e) warping W, (f) distortion χ. 
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Fig. 3.11 Numerical results for the box beams-joint structures with various 
numbers of box beams (N) ranging 3≤ N ≤8. 

 

The joint angle of Beam k ( 1, 2, , 8k = ⋅⋅⋅ ) in the beams-joint structure of Fig. 

3.11(a) is kφ
360( ) ( 1)
8

k= × − , so the angle between two adjacent beams is 

uniformly 45  . All box beams constituting the structure are identical. The length 

of those beams is 1000 mmL = , and the dimensions of the beam cross-sections are 

100 mm, 50 mm, and 2 mmb h t= = = , respectively. The material properties of 

those beams are Young’s modulus 200 GpaE =  and Poisson’s ratio 0.3=ν . The 

end of Beam 1 denoted by A is subjected to a twisting moment 1( )zM = 100 N m⋅ , 

and is assumed to be rigid. The ends of the other box beams (B-H) are all fixed. 

The results are given in Figs. 3.11(b-f). As in Fig. 3.9, the range of the axial 

coordinates, ( 1, ; 1, 2, , 8k k k− = ⋅⋅⋅ ), corresponds to Beam k. Examing the results 
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on the basis of those from the shell analysis, the analysis using the Timoshenko 

beam theory highly overestimates the stiffness of the structure, as observed in the 

previous result. However, the proposed method can predict the response of the 

structure almost as accurately as those from the shell analysis, even though the 

number of box beams connected at the joint is significantly increased. 

We now investigate if accurate results can be still obtained by the proposed 

method when the number of box beams connected at the joint is changed. To do 

this, problems that are defined based on the first example in Case study 2 are varied 

by changing the number of box beams connected at the joint, i.e. N is in a range 

3 8N≤ ≤ . The joint angle of Beam k ( 1, 2, ,k N= ⋅⋅⋅ ) is 
360( ) ( 1)k k
N

= × −φ , and 

the angle between the two adjacent beams is uniformly 
360( )
N

 . 

The results are given in Fig. 3.12. The graph in Fig. 3.12 represents the 

variation of torsional rotation 1( )zθ  at the end A of Beam 1 when N is increased. 

From the results, it can be found that the proposed approach can provide accurate 

results for a box beams-joint structure composed of various numbers of box beams. 

Lastly, the problem with more complicated boundary conditions as depicted in Fig. 

3.13(a) is considered; the structure shown in Fig. 3.13(a) is equal to the structure in 

the first example of case study 2. Observing the result given in Figs. 3.13(b-f), it 

can be found that the proposed approach can provide the correct result even where 

complicated boundary conditions are considered. 
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              (a)                              (b) 

    

              (c)                              (d) 

    

              (e)                              (f) 

Figure 3.13 Numerical results for the eight box beams-joint structure with more 
complicated boundary conditions: (a) problem description (L=1000 mm, b=100 
mm, h=50 mm, t=2 mm, φ k= 45º (k=1, 2, …, 8)), (b) vertical bending deflecttion 
Uy, (c) bending/shear rotation θ x, (d) torsional rotation θ z, (e) warping W, (f) 
distortion χ. 
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3.5 Conclusions 

When a three or more box beams-joint structure is subjected to out-of-plane 

bending or torsion, an analysis method based on the one-dimensional beam theory 

that is capable of analyzing the response of the structure is established. To take into 

account the influence of cross-sectional deformations on the behavior of the box 

beams-joint structure, the one-dimensional higher-order beam theory considering 

the warping and distortional deformations of the section as independent degrees of 

freedom is employed. The key in developing the one-dimensional analysis method 

for the box beams-joint structures is to determine the joint matching conditions 

among the field variables of the higher-order beam theory in which the warping 

and distortional deformations are included. In order to determine the exact joint 

matching conditions, joint equilibrium conditions of the generalized forces that are 

work conjugates of the field variables were first derived. Summarizing the process 

briefly, the generalized forces were expressed by the sectional resultants acting on 

the entire cross-section or the edge resultants acting on the edge of the section. 

Then, joint equilibrium conditions for the sectional resultants or edge resultants 

were determined based on the results in Choi et al. [42], and extending those 

conditions, the joint equilibrium conditions for the generalized forces that can be 

applied to the three or more box beams-joint structures were derived. Thereafter, 

considering the principle of virtual work at the joint in addition to the determined 

joint equilibrium conditions, the joint matching conditions for the field variables 

that are applicable to the three or more box beams-joint structures were exactly 
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derived. 

Several numerical examples were solved by using the method proposed in this 

study, and the results were compared with those obtained by ABAQUS shell 

elements. For those examples, it was demonstrated that the proposed method can 

predict the behavior of the three or more box beams-joint structures as accurately 

as the shell finite element method, regardless of the number of box beams 

connected at the joint, the joint angle among the box beams, and the width or 

height of the section of the box beams. Comparing with a shell based method, the 

proposed analysis method has advantages such as convenience for modeling, the 

ease of modeling changes, and significantly fast analysis. Therefore, introducing 

the proposed analysis method in the initial design stage of a vehicle, the initial 

design model of the vehicle that meets the design criteria can be determined 

quickly, and a better initial design model can be expected when employing an 

analysis method with optimization design techniques. In addition, the methodology 

for deriving the joint matching conditions can be expected to be an important 

foundation for expanding the scope of structures that can be interpreted by using 

the higher-order beam theory-based approach to a three-dimensional box beams-

joint structure. 
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Appendix A 

The explicit expressions of the shape functions ( )p sαψ  ( , , ; , ,y xp n s z U= =α θ

, , )z Wθ χ  that are introduced in the higher-order beam theory to describe the 

displacements or deformations of the cross-section are given. The shape functions 

( )p sαψ  are separately defined on each edge for convenience; ( )p jsαψ  ( 1, 2,j =

3, 4 ) denotes the shape function defined on Edge j. The coordinate js  is based on 

the center of Edge j and is measured along the contour of Edge j. 

( 2)/2

( 1)/2

( ) 0 (for  1,  3)  and  ( 1) (for  2,  4)

( ) ( 1) (for  1,  3) and 0 (for  2,  4)

( ) 0 (for  1,  2, 3, 4)

y

y

y

U j
n j

U j
s j

U
z j

s j j

s j j

s j

ψ

ψ

ψ

−

−

= = − =

= − = =

= =

 (3.A1) 

( 1)/2 ( 2)/2

( ) 0 (for  1,  2, 3, 4)

( ) 0 (for  1,  2, 3, 4)

( ) ( 1) s (for  1,  3) and ( 1) (for  2,  4)
2

x

x

x

n j

s j

j j
z j j

s j

s j
hs j j

θ

θ

θ

ψ

ψ

ψ − −

= =

= =

= − = − =

 (3.A2) 

( ) (for  1,  2, 3, 4)

( ) (for  1,  3) and (for  2,  4)
2 2

( ) 0 (for  1,  2, 3, 4)

z

z

z

n j j

s j

z j

s s j
b hs j j

s j

θ

θ

θ

ψ

ψ

ψ

= − =

= = =

= =

 (3.A3) 

( ) 0 (for  1,  2, 3, 4)

( ) 0 (for  1,  2, 3, 4)

( ) (for  1,  3) and (for  2,  4)
2 2

W
n j

W
s j

W
z j j j

s j

s j
b hs s j s j

ψ

ψ

ψ =

= =

= =

= − =

 (3.A4) 
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3

3

( )

( )

4 2 (for  1,  3)
( )

4 2   (for  2,  4)
( )

(for  1,  3) and (for  2,  4)

( ) 0 (for  1,  2, 3, 4)

n j

s j

j j

j j

z j

s

s

b hs s j
h b h b h

b hs s j
b b h b h
bh bhj j

b h b h
s j

=

=

+
− + =

+ +
+

− =
+ +

= − =
+ +

= =

χ

χ

χ

ψ

ψ

ψ

 (3.A5) 

where js  ( 1, 2, 3, 4j = ) are in the range of 1 3 2 4, ,
2 2 2 2

andh h b b
s s s s− ≤ ≤ − ≤ ≤ . 

One can show the following orthogonality relation between ( ,x W
z z
θψ ψ ): 

4

1
( ) ( ) { ( ) ( ) } 0x xW W

z z z j z j
jS Edge j

s s dsdn s s dsdnθ θψ ψ ψ ψ
=

⋅ = ⋅ =∑∫∫ ∫∫     (3.A6) 

Likewise, one can also show the orthogonality conditions among ( , ,y zU
s s s

θ χψ ψ ψ ): 

1 2 1 2

4

1

1 2 1 2

( ) ( ) { ( ) ( ) } 0

( , , ; , , ; )

s s s j s j
jS Edge j

y z y z

s s dsdn s s dsdn

U U

=

⋅ = ⋅ =

= = ≠

∑∫∫ ∫∫α α α αψ ψ ψ ψ

α θ χ α θ χ α α
 (3.A7) 

 

Appendix B 

In Appendix B, it will be shown that the sum of the virtual works for N ( 3)N ≥  

box beams is zero at the joint in Fig. 3.2 when both the equilibrium conditions in 

Eq. (3.28) and the matching conditions in Eq. (3.36) are satisfied among N box 

beams at the joint. 

If multiplying each condition in Eq. (3.28) by the admissible virtual 



91 

displacement associated with Eq. (3.36) (
global global 1( ) (1), , ,x z n j sUΘ Θ Θδ δ δ δ ) and 

adding those products, the resulting equation should be always zero regardless of 

the virtual displacements 

global global global global

1 1

1 1

( ) ( )
1

(1) (1) (3) 1
1

( ) { ( ) } ( ) { ( ) }

( ) { ( ) }

[ ( ) {( ) ( ) }] 0

N N

x p x k z p z k
k k

N

n j p n j k
k

N

s k s k s k
k

M M

M

U F F

δ δ

δ

δ

= =

=

+
=

Θ × + Θ ×

+ Θ ×

+ × − =

∑ ∑

∑

∑

     (3.B1) 

where 
global global 1( )( ) , ( ) , and ( )x p z p n j pΘ Θ Θδ δ δ  represent the virtual displacements 

of an arbitrary box beam, Beam p (1 )p N≤ ≤ . Because the virtual displacements 

introduced in Eq. (3.B1) satisfy the matching conditions in Eq. (3.36), Eq. (3.B1) 

can be expressed as 

global global global global

1 1

1 1

( ) ( )
1

(1) (1) (3) 1 (3) 1
1

( ) ( ) ( ) ( )

( ) ( )

[ ( ) ( ) ( ) ( ) }] 0

N N

x k x k z p z k
k k

N

n j k n j k
k

N

s k s k s k s k
k

M M

M

U F U F

δ δ

δ

δ δ

= =

=

+ +
=

Θ × + Θ ×

+ Θ ×

+ × + × =

∑ ∑

∑

∑

       (3.B2) 

When (3) 1 (3) 1( ) ( )s k s kU F+ +×δ  in Eq. (3.B2) is replaced by (3) (3)( ) ( )s k s kU F×δ , Eq. 

(3.B2) becomes (because Beam N+1 denotes Beam 1) 
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global global global global

1 1

1 1

( ) ( )
1

(1) (1) (3) (3)
1

( ) ( ) ( ) ( )

( ) ( )

[ ( ) ( ) ( ) ( ) }] 0

N N

x k x k z p z k
k k

N

n j k n j k
k

N

s k s k s k s k
k

M M

M

U F U F

δ δ

δ

δ δ

= =

=

=

Θ × + Θ ×

+ Θ ×

+ × + × =

∑ ∑

∑

∑

       (3.B3) 

Because the virtual displacements and the generalized forces in Eq. (3.B3) are 

the same as the expressions in Eq. (3.34) and in Eq. (3.27), respectively, Eq. (3.B3) 

can be rewritten in matrix form as, by employing the matrix F ( 1, 2, , )
k

k N= ⋅⋅⋅M , 

T T T 1 T
F F F F

1 1 1
( ) ( ) ( ) ( ) ( ) 0

k k k k

N N N

k k k k k k
k k k

δ δ δ− −

= = =

⋅ ⋅ = ⋅ ⋅ = =∑ ∑ ∑M U M F U M M F U F  (3.B4) 

Consequently, it can be found from Eq. (3.B4) that the sum of T( )k kU Fδ

( 1, 2, , )k N= ⋅⋅⋅ , representing the virtual work of Beam k, vanishes at the joint 

when the conditions in Eq. (3.28) and Eq. (3.36) are satisfied at the joint. 

 

Appendix C 

The total potential energy of the box beam ( 1 2z z z< < ) can be defined as 

2

2

1

1

2

1
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1

2 2 2 2
1 1 1

2 2 2
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1 ( )
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1 { ( ) ( ) ( ) ( )
2
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z
z

ij ij zz z zs s z
z S S

z
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z
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dAdz u u dA
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θ θ χ
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∫

Π  

   (3.C1) 
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where Jβ  ( , , , ,y x zF M M B Q=β ) represents the moment of inertia for the 

generalized force β  as defined in Section 3. 1, and the expressions of 

1 2, , , , , , and
y x zF M M B QJ J J J J C C  in Eq. (3.C1) are given by 

2
2 2

2 2
2 2

2 2 3
2 2

1

3 2 2
2

2

(3 )( ) 2 , ( ) ,
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( ) ( )( ) , ( ) ,
2 24
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∫∫ ∫∫

∫∫ ∫∫

∫∫ ∫∫

∫∫





)
15( )b h+

 (3.C2) 

According to Refs. [6, 26], the field variables ( )zU  of the one-dimensional 

box beam finite element ( 1 2z z z< < ) can be expressed in terms of the nodal 

displacement vector d and the linear shape function N  ( ξ  is a nondimensional 

coordinate in axial direction, and 1 1− ≤ ≤ξ  in the box beam element). 
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(3.C3) 

Deriving the one-dimensional finite element equation for the box beam element by 

applying the principle of minimum total potential energy, the resulting matrix 

equation is of the following form: 

= ⋅f K d                         (3.C4) 

where f  refers to the nodal force vector, as follows. 

T
1 1 1 1 1 2 2 2 2 2{ ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )}y x z y x zF z M z M z B z Q z F z M z M z B z Q z=f  

(3.C5) 

The stiffness matrix K  defined from the procedure above is as: 
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l refers to the length of the box beam element ( 2 1l z z= − ), and 1 21
EE =

−ν
. 
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CHAPTER 4.  
Higher-Order Beam Analysis for Two Box Beams-

Joint Systems Subjected to In-Plane Bending and 

Axial Loads 
 

4.1 Introduction 

Inconsistent with the hypothesis introduced in the classical Euler and 

Timoshenko beam theories (see e.g. Refs [1, 2]) is the fact that cross-

sectional deformations are easily found in thin-walled box beams. Thus 

thin-walled box beams show much more flexible behavior than the analysis 

results from use of the classical beam theories would suggest. Especially, 

when two box beams are connected at an angled joint as depicted in Fig. 4.1, 

highly flexible behavior is observed near the joint region [3, 4]. This is 

because the cross-sectional deformations of the two box beams are further 

amplified at the joint, and the actual behavior of the two box beams-joint 

system in Fig. 4.1 is considerably different from that predicted by the 

classical beam analysis due to joint flexibility. 

Because the classical beam theories inevitably overestimate the stiffness 

of thin-walled box beam structures (or members), one-dimensional higher-

order beam theories have been developed that include additional degrees of 
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freedom accounting for flexibility of thin-walled box beams caused by 

cross-sectional deformations [5-13]. In higher-order beam theory, however, 

defining matching conditions among the degrees of freedom at the joint is 

difficult because the cross-sectional deformations that do not produce any 

non-zero resultants are also considered for the matching. Moreover, the 

fundamental cross-sectional deformations of the box beam members that 

cause the flexibility of the joint are not clearly identified for the in-plane 

loading boundary conditions. For these reasons, no one-dimensional 

analysis method based on the higher-order beam theory has yet been 

proposed that can interpret the exact behavior of the two box beams-joint 

system shown in Fig. 4.1 when in-plane loads are applied. Given these 

circumstances, we propose a new higher-order beam analysis method that is  

 

 

Fig. 4.1 Two thin-walled box beams-joint structure subjected to in-plane bending 
and tensile loads. 
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capable of capturing the responses of the two box beams-joint system under 

in-plane loads accurately. 

First, let us review some previous approaches that tried to express the 

joint flexibility of thin-walled beam systems correctly by using the one-

dimensional beam theory. Initial studies that were based on the classical 

beam theories regarded the connectivity among thin-walled beam members 

at a joint to be semi-rigid and proposed some artificial joint spring models to 

reflect the joint flexibility [14, 15]. Chang [14] introduced a joint model 

using a rotational spring to relate the in-plane bending moment with the 

bending rotation at the joint. Lee and Nikolaidis [15] proposed a joint model 

consisting of some rotational springs and a rigid section based on their 

assumption that the rotation center of each beam member should be located 

away from the joint. Meanwhile, Bylund [16] proposed a dynamic joint 

method which evaluates the stiffness of the joint by using eigenvalues and 

eigenmodes. Refs. [17, 18] suggested approaches to represent the stiffness 

of the joint with a super element; according to their approaches, the super 

element can be obtained by applying the static or dynamic reduction 

techniques to a joint model based on shell elements. However, because joint 

flexibility of a thin-walled beams-joint system is largely dependent on joint 

angles among beam members and the aspect ratios of beam cross-sections at 
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the joint, it is difficult to define an artificial joint model that would be 

consistently applicable to the systems of various joints. 

Because a beam theory that can theoretically deal with the additional 

flexibility of thin-walled beam members or structures without using 

artificial concepts is needed for accurate, consistent analysis, higher-order 

beam theories that consider the cross-sectional deformations in addition to 

the rigid-body motions as independent degrees of freedom have been 

proposed. Based on the fundamental theory of thin-walled beams established 

by Vlasov [5], several analytic or semi-analytic methods that calculate the 

higher-order deformation modes of various thin-walled members have been 

proposed such as an approach based on Saint Venant’s theory [19, 20], the 

variational asymptotic method [21-23], Carrera’s unified formulation [24, 

25], and the GBT cross-section analysis [26, 27]. Especially for thin-walled 

members of closed sections including thin-walled box beams, Kim and Kim 

[7, 28, 29] developed a higher-order beam theory (HoBT) which can 

interpret the responses of those beam members under a twisting moment as 

correctly as the shell analysis. Based on the HoBT, Kim and Kim [30] and 

Heo et al. [31] proposed topology and shape optimization approaches of 

thin-walled closed beam sections. Kim and Kim [8, 32] extended the scope 

of the higher-order beam analysis to thin-walled curved box beams. In 
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particular, they introduced a bending distortion of an hourglass shape to 

represent the additional flexibility that is observed in thin-walled curved box 

beams under in-plane loads [8]. Several higher-order beam models have 

been developed in recent years to analyze the stress field or nonlinear 

behavior of thin-walled box beam members. A mixed beam model with the 

independent description of stress and displacement fields was proposed by 

Genoese et al. [11, 33] who took into account the warping modes derived 

from their approach based on Saint Venant’s theory. Ferradi et al. [12, 34] 

proposed a higher-order beam elements that incorporates distortion modes 

calculated by the modal analysis of beam cross-section decomposed with 

one-dimensional elements along with warping modes derived by their 

proposed equilibrium scheme. A higher-order beam model for the analysis 

of prismatic thin-walled members was suggested by Vieira et al. [13, 35] 

who considered uncoupled warping and distortion modes derived by their 

proposed eigenvalue problem. 

As higher-order beam theories capable of capturing the flexible 

responses of thin-walled beam members accurately are available, efforts to 

theoretically represent the joint flexibility of thin-walled beam systems have 

been followed. Especially for the joint of thin-walled open section members, 

many researches defining the compatibility conditions among kinematic 
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variables have been proposed [36-40]. Vacharajittiphan and Trahair [36] 

studied the warping transmission/restraint as well as the influence of 

distortion on the warping transmission at the joint of two doubly symmetric 

I-section members. For the joint of two asymmetric open section members, 

Baigent and Hancock [37] derived the matching relations among the 

kinematic variables including warping from the equilibrium conditions 

determined by transforming force terms acting on the shear center and the 

centroid onto the member origin axes. Moreover, they suggested modeling 

techniques for the systems with various joint types and eccentric restraints. 

Based on the aforementioned results, Basaglia et al. [39] have recently 

derived the extended matching relations including the warping transmission 

for the joint of multiple open section beams. Thereafter, a Generalized Beam 

Theory (GBT) based one-dimensional approach for the analysis of various 

buckling behavior of thin-walled open section beam systems has been 

established by employing some additional displacement constraints at 

specific points of the joint Camotim and Basaglia [40]. 

In the case of thin-walled closed section beam systems, on the other 

hand, the distortional deformation, not significant in open section beams, is 

also responsible for flexible responses observed near joints. Thus, an 

investigation for the effects of distortion as well as warping on the joint 
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flexibility should be conducted. Moreover, the mechanical principles of the 

joint flexibility observed in two box beams-joint systems subjected to in-

plane loads are different from those associated with the torsional warping 

(or warping transmission) which has been mainly investigated by the earlier 

works introduced above. For these reasons, no existing higher-order beam 

analysis has predicted the structural responses of two box beams-joint 

systems comparable with the plate/ shell analysis results when in-plane 

loads are applied. Recently, Jang and Kim [41] have proposed an analysis 

method based on a HoBT for two box beams-joint systems under in-plane 

loads. They established a HoBT that incorporates the bending warping 

representing the shear deformation of box beam section under transverse 

shear force [19] as well as the bending distortion proposed in [8] and 

developed approximate joint matching conditions among the kinematic 

variables. In their work, the three-dimensional displacements of two box 

beams were matched on the virtual joint section and then an optimization 

problem that minimizes the differences among those three-dimensional 

displacements was solved. The limitation of this approach is that the 

mechanical behavior of the joint cannot be accurately captured because the 

matching conditions were not exact. The section shape of the bending 

warping was also approximate one, so it should be further elaborated. 
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(a) 

 

(b) 

Fig. 4.2 (a) Beam modeling for the two box beams-joint structure (Edge M1M’1 of 
Beam 1 and Edge M2M’2 of Beam 2 are considered as if they were rigidly 
connected to each other by an imaginary rigid body, and Edge N1N1’ of Beam 1 
and Edge N2N2’ of Beam 2 are also considered as if being rigidly connected to 
each other by an imaginary rigid body.), (b) the top view of beam modeling 
(Shared Side Edge 1 in Fig. 4.1 is extended and separated as Edge M1M’1 of Beam 
1 and Edge M2M’2 of Beam 2, and Shared Side Edge 2 in Fig. 4.1 is also extended 
and separated as Edge N1N1’ of Beam1 and Edge N2N2’ of Beam 2.). 
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Therefore, in order to precisely predict the behavior of two box beams-joint 

systems under in-plane loads using a higher-order beam theory, a new HoBT 

employing correctly-defined sectional shapes corresponding to higher-order 

degrees of freedom is required. Also, we need to derive the exact joint 

matching conditions among the kinematic variables. 

In this study, we aim to develop a new HoBT and derive exact joint 

matching conditions to precisely analyze the structural response of a two 

box beams-joint system under axial force zF , transverse force xF , and in-

plane bending moment yM , as depicted in Fig. 4.1. Beam 1 and Beam 2 are 

located on the same plane, and their widths, heights, and thicknesses are 

equal to b, h, and t respectively. For analyses based on the HoBT, we model 

the joint connectivity between Beam 1 and Beam 2 as shown in Fig. 4.2. As 

with classical beam theories, Jang and Kim [41], and Choi et al. [42], two 

beams converge to one point, and the point is defined as a joint (strictly, the 

joint refers to the point where the central axes of the two beams meet). 

Special efforts are made to establish the exact the joint matching conditions 

in which the continuity along the shared edges of the two beams meeting a 

joint should be considered. The details will be be presented in Section 4.4. 

The key contributions of this study are i) the establishment of a new 

higher-order beam theory that considers sufficient higher-order deformation 
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degrees to express the flexible responses of the two box beams-joint systems 

under in-plane loads correctly, and ii) the theoretical derivation of the joint 

matching conditions among the field variables of the newly established 

HoBT. To do this, a HoBT incorporating the cross-sectional deformations of 

Fig. 4.3(b) in addition to the rigid-body motions of Fig. 4.3(a) will be 

established. The deformation shapes in Fig. 4.3(b) are theoretically derived 

by analyzing the mechanical responses of the box beam member when in-

plane loads are applied. It is emphasized that the so-called bending 

distortion 1χ  is newly proposed here and that its importance in predicting 

correct structural behavior of box beams-joint systems is recognized for the 

first time. 

Whereas Jang and Kim [41] employed some approximate techniques to 

define the joint matching conditions, the exact matching conditions to be 

derived for the present case considering in-plane bending and axial loads are 

inspired by the exact matching conditions derived for box beams-joint 

systems under out-of-plane loads [42]. In Choi et al. [42], a transformation 

matrix was introduced to represent the joint matching conditions, and a 

theoretical approach to derive the exact matching conditions was developed 

by considering some essential conditions that the transformation matrix 

must obey in addition to the equilibrium conditions and the continuity 
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conditions at the joint. Therefore, the approach proposed in Choi et al. [42] 

will be extended in this study to derive the joint matching conditions for the 

in-plane loading case. Following this strategy, the matching conditions 

between the six field variables ( 2, , ,z xU U χ⋅⋅⋅ ) of Beam 1 and Beam 2 in Fig. 

4.1 will be newly derived in terms of a 6 6×  transformation matrix ( )φT  

(φ : the joint angle (see Fig. 4.2)). The construction of the transformation 

matrix for the present case dealing with in-plane bending and axial loads is 

much more difficult than that for the earlier case dealing with out-of-plane 

loads because the number of cross-sectional deformations for this case is 

larger and their shapes are much more complicated. In particular, contrary to 

the result in Choi et al. [42], the higher-order deformation degrees of Beam 

1 and Beam 2 are coupled at the joint when in-plane loads are applied, and 

mechanical behavior of the higher-order deformations should be fully 

analyzed to determine those coupling relations. In this study, those relations 

are exactly derived within the developed HoBT by considering edge-wise 

equilibrium conditions with the concept of so-called “edge resultants” [43]. 

The details about the derivation of ( )φT  will be given in Section 4.4. 

To check the validity of the higher-order beam theory that is newly 

established in this study, a case study will be examined first, in which 

straight thin-walled box beams with various aspect ratios of their cross-
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sections are considered. To demonstrate the accuracy and the effectiveness 

of the proposed analysis approach using the theoretically derived joint 

matching conditions, two case studies will be investigated by using box 

beams-joint systems having various joint angles and cross-section aspect 

ratios. In each case study, the accuracy of the proposed approach will be 

checked by comparison with the ABAQUS shell analysis results [44]. 

 

4.2 Higher-Order Beam Theory for Straight Thin-Walled Box 

Beams 

In order to interpret the two thin-walled box beams-joint structure shown in Fig. 

4.1 precisely without using any artificial concepts, a higher-order beam theory 

which considers the primary cross-sectional deformations associated with the joint 

flexibility as the independent field variables and represents their mechanical 

behavior correctly is required. 

To analyze the structure mentioned above, Jang and Kim [41] suggested the 

higher-order beam theory which includes the bending warping observed in the 

straight thin-walled box beams under in-plane bending loads ( ,x yF M ) in addition 

to the bending distortion proposed in Kim and Kim [8], and they proved that the 

flexibility of the joint can be theoretically expressed by those cross-sectional 

deformations. However, the definition of the bending warping is mechanically 

incorrect because the shape of that is assumed by observation, and another primary 
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cross-sectional deformation (referred as bending distortion 1χ  in this study) that 

should be considered together in order to express the additional flexibility of thin-

walled beam correctly in not involved. Consequently, the higher-order beam theory 

proposed by Jang and Kim [41] cannot precisely represent the behavior of the 

straight thin-walled box beams under ( ,x yF M ), and that theory overestimates the 

bending rigidity of those box beams. 

Therefore, a new higher-order beam theory considering six displacements or 

deformations of the box beams such as axial displacement zU , transverse 

displacement xU , in-plane bending/shear rotation yθ , bending distortion 1χ , 

bending warping 1W , and bending distortion 2χ  as independent degrees of 

freedom will be established. Rigid-body motions of the box beam represented by 

( , ,z x yU U θ ) are illustrated in Fig. 4.3(a), and cross-sectional deformations 

represented by ( 1 1 2, ,Wχ χ ) are illustrated in Fig. 4.3(b). 1χ  and 1W  represent 

the primary cross-sectional deformations associated with the additional flexibility 

of straight thin-walled box beams subjected to ( ,x yF M ), and 2χ  represent the 

local deformation near the joint generated by the equilibrium at the joint. 

In order to define those cross-sectional deformations as one-dimensional field 

variables of higher-order beam theory, shape functions representing their 

deformation patterns shown in Fig. 4.3(b) are employed. While the previous studies 

[16, 17] assumed the shape functions through observation, the shape functions will  
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                                 (a) 

 

 

 

 

 

 (b) 

Fig. 4.3 (a) Rigid-body motions of the box beam cross-section represented by the 
field variables: axial displacement Uz, transverse displacement Ux and in-plane 
bending/shear rotation θ y, (b) deformations of cross-section represented by the 
field variables: distortion χ1, warping W1 and distortion χ2. 

 

be theoretically derived in this study to define the higher-order beam theory 

precisely. In particular, 1χ  was not considered in the previous studies [8, 41], and 

1χ  is first introduced in the higher-order beam theory to exactly describe the 

bending rigidity of thin-walled box beams and the additional flexibility represented 

by 1W . 
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Based on Refs. [7, 43], the one-dimensional higher-order beam theory 

considering the six rigid motions and cross-sectional deformations shown in Fig. 

4.3(a, b) as the field variables will be defined in this section. The shape functions 

for ( 1 1 2, ,Wχ χ ) will be theoretically derived in the next section. 

When one-dimensional field variables of the higher-order beam theory are 

expressed as the functions of axial coordinate z , ( ) { ( ), ( ), ( ),z x yz U z U z zθ=U

T
1 1 2( ), ( ), ( )}z W z zχ χ , three dimensional displacements of a point located on the 

contour line of the box beam cross-section can be written as follows by using U  

[7].  

1 2
1 2( , ) ( ) ( ) ( ) ( ) ( ) ( )xU

n n x n nu s z s U z s z s zχ χψ ψ χ ψ χ= ⋅ + ⋅ + ⋅       (4.1a) 

1 2
1 2( , ) ( ) ( ) ( ) ( ) ( ) ( )xU

s s x s su s z s U z s z s zχ χψ ψ χ ψ χ= ⋅ + ⋅ + ⋅       (4.1b) 

1
1( , ) ( ) ( ) ( ) ( ) ( ) ( )yzU W

z z z z y zu s z s U z s z s W zθψ ψ θ ψ= ⋅ + ⋅ + ⋅       (4.1c) 

Where n and s represent the coordinates in normal and tangential directions defined 

on the contour line respectively (the positive directions of coordinate n and s on 

each edge are given in Fig. 4.2(a)). 

( , )pu s z  ( , ,p n s z= ) in Eq. (4.1) represent the displacement in p direction 

generated at the point ( ,s z ) on the contour line. As shown in Fig. 4.3, ( 1, ,z yU Wθ ) 

represent the displacements or deformations on axial direction, and ( 1 2, ,xU χ χ ) 

represent those on the x – y plane. Accordingly, zu  in Eq. (4.1c) is expressed by 

( 1, ,z yU Wθ ), and ( ,n su u ) in Eqs. (4.1a, b) are expressed by ( 1 2, ,xU χ χ ). 
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( )p sαψ  ( 1 1 2, , ; , , , , ,z x yp n s z U U Wα θ χ χ= = ) in Eq. (4.1) are the shape 

functions which describe the deformation shape of field variable α  shown in Fig. 

4.3, and ( )p sαψ  denote the displacement in p direction generated on the contour 

line by the unit magnitude of α . The explicit expressions of ( )p sαψ  are given in 

Appendix A. 

When the Kirchhoff-Love plate theory [45] is considered, three dimensional 

displacements at a generic point which is located away from the contour line by n 

can be written as follows by using ( , ,n s zu u u ) in Eq. (4.1).  

1 2
1 2( , , ) ( , ) xU

n n n x n nu n s z u s z U χ χψ ψ χ ψ χ= = ⋅ + ⋅ + ⋅         (4.2a) 

1 2 1 2
1 2 1 2

( , )( , , ) ( , )

( )x x

n
s s

U U
s x s s n x n n

u s zu n s z u s z n
s

U n Uχ χ χ χψ ψ χ ψ χ ψ ψ χ ψ χ

∂
= −

∂
= ⋅ + ⋅ + ⋅ − ⋅ + ⋅ + ⋅



  

 (4.2b) 

1 1 2
1 1 2

( , )( , , ) ( , )

( )y xz

n
z z

UU W
z z z y z n x n n

u s zu n s z u s z n
z

U W n Uθ χ χψ ψ θ ψ ψ ψ χ ψ χ

∂
= −

∂
′ ′ ′= ⋅ + ⋅ + ⋅ − ⋅ + ⋅ + ⋅



 (4.2c) 

where ( )
•  and ( )′  denote ( ) ( ) / s

•

= ∂ ∂  and ( ) ( ) / z′ = ∂ ∂  respectively. 

( / )nn u s− ⋅ ∂ ∂  and ( / )nn u z− ⋅ ∂ ∂  in Eqs. (4.2b, c) represent the displacement in s 

and z directions respectively which arise from the rotation of the normal to the 

contour line. 

According to the Kirchhoff-Love plate theory [45], the dominant strains 

( , ,ss zz szε ε γ ) that occur at the same point can be defined from Eq. (4.2) as:  
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1 1 2
1 1 2( , , ) { }s

ss s n n
un s z n
s

χ χ χε ψ χ ψ χ ψ χ
∂

= = ⋅ − ⋅ + ⋅
∂


           (4.3a) 

1

1 2

1

1 2

( , , )

( )

yz

x

U Wz
zz z z z y z

U
n x n n

un s z U W
z

n U

θ

χ χ

ε ψ ψ θ ψ

ψ ψ χ ψ χ

∂ ′ ′ ′= = ⋅ + ⋅ + ⋅
∂

′′ ′′ ′′− ⋅ + ⋅ + ⋅



      (4.3b) 

1

1 1 2

1

1 1 2

( , , )

2 ( )

yxUs z
sz s x s z y

W
z n n

u un s z U
z s

W n

θχ

χ χ

γ ψ ψ χ ψ θ

ψ ψ χ ψ χ

∂ ∂ ′ ′= + = ⋅ + ⋅ + ⋅
∂ ∂

′ ′+ ⋅ − ⋅ + ⋅

 



  

    (4.3c) 

where nonzero terms are given in Eq. (4.3) among the strains obtained from the 

displacements in Eq. (4.2). Subsequently, the dominant stresses ( , ,ss zz szσ σ σ ) at 

the same point can be defined from ( , ,ss zz szε ε γ ) in Eq. (4.3) by employing the 

stress-strain relations as:  

1 1

1 2 1 2

1 12

1 2 1 2

( , , ) { ( )
1

( )}

yz

x

U W
ss s z z z y z

U
n n n x n n

En s z U W

n U

θχ

χ χ χ χ

σ ψ χ νψ νψ θ νψ
ν

ψ χ ψ χ νψ νψ χ νψ χ

′ ′ ′= ⋅ + ⋅ + ⋅ + ⋅
−

′′ ′′ ′′− ⋅ + ⋅ + ⋅ + ⋅ + ⋅



 

     

(4a) 

1 1

1 2 1 2

1 12

1 2 1 2

( , , ) ( ) { ( )
1

( )}

yz

x

U W
zz z z z y z s

U
n x n n n n

En s z E U W

n U

θ χ

χ χ χ χ

σ ψ ψ θ ψ νψ χ
ν

ψ ψ χ ψ χ νψ χ νψ χ

′ ′ ′= ⋅ + ⋅ + ⋅ + ⋅
−

′′ ′′ ′′− ⋅ + ⋅ + ⋅ + ⋅ + ⋅



 

 (4b) 

1 1 1 2
1 1 1 2( , , ) { 2 ( )}yxU W

sz s x s z y z n nn s z G U W nθχ χ χσ ψ ψ χ ψ θ ψ ψ χ ψ χ′ ′ ′ ′= ⋅ + ⋅ + ⋅ + ⋅ − ⋅ + ⋅     

(4c) 

where , ,E G ν  represent Young’s modulus, shear modulus, Poisson’s ratio, 

respectively. 

To define those stresses in Eq. (4.4) more precisely, two different stress-strain 
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relations given below are employed.  

2 2( ), ( ),
1 1ss ss zz zz zz ss sz sz

E E Gσ ε νε σ ε νε σ γ
ν ν

= + = + =
− −

    (5a) 

or 

, ,ss ss zz zz sz szE E Gσ ε σ ε σ γ= = =               (5b) 

The dominant stresses generated by ( 1 1 2, , , ,x yU Wθ χ χ ) which describe the 

bending behavior of box beam are defined by using the relations in Eq. (4.5a) 

because 1χ  represent the Poisson’s effect [1] under the bending loads ( ,x yF M ). 

Meanwhile, only zU  is considered for the tensile or compressive behavior of 

box beam, and the cross-sectional deformation representing the Poisson’s effect [1] 

under the axial load zF  is not included. Thus, the dominant stresses generated by 

zU  are defined by using the relations in Eq. (4.5b). As given in Eq. (4.3), the 

nonzero strain generated by zU  is only zzε , and the dominant stress zzσ  which 

is equal to the stress in the classical beam theory is defined through Eq. (4.5b) (see 

Eq. (4.4b)). 

Using the displacements, strains, and stresses given in Eqs. (4.2-4), one can 

define the three dimensional total potential energy for the straight thin-walled box 

beam [7]. Subsequently, carrying out the surface integral for the cross-section S  

and applying the principle of minimum total potential energy, the exact higher-

order beam theory employed in this study can be obtained (the detailed procedure 

is given in Appendix B). The newly established higher-order beam theory is 
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expressed as the relations between the field variables U  and the generalized 

forces T
1 1 2{ , , , , , }z x yF F M Q B Q=F , and F  is defined as follows. 

1 1 2
1 1 2

( ) , ( ) , ( ) ,

( ) , ( ) , ( )

yxz UU
z zz z x zs s y zz z

S S S

W
zs s zz z zs n

S S S

F dsdn F dsdn M dsdn

Q dsdn B dsdn Q n dsdn

θ

χ χ

σ ψ σ ψ σ ψ

σ ψ σ ψ σ ψ

= = =

= = = −

∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫∫ 

 (4.6) 

where , ,z xF F  and yM  represent resultant forces or moments such as axial force, 

transverse force, and in-plane bending moment respectively. On the contrary, the 

others denote self-equilibrated terms; 1B  represent longitudinal bimoment, and 

( 1 2,Q Q ) represent transverse bimoments. 

 

4.3 Derivation of Cross-Sectional Deformations (χ1, W1, χ2) 

The use of accurate shape functions ( )sψ  associated with the higher-order 

deformation degrees ( 1 1 2, ,Wχ χ ) is crucial in order to capture the flexible 

behavior of thin-walled box beams. Unlike earlier works [8, 41], we use a 

theoretical approach for accurate derivation of ( )sψ  for ( 1 1 2, ,Wχ χ ) and present 

newly-derived results [50]. 

 

4.3.1 Shape Function of χ1 

According to the classical beam theory [1, 2], the axial stress zzσ  generated at a 

point on the contour line by the in-plane bending moment yM  can be written as:  



118 

( )
( , ) { ( )}y

zz

M z
s z x s

I
σ = × −                  (4.7) 

where I  represent the moment of inertia for yM , and ( )x s  denotes the x 

coordinate of the point at ( ,s z ). By zzσ  given in Eq. (4.7), the strain zzε  is 

generated, and simultaneously the strain ssε  expressed as follows is also 

generated by the Poisson’s effect [46].  

 
( )

( , ) { ( )}yzz
ss

M z
s z x s

E EI
νσε ν= − = ×               (4.8) 

According to Ref. [46], ssε  given in Eq. (4.8) causes the cross-sectional 

deformation representing anticlastic curvature, and this deformation is considered 

in this study as the field variable 1χ . 

When 1
suχ  denotes the displacement associated with 1χ  in s direction on the 

contour line, 1
suχ  generated from ssε  given in Eq. (4.8) satisfies the following 

equation.  

1 ( )( , ) { ( )}ys M zu s z x s
s EI

χ ν∂
= ×

∂
                 (4.9) 

In addition, 1
suχ  satisfies 1 1

1( , ) ( ) ( )s su s z s zχ χψ χ= ⋅  according to Eq. (4.1). When 

this relation is substituted into the Eq. (4.9), the following equation concerning 

1 ( )s sχψ  can be obtained.  

1
*

1
( ) { ( )}s s P x s

s

χψ∂
= ×

∂
                   (4.10) 

where *
1P  represents the proportional constant. 
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1 ( )s sχψ  will be exactly determined based on Eq. (4.10). When ( )jx s  

represents the x coordinate of a point ( ,js z ) on the Edge j ( 1, 2, 3, 4j = ) (see Fig. 

4.2(a)), ( )jx s  can be expressed as:  

1 2 2 3 4 4( ) , ( ) , ( ) , ( )
2 2
b bx s x s s x s x s s= = − = − =       (4.11) 

where b represents the width of cross-section as mentioned in Introduction (the 

height of cross-section is written by h). The coordinate js  ( 1, 2, 3, 4j = ) is 

measured from the center of Edge j as shown in Fig. 4.2(a), and thus js  has the 

following range: 1 3,
2 2
h hs s− ≤ ≤  and 2 4,

2 2
b bs s− ≤ ≤ . 

Substituting ( )x s  in Eq. (4.11) into Eq. (4.10) and carrying out the 

integration for the coordinate s, 1 ( )s jsχψ  on Edge j ( 1, 2, 3, 4j = ) can be 

expressed as: 

1 1

1 1

* * 2
1 1 1 1 2 1 2 2

* * 2
3 1 3 3 4 1 4 4

1( ) { }, ( ) { },
2 2

1( ) { }, ( ) { }
2 2

s s

s s

bs P s C s P s C

bs P s C s P s C

χ χ

χ χ

ψ ψ

ψ ψ

= × + = × − +

= × − + = × +
   (4.12) 

where 1 2 3 4, , , and,C C C C  represent the integration constants. 

From the observation that zzσ  in Eq. (4.7) is symmetric with respect to 

the x-axis, one can find that the shape of 1χ  generated by zzσ  should be 

symmetric associated with the x-axis. To satisfy the x-axis symmetry, 
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therefore, 1
1( )s sχψ  and 1

3( )s sχψ  in Eq. (4.12) should meet the following 

odd function conditions, respectively. 

1 1 1 1
1 1 3 3( ) ( ), ( ) ( )s s s ss s s sχ χ χ χψ ψ ψ ψ= − − = − −        (4.13a) 

In addition, the displacements in x direction on Edge 2 and Edge 4 represented by 

1
2( )s sχψ  and 1

4( )s sχψ  respectively should be equal to meet the x-axis symmetry. 

Because the positive directions of 2s  and 4s  are x−  and x+  respectively 

(see Fig. 4.2(a)), the symmetry condition can be written as follows. 

1 1* *
4 2( ) ( )s ss s s sχ χψ ψ= = − = −             (4.13b) 

where *s  represents an arbitrary constant within a range *( / 2) ( / 2)b s b− ≤ ≤ . 

The integral constants ( 1 4~C C ) which satisfy the x-axis symmetry conditions 

given in Eqs. (4.13a, b) are as: 

1 3 0C C= =                    (4.14a) 

4 2C C= −                     (4.14b) 

Meanwhile, 1
s
χψ  in Eq. (4.12) should satisfy the following orthogonality 

conditions with xU
sψ  and 2

s
χψ  so that the relation given in Eq. (4.1b) is defined 

correctly [5, 7]. 

1 ( ) ( ) 0xU
s s

S

s s dAχψ ψ⋅ =∫∫                (4.15a) 

1 2( ) ( ) 0s s
S

s s dAχ χψ ψ⋅ =∫∫                (4.15b) 

Regardless of 1
s
χψ , the condition in Eq. (4.15b) is satisfied by itself since 
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2 ( ) 0s sχψ =  as given in Appendix A. The orthogonality condition given in Eq. 

(4.15a) means that the cross-sectional deformation represented by 1χ  does not 

involve any rigid-body motion in x direction. ( 2 ,C 4C ) meeting the condition in Eq. 

(4.15a) are as follows.  

2 2

2 4,
24 24
b bC C= = −                    (4.16) 

From the conditions for the x-axis symmetry and the orthogonality with xU , 

all the constants ( 1 4~C C ) in Eq. (4.12) are determined. The constant *
1P  in Eq. 

(4.12) determine the scale of cross-sectional deformation represented by the unit 

magnitude of 1χ , and * 2
1 6 /P h=  will be used in this study. 

When 1
suχ  is generated on the contour line, 1

nuχ  is accompanied by the 

continuity at the corner j where Edge j and Edge j+1 ( 1, 2, 3, 4j = ; Edge 5 denotes 

Edge 1) meet [6]; the 1
suχ generated on Edge 2 and Edge 4 are symmetric with 

respect to the x-axis as shown in Fig. 4.4(a), so the continuity at the corner j 

( 1, 2, 3, 4j = ) is satisfied by itself without having 1
nuχ  when 1

suχ  are generated  
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         (a)                                  (b) 

Fig. 4.4 (a) Displacements in s direction on Edge 2 and 4 represented by χ1, (b) 
displacements in s direction on Edge 1 and Edge 3 represented by χ1 and  
displacements in n direction on the entire cross-section accompanied by the 
continuity condition at each corner. 

 

on Edge 2 and Edge 4. However, 1
suχ  generated on Edge 1 and Edge 3 are anti-

symmetric with respect to y-axis as shown in Fig. 4.4(b), so one can find that 1
nuχ  

should be accompanied to meet the continuity at the corner j ( 1, 2, 3, 4j = ). 

When 1 1
1( ) ( )s su s zχ χψ χ= ⋅  are generated on the contour line of Edge 1 and 

Edge 3, linear displacements 1 1
1( ) ( )n nu s zχ χψ χ= ⋅  are generated on the contour line 

of Edge 2 and Edge 4 as shown in Fig. 4.4(b) to satisfy the following displacement 

continuity at the corner. 

1 1 1 1
2 1 2 3( ) ( ), ( ) ( )

2 2 2 2n s n s
b h b hu s u s u s u sχ χ χ χ= − = = = = − = −     (4.17a) 



123 

1 1 1 1
4 3 4 1( ) ( ), ( ) ( )

2 2 2 2n s n s
b h b hu s u s u s u sχ χ χ χ= − = = = = − = −     (4.17b) 

When 1

1
( )n jsχψ  at the Edge 1 1( 2, 4)j j =  are assumed as the following linear 

functions, 

1 1
2 21 2 22 4 41 4 42( ) , ( )n ns a s a s a s aχ χψ ψ= + = +           (4.18) 

those 1

1
( )n jsχψ  ( 1 2, 4j = ) can be determined by considering the displacement 

conditions given in Eq. (4.17), and consequently ( 21 22 41 42, , ,a a a a ) in Eq. (4.18) are 

as follows.  

21 22 41 42
3 3, 0, , 0a a a a
h h

= − = = =           (4.19) 

In addition to the displacement continuity, the following angle and moment 

continuities should also be satisfied at the corner according to Ref. [7]. For this 

reason, the parabolic displacements 1
nuχ  are accompanied on Edge 1 and Edge 3 

as shown in Fig. 4.4(b). 

1 1 1 1

1 1 1 1

1 2 1 4

3 2 3 4

( ) ( ), ( ) ( ),
2 2 2 2

( ) ( ), ( ) ( )
2 2 2 2

n s n s

n s n s

h b h bu s u s u s u s

h b h bu s u s u s u s

χ χ χ χ

χ χ χ χ

= = − = − = − = =

= − = = = = − = −
  (4.20a) 

1 1 1 1

1 1 1 1

1 2 1 4

3 2 3 4

( ) ( ), ( ) ( ),
2 2 2 2

( ) ( ), ( ) ( )
2 2 2 2

z z z z

z z z z

h b h bs s s s

h b h bs s s s

χ χ χ χ

χ χ χ χ

β β β β

β β β β

= = = − = − = =

= − = = = = = −
  (4.20b) 
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1 1 1 1

1 1 1 1

1 2 1 4

3 2 3 4

( ) ( ), ( ) ( ),
2 2 2 2

( ) ( ), ( ) ( )
2 2 2 2

z z z z

z z z z

h b h bM s M s M s M s

h b h bM s M s M s M s

χ χ χ χ

χ χ χ χ

= = = − = − = =

= − = = = = = −
 (4.20c) 

where 1 ( )z jsχβ  and 1 ( )z jM sχ  at Edge j ( 1, 2, 3, 4j = ) are defined as 

1 1

1 1

23

2

( ) ( )
( ) ; ( )

12
n j n j

z j z j

u s u sEts M s
s s

χ χ
χ χβ

∂ ∂
= = ×

∂ ∂
     (4.21a, b) 

The symbols 1 ( )z jsχβ  and 1 ( )z jM sχ  represent the bending rotation and bending 

moment in z direction, respectively [7]. The moment 1 ( )z jM sχ  in Eq. (4.21b) is 

approximately defined by the classical beam theory, and t in Eq. (4.21b) represents 

the thickness of Edge j. 

When 1

2
( )n jsχψ  at the Edge 2j  ( 2 1, 3j = ) are assumed as the following 4th 

order even functions which meet the x-axis symmetry condition, 

1 14 2 4 2
1 11 1 12 1 13 3 31 3 32 3 33( ) , ( )n ns a s a s a s a s a s aχ χψ ψ= + + = + +     (4.22) 

1

2
( )n jsχψ  ( 2 1, 3j = ) in Eq. (4.22) can be determined by employing those 

continuity conditions given in Eq. (4.21), and consequently ( 11 12 13 31, , , ,a a a a

32 33,a a ) in Eq. (4.22) are as follows. 

2 2

11 12 134 2 2

2 2

31 32 334 2 2

3 9 8 15, , ,
2 16

3 9 8 15, ,
2 16

b ha a a
h h h

b ha a a
h h h

+
= = − =

+
= − = = −

        (4.23) 
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4.3.2 Shape Function of W1 

The shape of the bending warping degree introduced in the earlier work [41] was 

only approximate so that there are cases where the analysis results are so accurate. 

For this reason, the shape function 1W
zψ  for the bending warping 1W  will be re-

derived in this study from a theoretical approach [50]. 

When the transverse force xF  is applied to the thin-walled box beam, the in-

plane bending moment yM  satisfying the equilibrium of is / 0y xM z F∂ ∂ + =  

accompanied, and thus zzσ  given in Eq. (4.7) is applied to the contour line of 

cross-section. However, zzσ  satisfies ( / ) 0zz zσ∂ ∂ ≠  in this case because 

( / ) 0yM z∂ ∂ ≠ . 

Meanwhile, the following equilibrium condition always holds between the 

dominant stresses zzσ  and zsσ  according to Ref. [47] when any distributed loads 

are not applied. 

0zszz

z s
σσ ∂∂

+ =
∂ ∂

                     (4.24) 

Considering the equation above, one can find that zsσ  is generated on the contour 

line when xF  is applied, and the following condition to theoretically derive zsσ  

can be obtained from Eq. (4.24). 

( ) ( )1 ( ) { ( )} { ( )}yzs xzz M z F zx s x s
s z I z I

σ σ ∂∂ ∂
= − = − × − = × −

∂ ∂ ∂
     (4.25) 

zsσ  meeting the condition in Eq. (4.25) produces the shear strain /sz zs Gγ σ=  
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along the contour line, and consequently 1W  depicted in Fig. 4.3(b) occurs on the 

box beam by szγ  [2, 19]. Therefore, zsσ  satisfying the condition in Eq. (4.25) 

will be theoretically derived first, and subsequently 1W
zψ  representing the shape of 

1W  will be derived based on the obtained zsσ . 

When ( , )zs js zσ  represents zsσ  at Edge j ( 1, 2, 3, 4j = ), the following 

( , )zs js zσ  satisfying Eq. (4.25) can be obtained through integration (see Eq. (4.11) 

for ( )jx s  at Edge j). 

2
1 1 1 2 2 2

2
3 3 3 4 4 4

( ) ( ) 1( , ) { }, ( , ) { },
2 2

( ) ( ) 1( , ) { }, ( , ) { }
2 2

x x
zs zs

x x
zs zs

F z F zbs z s C s z s C
I I

F z F zbs z s C s z s C
I I

σ σ

σ σ

= × − + = × +

= × + = × − +

 

 

 (4.26) 

where ( 1 2 3 4, , ,C C C C    ) represent the integration constants. zsσ  in Eq. (4.26) is 

symmetric with respect to x-axis because xF  inducing zsσ  is applied along the x-

axis. Considering this symmetry condition, the constant ( 1 4~C C  ) in Eq. (4.26) 

satisfy the following conditions (see Eq. (4.13) for the x-axis symmetry at each 

edge).  

1 3 4 20;C C C C= = = −                   (4.27a, b) 

In addition, zsσ  in Eq. (4.26) should meet the continuity condition 

corner( , ) |zs j js zσ = 1 corner( , ) |zs j js zσ +  at the corner j ( 1, 2, 3, 4j = ). This condition 

can be obtained from the consideration on the shear flow continuity between 
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( , )zs jt s zσ×  at Edge j and 1( , )zs jt s zσ +×  at Edge j+1 (Edge 5 denotes Edge 1) 

at the corner j [22]. Although the shear stress at Edge j is linearly distributed in 

thickness direction, the effect is eliminated through the integration, and the shear 

flow at Edge j is expressed as ( , )zs jt s zσ× . The constants 2C  and 4C  which 

satisfy the continuity condition of zsσ  are as: 

2 2

2 4
2 2,

8 8
b bh b bhC C+ +

= − =                (4.28) 

As a result, ( , )zs js zσ  at Edge j produced by xF  can be given as follows. 

2
2

1 1 2 2

2
2

3 3 4 4

( ) ( ) 1 2( , ) { }, ( , ) { },
2 2 8

( ) ( ) 1 2( , ) { }, ( , ) { }
2 2 8

x x
zs zs

x x
zs zs

F z F zb b bhs z s s z s
I I

F z F zb b bhs z s s z s
I I

σ σ

σ σ

+
= × − = × −

+
= × = × − +

 (4.29) 

In the higher-order beam theory, on the other hand, zsσ  on the contour line 

produced by xF  can be written as follows by using the field variables ( )zU  and 

the shape functions ( )sψ . 

1 1
1 1( , ) { }yxU W

sz s x z y s zs z G U Wθ χσ ψ ψ θ ψ χ ψ′ ′= ⋅ + ⋅ + ⋅ + ⋅         (4.30) 

According to the higher-order beam theory, 1χ  by the Poisson’s effect and 1W  by 

the shear strain are appeared in addition to the rigid-body motion ( ,x yU θ ) in the 

box beam when xF  is applied, and referring to the Eq. (4.4c), one can fine that 

zsσ  on the contour line ( 0n = ) produced by ( 1 1, , ,x yU Wθ χ ) can be written as Eq. 

(4.30). 
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The shape functions ( 1 1, , ,yxU W
s z s z

θ χψ ψ ψ ψ ) in Eq. (4.30) represent the 

distribution of zsσ , and those functions except 1W
zψ  are previously determined 

(although the procedures to define ( , yxU
s z

θψ ψ ) are not given, their definitions are so 

obvious since they represent the rigid-body motions). Considering the additional 

condition that zsσ  in Eq. (4.30) is equal to the previously determined zsσ  in Eq. 

(4.29), therefore, 1 ( )W
z sψ  can be precisely derived. 

From the equality condition between zsσ  in Eqs. (4.29) and (4.30) at Edge j 

( 1, 2, 3, 4j = ), the following conditions which 1
1( ) ( )W

z js W zψ ⋅

 should meet at the 

Edge j can be obtained (see Appendix A for the explicit expressions of 

( 1, ,yxU
s z s

θ χψ ψ ψ )). 

1
1 1 1 12

1 6( ) ( ) ( ) { ( ) ( )}
2

W
z x

bs W z s F z z
GI h

ψ χ ′⋅ = − ⋅ +         (4.31a) 

1 2
2 1 2 12

2 2

12

1 1 6( ) ( ) ( ) { ( ) ( )}
2

2 1{ ( ) ( ) ( ) ( )}
8 4

W
z x

x x y

s W z s F z z
GI h

b bh bF z U z z z
GI h

ψ χ

θ χ

′⋅ = ⋅ +

+ ′ ′+ − + − −



 (4.31b) 

1
3 1 3 12

1 6( ) ( ) ( ) { ( ) ( )}
2

W
z x

bs W z s F z z
GI h

ψ χ ′⋅ = ⋅ +          (4.31c) 

1 2
4 1 4 12

2 2

12

1 1 6( ) ( ) ( ) { ( ) ( )}
2

2 1{ ( ) ( ) ( ) ( )}
8 4

W
z x

x x y

s W z s F z z
GI h

b bh bF z U z z z
GI h

ψ χ

θ χ

′⋅ = − ⋅ +

+ ′ ′− − + − −



 (4.31d) 

The conditions in Eq. (4.31) should hold for arbitrary coordinate ( ,s z ), and the 
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functions of s and z given in Eq. (4.31) are independent each other. Thus, the 

conditions with respect to 1 ( )W
z sψ  can be obtained through the comparison among 

the functions of s. 

First, comparing those functions of 1s  given in Eq. (4.31a), one can find that 

1
1( )W

z sψ  should meet the following condition at Edge 1. 

1 *
1 2 1( ) ( )

2
W
z

bs P sψ = × −                  (4.32a) 

where *
2P  represents the proportional constant, and substituting the condition in 

Eq. (4.32a) into Eq. (4.31a), the following relation among the functions of z can be 

obtained. 

*
2 1 12

1 6( ) ( ) ( )xP W z F z z
GI h

χ ′= +               (4.32b) 

In sequence, substituting the relation in Eq. (4.32b) into Eq. (4.31b) (i.e., 

substituting *
2 1( )P W z  into 12

1 6{ ( ) ( )}xF z z
GI h

χ ′+  in Eq. (4.31b)) and then 

comparing those functions of 2s , one can find that 1
2( )W

z sψ  at Edge 2 should 

meet the following relation.  

1 * 2 *
2 2 2 3

1( ) ( )
2

W
z s P s Pψ − × =                  (4.33a) 

where *
3P  represent the proportional constant. Likewise, it can be seen through 

substituting the relation in Eq. (4.33a) into Eq. (4.31b) that the following relation 

among those functions of z must hold. 
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2 2
*

3 1 12

2 1( ) { ( ) ( ) ( ) ( )}
8 4x x y

b bh bP W z F z U z z z
GI h

θ χ+ ′ ′= − + − −    (4.33b) 

Lastly, when those functions of z given in Eqs. (4.32b) and (4.33b) are substituted 

into Eqs. (4.31c) and (4.31d) respectively, the following relations for 1
3( )W

z sψ  and 

1
4( )W

z sψ  can be obtained. 

1 1* * 2 *
3 2 3 4 2 4 3

1( ) ( ), ( ) ( )
2 2

W W
z z

bs P s s P s Pψ ψ= × − × − = −        (4.34) 

1 ( )W
z jsψ  at Edge j ( 1, 2, 3, 4j = ) which satisfy the relations derived above 

can be expressed as: 

1 1

1 1

* 2 * 3
1 2 1 11 2 2 2 22 2 21

* 2 * 3
3 2 3 31 4 2 4 22 4 41

1( ) { }, ( ) { },
4 6

1( ) { }, ( ) { }
4 6

W W
z z

W W
z z

bs P s a s P s a s a

bs P s a s P s a s a

ψ ψ

ψ ψ

= × − + = × + +

= × + = × − − +

  

  

 (4.35) 

where * *
22 3 2( / )a P P= , and ( 11 21 31 41, , ,a a a a    ) represent the integration constants. 

When 1 1
1( , ) ( ) ( )W W

z zu s z s W zψ= ⋅  denotes the axial displacement on the 

contour line represented by 1W , the displacement continuity condition 

1 1
corner 1 corner( , ) | ( , ) |W W

z j j z j ju s z u s z+=  between 1 ( , )W
z ju s z  on Edge j and 

1
1( , )W

z ju s z+
 on Edge j+1 at the corner j ( 1, 2, 3, 4j = ) must hold, and 

consequently the following conditions with respect to 1 ( )W
z sψ  given in Eq. (4.35) 

can be obtained. 
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1 1 1 1

1 1 1 1

1 2 2 3

3 4 4 1

( ) ( ), ( ) ( ),
2 2 2 2

( ) ( ), ( ) ( )
2 2 2 2

W W W W
z z z z

W W W W
z z z z

h b b hs s s s

h b b hs s s s

ψ ψ ψ ψ

ψ ψ ψ ψ

= = = − = = = −

= = = − = = = −
    (4.36) 

Meanwhile, 1W
zψ  in Eq. (4.35) should meet the following orthogonality 

conditions with zU
zψ  and y

z
θψ  so that the relation given in Eq. (4.1c) is defined 

correctly (see Appendix A for the explicit expression of ( , yzU
z z

θψ ψ )). 

1 1( ) ( ) 0 ; ( ) ( ) 0yzW U W
z z z z

S S

s s dA s s dAθψ ψ ψ ψ⋅ = ⋅ =∫∫ ∫∫     (4.37a, b) 

where Eqs. (4.37a) and (4.37b) mean that the cross-sectional deformation 

represented by 1W  does not include any rigid-body translation in z direction and 

any rigid-body rotation in y direction, respectively. 

Considering those conditions given in Eqs. (4.36) and (4.37), the constants 

( 11 21 22 31, , , ,a a a a    41a ) in Eq. (4.35) which meet those conditions are obtained as 

follows. 

3 2 3

11 31 21

3 2 3

22 41

( 2 15 15 ) , 0,
240( 3 )

5 10 , 0
40( 3 )

b b bh ha a a
b h

b b h ha a
b h

− + +
= − = =

+

− − +
= =

+

  

 

       (4.38) 

The constant *
2P  in Eq. (4.35) determine the scale of cross-sectional deformation 

represented by the unit magnitude of 1W , and * 2
2 16 /P bh=  will be used in this 

study. 
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4.3.3 Shape Function of χ2 

Kim and Kim [8] established a HoBT incorporating 2χ  in order to express the 

flexibility of curved box beams, and later Jang and Kim [41] also used the same 

form of 2χ  proposed by Kim and Kim [8]. Because the form of 2χ  in Kim and 

Kim [8] involved some approximation ignoring the exact mechanics, there is a 

need to derive the exact form of 2χ  especially for accurate analysis of box beams 

meeting at a joint. A new derivation will be presented below [50]. 

First of all, we note that unlike 1χ  and 1W  considered above, 2χ  does not 

appear in a straight box beam subjected to ( ,x yF M ). In other words, the sectional 

deformation associated with 2χ  shown in Fig. 4.3(b) only appears if two or more 

box beams meet at a joint with nonzero joint angles. In fact, 2χ  represents the 

local deformation observed near the joint of a two box beams-joint system under 

in-plane loads [41]. The shape function of 2χ  can be theoretically derived by 

considering the deformation patterns developed to satisfy the equilibrium state at 

the joint of two box beams. We will show later that in addition to the equilibrium 

conditions among sectional (or common) resultant forces or moments, the 

equilibrium conditions among the so-called edge resultants on Edge 1 and Edge 3 

produced by ( 1 2, ,yM B Q ) can be considered at the joint. The detailed accounts of 

the edge resultants will be given in Section 4.4.4. Here, we simply remark that the 

edge resultants are the resultants evaluated separately for each edge. Therefore, 
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four sets of edge resultants can be defined for a given generalized force. Figure 4.8 

suggests that yM  and 1B  all produce edge resultant forces ( ) ( 1, 3;z jF jβ β= =

1, )yM B  parallel to the axial direction on Edge 1 and Edge 3. (For instance, (3)
yM

zF  

denotes the force resultant along the axial direction z defined on Edge 3 by the 

sectional resultant moment yM .) Therefore, the sectional deformation associated 

with 2χ  can be generated in the process of achieving the equilibrium with respect 

to those edge resultants if a box beam meets another box beam at a joint with a 

non-zero joint angle. 

Due to the edgewise equilibrium condition stated above, uniformly distributed 

loads on Edges 1 and 3, as depicted in Fig. 4.5(a), can be developed, which in turn 

induce 2χ . Figure 4.5(a) suggests that the edge resultants inducing 2χ  are in the 

x−  and x+  directions on Edge 1 and Edge 3 respectively. Therefore, the shape 

function 2 ( )n sχψ  of 2χ  can be determined as the deformed shapes due to the 

uniformly-distributed external loads depicted in Fig. 4.5(a). Although the 

displacements in the s direction can be accompanied on Edge 2 and Edge 4 due to 

compression, 2 ( ) 0s sχψ =  is assumed in this study because the scale of 

displacements in the s direction is relatively very small compared to the scale of 

displacements in the n direction. 

Using the symmetry of the applied loads with respect to both x and y axes in 

Fig. 4.5(a), one can define a bending problem depicted in Fig. 4.5(b). It models  
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(a)                                  (b) 

Fig. 4.5 (a) Distributed loads boundary condition and accompanied cross-
sectional deformation χ2 at the joint, (b) proposed equivalent problem to 
determine the deformation of χ2 on the portion (the first quadrant) of the cross-
section theoretically 

 

only a portion of the cross-section (the first quadrant) with roller support conditions 

at its both ends. In the model, Edge 1 and Edge 2 are assumed to behave as beams, 

and their mechanics responses can be analyzed by using the classical Euler beam 

theory [1] as 

2

2 4
4 2

1 1 1 3

1 (3 ) (5 ) 12( , ) { ( ) ( ) } { ( )}
24 48( ) 384( )n

h b h h b hu s z s s q z
b h b h Et

χ + +
= − + − ⋅

+ +
 (4.39a) 

2

3 2 3
2

2 2 3

12( , ) { ( ) } { ( )}
24( ) 96( )n

h b hu s z s q z
b h b h Et

χ = − + ⋅
+ +

      (4.39b) 

where 2 ( , )n ju s zχ  represents the displacement in the n direction generated on 

Edge j under the boundary conditions depicted in Fig. 4.5(b) and the ranges of the 
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coordinate js  on Edge j ( 1, 2j = ) are 10 ( / 2)s h≤ ≤  and 2( / 2) 0b s− ≤ ≤ , 

respectively. 

When the external loads depicted in Fig. 4.5(a) are applied on the cross-section 

at a joint of two box beams, the displacement 2
nu χ  generated on the whole cross-

section of a box beam meeting at a joint can be determined by using Eqs. (4.39a, b) 

and the symmetry conditions with respect to 1 0s =  and 2 0s = . Due to the 

symmetry, 2
nu χ  generated on Edge 1 for 1/ 2h s− ≤ / 2h≤  and Edge 2 for 

2/ 2 / 2b s b− ≤ ≤  are expressed by even functions of  ( =1, 2)is i , and thus 2
nu χ  

on the entire range of Edge 1 and Edge 2 are exactly the same as 2
nu χ  given in Eqs. 

(4.39a, b). Moreover, 2
nu χ  on Edge 3 is equal to 2

nu χ  on Edge 1 by the y-axis 

symmetry, and 2
nu χ  on Edge 4 is equal to 2

nu χ  on Edge 2 by the x-axis symmetry. 

Using the expression 2 2
2( , ) ( ) ( )n j n ju s z s zχ χψ χ= ⋅  ( 1, 2, 3, 4j = ) for Edge j, the 

shape function 2 ( )n jsχψ  can be now written as follows: 

2

2 4
* 4 2

1 4 1 1
1 (3 ) (5 )( ) { ( ) ( ) }
24 48( ) 384( )n

h b h h b hs P s s
b h b h

χψ + +
= × − + −

+ +
     (4.40a) 

2

3 2 3
* 2

2 4 2( ) { ( ) }
24( ) 96( )n

h b hs P s
b h b h

χψ = × − +
+ +

         (4.40b) 

2

2 4
* 4 2

3 4 3 3
1 (3 ) (5 )( ) { ( ) ( ) }
24 48( ) 384( )n

h b h h b hs P s s
b h b h

χψ + +
= × − + −

+ +
    (4.40c) 

2

3 2 3
* 2

4 4 4( ) { ( ) }
24( ) 96( )n

h b hs P s
b h b h

χψ = × − +
+ +

         (4.40d) 
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The constant *
4P  in Eq. (4.40) determines the scale of cross-sectional deformation 

represented by the unit magnitude of 2χ , and * 4
4 {384( )} / { (5 )}P b h h b h= + +  

will be used in this study. 

 

4.4 Derivation of Joint Matching Conditions 

In the previous section, a new HoBT was proposed in which the shape functions 

are newly defined compared with earlier works [8, 41] and 1( )zχ  is included as 

an additional degree of freedom for the analysis of box beams-joint systems. We 

will now establish a method analyze the structural behavior of two box beams-joint 

systems under in-plane loads ( , ,z x yF F M ) by using the newly-derived HoBT. The 

key for the joint analysis is how to derive the exact matching conditions among the 

field variables ( 2, , ,z xU U χ⋅⋅⋅ ) of Beam 1 and those Beam 2 at a beam joint. 

Because coupling phenomena at a joint are very complicated and also because no 

HoBT capable of handling mechanical behavior of thin-walled box beams at a joint, 

no theoretical method to exactly determine those joint matching conditions has 

been proposed. In this respect, the exact matching conditions will be derived in this 

study for the first time [50]. The present derivation is inspired by the exact 

matching method developed by Choi et al. [42] for box beams-joint systems under 

out-of-plane loads. However, additional considerations must be made to derive the 

exact joint matching conditions for box beams-joint systems under in-plane 

bending and axial loads because the required degrees of freedom ( 1 1 2, ,Wχ χ ) 
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involve much more complicated deformations than those involved in the problems 

considered by Choi et al. [42]. The detailed explanations for those additional 

considerations will be given below. 

When the field variables of Beam k ( 1, 2k = ) are expressed as follows, 

T
1 1 2{( ) , ( ) , ( ) , ( ) , ( ) , ( ) }k z k x k y k k k kU U Wθ χ χ=U          (4.41) 

the matching conditions between 1U  and 2U  at the joint shown in Fig. 4.2 can 

be expressed as follows. 

2 1( )φ= ⋅U T U                       (4.42a) 

or 

11 12 13 14 15 162 1

21 22 23 24 25 262 1

31 32 33 34 35 362 1

41 42 43 44 45 461 2 1

51 52 53 54 55 561 2

61 62 63 64 65 662 2

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( )
( )

z z

x x

y y

t t t t t tU U
t t t t t tU U
t t t t t t
t t t t t t
t t t t t tW
t t t t t t

θ θ
χ χ

χ

  
  
  
    =   
  
  
  
     

1

1 1

2 1

( )
( )
W
χ

 
 
 
  
 
 
 
 
  

        (4.42b) 

where φ  represent the joint angle between Beam 1 and Beam 2 (see Fig. 4.2(b) 

for the positive direction of φ ), and ( )φT  denotes the 6 6×  joint matrix 

representing the joint matching conditions between 1U  and 2U . In this study, we 

will determine the joint matrix ( )φT  which is valid for arbitrary joint angle φ  

and express the joint flexibility exactly. To do this, the following four propositions 

which ( )φT  should meet are defined, and the closed form of ( )φT  will be 

derived based on those propositions. 
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4.4.1 Proposition 1: Consideration of Zero Resultant by (Q1, B1, Q2) 

Taking into account the joint matching conditions given in Eq. (4.42) and the 

principle of virtual work together, the equilibrium conditions among the 

generalized forces F  which are the work conjugates of those field variables in Eq. 

(4.42) can be also expressed by using ( )φT . Therefore, the equilibrium conditions 

among the resultant forces or moments which must hold at the joint will be 

considered in Proposition 1, and some part of ( )φT  will be determined through 

this consideration. 

When the generalized force of Beam k () is expressed as follows, 

T
1 1 2{( ) , ( ) , ( ) , ( ) , ( ) , ( ) }k z k x k y k k k kF F M Q B Q=F          (4.43) 

the following equation meaning that the sum of virtual works of Beam 1 and Beam 

2 are zero at the joint can be obtained from the principle of virtual work. 

T T
1 1 2 2( ) ( ) 0δ δ+ =U F U F                    (4.44) 

where 1δ U  and 2δ U  represent the virtual displacements of Beam 1 and Beam 2, 

respectively. Expressing 1δ U  as 1
2( )φ δ− ⋅T U  by using Eq. (4.42) and then 

substituting that expression into Eq. (4.44), the following equation can be obtained. 

T T
2 1 2( ) ( ( ) ) 0δ φ− ⋅ + =U T F F                 (4.45) 

Since Eq. (4.45) should be always satisfied for arbitrary virtual displacement 2δ U , 

one can eventually obtain the following equilibrium condition between 1F  and 2F  

at the joint. 
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T
1 2( )φ− ⋅ + =T F F 0                     (4.46) 

Let us consider now the resultant forces or moments equilibrium conditions 

between 1F  and 2F  at the joint. It is worth mentioning that ( 1 1 2, ,Q B Q ) among 

the generalized forces F  which are the work conjugates of ( 1 1 2, ,Wχ χ ) are the 

self-equilibrated forces not producing any resultant forces or moments. Based on 

such characteristics, one can find that ( 1 1 1 1 2 1( ) , ( ) , ( )Q B Q ) of Beam 1 calculated at 

the joint cannot affect on the equilibrium among the resultant forces or moments of 

Beam 1 and Beam 2 at the joint, and that ( 2 2( ) , ( ) ,z xF F 2( )yM ) of Beam 2 are not 

generated by ( 1 1 1 1 2 1( ) , ( ) , ( )Q B Q ) [42]. Therefore, the resultant forces or moments 

equilibrium conditions between 1F  and 2F  are simply given as the vector 

relations using ( cos , sin , etc.φ φ ) among ( ( ) , ( ) , ( )z k x k y kF F M ) ( 1, 2k = ) having 

nonzero resultants, and consequently Eq. (4.46) should be written as follows from 

the consideration above. 

1 2

1 2

1 2

1 1 1 2

1 1 1 2

2 1 2 2

( ) ( )cos sin 0 0 0 0 0
( ) ( )sin cos 0 0 0 0 0
( ) ( )0 0 1 0 0 0 0
( ) ( ) 0
( ) ( ) 0
( ) ( ) 0

z z

x x

y y

F F
F F
M M
Q Q
B B
Q Q

φ φ
φ φ

• • • • • •

• • • • • •

• • • • • •

      
      −       
           + =       

       
      
      
           





      (4.47) 

where the parts expressed by dot ( • ) represent the elements of T−T  to be 

obtained, and the elements in the dotted box are zero since ( 1 1 1 1 2 1( ) , ( ) , ( )Q B Q ) 

cannot affect on the resultant forces or moments equilibrium. 



140 

Therefore, identifying the form of T−T  from the relation between 1F  and 

2F  given in Eq. (4.47) and then deriving T  from T−T , the matching relation 

between 1U  and 2U  can be written as: 

14 15 162 1

24 25 262 1

34 35 362 1

44 45 461 2 1 1

54 55 561 2 1 1

64 65 662 2 2 1

cos sin 0( ) ( )
sin cos 0( ) ( )
0 0 1( ) ( )
0 0 0( ) ( )
0 0 0( ) ( )
0 0 0( ) ( )

z z

x x

y y

t t tU U
t t tU U
t t t
t t t
t t tW W
t t t

φ φ
φ φ

θ θ
χ χ

χ χ

    
   −   
     =    
   
   
   
      










       (4.48) 

 

4.4.2 Proposition 2: Displacement Continuity at the Intersection Point A 

and B 

From the modeling shown in Fig. 4.2, the appearance of connection between the 

cross-sections of Beam 1 and Beam 2 at the joint is described in more detail in Fig. 

4.6. As shown in Fig. 4.2(a) or Fig. 4.6, Beam1 and Beam2 meet each other at the 

intersection points A and B which are located at the center of Edge 2 and Edge 4 of 

each beam respectively. Therefore, some of mnt   ( 1, 2, , 6; 4, 5, 6m n= ⋅⋅⋅ = ) in 

Eq. (4.48) will be determined in Proposition 2 by using the continuity conditions 

for the displacements of two beams calculated at the points A and B. However, the 

displacement fields on Edge 2 and Edge 4 are very complicated in the higher-order 

beam theory because the shape functions of ( 1 1 2, ,Wχ χ ) are represented by high-

order polynomial functions. Thus, ( ,s zu u ) representing the average displacements 
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Fig. 4.6 Intersection points A and B at the joint between the cross-sections of 
Beam 1 and Beam 2 and the continuity conditions among displacements or 
rotations generated on those intersection points A and B 

 

for the entire Edge 2 or Edge 4 will be used instead of ( ,s zu u ) given in Eq. (4.1) to 

avoid defining the very localized displacement continuity conditions. 

For example, the average displacements ( ,s zu u ) in s and z direction for the 

entire Edge 2 are as: 

( ) ( ); ( ) ( )s x z zu z U z u z U z= − =              (4.49a, b) 

where ( ,s zu u ) can be obtained as follows from the displacements ( ,s zu u ) on Edge 

2 given in Eq. (4.1) 

2 2 2 2 2 2
2 2 2 2

( ) ( , ) / ; ( ) ( , ) /s s z z
Edge Edge Edge Edge

u z u s z ds ds u z u s z ds ds= =∫ ∫ ∫ ∫  (4.50a, b) 

The displacement continuity condition between ( ,s zu u ) of Beam 1 and Beam 2 
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at the point A can be written as: 

1 1 1 1 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s s z z s s z zu u u u+ = +e e e e           (4.51) 

where ( )p ku  and ( )p ke  ( , ; 1, 2p s z k= = ) represent the average displacement 

and the unit vector in p direction defined on the point A of Beam k, respectively. 

The relations among ( )p ke  ( , ; 1, 2p s z k= = ) at the point A can be written as (see 

Fig. 4.6): 

1 2 2 1 2 2( ) ( ) cos ( ) sin ; ( ) ( ) sin ( ) cosz z s s z sφ φ φ φ= + = − +e e e e e e  (4.52a, b) 

, and substituting the relations given in Eq. (4.52a, b) into the continuity condition 

in Eq. (4.51), one can obtain the following matching conditions between 1U  and 

2U . 

2 1 1 2 1 1( ) ( ) cos ( ) sin , ( ) ( ) sin ( ) cosz z x x z xU U U U U Uφ φ φ φ= + = − +  (4.53a, b) 

All terms of U  considered in this study are symmetric with respect to the x-axis 

(see Fig. 4.3(a, b)). Therefore, the continuity conditions among ( ,s zu u ) defined on 

the point B are exactly equal to those conditions defined on the point A, and no 

additional conditions are obtained from the continuity conditions on the point B.  

The continuity condition for the displacement nu  generated on the points A 

and B are additionally considered in Choi et al. [42] since they include the rigid-

body motion in y direction as the field variable. On the other hand, the continuity 

condition for nu  will not be employed in this study because the displacement nu  

on the points A and B are represented only by 2χ , and because the magnitude of 
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nu  is very small compared to that of ( ,s zu u ). Instead, the continuity condition 

between the average rotation nθ  in n direction generated on the points A and B of 

Beam 1 and Beam 2 will be employed together in this study because the rigid-body 

rotation in y direction is considered as the field variable yθ .  

For example, the average rotation nθ  in n direction for the entire Edge 2 is as: 

2 2

1
4(5 )
5 ( 3 )n y

h b W
bh b h

θ θ −
= +

+
                   (4.54) 

Through multiplying 2s  to the displacement 2( , )zu s z  on Edge 2 given in Eq. 

(4.1) and then carrying out the line integration, the translation component of 

2( , )zu s z  can be eliminated, and the integration quantity with respect to the 

rotation of the entire Edge 2 are calculated as follows (see Appendix A for the 

explicit expressions of 1
2 2 2( ), ( ), ( )yzU W

z z zs s sθψ ψ ψ ). 

1

2 2 2
2

2 2 2 2 2 2 1 2 2 2
2 2 2

3 2 2

1

( , )

( ) ( ) ( ) ( ) ( ) ( )

4(5 )( ) { }
12 5 ( 3 )

yz

z
Edge

U W
z z y z z

Edge Edge Edge

y

s u s z ds

U z s s ds z s s ds W z s s ds

b h b W
bh b h

θψ θ ψ ψ

θ

⋅

= ⋅ + ⋅ + ⋅

−
= × +

+

∫

∫ ∫ ∫  

(4.55a) 

The average rotation nθ  in n direction for the entire Edge 2 can be defined as 

follows by using the integration quantity calculated in Eq. (4.55a), and 

consequently nθ  given in Eq. (4.54) can be obtained.  
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3

2 2 2 2 2 2
2 2

( , ) ( ( )) ( ) ( )
12z n n

Edge Edge

bs u s z ds s s z ds zθ θ⋅ ≡ ⋅ ⋅ = ×∫ ∫      (4.55b) 

Equation (54) shows that the effect 1W  by in addition to that by yθ  is appeared in 

the average rotation in n direction of Edge 2. 

The continuity condition between nθ  of Beam 1 and Beam 2 at the point A 

can be written as: 

1 1 2 2( ) ( ) ( ) ( )n n n nθ θ=e e                    (4.56) 

where ( )n kθ  and ( )n ke  ( 1, 2k = ) represent the average rotation and the unit 

vector in n direction defined on the point A of Beam k. The following relation can 

be obtained from Eq. (4.56) because 1 2( ) ( )n n=e e  at the point A (see Fig. 4.6). 

2 2 2 2

2 1 2 1 1 1
4(5 ) 4(5 )( ) ( ) ( ) ( )
5 ( 3 ) 5 ( 3 )y y

h b h bW W
bh b h bh b h

θ θ− −
+ = +

+ +
        (4.57) 

Meanwhile, 1 2 54 1 1 55 1 1 56 2 1( ) ( ) ( ) ( )W t t W tχ χ= + +  must hold from the relation given 

in Eq. (4.48), and substituting that relation into Eq. (4.57), 2( )yθ  can be expressed 

as: 

2 2

2 1 54 1 1 55 1 1 56 2 1
4(5 )( ) ( ) { ( ) (1 )( ) ( ) }
5 ( 3 )y y

h b t t W t
bh b h

θ θ χ χ−
= + − + − −

+
  (4.58) 

When the continuity condition for nθ  is considered at the point B, the same 

matching relation obtained from the continuity condition at the point A is derived. 

Substituting the matching conditions given in Eqs. (4.53a, b) and Eq. (4.58) 

into Eq. (4.48), one can obtain the following matching conditions between 1U  
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and 2U  meeting the proposition 1 and 2. 

2 2 2 2 2 2

2

2
4(5 ) 4(5 ) 4(5 )

2 54 55 565 ( 3 ) 5 ( 3 ) 5 ( 3 )

1 2 44 45 46

1 2 54 55 56

2 2 64 65 66

cos sin 0 0 0 0( )
sin cos 0 0 0 0( )

( ) 0 0 1 (1 )
( ) 0 0 0
( ) 0 0 0
( ) 0 0 0

z

x
h b h b h b

y bh b h bh b h bh b h

U
U

t t t

t t t
W t t t

t t t

φ φ
φ φ

θ
χ

χ

− − −
+ + +

  
   −  
  − − −  = 
 
 
 
    

1

1

1

1 1

1 1

2 1

( )
( )
( )
( )
( )
( )

z

x

y

U
U

W

θ
χ

χ

 
 
 

     
  
  
  
   

 (4.58) 

 

4.4.3 Proposition 3: Use of the Relations ( 0 )φ = =T I , ( ) ( )φ φ⋅ − =T T I , 

and ( ) ( )φ φ⋅T T (2 )φ= T  

To determine ( )φT  valid for arbitrary joint angle φ , the relation 1 2( ) ( )φ φ⋅ =T T

1 2( )φ φ+T  should hold for arbitrary angles 1φ  and 2φ . Thus, employing 

( 0 ) , ( )φ φ= = ⋅T I T ( ) , ( ) ( ) (2 )φ φ φ φ− = ⋅ =T I T T T  which are the special cases 

for the mentioned relation, some mnt  ( 4, 5, 6; 4, 5, 6m n= = ) in Eq. (4.59) will be 

determined in this study. In this regard, the relation ( 0 )φ = =T I  represents that 

the structure shown in Fig. 4.2 is converged into the straight box beam when the 

joint angle 0φ =  . 

Referring to Fig. 4.7, let us first determine the form of ( )φ−T . Figure 4.7(a, b) 

represent the two thin-walled box beams-joint structures with joint angle φ+  and 

φ− , respectively. If the structure shown in Fig. 4.7(b) is rotated 180 degrees in 1z  

direction, the structure can be regarded the structure having the joint angle φ+  
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(a) 

 

(b) 

 

(c) 

Fig. 4.7 Description of the procedure to determine the form of T(-φ): (a) matching 
conditions of T(φ) for a positive joint angle +φ, (b) T(-φ) defined for a negative 
joint angle –φ , (c) T(φ) defined for the structure having a positive joint angle +φ 
and a different coordinate system ( ˆ ˆ ˆ, ,x y z ) 
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and the rotated local coordinates of Beam 1 and Beam 2 as depicted in Fig. 4.7(c). 

When ˆ
kU  ( 1, 2k = ) represents the field variables of Beam k defined by the local 

coordinate ( ˆ ˆ ˆ, ,k k kx y z ) shown in Fig. 4.7(c), the matching condition between 1Û  

and 2Û  at the joint can be written as: 

2 1
ˆ ˆ( )φ= ⋅U T U                       (4.60) 

Meanwhile, the coordinate ( ˆ ˆ ˆ, ,k k kx y z ) ( 1, 2k = ) shown in Fig. 4.7(c) can be 

related with the coordinate ( , ,k k kx y z ) in Fig. 4.7(a) as: 

ˆ ˆ ˆ ˆ, ,k k k k k kx x y y z z= − = − =                (4.61) 

Considering those relations given in Eq. (4.61), one can also relate the field 

variables ˆ
kU  ( k = 1, 2 ) with the field variables kU  (see the positive directions 

of those field variables shown in Fig. 4.3(a, b)). 

1 1 1 1 2 2

ˆˆ ˆ( ) ( ) , ( ) ( ) , ( ) ( ) ,
ˆˆ ˆ( ) ( ) , ( ) ( ) , ( ) ( )

z k z k x k x k y k y k

k k k k k k

U U U U

W W

θ θ

χ χ χ χ

= = − = −

= − = − =
       (4.62) 

Substituting Eq. (4.62) into Eq. (4.60) and then organizing the relations with 

respect to 1U  and 2U , one can obtain the matching relation 2 1( )φ= − ⋅U T U  for 

the structure shown in Fig. 4.7(b). ( )φ−T  obtained through this observation can 

be expressed as the following form. 
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2 2 2 2 2 24(5 ) 4(5 ) 4(5 )
54 55 565 ( 3 ) 5 ( 3 ) 5 ( 3 )

44 45 46

54 55 56

64 65 66

cos sin 0 0 0 0
sin cos 0 0 0 0

0 0 1 (1 )
( )

0 0 0
0 0 0
0 0 0

h b h b h b
bh b h bh b h bh b ht t t

t t t
t t t
t t t

φ φ
φ φ

φ
− − −
+ + +

− 
 
 
 − − − =
 −
 

− 
 − − 

T  (4.63) 

Comparing ( )φ−T  given in Eq. (4.63) with ( )φT  given in Eq. (4.59), one can 

find that ( 44 45, ,t t 54 55 66, ,t t t ) are even functions, and that ( 46 56 64 65, , ,t t t t ) are odd 

functions among the undetermined components mnt  ( 4, 5, 6; 4, 5, 6m n= = ) in 

( )φT . 

By the way, ( )φT  representing the so-called coordinate transformation matrix 

should meet the periodicity ( 360 ) ( )φ φ+ =T T , and thus it can be found that mnt  

( 4, 5, 6; 4,m n= = 5, 6 ) in Eq. (4.59) should be expressed by the trigonometric 

functions ( cos , sinφ φ ) and constants. Moreover, the symmetry condition above 

and the condition ( 0 )φ = =T I  should be also satisfied. Therefore, 44 66~t t  can 

be written as follows from those considerations. 

44 55 66( ) 1 or cos , ( ) 1 or cos , ( ) 1 or cost t tφ φ φ φ φ φ= = =      (4.64a) 

* *
45 45 54 54( ) (1 cos ), ( ) (1 cos )t t t tφ φ φ φ= − = −           (4.64b) 

* * * *
46 46 56 56 64 64 65 65( ) sin , ( ) sin , ( ) sin , ( ) sint t t t t t t tφ φ φ φ φ φ φ φ= = = =  (4.64c) 

The diagonal terms ( 44 55 66, ,t t t ) of ( )φT  should be 1 or cosφ  as given in Eq. 

(4.64a) because those terms are even functions and should meet the condition 

( 0 ) 1mmt φ = =  ( 4, 5, 6m = ). Among the off-diagonal terms of ( )φT , ( 45 54,t t ) 
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should be the functions of (1 cosφ− ) as given in Eq. (4.64b) because they are even 

functions and should meet the condition ( 0 )mnt φ =  0=  ( , 4, 5;m n m n= ≠ ), and 

* *
45 54,t t  in Eq. (4.64b) represent the proportional constants. The remained off-

diagonal terms ( 46 56 64 65, , ,t t t t ) of ( )φT  should be the functions of ( sinφ ) as 

given in Eq. (4.64c) because they are odd functions and should hold the condition 

6 ( 0 )mt φ = =

6 ( 0 ) 0mt φ = =  ( 4, 5m = ), and * * * *
46 56 64 65, , ,t t t t  in Eq. (4.64c) 

represent the proportional constants either. 

Considering Eq. (4.64), ( 1 2 1 2 2 2( ) , ( ) , ( )Wχ χ ) of Beam 2 generated at the joint 

by ( 1 1 1 1( ) , ( )Wχ 2 1, ( )χ ) of Beam 1 can be written as: 

* *
1 2 44 45 46 1 1

* *
1 2 54 55 56 1 1

* *
2 2 64 65 66 2 1

( ) (1 cos ) sin ( )
( ) (1 cos ) sin ( )
( ) sin sin ( )

t t t
W t t t W

t t t

χ φ φ χ
φ φ

χ φ φ χ

 −   
    = −    

        

      (4.65) 

where 1( )kχ  and 2( )kχ  ( 1, 2k = ) represent the displacements on the k kx y−  

plane of Beam k, and 1( )kW  ( 1, 2k = ) represent the axial displacements of Beam k 

(see Fig. 4.3(b)). Considering these displacement patterns of ( 1 1 2, ,Wχ χ ) in 

addition to the connectivity between the cross-sections of Beam 1 and Beam 2 

shown in Fig. 4.6, one can find some contradictory relations between the 

displacements perpendicular to each other from Eq. (4.65). For example, the 

direction of displacements generated on Beam 2 by 1 1( ) (1 cos )W φ−  and of 

2 1( ) sinχ φ  Beam 1 is perpendicular to the direction of 1 2( )χ , and thus 1 2( )χ  
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cannot be generated by the relations given in Eq. (4.65) with ( 1 1 2 1( ) , ( )W χ ) of 

Beam1. Likewise, the directions of displacements generated on Beam 2 by 

1 1( ) (1 cos )χ φ−  and 1 1( ) sinχ φ  of Beam 1 are perpendicular to the directions 

1 2( )W  and 2 2( )χ , respectively. Among those displacement relations given in Eq. 

(4.65), therefore, 1 2( )χ  of Beam 2 should be decoupled with 1 1( )W  and 2 1( )χ  of 

Beam 1, and 1 2( )W  and 2 2( )χ  of Beam 2 should be decoupled with 1 1( )χ  of 

Beam 1. Consequently, the following results can be obtained from this observation. 

* * * *
45 46 54 64 0t t t t= = = =                     (4.66) 

Subsequently, the conditions ( ) ( )φ φ⋅ − =T T I  and ( ) ( ) (2 )φ φ φ⋅ =T T T  will 

be employed to obtain some of the undetermined mnt . First, let us call the matrix 

given in Eq. (4.65) as sub ( )φT  representing the submatrix of ( )φT . From the 

conditions ( ) ( )φ φ⋅ − =T T I  and ( ) ( ) (2 )φ φ φ⋅ =T T T , it can be found that 

eventually sub sub( ) ( )φ φ⋅ − =T T I  and sub sub sub( ) ( ) (2 )φ φ φ⋅ =T T T  should be 

satisfied. 

Using Eqs. (4.65) and (4.66), the condition sub sub( ) ( )φ φ⋅ − =T T I  can be 

written as: 
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44 44
* *

55 56 55 56
* *
65 66 65 66

2
44

2 * * 2 *
55 56 65 56 55 66
* 2 * * 2
65 55 66 66 56 65

0 0 0 0
0 sin 0 sin
0 sin 0 sin

( ) 0 0 1 0 0
0 ( ) sin sin ( ) 0 1 0
0 sin ( ) ( ) sin 0 0 1

t t
t t t t

t t t t

t
t t t t t t
t t t t t t

φ φ
φ φ

φ φ
φ φ

   
   −   
   −   

   
   = − − − =   
   − −   

    (4.67) 

, and considering the diagonal components in Eq. (4.67), one can find the following 

relations. 

2 2 2
44 55 66( ) 1; ( ) ( ) 0t t t= − =               (4.68a, b) 

Since ( 44 55 66, ,t t t ) satisfies Eq. (4.64a), ( 44 55 66, ,t t t ) can be expressed as follows by 

considering Eq. (4.64a) together with Eqs. (4.68a, b). 

44 55 661;t t t= =                    (4.69a, b) 

When ( 44 55 66, ,t t t ) meet the relations given in Eq. (69a, b), the relations for the off-

diagonal components given in Eq. (4.67) are also satisfied. 

Utilizing the results given in Eqs. (4.69a, b), sub sub sub( ) ( ) (2 )φ φ φ⋅ =T T T  can 

be written as: 

* *
55 56 55 56

* *
65 55 65 55

2 * * 2 * *
55 56 65 55 56 55 56

* 2 * * 2 *
55 65 55 56 65 65 55

1 0 0 1 0 0
0 sin 0 sin
0 sin 0 sin

1 0 0 1 0 0
0 ( ) sin 2 sin 0 (2 ) 2 cos sin
0 2 sin ( ) sin 0 2 cos sin (2 )

t t t t
t t t t

t t t t t t t
t t t t t t t

φ φ
φ φ

φ φ φ φ φ
φ φ φ φ φ

   
   
   
      

 
 = + = 
 + 

 
 
 
  

   (4.70) 

where 55t  is 1 or cosφ  according to Eq. (4.64a). If 55t  is assumed to be 1, the 
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following results are obtained from the relations between the components of (2, 3) 

or (3, 2) in Eq. (4.70). 

* *
56 652 sin (1 cos ) 0, 2 sin (1 cos ) 0t tφ φ φ φ− = − =          (4.71) 

Since Eq. (4.71) should be satisfied for arbitrary joint angle φ , * *
56 65 0t t= = , and 

thus sub ( )φT = I . This represents the contradictory result that ( 1 1 1 1 2 1( ) , ( ) , ( )Wχ χ ) 

of Beam1 are equal to ( 1 2 1 2 2 2( ) , ( ) , ( )Wχ χ ) of Beam 2 regardless of the joint angle 

between two beams, and the flexibility of the joint appeared by the effects of cross-

sectional deformations cannot be expressed through this matching conditions. 

Therefore, 55t  should take the following form: 

55 cost φ=                         (4.72) 

, and when 55t  in Eq. (4.72) is substituted for Eq. (4.70), the following relation 

between *
56t  and *

65t  can be obtained from the relation with respect to the 

components of (2, 2) or (3, 3) in the matrix. 

* *
56 65 1t t = −                          (4.73) 

The matching conditions between 1U  and 2U  which satisfy all the conditions 

with respect to ( )φT  considered in Proposition 3 are as: 
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2 2 2 2

2

2 4(5 ) 4(5 ) *
565 ( 3 ) 5 ( 3 )

2

1 2 *
56

1 2

2 2 *
56

cos sin 0 0 0 0
( ) (sin cos 0 0 0 0
( )

0 0 1 0 (1 cos ) sin( )
0 0 0 1 0 0( )
0 0 0 0 cos sin( )

1( ) 0 0 0 0 sin cos

z

x h b h b
bh b h bh b h

y

U
U

t

tW

t

φ φ
φ φ

φ φ
θ
χ

φ φ

χ φ φ

− −
+ +

 
   −   
   − −     =   

  
  
  

  −  
  

1

1

1

1 1

1 1

2 1

)
( )
( )
( )
( )
( )

z

x

y

U
U

W

θ
χ

χ

 
 
 
  
 
 
 
 
  

 

(4.74) 

It can be seen that the matching conditions given in Eq. (4.74) are valid for any 

joint angle φ , because ( )φT  in Eq. (4.74) satisfies 1 2 1 2( ) ( ) ( )φ φ φ φ⋅ = +T T T  for 

arbitrary 1φ  and 2φ , 

 

4.4.4 Proposition 4: Equilibrium Condition on Edge 1 or Edge 3 

When the matching conditions given in Eq. (4.74) are satisfied at the joint, 

the following equilibrium conditions between 1F  and 2F  should hold 

according to Eq. (4.46). 

2 2

2 2

4(5 )
5 ( 3 ) *

56

4(5 ) * *
56 565 ( 3 )

1

1

1

1 1

1 1

2 1

cos sin 0 0 0 0
sin cos 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

1
0 0 (1 cos ) 0 cos sin

0 0 sin 0 sin cos

( ) (
( )
( )
( )
( )
( )

h b
bh b h

h b
bh b h

z

x

y

t

t t

F F
F
M
Q
B
Q

φ φ

φ φ

φ φ φ

φ φ φ

−

+

−

+

−

−

−

 
  
  
  
     +   

   
   
   

    
  

2

2

2

1 2

1 2

2 2

) 0
( ) 0
( ) 0
( ) 0
( ) 0
( ) 0

z

x

y

F
M
Q
B
Q

   
   
   
      =   
   
   
   

     

   

(4.75) 

Subsequently, the equilibrium conditions given in the fifth and sixth rows in Eq. 
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(4.75) can be expressed as: 

2 2 2 24(5 ) 4(5 )
1 1 1 2 1 2 1 25 ( 3 ) 5 ( 3 )*

56

1{ ( ) ( ) }cos ( ) sin { ( ) ( ) } 0h b h b
y ybh b h bh b hM B Q M B

t
φ φ− −

+ +− + + + − + =  

(4.76a) 

2 24(5 )
1 1 1 2 1 2 25 ( 3 ) * *

56 56

1 1{ ( ) ( ) }sin ( ) cos ( ) 0h b
ybh b h M B Q Q

t t
φ φ−

+− − + + + =    (4.76b) 

where the relation 1 2( ) ( ) 0y yM M+ =  obtained from the third row in Eq. (4.75) is 

employed in Eq. (4.76a).  

Equations (76a, b) show that the additional equilibrium conditions among 

( 1 2, ,yM B Q ) should be satisfied at the joint as well as two equilibrium conditions 

with respect to the resultant forces ( ,z xF F ) and one equilibrium condition with 

respect to the resultant moment yM . In this regard, ( 1 2,B Q ) produce the so-called 

edge resultants for each edge of the cross-section although they do not produce any 

resultant for the entire cross-section (this phenomenon has been found for the first 

time by Choi and Kim [43] dealing with the interpretation for the thin-walled beam 

structure subjected to out-of-plane loads). 

Figure 4.8 shows the edge forces or the edge moments that are generated on 

each edge of the cross-section by 1, ,yM B  and 2Q . For example, (4)
yM

nM  

represents the edge moment in n direction that is generated on Edge 4 by yM  (the 

detailed procedures in derivation of those edge resultants are given in Appendix C). 

Strictly speaking, 2Q  produces the edge moment 2
( )

Q
z jM  ( 1, 2, 3, 4j = ) in z  
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(a) 

 

(b) 

 

(c) 

Fig. 4.8 Edge resultants acting on each edge of the cross-section that are produced 
by the generalized forces: in-plane bending moment M y, longitudinal bimoment 
B1 and transverse bimoment Q2 
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             (a)                               (b) 

Fig. 4.9 (a) Distributed axial moment 2Q
zm  on the cross-section generated by the 

shear stress 2Q
szσ  of Q2, (b) effective distributed normal force 2Q

nf  acting on 

Edge 1 generated by the distributed moment 2Q
zm  

 

direction for each edge (Fig. 4.9(a)). According to the Kirchhoff-Love plate theory 

[45], however, 2
( )

Q
z jM  eventually produces the effective edge forces 2

( )
Q

n jF  

( 1, 2, 3, 4j = ) in n direction by the principle given in Fig. 4.9(b). 

Considering Eqs. (4.76a, b), those forces represented by 
2 24(5 )

15 ( 3 ){ }h b
ybh b h M B−

+− +  

and 2*
56

1{ }Q
t

 should be placed on the same plane and should be perpendicular to 

each other. From this observation, one can find that Eqs. (4.76a, b) represent the 

equilibrium conditions among those edge resultants shown in Fig. 4.8 that are 

generated on Edge 1 or Edge 3. Although Edge 1 and Edge 3 of two beams are 

located apart from each other in Fig. 4.2, the connectivity among those edges can 

be defined by referring to Choi and Kim [43]. In other word, Shared Side Edge 1 at 

the actual joint shown in Fig. 4.1 is extended and divided into Edge 1 1M M ′  and 
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Edge 2 2M M ′  in the modeling shown in Fig. 4.2 which represent Edge 1 of Beam 

1 and Beam 2, respectively, and thus Edge 1 of two beams at the joint can be 

regarded as if they are connected each other by a rigid body. Applying the same 

perspective to Shared Side Edge 2 shown in Fig. 4.1, Edge 3 of two beams at the 

joint can be also regarded as if they are rigidly connected each other. Therefore, the 

equilibrium conditions among the edge resultants generated on Edge 2j  ( 2 1, 3j = ) 

of Beam 1 and Beam 2 can be considered at the joint. 

The equilibrium conditions defined on Edge 1 and Edge 3 are equal to each 

other, and those conditions are expressed as: 

2

2 2

2

2 2

3 (5 )3 15
1 1 1 2 1( 3 ) 16 ( )4(5 )

3 15
2 1 2( 3 ) 4(5 )

{ ( ) ( ) }cos { ( ) }sin

{ ( ) ( ) } 0

h b hh h
yb b h b b hh b

h h
yb b h h b

M B Q

M B

φ φ+
+ +−

+ −

− + −

+ − + =
 (4.77a) 

2

2 2
3 (5 ) 3 (5 )3 15

1 1 1 2 1 2 2( 3 ) 16 ( ) 16 ( )4(5 )
{ ( ) ( ) }sin { ( ) }cos { ( ) } 0h b h h b hh h

yb b h b b h b b hh b
M B Q Qφ φ+ +

+ + +−
− − + − − =      

(4.77b) 

It can be seen that Eqs. (4.77a, b) are equal to Eqs. (4.76a, b) multiplied by 

2

2 2

15
4(5 )

h
h b−

. Therefore, the constant *
56t  in Eqs. (4.76a, b) can be determined 

through the comparison with Eqs. (4.77a, b), and the value of *
56t  is as:  

*
56 2 2

20 ( )
(5 )(5 )

bh b ht
b h h b

+
= −

+ −
                   (4.78) 

, and the exact matching conditions between 1U  and 2U  can be obtained by 

substituting *
56t  in Eq. (4.78) into Eq. (4.74), and those conditions are as: 
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x
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χ
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 
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  
  
   
  
  
  
       

     

(4.79)  

 

4.5 Numerical Examples 

The finite element equations of the HoBT for thin-walled box beams under in-

plane bending and axial loads are given by Eqs. (4.B4-4.B6) in Appendix B and the 

exact joint matching equations are newly derived as Eq. (4.79). Because the 

procedure to analyze box beams-joint systems by using the higher-order beam 

theory and the joint matching conditions is exactly the same as the standard 

procedure using the finite element analysis based on the classical beam theories 

[48], the detailed descriptions for the analysis procedure will be omitted. The 

accuracy and effectiveness of the derived equations will be demonstrated in this 

section. 

First, straight box beams with various aspect ratios of cross-sections will be 

analyzed. With this case study, we aim to examine if the proposed higher-order 

beam equations can capture correctly the additional flexibility of those straight box 

beams as well as the global responses. The second case study is concerned with the 

analysis of two box beams-joint systems with various joint angles and aspect ratios 
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of cross-sections. In this case study, the validity of the derived joint matching 

conditions of Eq. (4.79) will be mainly examined. It will test if the effects of the 

joint flexibility induced by higher-order deformations can be accurately captured 

by the proposed one-dimensional analysis approach. 

All of the analysis results by the proposed approach are checked through 

comparing them with those of ABAQUS shell analysis, Timoshenko beam analysis, 

and also the analysis method by Jang and Kim [41] when applicable. 

Case Study 1: Straight Thin-Walled Box Beams. In this case, we deal with 

the analysis of straight thin-walled box beams to check the accuracy of the newly 

derived HoBT. To this end, we ignore Beam 2 so that we can consider the situation 

where there is only Beam 1 in Fig. 4.2, a straight thin-walled box beam. For this 

case, the length ( L ) and the thickness (t) of Beam 1 are 1000 mmL =  and 

2 mmt = . The material properties of Beam 1 are Young’s modulus 200 GpaE =  

and Poisson’s ratio 0.3ν = . One end of Beam 1 is fixed as shown in Fig. 4.2, and 

the other end of Beam 1 is subjected to a transverse force 1( ) 100 NxF = . The 

loaded end is assumed to be rigid. The examples with various cross-sections for 

this structure will be analyzed by using the finite element equations of one-

dimensional higher-order beam theory given in Eq. (4.B4-4.B6), and the results 

will be compared with those by the mentioned other analysis approaches. 

To obtain sufficiently converged results, 60 beam elements are used in one-

dimensional beam analysis approaches for the modeling of Beam 1; although 
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various cross-sections with different widths and heights are considered, the 

converged results can be obtained by using 60 beam elements regardless of those 

changes. In two-dimensional shell analysis, 12.5mm × 12.5mm  square element is 

used for the modeling of Beam 1. The number of shell elements used is different 

depending on the dimensions of the cross-section, and to model Beam 1 with the 

width 50 mmb =  and the height 100 mmh = , for example, (4 8 4 8) 80+ + + ×

1920=  shell elements are used. 

The analysis results for Beam 1 with 50 mmb =  and 100 mmh =  are given 

in Figs. 4.10(a-f). Each graph in Figs. 4.10(a-f) represents the magnitude of each 

field variable calculated along the 1z –axis. Only the results with respect to the 

rigid-body motion ( , ,z x yU U θ ) are considered among the results by Jang and Kim 

[41] because the shapes of the cross-sectional deformations considered in Jang and 

Kim [41] are somewhat different with ( 1 1 2, ,Wχ χ ) in this study. Observing the 

results based on those obtained by the shell analysis, one can find that the 

Timoshenko beam analysis cannot include the effects of the cross-sectional 

deformations although the bending rigidity of the box beam is correctly captured, 

and that the approach proposed by Jang and Kim [41] which includes the effects of 

the cross-sectional deformations cannot correctly express the bending rigidity of 

the box beam. Meanwhile, the proposed higher-order beam analysis can exactly  
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              (a)                               (b) 

    

              (c)                               (d) 

    

              (e)                               (f) 

Fig. 4.10 Numerical results for the straight box beam (L=1000 mm, b=50 mm, 
h=100 mm, t=2 mm) under transverse force F x =100 N: (a) axial displacement 
Uz, (b) transverse displacement Ux, (c) in-plane bending /shear rotation, (d) 
distortion χ1, (e) warping W1, (f) distortion χ2. 
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Fig. 4.11 Numerical results for the straight box beam (L=1000 mm, b=50 mm, 
h=100 mm, t=2 mm) under transverse force F x =100 N: (a) axial displacement 
Uz, (b) transverse displacement Ux, (c) in-plane bending /shear rotation, (d) 
distortion χ1, (e) warping W1, (f) distortion χ2 

 

express not only the bending rigidity of the box beam but also the additional 

flexibility of the box beam by the cross-sectional deformations. 

In sequence, the problems defined from the previous example by changing b 

and h of Beam 1 in a range from 125 mm, 50 mmb h= =  ( / 50 /125h b = ) to 

50 mm, 125 mmb h= =  ( / 125 / 50h b = ) are solved, and the results are given in 

Fig. 4.11. The graph in Fig. 4.11 represents the variation in the transverse 

displacement 1( )xU  of the loaded end when the aspect ratio ( /h b ) of the cross-

section is varied. From the results, one can find that the proposed higher-order 

beam analysis can provide the accurate bending behaviors for the box beams with 

cross-sections of various widths and heights.  
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Case Study 2: Two Box Beams-Joint Structures. The examples concerning 

the two thin-walled box beams-joint structures shown in Fig. 4.2 will be considered 

in the case study 2; the length (L) and thickness (t) of two beams are 1000 mmL =  

and 2 mmt = . The material properties of two beams are Young’s modulus 

200 GpaE =  and Poisson’s ratio 0.3ν = . One end of the structure is fixed as 

shown in Fig. 4.2, and the other end of the structure, denoted as D, is subjected to 

the in-plane bending moment 2( ) 1 N myM = ⋅ . The loaded end is assumed to be 

rigid. The number of elements used to model the Beam k ( 1, 2k = ) is equal to that 

for Beam 1 in Case Study 1. 

The problem with 50 mm, 100 mmb h= =  for two beams and the joint 

angle 90φ =   is considered for the first example, and the results are given in Fig. 

4.12(a-f). The range of the axial coordinate ( 1,k k− ) ( 1, 2k = ) in the each graph 

given in Fig. 4.12(a-f) represent the magnitude of each field variable for Beam k 

calculated along the axial direction. Likewise, the magnitudes of the rigid-body 

motions ( , ,z x yU U θ ) among the analysis results by Jang and Kim [41] are plotted 

in Fig. 4.12(a-c). Observing the results based on those from the shell analysis, it 

can be found that the Timoshenko beam analysis overestimates the stiffness of the 

structure as mentioned in Introduction. In contrast, one can find that the analysis 

methods proposed in this study and Jang and Kim [41] can express the flexibility of 

the structure more correctly because those methods consider the effects of the 

cross-sectional deformations. Especially it can be found that the accurate analysis 
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              (a)                               (b) 

    

              (c)                               (d) 

    

              (e)                               (f) 

Fig. 4.12 Numerical results for the two thin-walled box beams-joint structure (L=
1000 mm, b=50 mm, h=100 mm, t=2 mm, φ=90º) under in-plane bending 
moment M y =100 N·m: (a) axial displacement Uz, (b) transverse displacement U
x, (c) in-plane bending /shear rotation, (d) distortion χ1, (e) warping W1, (f) 
distortion χ2. 
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                (a)                               (b) 

Fig. 4.13 (a) Numerical results for the two box-beams-joint structures (L=1000 
mm, b=50 mm, h=100 mm, t=2 mm) with various joint angles φ  ranging 10o 
≤ φ  ≤90o, (b) percentage errors for the results of one-dimensional beam analyses 
given in Fig. 13(a) with respect to the result by the shell analysis 

 

   

                (a)                               (b) 

Fig. 4.14 (a) Numerical results for the two box-beams-joint structures (L=1000 
mm, t=2 mm, φ=90º) with various width (b) and heights (h) of the cross-secti
on (or aspect ratios h/b) raging from b=125 mm, h=50 mm (h/b=50/125) to 
b=50 mm, h=125 mm (h/b=125/50), (b) percentage errors for the results of 
one-dimensional beam analyses given in Fig. 14(a) with respect to the result by 
the shell analysis 
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results which are almost equal to the results by the shell analysis can be obtained 

through the proposed approach. 

Problems defined from the first example by changing φ  in a range 

10 90φ≤ ≤   are solved, and the results are given in Figs. 4.13(a, b). The graph in 

Fig. 4.13(a) represents the variation in the transverse displacement 2( )xU  of the 

loaded end when the joint angle φ  is varied. The percentage errors for the results 

of one-dimensional beam analyses are calculated based on the result by the shell 

analysis and are given in Fig. 4.13(b). From those results given in Figs. 4.13(a, b), 

it can be found that the proposed approach can provide the accurate results for the 

two box beams-joint structure with various joint angles. 

Problems defined from the first example by changing the aspect ratio (h/b) in a 

range from 125 mm, 50 mm ( / 50 /125 )b h h b= = =  to 50 mm,b = h =

125 mm ( / 125 / 50 )h b =  are also considered and the results are given in Fig. 

4.14(a, b). The graph in Fig. 4.14(a) represents the variation in the transverse 

displacement 2( )xU  of the loaded end when the aspect ratio (h/b) is varied, and 

the graph given in Fig. 4.14(b) represents the percentage errors for the results of 

one-dimensional analyses with respect to the result by the shell analysis. From 

those results given in Figs. 4.14(a, b), one can also find that the proposed approach 

can give the accurate results for the two box beams-joint structure with various 

aspect ratios of the cross-section.  
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Fig. 4.15 Serially connected four box beams-joint structure (L=1000 mm, b=50 
mm, h=100 mm, t=2 mm, φ 1= – 45º, φ 2=45º, φ 3= – 45º) subjected to in-plane 
force 

global
100 NzF =  

 

Case Study 3: Serially Connected Four Box Beams-Joint Structures. When 

several thin-walled box beams are serially connected in a zigzag form as shown in 

Fig. 4.15, the warping for Beam 2 and Beam 3 cannot be determined by Jang and 

Kim [41], and thus the structure given in Fig. 4.15 cannot be interpreted by Jang 

and Kim [41]. Therefore, it will be check whether the structure given in Fig. 4.15 

can be interpreted by using the proposed approach. The length of those beams is 

1000 mmL = , and the width (b), height (h), and thickness (t) of those beams are 

50 mmb = , 100 mmh = , and 2 mmt = . The material properties of those beams 

are Young’s modulus 200 GpaE =  and Poisson’s ratio 0.3ν = . The joint angles 

shown in Fig. 4.15 are 1 2 345 , 45 , 45φ φ φ= − = = −   . One end of this structure is 

fixed, and the other end is subjected to the in-plane force 4( ) (100 / 2 ) NzF =  and  
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              (a)                               (b) 

    

              (c)                               (d) 

    

              (e)                               (f) 

Fig. 4.16 Numerical results for the serially connected four box beams-joint 
structure given in Fig. 15: (a) axial displacement Uz, (b) transverse displacement 
Ux, (c) in-plane bending /shear rotation, (d) distortion χ1, (e) warping W1, (f) 
distortion χ2. 
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4( ) (100 / 2 ) NxF = . The loaded end is assumed to be rigid. The number of 

elements used to model the Beam k ( 1, 2, 3, 4k = ) is equal to that for Beam 1 in 

Case Study 1. 

The results for the considered example are given in Fig. 4.16(a-f). The range of 

the axial coordinate ( 1,k k− ) ( 1, 2, 3, 4k = ) in the each graph given in Fig. 4.16(a-

f) represent the magnitude of each field variable for Beam k calculated along the 

axial direction. Observing the results based on those obtained by the shell analysis, 

it can be found that the proposed approach can provide the correct result even 

though more complicated structure is considered. 

 

4.6 Conclusions 

The exact one-dimensional beam analysis method applicable to the two thin-walled 

box beams-joint structures subjected to in-plane loads is established. To deal with 

the effects of the cross-sectional deformations on the flexibility of the box-beams 

joint structures, we first identified the dominant cross-sectional deformations and 

their shapes theoretically, and then we newly defined the higher-order beam theory 

employing those dominant cross-sectional deformations as the additional field 

variables. With respect to the development of the one-dimensional analysis method 

for the box beams-joint structures, the key is determining the mechanically correct 

joint matching conditions among the field variables. In this regard, the joint matrix 

T  representing the joint matching conditions was employed in this study, and the 
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closed form of the matrix T  was exactly derived by utilizing the essential 

conditions that T  should hold. Various numerical examples were considered to 

check the validity of the higher-order beam theory and the joint matching 

conditions proposed in this study, and we demonstrated through these numerical 

examples that the proposed higher-order beam theory can express both the bending 

rigidity and the additional flexibility of the box beams accurately, and that the 

proposed joint matching conditions can consistently represent the exact flexibility 

of the joint of the box beams-joint structure with various aspect ratios of the beam 

cross-section and various joint angles. The theoretical approaches proposed in this 

study to determine the exact joint matching conditions for the exact shapes of the 

cross-sectional deformations are expected to serve as important building blocks in 

the expansion of the higher-order beam analyses for arbitrary shaped thin-walled 

beams-joint structures. 

 

Appendix A 

The explicit expressions of the shape functions ( )p sαψ  ( , , ; , ,z xp n s z U Uα= =

1 1 2, , ,y Wθ χ χ ) are given below. As mentioned in Section 3, ( )p jsαψ  ( 1, 2,j = 3, 4 ) 

represents the shape function defined on Edge j of the cross-section, and the 

coordinate js  measured from the center of Edge j has the following range: 

1 3,
2 2
h hs s− ≤ ≤  and 2 4,

2 2
b bs s− ≤ ≤ . 
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( ) 1 (for  1,  2, 3, 4)zU
z js jψ = =             (4.A1) 
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(4.A6) 

One can show the following orthogonality conditions among ( 1, ,yzU W
z z z

θψ ψ ψ ): 
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, and one can also show the following orthogonality conditions between ( 1,xU
s s

χψ ψ ): 
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Appendix B 

Employing the displacement ( , ,n s zu u u   ), the strain ( , ,ss zz szε ε γ ) and the stress 

( , ,ss zzσ σ szσ ) given in Eqs. (4.2-4), the total potential energy of the straight thin-

walled box beam ( 1 2z z z< < ) can be written as: 
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 (4.B1)  

where the potential energy expressed by the second derivatives of the field 
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variables U  such as ( 1 2, ,xU χ χ′′ ′′ ′′ ) are not considered since the linear shape 

function N  will be employed (see Eq. (4.B2)), The relations 1,y xU
z s s
θ χψ ψ ψ= − = 

1 1

3 3

2 2

6 4( 5 ) 16and
15 ( 3 ) 6

y xUW
z z s s

b h
h bh b h b

θ χψ ψ ψ ψ+
− = − −

+
  (see Appendix A) are considered 

in the derivation of the potential energy above. The symbol Jβ  ( , , ,z x yF F Mβ =

1 1 2, ,Q B Q ) in Eq. (4.B1) represents the moment of inertia for the generalized force

β , and the expressions of 
1 1 2 1 2 3, , , , , , , and

z x yF F M Q B QJ J J J J J C C C  are given as: 

1

1

1

1

2

2

2 2

2 2 3 3
2 2

4

6 5 3 3 5 6
2

4

2

( ) 2 ( ), ( ) 2 ,

( 3 ) ( 15 )( ) , ( ) ,
6 10

8 ( 10 70 210 105 )( ) ,
1575 ( 3 )

( )

xz

z x

y

y

UU
F z F s

S S

M z Q s
S S

W
B z

S

Q n
S

J dsdn t b h J dsdn bt

b t b h b t b hJ dsdn J dsdn
h

t b b h b h bh hJ dsdn
h b h

J n dsdn

χθ

χ

ψ ψ

ψ ψ

ψ

ψ

= = + = =

+ +
= = = =

+ − + +
= =

+

= ⋅

∫∫ ∫∫

∫∫ ∫∫

∫∫

∫ 

1 2

1

3 3 2 2 3

2 2

3 3 2 2
2 2

1 23 3 2

3
2

3 2

128 (2 18 51 35 )
315 (5 )

36 512 ( 7 6 )( ) , ( )
5 15 (5 )

(102 210 )( )
35

n n
S S

n
S

t h bh b h b
h b h

t t h bh bC n dsdn C n dsdn
h h b h

t h bC n dsdn
h

χ χ

χ

ψ ψ

ψ

+ + +
=

+

+ +
= ⋅ = = ⋅ =

+

+
= ⋅ =

∫

∫∫ ∫∫

∫∫

 



    

(4.B2) 

According to Refs. [7, 49], the field variables ( )zU  of the one-dimensional 

box beam element ( 1 2z z z< < ) can be written with respect to the nodal 

displacement vector d  and the linear shape function N  (ξ  represent a non-

dimensional coordinate in z direction, and has the range 1 1ξ− ≤ ≤  in the box 
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beam element). 

1

1 1
2 2

1 1
2 2

1 1
2 2

1 1
1 2 2

1 1
1 2 2

1 1
2 2 2

( ) ;
( )
(

( ) 0 0 0 0 0 0 0 0 0 0
( ) 0 0 0 0 0 0 0 0 0 0
( ) 0 0 0 0 0 0 0 0 0 0
( ) 0 0 0 0 0 0 0 0 0 0
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( ) 0 0 0 0 0 0 0 0 0 0

z
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x

y

z
U z
U z

U z
U z

z
z

W z
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− +
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      
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1

1

1 1

1 1

2 1

2

2

2
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)
( )
( )
( )
( )
( )
( )
( )
( )
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z

W z
z

θ
χ
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θ
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χ
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 
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 
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 (4.B3)  

Deriving the one-dimensional finite element equation for the straight box 

beam element through the principle of minimum total potential energy, the 

resulting matrix equation is written in the following form: 

= ⋅f K d                         (4.B4) 

where f  represent the nodal force vector, and is written as: 

1 1 1 1 1 1 1 2 1 2

T
2 2 1 2 1 2 2 2

{ ( ), ( ), ( ), ( ), ( ), ( ), ( ),

( ), ( ), ( ), ( ), ( )}
z x y z

x y

F z F z M z Q z B z Q z F z

F z M z Q z B z Q z

=f
     (4.B5) 

, and the stiffness matrix K  derived from the procedure above is written as: 

11 12

22sym
=

 
 
 

K K
K

K
                     (4.B6) 

where the definitions of submatrix 11 12 22, andK K K  are as 
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3 3

2

3 3
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 (4.B7a) 
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 (4.B7b) 
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 
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 (4.B7c)  

where the symbol l represents the length of the box beam element ( 2 1l z z= − ), and 

the symbol 1E  refers to 1 21
EE
ν

=
−

.  
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Appendix C 

According to the higher-order beam theory, the dominant stress ( ,zz zsσ σ ) 

generated on the contour line ( 0n = ) of the cross-section can be written as: 

1 1
1 12( , ) ( ) ( )

1
yzU W

zz z z z y z s
Es z E U Wθ χσ ψ ψ θ ψ νψ χ
ν

′ ′ ′= ⋅ + ⋅ + ⋅ + ⋅
−

    (4.C1a) 

1 1
1 1( , ) ( )yxU W

sz s x s z y zs z G U Wθχσ ψ ψ χ ψ θ ψ′ ′= ⋅ + ⋅ + ⋅ + ⋅        (4.C1b) 

The derivative terms ( 1 1, ,y W
z s z
θ χψ ψ ψ   ) in Eqs. (4.C1a, b) can be related with other 

shape functions ( 1 1, , ,yxU W
s z s z

θ χψ ψ ψ ψ ) as y xU
z s
θψ ψ= − , 1

2

6 y
s zh

θχψ ψ= − , and 1W
zψ =

1

3 3

2

4( 5 ) 16
15 ( 3 ) 6

xU
s s

b h
bh b h b

χψ ψ+
− −

+
 (See Appendix A), and thus Eqs. (4.C1a) and (C1b) 

can be rewritten as below. 

1
1 12 2

6( , ) ( ) { ( ) }
1

yzU W
zz z z z y z

Es z E U W
h

θσ ψ ψ θ ν χ ψ
ν

′ ′ ′= ⋅ + ⋅ − + ⋅
−

  (4.C2a) 

1

3 3

1 1 12

4( 5 ) 16( , ) [ { } { }]
15 ( 3 ) 6

xU
sz s x y s

b hs z G U W W
bh b h b

χσ ψ θ ψ χ+′ ′= ⋅ − − + ⋅ −
+

 (4.C2b) 

Substituting ( ,zz zsσ σ ) in Eqs. (4.C2a, b) into the definitions of generalized forces 

F  given in Eq. (4.6) and carrying out the surface integral for the cross-section S, 

one can obtain the following relations between the generalized forces F  and the 

field variables U . 



177 

1

12 2

1

( ) ( , ) ( )

6[ { }] [ { }
1

{ }]

[ { }]

{ ( )}

z

yz z z

z

z z

z

U
z zz z

S

U U U
z z z z z y

S
W U
z z

U U
z z z

S

F z

F z s z s dsdn

EE U
h

W dsdn

E U dsdn

EJ U z

θ

σ ψ

ψ ψ ψ ψ θ ν χ
ν

ψ ψ

ψ ψ

= ⋅

′ ′= ⋅ ⋅ + ⋅ ⋅ −
−

′+ ⋅ ⋅

′= ⋅ ⋅

′=

∫∫

∫∫

∫∫
 (4.C3a) 

The second line in Eq. (4.C3a) can be reduced as the third line by the orthogonality 

conditions such as 10 0andy z zU W U
z z z z

S S

dsdn dsdnθψ ψ ψ ψ⋅ = ⋅ =∫∫ ∫∫  (See Appendix 

A). Moreover, the orthogonality condition between ( 1,xU
s s

χψ ψ ) can be also 

considered as given in Appendix A, and considering those orthogonality conditions, 

the remained generalized forces except 2Q  can be express as: 

3 3

12

4( 5 )( ) ( , ) ( ) { ( ) ( ) ( )}
15 ( 3 )

x

x

U
x zs s F x y

S

b hF z s z s dsdn GJ U z z W z
bh b h

σ ψ θ +′= ⋅ = − −
+∫∫  

(4.C3b) 

12 2

6( ) ( , ) ( ) { ( ) ( )}
1

y

yy zz z M y
S

EM z s z s dsdn J z z
h

θσ ψ θ ν χ
ν

′= ⋅ = −
−∫∫  (4.C3c) 

1

11 1 1
16( ) ( , ) ( ) { ( ) ( )}
6zs s Q

S

Q z s z s dsdn GJ z W z
b

χσ ψ χ ′= ⋅ = −∫∫     (4.C3d) 

1

11 12( ) ( , ) ( ) { ( )}
1

W
zz z B

S

EB z s z s dsdn J W zσ ψ
ν

′= ⋅ =
−∫∫        (4.C3e) 

where 1 1( , , , , )z x yJ F F M Q Bβ β =  represent the moment of inertia for the 

generalized force β , and the explicit expressions for Jβ  are given in Appendix 
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B. 

Substituting those results given in Eq. (4.C3) into Eq. (4.C2), ( ,zz zsσ σ ) on the 

contour line can be expressed in terms of the generalized forces as: 

1 1

1

1( )( ) ( )( , ) ( ) ( ) ( )y yz z

z y

M yF B U Wz
zz zz zz zz z z z

F M B

M zF z B zs z s s s
J J J

θσ σ σ σ ψ ψ ψ= + + = + +  (4.C4a) 

1 1

1

1( ) ( )( , ) ( ) ( )x x

x

F UQ x
sz zs zs s s

F Q

F z Q zs z s s
J J

χσ σ σ ψ ψ= + = +        (4.C4b) 

where βσ  ( 1 1, , , ,z x yF F M Q Bβ = ) represent the stress on the contour line 

produced by the generalized force β . Therefore, one can define the edge 

resultants of β  generated on each edge by using βσ . 

Meanwhile, the definition of 2Q  given in Eq. (4.6) is different with those 

considered above because 2χ , the work conjugate of 2Q , represents the 

deformations only in n direction. Unlike the procedure introduced above, thus, 

( , , )zs n s zσ  given in Eq. (4.4c) should be substituted into the definition of 2Q  in 

Eq. (4.6), and through that the following result can be obtained.  
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y

zs n
S

U
s n x s n

S

W
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n n
S

Q
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G n U n
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χ
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ψ ψ θ ψ ψ

ψ ψ χ ψ ψ χ

ψ ψ χ
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+ ⋅ − ⋅ + ⋅ − ⋅

′ ′+ − ⋅ − ⋅ + − ⋅ − ⋅

′= − ⋅ − ⋅

=

∫∫

∫∫

∫∫



 

   
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 

2 2{ ( )}zχ ′

  (4.C5) 

The second line in Eq. (4.C5) can be reduced as the third line because most of the 

integral terms in the second line are eliminated through the integral in n direction 

or by the orthogonal condition such as 1 2( ) ( ) 0n n
S

dsdnχ χψ ψ⋅ =∫∫   . The symbol 
2QJ  

in Eq. (4.C5) represents the moment of inertia for 2Q  and the definition of 
2QJ  is 

given in Appendix B. When the result given in Eq. (4.C5) is substituted into Eq. 

(4.6c), the stress 2Q
szσ  generated by 2Q  can be also obtained as:  

2 2

2

2 ( )( , , ) { ( )}Q
sz n

Q

Q zn s z n s
J

χσ ψ= −                 (4.C6) 

To investigate the meanings of the equilibrium conditions given in Eqs. (4.76a, 

b), the edge resultants generated by ( 1 2, ,yM B Q ) will be defined by utilizing 

( 1 2, ,yM B Q
zz zz szσ σ σ ) in Eqs. (4.C4) and (4.C6). According to Choi and Kim [43], the 

non-zero resultants on Edge j ( 1, 2, 3, 4j = ) determined by 1βσ  ( 1 1,yM Bβ = ) are 

axial force 
( )z jF β , tangential force 

( )s jF β , and normal moment 
( )n jM β , and can be 

defined as below.  
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( ) ( ) ( ), ,z j zz s j zs n j zz
Edge j Edge j Edge j

F dsdn F dsdn M s dsdnβ β β β β βσ σ σ= = = ⋅∫∫ ∫∫ ∫∫  (4.C7) 

As with Choi and Kim [43], the distribution of yM
zzσ  represented by y

z
θψ  is 

simply expressed in terms of the constant or the linear function on each edge as 

given in Appendix A, and thus the edge resultants of yM  shown in Fig. 4.8 can be 

obtained by substituting yM
zzσ  in Eq. (4.C4a) into Eq. (4.C7). On the contrary, the 

distribution of 1B
zzσ  represented by 1W

zψ  is expressed by the highly complicated 

polynomial functions as given in Appendix A. For this reason, as in Session 4.2, 

care should be taken when the edge resultants of 1B  are determined; otherwise, 

underestimated edge resultants are calculated, and thus the incorrect equilibrium 

conditions concerning ( 1 2, ,yM B Q ) which is different with those given in Eqs. 

(4.76a, b) is derived.  

To calculate the correct edge resultants of 1B , the following 1B
zzσ  is employed 

instead of 1B
zzσ  given in Eq. (4.C4a). 

1 1

1

1( )( , ) ( )B W
zz z

B

B zs z s
J

σ ψ=                  (4.C8a) 

where 1 ( )W
z jsψ  ( 1, 2, 3, 4j = ) represents the average distribution of 1B

zzσ  on 

Edge j, and is defined as:  

1
2 2

( 1)/2 2 (5 )( ) ( 1) (for 1, 3)
15 ( 3 )

W j
z j

b h bs j
h b h

ψ − −
= − × =

+
      (4.C8b) 
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1
2 2

( 2)/2 4(5 )( ) ( 1) (for 2, 4)
5 ( 3 )

W j
z j j

h bs s j
bh b h

ψ − −
= − × =

+
      (4.C8c) 

The definition of 1 ( )W
z jsψ  given in Eqs. (4.C8b) and (4.C8c) are determined by 

employing the concepts introduced in Eqs. (4.50) and (4.55), respectively. The 

symbol 
1BJ  given in Eq. (4.C8a) can be defined by using 1 ( )W

z jsψ  as:  

1

1

2( )W
B z

S

J dsdnψ= ∫∫                     (4.C8d) 

The edge resultants of 1B  calculated by substituting 1B
zzσ  in Eq. (4.C8a) into Eq. 

(4.C7) are shown in Fig. 4.8, and one can find that those edge resultants are 

correctly determined because the equilibrium conditions concerning ( 1,yM B ) 

shown in Fig. 4.8 are consistent with those given in Eqs. (4.76a, b). 

Meanwhile, the following distributed axial moment 2
( ) ( )Q

z j jm s  ( 1, 2, 3, 4j = ) 

is generated on Edge j by the stress 2Q
szσ  as shown in Fig. 4.9(a).  

2 2 2

2

3
2

( )
( )( ) { ( )}

12
Q Q
z j j zs n j

QEdge j

Q ztm s n dn s
J

χσ ψ= ⋅ = −∫            (4.C9) 

According to the Kirchhoff-Love plate theory [45], the effective distributed normal 

force 2
( ) ( )Q

n j jf s  ( 1, 2, 3, 4j = ) is also generated on Edge j from the axial moment 

2
( ) ( )Q

z j jm s  by the principle shown in Fig. 4.9(b), and is defined as:  

2

2 2

2

3
( ) 2

( )

( ) ( )( ) { ( )}
12

Q
z j jQ

n j j n j
Q

m s Q ztf s s
s J

χψ
∂

= = −
∂

          (4.C10) 

Therefore, the non-zero edge resultants of 2Q  associated with the equilibrium 



182 

conditions given in Eqs. (4.76a, b) is the effective normal force 2Q
nF , and 2

( )
Q

n jF  on 

Edge j ( 1, 2, 3, 4j = ) can be defined by using 2
( ) ( )Q

n j jf s  in Eq. (4.C10) as:  

2 2
( ) ( ) ( )Q Q

n j n j j j
Edge j

F f s ds= ∫                  (4.C11) 

However, underestimated edge resultants of 2Q  are also calculated when 2Q
nf  

given in Eq. (4.C10) is employed as with the case of edge resultants of 1B , and 

thus the following 2Q
nf  is used in place of 2Q

nf . 

2 2

2

3
2

( )
( )( ) { ( )}

12
Q

n j j n j
Q

Q ztf s s
J

χψ= −               (4.C12a) 

where 2 ( )n jsχψ  ( 1, 2, 3, 4j = ) represents the average distribution of 2Q
nf  on 

Edge j, and is defined as:  

2
2

32( ) (for 1, 3)
(5 )n j

bs j
h b h

χψ = =
+

            (4.C12b) 

2
32( ) (for 2, 4)

(5 )n js j
h b h

χψ = − =
+

            (4.C12c) 

The definition of 2 ( )n jsχψ  given in Eqs. (4.C12b, c) are determined through the 

concept introduced in Eq. (4.50). The symbol 
2QJ  in Eq. (4.C12a) can be defined 

by using 2 ( )n jsχψ  as:  

2 2

2

2 2( ) { ( )}Q n n
S S

J n dsdn n s dsdnχ χψ ψ= ⋅ = ⋅ ⋅∫∫ ∫∫         (4.C12d) 

where 2 ( )n jsχψ  ( 1, 2, 3, 4j = ) can be written as 2 2( ) ( )n j j n js s sχ χψ ψ= ⋅   because 
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2 ( )n jsχψ  represent the odd functions. The edge resultants of 2Q  calculated by 

substituting 2Q
nf  in Eq. (4.C12a) into Eq. (4.C11) are shown in Fig. 4.8. 
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CHAPTER 5.  
Higher-Order Beam Analysis for Multiply-Connected 

Box Beams-Joint Systems Subjected to In-Plane 

Bending and Axial Loads 
 

5.1 Introduction 

The response of thin-walled beams is highly flexible than the analysis result 

obtained by classical Euler and Timoshenko beam theories (see, e.g. [1, 2]) since 

cross-sectional deformations not handled by those classical theories easily appear 

in thin-walled beams. Moreover, when thin-walled beams are connected at a joint, 

the magnitudes of cross-sectional deformations near the joint region are further 

amplified. For this reason, the joint region exhibits significant flexibilities, and the 

behavior of thin-walled beam structures having joints shows significant difference 

from the predicted result based on the classical beam theories. From the motivation 

that the classical beam theories overestimate stiffness of thin-walled beam 

structures, one-dimensional higher-order beam theories [3-9] considering the 

flexibilities of thin-walled beams caused by cross-sectional deformations have been 

developed. However, higher-order deformations which do not produce any 

resultants are considered together as additional degrees of freedom of the higher-

order beam theories, and thus determination of the joint matching relations among 

all the degrees of freedom of the beams connected at the joint is a highly difficult 
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problem. Because of such difficulties, therefore, there is no exact analysis method 

using higher-order beam theories applicable to structures with three or more thin-

walled beams meeting at a joint (referred to hereinafter in this paper as “three or 

more thin-walled beams”) subjected to in-plane loads. With this background, we 

propose an exact analysis approach for the first time, applicable to the mentioned 

three or more thin-walled beams-joint structures under in-plane loads. 

First, we introduce some previous one-dimensional beam theory-based 

researches having been tried to interpret the flexible responses of the thin-walled 

beams-joint structures. Initial studies, which were based on the classical beam 

theories, regarded the connectivity among thin-walled beams at the joint as semi-

rigid connection and proposed some artificial joint spring models to reflect the joint 

flexibility on their analysis approaches [10-12]. Chang [10] proposed a joint model 

employing a rotational spring which can be used to define the flexible relation 

between in-plane bending moment and its accompanied bending rotation at the 

joint, and Lee and Nikolaidis [12] proposed another joint model consisting of some 

rotational springs and a rigid section based on the assumption that the rotation 

center of each beam should be located away from the joint. Subsequently, Bylund 

[13] proposed the Dynamic Joint Method for determining the stiffness of the joint 

using eigenvalues and eigenmodes of the structure considered, and recently 

Donders et al. [14] suggested the method to represent the stiffness of the joint as 

the super element obtained by applying the Guyan reduction method to the detailed 

shell joint model. Because the flexibility of the joint is highly dependent upon the 
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aspect ratio of cross-section of the beams meeting at the joint and the joint angle 

among those beams, however, it is difficult to determine an approximate joint 

model consistently applicable to the thin walled beams-joint structures with various 

joints. 

If there existed a beam theory including the effects arising from the cross-

sectional deformations, then capturing the flexible responses of thin-walled beams-

joint structure would be possible without employing artificial joint concepts. 

Therefore, there have been efforts to include some significant cross-sectional 

deformations as independent degrees of freedom in addition to conventional rigid-

body motions of a beam cross-section, and consequently higher-order beam 

theories were proposed [3-9]. Vlasov [3] proposed a theoretical approach in 

determining the cross-sectional warping deformations of thin-walled beams 

subjected to twisting moment, and established the fundamental theories to include 

these sectional deformations as the additional degrees of freedom. Kim and Kim [6] 

developed the higher-order beam theory for thin-walled closed beams subjected to 

twisting moment which can interpret the responses of those beams as correctly as 

the shell analysis, and Kim and Kim [15, 16] extended the coverage of the higher-

order beam theory to the thin-walled curved box beams. 

Some efforts to theoretically represent the flexible responses of the joint 

appeared in the thin-walled box beams-joint structures without using artificial joint 

concepts have been followed based on the higher-order beam theories [17-23]. 

Especially, Choi and Kim [23] defined fundamental conditions regarding a higher- 
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Fig. 5.1 Three or more thin-walled box beams-joint structures (only a portion of 
the structure such as Beam i-1, Beam i, and Beam i+1 (i ≥ 2), is depicted, for 
convenience.). 

 

order beam theory which must meet at a joint, and derived exact joint matching 

conditions applicable to the two box beams-joint structures under in-plane loads 

through a theoretical approach using those fundamental conditions. Moreover, Choi 

and Kim [23] demonstrated that analysis based on their proposed joint matching 

conditions can interpret responses of the joint as accurately as those by shell 

analysis. Although Choi and Kim [23] determined joint matching conditions with 

respect to two box beams-joint structures under in-plane loads and verified their 

results by obtaining meaningful analysis responses for various numerical examples, 

there still exists the difficulty that stiffness of the joints is overestimated when 

expanding their proposed matching conditions directly to three or more thin-walled 

box beams-joint structures. That is because those matching conditions excessively 
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constrain the joint to be deformed, and higher-order deformations cannot be 

properly generated at the joint. From the observations above, a new approach to 

theoretically determine joint matching conditions is required in order to establish 

exact higher-order beam theory-based analysis approach applicable to three or 

more thin-walled box beams-joint structures under in-plane loads. 

Three or more box beams-joint structures under in-plane bending or 

longitudinal force will be analyzed in this study by using a higher-order beam 

theory. The unique contributions of this investigation are to newly establish a 

higher-order beam theory having 11 field variables which are all required in order 

to represent the flexibilities of the joint theoretically, and are to derive the exact 

matching relations among those 11 field variables of box beams meeting at the 

joint. Figure 5.1 shows a three or more box beams-joint structures. Only a portion 

of the structure, such as Beam i-1, Beam i, and Beam i+1 ( 2i ≥ ) is depicted, for 

convenience. It is assumed that all the box beams in Fig. 5.1 are placed on the same 

plane, and also assumed that their width, height and thickness are equal to b, h and 

t, respectively. In order to interpret the box beams-joint structure shown in Fig. 5.1 

using the higher-order beam theory, the joint connectivity between box beams is 

modeled as shown in Fig. 5.2. The joint where all the box beams converse is 

defined as the joint (strictly, the joint refers to the point where the central axes of 

box beams meet). As with Refs. [22, 23], in addition, Edge 1 1i iM M− −′  and Edge 

i iN N ′  are considered as if they were attached rigidly to each other (by an 
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(a) 

 

(b) 

Fig. 5.2 (a) Beam modeling for the three or more box beams-joint structures 
(Edge Mi-1M’i-1 of Beam i-1 and Edge NiNi’ of Beam i (i ≥ 2) are considered as if 
they were connected rigidly to each other (by an imaginary rigid body).), (b) the 
top view of beam modeling (Edge Mi-1M’i-1 of Beam i-1 and Edge NiNi’ of Beam i 
are extended and separated from Shared Side Edge i-1 (i ≥ 2) in Fig. 5.1). 

 

imaginary rigid body) because Shared Side Edge i-1 in Fig. 5.1, which is shared by 
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Beam i-1 and Beam i ( 2i ≥ ), is extended and represented in Fig. 5.2 by Edge 

1 1i iM M− −′  in Beam i-1 and Edge i iN N ′  in Beam i separately. Therefore, both the 

equilibrium between the forces and the continuity between the displacements, 

which are generated at Edge 1 1i iM M− −′  and Edge i iN N ′ , can be considered 

although those edges are separated from each other. 

To establish the higher-order beam theory applicable to the three or more box 

beams-joints structures under in-plane loads, we will introduce the higher-order 

deformations ( 1
1 ,χ 1 2 2

1 1 1 2 2 3 4, , , , , ,W W Wχ χ χ χ ) shown in Fig. 5.3(b) as the 

independent field variables in addition to the rigid-body motions shown in Fig. 

5.3(a). Choi and Kim [23] theoretically defined the shape of the higher-order 

deformations ( 1 1 3, ,g gWχ χ ) (see Fig. 5.3(c) for ( 1 1,g gWχ )) and demonstrated that 

the higher-order beam theory including ( 1 1 3, ,g gWχ χ ) are sufficient to interpret the 

flexible behavior of the two box beams-joint structure under in-plane loads. 

However, the matching conditions between Beam i and Beam i+1 ( 2i ≥ ) should be 

independent with those between Beam i and Beam i-1 for three or more box 

beams-joint structures, and thus ( 2 2, ,Wχ 4χ ) should be additionally included in 

the higher-order beam theory. Moreover, ( 1 1 2
1 1 1, , ,Wχ χ 2

1W ), which represent more 

detailed field variables set regarding to the cross-sectional deformations ( 1 1,g gWχ ) 

describe, are considered instead of ( 1 1,g gWχ ) in order to develop more accurate 

one-dimensional analysis approach for three or more box beams-joint structures. 
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To derive exact joint matching conditions among those 11 field variables 

applicable to three or more box beams-joint structures, joint equilibrium conditions 

among generalized forces, which are the work conjugates of the field displacement 

variables, will be precisely defined first. Then, taking into account the defined 

equilibrium conditions and the principle of virtual work together, the desired joint 

matching conditions among field variables will be theoretically derived. Note that 

the work conjugates of the field variables representing the higher-order 

deformations do not generate any resultant forces or moments acting on the cross-

section, but do generate resultant stresses acting on each of the edges as 

demonstrated in Choi and Kim [22]. If the equilibrium conditions on the edges 

(Edge 1 1i iM M− −′ , Edge i iN N ′ , etc.) are considered in addition to the resultant 

forces and moments equilibrium conditions, therefore, generalized forces 

equilibrium conditions which are consistently valid for the three or more box 

beams-joint structures can be determined. Although the purpose of this study is to 

derive equilibrium conditions or matching conditions applicable to the three or 

more box beams-joint structures, the derived conditions should also be valid for the 

two box beams-joint structures in order for this approach to be reasonable. 

According to this observation, we derive more generalized matching conditions on 

the basis of Choi and Kim [23] who derive the exact matching conditions regarding 

to the two box beams-joint structures. In order to verify the validity of the proposed 

joint matching conditions, two case studies will be examined. The accuracy of the 

proposed analysis method will be checked by comparison with the results of 
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ABAQUS shell analysis [24]. 

 

5.2 Higher-Order Beam Theory for Straight Thin-Walled Box 

Beams 

In order to interpret the three or more box beams-joint structures under in-plane 

loads precisely without employing any artificial concepts, a higher-order beam 

theory which includes the significant higher-order deformations associated with the 

flexibilities of the joint as independent field variables is required. Choi and Kim 

[23] theoretically defined the higher-order deformations ( 1 1 3, ,g gWχ χ ) shown in 

Fig. 5.3(b, c) and established the higher-order beam theory including ( 1 1 3, ,g gWχ χ ) 

which are applicable to the two box beams-joint structures under in-plane loads. 

However, it can be found that the analysis approach proposed by Choi and Kim [23] 

underestimate the joint flexibility of the three or more box beams-joint structures 

under in-plane loads and that one of the reasons for that difficulty is a rack of the 

higher-order deformations such as ( 2 2 4, ,Wχ χ ) with respect to determination of 

the joint matching conditions between Beam i and Beam i+1 ( 2i ≥ ) independently 

with those between Beam i and Beam i-1. 

Therefore, we will newly establish a higher-order beam theory considering 11 

displacements of deformations of the box beams such as axial displacement zU , 

transverse displacement xU , in-plane bending/shear rotation yθ , distortions  
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(a) 

              

              

(b) 

      

(c) 

Fig. 5.3 (a) Rigid motions of the box beam cross-section represented by the field 
variables: axial displacement Uz , transverse displacement Ux and in-plane 
bending/shear rotation θy, (b) Deformations of cross-section represented by the 
field variables: distortions (χ1

1, χ 1
2, χ 2, χ 3, χ 4) and warpings (W1

1, W 1
2, W 2), (c) 

Deformations of cross-section represented by the field variables: distortion χ1
g  

and warping W1
g. 
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( 1 2
1 1 2 3 4, , , ,χ χ χ χ χ ) and warpings ( 1 2

1 1 2, ,W W W ). Note that ( 1 1,g gWχ ) proposed 

by Choi and Kim [23] are divided into more detailed higher-order deformations 

( 1 1 2 2
1 1 1 1, , ,W Wχ χ ) in this study to represent accurate flexible joint behavior 

although theoretically reasonable joint matching conditions can be determined 

using ( 1 1,g gWχ ). 

In order to define those cross-sectional deformations as one-dimensional field 

variables of higher-order beam theory, shape functions representing the 

deformation patterns shown in Fig. 5.3(b) are employed, and thus the shape 

functions for ( 2 2 4, ,Wχ χ ) which are newly introduced as the independent field 

variables of the proposed higher-order beam theory will be theoretically derived in 

this study. Based on Refs. [6, 22, 23], the one-dimensional higher-order beam 

theory considering the 11 rigid motions and cross-sectional deformations shown in 

Fig. 5.3(a, b) as the field variables will be defined in this section, and subsequently 

the theoretical approach to derive the shape functions for ( 2 2 4, ,Wχ χ ) will 

introduced in the next section. 

When one-dimensional field variables of the higher-order beam theory are 

expressed as the functions of axial coordinate z, ( ) { ( ), ( ), ( ),z x yz U z U z zθ=U

1 1 2 2 T
1 1 1 1 2 2 3 4( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )}z W z z W z z W z z zχ χ χ χ χ , the three-dimensional 

displacements of a point located on the contour line of the box beam cross-section 

can be written as follows by using U  [23]. 
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1 2
1 1

32 4

1 2
1 1

2 3 4

( , ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

xU
n n x n n

n n n

u s z s U z s z s z

s z s z s z

χ χ

χχ χ

ψ ψ χ ψ χ

ψ χ ψ χ ψ χ

= ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅
 (5.1a) 

1 2
1 1 21 2

1 1 2( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )xU
s s x s s su s z s U z s z s z s zχ χ χψ ψ χ ψ χ ψ χ= ⋅ + ⋅ + ⋅ + ⋅  (5.1b) 

1
1

2
1 2

1
1

2
1 2

( , ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

yzU W
z z z z y z

W W
z z

u s z s U z s z s W z

s W z s W z

θψ ψ θ ψ

ψ ψ

= ⋅ + ⋅ + ⋅

+ ⋅ + ⋅
      (5.1c) 

where n and s represent a normal coordinate and a tangential coordinate defined on 

the contour line, respectively (see Fig. 5.2(a) for the positive directions of n and s). 

The symbols ( )p sαψ  ( 1 1 2 2
1 1 1 1 2 2, , ; , , , , , , , , ,y x zp n s z U W W Wα θ θ χ χ χ= =

3 4,χ χ ), which are functions of s, are introduced in Eqs. (5.1a-c) to describe the 

displacements or deformations of the box beam cross-section. The meaning of the 

symbol ( )p sαψ  is the displacement in the p direction generated on the cross-

section with respect to the unit magnitude of the field variable α . The explicit 

expressions of the shape functions ( )p sαψ  are given in Appendix A. 

Considering the Kirchhoff-Love plate theory [25], the three dimensional 

displacements ( , ,n s zu u u   ) of a generic point located away from the contour line by 

n can be expressed as, by using ( , ,n s zu u u ) given in Eqs. (5.1a-c): 

1 2
31 1 2 41 2

1 1 2 3 4( , , ) ( , ) xU
n n n x n n n n nu n s z u s z U χχ χ χ χψ ψ χ ψ χ ψ χ ψ χ ψ χ= = ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅     

(5.2a) 

1 2
1 1 2

1
31 4

1 2
1 1 2

1
1 3 4

( , )( , , ) ( , )

( )

xUn
s s s x s s s

n n n

u s zu n s z u s z n U
s

n

χ χ χ

χχ χ

ψ ψ χ ψ χ ψ χ

ψ χ ψ χ ψ χ

∂
= − = ⋅ + ⋅ + ⋅ + ⋅

∂

− ⋅ + ⋅ + ⋅



  

 (5.2b) 
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1 2
1 1 2

1 2
31 1 2 4

1 2
1 1 2

1 2
1 1 2 3 4

( , )( , , ) ( , )

( )

yz

x

n
z z

U W W W
z z z y z z z

U
n x n n n n n

u s zu n s z u s z n
z

U W W W

n U

θ

χχ χ χ χ

ψ ψ θ ψ ψ ψ

ψ ψ χ ψ χ ψ χ ψ χ ψ χ

∂
= −

∂

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅

′ ′ ′ ′ ′ ′− ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅



 

(5.2c) 

where the symbols ( )
•  and ( )′  denote ( ) ( ) / s

•

= ∂ ∂  and ( ) ( ) / z′ = ∂ ∂ , 

respectively. The displacement terms ( / )nn u s− ⋅ ∂ ∂  and ( / )nn u z− ⋅ ∂ ∂  given in 

Eqs. (5.2b, c) represent the displacement in s and z directions respectively which 

arise from the rotation of the normal to the contour line. 

The dominant and nonzero strains ( , ,ss zz szε ε γ ) that occur at the same point 

can be derived from Eqs. (5.2b, c) as, according to the Kirchhoff-Love plate theory 

[25]: 

1 2 1
31 1 2 1 41 2 1

1 1 2 1 3 4( , , ) { }s
ss s s s n n n

un s z n
s

χχ χ χ χ χε ψ χ ψ χ ψ χ ψ χ ψ χ ψ χ
∂

= = ⋅ + ⋅ + ⋅ − ⋅ + ⋅ + ⋅
∂


       

(5.3a) 

1 2
1 1 21 2

1 1 2( , , ) yzU W W Wz
zz z z z y z z z

un s z U W W W
z

θε ψ ψ θ ψ ψ ψ∂ ′ ′ ′ ′ ′= = ⋅ + ⋅ + ⋅ + ⋅ + ⋅
∂


 (5.3b) 

1 1 2 2
1 1 1 1

1
32 2 1 4

1 1 2 2
1 1 1 1

1
2 2 1 3 4

( , , )

2 ( )

yxU W Ws z
sz s x z y s z s z

W
s z n n n

u un s z U W W
z s

W n

θ χ χ

χχ χ χ

γ ψ ψ θ ψ χ ψ ψ χ ψ

ψ χ ψ ψ χ ψ χ ψ χ

∂ ∂ ′ ′ ′= + = ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅
∂ ∂

′ ′ ′ ′+ ⋅ + ⋅ − ⋅ + ⋅ + ⋅

 

  

   

 (5.3c) 

Subsequently, the dominant and nonzero stresses ( , ,ss zz szσ σ σ ) at the same point 

can be defined from ( , ,ss zz szε ε γ ) given in Eqs. (5.3a-c) by employing the stress-

strain relations as: 
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1 1 2

1 2 1
31 1 2 1 4

1 2
1 1 22

1 2 1
1 1 2 1 3 4

( , , ) [{ (
1

)} ( )]

yzU
ss s s s z z z y

W W W
z z z n n n

En s z U

W W W n

θχ χ χ

χχ χ

σ ψ χ ψ χ ψ χ ν ψ ψ θ
ν

ψ ψ ψ ψ χ ψ χ ψ χ

′ ′= ⋅ + ⋅ + ⋅ + ⋅ + ⋅
−

′ ′ ′+ ⋅ + ⋅ + ⋅ − ⋅ + ⋅ + ⋅

  

  

 

(5.4a) 

1 2
1 1 2

1 2 1
31 1 2 1 4

1 2
1 1 22

1 2 1
1 1 2 1 3 4

( , , ) [{
1

( )} ( )]

yzU W W W
zz z z z y z z z

s s s n n n

En s z U W W W

n

θ

χχ χ χ χ χ

σ ψ ψ θ ψ ψ ψ
ν

ν ψ χ ψ χ ψ χ ψ χ ψ χ ψ χ

′ ′ ′ ′ ′= ⋅ + ⋅ + ⋅ + ⋅ + ⋅
−

+ ⋅ + ⋅ + ⋅ − ⋅ + ⋅ + ⋅     

  

(5.4b) 

1 1 2 2
1 1 1 1

1
32 2 1 4

1 1 2 2
1 1 1 1

1
2 2 1 3 4

( , , ) {

2 ( )}

yxU W W
sz s x z y s z s z

W
s z n n n

n s z G U W W

W n

θ χ χ

χχ χ χ

σ ψ ψ θ ψ χ ψ ψ χ ψ

ψ χ ψ ψ χ ψ χ ψ χ

′ ′ ′= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

′ ′ ′ ′+ ⋅ + ⋅ − ⋅ + ⋅ + ⋅

  

   

 

(5.4c) 

where , ,E G ν  represent Young’s modulus, shear modulus, Poisson’s ratio, 

respectively. The following stress-strain relations under the plane stress assumption 

are employed in derivation of those stresses above because each edge of the box 

beam cross-section is a thin plate. 

2 2( ), ( ),
1 1ss ss zz zz zz ss sz sz

E Ev v G
v v

σ ε ε σ ε ε σ γ= + = + =
− −

    (5.5) 

Using those displacements, strains and stresses defined at a generic point, 

three-dimensional total potential energy for the straight box beam can be defined, 

and then carrying out the surface integral for the cross-section S and applying the 

principle of minimum total potential energy, one can derive the one-dimensional 

higher-order beam theory for the straight box beam (see Refs. [6, 22, 23] for the 

detailed procedures). 
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The derived higher-order beam theory is expressed by the relation between the 

field variables U  and generalized forces 1 1 2 2
1 1 1 1 2{ , , , , , , , ,z x yF F M Q B Q B Q=F

T
2 3 4, , }B Q Q  which are work conjugates of U . The generalized forces F  are 

defined as: 

1 1 2
1 1 1

2
1 2 2

1 1 2
1 1 1

2
1 2 2

3

( ) , ( ) , ( ) ,

( ) , ( ) , ( ) ,

( ) , ( ) , ( ) ,

(

yxz UU
z zz z x zs s y zz z

S S S

W
zs s zz z zs s

S S S

W W
zz z zs s zz z

S S S

zs n

F dsdn F dsdn M dsdn

Q dsdn B dsdn Q dsdn

B dsdn Q dsdn B dsdn

Q n

θ

χ χ

χ

σ ψ σ ψ σ ψ

σ ψ σ ψ σ ψ

σ ψ σ ψ σ ψ

σ ψ

= = =

= = =

= = =

= ⋅

∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫∫


3 4
4) , ( )zs n

S S

dsdn Q n dsdnχ χσ ψ= ⋅∫∫ ∫∫ 

 

(5.6) 

where ( , ,z x yF F M ) represent resultant forces or moments such as axial force, 

transverse force, and in-plane bending moment, respectively. On the contrary, the 

other forces represent self-equilibrated terms; ( 1 2
1 1 2 3 4, , , ,Q Q Q Q Q ) represent 

transverse bimoments, and ( 1 2
1 1 2, ,B B B ) represent longitudinal bimoments. 

 

5.3 Derivation of Cross-Sectional Deformations ( 2 2 4, ,Wχ χ ) 

To represent the flexible responses of thin-walled box beams-joint structure 

correctly, theoretically reasonable shape functions ( )sψ  for ( 2 2 4, ,Wχ χ ) are 

should be employed in the higher-order beam theory. For this reason, ( )sψ  for 

( 2 2 4, ,Wχ χ ) used in this study are theoretically determined, and the derivations for 
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those shape functions will be introduced in this section. 

 

5.3.1 Shape Function of 2χ  

The axial stress zzσ  generated at a point on the contour line by the axial force zF  

can be written as, according to the classical beam theory [1, 2], 

( )( , ) z
zz

F zs z
A

σ =                       (5.7) 

where A represent the area of the box beam cross-section. From zzσ  given in Eq. 

(5.7), the strain zzε  is generated, and simultaneously the strain ssε  expressed as 

follows is also accompanied by the Poisson’s effect [2]. 

( )( , ) zz z
ss

F zs z
E EA

σ ν
ε ν= − = −                   (5.8) 

The strain ssε  given in Eq. (5.8) causes the cross-sectional deformation 

representing Poisson’s mode according to Ref. [2], and this deformation is 

considered in this study as the field variable 2χ . 

When 2
suχ  denotes the displacement associated with 2χ  in s direction on the 

contour line, 2
suχ  generated from ssε  given in Eq. (5.8) satisfies the following 

equation. 

1 ( , ) ( )s zu s z F z
s EA

χ ν∂
= −

∂
                    (5.9) 

In addition, 2
suχ  satisfies 2 2

2( , ) ( ) ( )s su s z s zχ χψ χ= ⋅  according to Eq. (5.1), and 

thus substituting this relation into Eq. (5.9), the following equation regarding to 
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2 ( )s sχψ  can be obtained. 

2
*

1
( )s s P

s

χψ∂
=

∂
                      (5.10) 

where *
1P  represents the proportional constant. Carrying out the integration for 

coordinate s, consequently 2 ( )s jsχψ  on Edge j ( 1, 2, 3, 4j = ) can be expressed as: 

2 2

2 2

* *
1 1 1 1 2 1 2 2

* *
3 1 3 3 4 1 4 4

( ) { }, ( ) { },

( ) { }, ( ) { }
s s

s s

s P s C s P s C

s P s C s P s C

χ χ

χ χ

ψ ψ

ψ ψ

= × + = × +

= × + = × +
       (5.11) 

where 1 2 3 4, , , and,C C C C  represent the integration constants. 

From the observation that zzσ  in Eq. (5.7) is symmetric with respect to both x 

and y axes, one can find that the shape of 2χ  generated by zzσ  should be 

symmetric regarding to both x and y axes. To satisfy the mentioned symmetry 

condition, therefore, the constants ( 1 4~C C ) should meet the following relations. 

1 3 2 4;C C C C= =                       (5.12) 

In addition, 2
s
χψ  should satisfy the following orthogonality conditions with xU

sψ  

so that the relation given in Eq. (5.1b) is defined correctly [3, 22, 23]. 

2 ( ) ( ) 0xU
s s

S

s s dAχψ ψ⋅ =∫∫                    (5.13) 

The orthogonality condition above means that the higher-order deformation 2χ  

does not involve any rigid-body motion in x direction, and the values for the 

constants ( 1 3,C C ) can be determined as, through the orthogonality conditions 

given in Eq. (5.13), 
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1 3 0C C= =                         (5.14) 

Likewise, one can also consider the following orthogonality condition of 2χ  with 

respect to the rigid-body translation in y direction 

2 ( ) ( ) 0yU
s s

S

s s dAχψ ψ⋅ =∫∫                    (5.15) 

where the definition of ( )yU
s jsψ  on Edge j ( 1, 2, 3, 4j = ) are as 

1 2 3 4( ) 1 ; ( ) 0 ; ( ) 1 ; ( ) 0y y y yU U U U
s s s ss s s sψ ψ ψ ψ= = = − =       (5.16) 

The symbol ( )yU
s jsψ  represents the displacement of Edge j when the cross-

section is rigidly translated in y direction. Using the orthogonality condition given 

in Eq. (5.15), the values for the remained constants ( 2 4,C C ) are determined as: 

2 4 0C C= =                         (5.17) 

From the symmetry conditions with respect to x and y axes and the orthogonality 

conditions with the rigid-body motions in x and y directions, all the constants 

( 1 4~C C ) in Eq. (5.11) are determined. The constant *
1P  in Eq. (5.12) determine 

the scale of the cross-sectional deformation represented by the unit magnitude of 

2χ , and *
1 2 /P h= −  will be used in this study. 

When 2
suχ  is generated on the contour line, 2

nuχ  is accompanied by the 

continuity at the corner j where Edge j and Edge j+1 ( 1, 2, 3, 4j = ; Edge 5 denotes 

Edge 1) meet. Because of that 2
suχ  generated on Edge 1 and Edge 3 are identical, 

and that 2
suχ  generated on Edge 2 and Edge 4 are also identical, each edge is 
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rigidly translated in –n direction, and the shape functions 2 ( )n jsχψ  ( 1, 2, 3, 4j = ) 

describing the translation of Edge j are given in Appendix A.  

 

5.3.2 Shape Function of 2W  

According to the higher-order beam theory, 2Q  denoting the work conjugate of 

2χ  generates the following shear stress 2Q
zsσ  on the contour line (see Section 3. 1). 

2 2

2

2 ( )( , ) ( )Q
zs s

Q

Q zs z s
J

χσ ψ=                    (5.18) 

The shear stress 2Q
zsσ  given in Eq. (5.18) produces the shear strain 2 2 /Q Q

zs zs Gγ σ=  

along the contour line, and consequently 2W  shown in Fig. 5.3(b) occurs on the 

box beam by 2Q
zsγ  [2]. When 2 ( , )W

zu s z  represents the axial displacement on the 

contour line represented by 2W , the following condition which 2 ( , )W
zu s z  should 

meet can be defined from Eq. (5.18). 

2
2 2

2

2 ( ) ( )
W

Q z
zs s

Q

u Q z s
s GJ

χγ ψ∂
= =

∂
                 (5.19) 

Since 2 2
2( , ) ( ) ( )W W

z zu s z s W zψ= ⋅  as given in Eq. (5.1c), the following equation 

regarding to the shape function 2 ( )W
z sψ  of 2W  can be obtained from Eq. (5.19). 

2
2*

2
( ) ( )

W
z

s
s P s

s
χψ ψ∂

= ×
∂

                   (5.20) 

where *
2P  represents the proportional constant. Carrying out the integration for 

coordinate s, consequently 2 ( )W
z jsψ  on Edge j ( 1, 2, 3, 4j = ) can be expressed as: 
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2 2

2 2

* 2 * 2
1 2 1 1 2 2 2 2

* 2 * 2
3 2 3 3 4 2 4 4

1 1( ) { }, ( ) { } ,

1 1( ) { } , ( ) { }

W W
z z

W W
z z

s P s C s P s C
h h

s P s C s P s C
h h

ψ ψ

ψ ψ

= × − + = × − +

= × − + = × − +
   (5.21) 

where ( 1 2 3 4, , ,C C C C ) represent the integration constants. 

2 ( )W
z jsψ  ( 1, 2, 3, 4j = ) in Eq. (5.21) should be symmetric with respect to x-

axis and y-axis because distribution of 2Q
zsσ  along the contour line satisfy those 

symmetry conditions. Considering the mentioned symmetry conditions, one can 

find the following relations associated with the constants ( 1 4~C C ) in Eq. (5.21). 

1 3 2 4;C C C C= =                      (5.22) 

In addition, the displacement continuity condition 2
corner( , ) |W

z j ju s z =

2
1 corner( , ) |W

z j ju s z+  between 2 ( , )W
z ju s z  on Edge j and 2

1( , )W
z ju s z+  on Edge j+1 at 

the corner j ( 1, 2, 3, 4j = ) must hold, and consequently the following conditions 

with respect to 2 ( )W
z sψ  given in Eq. (5.21) can be obtained. 

2 2 2 2

2 2 2 2

1 2 2 3

3 4 4 1

( ) ( ), ( ) ( ),
2 2 2 2

( ) ( ), ( ) ( )
2 2 2 2

W W W W
z z z z

W W W W
z z z z

h b b hs s s s

h b b hs s s s

ψ ψ ψ ψ

ψ ψ ψ ψ

= = = − = = = −

= = = − = = = −
     (5.23) 

Meanwhile, 2W
zψ  in Eq. (5.35) should meet the following orthogonality 

condition with zU
zψ  so that the relation given in Eq. (5.1c) is defined correctly. 

2 ( ) ( ) 0zW U
z z

S

s s dAψ ψ⋅ =∫∫                    (5.24) 

where Eq. (5.24) means that the cross-sectional deformation represented by 2W  
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does not include any rigid-body translation in z. 

Considering the conditions of 2W
zψ  given in Eqs. (5.22-24), the constants 

( 1 4~C C ) in Eq. (5.21) meeting those conditions can be determined as: 

3 2 3 3 2 3

1 3 2 2
2 3 2 3;

12 ( ) 12 ( )
b bh h h b h bC C C C

h b h h b h
− − − −

= = − = = −
+ +

     (5.25) 

The constant *
2P  in Eq. (5.21) determine the scale of cross-sectional deformation 

represented by the unit magnitude of 2W , and *
2 4 /P h=  will be used in this 

study. 

 

5.3.3 Shape Function of 4χ  

To define the edge forces in n direction on Edge 1 and Edge 3 independently, 4χ  

representing antisymmetric deformation of the box beam cross-section with respect 

to y-axis as shown in Fig. 5.3(b) should be introduced in the higher-order beam 

theory. As with the field variable 3χ , deformation of the box beam cross-section in 

n direction is represented by 4χ , and one can assume the shape function 4 ( )n jsχψ  

on Edge j ( j 1, 2, 3, 4= ) as follows. 

4 4 2
1 11 1 12 1 13( ) ( ) ( )n s a s a s a= + +χψ                (5.26a) 

4 3
2 21 2 22 2( ) ( ) ( )n s a s a s= +χψ                  (5.26b) 

4 4 2
3 11 3 12 3 13( ) ( ) ( )n s a s a s a= − − −χψ                (5.26c) 

4 3
3 21 3 22 3( ) ( ) ( )n s a s a s= − −χψ                  (5.26d) 
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where 4 ( )n jsχψ  ( 1, 2, 3, 4j = ) satisfy both the symmetric and antisymmetric 

conditions with respect to x-axis and y-axis respectively. When 

4 4
4( , ) ( ) ( )n nu s z s zχ χψ χ= ⋅  refers to the displacement on the contour line in n 

direction represented by 4χ , one can consider the following displacement 

continuity conditions. 

4 4

4 4

1 2

3 4

( , ) 0 ; ( 0 or , ) 0 ;
2 2

( , ) 0 ; ( 0 or , ) 0
2 2

n n

n n

h bu s z u s z

h bu s z u s z

χ χ

χ χ

= ± = = ± =

= ± = = ± =
         (5.27) 

In addition, the following angle and moment continuities should also be satisfied at 

the corner according to Ref. [6]. 

4 4 4 4

4 4 4 4

1 2 1 4

3 2 3 4

( ) ( ), ( ) ( ),
2 2 2 2

( ) ( ), ( ) ( )
2 2 2 2

z z z z

z z z z

h b h bs s s s

h b h bs s s s

χ χ χ χ

χ χ χ χ

β β β β

β β β β

= = = − = − = =

= − = = = = = −
   (5.28a) 

4 4 4 4

4 4 4 4

1 2 1 4

3 2 3 4

( ) ( ), ( ) ( ),
2 2 2 2

( ) ( ), ( ) ( )
2 2 2 2

z z z z

z z z z

h b h bM s M s M s M s

h b h bM s M s M s M s

χ χ χ χ

χ χ χ χ

= = = − = − = =

= − = = = = = −
  (5.28b) 

where 4 ( )z jsχβ  and 4 ( )z jM sχ  at Edge j ( 1, 2, 3, 4j = ) are defined as 

4 4

4 4

23

2

( ) ( )
( ) ; ( )

12
n j n j

z j z j

u s u sEts M s
s s

χ χ
χ χβ

∂ ∂
= = ×

∂ ∂
     (5.29a, b) 

The symbols 4 ( )z jsχβ  and 4 ( )z jM sχ  represent the bending rotation and bending 

moment in z direction, respectively [6] . The moment 4 ( )z jM sχ  in Eq. (5.28b) is 
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approximately defined by the classical beam theory, and t in Eq. (5.28b) represents 

the thickness of Edge j. 

4 ( )n jsχψ  ( 1, 2, 3, 4j = ) given in Eq. (5.26) can be determined through those 

continuity conditions given in Eqs. (5.27-5.29) as: 

4 * 4 2
1 3 1 13

( 3 ) 3 ( ) ( 5 3 )( ) { ( ) ( ) }
2 4 32n

b b h b b h bh b hs P s s
h h
+ + − −

= × − + +χψ  (5.30a) 

4

2
* 3

2 3 2 2( ) {( ) ( )}
4n
bs P s s= × −χψ              (5.30b) 

4 * 4 2
3 3 3 33

( 3 ) 3 ( ) ( 5 3 )( ) { ( ) ( ) }
2 4 32n

b b h b b h bh b hs P s s
h h
+ + − −

= × − −χψ   (5.30c) 

4

2
* 3

4 3 4 4( ) { ( ) ( )}
4n
bs P s s= × − +χψ               (5.30d) 

The constant *
3P  in Eq. (5.30) determine the scale of cross-sectional deformation 

represented by the unit magnitude of 4χ , and *
3

32
(5 3 )

P
bh b h

= −
+

 will be used in 

this study. 

 

5.4 Derivation of the Exact Joint Matching Conditions 

With respect to analysis of three or more box beams-joint structures by using the 

higher-order beam theory established in the previous section, the key is to define 

the exact joint matching conditions among the field variables which represent the 

behavior of the joint correctly. 

After explaining the difficulties whereby the stiffness of the joint is 
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overestimated when the matching conditions proposed in Choi and Kim [23] are 

directly extended to three or more box beams-joint structures, we will propose and 

derive the exact joint matching conditions, which are applicable to three or more 

box beams-joint structures. 

Concerning the two box beams-joint structure shown in Fig. 5.4, the field 

variables of Beam k ( 1, 2k = ) employed in Choi and Kim [23] are represented as, 

T
1 1 3

ˆ {( ) , ( ) , ( ) , ( ) , ( ) , ( ) }g g
k z k x k y k k k kU U W=U θ χ χ          (5.31) 

In Choi and Kim [23], joint matching conditions between 1Û  and 2Û  are 

exactly defined by introducing joint matrix T . Through the various box beams-

joint examples, it was shown that the matching conditions can describe the 

response of the joint precisely as interpreted by the shell elements. 

When a two box beams-joint structure is modeled as shown in Fig. 5.5 by 

adopting the same procedure as the modeling in Fig. 5.2, the matching conditions 

between 1Û  and 2Û  can be expressed as follows by using the joint matrix T  

proposed in Choi and Kim [23]: (However, concerning the modeling in Fig. 5.5,  
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Fig. 5.4 Two thin-walled box beams-joint structures. 

 

the constraint conditions between Edge 1 1M M ′  and Edge 2 2N N ′  or between 

Edge 2 2M M ′  and Edge 1 1N N ′  were not considered when the following matching 

conditions are defined.) 

2 2 1 1
ˆ ˆ( )= − ⋅U T Uφ φ                     (5.32a) 

or 

2 1

2 1

2 1

1 2 1 1

1 2 1 1

3 2 3 1

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

z z

x x

y y
g g

g g

U U
U U

W W

θ θ
χ χ

χ χ

   
   
   
       =    

    
   
   
      

A B
0 C

                (5.32b) 
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(a) 

 

Fig. 5.5 (a) Beam Modeling for the two box beams-joint structures (Edge M1M’1 
of Beam 1 and Edge N2N2’ of Beam 2 are considered as if they were connected 
rigidly to each other (by an imaginary rigid body), and Edge N1N1’ of Beam 1 and 
Edge M2M’2 of Beam 2 are also considered as if being connected rigidly to each 
other (by an imaginary rigid body).), (b) the top view of beam modeling (Shared 
Side Edge 1 in Fig. 5.4 is extended and represented by Edge M1M’1 of Beam 1 
and Edge N2N2’ of Beam 2 separately, and Share Side Edge 2 in Fig 5.4 is also 
extended and represented by Edge N1N1’ of Beam 1 and Edge M2M’2 of Beam 2 
separately.). 
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where the definitions of submatrix A, B and C are as 

2 1 2 1

2 1 2 1

cos( ) sin( ) 0
sin( ) cos( ) 0

0 0 1

φ φ φ φ
φ φ φ φ

− − 
 = − − − 
  

A              (5.32c) 

2 24(5 ) 16( )
2 1 2 15 ( 3 ) ( 3 )(5 )

0 0 0
0 0 0

0 (1 cos( )) sin( )h b b h
bh b h b h b hφ φ φ φ− +

+ + +

 
 

=  
 

+ − − −  

B     (5.32d) 

2 2

2 2

20 ( )
2 1 2 1(5 )(5 )

(5 )(5 )
2 1 2 120 ( )

1 0 0
0 cos( ) sin( )

0 sin( ) cos( )

bh b h
b h h b

b h h b
bh b h

φ φ φ φ

φ φ φ φ

+

+ −

+ −
+

 
− 

 = − − −
 
 − − − − 

C    (5.32e) 

where kφ  ( 1, 2k = ) represents the angle between the axial coordinate kz  of Beam 

k and globalz  in Fig. 5.5 (see Fig. 5.5(b) for the positive directions), and ( 2 1φ φ− ) in 

Eq. (5.32) denotes the joint angle of the two box beams-joint structure. Observing 

the joint matrix 2 1( )φ φ−T , its submatrix A represents the matching conditions 

among rigid-body motions. Submatrix B represents additional rigid-body motion 

( 2( )yθ ) of Beam 2 generated by the higher-order deformations ( 1 1 3 1( ) , ( )gW χ ) of 

Beam 1, and submatrix C represents the matching conditions among higher-order 

deformations ( 1 1 3, ,g gWχ χ ). 

If one wishes to directly extend the matching conditions in Eq. (5.32) for T-

joint structure, for example, it could be written as: 

2 2 1 1 3 3 2 2 1 1 3 3
ˆ ˆ ˆ ˆ ˆ ˆ( ) , ( ) , ( )= − ⋅ = − ⋅ = − ⋅U T U U T U U T Uφ φ φ φ φ φ   (5.33) 
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where the joint angles ( 1 2 3, ,φ φ φ ) in Eq. (5.33) are 1 2 30 , 90 , 180φ φ φ= = =    in 

T-joint structure. If the matching conditions in Eq. (5.32) are applied, the relations 

among 1 1 1 2( ) , ( ) , ,andg gχ χ 1 3( )gχ , will be expressed as: 

1 2 1 1 1 3 1 2 1 1 1 3( ) ( ) , ( ) ( ) , ( ) ( )g g g g g gχ χ χ χ χ χ= − = − = −        (5.34) 

Because the relations in Eq. (5.34) should be satisfied for arbitrary 

1 1 1 2 1 3( ) , ( ) , , ( )andg g gχ χ χ , the relations eventually represent 1 1 1 2( ) ( )g gχ χ= =

1 3( ) 0gχ = . 

Likewise, the relations among ( 1 3,gW χ ) of three box beams will be expressed 

as: 

2 2

2 2
20 ( ) (5 )(5 )

1 2 3 1 3 2 1 120 ( )(5 )(5 )
( ) ( ) ; ( ) ( )bh b h b h h bg g

bh b hb h h b
W Wχ χ+ + −

++ −
= = −        (5.35a) 

2 2

2 2
20 ( ) (5 )(5 )

1 3 3 2 3 3 1 220 ( )(5 )(5 )
( ) ( ) ; ( ) ( )bh b h b h h bg g

bh b hb h h b
W Wχ χ+ + −

++ −
= = −        (5.35b) 

1 1 1 3 3 1 3 3( ) ( ) ; ( ) ( )g gW W χ χ= =                   (5.35c) 

The relations given in Eqs. (5.35a-c) should also be satisfied for arbitrary 

( 1 3( ) , ( )g
k kW χ ) of Beam k ( 1, 2, 3k = ), the relations eventually represent 

1 1 1 2 1 3( ) ( ) ( ) 0g g gW W W= = =  and 3 1( )χ 3 2 3 3( ) ( ) 0χ χ= = = . 

Observing submatrix B in joint matrix T , on the other hand, it can be seen 

that rigid-body motions ( yθ ) of the beams connected to the joint are additionally 

induced by higher-order deformations ( 1 3,gW χ ) as well as rigid-body motions ( yθ ) 

of adjacent beams. Therefore, when the matching relations such as Eqs. (5.34) and 
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(35) (i.e. all the higher-order deformations of three box beams are zero) are applied 

to the T-joint structure, those relations overestimate the stiffness of the joint, and it 

is not possible to obtain an accurate result. 

Observing the results in Choi and Kim [23], the joint matching conditions 

defined on Edge 1 are equal to those defined on Edge 3 because the higher-order 

deformations ( 1 1 3, ,g gWχ χ ) having y-axis antisymmetric deformation pattern are 

only employed. To define the joint matching conditions on Edge 1 and Edge 3 

independently, therefore, the higher-order deformations ( 2 2 4, ,Wχ χ ) having y-axis 

symmetric deformation patterns should be employed together. From the same 

reason, when the matching conditions given in Eq. (5.32) are extended to the three 

or more box beams-joint structure, the stiffness of the joint again tends to be 

overestimated. Therefore, the joint matching conditions proposed by Choi and Kim 

[23] cannot be directly extended to the three or more box beams-joint structure, and 

a new approach that is different from the existing methods should be developed, to 

deal with the three or more box beams-joint structure under in-plane loads. 

To develop a new analysis approach applicable to three or more box beams-

joint structure under in-plane loads, we will first define the equilibrium conditions 

among the generalized forces ( 1 1 2 2 3 4, , , , , , , ,g g
z x yF F M Q B Q B Q Q ) of each beam 

at the joint. Choi and Kim [22] demonstrated that the self-equilibrated forces 

( 1 1 2 2 3 4, , , , ,g gQ B Q B Q Q ) produce non-zero resultants on each edge of the box 

beam cross-section, and Choi and Kim [23] found the equilibrium conditions 
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among ( 1 1 3, , , , ,g g
z x yF F M Q B Q ) of two beams at the angled joint. Based on Refs. 

[22, 23], therefore, we will derive for the first time the equilibrium conditions 

applicable to the three or more box beams-joint structures. Subsequently, applying 

the principle of virtual work to the equilibrium conditions we determined, we will 

derive the exact joint matching conditions for the generalized displacements (or 

field variables) which are energy conjugates of those generalized forces. 

 

5.4.1 Sectional and Edge Resultants Produced by Generalized Forces 

Prior to dealing with the generalized forces equilibriums, the stresses which 

generalized forces induce on the section will be introduced, and from those stresses, 

sectional or edge resultants will be derived. 

According to Eq. (5.4), dominant stresses ( ,zz zsσ σ ) on the contour ( 0n = ) can 

be related to the displacements as: 

1 2 1 2
1 2 1 22( , ) ( )

1
g g

yz WU Wg g
zz z z z y z z s s

Es z U W Wθ χ χσ ψ ψ θ ψ ψ νψ χ νψ χ
ν

′ ′ ′ ′= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅
−

 

   (5.36a) 

1 2 1 2
1 2 1 2( , ) ( )

g g
yx WU Wg g

sz s x s s z y z zs z G U W Wθχ χσ ψ ψ χ ψ χ ψ θ ψ ψ′ ′ ′= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅    

(5.36b) 

The derivative terms ( 1 2 1 2, , , ,
g g

y W W
z s s z z
θ χ χψ ψ ψ ψ ψ     ) in Eqs. (5.36a, b) can be related 

with other shape functions ( 1 1 2 2, , , , ,
g g

yx WU W
s z s z s z

θ χ χψ ψ ψ ψ ψ ψ ) as y xU
z s
θψ ψ= − , 

1
2

6g
y

s zh
θχψ ψ= − , 2

2
zU

s zh
χψ ψ= − , 1 1

3 3

2

4( 5 ) 16
15 ( 3 ) 6

g
xW U

z s s
b h

bh b h b
χψ ψ ψ+

= − −
+

  and 2W
zψ =
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2
4

sh
χψ  (see the explicit expressions of ψ ’s in Appendix A), and thus Eqs. (5.36a, 

b) can be rewritten as: 

1 2
2 1 1 22 2

2 6( , ) { ( ) ( ) }
1

g
yz WU Wg g

zz z z z y z z
Es z U W W

h h
θσ ψ ν χ ψ θ ν χ ψ ψ

ν
′ ′ ′ ′= ⋅ − + ⋅ − + ⋅ + ⋅

−
    (5.37a) 

1 2

3 3

12

1 1 2 2

4( 5 )( , ) [ { }
15 ( 3 )

16 4{ } { }]
6

x

g

U g
sz s x y

g g
s s

b hs z G U W
bh b h

W W
b h

χ χ

σ ψ θ

ψ χ ψ χ

+′= ⋅ − −
+

′ ′+ ⋅ − + ⋅ +

    (5.37b) 

Substituting ( ,zz zsσ σ ) in Eqs. (5.37a, b) into the definitions of generalized 

forces F  given in Eq. (5.6) and carrying out the surface integral for the cross-

section S, one can obtain the following relations between the generalized forces F  

and the field variables U . 

1 2

2 12 2

1 2

22

22

( ) ( , ) ( )

2 6[ { } { }
1

{ } { }]
2[ { }]

1
2{ ( ) ( )}

1

z

yz z z

g
z z

z z

z

U
z zz z

S

U U U g
z z z z z y

S

W U W Ug
z z z z

U U
z z z

S

F z

F z s z s dsdn

E U
h h

W W dsdn
E U dsdn

h
E J U z z

h

θ

σ ψ

ψ ψ ν χ ψ ψ θ ν χ
ν

ψ ψ ψ ψ

ψ ψ ν χ
ν

ν χ
ν

= ⋅

′ ′= ⋅ ⋅ − + ⋅ ⋅ −
−

′ ′+ ⋅ ⋅ + ⋅ ⋅

′= ⋅ ⋅ −
−

′= −
−

∫∫

∫∫

∫∫

 (5.38a) 

The second line in Eq. (5.38a) can be reduced as the third line by the orthogonality 

conditions such as 0y zU
z z

S

dsdnθψ ψ⋅ =∫∫ , 1 0
g

zW U
z z

S

dsdnψ ψ⋅ =∫∫  and 

2 0zW U
z z

S

dsdnψ ψ⋅ =∫∫  (See Appendix A). Moreover, the orthogonality condition 
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among ( 1 2, ,
g

xU
s s s

χ χψ ψ ψ ) can be also considered as given in Appendix A, and 

considering those orthogonality conditions, the remained generalized forces except 

( 3 4,Q Q ) can be express as: 

3 3

12

4( 5 )( ) ( , ) ( ) { ( ) ( ) ( )}
15 ( 3 )

x

x

U g
x zs s F x y

S

b hF z s z s dsdn GJ U z z W z
bh b h

σ ψ θ +′= ⋅ = − −
+∫∫      

(5.38b) 

12 2

6( ) ( , ) ( ) { ( ) ( )}
1

y

y

g
y zz z M y

S

EM z s z s dsdn J z z
h

θσ ψ θ ν χ
ν

′= ⋅ = −
−∫∫   (5.38c) 

1

1
1 1 1

16( ) ( , ) ( ) { ( ) ( )}
6

g

g
g g g

zs s Q
S

Q z s z s dsdn GJ z W z
b

χσ ψ χ ′= ⋅ = −∫∫     (5.38d) 

1

1
1 12( ) ( , ) ( ) { ( )}

1
g

g
Wg g

zz z B
S

EB z s z s dsdn J W zσ ψ
ν

′= ⋅ =
−∫∫       (5.38e) 

2

22 2 2
4( ) ( , ) ( ) { ( ) ( )}zs s Q

S

Q z s z s dsdn GJ z W z
h

χσ ψ χ ′= ⋅ = +∫∫      (5.38f) 

2

22 22( ) ( , ) ( ) { ( )}
1

W
zz z B

S

EB z s z s dsdn J W zσ ψ
ν

′= ⋅ =
−∫∫        (5.38g) 

where Jβ  ( 1 1 2 2, , , , , ,g g
z x yF F M Q B Q Bβ = ) represent the moment of inertia 

for the generalized force β , and the explicit expressions for Jβ  are given 

in Appendix A. 

Substituting those results given in Eq. (5.38) into Eq. (5.37), ( ,zz zsσ σ ) 

on the contour line can be expressed in terms of the generalized forces as: 
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1 2 1 2

21

1 2( )( ) ( ) ( )( , ) ( ) ( ) ( ) ( )
g g

y yz z

gz y

g
M yB WF B U Wz

zz zz zz zz zz z z z z
F M BB

M zF z B z B zs z s s s s
J J J J

θσ σ σ σ σ ψ ψ ψ ψ= + + + = + + +

(5.39a) 

1 2 1 2

21

1 2( ) ( ) ( )( , ) ( ) ( ) ( )
g g

x x

gx

g
QF UQ x

sz zs zs zs s s s
F QQ

F z Q z Q zs z s s s
J J J

χ χσ σ σ σ ψ ψ ψ= + + = + +  (5.39b) 

where βσ  ( 1 1 2 2, , , , , ,g g
z x yF F M Q B Q Bβ = ) represent the stress on the contour 

line produced by the generalized force β . Therefore, one can define the edge 

resultants of β  generated on each edge by using βσ . 

Meanwhile, the definitions of ( 3 4,Q Q ) given in Eq. (5.6) are different with those 

considered above because ( 3 4,χ χ ), the work conjugate of ( 3 4,Q Q ) respectively, 

represent the deformations only in n direction. Unlike the procedure introduced 

above, thus, ( , , )zs n s zσ  at a generic point located away from the contour line by 

n should be substituted into the definition of 3 4,Q Q  in Eq. (5.6), and through that 

the following result can be obtained. 

3

3 3 31

3 3 31 2 2

3 3 31

3

1

1 2

1 3

( )

{ ( ) ( ) ( )

( ) ( ) ( )

( 2 ) ( ) ( 2 ) ( )

( 2

g
yx

g

g

zs n
S

U g
s n x z n y s n

S

W Wg
z n s n z n

g
n n n n

Q n dsdn

G n U n n

n W n n W

n n n n

χ

θ χχ χ χ

χ χ χχ

χ χ χ χ

σ ψ

ψ ψ ψ ψ θ ψ ψ χ

ψ ψ ψ ψ χ ψ ψ

ψ ψ χ ψ ψ χ

= −

′ ′= ⋅ − ⋅ + ⋅ − ⋅ + ⋅ − ⋅

′+ ⋅ − ⋅ + ⋅ − ⋅ + ⋅ − ⋅

′ ′+ − ⋅ − ⋅ + − ⋅ − ⋅

+ −

∫∫

∫∫



   

    

   

34

3 3

3

4

3

3

) ( ) )}

[( 2 ) ( ) { }]

2 { ( )}

n n

n n
S

Q

n n dsdn

G n n dsdn

GJ z

χχ

χ χ

ψ ψ χ

ψ ψ χ

χ

′⋅ − ⋅

′= − ⋅ − ⋅

′=

∫∫

 

 

 (5.40a) 
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The second line in Eq. (5.40a) can be reduced as the third line because most of the 

integral terms in the second line are eliminated through the integral in n direction 

or by the orthogonal conditions such as 31( ) ( ) 0
g

n n
S

dsdnχ χψ ψ⋅ =∫∫    and 

34( ) ( )n n
S

dsdnχχψ ψ⋅∫∫   0= . In addition, the orthogonality conditions such as 

1 4( ) ( ) 0
g

n n
S

dsdnχ χψ ψ⋅ =∫∫    and 3 4( ) ( ) 0n n
S

dsdnχ χψ ψ⋅ =∫∫    can be also considered as 

given in Appendix A, and considering those orthogonality conditions, 4Q  can be 

expressed as:  

4

4 4 1 4

1 4 2 4 2 4

31 4 4

4

1

1 2

1 3

( )

{ ( ) ( ) ( )

( ) ( ) ( )

( 2 ) ( ) ( 2 ) ( )

( 2

g
yx

g

g

zs n
S

U g
s n x z n y s n

S

W Wg
z n s n z n

g
n n n n

Q n dsdn

G n U n n

n W n n W

n n n n

χ

θ χχ χ χ

χ χ χ χ

χ χχ χ

σ ψ

ψ ψ ψ ψ θ ψ ψ χ

ψ ψ ψ ψ χ ψ ψ

ψ ψ χ ψ ψ χ

= −

′ ′= ⋅ − ⋅ + ⋅ − ⋅ + ⋅ − ⋅

′+ ⋅ − ⋅ + ⋅ − ⋅ + ⋅ − ⋅

′ ′+ − ⋅ − ⋅ + − ⋅ − ⋅

+ −

∫∫

∫∫



   

    

   

4 4

4 4

4

4

4

4

) ( ) )}

[( 2 ) ( ) { }]

2 { ( )}

n n

n n
S

Q

n n dsdn

G n n dsdn

GJ z

χ χ

χ χ

ψ ψ χ

ψ ψ χ

χ

′⋅ − ⋅

′= − ⋅ − ⋅

′=

∫∫

 

 

 (5.40b) 

The symbols (
3 4
,Q QJ J ) in Eqs. (5.40a, b) represent the moment of inertia for 

3 4,Q Q  respectively and the definitions of (
3 4
,Q QJ J ) are given in Appendix A. 

When the results given in Eqs. (5.40a, b) are substituted into Eq. (5.6c), the stresses 

( 3 4,Q Q
sz szσ σ ) which are generated by ( 3 4,Q Q ) can be also obtained as: 
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3 3

3

3 ( )( , , ) { ( )}Q
sz n

Q

Q zn s z n s
J

χσ ψ= −                (5.41a) 

4 4

4

4 ( )( , , ) { ( )}Q
sz n

Q

Q zn s z n s
J

χσ ψ= −                (5.41b) 

First, it will be shown how to obtain the edge resultants of generalized force 1β  

( 1β = , ,z x yF F M ) which have conventional or sectional resultants as shown in Fig. 

5.6. Stresses on (s, z) induced by those forces are given in Eq. (5.39), and edge 

resultants of those forces can be obtained by integrating stresses on each edge 

according to Choi and Kim [22]. The non-zero edge resultants determined from the 

stresses in Eq. (5.39) are axial force 1
( )z jF β , tangential force 1

( )s jF β , and normal 

moment 1
( )n jM β  ( 1 , ,z x yF F Mβ = ), and are defined as 

1 1 1 1 1 1
( ) ( ) ( ), ,z j zz s j zs n j zz

Edge j Edge j Edge j

F dsdn F dsdn M s dsdnβ β β β β βσ σ σ= = = ⋅∫∫ ∫∫ ∫∫  (5.42) 

 

 

       (a)                    (b)                    (c) 

Fig. 5.6 Resultants (or sectional resultants) acting on the entire cross-section that 
are produced by the generalized forces: vertical force Fy, bending moment M x, 
and twisting moment M z. 
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On the contrary, the distribution of 2βσ  ( 2 1 1 2 2, , ,g gQ B Q Bβ = ) represented by 

the shape function ( 2 2ors z
α αψ ψ ) of the work conjugate 2α  ( 2 1 1 2 2, , ,g gW Wα χ χ= ) 

is expressed by the highly complicated polynomial functions as given in Appendix 

A. For this reason, care should be taken when the edge resultants of 2β  are 

determined according to Choi and Kim [23]. To calculate the correct edge 

resultants of 2β  ( 2 1 1, ,g gQ Bβ = 2 2,Q B ), the following 2
zz
βσ  or 2

zs
βσ  is employed 

instead of 2
zz
βσ  or 2

zs
βσ  given in Eq. (5.39). 

2 2

2

2 ( )( , ) ( )zz z
zs z s

J
β α

β

βσ ψ=                    (5.43a) 

2 2

2

2 ( )( , ) ( )zs s
zs z s

J
β α

β

βσ ψ=                   (5.43b) 

where 2 ( )jsαψ  ( 1, 2, 3, 4j = ) represents the average distribution of 2βσ  on 

Edge j, and is defined as: 

1 1

1 1

1 1

1 1

1

2

( 1)/2

( 1)/2
1

2

3( | 0) ( 1) ,
2 4

3( | 0 ) ( 1) ( 1, 3)
2 4

( ) 0 ( 2, 4)

g

g

g

j
s j j

j
s j j

s j

h bs s
h

h bs s j
h

s j

χ

χ

χ

ψ

ψ

ψ

+

−

− ≤ ≤ = − ×

≤ ≤ = − × =

= =

      (5.44a) 

1

1

1 2

2 2

2 2
( 1)/2

1

2 2
( 2)/2

2

2 (5 )( ) ( 1) (for 1, 3)
15 ( 3 )
4(5 )( ) ( 1) (for 2, 4)
5 ( 3 )

g

g

W j
z j

W j
z j j

b h bs j
h b h

h bs s j
bh b h

ψ

ψ

−

−

−
= − × =

+

−
= − × =

+

     (5.44b) 
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2 2

1 1 1 1

2 2

2 2 2 2

1

2

1 1( | 0) , ( | 0 ) ( 1, 3)
2 2 2 2

( | 0) , ( | 0 ) ( 2, 4)
2 2 2 2

s j j s j j

s j j s j j

h hs s s s j

b b b bs s s s j
h h

χ χ

χ χ

ψ ψ

ψ ψ

− ≤ ≤ = ≤ ≤ = − =

− ≤ ≤ = ≤ ≤ = − =
 (5.44c) 

2

1

2

2

12

2

2 ( )( ) (for 1, 3)
3

2( )( ) (for 2, 4)
3

W
z j

W
z j

b h bs j
h
h bs j

h

ψ

ψ

−
= =

−
= − =

           (5.44d) 

The definitions of 2 ( )s jsαψ  ( 2 1 2, ; 1, 2, 3, 4g jα χ χ= = ) given in Eqs. (5.44a, c) 

are as: 

2 2

1 1 1 1 1
2 2

2 22 2

1 1 1 1 1

0 0

10 0

( | 0) ( ) / ,
2

( | 0 ) ( ) / ( 1, 3)
2

h h

h h

s j j s j j j

s j j s j j j

hs s s ds ds

hs s s ds ds j

α α

α α

ψ ψ

ψ ψ

− −
− ≤ ≤ =

≤ ≤ = =

∫ ∫

∫ ∫
   (5.45a) 

2 2

2 2 2 2 2
2 2

2 22 2

2 2 2 2 2

0 0

20 0

( | 0) ( ) /
2

( | 0 ) ( ) / ( 2, 4)
2

b b

b b

s j j s j j j

s j j s j j j

bs s s ds ds

bs s s ds ds j

α α

α α

ψ ψ

ψ ψ

− −
− ≤ ≤ =

≤ ≤ = =

∫ ∫

∫ ∫
    (5.45b) 

, and the definitions of 2 ( )z jsαψ  ( 2 1 2, ; 1, 2, 3, 4gW W jα = = ) given in Eqs. (5.44b, 

d) are as: 

2 2( ) ( ) /s j s j j js s ds dsα αψ ψ= ∫ ∫                (5.46a) 

or 

2 2 2( ) { ( ) / ( ) }s j j s j j j j js s s ds s ds sα αψ ψ= ⋅ ⋅∫ ∫           (5.46b) 

where 2 ( )z jsαψ  is obtained through Eq. (5.46a) when 2 ( )z jsαψ  is an even 

function. Otherwise, Eq. (5.46b) is employed to determine 2 ( )z jsαψ . 
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(a) 

    

 

(b) 
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Fig. 5.7 (a) Edge resultants acting on each edge of the cross-section that are 
produced by the self-equilibrated generalized forces: transverse bimoment (Q1

g, 
Q2, Q3, Q4) and longitudinal bimoment (B1

g, B2), (b) Edge resultants acting on 
each edge of the cross-section that are produced by the generalized forces having 
nonzero resultants: longitudinal force Fz , transverse force Fx , in-plane bending 
moment My. 

 

The symbol 
2

Jβ  ( 2 1 2,gB Bβ = ) given in Eq. (5.43a) can be defined by using 

2 ( )z jsαψ  ( 2 1 2,gW Wα = ) as: 

2

2

2( )z
S

J dsdnβ
β ψ= ∫∫                      (5.47a) 

, and the symbol 
2

Jβ  ( 2 1 2,gQ Qβ = ) given in Eq. (5.43b) can be defined by using 

2 ( )s jsαψ  ( 2 1 2,gα χ χ= ) as: 

2

2

2( )s
S

J dsdnβ
β ψ= ∫∫                     (5.47b) 

The edge resultants of 2β  ( 2 1 1 2 2, , ,g gQ B Q Bβ = ) calculated by substituting 

( 2 2,zz zs
β βσ σ ) in Eqs. (5.43a, b) into Eq. (5.42) are shown in Fig. 5.7(a). 

On the other hand, the following distributed axial moment 3
( ) ( )z j jm sβ  

( 3 3 4, ; 1, 2, 3, 4Q Q jβ = = ) is generated on Edge j by the stress 3
sz
βσ  [23].  

3 3 3

3

3
3

( )
( )( ) { ( )}

12z j j zs n j
Edge j

ztm s n dn s
J

β β α

β

β
σ ψ= ⋅ = −∫            (5.48) 

where 3 3 4,α χ χ= . According to the Kirchhoff-Love plate theory [25], the 

effective distributed normal force 3
( ) ( )n j jf sβ  ( 1, 2, 3, 4j = ) is also generated on 
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Edge j from the axial moment 3
( ) ( )z j jm sβ  by the principle given in Choi and Kim 

[23], and is defined as:  

3

3 3

3

3
( ) 3

( )

( ) ( )( ) { ( )}
12

z j j
n j j n j

m s ztf s s
s J

β
β α

β

β
ψ

∂
= − =

∂
            (5.49) 

Therefore, the effective normal force 3
nF β  concerning the joint equilibrium 

conditions can be defined as the non-zero edge resultant of 3β  according to Choi 

and Kim [23], and 3
( )n jF β  on Edge j ( 1, 2, 3, 4j = ) can be defined by using 

3
( ) ( )n j jf sβ  in Eq. (5.49) as:  

3 3
( ) ( ) ( )n j n j j j

Edge j

F f s dsβ β= ∫                    (5.50) 

According to Choi and Kim [23], however, underestimated edge resultants of 3β  

are calculated when 3
nf
β  given in Eq. (5.49) is employed, and thus the following 

3
nf
β  ( 3 3 4,Q Qβ = ) are used in place of 3

nf
β . 

3 3

3

3
3

( )
( )( ) { ( )}

12n j j n j
ztf s s

J
β α

β

β
ψ=                   (5.51) 

where 3 ( )n jsαψ  ( 3 3 4, ; 1, 2, 3, 4jα χ χ= = ) represent the average distribution of 

3
nf
β  on Edge j, and are defined as: 

3

3

2

32( ) (for 1, 3)
(5 )

32( ) (for 2, 4)
(5 )

n j

n j

bs j
h b h

s j
h b h

χ

χ

ψ

ψ

= =
+

= − =
+





       (5.52a) 
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4

4

( 1)/2
2

32( ) ( 1) (for 1, 3)
(5 3 )

( ) 0 (for 2, 4)

j
n j

n j

bs j
h b h

s j

χ

χ

ψ

ψ

+= − × =
+

= =





       (5.52b) 

The definitions of 3 ( )n jsαψ  ( 3 3 4, ; 1, 2, 3, 4jα χ χ= = ) given in Eqs. (5.52a, b) 

are as: 

3 3( ) ( ) /n j n j j js s ds dsα αψ ψ= ∫ ∫                  (5.53) 

,and the symbol 
3

Jβ  in Eq. (5.51) can be defined by using 3 ( )n jsαψ  as:  

3 3

3

2 2( ) { ( )}n n
S S

J n dsdn n s dsdnα α
β ψ ψ= ⋅ = ⋅ ⋅∫∫ ∫∫           (5.54) 

where 3 ( )n jsαψ  ( 3 3 4, ; 1, 2, 3, 4jα χ χ= = 1, 2, 3, 4j = ) can be written as 

3 3( ) ( )n j j n js s sα αψ ψ= ⋅   because 3 ( )n jsαψ  represent the odd functions. The edge 

resultants of 3β  ( 3 3 4,Q Qβ = ) calculated by substituting 3
nf
β  in Eq. (5.51) into 

Eq. (5.50) are shown in Fig. 5.7. 

 

5.4.2 Generalized Forces Equilibrium Conditions 

The equilibrium conditions among generalized forces ˆ { , , ,z x yF F M=F

T
1 1 2 2 3 4, , , , , }g gQ B Q B Q Q  at the joint will be derived by considering the 

equilibriums of the edge resultants given in Fig. 5.7 in addition to those of the 

sectional resultants given in Fig. 5.6. To this end, the joint equilibrium conditions 

among the generalized forces ( 1 1 3, , , , ,g g
z x yF F M Q B Q ) proposed by Choi and Kim 

[23] will be utilized; we will first interpret those results from the viewpoint of 
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equilibrium conditions of the sectional and edge resultants, and then we will extend 

those results for the joint equilibrium conditions with respect to the generalized 

forces T
1 1 2 2 3 4{ , , , , , , , , }g g

z x yF F M Q B Q B Q Q=F . 

Concerning the two box beams-joint structure depicted in Fig. 5.5, the joint 

equilibrium conditions proposed by Choi and Kim [23] can be written as: 

1 2 1 1 2 1 2( ) cos( ) ( ) sin ( ) ( ) 0z x zF F Fφ φ φ φ− + − + =        (5.55a) 

1 2 1 1 2 1 2( ) sin ( ) ( ) cos( ) ( ) 0z x xF F Fφ φ φ φ− − + − + =        (5.55b) 

1 2( ) ( ) 0y yM M+ =                    (5.55c) 

1 1 1 2( ) ( ) 0g gQ Q− =                    (5.55d) 

2 2

2 2

4(5 )
1 2 1 1 1 2 15 ( 3 )

(5 )(5 )
3 1 2 1 1 220 ( )

( ) { 1 cos( )} ( ) cos( )

( ) sin( ) ( ) 0

h b g
ybh b h

b h h b g
bh b h

M B

Q B

φ φ φ φ

φ φ

−
+

+ −
+

− − − + −

− − − =
 (5.55e) 

2 2
16( ) 20 ( )

1 2 1 1 1 2 1( 3 )(5 ) (5 )(5 )

3 1 2 1 3 2

( ) sin( ) ( ) sin( )

( ) cos( ) ( ) 0

b h bh b h g
yb h b h b h h b

M B

Q Q

φ φ φ φ

φ φ

+ +
+ + + −

− − + −

+ − − =
 (5.55f) 

, and one can rewrite Eqs. (55a-f) as, in terms of the sectional and edge resultants 

shown in Fig. 5.6 and 5.7, 

1 1 1 1 2 2 2 2( ) cos ( ) sin ( ) cos ( ) sin 0z x z xF F F Fφ φ φ φ− + − =      (5.56a) 

1 1 1 1 2 2 2 2( ) sin ( ) cos ( ) sin ( ) cos 0z x z xF F F Fφ φ φ φ+ + + =      (5.56b) 

1 2( ) ( ) 0y yM M+ =                    (5.56c) 

1 1 1 2( ) ( ) 0
3 3

g gh hQ Q
b b

− =                  (5.56d) 
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2

2 2

2

2 2

3 (5 )3 15
1 1 1 1 3 1 1( 3 ) 16 ( )4(5 )

3 (5 )3 15
2 1 2 2 3 2 2( 3 ) 16 ( )4(5 )

{ ( ) ( ) }cos { ( ) }sin

{ ( ) ( ) }cos { ( ) }sin 0

h b hgh h
yb b h b b hh b

h b hgh h
yb b h b b hh b

M B Q

M B Q

φ φ

φ φ

+
+ +−

+
+ +−

− + − −

+ − − =
 

(5.56e) 

2

2 2

2

2 2

3 (5 )3 15
1 1 1 1 3 1 1( 3 ) 16 ( )4(5 )

3 (5 )3 15
2 1 2 2 3 2 2( 3 ) 16 ( )4(5 )

{ ( ) ( ) }sin { ( ) }cos

{ ( ) ( ) }sin { ( ) }cos 0

h b hgh h
yb b h b b hh b

h b hgh h
yb b h b b hh b

M B Q

M B Q

φ φ

φ φ

+
+ +−

+
+ +−

− + + −

+ − + =
    

(5.56f) 

Equation (5.56a-c) can be obtained from Eqs. (5.55a-c) and represent the 

equilibrium conditions among the sectional resultants ( , ,z x yF F M ) shown in Fig. 

5.6 defined with respect to the global coordinate system ( global global global, ,x y z ). 

On the other hand, Eqs. (5.56d-f) represent the equilibrium conditions 

concerning the edge resultants ( 1 1 3, ,g gQ B Q ) shown in Fig. 5.7. Equation (5.56d) 

can be obtained from Eq. (5.55d) by multiplying ( / 3h b ), and one can find that Eq. 

(5.56d) represents the equilibrium condition between the edge resultant 1
(1)

gQ
sF  of 

Beam 1 and 1
(3)

gQ
sF  of Beam 2. Equations (5.56e, f) can be obtained from Eqs. 

(5.55e, f), and one can fine that Eq. (5.56e, f) represent the equilibrium conditions 

among ( 31
(1) (1) (1), ,

g
yM B Q

z z nF F F ) of Beam 1 and ( 31
(3) (3) (3), ,

g
yM B Q

z z nF F F ) of Beam 2 (Because the 

edge forces ( 31 1, , ,
g g

yMQ B Q
s z z nF F F F ) in Eqs. (5.56d-f) are antisymmetric with respect 

to y-axis, Eq. (5.56d) can represents the equilibrium condition between 1
(3)

gQ
sF  of 

Beam 1 and 1
(1)

gQ
sF  of Beam 2, and Eqs. (5.56e, f) can represent the equilibrium 
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conditions among ( 31
(3) (3) (3), ,

g
yM B Q

z z nF F F ) of Beam 1 and ( 31
(1) (1) (1), ,

g
yM B Q

z z nF F F ) of Beam 2 as 

well). 

Note that generalized forces (
1 1 3, , , , ,g g

z x yF F M Q B Q ) are sufficient to express 

equilibrium conditions for the two box beams-joint structure as demonstrated by 

Choi and Kim [23]. However, the equilibrium conditions among edge resultants 

defined on Edge 1 and Edge 3 are no more identical, and thus additional 

generalized forces ( 2 2 4, ,Q B Q ) should be employed together in order to express 

the equilibrium conditions on Edge 1 and Edge 3 independently. 

Based on the previous observation for Eqs. (5.56a-f), one can determine the 

following equilibrium conditions among (
1 1 2 2 3 4, , , , , , , ,g g

z x yF F M Q B Q B Q Q ) 

regarding to the two box beams-joint structure: 

global global1 2( ) ( ) 0z zF F+ =                   (5.57a) 

global global1 2( ) ( ) 0x xF F+ =                   (5.57b) 

global global1 2( ) ( ) 0y yM M+ =                  (5.57c) 

(1) 1 (3) 2( ) ( ) 0s sF F− =                   (5.57d) 

global global(1) 1 (3) 2( ) ( ) 0z zF F+ =                 (5.57e) 

global global(1) 1 (3) 2( ) ( ) 0x xF F+ =                 (5.57f) 

(3) 1 (1) 2( ) ( ) 0s sF F− + =                  (5.57g) 

global global(3) 1 (1) 2( ) ( ) 0z zF F+ =                 (5.57h) 
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global global(3) 1 (1) 2( ) ( ) 0x xF F+ =                 (5.57i) 

where 
global global global global global global(1) (1) (1) (3) (3)( ) ,( ) ,( ) ,( ) ,( ) ,( ) ,( ) ,( )z k x k y k s k z k x k s k z kF F M F F F F F

global (3)and ( )x kF  for Beam k ( 1, 2k = ) are defined as 

global
( ) ( ) cos ( ) sinz k z k k x k kF F Fφ φ= −              (5.58a) 

global
( ) ( ) sin ( ) cosx k z k k x k kF F Fφ φ= +              (5.58b) 

global
( ) ( )y k y kM M=                    (5.58c) 

3

(1) 1 23 3( ) ( ) ( )
3 2( )

g
s k k k

h hF Q Q
b b h

= −
+

            (5.58d) 

2 2

2 2 2 2global

3 15 3
(1) 1 2( 3 ) 4(5 ) 4( )

3 (5 ) 3(5 3 )
3 416 ( ) 16

( ) { ( ) ( ) ( ) }cos

{ ( ) ( ) }sin

gh h h
z k y k k k kb b h h b h b

h b h b h
k k kb b h b

F M B B

Q Q

φ

φ

+ − −

+ +
+

= − + +

− − +
  (5.58e) 

2 2

2 2 2 2global

3 15 3
(1) 1 2( 3 ) 4(5 ) 4( )

3 (5 ) 3(5 3 )
3 416 ( ) 16

( ) { ( ) ( ) ( ) }sin

{ ( ) ( ) }cos

gh h h
x k y k k k kb b h h b h b

h b h b h
k k kb b h b

F M B B

Q Q

φ

φ

+ − −

+ +
+

= − + +

+ − +
  (5.58f) 

3

(3) 1 23 3( ) ( ) ( )
3 2( )

g
s k k k

h hF Q Q
b b h

= − −
+

            (5.58g) 

2 2

2 2 2 2global

3 15 3
(3) 1 2( 3 ) 4(5 ) 4( )

3 (5 ) 3(5 3 )
3 416 ( ) 16

( ) { ( ) ( ) ( ) }cos

{ ( ) ( ) }sin

gh h h
z k y k k k kb b h h b h b

h b h b h
k k kb b h b

F M B B

Q Q

φ

φ

+ − −

+ +
+

= − +

− +
   (5.58h)  

2 2

2 2 2 2global

3 15 3
(3) 1 2( 3 ) 4(5 ) 4( )

3 (5 ) 3(5 3 )
3 416 ( ) 16

( ) { ( ) ( ) ( ) }sin

{ ( ) ( ) }cos

gh h h
x k y k k k kb b h h b h b

h b h b h
k k kb b h b

F M B B

Q Q

φ

φ

+ − −

+ +
+

= − +

+ +
   (5.58i) 

The symbols 
global

( )z kF  and 
global

( )x kF  ( 1, 2k = ) represent the sectional resultant 

forces of Beam k in globalz  direction and globalx  direction, respectively, and the 
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symbol 
global

( )y kM  represent the sectional resultant moment of Beam k in globaly  

direction. Meanwhile, the symbol ( )( )s j kF  ( 1, 3; 1, 2j k= = ) represents the edge 

resultant force on Edge j (especially 0
2j
hs≤ ≤ ) of Beam k in s direction, and the 

symbols 
global global( ) ( )( ) and ( )z j k x j kF F  ( 1, 3;j = 1, 2k = ) represent the edge resultant 

forces on Edge j of Beam k in globalz  direction and globalx  direction, respectively. 

Let us now consider the extension of Eq. (5.57) to the structure that 

( 3)N N ≥  box beams are connected at the joint shown in Fig. 5.2. Because Eq. 

(5.57) is defined as the equilibrium conditions for sectional and edge resultants, Eq. 

(5.57) is easy to be extended for the joint where three or more box beams meet. 

In order to determine the equilibrium conditions for the edge resultants 

(
global( ) ( ), ands j z jF F  

global ( )x jF ) ( 1, 3j = ), connectivity among Edge 1 or Edge 3 of N 

box beams at the joint should be investigated. According to Choi and Kim [22], 

connectivity among those edges can be determined by considering the actual joint 

depicted in Fig. 5.1. For two adjacent box beams (Beam ( 1, 2, , )k k N= ⋅⋅⋅  and 

Beam k+1; Beam N+1 refers to Beam 1), Edge 1 of Beam k and Edge 3 of Beam 

k+1 can be considered as if they were connected rigidly to each other. Therefore, 

the equilibrium between (
global global(1) (1) (1)( ) , ( ) and ( )s k z k x kF F F ) and ( (3) 1( ) ,s kF +

global global(3) 1 (3) 1( ) and ( )z k x kF F+ + ) can be now considered. 

Based on the connectivity among edges of box beams explained above, the 



232 

generalized forces equilibrium conditions at the joint of ( 3)N N ≥  box beams-

joint structure can be written as follows by extending the equilibrium conditions for 

sectional resultants or edge resultants given in Eq. (5.57): 

global
1

( ) 0
N

z k
k

F
=

=∑                      (5.59a) 

global
1

( ) 0
N

x k
k

F
=

=∑                      (5.59b) 

global
1

( ) 0
N

y k
k

M
=

=∑                      (5.59c) 

(1) (3) 1( ) ( ) 0s i s iF F +− =                    (5.59d) 

global global(1) (3) 1( ) ( ) 0z k z kF F ++ =                  (5.59e) 

global global(1) (3) 1( ) ( ) 0

( : Naturalnumber, 1 )

x k x kF F

i i N

++ =

≤ ≤
        (5.59f) 

where Eqs. (5.59a-c) express the equilibrium conditions in which all 

(
global global global

( ), ( ), ( )z x yF F M defined in N box beams participate, regardless of the 

number of box beams meeting at the joint. Meanwhile, Eq. (5.59d-f) represent the 

equilibrium conditions between the edge resultants of the adjacent two beams 

Beam i and Beam i+1 (1 i N≤ ≤ ). Therefore, Eq. (5.59d-f) consequently represent 

3N number of equations, and Eqs. (5.59a-f) are expressed by 3N+3 number of 

equations for the case that N box beams meet at the joint. In case of 2N = , Eq. 

(5.59d-f) recovers Eqs. (5.57d-i). 
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5.4.3 Field Variables Joint Matching Conditions 

Using the generalized forces equilibrium conditions defined above, let us now 

derive the joint matching conditions among field displacement variables 

T
1 1 2 2 3 4{ , , , , , , , , }g g

z x yU U W W=U θ χ χ χ χ . Because the field variables are the 

work conjugates of the generalized forces, one can associate them with the 

generalized forces by considering the principle of virtual work that the sum of 

virtual works is zero. In what follows, we will theoretically derive the matching 

conditions among field variables from the generalized forces equilibrium 

conditions. 

For the derivation, the joint matching conditions among field variables of Beam 

1 and Beam 2 shown in Fig. 5.5 will be examined first by using the equilibrium 

conditions in Eq. (5.57) derived for two-beam joints. Then the conditions will be 

extended for the three or more box beams-joint structures. (In theory, the field 

variables matching conditions may be derived directly from Eq. (5.59), but the 

derivation is found to be too complex to employ.) 

Referring to the two box beams-joint structure depicted in Fig. 5.5, consider 

kF  and kU  ( 1, 2k = ) denoting the generalized forces and field variables of Beam 

k, respectively. In terms of kF  and kU  ( 1, 2k = ), the principle of virtual work at 

the joint can be expressed as 
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2
T T

Beam 1 1 2 2
1
( | ) ( ) ( ) 0k

k
W

=

′ = + =∑ F U F U   δ δ δ            (5.60) 

Equation (5.60) shows the sum of Beam( | )kWδ ′ , which is complementary virtual 

work of Beam k, is zero [26], where kFδ  refers to the admissible virtual force of 

Beam k. Because 1Fδ  and 2Fδ  comply with the equilibrium conditions in Eq. 

(5.28), 1Fδ  and 2Fδ  must satisfy the following relation: 

1 21 2 0δ δ⋅ + ⋅ =F FM F M F                     (5.61) 

where 
1FM  and 

2FM  are defined as 

1

3

3 3

2 2

2 2 2 2

2 2

2 2

1 1

1 1

3 2( )

3 (5 ) 3(5 3 )3 15 3
1 1 1 1 1( 3 ) 16 ( ) 164(5 ) 4( )

3 15 3
1 1( 3 ) 4(5 )

cos sin 0 0 0 0 0 0 0

sin cos 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 cos 0 cos 0 cos sin sin

0 0 sin 0 sin 0

h h
b b h

h b h b hh h h
b b h b b h bh b h b

h h h
b b h h b

φ φ

φ φ

φ φ φ φ φ

φ φ

+

+ +

+ +− −

+ −

=

−

−

− −

−

FM

2 2

3

3 3

2 2

2 2 2 2

2

2 2

3 (5 ) 3(5 3 )
1 1 116 ( ) 164( )

3 2( )

3 (5 ) 3(5 3 )3 15 3
1 1 1 1 1( 3 ) 16 ( ) 164(5 ) 4( )

3 15
1( 3 ) 4(5 )

sin cos cos

0 0 0 0 0 0 0

0 0 cos 0 cos 0 cos sin sin

0 0 sin 0 sin

h b h b h
b b h bh b

h h
b b h

h b h b hh h h
b b h b b h bh b h b

h h
b b h h b

φ φ φ

φ φ φ φ φ

φ φ

+ +

+−

+

+ +

+ +− −

+ −

−

− −

− − −

−
2

2 2

3 (5 ) 3(5 3 )3
1 1 1 116 ( ) 164( )

0 sin cos cosh b h b hh
b b h bh b

φ φ φ+ +

+−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (5.62a) 
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2

3

3 3

2 2

2 2 2 2

2

2 2

2 2

2 2

3 2( )

3 (5 ) 3(5 3 )3 15 3
2 2 2 2 2( 3 ) 16 ( ) 164(5 ) 4( )

3 15 3
2 2( 3 ) 4(5 )

cos sin 0 0 0 0 0 0 0

sin cos 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 cos 0 cos 0 cos sin sin

0 0 sin 0 sin 0

h h
b b h

h b h b hh h h
b b h b b h bh b h b

h h
b b h h b

φ φ

φ φ

φ φ φ φ φ

φ φ

+

+ +

+ +− −

+ −
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−

− −

− − −

−

FM

2

2 2

3

3 3

2 2

2 2 2 2

2

2 2

3 (5 ) 3(5 3 )
2 2 216 ( ) 164( )

3 2( )

3 (5 ) 3(5 3 )3 15 3
2 2 2 2 2( 3 ) 16 ( ) 164(5 ) 4( )
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2 2( 3 ) 4(5 )

sin cos cos

0 0 0 0 0 0 0

0 0 cos 0 cos 0 cos sin sin

0 0 sin 0 sin

h b h b hh
b b h bh b

h h
b b h

h b h b hh h h
b b h b b h bh b h b

h h
b b h h b

φ φ φ

φ φ φ φ φ

φ φ

+ +

+−

+

+ +

+ +− −

+ −

−

− −

−
2

2 2

3 (5 ) 3(5 3 )3
2 2 216 ( ) 164( )

0 sin cos cosh b h b hh
b b h bh b

φ φ φ+ +

+−
−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (5.62b) 

The matrices 
1FM  and 

2FM  above are invertible because Eq. (5.61) represents 

nine independent equilibrium conditions. 

In order to apply the equilibrium conditions of 1Fδ  and 2Fδ  given in Eq. (5.61) to 

Eq. (5.60), let us first express T( ) ( 1, 2)k k k =F U δ  in Eq. (5.60) as, by using the 

matrix 
kFM  in Eq. (5.62): 

1 1 2 2

1 1 2 2

2
T T T T T T

Beam 1 1 2 2
1

T T T T
1 1 2 2

( | ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0

k
k

W − −

=

− −

′ = ⋅ ⋅ + ⋅ ⋅

= ⋅ ⋅ + ⋅ ⋅ =

∑ F F F F

F F F F

F M M U F M M U

M F M U M F M U

   

   

δ δ δ

δ δ
 (5.63) 

According to Eq. (5.61), the relation between (
1 1⋅FM Fδ ) and (

2 2⋅FM Fδ ) in Eq. 

(5.63) is expressed as 
2 12 1( ) (⋅ = − ⋅F FM F M F ) δ δ . Thus, applying this relation to 

Eq. (5.63) yields 
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1 1 2

1 1 2

2
T T T

Beam 1 1 2
1

T T T T
1 1 2

( | ) ( ) ( )

( ) ( )} 0

k
k

Wδ δ

δ

− −

=

− −

′ = ⋅ ⋅ − ⋅

= ⋅ ⋅ − ⋅ =

∑ F F F

F F F

M F M U M U

F {M M U M U

  

  

     (5.64) 

Because Eq. (5.64) should be satisfied for arbitrary 1Fδ , it can be found that 

1

T ⋅F{M
1 2

T T
1 2( )}− −⋅ − ⋅F FM U M U   in Eq. (5.64) should be zero. Note that the matrix 

1

T
FM  is invertible as mentioned above. Therefore, the following relation must hold:  

1 2

T T
1 2

− −⋅ = ⋅F FM U M U                       (5.65) 

Equation (5.65) represents the matching conditions to be met among the field 

variables when the equilibrium conditions in Eq. (5.57) are satisfied at the joint in 

Fig. 5.5. Based on the definitions of 
1FM  and 

2FM  in Eqs. (5.62a, b), Eq. (5.65) 

can be explicitly written as 

1 1 1 1 2 2 2 2( ) cos ( ) sin ( ) cos ( ) sinz x z xU U U Uφ φ φ φ− = −       (5.66a) 

1 1 1 1 2 2 2 2( ) sin ( ) cos ( ) sin ( ) cosz x z xU U U Uφ φ φ φ+ = +        (5.66b) 

1 2( ) ( )y yΘ = Θ                      (5.66c) 

(1) 1 (3) 2( ) ( )s sU U= −                     (5.66d) 

(1) 1 1 (1) 1 1 (3) 2 2 (3) 2 2( ) cos ( ) sin ( ) cos ( ) sinz x z xU U U Uφ φ φ φ− = −     (5.66e) 

(1) 1 1 (1) 1 1 (3) 2 2 (3) 2 2( ) sin ( ) cos ( ) sin ( ) cosz x z xU U U Uφ φ φ φ+ = +     (5.66f) 

(3) 1 (1) 2( ) ( )s sU U− =                      (5.66g) 

(3) 1 1 (3) 1 1 (1) 2 2 (1) 2 2( ) cos ( ) sin ( ) cos ( ) sinz x z xU U U Uφ φ φ φ− = −     (5.66h) 
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(3) 1 1 (3) 1 1 (1) 2 2 (1) 2 2( ) sin ( ) cos ( ) sin ( ) cosz x z xU U U Uφ φ φ φ+ = +      (5.66i) 

where (1) (1) (1) (3) (3) (3), , , , , , andy s z x s z xU U U U U UΘ  are defined as 

2 2

12

4(5 )
5 ( 3 )

g
y y

h b W
h b bh

−
Θ = +

+
θ                 (5.67a) 

3 3 3 3

(1) 1 2 (3) 1 23 3

3 3;
2 2

g g
s s

b b h b b hU U
h h h h

χ χ χ χ+ +
= − = − −    (5.67b, c) 
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z

b h h bU W W
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b h h bU W W
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− −
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           (5.67d) 
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x

b b h bU
h b h b h

b b h bU
h b h b h

χ χ

χ χ

+
= − +

+ +
+

= +
+ +

            (5.67e) 

Although the expressions in Eq. (5.66) look different from the matching 

conditions that Choi and Kim [23] proposed, Eq. (5.66) represents the same 

relations among the field variables ( 1 1 3, , , , ,g g
z x yU U Wθ χ χ ) as those in Eq. (5.32); 

the joint matching conditions in Eq. (5.32) can be derived directly from Eq. (5.66). 

On the other hand, the advantage of using Eq. (5.66) is that the specific formula by 

Eq. (5.66) can be directly extended to the case of three or more box beams-joint 

structures. 

In order to extend the results in Eq. (5.66) for the joint where three or more 

box beams meet, the meaning of the matching conditions in Eq. (5.66) should be 
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understood. Equations (5.66a, b) represent the continuity conditions among the 

rigid-body displacements zU  and xU  shown in Figs. 5.8 (a, b). It can be found 

that Eq. (5.66a) represents the continuity condition between ( )
globalz kU = ( )z kU

cos ( ) sink x k kUφ φ−  ( 1, 2k = ), which denotes the rigid-body motion of of Beam k 

in the globalz  direction. Likewise, Eq. (5.66b) represents the continuity condition 

between ( )
globalx kU = ( ) sin ( ) cosz k k x k kU Uφ φ+  ( 1, 2k = ), which denotes the rigid-

body motion of Beam k in the globalx  direction. Equation (5.66c) represents the 

continuity condition among the work conjugates of the resultant moments 

considered in the equilibrium conditions in Eq. (5.57c). Therefore, ( )y kΘ  in Eq. 

(5.66c) will be called the sectional effective rotation of Beam k at the joint in the ky  

direction, as depicted in Fig. 5.8(c), and it can be found that Eq. (5.66c) represents 

the continuity condition between 
global

( ) ( )y k y kΘ = Θ  ( 1, 2k = ), which denotes the 

sectional effective rotation of Beam k in the globaly  direction. 

Meanwhile, Eqs. (5.66d, g) corresponds to the continuity conditions between 

the work conjugates of the tangential forces ( ) ( 1, 3)s jF j =  shown in Eqs. (5.57d, 

g). Therefore, (1)( )s kU  and (3)( )s kU  ( 1, 2k = ) in Eqs. (5.66d, g) denote the 

displacements of Edge 1 and Edge 3, respectively in the tangential direction as  
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(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

Fig. 5.8 Sectional displacements or edge displacements associated with the 
generalized displacements (or field variables) joint matching conditions: (a) 
sectional displacement (Uz)k in zk direction, (b) sectional displacement (Ux)k in  
xk direction, (c) sectional rotation (φz)k in yk direction (d) edge displacements 
(Us(1))k, (Us(3))k of Edge 1 and Edge 3 in s direction (e) edge displacements (Uz(1))k, 
(Uz(3))k of Edge 1 and Edge 3 in zk direction and (f) edge displacements (Ux(1))k, 
(Ux(3))k of Edge 1 and Edge 3 in xk direction 

 

depicted in Fig. 8(d). Because the positive tangential directions of Edge 1 and Edge 

3 are along globalky y+ = +  and globalky y− = − , respectively (see Fig. 5.2), care 

should be taken over the sign. Thus, it can be found that Eqs. (5.66d, g) express the 

continuity conditions with respect to the globaly  axis. 

Lastly, Eqs (5.66e, f, h, i) represent the continuity conditions between the 

work conjugates of the edge resultants shown in Eqs. (5.57e, f, h, i). Therefore, 
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( )( )z j kU  and ( )( )x j kU  ( 1, 3 ;j = 1, 2k = ) in Eqs. (5.66e, f, h, i) denote the 

displacements of Edge j in z direction and x direction respectively direction as 

depicted in Figs. 5.8(e, f). It can be found that Eqs. (5.66e, h) represent the 

continuity conditions between ( ) ( ) ( )( ) ( ) cos ( ) sin
globalz j k z j k k x j k kU U Uφ φ= −  ( 1,j =

3 ; 1, 2k = ), and that Eqs. (5.66f, i) represent the continuity conditions between 

( ) ( )( ) ( ) sin= +
globalx j k z j k kU U φ ( )( ) cosx j k kU φ  ( 1, 3 ;j = 1, 2k = ). 

Let us now derive the desired joint matching conditions at the joint where N 

( 3N ≥ ) box beams are connected, as shown in Fig. 5.2. As argued in the derivation 

of the generalized forces equilibrium conditions at the joint, the continuity 

conditions between (
global(1) (1)( ) , ( ) ,s k z kU U

global (1)( )x kU ) and (
global(3) 1 (3) 1( ) , ( ) ,+ +s k z kU U

global (3) 1( ) +x kU ) can be considered because Edge 1 of Beam k ( 1, 2, ,k N= ⋅⋅⋅ ) and 

Edge 3 of Beam k+1 (Beam N+1 refers to Beam 1) are regarded as being 

connected rigidly. 

Using the edge connectivity just explained above and generalizing the 

displacement continuity conditions given in Eq. (5.66) for 2N =  to the case of 

3N ≥ , the following relations can be obtained: 

 

1 2( ) ( ) ( )
global global globalz z z NU U U= =⋅⋅ ⋅ =               (5.68a) 

1 2( ) ( ) ( )
global global globalx x x NU U U= =⋅⋅ ⋅ =               (5.68b) 

global global global1 2( ) ( ) ( )y y y NΘ = Θ = ⋅⋅ ⋅ = Θ               (5.68c) 
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(1) (3) 1( ) ( )s k s kU U += −                    (5.68d) 

global global(1) (3)( ) ( )z k z kU U=                   (5.68e) 

global global(1) (3)( ) ( )x k x kU U=                   (5.68f) 

Equations (5.68a, b) represent the continuity conditions for the rigid-body 

displacements of N box beams in the globalz  direction and in the globalx  direction, 

respectively, and Eq. (5.68c) represent the continuity condition for the sectional 

effective rotations of N box beams in the globaly  direction. On the other hand, Eqs. 

(5.68d-f) are the continuity conditions between the edge displacements on Edge 1 

of Beam k and Edge 3 of Beam k+1 (1≤ k ≤ )N . Therefore, the independent 

number of equations from Eq. (5.68) becomes 3 ( 1) 3N N× − + 6 3N= − . 

 

5.4.4 Use of more precise field variables ( 1 1 2 2
1 1 1 1, , ,W Wχ χ ) 

According to the joint matching conditions given in Eq. (5.68), the rigid-body 

rotations ( yθ ) of the box beams connected at the joint are additionally generated by 

higher-order deformation ( 1
gW ) as well as rigid-body motions ( yθ ) of adjacent 

beams. To interpret the exact joint flexibility, therefore, higher-order deformations 

( 1 2
1 1,W W ) representing more accurate bending warping should be employed 

instead of ( 1
gW ). Meanwhile, it can be found that theoretically reasonable shape 

function 1
gW

zψ  of 1
gW  is related with that of 1

gχ  as 1

3 3

2

4( 5 )
15 ( 3 )

g
xW U

z s
b h

bh b h
ψ ψ+

= −
+


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1
16
6 sb

χψ− . Therefore, bending distortions ( 1 2
1 1,χ χ ) should be also employed instead 

of ( 1
gχ ) in order to define theoretically valid ( 1

1 ,W 2
1W ). 

As shown in Choi and Kim [23], the bending distortion 1
gχ  represents the 

cross-sectional deformation generated by the Poisson’s effect when in-plane 

bending moment yM  is applied. Thus, we introduce a new set of bending 

distortions ( 1 2
1 1,χ χ ) representing the cross-sectional deformations induced by the 

Poisson’s effect on Edge 1, 3 and on Edge 2, 4, respectively. The shape functions 

1 2
1 1( ), ( )s j s js sχ χψ ψ  on Edge j ( 1, 2, 3, 4j = ) satisfy the following conditions: 

1 1
1 1( 1)/2( ) ( 1) ( 1, 3) ; ( ) 0 ( 2, 4)

2
j

s j s j
bs j s j+= − × = = = 

χ χψ ψ    (5.69a) 

2 2
1 1 ( )/2( ) 0 ( 1, 3) ; ( ) ( 1) ( 2, 4)j

s j s j js j s s j= = = − × = 

χ χψ ψ    (5.69b) 

Considering the symmetry conditions and the orthogonality conditions proposed in 

Choi and Kim [23], one can determine the shape functions 1 2
1 1,s s

χ χψ ψ  (the explicit 

expressions of 1
1 ,s

χψ
2
1

s
χψ  are given in Appendix A). 

According to Choi and Kim [23], the bending warping 1
gW  represents the 

cross-sectional deformation generated by the shear stress when transverse force xF  

is applied. The following shear stress is defined when the field variables 

( 1 1
1 1, , ,x yU Wθ χ ) are employed to represent the in-plane bending deformations 
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1
1

1
1

1
1( ) ( )( , ) ( ) ( )x

x

Ux
sz s s

F Q

F z Q zs z s s
J J

= + χσ ψ ψ             (5.70) 

, and the primary bending warping 1
1W  having the relation 

1 1
1 1

4 4
( 3 )

xUW
z s s

h
b b h h

= −
+



χψ ψ ψ  can be obtained (see Choi and Kim [23] for the 

detailed procedure). Subsequently, when the field variables ( 1 1 2
1 1 1, , , , ,x yU Wθ χ χ

2
1W ) are employed to represent the in-plane bending deformation, the following 

shear stress is defined 

1 2
1 1

1 2
1 1

1 2
1 1( ) ( ) ( )( , ) ( ) ( ) ( )x

x

Ux
sz s s s

F Q Q

F z Q z Q zs z s s s
J J J

= + +χ χσ ψ ψ ψ       (5.71) 

, and the secondary bending warping 2
1W , which represents the higher bending 

warping deformation, can be derived. The shape function 2
1W

zψ  of 2
1W  satisfies 

the relation 2
1W

z =ψ
1 2
1 1

2

8 4 4( 2 )
5

xU
s s s

h b
b h b

+
− −χ χψ ψ ψ  (see Choi and Kim [23] for the 

detailed procedure). The explicit expressions of 1 2
1 1,W W

z zψ ψ  are given in Appendix 

A. 

When ( 1 2
1 1,χ χ ) are employed instead of ( 1

gχ ), it can be found that 1
1χ  

represents the edge displacements of ( 1
gχ ) with respect to the joint matching 

relations, and thus the definitions of (1) (3),s sU U  in Eqs. (5.66, 5.68) can be 

expressed in terms of ( 1 2
1 1,χ χ ) as: 
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3 3 3 3
1 1

(1) 1 2 (3) 1 23 3;s s
b h b hU U

h h
+ +

= − = − −χ χ χ χ           (5.72) 

When ( 1 2
1 1,W W ) are employed instead of ( 1

gW ), one can see that both 

( 1 2
1 1,W W ) represent the edge displacements of ( 1

gW ) with respect to the joint 

matching relations, and thus the definitions of (1) (3), ,y z zU UΘ  in Eqs. (5.66, 5.68) 

can be expressed in terms of ( 1 2
1 1,W W ) as: 

1 2
1 12

4 4
( 3 ) 5y y

h hW W
b b h b

Θ = + −
+

θ               (5.73a) 

2 2
1 2

(1) 1 1 22

2 2
1 2

(3) 1 1 22

2 2( 3 ) 2( ) ;
3 15 3

2 2( 3 ) 2( )
3 15 3

z

z

b h h bU W W W
b h

b h h bU W W W
b h

+ −
= − +

+ −
= − + +

       (5.73b, c) 

 

5.5 Numerical Analysis 

The finite element equations for Beam k ( 1, 2, ,k N= ⋅⋅⋅ ) among N box beams 

connected at the joint can be defined as, by using the stiffness matrix for the 

straight box beam element ( 1 2z z z< < ) (see Refs. [7, 22, 23] for the detailed 

derivation), 

k k k⋅ =K d f                         (5.74) 

where , , andk k kK d f  in Eq. (5.74) refer to the stiffness matrix, the nodal 

displacement vector, and the nodal force vector for Beam k, respectively. 

Assembling all finite element equations for N box beams in numerical order, the 
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finite element equations for the N box beams-joint structure can be determined: 

total total total⋅ =K d f                      (5.75) 

If n number of nodes are used to model the N box beams-joint structure, 

total total total, , andK d f  in Eq. (5.75) denote 11 11n n×  total stiffness matrix, 11 1n ×  

total nodal displacement vector, and 11 1n ×  total nodal force vector, respectively. 

The next step is to impose the matching conditions for nodal displacements of N 

box beams at the joint. 

The proposed exact matching conditions of Eq. (5.68) can be applied to the 

finite element equations by using the method of Lagrange multipliers [27], an 

optimization method to find the maximum or minimum value of a function subject 

to equality constraints. Associated with this study, a problem to minimize the total 

potential energy of the N box beams-joint structure subject to the joint matching 

conditions in Eq. (5.68) is solved by employing the method of Lagrange multipliers. 

To facilitate subsequent analysis, the matching conditions in Eq. (5.68) are 

expressed as equality constraints for totald  as  

total⋅ =S d 0                         (5.76) 

where S is a (6 3) (11 )N n− ×  matrix and Eq. (5.76) yields ( 6 3N − ) independent 

equations. By introducing the Lagrange multiplier λ , the following Lagrangian 

LΠ  can be defined: 

T T T
total total total total total total

1( , ) ( )
2L total = − + ⋅Π d λ d K d d f λ S d       (5.77) 
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According to the method of Lagrange multipliers, the stationary conditions of LΠ  

yields 

T
total total total

total

0;L∂
= − +

∂
Π K d f λ S = 0
d

            (5.78a) 

total0;L∂
= ⋅ =

∂
Π S d 0
λ

                   (5.78b) 

The nodal displacement vector in Eqs. (5.78a, b), totald , satisfies the matching 

conditions in Eq. (5.68) and minimizes the potential energy of the N box beams-

joint structure. Therefore, Eqs. (5.78a, b) represent the finite element equations for 

the N box beams-joint structure that include the matching conditions in Eq. (5.68). 

Finally, Eqs. (5.78a, b) can be expressed as a matrix equation as 

T
total totaltotal     

=    
    

d fk S
λ 0S 0

                 (5.79) 

If proper boundary and loading conditions are prescribed, totald  (and λ ) can be 

determined from Eq. (5.79). Because the solution procedure is a standard one, no 

further discussion on numerical analysis will be necessary. 

 

5.5.1 Numerical Examples 

Several examples will be analyzed by using the finite element equations given in 

Eq. (5.79). The validity of the proposed approach will be demonstrated by 

comparing the results with those obtained from ABAQUS shell elements or 

Timoshenko beam elements. Because the joint flexibility is highly dependent upon 
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the number of box beams connected at the joint, the joint angles among those 

beams, and the width and height (or aspect ratio) of the box beam cross-section, we 

will examine their effects on the solutions or the mechanical behavior of three or 

more box beams-joint structures. 

Although box beam sections of different widths b and heights h are considered 

within a range 50mm , 150mmb h≤ ≤ , converged analysis results can be obtained 

with 40 beam elements regardless of those changes. Meanwhile, in two-

dimensional ABAQUS shell analysis, 12.5mm 12.5mm× square shell elements 

are mainly used to obtain converged analysis results. For example, if the 

dimensions of each box beam are width 50mmb = , height 100mmh = , and 

length 1000mmL = , it was found that the converged results were obtained if 

(4 8 4+ + + 8) 80 1920× =  shell elements were used to model the box beam in 

consideration. 

Case Study 1: Three Box Beams-Joint Structure. A three box beams-joint 

structure as depicted in Fig. 5.9(a) is considered in the first case study. 

For the first example, the three box beams-joint structure with the joint angles  
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              (a)                               (b) 

 

              (c)                                (d) 

 

              (e)                               (f) 
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              (g)                               (h) 

 

              (e)                               (f) 

 

              (e)                               (f) 

Fig. 5.9 Numerical results for the three box beams-joint structure under transverse 
force  (Fx)1=100 N: (a) problem description (L1=L2=L3=1000 mm, b=50 mm, 
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h=100 mm, t=2 mm, φ1= 90º , φ 2= 210º , φ 3= 330º), (b) axial displacement Uz, (c) 
transverse displacement Ux, (d) in-plane bending/shear rotation θy, (e) distortion 
1-1 χ1

1, (f) warping 1-1 W1
1, (g) distortion 1-2 χ 1

2, (h) warping 1-2 W1
2, (i) 

distortion 2 χ 2, (j) warping 2 W2, (k) distortion 3 χ 3, (l) distortion 4 χ 4. 

 

1 2 390 , 210 and 330φ φ φ= = =    as shown in Fig. 5.9(a) is considered. All the box 

beams that make up the mentioned structure are identical. The length of those 

beams is 1000 mmL = , and the width (b), height (h) and thickness (t) of those 

beams are 50 mmb = , 100 mmh = , and 2 mmt = , respectively. The material 

properties of those beams are Young’s modulus 200 GpaE = and Poisson’s ratio

0.3ν = . The ends of Beam 2 and Beam 3 denoted by B and C are fixed, and the 

end of Beam 1 denoted by A is subjected to a transverse force 1( ) 100 NxF = . The 

loaded end A is assumed to be rigid. 

The results are given in Figs. 5.9(b-l). In the plot, the range of the axial 

coordinates, ( 1, ; 1, 2, 3k k k− = ), corresponds to Beam k. Observing the results 

based on those from the shell analysis, one can find that the analysis using the 

Timoshenko beam theory overestimates the stiffness of the three box beams-joint 

structure, as mentioned in Introduction. In contrast, one can find that the proposed 

approaches employing the theoretically derived joint matching conditions can 

predict the behavior of the three box beams-joint structure as accurately as 

predicted by the shell analysis. 

Next, we check whether or not accurate results can still be provided by the  
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(a)                                (b) 

Fig. 5.10 (a) Numerical results for the three box beams-joint structures shown in 
Fig. 5.9(a) with various widths (b) and heights (h) of the cross-section (or aspect 
ratios h/b) raging from b=150 mm, h=50 mm (h/b=50/150) to b=50 mm, h=150 
mm (h/b=150/50), (b) percent errors for one-dimensional analyses with respect to 
the result from shell analysis. 

 

 

(a)                                (b) 

Fig. 5.11 (a) Numerical results for the three box beams-joint structures shown in 

Fig. 5.9(a) with various joint angles φ1 of Beam 1 ranging 0o ≤ φ 1 ≤90o, (b) 

percent errors for one-dimensional analyses with respect to the result from shell 
analysis. 
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proposed approach when either b or h of the cross-section or 1φ  (which is the joint 

angle of Beam 1) is changed for the three box beams-joint structure shown in Fig. 

5.9(a). Problems defined by changing b and h of the previous problem in a range 

from 150mm, = 50mmb h=  ( / 50 /150)h b =  to 50mm, = 150mmb h=  ( /h

150 / 50)b =  are first solved, and the results are given in Figs. 5.10(a, b). The 

graph in Fig. 5.10(a) represents the variation in the transverse displacement 1( )xU  

of the end A when the aspect ratio ( /h b ) of the cross-section is varied, and the 

graph in Fig. 5.10(b) represent the percent error of the one-dimensional analysis 

results with respect to the shell result. From those graphs, it can be found that the 

proposed approach can provide accurate results for the box beams-joint structures 

with sections of various widths or heights. 

Problems defined from the first example by changing 1φ  in a range from 0   

to 90   are also solved, and the results are given in Figs. 5.11(a, b). The graph in 

Fig. 5.11(a) represents the variation in the transverse displacement 1( )xU  of the 

end A when 1φ  is increased, and the percent error of the one-dimensional analysis 

results with respect to the shell result is shown in Fig. 5.11(b). From those results, 

it can be found that the proposed approach can also provide accurate and reliable 

results for the box beams-joint structure with various joint angles. 

Case Study 2: N Thin-Walled Box Beams-Joint Structure. Box beams-joint 

structures involving several box beams are considered; see Fig. 5.12(a). 
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              (a)                               (b) 

 

              (c)                                (d) 

 

              (e)                               (f) 
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              (g)                               (h) 

 

              (e)                               (f) 

 

              (e)                               (f) 

Fig. 5.12 Numerical results for the eight box beams-joint structure under 
transverse force (Fx)1=100 N: (a) problem description (L=1000 mm, b=50 mm, 
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h=100 mm, t=2 mm, φk= 45º (k=1, 2, …, 8)), (b) axial displacement Uz, (c) 
transverse displacement Ux, (d) in-plane bending/shear rotation θy, (e) distortion 
1-1 χ1

1, (f) warping 1-1 W1
1, (g) distortion 1-2 χ 1

2, (h) warping 1-2 W1
2, (i) 

distortion 2 χ 2, (j) warping 2 W2, (k) distortion 3 χ 3, (l) distortion 4 χ 4. 

 

The joint angle of Beam k ( 1, 2, , 8k = ⋅⋅⋅ ) in the beams-joint structure of Fig. 

5.12(a) is kφ
360( ) ( 1)
8

k= × − , so the angle between two adjacent beams is 

uniformly 45  . All box beams constituting the structure are identical. The length  

of those beams is 1000 mmL = , and the dimensions of the beam cross-sections are 

50 mm, 100 mm, and 2 mmb h t= = = , respectively. The material properties of 

those beams are Young’s modulus 200 GpaE =  and Poisson’s ratio 0.3ν = . The 

end of Beam 1 denoted by A is subjected to a transverse force 1( )xF = 100 N , and 

is assumed to be rigid. The ends of the other box beams (B-H) are all fixed. 

The results are given in Figs. 5.12(b-l). As in Fig. 5.9, the range of the axial 

coordinates, ( 1, ; 1, 2, , 8k k k− = ⋅⋅⋅ ), corresponds to Beam k. Examining the 

results on the basis of those from the shell analysis, the analysis using the 

Timoshenko beam theory highly overestimates the stiffness of the structure, as 

observed in the previous result. However, the proposed method can predict the 

response of the structure almost as accurately as those from the shell analysis, even 

though the number of box beams connected at the joint is significantly increased. 

We now investigate if accurate results can be still obtained by the proposed  
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(a)                             (b) 

Fig. 5.13 (a) Numerical results for the box beams-joint structures with various 

numbers of box beams (N) ranging 3≤ N ≤8, (b) percent errors for one-

dimensional analyses with respect to the result from shell analysis. 

 

method when the number of box beams connected at the joint is changed. To do 

this, problems that are defined based on the first example in Case study 2 are varied 

by changing the number of box beams connected at the joint, i.e. N is in a range

3 8N≤ ≤ . The joint angle of Beam k ( 1, 2, ,k N= ⋅⋅⋅ ) is (360 / N) ( 1)k kφ = × − , 

and the angle between the two adjacent beams is uniformly (360 / )N  . 

The results are given in Fig. 5.13. The graph in Fig. 5.13 represents the 

variation of torsional rotation 1( )zθ  at the end A of Beam 1 when N is increased. 

From the results, it can be found that the proposed approach can provide accurate 

results for a box beams-joint structure composed of various numbers of box beams. 

Lastly, the problem with more complicated boundary conditions as depicted in Fig. 

5.14(a) is considered; the structure shown in Fig. 5.14(a) is equal to the structure in  
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              (a)                               (b) 

 

              (c)                                (d) 

 

              (e)                               (f) 
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              (g)                               (h) 

 

              (e)                               (f) 

 

              (e)                               (f) 

Fig. 5.14 Numerical results for the eight box beams-joint structure with more 
complicated boundary conditions: (a) problem description (L=1000 mm, b=50 
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mm, h=100 mm, t=2 mm, φk= 45º (k=1, 2, …, 8)), (b) axial displacement Uz, (c) 
transverse displacement Ux, (d) in-plane bending/shear rotation θy, (e) distortion 
1-1 χ1

1, (f) warping 1-1 W1
1, (g) distortion 1-2 χ1

2, (h) warping 1-2 W1
2, (i) 

distortion 2 χ 2, (j) warping 2 W2, (k) distortion 3 χ 3, (l) distortion 4 χ 4. 

 

the first example of case study 2. Observing the result given in Figs. 5.14(b-l), it 

can be found that the proposed approach can provide the correct result even where 

complicated boundary conditions are considered. 

 

5.6 Conclusions 

When a three or more box beams-joint structure is subjected to in-plane bending or 

longitudinal force, a one-dimensional analysis method being capable of interpreting 

the flexible response of the structure is established. To take into account the 

influence of cross-sectional deformations on the flexible response of the joint, the 

higher-order beam theory considering those cross-sectional deformations as 

independent degrees of freedom is employed; To represent accurate joint flexibility, 

extensional warping 2W , extensional distortion 2χ  and bending distortion 4χ  

are newly introduced in this study, and more precisely determined bending 

warpings ( 1 2
1 1,W W ) and bending distortions ( 1 2

1 1,χ χ ) are employed instead of 

( 1 1,g gWχ ) in Choi and Kim [23]. The main difficulty in developing the desired 

analysis method is to determine the joint matching conditions among the 11 field 

variables of the employed higher-order beam theory. To derive the exact joint 
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matching conditions, joint equilibrium conditions of the generalized forces 

T
1 1 2 2 3 4{ , , , , , , , , }g g

z x yF F M Q B Q B Q Q=F  which are work conjugate of the field 

variables T
1 1 2 2 3 4{ , , , , , , , , }g g

z x yU U W W=U θ χ χ χ χ  were first derived. 

Summarizing the procedure briefly, each force of F  was expressed by the 

traditional (sectional) resultants acting on the entire cross-section or the so-called 

“edge resultants” [22] acting on the edge of the section. Then, joint equilibrium 

conditions concerning those sectional resultants or edge resultants were found 

based on the results in Choi and Kim [23], and extending those conditions, the joint 

equilibrium conditions applicable to three or more box beams-joint structures were 

derived. Considering the principle of virtual work, thereafter, the joint matching 

conditions for U  that are capable of representing the flexible response of the three 

or more box beams-joint structure were theoretically derived from the determined 

equilibrium conditions. Lastly, the desired joint matching conditions for 

1
1{ , , , ,z x yU U=U θ χ 1 2 2 T

1 1 1 2 2 3 4, , , , , , }W W Wχ χ χ χ  are derived from those for U  

through the comparison between ( 1 1 2 2
1 1 1 1, , ,W Wχ χ ) and ( 1 1,g gWχ ). Several 

numerical examples checking the accuracy and the validity of the proposed method 

were considered, and it was demonstrated that the proposed method can interpret 

the response of the three or more box beams-joint structures under in-plane loads 

as accurately as the ABAQUS shell analysis, regardless of the number of box 

beams, the joint angles, and the aspect ratios of the box beams cross-section. The 

proposed method has advantages against the shell analysis such as convenience for 
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modeling, the ease of modeling changes and significantly fast analysis. When 

introducing the proposed method with optimization design techniques, therefore, a 

faster and efficient initial design process of vehicle can be expected. In addition, 

the proposed methodologies for determining the higher-order deformation degrees 

or for deriving the joint matching conditions can be expected to be important 

foundations for expanding the scope of structures interpreted by using the higher-

order beam theory-based method to a general three-dimensional thin-walled 

beams-joint structure. 

 

Appendix A 

Explicit expressions for the shape function ( )p sαψ  ( , , ; , ,z xp n s z U Uα= =

1 1
1 1, , ,y Wθ χ 2 2

1 1 2 2 3 4, , , , ,W Wχ χ χ χ ) are given. For convenience, ( )p sαψ  are 

separately defined on each edge, and ( )p jsαψ  ( 1, 2, 3, 4j = ) represent the shape 

function on Edge j. The tangential coordinate js  is measured from the center of 

Edge j along the contour line.  

( ) 1 (for  1,  2, 3, 4)zU
z js j= =ψ   (5.A1) 

 
( 1)/2

( )/2
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where the ranges of js  ( 1, 2, 3, 4j = ) are 1 3 2 4, ,
2 2 2 2

andh h b b
s s s s− ≤ ≤ − ≤ ≤ . 
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, and ( 1 2
1 1 2, , ,xU

s s s s
χ χ χψ ψ ψ ψ ) also meet the following orthogonality conditions. 
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Lastly, one can show that the following orthogonality conditions hold between 

( 3 4,n n
χ χψ ψ ) 
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CHAPTER 6.  
Applications 

 

6.1 Modal Analysis 

A high computational cost is required to calculate natural mode shapes and 

frequencies of a thin-walled box beams-joint system using the detailed shell model. 

If the proposed one-dimensional approach can be applicable to the modal analysis 

of the box beams-joint system, the advantage of the proposed approach against the 

detailed shell analysis will be even more pronounced. 

The modal analysis of the underbody structure shown in Fig. 6.1 is conducted 

by using the proposed analysis method. Sixteen field variables introduced in 

Chapter 3 and Chapter 5 are employed as the degrees of freedom of the higher-

order beam theory, and the joint matching conditions derived in Chapter 3 and 

Chapter 5 are applied. The mass matrix for the box beam element is derived by 

following the procedure given in Jang and Kim [1].The material density ρ  of the 

 

   

Fig. 6.1 a simplified beam model of the underbody structure 
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box beam is 37850 kg / m . To check the accuracy of the proposed method, the 

analysis results of the proposed method are compared with those obtained by the 

detailed shell analysis and the Timoshenko beam analysis. 

 

Table. 6.1 Modal analysis results for the underbody structure shown in Fig. 6.1  

Mode Shell 
(ABAQUS) 

Proposed 
method 

Timoshenko 
beams 

1  out-of-plane 1st torsional mode 16.913 16.486 (2.5%) 34.072 (101.5%) 
2  out-of-plane 1st bending mode 22.042 22.488 (2.0%) 37.978 (72.3%) 
3  out-of-plane 2nd torsional mode 38.930 38.276 (1.7%) 74.172 (90.5%) 
4  in-plane 1st bending mode 51.091 52.217 (2.2%) 65.723 (28.6%) 
5  out-of-plane 2nd bending mode 53.236 54.367 (2.1%) 91.972 (72.8%) 
6  in-plane 2nd bending mode 72.009 72.921 (1.3%) 93.262 (29.5%) 
7  out-of-plane 3rd torsional mode 82.772 82.906 (0.2%) 142.03 (71.6%) 
8  in-plane 1st extensional mode 99.366 100.88 (1.5%) 126.21 (27.0%) 
9  out-of-plane 1st local bending mode 114.44 115.55 (1.0%) 158.26 (38.3%) 
10  in-plane 3rd bending mode 123.22 123.20 (0.1%) 168.72 (36.9%) 

Average Error (Maximum Error) - 1.4% (2.5%) 56.9% (101.5%) 

 

Observing the results given in Table. 6.1, the Timoshenko beam model 

significantly overestimates the dynamic stiffness of the underbody structure (the 

maximum error is 101.5%). In addition, the order of the lowest 10 natural modes is 

calculated incorrectly. Meanwhile, one can find that the proposed approach can 

predict the natural frequencies for the lowest 10 modes of the beam-joint system 

accurately (the maximum error is 2.5%). Through the example study, therefore, it 

can be found that the one-dimensional analysis method established in this study can 

be applicable to the modal analysis of thin-walled box beam structures. 
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The box beams connected at a joint are assumed to be identical in this study. 

However, the proposed analysis method is applicable to the box beams-joint 

systems consisting of the box beams with different cross-section dimensions. The 

joint matching conditions for the mentioned systems are identical, except that the 

common width b and height h of the cross-section are substituted by the width bk 

and the height hk (k=1, 2, …, N; N≥3) of each beam member (e.g. beam k). 

To check the validity of the proposed method, the modal analysis of the T-joint 

structure shown in Fig. 6.2 is conducted. The widths of Beam 1 and 2 are b1= b2= 

0.1 m, and the heights of those beams are h1= h2= 0.05 m. The width and height of 

Beam 3 are b3 = 0.075 m and h3 = 0.05 m, respectively. The dimensions of the T-

joint structure considered in this study are identical to those composed with 

Rockers and B pillar in the simplified side frame structure [2].The analysis results 

of the proposed method are compared with those obtained by the detailed shell 

 

 

Fig. 6.2 T-joint structure consisting of the box beams with different cross-section 
dimensions 
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analysis and the Timoshenko beam analysis. 

 

Table. 6.2 Modal analysis results for the T-joint structure shown in Fig. 6.2  

Mode Shell 
(ABAQUS) 

Proposed 
method 

Timoshenko 
beams 

1  in-plane 1st bending mode 86.887 86.786 (0.1%) 92.625 (6.6%) 
2  out-of-plane 1st bending mode 90.372 88.097 (2.5%) 91.511 (1.3%) 
3  out-of-plane 1st torsional mode 105.79 104.85 (0.9%) 249.49 (135.8%) 
4  out-of-plane 2nd torsional mode 129.21 122.77 (5.0%) 263.84 (104.2%) 
5  in-plane 2nd bending mode 134.70 134.91 (0.2%) 137.27 (1.9%) 
6  out-of-plane 3nd torsional mode 232.94 233.78 (0.4%) 466.37 (100.2%) 
7  out-of-plane 4th torsional mode 246.63 248.15 (0.6%) 530.19 (115.0%) 
8  out-of-plane 2nd bending mode 269.58 267.97 (0.6%) 633.81 (135.1%) 
9  out-of-plane 3rd bending mode 302.06 299.56 (0.8%) 639.06 (111.6%) 
10  out-of-plane 5th torsional mode 321.65 318.64 (0.9%) 828.10 (157.8%) 

Maximum Error - 5.0% 157.8% 

 

Observing the results given in Table. 6.2, the Timoshenko beam model 

overestimates (more than twice) the dynamic stiffness of the T-joint structure and 

calculates the order of the lowest 10 natural modes incorrectly. On the other hand, 

the proposed method can interpret the accurate dynamic responses of the T-joint 

structure comparable to those by the shell analysis (the maximum error is 5.0%). 

Through the example case, therefore, one can find that the proposed approach is 

applicable to the box beams-joint systems consisting of different box beam 

members. 

Some case studies for the T-joint structures (Fig. 6.3) are conducted to check 

the limitations of the proposed analysis method. The three box beams of the T-joint 

structures are assumed to be identical. The box beam member of the length 
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Fig. 6.3 T-joint structures consisting of three identical box beams 

 

L=500 mm, width b= 50 mm, height h=50 mm, and thickness t=1 mm is considered 

as the reference (or standard) member for the case studies based on Ref. [2]. 

The limitation of the beam length to width ratio (L/b) is investigated through 

the modal analysis of the T-joint structures. The range of L/b for the considered T- 

 

 

Fig. 6.4 Modal analysis errors for the T-joint structures with various length-width 
ratios (L/b) 
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joint structures is 1≤ L/b ≤200, and other dimensions of the beam members are 

equal to those of the reference member. 

The average errors of the predicted natural frequencies for the lowest three and 

ten modes are given in Fig. 6.3. Those errors are calculated based on the results by 

the shell analysis. The errors of the proposed method are around 2% when the ratio 

L/b is greater than ten. It is worth mentioning that the results of the proposed 

method are converged to those of the Timoshenko beam analysis when the ratio L/b 

is greater than 100 and that the results of the shell analysis are also converged to 

those of the Timoshenko beam analysis because the effects of the cross-sectional 

deformations are attenuated. Therefore, one can find that the proposed method does 

not have the upper limit for the beam length to width ratio L/b. 

Meanwhile, the errors are increased rapidly when the ratio L/b is less than five. 

The reason is that the joint part becomes relatively larger in the T-joint structures 

when L/b≤5 while the joint is still modeled as a common point in the proposed 

method (the structural elements are normally regarded as the beams when L/b≥10). 

Therefore, it can be found that the proposed method cannot give accurate responses 

of the box beam systems when the ratio L/b of the box beams is less than 5. 

The limitation of the thickness (t) is investigated for the next case study. The 

range of t for the considered T-joint structures is 0.01 mm≤ t ≤20 mm. The length is 

L=1000 mm and the other dimensions of box beam cross-section are equal to those 

of reference member and the length L of the box beams is L=1000 mm. Likewise, 

the modal analysis of the T-joint structures are conducted and the results of the  
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Fig. 6.5 Modal analysis errors for the T-joint structures with various thickness t 

 

proposed method are compared with those by the shell analysis. 

The average errors of the predicted natural frequencies for the lowest three and 

ten modes of the considered T-joint problems are given in Fig. 6.4. Observing the 

results, one can find that the proposed method do not have the limit for the box 

beam thickness t. Interestingly, the lowest ten modes are the local modes 

representing the vibrations of the box beam edges when the thickness t is 0.01 mm 

while the effects of the cross-sectional deformations are attenuated when t≥10 mm, 

and it is shown that the proposed method can express the behavior of the box beam 

system in both the limit cases. 

Lastly, the limitation for the aspect ratio (h/b) of the box beam cross-section is 

investigated. The range of (h/b) for the considered T-joint structures is 1/10≤ h/b 

≤10, and other dimensions of the beam members are commonly L=1000 mm and t= 

1 mm. 
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Fig. 6.6 Modal analysis errors for the T-joint structures with various aspect ratios 
(h/b) 

 

The average errors of the predicted natural frequencies for the lowest three and 

ten modes of the considered T-joint problems are given in Fig. 11. Observing the 

results, one can find that the proposed method can capture the accurate dynamic 

behavior of the box beam systems even though the limit case of the aspect ratio h/b 

is considered (the average errors of the lowest three and ten modes are 6.5% and 

3.6% respectively when h/b =10). Therefore, this case study shows that the 

proposed method do not have the limit for the aspect ratio h/b of box beam cross-

section. 

 

6.2 Extended Higher-Order Beam Model for the 3D Thin-

Walled Box Beams-Shells Structures. 

The proposed one-dimensional analysis can be employed for the accurate and  
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Fig. 6.7 A three-dimensional three box beams-joint system 

 

efficient analysis and design of the automotive whole body structures if the 

analysis method is applicable to the three-dimensional box beams-joint systems. To 

this end, the exact matching conditions at a joint of the box beams being located in 

three-dimensional space are required. To check the possibility that the proposed 

approach for the derivation of the joint matching conditions can be extended to the 

joint of the three-dimensional box beams-joint systems, the joint matching 

conditions for the system shown in Fig. 6.7 are derived by employing the proposed 

approach. The higher-order beam theory considering torsional warping and 

distortion (Fig. 6.8) in addition to the six Timoshenko beam kinematic variables (or 

rigid-body motions) is employed. The distinctive feature of the joint matching 

conditions derived for the joint shown in Fig. 4 is that the torsional warping as well 

as the torsional distortion is coupled with the variables of the box beam rigid-body 

motions. The approach proposed in this paper is directly employed to the derivation 
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Fig. 6.8 Torsional warping W and distortion χ  

 

of the matching conditions although additional considerations are introduced to 

derive the joint matching conditions including those coupling relations. 

The modal analysis of the system shown in Fig. 6.7 is conducted to check the 

validity of the derived joint matching conditions, and the results of the proposed 

method are compared with those obtained by the shell analysis and the Timoshenko 

 

Table. 6.3 Modal analysis results for the three-dimensional three box beams-joint 
system shown in Fig. 6.7  
 

Mode 
Shell 
(ABAQUS) Proposed method Timoshenko beams 

1 43.8 47.0 (7.4%) 69.9 (59.6%) 
2 56.3 57.2 (1.6%) 72.2 (28.2%) 
3 66.1 65.7 (0.6%) 85.7 (29.6%) 
4 267.1 266.1 (0.4%) 274.9 (2.9%) 
5 290.1 291.7 (0.5%) 323.8 (11.6%) 
6 318.4 319.4 (0.3%) 331.5 (4.1%) 
7 321.7 320.6 (0.3%) 394.7 (22.7%) 
8 408.4 405.8 (0.6%) 468.9 (14.8%) 
9 414.0 420.3 (1.5%) 512.3 (23.7%) 
10 476.0 475.7 (0.1%) 632.9 (33.0%) 

Maximum 
Error 

- 7.4% 59.6% 
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beam analysis. 

Observing the results shown in Table. 6.3, one can find that the proposed 

method can calculate the lowest 10 natural frequencies of the considered system as 

accurately as those obtained by the shell analysis while the Timoshenko beam 

analysis highly overestimates the stiffness of the considered system. Because only 

two cross-sectional deformations (i.e. torsional warping and distortion) are 

considered as the higher-order deformation degrees among those introduced in this 

study, slightly inaccurate natural frequency of the first mode is calculated by the 

proposed method. More accurate result can be expected when more higher-order 

deformation degrees are employed. Through this example study, one can find that 

the one-dimensional analysis method established in this study can be extended for 

the analysis method of three-dimensional thin-walled box beam structures. 

The automobile body structures can be simplified as the structures consisting 

of thin-walled box beams and shells [2]. Because the stiffnesses of the body 

structures such as the torsional stiffness are varied significantly depending on the 

presence or absence of the shells [2], establishing the analysis method for the 

structures consisting of box beams and shells is important to evaluate the static or 

dynamic stiffnesses of the body structures correctly. 

Using the proposed one-dimensional approach, one can establish the analysis 

method for the box beams-shells structures modeling the box beams-joint system 

parts by the higher-order beam elements and modeling the shell parts by the 

detailed shell elements. The key problem in regard of this study is defining the 
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matching conditions between the degrees of the higher-order beam elements and 

those of the shell elements at the intersections of the box beams and the shells. The 

higher-order beam theory employed in this study can express the three-dimensional 

displacements ( , ,n s zu u u   ) at a generic point ( , ,n s z ) on the box beam member 

using the one-dimensional field variables and their shape functions. For examples, 

the three-dimensional displacements ( , ,n s zu u u   ) expressed by the one-dimensional 

field variables T{ , , , , }y x zU Wθ θ χ=U  representing the out-of-plane deformations 

are as: 

( , , ) , ( , , ) , ( , , )n n
n n s s z z

u uu n s z u u n s z u n u n s z u n
s z

∂ ∂
= = − = −

∂ ∂
     (6.1) 

where ( , ,n s zu u u ) represent the displacements on the contour line ( 0n = ), and they 

are defined as: 

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y x zU W
n n y n x n z n nu s z s U z s z s z s W z s zθ θ χψ ψ θ ψ θ ψ ψ χ= ⋅ + ⋅ + ⋅ + ⋅ + ⋅

 (6.2a) 

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y x zU W
s s y s x s z s su s z s U z s z s z s W z s zθ θ χψ ψ θ ψ θ ψ ψ χ= ⋅ + ⋅ + ⋅ + ⋅ + ⋅  

(6.2b) 

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y x zU W
z z y z x z z z zu s z s U z s z s z s W z s zθ θ χψ ψ θ ψ θ ψ ψ χ= ⋅ + ⋅ + ⋅ + ⋅ + ⋅  

(6.2c) 

Therefore, one can define the matching conditions between the degrees of the 

box beam elements and those of the shell elements at the intersections by using the 

three-dimensional displacements given in Eq. (6.1) [3]. 
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6.3 Optimization of Thin-Walled Box Beams-Joint Systems 

Using the Higher-Order Beam Analysis 

A one-dimensional analysis approach being able to capture the behavior of thin-

walled box beam structures correctly is required to carry out the design 

optimization of the thin-walled box beam structures. The classical Timoshenko 

beam analysis may be employed in the optimization of the box beam-joint system, 

but a reliable optimum solution cannot be expected because the responses of the 

system are not correctly evaluated. In fact, Kim et al. [4] have recently shown that 

two optimal solutions are obviously different when the same topology optimization 

problem is solved by using two different analysis approaches: the higher-order 

beam analysis [5] and the Timoshenko beam analysis, and they have proven the 

superiority of the design results obtained by the higher-order beam analysis through 

the comparison of the performances of the two design results by using the detailed 

shell analysis. Because the higher-order beam analysis being able to capture the 

accurate behavior of the beam-joint systems consisting of more than four box 

beams and under both in-plane and out-of-plane loads is finally established in this 

study, therefore, more advanced topology designs can be obtained by employing 

the proposed analysis method to the topology optimization of thin-walled box 

beam structures. 

Meanwhile, there is a difficulty in the topology optimization using the higher-

order beam theory that the joint matching conditions should be redefined when 
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some of box beams connected at a joint are disappeared in the process of the 

topology optimization. To solve this problem, Kim et al. [4] considered the 

combinations of the joint matching conditions for all possible connectivity of the 

box beams meeting at a joint, and employing the stacking method, they established 

the design approach which can automatically consider the appropriate joint 

matching conditions even though the connectivity of the box beams at a joint is 

varied in the optimization process. However, the number of box beams connected 

at a joint is limited to four or less in Kim et al. [4] because the combinations of the 

joint matching conditions are significantly increased when more than four box 

beams are connected at a joint. Therefore, additional considerations are required to 

establish a design approach applicable to more general topology optimization of 

the thin-walled box beam structures. 

 

6.4 Adjustment of the Joint Matching Conditions Based on 

the Experimental Results 

There have been efforts [6-8] to establish the analysis methods which can predict 

accurate responses of vehicle body structures comparable to the experiment results 

by using the joint springs. Those rotational spring concepts are mainly applied to 

the kinematic variables which represent the rotations of the box beam cross-section 

to express the additional joint flexibilities. 

On the other hand, it has been shown in this study that the additional rotations of 
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box beam cross-sections at the joints are induced by the coupling effects with the 

higher-order deformation degrees. The coupling relations which are theoretically 

derived in this study are as: 

2( ) ( ) ; ( ) ( )x k x k z k z k k
b

b h
θ θ χΘ = Θ = −

+
            (6.3a) 

1 2
1 12

4 4( ) ( ) ( ) ( )
( 3 ) 5y k y k k k

h hW W
b b h b

θΘ = + −
+

          (6.3b) 

where ( ( ) , ( ) , ( )x k y k z kΘ Θ Θ ) represent the magnitudes of the cross-sectional 

rotations of Beam k (k=1, 2, …, N; N≥3) at a joint. One can find that additional 

rotation in z-direction at a joint is induced by the torsional distortion χ  and that 

additional rotation in y-direction at a joint is induced by the bending warpings 1
1W  

and 2
1W  (Fig. 6.9). Therefore, the accurate responses of the box beams-joint 

systems comparable to the experimental results can be obtained by the proposed 

method if the magnitudes of ( 1 2
1 1, ,W Wχ ) generated at the joints of the actual box 

 

            

            (a)                              (b) 

Fig. 6.9 Cross-sectional deformations which are coupled with the rigid-body 

rotations at a joint: (a) torsional distortion χ , (b) bending warpings 1
1W , 2

1W  
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beam structures can be exactly evaluated by the proposed method. Due to various 

factors, however, the magnitudes of ( 1 2
1 1, ,W Wχ ) at an actual joint could be 

different with those calculated by the proposed numerical approach, and an 

accurate analysis model can be established by applying the correction factors to the 

variables ( 1 2
1 1, ,W Wχ ) in the proposed method. The correction factors for 

( 1 2
1 1, ,W Wχ ) can be exactly obtained through the approaches given in Refs. [6-8]. 
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ABSTRACT (KOREAN) 
 

다중 연결된 직사각 박판보에 관한 
고차 보 이론 기반의 통합 해석 연구 

 

최 수 민 

서울대학교 대학원 

기계항공공학부 

 

조인트를 갖는 직사각 박판보 시스템의 거동을 올바르게 해석하는 일차

원 보 해석 모델을 구축하기 위해서는 ⅰ) 보 부재 및 조인트의 유연한 

거동을 유발하는 주요 단면변형들을 추가적인 기구학적 자유도로 포함하

는 고차 보 이론의 개발과 함께 ⅱ) 조인트에서 고려하는 기구학적 자유

도들 사이의 역학적 관계를 나타내는 엄밀한 매칭 조건의 유도가 요구된

다. 특히, 세 개 이상의 보 부재들이 한 개의 조인트에 다중으로 연결될 

경우 전체 시스템의 강성을 결정할 만큼 매우 유연한 거동이 조인트에서 

관찰되는데, 조인트에 연결된 보 부재의 개수 및 그들이 이루는 조인트 

각에 따라 그 거동의 양상이 크게 달라지는 어려움이 있어 다양한 직사

각 박판보-조인트 시스템들의 거동을 엄밀하게 해석하는 일관된 일차원 

보 해석 모델은 아직 제안된 바 없다. 이러한 연구 배경 하에 본 연구에
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서는 최초로 다중으로 연결된 직사각 박판보-조인트 시스템에 적용 가

능한 일차원 고차 보 해석 모델을 구축하였다. 주목할 점은 본 연구에서

는 기존에 알려진 합력들과 함께 소위 “모서리 합력”이라는 새로운 개념

을 도입하여 조인트에 역학적으로 타당한 평형 관계를 정의하였으며, 정

의된 평형 관계에 에너지 기법을 적용하여 결과적으로 엄밀한 조인트 매

칭 조건을 이론적으로 유도해냈다는 것이다. 이러한 과정을 통해 유도된 

조인트 매칭 조건은 조인트에 연결된 보의 개수 및 그들이 이루는 조인

트 각에 무관하게 항상 적용 가능하다. 이와 더불어, 본 연구에서는 시

스템에 면 내 하중이 작용할 때 관찰되는 조인트의 유연성을 엄밀하게 

표현하기 위해 기존에 제안된 벤딩 워핑 및 벤딩 디스토션과 같은 고차 

변위들을 좀 더 정확하게 재 정의하였으며, 그와 함께 그 동안 고려되지 

않았던 새로운 고차 변위들을 추가적으로 고차 보 이론에 도입하였다. 

제안하는 일차원 해석 모델의 정확성 및 유효성을 검증하기 위해 몇 가

지 주요한 수치 예제들을 해석해 보았으며, 그를 통해 제안하는 해석 모

델이 직사각 박판보-조인트 시스템들의 거동을 쉘 요소 기반 상세 모델

의 해석만큼 정확하게 예측함을 확인하였다. 

 

주요어: 직사각 박판보, 고차 보 이론, 조인트 평형, 조인트 매칭 조건 

학 번: 2009-20732 
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