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Abstract

The slip effect on a superhydrophobic surface in a turbulent boundary layer

determines the performance of a skin-friction drag reduction, and it is affected

by the superhydrophobic grating parameters. With the assumption that the

air-water interface is flat, direct numerical simulations of turbulent channel

flow with superhydrophobic surfaces having an air layer are conducted in the

present study. First, an idealized superhydrophobic surface (i.e., without any

supporting structures inside the air layer) is considered as a slippery surface

for keeping only its useful effects (Busse et al., 2013; Jung, Choi & Kim, 2016).

Inside the air layer, both the shear-driven flow and recirculating flow with zero

net mass flow rate are considered. With increasing air-layer thickness, the slip

length, slip velocity and percentage of drag reduction increase. At a given air-

layer thickness, the shear-driven flow in the air layer supplies more slip than

the recirculating flow. It is shown that the slip length is independent of the

water-flow condition and depends only on the air-layer geometry. The amount

of drag reduction obtained is in between those by the empirical formulae from



the streamwise slip only and isotropic slip, indicating that the present air-water

interface generates an anisotropic slip, and the streamwise slip length (bx) is

larger than the spanwise one (bz). From the joint probability density function

of the slip velocities and velocity gradients at the interface, we confirm the

anisotropy of the slip lengths and obtain their relative magnitude (bx/bz =

4) for the present idealized superhydrophobic surface. It is also shown that

the Navier slip model is valid only in the mean sense, and it is generally not

applicable to fluctuating quantities. Second, the superhydrophobic surface with

longitudinal grooves is considered. The surface grating parameters are the air-

layer thickness, pitch length and gas fraction. A wide range of pitch lengths are

simulated from microscale O(1) to macroscale O(102) in the viscous wall unit.

The minimal channel flow (Jiménez & Moin, 1991) is adopted for a microgrooved

surface. Since the small pitch length is accompanied by small groove width, the

growth of the slip velocity at the air-water interface is inhibited. At a large

pitch length, however, the percentage of drag reduction obtained is saturated

with the gas fraction as the air-layer thickness increases. For SHSs with grooves,

the slip lengths for the instantaneous velocity components (bx and bz) varies at

the air-water interface in the spanwise direction.

Keywords: turbulent flow, skin-friction drag, air-water interface,

superhydrophobic surface, anisotropic slip
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Chapter 1

Introduction

1.1 Motivation

A skin-friction reduction is an important issue undoubtedly in the engineer-

ing fields because the drag on the moving object, such as an aircraft, car, ship,

submarine, has a detrimental effect on the fuel efficiency. Therefore, there are

numerous approaches have been developed in order to reduce the skin-friction

drag, especially in turbulent boundary layers. Examples of successful strategies

for skin-friction reduction include both active and passive approaches, such as

opposite blowing and suction (Choi, Moin & Kim, 1994), riblets (Choi, Moin

& Kim, 1993), permeable walls (Hahn, Je & Choi, 2002), polymer additives

(Min et al., 2003), compliant walls (Kang & Choi, 2000; Kim & Choi, 2015),

transverse cavities (Hahn, 2002).

The skin-friction drag occurs when an object moves in a viscous fluid and it

is proportional to a viscosity of fluid. The viscosity of water is much larger than

that of air (almost 50 times under the standard condition), so waterborne crafts

(e.g., ship, submarine, torpedo, etc.) can experience more viscous drag than

airborne crafts or ground vehicles. Therefore, many studies for the skin-friction

drag reduction in water have been conducted and the one of successful strategies

is a lubrication using air. Two review papers published in 2010 with respect

to the lubrication: air layer lubrication (Ceccio, 2010) and superhydrophobic

1



surface (SHS) (Rothstein, 2010). These techniques segregate the water flow

from contact with the no-slip wall. The former can generate the very large

drag reduction (∼ 100%) but needs the additional cost (Elbing et al., 2008),

whereas the latter can produce a significant drag reduction (∼ 75%) without

any additional cost (Park, Sun & Kim, 2014). The most important aspect of

the lubrication is the violation of the classical no-slip boundary condition.
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1.2 Backgrounds

The surface property whether slippery or not is determined by the molecular

dynamics of solid and intermolecular forces. Young showed the relation between

the surface tension and contact angle, θ, which the air-water interface intersects

with the solid surface (Goldstein & Council, 1965).

cos θ =
σsg − σsl
σlg

. (1.1)

where σsg is the solid-gas surface tension, σsl is the solid-liquid surface tension,

and σlg is the liquid-gas surface tension. Either wetting or non-wetting state is

represented by the contact angle, and the contact angle less than 90◦ usually

indicates that wetting of the surface is favorable. The contact angles greater

than 90◦ generally means that wetting of the surface is unfavorable, so the fluid

will minimize contact with the surface and form a compact liquid droplet. For

water, a wettable surface may also be termed hydrophilic and a nonwettable

surface is termed hydrophobic. In practice, the contact angle is below 150◦ for

a hydrophobic surface.

Superhydrophobic surfaces (SHSs) are highly hydrophobic (i.e. extremely

difficult to wet) surfaces which have the contact angle greater than 150, show-

ing almost no contact between the liquid drop and the surface. The SHS was

initially inspired the significant water repellance of the lotus leaf, so the su-

perhydrophobicity is also called the lotus effect. Since the lotus leaf has many

random micro/nano structures on its surface, the air layer can be entrapped in-

side the surface roughnesses. This is because that SHSs have a surface texture

such as ridges or posts. With this condition (as known as the Cassie-Baxter

state; see figure 1.1(a)), the slip occurs at the interface between water and air
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and this slip effect is known as the drag reduction (DR) mechanism of SHS.

The slip refers to the situation where the value of tangential velocity compo-

nent is different from that of the solid surface in contact with it (Lauga, Brenner

& Stone, 2007). Navier (1823) suggested the slip boundary condition as

us = bx

(
∂u

∂y

)
s

, ws = bz

(
∂w

∂y

)
s

, (1.2)

where us and ws are the slip velocities in the streamwise and spanwise direc-

tions, and (∂u/∂y)s and (∂w/∂y)s are the velocity gradients in the streamwise

and spanwise directions at the slippery surface. In this thesis, (x, y, z) are the

streamwise, wall-normal, and spanwise directions, respectively, (u, v, w) are the

corresponding velocity components, and the subscript ‘s’ denotes the value at

the slippery surface. From the relationship between the slip velocity and veloc-

ity gradient at the surface, bx and bz which are the most important variables

in this thesis are obtained. They are called the streamwise and spanwise slip

lengths. The magnitude of slip is quantified by the slip length and it is rep-

resented as the fictitious distance below the slippery surface where the no-slip

condition would be satisfied (see figure 1.2). In general, there are two separate

slip lengths for the mean velocity components: one is the apparent slip length

(bapp, or Navier slip length) which is defined at the non-textured surface (figure

1.2(a)) and the other is the effective slip length (beff ) which is defined at the

textured surface (figure 1.2(b)).

For maintaining the Cassie-Baxter state, the air-water interface has to sus-

tain against the pressure difference between water and air. The sustainable

condition for the interface over longitudinal grooves are expressed by Young-

4



Laplace equation as

∆pmax = pwater − pair =
2σ cos(π − θ)

Lg
, (1.3)

where p is the pressure, θ is the contact angle, and Lg is the groove width. As

Lg increase, the endurable pressure difference (∆pmax) decreases and thus there

is a size limitation of the groove width.

The effective slip length of SHS is on the order of 200-400 µm have been

reported (Lee, Choi & Kim, 2008; Lee & Kim, 2009). Thus, SHSs can be applied

for the self-cleaning, anti-biofouling, anti-icing, and skin-friction reduction of

water flow. In the next section, the flow control using SHS as a passive device

will be discussed.

5



1.3 Literature reviews

To avoid the complexity of simulating two-phase flow, most theoretical and

numerical studies related to superhydrophobic surface (SHS) have not consid-

ered the air layer over SHSs but modeled it by using either the Navier slip model

or the effective slip model. The Navier slip model that provides slip velocities in

the wall-parallel directions at the air-water interface have been widely used for a

numerical simulation of turbulent flows due to its easy implementation. The slip

velocities for boundary conditions is determined by equation 1.2 with the pre-

scribed slip lengths, so this model is proper to describe the hydrophobic surface

or chemically slippery surface. Fukagata, Kasagi & Koumoutsakos (2006) ar-

gued that the Navier slip model using the prescribed effective slip-length (beff )

can be an approximate SHS model for the boundary condition. For a laminar

channel flow, the analytical solution can be readily obtained (Rothstein, 2010).

However, the main weakness of this slip model is that the slip lengths bx and bz

are unknown, and thus they have to be prescribed a priori. Note that the slip

length is dependent on the flow condition. To overcome this limitation, the pat-

tern of SHS have been reflected by using mixed boundary conditions consisting

of no-slip (solid-water interface) and no-shear (air-water interface) regions. In

addition to the assumption of a shear-free condition at the interface between

water and air, the air-water interface is assumed to be flat and thus the surface

tension effect is neglected. It is called the effective slip model and this model

was initially suggested by Philip (1972a). Philip (1972a) and Philip (1972b)

derived analytical solutions for Stokes flow over a flat plate with longitudinal

or transverse free-slip regions (Jelly, Jung & Zaki, 2014). From the analytical

solutions of Philip (1972a) and Philip (1972b), Lauga & Stone (2003) suggested

that the effective slip length of SHS with longitudinal grooves for laminar flow
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is a function of gas fraction and the pitch length (pattern size) as

beff =
Lp
π

ln

[
sec

(
πφ

2

)]
, (1.4)

where Lp is the pitch length and φ is the gas fraction. The pitch length is defined

as the summation of the width of one groove and ridge, and the gas fraction

is defined as the groove width divided by the pitch length. The effective slip

length of SHS with transverse grooves is a half of that with longitudinal grooves

(Lauga & Stone, 2003). Equation 1.4 have been validated by experimental and

numerical studies (Lee, Choi & Kim, 2008; Teo & Khoo, 2009; Park, Park

& Kim, 2013). For turbulent flows, however, the assumption of a shear-free

interface has not been validated.

In a laminar channel flow, the drag reduction (DR) rate and the slip velocity

are a function of the slip length and they can be easily derived (Choi et al., 2006;

Rothstein, 2010) as

DR =
6b

6b+H
, (1.5)

where DR is the DR rate, b is the slip length, and H is the channel height.

On the other hand, the DR rate in turbulent flow is unpredictable and thus

experimental studies have been conducted to investigate DR in turbulent flows

(Watanabe, Yanuar & Udagawa, 1999; Zhao, Du & Shi, 2007; Daniello, Water-

house & Rothstein, 2009; Peguero & Breuer, 2009; Woolford et al., 2009; Jung

& Bhushan, 2010; Aljallis et al., 2013; Park, Sun & Kim, 2014). While Daniello,

Waterhouse & Rothstein (2009) and Park, Sun & Kim (2014) experimentally

showed significant turbulent DRs (50% and 75%, respectively) with SHSs, oth-

ers reported negligible DR or even drag increase in a turbulent flow (Watanabe,

Yanuar & Udagawa, 1999; Zhao, Du & Shi, 2007; Peguero & Breuer, 2009; Al-
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jallis et al., 2013). This inconsistency may be explained by the air loss inside

cavities (as known as Wenzel state, figure 1.1(b))), deformation of an air-water

interface, errors in measuring friction drag, etc. (Park, Sun & Kim, 2014).

To understand the flow changes and mechanism of DR by SHSs, many nu-

merical studies have been conducted (Min & Kim, 2004; Fukagata, Kasagi &

Koumoutsakos, 2006; Martell, Perot & Rothstein, 2009; Busse & Sandham,

2012; Park, Park & Kim, 2013; Jelly, Jung & Zaki, 2014; Türk et al., 2014;

Rastegari & Akhavan, 2015; Seo et al., 2015). These numerical studies have

reported DR in turbulent flow, and provided the mechanism by which DR was

achieved. Min & Kim (2004) showed that the turbulent drag is reduced by

streamwise slip but increased by spanwise slip. Fukagata, Kasagi & Koumout-

sakos (2006) proposed an empirical formula for the DR rate. Busse & Sandham

(2012) investigated the effects of the anisotropic slip (i.e., different slip in wall-

parallel directions) as well. These studies did not consider the SHS geometry

but prescribed a constant slip length at the slippery surface. Martell, Perot &

Rothstein (2009) simulated the flows over longitudinal grooves and square posts

by using mixed boundary conditions consisting of no-slip (solid-water interface)

and no-shear (air-water interface) regions. Park, Park & Kim (2013) found, by

considering different SHS geometries and Reynolds numbers, that the amount

of turbulent DR is well correlated with the slip length normalized by the vis-

cous wall unit. Jelly, Jung & Zaki (2014) addressed the effect of secondary flow

induced by the edges of the longitudinal groove, and Türk et al. (2014) found

that the groove width significantly changes the flow pattern. More recently,

Rastegari & Akhavan (2015) suggested that the amount of DR should be ex-

pressed as the sum of the slip velocity and the modifications of the Reynolds

shear stress and mean convective stress. Seo et al. (2015) investigated the effect

of the surface geometry (i.e. longitudinal grooves vs. square posts) on pres-
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sure fluctuations at the interface and suggested a relationship between the slip

velocity and the root-mean-square (rms) pressure fluctuations at the interface.

According to equation 1.4, the larger DR rate can be achieved with the

larger groove width (Lg = Lpφ), but the larger groove width has an influence on

the stability of the air-water interface (equation 1.3). Very recently, Türk et al.

(2014) and Seo et al. (2015) examined the sustainability of the interface between

water and air against turbulent pressure fluctuations. They showed that the

maintenance of the air-water interface depends on the pitch length of SHSs,

and reported that the maximum sizes of the longitudinal grooves and square

posts for its maintenance are about 150 and 50 wall units, respectively. Seo

et al. (2015) also showed that the interface deformation by turbulent pressure

fluctuations is negligible when the pitch length of SHS is equal to 6 wall units

with the capillary number of Ca = 6 × 10−3, where Ca = µluτ/σ, µl is the

water viscosity, uτ is the shear velocity, and σ is the surface tension between air

and water (σ = 0.073 N/m). Also, the capillary number is very small for many

microfluidic applications in laminar flows, and thus the curvature effects of the

air-water interface can be neglected (Cottin-Bizonne et al., 2004; Ybert et al.,

2007; Teo & Khoo, 2009). Piao & Park (2015) modeled pressure fluctuations

at the interface as a harmonic oscillation and suggested that the smaller pitch

length should be required for the air-water interface to be stable.

Despite many achievements through previous numerical studies, most of

them have not considered the air layer inside the cavity or groove but modeled

it by prescribing either a slip velocity (Min & Kim, 2004; Fukagata, Kasagi

& Koumoutsakos, 2006; Busse & Sandham, 2012) or a shear-free condition

(Martell, Perot & Rothstein, 2009; Park, Park & Kim, 2013; Jelly, Jung &

Zaki, 2014; Türk et al., 2014; Rastegari & Akhavan, 2015) at the interface.

Only a few studies have considered the air layer for laminar flow (Tretheway
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& Meinhart, 2004; Davies et al., 2006; Maynes et al., 2007; Busse et al., 2013)

assuming flat air-water interface.

There are various features of SHS, and the representative supporting struc-

tures of SHS are ridges (or grooves) and posts. Cheng, Teo & Khoo (2009)

considered four different features to investigate the effect of the shape of SHS

on the effective slip length: longitudinal grooves, transverse grooves, square

holes and square posts. They showed that the longitudinal grooves have the

largest effective slip length where the gas fraction (φ) is up to 90%. The ef-

fective slip length of square posts is larger than that of longitudinal grooves

at φ > 0.9. However, the effective slip length decreases as the Reynolds num-

ber increases with three different shapes except the longitudinal grooves. As

a result, when the Reynolds number is above 300, the effective slip length of

SHS with longitudinal grooves is larger than that with square posts at φ > 0.9.

For turbulent flow, Daniello, Waterhouse & Rothstein (2009) and Park, Sun &

Kim (2014) experimentally showed significant drag reductions (50% and 75%,

respectively) with the longitudinal grooves. Therefore, many previous studies

have been conducted by considering the longitudinal grooves as the feature of

SHS (Martell, Perot & Rothstein, 2009; Park, Park & Kim, 2013; Jelly, Jung &

Zaki, 2014; Türk et al., 2014; Rastegari & Akhavan, 2015).
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1.4 Objectives

The objectives of the present study are to investigate the effects of SHS on

the slip length and skin-friction drag in turbulent flow. First, the effects of air-

flow type inside SHS are investigated in turbulent flow over an idealized SHS.

Second, the effects of surface grating parameters are investigated in turbulent

flow over SHS having longitudinal grooves/ridges. For these purpose, direct

numerical simulations (DNS) are performed in a turbulent channel flow with

various scale of SHS.

This thesis is organized as follows. Chapter 2 includes the governing equa-

tions, numerical methods, computational details, and the analytical and nu-

merical solutions of fully developed laminar channel flow with SHS. In Chapter

3, the effects of an idealized SHS on the apparent slip length and skin-friction

drag are presented. In Chapter 4, the effects of surface grating parameters of

SHS on the effective slip length and turbulent drag are presented. Finally, the

summary and concluding remarks are followed in Chapter 5.
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Figure 1.1. Wetting states of textured surface: (a) the Cassie-Baxter state; (b)
the Wenzel state.
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Figure 1.2. Definition of the slip length: (a) at the non-textured surface; (b) at
the textured surface.
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Chapter 2

Numerical methods

2.1 Governing equations

The governing equations for DNS are the unsteady incompressible Navier–Stokes

and continuity equations:

ρϕ

(
∂ui
∂t

+
∂

∂xj
uiuj

)
= − ∂p

∂xi
+ µϕ

∂2ui
∂xj∂xj

+ Πϕδ1i + fi, (2.1)

∂ui
∂xi
− q = 0, (2.2)

where t is the time, (x1, x2, x3) = (x, y, z) are the streamwise, wall-normal, and

spanwise directions, respectively, (u1, u2, u3) = (u, v, w) are the corresponding

velocity components, p is the pressure, ρϕ and µϕ are the density and viscosity

of water or air, respectively, and Πϕ is the source term for driving the water or

air flow. The subscript ‘ϕ’ denotes water (ϕ = l; liquid) or air (ϕ = g; gas).

Working fluid properties are ρl = 998 kg/m3, ρg = 1.2 kg/m3, µl = 1.0 × 10−3

Pa·s, and µg = 1.8×10−5 Pa·s (under the standard condition: 20◦C and 1 atm).

Πl is the mean pressure gradient necessary to drive the water flow with a fixed

mass flow rate, and Πg is the forcing term to determine the flow type inside the

air layer. An immersed boundary method (Kim, Kim & Choi, 2001) is used to

satisfy the no-slip boundary condition on the texture geometry of the SHS. fi
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and q, respectively, are the momentum forcing and the mass source/sink defined

on the immersed boundary or inside the body.

To solve the governing equations (2.1) and (2.2), a semi-implicit fractional

step method is used (Spalart, Moser & Rogers, 1991):

ûki − uk−1i

∆t
= −2αk

ρϕ

∂pk−1

∂xi
+αk[L(ûki ) +L(uk−1i )]−βkN(uk−1i )−γkN(uk−2i ) + fki ,

(2.3)
∂2φk

∂xi∂xi
=

1

2αk∆t

(
∂ûki
∂xi
− qk

)
, (2.4)

uki = ûki − 2αk∆t
∂φk

∂xi
, (2.5)

pk = pk−1 + ρϕφ
k − µϕαk∆t

∂2φk

∂xj∂xj
, (2.6)

with

L(ui) = νϕ
∂2ui
∂xj∂xj

, N(ui) =
∂

∂xj
uiuj, (2.7)

where ûi are the intermediate velocity components and φ is the pseudo-pressure.

Here, k(= 1, 2, 3) is the substep index of a third-order Runge–Kutta method,

α1 = 4/15, α2 = 1/15, α3 = 1/6, β1 = 8/15, β2 = 5/12, β3 = 3/4, γ1 = 0, γ2 =

−17/60, and γ3 = −5/12. In the linear term, νϕ is the kinematic viscosity

of water or air. A third-order Runge–Kutta method is adopted for convection

terms and the Crank–Nicolson method is used for viscous terms. The present

numerical simulation is based on a finite-volume method on a staggered grid

system (ui are located at the cell faces, whereas p is located at the cell center).

All the spatial derivatives are discretized with the second-order central differ-

ence scheme except that the one-side difference scheme is used at the wall and

interface.
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2.2 Computational details

Figure 2.1 shows the flow geometry and coordinate system of (a) the channel

with no-slip walls and (b) the channel with SHSs. The SHSs are positioned on

the both upper and lower channel walls. To match the experimental condition

where the SHS is flush-mounted, the water height H is fixed and the geometric

parameters of SHS are varied. The computational domain size (Lx, Ly, Lz) and

the number of grid points (Nx, Ny, Nz) is given in chapters 3 and 4. Periodic

boundary conditions are used in the streamwise and spanwise directions, and

the no-slip condition is applied to both the upper and lower walls.

The computations are carried out by maintaining a constant mass flow rate

in water flow for a Reynolds number (Re = ubH/νl) of 5600 based on the water

bulk velocity ub, the water height H and the kinematic viscosity of water νl.

This Reynolds number considered corresponds to Reτo ' 180 based on the

wall-shear velocity of no-slip channel flow uτo , where uτo =
√
τw/ρl, τw is the

mean wall-shear stress of no-slip channel flow. For precisely keeping a constant

mass flow rate, Πl is determined by obtaining the mean and fluctuating pseudo-

pressure gradients separately at each time step (see You, Choi & Yoo (2000)

for more details). All simulations are started with the fully developed velocity

field with no-slip wall for the turbulent flow.

2.2.1 Boundary condition at the air-water interface

In the present simulation, some ideal circumstances are assumed by that (i)

the air-water interface is flat and thus the surface tension effect is neglected,

and (ii) there is no air dissolution into water. While the air-water interface is

assumed to be flat, the wall-parallel velocities and shear stresses are maintained
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to be continuous across the interface:

ul,s = ug,s, wl,s = wg,s, (2.8)

and

µl
∂ul
∂y

∣∣∣∣
s

= µg
∂ug
∂y

∣∣∣∣
s

, µl
∂wl
∂y

∣∣∣∣
s

= µg
∂wg
∂y

∣∣∣∣
s

. (2.9)

Here, the subscript ‘s’ is the values at the interface. The wall-normal velocity

at the interface is zero for satisfying an impermeability condition:

vs = 0. (2.10)

In the staggered grid system, the slip velocities are determined by the veloc-

ity components near the interface (see Fig 2.2). Using the one-side difference

scheme at the interface, the slip velocities in the wall-parallel directions are

following as

us =
1

1 + µR∆yR
uJ +

µR∆yR
1 + µR∆yR

uJ+1, (2.11)

and

ws =
1

1 + µR∆yR
wJ +

µR∆yR
1 + µR∆yR

wJ+1, (2.12)

respectively, where µR = µl/µg and ∆yR = ∆yJ/∆yJ+1. Note that Eqs. (2.11)

and (2.12) are only valid at the lower air-water interface. For the upper interface,

uJ and wJ , respectively, should be exchanged with uJ+1 and wJ+1.

The boundary condition of pressure at the interface is derived from the mo-

mentum equation in the wall-normal direction (Eq. 2.1) and the y−momentum
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equation at the interface is as following:

ρϕ

(
∂vs
∂t

+ us
∂v

∂x

∣∣∣∣
s

+ vs
∂v

∂y

∣∣∣∣
s

+ ws
∂v

∂z

∣∣∣∣
s

)
= −∂p

∂y

∣∣∣∣
s

+µϕ

(
∂2v

∂x2

∣∣∣∣
s

+
∂2v

∂y2

∣∣∣∣
s

+
∂2v

∂z2

∣∣∣∣
s

)
.

(2.13)

Since the wall-normal velocity at the interface is zero (vs = 0), ∂vs/∂x and

∂vs/∂z are zero. Using the continuity (∂u/∂x + ∂v/∂y + ∂w/∂z = 0) and the

commutative law, then, Eq. (2.13) is rewritten as

∂p

∂y

∣∣∣∣
s

= −µϕ
(
∂

∂x

(
∂u

∂y

)
s

+
∂

∂z

(
∂w

∂y

)
s

)
. (2.14)

Finally, the boundary condition for the pressure at the interface is

∂pl
∂y

∣∣∣∣
s

=
∂pg
∂y

∣∣∣∣
s

. (2.15)

due to the matching condition of shear stresses at the interface (Eq. 2.9).

2.2.2 Flow type inside air layer

As Busse et al. (2013) and Tsai (2013) pointed out, the flow type inside the

air layer of SHS has an influence on the slip length and skin-friction drag and it

has to be prudently determined. In this thesis, three cases are considered as the

flow inside the air layer. The first case (case 1) is that the flow inside air layer

is under a shear rate induced by the air-water interface (as known as Couette

flow, Joseph 1980; Vinogradova 1999). Πg is zero, in case 1, since the air flow is

shear-driven at the top of the air layer. The second case (case 2) is that the flow

recirculates inside the air layer and thus its net mass flow rate is zero (ṁg = 0,

Maynes et al. 2007; Busse et al. 2013). In case 2, Πg is determined by the shear
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stresses at the wall and interface as

Πg = −µg
D

∣∣∣∣(∂ūg∂y
)
wall

−
(
∂ūg
∂y

)
s

∣∣∣∣ . (2.16)

Note that a minus sign denotes the opposite direction to the mean pressure

gradient of water flow (Πl > 0). The last case (case 3) is that the air layer

behaves the same as the water bulk flow under a streamwise mean pressure

gradient (Πg = Πl), and this case is the traditional assumption for core-annular

flow (Than, Rosso & Joseph, 1997; Tretheway & Meinhart, 2004) or stratified

flow (Náraigh & Spelt, 2010; Govindarajan & Sahu, 2014). However, case 3

is not appropriate model for the SHS because the air layer is run out without

actively continuous supply.

The effects of cases 1 (shear-driven flow, Πg = 0) and 2 (recirculating flow

with zero net mass flow rate, ṁg = 0) on the slip length and skin-friction

reduction are discussed in Chapter 3, and case 1 (Πg = 0) is only considered in

Chapter 4.

2.2.3 Surface grating parameters

The representative supporting structures of SHS are ridges (or grooves) and

posts. Cheng, Teo & Khoo (2009) investigated the effect of the configuration of

SHS on the slip length using four different shapes: longitudinal grooves, trans-

verse grooves, square posts, and square holes. They found that the SHS with

longitudinal grooves has the largest slip length in laminar channel flow when

the gas fraction (to be defined below) is up to 90% at low Reynolds numbers

(Re = 1). At high Reynolds numbers (Re > 300), the SHS with longitudinal

grooves has the largest slip length irrespective of the gas fraction. For turbulent

flows, Daniello, Waterhouse & Rothstein (2009) and Park, Sun & Kim (2014)
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successfully reduced the friction drag using SHSs with longitudinal grooves.

Therefore, the longitudinal grooves is considered as the surface geometry in the

present study.

The surface grating parameters considered are the pitch length (Lp = Ls +

Lg), the gas fraction (φ = Lg/Lp), and the air-layer thickness (D), where Ls

and Lg are the width of longitudinal ridge and groove, respectively. The com-

putational domain size (Lx, Ly, Lz) and the number of grid points (Nx, Ny, Nz)

is given in each chapters. Periodic boundary conditions are used in the stream-

wise and spanwise directions, and the no-slip condition is applied to both the

upper and lower walls.

2.2.4 Interface sustainability and deformability

In the present study, the air-water interface is assumed to be flat. According

to Teo & Khoo (2009), the pressure difference between the air and water is sig-

nificantly smaller than the capillary pressure, so that the curvature effects can

be neglected in laminar flows. For turbulent flows, Seo et al. (2015) investigated

the effect of the surface geometry (i.e. longitudinal grooves vs. square posts)

on pressure fluctuations at the interface and suggested a relationship between

the slip velocity and the root-mean-square (r.m.s) pressure fluctuations at the

interface. Especially, Türk et al. (2014) and Seo et al. (2015) examined the

sustainability of the interface between water and air against turbulent pressure

fluctuations. They showed that the maintenance of the air-water interface de-

pends on the pattern sizes of SHSs, and reported that the maximum sizes of

the longitudinal grooves and square posts for its maintenance are about 150

and 50 wall units, respectively. Seo et al. (2015) also showed that the interface

deformation by turbulent pressure fluctuations is negligible when the pattern
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size of SHS is equal to 6 wall units with the capillary number of Ca = 6× 10−3,

where Ca = µluτ/σ, µl is the water viscosity, uτ is the shear velocity, and σ

is the surface tension between air and water (σ = 0.073 N/m). Piao & Park

(2015) modeled pressure fluctuations at the interface as a harmonic oscillation

and suggested that the pattern size of SHS should be O(µm) for the air-water

interface to be stable.
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2.3 Solution of laminar flow with SHS

The computational code for the present study was initially based on the

channel flow with no-slip wall and validated by comparing with numerical data

of Kim, Moin & Moser (1987) (not shown in this thesis). To validate the

computational code for two-phase flows in the channel, DNS of laminar channel

flow having the SHS are conducted with comparing the analytical solutions.

(There is no comparable data for a turbulent flow). Here, the Reynolds numbers

considered are 400 and 1200, but there is no sensible discrepancy. Since the

streamwise uniformity ensures that all nonlinear terms do not influence the

resulting flow field, there was no dependency of Reynolds number in laminar

flow (Choi, Moin & Kim, 1991; Türk et al., 2014). Hence the results for one

Reynolds number are shown for laminar flow.

2.3.1 Laminar channel flow with an idealized SHS

In the fully-developed laminar channel flow with an idealized SHS (i.e., with-

out any texture), there is a single non-zero streamwise velocity component that

varies only in the wall-normal direction. Then, the x−momentum equations of

water and air are

µl
d2ul(y)

dy2
= −Πl (|y| ≤ H/2), (2.17)

and

µg
d2ug(y)

dy2
= −Πg (H/2 ≤ |y| ≤ H/2 +D). (2.18)

Here, the centerline of channel in the wall-normal direction is located at y = 0.

The solutions to (2.17) and (2.18) are accomplished by double integration with

boundary conditions at the no-slip wall and the air-water interface. For case 1,
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us/ub bapp/H DR

Case 1 (Πg = 0)
6µRd

1 + 6µRd
µRd

6µRd
1 + 6µRd

Case 2 (ṁg = 0)
6µRd/4

1 + 6µRd/4
µRd/4

6µRd/4
1 + 6µRd/4

Table 2.1. Key parameters of slip property.

ul(y) and ug(y), respectively, are

ul(y) =
ΠlH

2

2µl

[
−
(
y

H

)2

+
1

4
+ µRd

]
, (2.19)

and

ug(y) =
ΠlH

2

2µg

[
∓
(
y

H

)
+

1 + 2d

2

]
, (2.20)

and the velocity profiles for case 2 are

ul(y) =
ΠlH

2

2µl

[
−
(
y

H

)2

+
1

4
+
µRd

4

]
, (2.21)

and

ug(y) =
ΠlH

2

2µg

1

4d

[
3
( y
H

)2
∓ (3 + 4d)

( y
H

)
+ (3/4 + 2d+ d2)

]
, (2.22)

where µR(= µl/µg) is the viscosity ratio and d(= D/H) is the air-layer thickness

normalized by the water height. Note that Πl of cases 1 and 2 are different from

each other. For a constant mass flow rate in water flow, Πl is Πo/(1 + 6µRd)

(case 1) or Πo/(1 + 6µRd/4) (case 2), where Πo is the mean pressure gradient

of channel flow with no-slip wall.
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From the velocity distribution of water flow, the slip velocity normalized

by the bulk velocity (us/ub), the apparent slip length normalized by the water

height (bapp/H), and the DR rate are obtained and shown in Table 2.1. The

DR rate is defined as

DR =
Πo − Πl

Πo

, (2.23)

and it has a positive value when the skin-friction drag decreases. As shown in

Table 2.1, the DR rate is the same as the normalized slip velocity and they are

rewritten with the slip length as DR = us/ub = 6bapp/(6bapp +H), regardless of

the flow type inside the air layer.

Figure 2.3 shows the streamwise velocity profile with a constant mass flow

rate in water. For both cases, the present numerical results are well-matched

with the analytical solutions. Also, the important slip properties, such as the

slip velocity, slip length, and DR rate, are well-estimated through the present

numerical simulation as shown in Fig 2.4.

2.3.2 Laminar channel flow with SHS having longitudinal grooves

Inside the air layer of SHS with grooves, case 1 (Πg = 0) is only considered

and thus the x−momentum equations of water and air, respectively, are Poisson

and Laplace equations:

µl

(
∂2ul(y, z)

∂y2
+
∂2ul(y, z)

∂z2

)
= −Πl, (2.24)

and

µg

(
∂2ug(y, z)

∂y2
+
∂2ug(y, z)

∂z2

)
= 0. (2.25)

The coordinate system and boundary conditions are shown in Fig 2.5. Accord-

ing to Teo & Khoo (2009), ul(y, z) is decomposed as ul(y, z) = up(y) + ũl(y, z),
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where up(y) is the velocity component due to the Poiseuille flow with no-slip

wall and ũl(y, z) is that due to the presence of the SHS. up(y) is well-known as

up(y) =
ΠlH

2

2µl

[
−
(
y

H

)2

+
1

4

]
, (2.26)

and ũl(y, z) can be expressed as Fourier cosine series (Teo & Khoo, 2009):

ũl(y, z) = A+
∞∑
n=1

Bn cosh

(
nπ

Lp
y

)
cos

(
nπ

Lp
z

)
, (2.27)

where

A =
1

Lg

∫ Lg/2

−Lg/2

us(z)dz, (2.28)

and

Bn =
2

Lg cosh(nπ/Lg(H/2))

∫ Lg/2

−Lg/2

us(z) cos
nπz

Lg
dz. (2.29)

Eq. (2.27) is valid in the range of −Lg/2 ≤ z ≤ Lg/2.

To solve Eq. (2.25), the coordinate transform is performed inside the air

layer as y∗ = y + D + H/2 and z∗ = z + Lg/2. Using the Fourier sine series,

ug(y
∗, z∗) is

ug(y
∗, z∗) =

∞∑
n=1

Cn sinh

(
nπ

Lg
y∗
)

sin

(
nπ

Lg
z∗
)
, (2.30)

where

Cn =
2

Lg sinh(nπD/Lg)

∫ Lg

0

us(z
∗) sin

nπz∗

Lg
dz∗. (2.31)

Eqs. (2.27) and (2.30) are given in terms of the slip velocity us(z). The slip

velocity us(z) is unknown yet and thus the velocity distributions in air and

water are underdetermined. Therefore, other approach to validate the present

numerical code is required.
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Belyaev & Vinogradova (2010) proposed the theorectical formula for the

effective slip length as

beff =

Lp
π

ln

[
sec

(
πφ

2

)]
1 +

Lp

πb̃
ln

[
sec

(
πφ

2

)
+ tan

(
πφ

2

)] , (2.32)

where b̃ is a local slip length at the air-water interface. Since the slip velocity

is a function of z, b̃ may be varied in the z-direction as well. However, Belyaev

& Vinogradova (2010) assumed b̃ as a constant slip length, bapp, which is de-

termined by only the air-layer thickness. Here, bapp is considered as µRD (see

Table 2.1). By the numerical simulation, beff is obtained and compared with

Eq. (2.32).

Figure 2.6 shows the variation of the effective slip length with the surface

geometry. The pitch lengths, the gas fractions, and the air-layer thicknesses

are varied from 0.09375H to H, 0.25 to 0.75, and 0.005H to 0.05H, respec-

tively. With increasing the surface grating parameters, the effective slip length

increases. The deviation between the present slip length and that by Belyaev

& Vinogradova (2010) is determined as

e =
beff (present)− beff (Belyaev & Vinogradova)

beff (present)
. (2.33)

Figure 2.7 shows that the present numerical data have a good agreement with

that of the analytical formula although the error is accompanied by the assump-

tion of a constant slip at the interface.
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Chapter 3

Turbulent channel flow with an idealized

superhydrophobic surface

3.1 Introduction

In this chapter, I perform DNS of turbulent channel flow by solving both

the main water flow and the air-layer flow inside an idealized SHS. The word

‘idealized’ means that there is no pole or ridge inside the air layer. When the

solid fraction of SHS is very small, this ideal assumption may be valid (Busse

et al., 2013). Even if this assumption is not realistic, one could obtain important

flow properties at the air-water interface from the present problem setting.

The present results are compared with those from previous studies using

the Navier slip model without solving the air layer that provides slip veloc-

ities in the streamwise and spanwise directions at the air-water interface as

us = bx(∂u/∂y)s and ws = bz(∂w/∂y)s, where bx and bz are the streamwise

and spanwise slip lengths, and (∂u/∂y)sand (∂w/∂y)s are the streamwise and

spanwise shear rates at the interface, respectively (Hahn, Je & Choi, 2002; Min

& Kim, 2004; Fukagata, Kasagi & Koumoutsakos, 2006; Busse & Sandham,

2012). The main weakness of this slip model is that the slip lengths bx and

bz are unknown, and thus they have to be prescribed a priori. On the other

hand, in the present simulation with the air layer, the slip lengths bx and bz
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are obtained a posteriori from the results of direct numerical simulation. Then,

the anisotropy of the slip lengths in the streamwise and spanwise directions, i.e.

bx 6= bz, and its effect on the skin-friction reduction are examined in detail.
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3.2 Computational details

The flow geometry and coordinate system are shown in figure 3.1, where H

is the water height and D is the air-layer thickness. In the present simulation,

I assume that (i) the air-water interface is flat and thus the surface tension is

neglected, (ii) there is no air dissolution into water, and (iii) there is no ridge or

pole inside the air layer. When the gap of supporting structures and the solid

fraction of SHS are small, the assumptions (i) and (iii) may be valid (Busse

et al., 2013; Seo et al., 2015). I fix H and vary D to match the experimental

condition where the SHS is flush-mounted.

Two different flow types inside the air layer are considered: in case 1, the

flow inside the air layer is shear-driven at the air-water interface (Joseph, 1980;

Vinogradova, 1999); in case 2, the flow recirculates inside the air layer and thus

its net mass flow rate is zero (Maynes et al., 2007; Busse et al., 2013). In both

cases, the analytical solutions of laminar flow are obtained in §2.3.

The unsteady incompressible Navier-Stokes and continuity equations are

solved in both water and air flows. The wall-parallel velocities and shear stresses

are continuous across the air-water interface, while the interface is assumed

to be flat. Uniform grids are used in the streamwise and spanwise directions

and the grid spacings in wall units are ∆x+o ≈ 8 and ∆z+o ≈ 4. In the

wall-normal direction, non-uniform grids are constructed by using a hyperbolic

tangent function (∆y+o ≈ 0.2 ∼ 7 for water and ∆y+o
min ≈ 0.01 ∼ 0.2 for

air). All simulations are started from a fully developed turbulent channel flow

with no-slip wall. The air-layer thicknesses (D) considered are from 0.0002H to

0.05H. The initial turbulent flow becomes laminar for D ≥ 0.005H (case 1) and

D ≥ 0.02H (case 2), so the cases up to D < 0.005H (case 1) and D < 0.02H

(case 2) are discussed in this thesis.
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3.3 Results

3.3.1 Apparent slip length and skin-friction reduction

The apparent slip length (or Navier slip length) is obtained from bapp =

ūs/(∂ūl/∂y)s, where ūs is the mean slip velocity and (∂ūl/∂y)s is the mean

velocity gradient of water at the interface. Figure 3.2 shows the variation of

the apparent slip length with the air-layer thickness. For both cases 1 and 2,

the apparent slip lengths linearly increase with the air-layer thickness and their

slopes are µR and 1
4
µR, respectively, where µR is the viscosity ratio (µR = µl/µg).

At a given air-layer thickness, more slip is induced by the shear-driven air

flow (case 1) than by the recirculating air flow (case 2). It is interesting to

note that the apparent slip length of turbulent flow is the same as that of

laminar flow. This counter-intuitive result can be explained by the definition

of the apparent slip length. The apparent slip length is rewritten as bapp =

µRūs/(∂ūg/∂y)s by matching the shear stresses at the air-water interface. When

the velocity profiles inside the air layer are the linear (case 1) and quadratic (case

2) functions, (∂ūg/∂y)s’s are ūs/D and 4ūs/D for cases 1 and 2, respectively.

Then, the apparent slip length depends only on µR and D, independent of

the flow condition in water. The mean velocity profiles of air layer are indeed

linear and quadratic for cases 1 and 2, respectively (see below). The apparent

slip length in the viscous wall unit (b+o = bappuτo/νl) in figure 3.2 shows that

relaminarization starts when b+o ≥ 100 in both cases. This is consistent with

the observation by Busse & Sandham (2012).

Figure 3.3 shows the variations of the DR rate and mean slip velocity with

the air-layer thickness, where the DR rate is defined as DR = (Πo−Πl)/Πo, Πo

is the mean pressure gradient with the no-slip wall. As the air-layer thickness

increases, the DR rate and mean slip velocity also increase. Although the DR
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rate is equal to the slip velocity in laminar flow (Rastegari & Akhavan, 2015),

the DR rate is larger than the mean slip velocity in turbulent flow and also than

that of laminar flow. This is because the DR of turbulent flow is determined

by the combination of pure slip effect and weakening of near-wall turbulence

(Park, Park & Kim, 2013; Rastegari & Akhavan, 2015).

Figure 3.4 shows the variations of the DR rate with the slip length normal-

ized by uτo and νl, together with two empirical formulas for the relationship

between the DR rate and the normalized slip length. These empirical formulas

based on the log-law of Dean’s formula (Dean, 1978) are proposed by Fukagata,

Kasagi & Koumoutsakos (2006) and Busse & Sandham (2012) as

1

κ
ln Reτo + Fo

= (1−DR)b+o
x +

√
1−DR

[
1

κ
ln(Reτo

√
1−DR) + F (b+o

z

√
1−DR)

]
(3.1)

where κ = 0.41 and Fo = 3.2, and bx and bz are the slip lengths for the velocity

fluctuation components in the wall-parallel directions. In equation (3.1), the

first and second terms of the right hand side are derived by considering the

streamwise slip only (bz = 0). The function F (bz, DR) in the last term of the

equation is an empirical function describing the drag increase by the spanwise

slip. Fukagata, Kasagi & Koumoutsakos (2006) and Busse & Sandham (2012),

respectively, proposed the empirical function F from their DNS data as

F (b+o
z ) = F∞ + (Fo − F∞) exp

[
−(b+o

z /a)b
]
, (3.2)

or

F (b+o
z ) = F∞ +

(Fo − F∞)2

(Fo − F∞) + b+o
z

(3.3)
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where a = 7, b = 0.7, and F∞ = −0.8. Note that the abscissa in figure 3.4

is the normalized apparent slip length (b+o = bappuτ/νl). The present DR rate

falls in between the empirical formulas for the streamwise slip only (bz = 0,

Fukagata, Kasagi & Koumoutsakos 2006) and isotropic slip (bx = bz, Fukagata,

Kasagi & Koumoutsakos 2006 and Busse & Sandham 2012), indicating (see

below) that the present idealized SHS with an air layer generates an anisotropic

slip (bx 6= bz) and more slip in the streamwise direction than in the spanwise

one (bx > bz).

3.3.2 Anisotropic slip at the air-water interface

Figure 3.5 shows the modified mean velocity profiles in the viscous wall unit,

ū+−ū+s , except inside the air layer, where y+ = 0 is the location of the air-water

interface. Here, the superscript + denotes the value normalized by the shear

velocity at the interface (uτ ). As the air-layer thickness increases, the modified

mean velocity shifts downward in the buffer and log layers (note that the mean

velocity itself shifts upward with increasing air-layer thickness). Min & Kim

(2004) reported that these mean velocities fall on one curve for streamwise slip

only, but show downward shifts for combined streamwise and spanwise slip,

indicating that the present interface has non-negligible spanwise slip.

To further investigate the nature of the slip at the interface, I examine

the relation between the slip velocity and velocity gradient at the interface.

Figure 3.6 shows the joint probability density functions (PDFs) between the

instantaneous streamwise slip velocity and velocity gradient at the interface for

both cases. The slope between these two (normalized) variables is near 1 for

both cases 1 and 2, although this slope becomes lower for larger D/H. These

results mean that us ∼ µRD(∂ul/∂y)s or bx ∼ µRD for both cases. This result is
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surprising, because the apparent slip lengths for cases 1 and 2 are bapp = µRD

and µRD/4 (or ūs = µRD(∂ūl/∂y)s and ūs = 1
4
µRD(∂ūl/∂y)s), respectively

(see figure 3.2). As shown in figure 3.6 (solid circles), the slip lengths between

the mean slip velocities and mean velocity gradients hold for the present two

cases in terms of joint PDF. The present results clearly indicate that the slip

length used for the mean slip velocity and interface velocity gradient should not

be applied to instantaneous ones (or fluctuating quantities). Rather, for the

two cases considered here, the slip length of bx = µRD may be applied to the

fluctuating components. Thus, the instantaneous streamwise slip velocity may

be modeled as (unless the DR rate is very large)

us =


µRD

(
∂ul
∂y

)
s

for case 1

µRD

(
∂ul
∂y

)
s

− 3

4
µRD

(
∂ūl
∂y

)
s

for case 2.

(3.4)

Figure 3.7 shows the joint PDFs between the instantaneous spanwise slip

velocity and velocity gradient at the interface for both cases, where the mean

spanwise velocity is zero. From this result, the instantaneous spanwise slip

velocity may be modeled as

ws =
1

4
µRD

(
∂wl
∂y

)
s

for cases 1 and 2, (3.5)

and bz = µRD/4. Thus, the slip effect in the spanwise direction is much weaker

than that in the streamwise direction. The reason why the slip lengths for the

streamwise and spanwise fluctuating velocities are different from each other is

examined in §3.3.3.

The present slip-velocity model, equations (3.4) and (3.5), provides the
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anisotropic slip-length relation of bz = bx/4. The DR rates versus the slip length

with bz = bx/4 (using the formulas by Fukagata, Kasagi & Koumoutsakos (2006)

and Busse & Sandham (2012)) are plotted in figure 3.8, showing excellent agree-

ments with the present simulations results of case 1 but slight over-prediction

for case 2. We also perform separate DNSs with the present model as the slip

boundary conditions (without solving the air layer) and provide the results in

figure 3.8. As shown, the present slip-velocity model successfully predicts the

drag changes.

3.3.3 Flow structures in air and water

Figure 3.9 shows the mean velocity profiles in air and water for cases 1

and 2. As mentioned before, the mean velocity profiles inside the air layer are

linear (case 1) and quadratic (case 2), and their slopes or curvatures increase

with increasing air-layer thickness (note that their dimensional slopes (ūs/D) or

curvatures (6ūs/D
2 at ∂ūg/∂y) decrease with increasing air-layer thickness. On

the other hand, with increasing air-layer thickness, the mean velocity in water

increases near the interface owing to the increased slip velocity but decreases

near the centerline to maintain the same mass flow rate inside the channel.

Figure 3.10 shows the root-mean-square (rms) velocity fluctuations normalized

by uτo . The rms velocity fluctuations are significantly reduced in water flow for

both cases as the air-layer thickness increases. At the air-water interface, for

case 1, the streamwise velocity fluctuations increase but the spanwise velocity

fluctuations first increase and then decrease with increasing air-layer thickness,

whereas for case 2, both the streamwise and spanwise velocity fluctuations first

increase and then decrease.

The results shown in figures 3.6 and 3.7 indicate that the profiles of the
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streamwise and spanwise velocity fluctuations inside the air layer are more like

linear and quadratic, regardless of the cases considered here. In figure 3.11,

some of the instantaneous streamwise and spanwise velocity fluctuations inside

the air layer from the present simulations are plotted. This figure clearly shows

that the profiles of streamwise velocity fluctuations are very different from those

of spanwise velocity fluctuations, and the first is more like linear but the lat-

ter is quadratic. In the present case, the air layer is driven by the velocity on

the liquid side. Similarly to no-slip turbulent channel flows, the near-interface

structure (i.e. low-speed streak) should be elongated in the streamwise direc-

tion; which means that the air layer is oscillated at lower frequencies in the

streamwise direction and higher frequencies in the spanwise direction. That

difference in the driving frequency might have resulted in the difference in the

shapes of velocity profiles as presented in figure 3.11 (see the solutions of the

Stokes’ second problem between two parallel plates for low and high frequency

oscillations; Lamb (1916)).

Figure 3.12 shows the contours of the instantaneous streamwise vorticity on

a cross-flow plane for no-slip wall and present SHSs. The air-layer thickness

is 0.002H for both cases, but the slip length of case 1 (b+ = 19.6) is much

larger than that of case 2 (b+ = 7.4). Therefore, near-wall vortical structures

are much more weakened in case 1. It is noteworthy that turbulence structures

are significantly weakened by the air layer (top and bottom) whose thickness is

only 0.2% of the channel height.

Table 3.1 shows the Reynolds numbers based on the shear velocities at the

interface in air and water, respectively, where the Reynolds numbers in air flow

are defined as Reτ = uτD/νg (case 1) and uτ (D/2)/νg (case 2), respectively.

It is notable that the Reynolds numbers in air flow are less than 2 for all

the cases considered. Therefore, turbulence in air flow hardly survives and
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Case 1 (Πg = 0) Case 2 (ṁg = 0)

D/H Reτ (water) Reτ (air) D/H Reτ (water) Reτ (air, wall) Reτ (air, interface)

0.0002 154.7 0.12 0.001 153.3 0.21 0.29

0.0005 132.7 0.26 0.002 136.3 0.37 0.52

0.001 110.8 0.43 0.005 104.9 0.71 1.01

0.002 88.1 0.68 0.01 82.0 1.11 1.58

Table 3.1. Reynolds numbers based on the shear velocities in water and air.

dissipates although it is continuously supplied at the interface from water flow.

Bech et al. (1995) reported that transition occurs in plane Couette flow at

ReCou(= ūsD/νg) ≈ 1440 and a fully developed turbulent flow is observed at

ReCou ≥ 2000. For the present case 1, ReCou ≈ 0.01 ∼ 0.5, which is much lower

than that suggested by Bech et al. (1995) to maintain turbulence inside the air

layer.
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3.4 Summaries

In this chapter, I investigated the effects of the air layer on the slip length

and skin-friction reduction. Two different flow types inside the air layer were

considered: a shear-driven flow and a recirculating flow with zero net mass

flow rate. For this purpose, the flow inside the air layer underneath the water

turbulent flow was directly simulated with the assumption that the interface

was flat (neglecting the surface tension effect). The slip length, slip velocity

and drag reduction rate increased as the air-layer thickness increased. At a

given air-layer thickness, the shear-driven flow in the air layer supplied more

slip than the recirculating flow. However, when the slip length was the same,

there seemed no clear difference in the drag reduction rate and slip velocity

between two cases. The present drag reduction rate fell in between those from

the streamwise slip only and isotropic slip, indicating that the present air-water

interface generates an anisotropic slip (stronger in the streamwise slip than in

the spanwise one). I showed that the Navier slip model should be applied to

mean values only, and not to instantaneous (or fluctuating) quantities. In this

regard, I proposed a new slip model (equations 3.4 and 3.5) that provides more

slip in the streamwise direction than in the spanwise direction, and showed the

validity of this model by separate direct numerical simulations. Finally, the

rms velocity fluctuations and near-wall vortical structures in the water flow

were significantly weakened by the air layer, but unsteady motions still existed

inside the air layer.

An ideal circumstance (i.e., no supporting structures on SHS) was considered

in this chapter. In reality, SHSs have a texture such as ridge or post and

many previous studies reported the importance of the texture (Martell, Perot

& Rothstein, 2009; Park, Park & Kim, 2013; Jelly, Jung & Zaki, 2014; Türk
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et al., 2014; Seo et al., 2015). This subject is to be investigated in the following

chapter.
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(2006) (line with triangles) and Busse & Sandham (2012) (line with inverse
triangles). The black squares (case 1) and circles (case 2) denote the present
DR rates with solving the air layer. The dashed line is the DR rate of laminar
flow.
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Figure 3.6. For caption, see the following page.
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of 0.005. The solid and dashed lines have the slopes of 1 and 1/4, respectively.
The solid circles denote the mean values of the slip velocity and streamwise
velocity gradient.
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Contours of ωxH/ub are from -6 to 6 by increments of 0.6.
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Chapter 4

Turbulent channel flow with superhydrophobic

surfaces having longitudinal groove

4.1 Introduction

In previous chapter, DNS of turbulent channel flow with an idealized SHS

was performed and the important flow properties at the air-water interface were

reported. However, the actual SHS device has supporting structures, such as

ridges, posts or random textures. Among these configurations, many studies

considered the surface with alternating grooves and ridges in the flow direction

for turbulent flows (Martell, Perot & Rothstein, 2009; Daniello, Waterhouse &

Rothstein, 2009; Park, Park & Kim, 2013; Park, Sun & Kim, 2014; Jelly, Jung &

Zaki, 2014; Türk et al., 2014; Rastegari & Akhavan, 2015). Cheng, Teo & Khoo

(2009) showed that the effective slip length is the largest with SHS consisting

of longitudinal grooves at φ ≤ 0.9 regardless of the Reynolds number, where φ

is the gas fraction of SHS. At Re ≥ 300, in addition, the effective slip length

of SHS with longitudinal grooves is the largest irrespective of the gas fraction.

Therefore, I also consider SHS consisting of longitudinal grooves.

The parametric studies of surface grating parameters in turbulent channel

flow are conducted with the assumption of a rigid air-water interface. First, I

investigate which grating parameter has an important influence on the effective
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slip length. To this end, the pitch length, gas fraction and air-layer thickness are

varied with the macro-scaled SHS. Second, the effect of SHS in a range of the

actual size on the slip is investigated since there is a restriction of size because

the stability of air-water interface is determined by the groove width in a reality.
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4.2 Computational details

The flow geometry and coordinate system are shown in Figure 2.1 with the

surface grating parameters (Lp, Lg, D). The unsteady incompressible Navier-

Stokes and continuity equations are solved in both water and air, together with

an immersed boundary method (Kim, Kim & Choi, 2001) to satisfy the no-

slip boundary condition on the longitudinal ridges. With zero interface curva-

ture (i.e., neglecting the surface tension effect), the wall-parallel velocities and

shear stresses are matched at the air-water interface. Uniform grids are used

in the streamwise and spanwise directions, while non-uniform grids are used

in the wall-normal direction. The flow inside the air layer is considered as the

shear-driven flow (Πg = 0). All simulations are started from a fully developed

turbulent channel flow with no-slip wall.

For performing DNS of turbulent channel flow with a macro-scaled longi-

tudinal texture, the computational domain is the same as that of an idealized

SHS: (Lx, Ly, Lz) = (3H,H + 2D, 1.5H). More fine grid points are used in

the spanwise direction than the case of with an idealized SHS for resolving

the roughened surfaces: (Nx, Ny, Nz) = (128, 129 + 24 ∼ 64, 256) The air-layer

thicknesses (D) are varied from 0.002H to 0.05H and the pitch length are 0.5H,

0.75H and 1.5H. The gas fractions considered are 0.25, 0.5 and 0.75 and the

groove width is determined by the relationship between the pitch length and

gas fraction (Lg = Lpφ).

The minimal flow unit by Jiménez & Moin (1991) is adopted for simulat-

ing micro-scaled longitudinal grooves. Choi, Moin & Kim (1993) showed the

turbulence characteristics over the streamwise-aligned riblets are sustained in

the minimal channel flow. The computational domain of 1.5H × (H + 2D) ×
0.34H is used in the streamwise, wall-normal and spanwise directions, respec-
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tively, with 16 × (129 + 64) × 1024 grids. The grid spacings in wall units are

(∆x+o ,∆y+o
min,∆z

+o) = (33, 0.1, 0.1). One configuration is only considered for

micro-scale SHS: L+o
p ≈ 3.8, L+o

g ≈ 3.3, D+o ≈ 18. The groove width considered

is in the range of actual SHS (Daniello, Waterhouse & Rothstein, 2009; Wool-

ford et al., 2009; Park, Sun & Kim, 2014), so the interface can be sustained

with overcoming the pressure fluctuations near the interface.
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4.3 Results

4.3.1 Effective slip length and skin-friction drag reduction

For a laminar flow, Lauga & Stone (2003) showed the effective slip length

of the configuration with no-slip and shear-free patterns in the flow direction is

a function of Lp and φ as

beff =
Lp
π

ln

[
sec

(
πφ

2

)]
, (4.1)

where Lp is the pitch length and φ is the gas fraction. With increasing the pitch

length and gas fraction, the effective slip length increase according to Eq. (4.1).

For a turbulent flow, the influence of the surface grating parameters on the

effective slip length is shown in figure 4.1. The effective slip length increases

with increasing gas fraction, pitch length and air layer thickness. It seems that

the effective slip length is more influenced by the gas fraction than the pitch

length. To further clarify a predominant parameter for the slip length, three

different geometries with the same area of the air-water interface are considered.

At a given groove width (L+o
g ≈ 135), Figure 4.2(a) clearly shows that the gas

fraction has a more important role to the slip length than the pitch length.

It is a coherent result with the theoretical relationships suggested by Lauga &

Stone (2003) and Belyaev & Vinogradova (2010) for a laminar flow as shown

in Fig 4.2(b). In the relationship by Belyaev & Vinogradova (2010), the local

slip length blocal is considered as µRD. This result is also consistent with the

observation by the experiment in turbulent boundary layers (Retau ∼ 200)

(Park, Sun & Kim, 2014). The increment of air-layer thickness has also a

beneficial effect on the slip length, but its effect is not crucial since the slip area

is determined in the wall-parallel directions. In short, the effective slip length is
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Lp 1.5H 0.75H

φ 0.75 0.5 0.75 0.5

current study 0.135 0.038 0.098 0.033

Park (2015) 0.332 0.083 0.269 0.071

Table 4.1. The effective slip length normalized by H with different SHS geome-
tries.

determined by the total amount of trapped air inside the longitudinal grooves

and the gas fraction is a key parameter.

The comparison between the effective slip lengths of laminar and turbulent

flows is conducted. Note that the (apparent) slip length of turbulent flow is the

same as that of laminar flow in the condition of no texture on the surface (see

§3.3). The effective slip length of turbulent flow is less than that of laminar

flow as shown in Figure 4.3. This result can be deduced since the shear stress

at the no-slip regions in turbulent flows is generally much larger than that in

laminar flows. Table 4.1 shows the comparable data. The effective slip length

by considering the air layer is much less than that by prescribing shear-free

boundary condition at the air-water interface. This result indicates that the

air-water interface should have a non-negligible shear stress.

For both laminar and turbulent flows, the DR rates estimated by the change

of the mean pressure gradient for the surface grating parameters are shown in

Figure 4.4. Figure 4.4(a) corresponds to three different values of gas fraction

with a fixed Lp, whereas Figure 4.4(b) three distinct values of Lp with φ held

constant at 0.5. With the growth of the total amount of trapped air inside SHS

(i.e., Lp, φ and D increase), the DR rate also increases. The relation between

the DR rate and surface grating parameters is similar to the effective slip length.
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The DR rate of turbulent flow is larger than that of laminar flow. The reason

is presumed as weakening of near-wall turbulence (Park, Park & Kim, 2013;

Rastegari & Akhavan, 2015). As mentioned §1.3, Park, Park & Kim (2013)

found that the amount of turbulent DR is well correlated with the effective slip

length normalized by the viscous wall unit. This argument can be demonstrated

by the log-law of Dean’s formula shifted by the constant slip velocity (Dean,

1978):
Uc − us
uτ

=
1

κ
ln(Reτ ) + C, (4.2)

where Uc is the centerline velocity, κ is a Von Karman constant, and C is

an empirical constant. This equation is rewritten as (see Fukagata, Kasagi &

Koumoutsakos (2006) for more details)

b+ =
Uc
uτo

(
1√

1−DR
− 1

)
− 1

κ
ln(
√

1−DR). (4.3)

Figure 4.5 shows the variation of the DR rate with the effective slip length

normalized by the shear velocity at the air-water interface, uτ , together with

the results from Park (2015). As indicated by Park, Park & Kim (2013), the

DR rate correlates well with the slip length in the viscous wall unit, irrespective

of the surface grating parameters. Note that the effect of spanwise slip does not

reflected in Eq. (4.3). From these results, I deduce that the longitudinal ridges

disrupts the development of spanwise slip.

4.3.2 Spanwise variations of the flow properties at the interface

Figure 4.6 shows the normalized streamwise velocity at the interface. Note

that the black and green line represent the mean slip velocity (ūs/ub) averaged

in time and wall-parallel directions and the slip velocity (us/ub) averaged in time
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and the streamwise direction, respectively. From Figure 4.6(a), as φ increase

with a fixed Lp, the magnitude of streamwise velocity at the air-water interface

increases. The slip velocity varies in the spanwise direction and its maximum

value is yielded near the center region of groove. Referring to Figure 4.6(b), it

is shown that the slip velocity increases with the growth of pitch length. These

trends have a good agreement with the results of Maynes et al. (2007) and Teo

& Khoo (2009) in laminar flow. The upper limit of normalized slip velocity is

one where the slip velocity is the same as the bulk velocity (as known as a plug

flow). The mean slip velocity has a distance to the upper limit, whereas the

local slip velocity approaches to the value of one as φ increases. This is because

the groove widths are too broad L+o
g ≈ 90 ∼ 270.

The dependence of the skin friction coefficient on the surface geometry is

presented in Figure 4.7. The skin friction coefficient, which means the ratio

of shear stress at the interface (τs) to dynamic pressure, is defined as Cf =

τs/(ρlu
2
b/2). With increasing φ and Lp, the skin-friction coefficient decreases.

The peak values of Cf are observed at the edges of ridge. Cf on the ridge surface

are similar to Cf,noslip, whereas the friction drags almost vanish at the air-water

interface, indicating the shear-free interface. As shown in Figure 4.7(c) and (d),

however, Cf,max is almost 1/3 Cf,noslip where D = 0.002H. It has very large the

aspect ratio, where the aspect ratio is defined as the groove width of air-layer

thickness. The effect of aspect ratio has also to be investigated later.

Figure 4.8 shows the slip length for the streamwise velocity and velocity

gradient at the interface. As φ and Lp increase, the slip length slightly increases.

With large grooves, the local slip length at the air-water interface is almost

reached at the apparent slip length (bapp = µRD). It implies that the velocity

profiles near the core regions are near plug flow, since the slip velocity is almost

90% of bulk velocity. So turbulent intensities may be almost vanished. Figure
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4.9 shows the scatter plots with four distinct locations in the spanwise direction.

This result is very impressive that the new slip model proposed in Chapter 3

is valid with the SHS consisting of longitudinal grooves. As shown in Figure

4.9, the local spanwise slip length (bz) is a quarter of the value of the local

streamwise slip length (bx) and thus this result is consistent with our new slip

model (bz = 1/4bx). By prescribing shear-free boundary condition at the air-

water interface, the local spanwise slip length is an infinity. Therefore, this

result is very important to announce the flow properties at the interface.

Figure 4.10 shows near-wall turbulence structures. As shown in figure, near-

wall vortical structures disappear, resulting in smaller skin-friction drag. This

demonstrates that there is a strong correlation between the strength of near-wall

streamwise vortices.
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4.4 Microrgates: an actual device size

There is a restriction of size because the stability of air-water interface is

determined by the groove width (Lg = Lpφ). Türk et al. (2014) reported

that the proper groove size L+o
g � 300 with an actual flow condition of ocean

transports where uτ ∼ 0.5m/s and the pressure fluctuation on the surface is

an order of one. The groove widths considered with the macro-scaled SHS are

nearly 50 to 400 in the viscous wall units, so the extended investigation of flow

characteristics over the micro-scaled SHS is clearly required

The actual size of the groove width and pitch length is an order of one

(Daniello, Waterhouse & Rothstein, 2009; Woolford et al., 2009; Park, Sun &

Kim, 2014). For resolving the micro-scaled ridges, more fine grid points are

needed in the spanwise direction, so the computational cost required is too

expensive. The approach in the present study is based on the work of Jiménez

& Moin (1991), which demonstrated that the essential dynamics associated with

the streamwise vortical structures present in the wall region can be reproduced

in what they referred to as the “minimal channel” flow (Choi, Moin & Kim,

1994). Of course, some structures are absent in the minimal channel flow.

However, since the near-wall turbulence statistics were reproduced accurately,

Jiménez & Moin (1991) implied that such interactions may not be essential to

turbulence dynamics in the wall region. Choi, Moin & Kim (1993) adopted the

minimal channel flow for DNS of turbulent channel flow over the streamwise-

aligned riblets and successfully showed the turbulence characteristics. In the

present study, the computational domain and grid points are the same as the

data of Choi, Moin & Kim (1993) except in the spanwise direction. More

grid points are required in the spanwise direction for resolving micro-textures

(∼ O(1)).
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Figure 4.11 shows the the time history of the average pressure gradient

inside the water region. The overlap regions of pressure gradient with no-slip

wall and that with SHS intermittently exist and the frequency is lower than that

with a regular domain size. To observe a clear trend of the pressure gradient,

time-averaging is conducted. The history of plane- and time-averaged pressure

gradient, i.e. 1/t
∫ t
0

Π∗l (τ)dτ are also shown in figure 4.11. The skin-friction

reduction by the SHS is clearly shown and the percentage of DR rate is near 13%.

The present DR rate is much less than that of experimental data (maximum

DR ∼ 50% and 75%) using similar SHS geometries (Daniello, Waterhouse &

Rothstein, 2009; Park, Sun & Kim, 2014). Computational grid and domain size

test is required rigorously.

Figure 4.12 shows the mean velocity profiles and the modified mean velocity

profiles. In Figure 4.12(a), there is an upward shift by the slip velocity ū+s ≈ 1.7.

Min & Kim (2004) reported that modified mean velocities fall on one curve for

bx only, but show downward shifts for combined bx and bz, indicating that the

present interface has non-trivial bz. Figure 4.13 shows the rms velocity fluctu-

ations. Due the slip velocities at the interface, the urms and wrms are non-zero

value at the interface. Figure 4.14 shows the contours of velocity component

with the pattern-averaging. As shown in Figure 4.14, the pattern-averaged

streamwise velocity and rms velocity fluctuations have monotonous variations

in the spanwise and wall-normal directions. Thus, there is no significant varia-

tion in the spanwise and wall-normal directions. However, vrms indicates that

the flow properties at the interface should be varied in the spanwise direction.

Figure 4.15 shows the variations of patterned-averaged slip velocity and slip

length in the spanwise direction. The maximum slip velocity is near 0.15ub, so

the velocity near the core regions of groove still remains the parabola, unlike the

case with macro-SHS which has the plug flow near the groove-center regions.
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In Figure 4.15(c), the maximum slip length is approximately 0.2H, whereas the

macro-SHS has the apparent slip length at the center region. With the sur-

face parameters of microgrates, the apparent slip length is determined at 2.8H.

Since the small pitch length is accompanied by small groove width, the growth

of the slip velocity and slip length at the air-water interface is inhibited. The

effective slip length of SHS with microgrates is an order of the viscous sublayer

thickness, so the drag reduction rate was less than 20%.
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4.5 Summaries

In this chapter, longitudinal grooves and ridges were considered as the sur-

face roughness of SHS and DNSs for investigating the effect of surface geometry

were performed. The grating parameters of SHS considered were the air-layer

thickness, pitch length and groove width (or gas fraction). A wide range of

texture sizes were simulated from microscale O(1) to macroscale O(102) in the

viscous wall unit. For both micro- and macro-scaled SHSs, the surface grating

parameters had profound effects on the skin-friction drag, slip velocity and effec-

tive slip length. Among the surface grating parameters, the gas fraction played

a more important role for the slip than the pitch length and air-layer thickness.

With the larger pitch length relative to the channel height, the drag reduc-

tion rate approached to the gas fraction, indicating that the shear stress at the

air-water interface is almost vanished. However, the non-negligible shear stress

remained at the interface when the groove is not broad. This result suggested

that SHSs should have a large groove width to obtain the high drag reduction.

However, the actual devices have a micron size for the groove since the interface

rigidity decreases as the groove width increases. For resolving the small pitch

length and groove width, the minimal flow unit was adopted. The effective slip

length was an order of the viscous sublayer thickness, so the drag reduction rate

was less than 20%. The amount of drag reduction can be estimated by the ef-

fective slip length normalized by the viscous wall unit regardless of the geometry.
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fraction (red, φ = 0.75; green, φ = 0.5; blue, φ = 0.25). In (b), colors denote
the pitch length (red, Lp = 1.5H; green, Lp = 0.75H; blue, Lp = 0.5H).
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Figure 4.4. Variation of the DR rate with the surface grating parameters: (a)
Lp = 0.75H; (b) φ = 0.5 (c) Lg = 0.375H. Symbols represent the gas fraction
(square, φ = 0.75; gradient, φ = 0.5; circle, φ = 0.25).
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Figure 4.5. Variations of the DR rate with the effective slip length in wall units.
Colored symbols represent the gas fraction (square, φ = 0.75; gradient, φ = 0.5;
circle, φ = 0.25), and colors denote the pitch length (red, Lp = 1.5H; green,
Lp = 0.75H; blue, Lp = 0.5H). Open diamonds are the DNS results from
various SHS geometry and Reynolds number (Park, 2015).
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with constant D = 0.05H: (a) various gas fractions φ = 0.25, 0.5, and 0.75
with  Lp = 0.75H; (b) various pitch lengths Lp = 0.5H, 0.75H, and 1.5H with
φ = 0.5. The green lines denote the mean properties.
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Figure 4.7. For caption see the following page.
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Figure 4.7. Distribution of time-averaged skin-friction coefficient at the inter-
face with constant D = 0.05H: (a) various gas fractions φ = 0.25, 0.5, and 0.75
with  Lp = 0.75H; (b) various pitch lengths Lp = 0.5H, 0.75H, and 1.5H with
φ = 0.5. (c) various gas fractions φ = 0.25, 0.5, and 0.75 with  Lp = 0.75H;
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lines denote the mean properties.
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Figure 4.9. Scatter plot of local slip velocity vs velocity gradient at the interface
at the four different location in the spanwise direction at Lp = 0.75H, φ = 0.5
and D = 0.05H. The number of plot represents the location.
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Figure 4.10. Contours of the instantaneous streamwise vorticity in a cross-flow
plane for Lp = 0.75H and D = 0.05H: (a) φ = 0.25; (b) φ = 0.5; (c) φ = 0.75.
Contours of ωxH/ub are from -6 to 6 by increments of 0.6.
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Figure 4.11. Time history of pressure gradient in the water region: black,
with no-slip wall; red, with SHS. The solid lines denote time-averaged pressure
gradients.
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Figure 4.12. (a) Mean velocity profiles in wall units; (b) modified velocity
profiles with the slip velocity substracted.
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Figure 4.13. Profiles of the rms velocity fluctuations normalized by uτo : solid,
result with no-slip wall; dashed, result with SHS.
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Figure 4.14. Contours of the velocity components with microgrates: (a) stream-
wise velocity; (b) urms; (c) vrms; (d) wrms. The plot domain extends from the
lower SHS to the centerline of the channel.
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Chapter 5

Summary and Concluding Remarks

In the present study, I investigated the effects of SHSs on the slip length and

skin-friction reduction. For this purpose, the flow inside the air layer underneath

the water turbulent flow was directly simulated with the assumption that the

interface was flat (neglecting the surface tension effect). Two different kinds of

SHS were considered: an idealized SHS without supporting structures and SHS

with longitudinal grooves.

For an ideal case, two different flow types inside the air layer were consid-

ered: a shear-driven flow and a recirculating flow with zero net mass flow rate.

The slip length, slip velocity and drag reduction rate increased as the air-layer

thickness increased. At a given air-layer thickness, the shear-driven flow in the

air layer supplied more slip than the recirculating flow. However, when the slip

length was the same, there seemed no clear difference in the drag reduction

rate and slip velocity between two cases. The present drag reduction rate fell

in between those from the streamwise slip only and isotropic slip, indicating

that the present air-water interface generates an anisotropic slip (stronger in

the streamwise slip than in the spanwise one). It is shown that the Navier slip

model should be applied to mean values only, and not to instantaneous (or fluc-

tuating) quantities. In this regard, I proposed a new slip model that provides

more slip in the streamwise direction than in the spanwise direction.

For a textured case, a wide range of sizes were explored from O(1) to O(102)
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in the viscous wall unit. The slip properties, such as the slip length, slip veloc-

ity and drag reduction rate, increased as the grating parameters increased. The

gas fraction played a key role for the slip properties with a large pitch length.

As the pitch length and air-layer thickness increased, the drag reduction rate

approached to the gas fraction, indicating that the shear stress at the air-water

interface is almost vanished. These results suggested that SHSs should be man-

ufactured with a large groove width to obtain the high drag reduction. However,

the actual devices have a micron size for the groove since the interface rigidity

decreases as the groove width increases. For resolving the small pitch length

and groove width, the minimal flow unit was adopted. The effective slip length

was an order of the viscous sublayer thickness, so the drag reduction rate was

less than 20%.

The air-water interface is assumed to be flat in this study. In reality, how-

ever, the interface is sustained by the surface tension from the edges of SHS

texture, and is curved and moves owing to air dissolution and turbulent pres-

sure fluctuations. This important subject is to be investigated in the near future.
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공기층을 포함한 이상적인 초소수성 표면을  

가진 난류채널유동의 직접수치해석 

 

서울대학교 대학원 

기계항공공학부 

정태용 

요약 

 

난류 경계층 유동 내에서 초소수성 표면에 의한 미끄럼 효과는 마

찰저항 감소율을 결정하며 이는 초소수성 표면 구조에 영향을 받는

다. 본 연구에서는 물-공기 경계면이 편평하다는 가정하에 공기층을 

포함한 초소수성 표면을 가진 난류채널유동의 직접수치해석을 수행

하였다. 먼저, 표면 요철구조가 없는 이상화된 초소수성 표면을 고려

하였다. 공기층 내부의 유동은 전단응력에 의한 유동과 유량이 0인 

유동을 고려하였다. 공기층이 두꺼워질수록 미끄럼 길이, 속도, 마찰

저항 감소율 모두 증가하였다. 평균 슬립길이는 물 유동의 조건에 

상관없이 공기층의 두께에만 영향을 받는다. 또한 본 연구에서는 공

기를 직접 계산하여 물-공기 경계면에서 비등방성 미끄럼이 존재한

다는 것과 미끄럼 길이의 상대적 크기를 밝혔다. 비등방성 미끄럼을 

부가할 수 있는 새로운 미끄럼 모델을 제시하였고, 공기를 같이 풀



었을 때와 마찰저항 감소율이 일치하는 것을 확인하였다. 다음으로, 

종방향 홈을 가진 초소수성 표면 주위의 난류 유동을 계산하였다. 

이를 통해 마찰저항에 공기분율, 형상길이 뿐만 아니라 공기층의 두

께 또한 영향을 미친다는 사실을 밝혔다. 또한 실험에서 사용되는 

실제 크기의 초소수성 표면에 대해 연구를 수행하였다. 종방향 홈을 

가진 초소수성 표면의 경계면에서도 비등방성 미끄럼이 발생함을 관

찰하였다.  

 

 

주요어: 난류유동, 마찰저항, 물-공기 경계면, 초소수성 표면,  

비등방성 미끄럼 

학번: 2009-31250 
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