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Abstract 

In this dissertation, efficient and accurate models based on enhanced theories 

(enhanced first-order theories, enhanced higher-order theories and enhanced zig-

zag theory) are proposed for the thermo-mechanical analysis of laminated 

composite and sandwich plates. In addition, co-rotational formulation with 

enhanced first-order theory is developed to investigate the geometrically 

nonlinear behaviors. In enhanced models, a couple of displacement fields are 

independently assumed to provide a reasonable compromise between solution 

accuracy and efficiency. The main objective of this dissertation is to 

systematically establish the relationships between two independent fields 

through the mixed variational theorem (MVT) as well as the strain energy 

transformation. According to the relationships, enhanced models have the same 

computational advantage of the simple models (conventional FSDT, HSDT, 

LCW, etc.) while improving upon its performance by utilizing the post-process 

procedure. Additionally, the convolution theorem of Laplace transformation is 

applied to circumvent the complexity of dealing with linear viscoelastic 

materials. 

The enhanced theories proposed in this dissertation have the following 

advantages.  
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l Transverse shear stress continuity conditions at the interfaces between 

layers are satisfied. 

l Transverse shear free conditions at the top and bottom surfaces of the 

composite and sandwich plates are satisfied. 

l The number of primary variables is independent of the number of layers. 

l C0 interpolation function is only required in the finite element 

implementation, so computational efficiency can be further improved. 

The robustness, accuracy and computational efficiency of the enhanced models 

are demonstrated by comparing numerical results obtained herein to those of the 

3-D exact solution, 3-D FEM solution as well as other theories available in the 

open literature. 
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Chapter 1 

Introduction 

1.1. Motivations & Objectives 

In the recent past, aerospace structure, vehicle and many other high-performance 

industrial facilities demand light weight and high specific strength structures. 

Because advanced structures made of laminated composite panels are 

characterized by the high stiffness-to-weight ratio as well as excellent fatigue 

strength, they have been extensively used in various fields of engineering. 

With the increased use of laminated composite structures, appropriate 

computational models are therefore required to accurately predict their static and 

dynamic responses. Because laminated composite structures are vulnerable to 

the transverse stresses, accurate prediction of the transverse stresses at the layer 

interfaces in an important issue in investigation of the failure analysis (i.e., 

debonding the interfaces). Thus numerous theoretical research activities which 

can be found in the open literature have been performed in order to accurately 

analyze the through-the-thickness distributions of transverse stresses.  

In the early stage of the development of models, the classical laminate plate 
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theory (CLPT) is used to analyze the laminated composite plates, its results are 

inaccurate even for the global behavior. It is not adequate for the prediction of 

transverse stresses, because it neglects the shear deformation effect that is of 

great importance in the laminated composite plates. Thus, CLPT is applicable for 

only thin structures (length to thickness ratio > 30). To overcome this, various 

plate theories have been developed. A first-order shear deformation theory (FSDT) 

proposed by Reissner (1945) and Mindlin (1951) introduces the shear 

deformation into the theory [1-3], but the FSDT cannot precisely predict the 

through-thelayer transverse stress distributions. In addition to this, it requires a 

shear correction factor which calls the additional sophisticate work (Whitney, 

1973; Noor and Burton, 1984) [4, 5]. On the other hands, there have been many 

efforts to improve the FSDT by introducing a higher-order shear deformation 

effect. 

There are tremendous work in this topic, and interesting readers are referred to 

the review article [21, 22] and the book (Reddy, 2004). Historical Research works 

relevant to the present thesis are therefore briefly reviewed.  

A higher order shear deformation theory (HSDT) with smeared displacement 

fields can provide more accurate results than the FSDT [6-9]. However, it is not 

able to capture so called ‘zigzag effect’ due to the material discontinuity through 

the thickness of laminated composite plates. Layer-wise plate theories are able to 

predict the stress distributions in detail and are matched well with the elasticity 

solutions [10]. However the number of primary variables is proportional to the 

number of layers, which results in many computational resources. Therefore, they 

are not suitable for the composite plates with many layers.  

In the accurate and efficient modeling of laminated composite structures, it is 
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important to satisfy transverse shear continuity conditions across the layer 

interfaces. Thus, various zig-zag analysis models have also developed to provide 

a reasonable compromise between solution accuracy and efficiency [11-14]. A 

zigzag theory becomes popular after the work of Di Sciuva (1986). Among 

others, the efficient higher order plate theory (EHOPT) proposed by Cho and 

Parmerter [12,13] is known to be one of the most efficient model to analyze the 

through-the-layer distributions of displacements and stresses. In addition to this, 

it can gives reliable results by satisfying transverse shear continuity conditions 

across the layer interfaces as well as shear free conditions at the top and bottom 

surfaces of the plates. This approach was further extended to analyze the 

coupled thermos-electric-mechanical behaviors of smart composite structures 

[35-38]. In EHOPT, however, C1 shape function (slope continuity condition 

along the boundary of the element) is necessary in their finite element 

implementation to satisfy shear free conditions. This requires non-conventional 

shape function routine which is not available in commercial finite element 

software. 

To avoid using the C1 interpolation function in the finite element 

implementation, some post-process methods have been developed [15-20]. A 

new analysis model based on post-process methods is developed by Cho and 

Kim [16,17], in which the EHOPT displacement field is utilized as the 

postprocessor. However it still requires a cumbersome calculation of the shear 

correction factor. To circumvent this, Kim and Cho proposed enhanced first 

order shear deformation theory based on the strain energy transformation 

(EFSDT) for the efficient and accurate analysis of composite plates [18]. They 
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systematically establish the relationships between the independent displacement 

fields (EHOPT and FSDT) by transforming the strain energy of the EHOPT into 

the FSDT-like strain energy. On the basis of the relationships between them, 

EFSDT only requires C0 interpolation function in their finite element 

implementation in a similar way to the conventional FSDT model. Once the 

EFSDT strain energy is solved, the EHOPT displacement field is also utilized as 

the post-process procedure to improve their accuracy. In EFSDT, however, 

equilibrium state of the transverse normal stress is not completely satisfied since 

the EFSDT is derived by minimizing the error between the theories in the least 

square sense. To complement this, a mixed variational theorem is newly 

introduced, in which the stress field comes from the EHOPT and the 

displacement field is taken as the FSDT. This is referred to as the EFSDTM [19]. 

This concept of the mixed variational theorem was extended to HSDT, enhanced 

higher order shear deformation theory based on the mixed formulation 

(EHSDTM) was sequentially proposed for the efficient and accurate analysis of 

laminated composite structures [20]. The main objective of EHSDTM is to 

systematically set-up the relationship between the higher order shear 

deformation theory and fifth order zig-zag model, so that EHSDTM can fulfill 

the simplicity by calculating conventional HSDT-like theory as well as the 

accuracy by utilizing the fifth order zig-zag model as means of the recovery 

procedure. These enhanced theories (EFSDT, EFSDTM, EHSDTM) are also 

attractive because they are able to describe accurate behavior of the laminated 

composite structures without heavy computational efforts. However, most of 

these enhanced theories have been developed to analyze mechanical response of 
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the composite structures. Thus, more research on the enhanced theory is 

necessary to accurately and efficiently analyze their thermo-mechanical and 

visco-elastic behavior.  

The main objective of this dissertation is to develop a more enhanced theories to 

accurately model the thermo-mechanical and visco-elastic characteristics of 

laminated composite and sandwich structures. To achieve the above 

requirements, the concepts of mixed variational theorem and strain energy 

transformation are employed to derive the reasonable relationships between the 

independently assumed displacement fields. In addition, particular enhanced 

theory (EFSDT) is further extended to geometrically non-linear analysis by 

introducing co-rotational approach. The major product of the objectives can be 

summarized as follows: 

 

l EFSDTM_TN (EFSDTM including transverse normal effect): enhanced 

first-order model to analyze the thermo-mechanical behavior. 

l EFSDT in Laplace domain: enhanced first-order model to analyze the 

visco-elastic response. 

l EFSDT_CR (EFSDT based on co-rotational formulation): enhanced first-

order model to predict the geometrically non-linear characteristics. 

l EHSDTM (analytical and FEM approach): enhanced higher-order model 

to predict mechanical response and their edge effect. 

l ELCWM (Enhanced Lo-Christensen-Wu theory): enhanced higher-order 
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model to analyze the thermo-mechanical behavior. 

l Enhanced C0-type EHOZT: enhanced zig-zag model to analyze the 

thermo-mechanical behavior. 

 

1.2. Basic Concept of the Strain Energy Matching Scheme 

In this dissertation, a generic laminated composite and sandwich plates of 

thickness h is considered in order to illustrated the proposed numerical model. 

Geometry and coordinates of the laminated composite plate is given in Fig. 1.1. 

The number of layers and sequence of fiber angles are arbitrarily designed 

according to the case of numerical example model. Greek indices written in this 

paper will take values in the set 1, 2, whereas Latin indices will be regarded as 

the values in 1, 2, 3. The summation rule of repeated indices will also be used. 

The reference two-dimensional (2D) plane of the laminated composite plates is 

referred as xa , and the transverse displacement position is denoted by 3x . 

1.2.1. Mixed Variational Theorem 

The relationships between the independently assumed displacement fields can be 

derived by employing the mixed variational theorem (MVT). In the MVT, 

displacement and transverse stress fields are independently assumed for the 

reliable thermo-mechanical analysis of the laminated composite plates. The 
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three-dimensional Hellinger-Reissner functional for a linear thermo-elasticity is 

expressed by [19,20]:  
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where ( )* denotes the stress and strain tensor from the independent stress field, 

and the quantities with a tilde are the prescribed values. uS  and Ss  denote the 

boundaries with prescribed displacements( iu% ) and tractions( *
it% ), respectively. 

The mixed term in Eq. (1.2.1), which is variationally enforces the compatibility 

of the transverse shear forces, will be vanished to derive governing equations. 

 The three-dimensional constitutive equation for a thermal expansion problem is 

given by 

 ( ) ,  ,ij ijkl kl kl oC T Ts e a q q= - = -   (1.2.2) 

in which q is the temperature rise from the initial temperature To. Ci jkl is the 

component of elasticity tensor, kle  denote strain tensor and ai j is the thermal 

expansion coefficient.  The strain-displacement relationship is given as: 

 ( )1
, ,2

.kl k l l ku ue = +   (1.2.3) 

From the three-dimensional Hellinger-Reissner (HR) functional, one can derive 

the first variation of two-dimensional HR functional by taking variations only 

with respect to the displacement iu  and the independent transverse stress *
3as  

and applying the plane stress condition (i.e., 33s = 0) as follows [19,20]: 

 2 2 *
3 3 0.D D

R i iS
d t u dS

s
ab ab a a sd s de s dg d

W
P = + W- =ò ò %   (1.2.4) 
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Equation (1.2.4) is subjected to 
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in which in  is the direction cosine to be projected on ix  axis. It should be noted 

that abs  is the in-plane stress based on displacement iu , whereas *
3as  is the 

independently assumed transverse shear stress. 

1.2.2. Strain Energy Transformation 

Another way to establish the relationships between the independent two fields is 

the strain energy transformation. According to the asymptotic analysis, the 

general form of 3D displacement fields can be given as [18]: 

 

3
3 3,

3
3 3 3

( ) ( ) ( ) ( ),

( ) ( ) ( ),

D o o
i i

D o
i i

u x u x x u x W x

u x u x W x

a a b a b a

b

= - × +

= +
  (1.2.7) 

where the superscript ( )o·  indicates the displacement components in the 

reference plane, and ( )iW xa  and 3( )iW x  represent the through-the-thickness 

warping functions.  Complexities in three-dimensional analysis arise from 

warping function ( ( )i iW x  in Eq. (1.2.7)). To circumvent these complexities, the 

averaged displacement fields based on plate theory ( 2 ( )D
i iu x ) are independently 

introduced to approximate the warping function. The averaged displacements can 
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be defined by applying the least-square approximation as follows: 

 3 2

2
0 ,min

D D
i iu u- =   (1.2.8) 

which yields the displacement relations between the independent two fields.  

By using the displacement relations, the strain energy of three-dimensional 

displacement fields (
3DU ) can be transformed into averaged displacement type 

strain energy (
2DU ) as [18]: 

 3 2 .D D
ErrorU U U» +   (1.2.9) 

The ErrorU  indicates the strain energy difference between the two fields. Then, 

the relations of these strain energies (
3DU  and 

2DU ) are reasonably defined by 

minimizing ErrorU  as close to be zero as possible. 

1.3. Thesis outline 

The present thesis is organized as follows. The development of an enhanced first-

order shear deformation theories will be introduced in chapter 2. The EFSDTM 

including transverse normal effect (EFSDTM_TN) and EFSDT in Laplace domain 

are presented in this chapter for the thermo-mechanical and visco-elastic analysis 

of the laminated composite and sandwich plates. At the beginning of each 

analysis model, previous works are reviewed. In chapter 3, enhanced higher-order 

shear deformation theories are developed by enhancing conventional higher-order 

shear deformation theories. EHSDTM will be proposed to accurately analyze 

mechanical response of the laminated composite and sandwich plates and their 

boundary edge effect. In addition, ELCWM will be also introduced in chapter 3 to 
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precisely predict their thermo-mechanical behavior. Chapter 4 present enhanced 

zig-zag theory by introducing the enhanced C0-type EHOZT for the accurate and 

efficient thermo-mechanical analysis of the laminated composite and sandwich 

plates. Chapter 5 introduces EFSDT based on co-rotational formulation. In this 

chapter, the EFSDT which is linear-elastic based model will be extended to the 

geometrically non-linear finite element implementation by applying the co-

rotational frame to the EFSDT. In each chapter, the performance of the proposed 

theories will be demonstrated by investigating various numerical results of the 

laminated structures. Finally, conclusions and recommendations for the future 

work are provided in Chapter 6. 
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Fig. 1.1. Geometry and coordinates of laminated plate 
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Chapter 2 

Enhanced First-order 

Shear Deformation Theory 

2.1. Enhanced First-order Shear Deformation Theory 

including Transverse Normal Effect via the MVT 

2.1.1. Literature Review 

With the improvement of technology, composite structures can be applied to 

wider range of engineering field, so that it can be consequently faced with 

severe environment such as high temperature situations. The thermal loading 

based on rising temperature may give rise to significant thermal deformation and 

stresses due to their different thermal expansion properties of adjacent layers of 

the laminated structures. Thus, productive research on composite and sandwich 

plates under thermal loading is highly required to accurately predict their 

thermo-elastic response.  

Previous conventional works (CLPT, FSDT) are inapplicable to accurate 
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analysis of the thermo-elastic behavior for the relatively thick plates because 

they assumed shear strain to be zero or constant value. In addition, conventional 

theories are based on the plane stress assumption in which transverse normal 

strain effect is neglected. However, transverse normal strain effect plays a 

significant role for the analysis of thick multilayered structures under thermal 

environment. Therefore, many researchers focus on their interest in refined 

higher order as well as zig-zag shear deformation theories to accurately predict 

the thermos-elastic response of the thick laminated composite and sandwich 

structures [23-41].  

Reviewing on previous works, these mentioned higher-order and zig-zag 

theories can provide reliable thermo-elastic response of the composite structures 

in thermal environment. Conventional FSDT, however, is estimated an in 

adequate approach to demonstrate thermo-elastic analysis, although it has 

explicit advantages such as computational profits as well as C0 finite element 

implementation. EFSDT, which contains advantages of the conventional FSDT, 

is somewhat reliable for the elasto-static problems. However, it is not 

appropriate for thermo-elastic problems due to the significant effect of the 

transverse normal strain. To settle this problem, Oh et al developed an enhanced 

lower order shear deformation theory (ELSDT) for the electro-thermo-

mechanical coupled analysis of a smart composite structures [42]. This model is 

efficient and accurate tool for the analysis of smart structures under complex 

loading conditions by extending transverse displacement field to be smooth 

parabolic distribution. The ELSDT, however, requires more degrees of freedom 

and three dimensional governing equation which will lead to heavy 
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computational efforts. This bring us to develop a modified method that can take 

the benefits of using conventional FSDT and accurately predict the thermo-

elastic behavior of the laminated composite and sandwich plates.  

As a new way to address the aforementioned issues, enhanced first order shear 

deformation theory including transverse normal effect based on mixed 

variational theorem (EFSDTM_TN) is proposed. By modifying the transverse 

displacement field, present model can consider transverse normal strain effect 

without additional displacement variables. Moreover, in-plane correction factors 

which is introduced to satisfy the in-plane equilibrium equations are newly 

considered to more accurately predict thermo-elastic responses for the general 

configuration of the structures. The main objective herein is to systematically 

establish the relationship between FSDT_TN (FSDT including transverse normal 

effect) and EHOPT_TN (EHOPT including transverse normal effect), so that 

modified EFSDTM_TN can fulfill the simplicity by calculating conventional 

FSDT-like theory as well as the accuracy by utilizing the third order zig-zag 

model as means of the recovery procedure. The temperature field assumed the 

form of a uniform or linear distribution through the thickness of the structures. 

Finally the accuracy and efficiency of the results obtained in this paper is 

demonstrated by comparing them to those of other theories including three 

dimensional elasticity solutions. 

2.1.2. Mixed Formulation 

To accurately and efficiently analyze the thermo-mechanical responses of the 

laminated composite and sandwich plates, EFSDTM_TN is developed in this 
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dissertation via the mixed variational theorem. In the MVT, the first variation of 

two-dimensional HR functional, which is given in Eqs. (1.2.4) and (1.2.5), is 

employed to derive the relationships between the independent two fields.  

2.1.2.1. Improvement of transverse displacement field 

In this chapter, a modified transverse displacement field which can effectively 

consider the transverse normal strain effect is introduced for the efficient and 

accurate prediction of the thermo-elastic responses of the laminated composite 

structures.  

Many of the composite plate and shell theories proposed until now are based on 

plane stress assumption. In pure bending problem, they can provide relatively 

accurate results for the elasto-static responses of the laminated composite and 

sandwich plates. In thermo-mechanical problem, however, the transverse normal 

strain effect should be considered for the reliable thermo-elastic analysis. In the 

open literature, it has been also well known that both transverse normal and 

shear deformation shouldn’t be neglected for the reasonable prediction of the 

thermal stresses under uniform temperature condition.  

Among the possible approaches to efficiently consider the contribution of the 

transverse normal strain effect, a basic concept is to increase the order of 

transverse displacement field such like the form of parabolic variational field. 

This concept has accurately predicted thermo-elastic responses of the laminated 

structures because it can consider the transverse normal strain effect. However, 

more degrees of freedom accompanied by increasing transverse displacement 

components will lead to heavy computational efforts. Moreover, the parabolic 
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form of transverse displacement field requires three dimensional governing 

equations. Thus, the transverse displacement field is newly modified in this 

paper to improve the computational efficiency as well as the accuracy for the 

thermo-elastic analysis of the laminated composite structures. The modified 

displacement fields are introduced as follows 
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( )ij  is layer-wise constant to satisfy the plane stress assumption, and oT , 1T  

represent a prescribed uniform or linear temperature distributions through the 

thickness. The explicit derivation of ( )ij  can be found in Appendix A. 

 N is the number of layers, ( )k
iS  and 3 3( )( )kH x x-  are the linear zig-zag terms 

and the Heaviside unit step function, respectively. Some modified theories, 

which are FSDT_TN (i=1, j=0), HSDT_TN (i=3, j=0) and EHOPT_TN (i=3, j=1), 

is expressed in Eq. (2.1.1). These modified displacement fields will allow us to 

accurately analyze the thermo-mechanical behavior of the laminated composite 

and sandwich plates by considering transverse normal strain effect. In addition, 

it also allow us to simplify the calculation process by applying two dimensional 

governing equations under plane stress assumption. 

 

2.1.2.2. Independent transverse shear stress fields 
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In the MVT, two independent displacement fields ( iu ) and transverse shear 

stress fields ( *
3as ) are assumed in the MVT. In this section, a third order zig-zag 

model based on EHOPT_TN is introduced to derive independent transverse 

shear stress fields which are to be used as *
3as  in MVT. A reliable displacement 

fields should satisfies the shear free conditions on the surface of the structures 

and the shear stress continuity conditions at the interfaces between each layers 

without losing the accuracy and efficiency. These conditions can be satisfied by 

superimposing linear zig-zag fields, which have different slopes in each layer, to 

the globally cubic varying displacement fields. The starting third order zig-zag 

displacement fields can be written as follows  

 

1
(0) (1) (2) 2 (3) 3 ( )

3 3 3 3 3( ) 3 3( )
1

1
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( ) ( ),
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( ).

2

N
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u u u x u x u x S x x H x x

u u T x T x S H x x

a a a a a a

j j

-

=

-

=

= + + + + - -

= + + + -

å

å
  (2.1.2) 

( )i
iu  denote displacement components at the reference plane. By applying shear 

stress free conditions on the top and bottom surface of the structures, two set of 

equations are derived as follows [12, 13]: 

 

1
(1) (2) 2 (3) (0)

3 3,
2 1

2 1
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1
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-

=
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-
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å

å
  (2.1.3) 
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These equation can be satisfied by following relationships 
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è øè ø

å

å
  (2.1.4) 

Thus, the transverse shear strains is then expressed as follows: 
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å

  (2.1.5) 

The ( )kSa  and ( )
3

kS  are slope change at the layer interface which can be 

determined in terms of the primary variables of the reference plane and 

prescribed thermal values. They can be expressed as following form [12, 13]: 

 ( ) ( ) (3) ( ) ( ) ( ) ( ) ( )
, 1, 3 33 33 1

1 1
, .

2 2
k k k k k k k

o oS a u b T c T S b T c Ta ab b ab b ab b= + + = +   (2.1.6) 

The term ( )kaag , ( )kbag  and ( )kcag  are functions of the material properties that 

account for the transverse shear stress continuity conditions at, while ( )
33

kb , ( )
33

kc  
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are the functions of layer-wise constant ( (k)j ) to satisfy the transverse 

displacement continuity conditions at the layer interfaces. The explicit 

calculations of ( )kaag , ( )k
ijb  and ( )k

ijc  can be found in Appendix B. 

Substituting of Eqs. (2.1.4) and (2.1.6) into Eqs. (2.1.2) and (2.1.5), final 

expression of the displacement fields and their transverse shear fields of 

EHOPT_TN can be expressed as, 

Displacement fields: 
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  (2.1.7) 

In which 
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h
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h
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  (2.1.8) 
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Transverse shear strain and stress fields: 
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In which 
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   (2.1.10) 

abd  is the Kronecker delta function.  

To find the more reasonable relationships between the independent two fields 

for the general configuration of the structure, in-plane shear correction factors 

are newly considered in EHOPT_TN to satisfy their self-equilibrium states. The 

displacement and transverse shear stress fields which additionally consider the 

in-plane correction factors can be expressed as 
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Displacement fields: 
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  (2.1.11) 

Transverse shear strain and stress fields: 

 

(3) *
3 , 1, 3

(3) *
3 3 3 , 1, 3

1
,

2

1
,

2

M
o

M
o

u T T C

C u T T C

a ab b ab b ab b a a

a a b bg g bg g bg g a a

g g

s s

= + + - @

é ù
= + + - @ê úë û

B C

B C

A

A

  (2.1.12) 

where 
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  (2.1.13) 

,N MC Ca a  are the in-plane correction factors in terms of the (3)ua , oT  and 1T  

which can’t be derived in initial statement. These in-plane correction factors can 

be derived by matching resultant force and moment of both assumed theories 

based on Saint-Venant principle. The detailed expression for the derivation 

process of the in-plane correction factors are given in the Appendix C. 

 The variables in the final form of the displacement and transverse shear stress 

fields are defined at the reference plane. Thus, primary unknown variables of the 
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EHOPT_TN, which is expressed as (0) (0) (3) (3) (0)
1 2 1 2 3, , , ,u u u u u , does not depend on 

the number of layers. These independent transverse shear strains and stresses 

make it possible to find the reasonable relationships between FSDT_TN and 

EHOPT_TN, and the relationships play an important role as the shear correction 

factor in deriving governing equations of the FSDT_TN. 

 

2.1.2.3. Displacement fields 

The displacement fields of the FSDT_TN, which are used for the displacement 

and strain fields in MVT, is given as following forms 
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  (2.1.14) 

To achieve clear comparison between displacement fields of FSDT_TN and 

EHOPT_TN, the components of the FSDT_TN are given with overbar. And the 

mid-plane displacement (0)ua  denotes the mean displacement of the plate. 

Through the displacement fields of Eq. (2.1.14), the strains can be subsequently 

derived as follows:  

 

(0) (1)
3

1
(0) ( ) ( )

3 3 3 33 3 3( ) ,
1

1
( ) 2 ( )

3 33 3 3( ) 1,
1

,

( )

1
( ) .

2

N
i k

k o
k

N
i k

k
k

x

x b H x x T

x c H x x T

ab ab ab

a a a

a

e e e

g g j

j

-

=

-

=

= +

é ù
= + + -ê ú

ë û

é ù
+ + -ê ú
ë û

å

å

  (2.1.15) 
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And the in-plane stress to be used in MVT, in Ep. (1.2.4), can be given as 

 ( ),Q Tab abgw gw gws e a= - D   (2.1.16) 

where Qabgw  are the reduced elastic stiffness tensor, as expressed in Eq. (1.2.6); 

gwa  are the thermal expansion coefficients in the plate coordinates; and TD is 

the temperature distribution. 

 

2.1.3. Enhanced First-order Shear Deformation Theory including 

Transverse normal effect via the MVT 

Independently assumed transverse shear stresses and displacement fields are 

described in the previous section. In this section, an enhanced first order shear 

deformation theory including transverse normal strain effect is derived. The 

relationships between independent two fields can be systematically established 

via the MVT. Thus, governing equation of the present theory is based on the 

FSDT_TN. In addition, recovery process is also considered in this section to 

more accurately predict the thermo-elastic response of the laminated composite 

structures. 

 

2.1.3.1. Relationships between the two theories 

Substituting displacement and strain fields (Eqs. (2.1.14) and (2.1.15)) into 
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MVT (Eq. (1.2.4)) yields 

 2 (1) * (0)
, , 3( ).D o

R N u M u Qab a b ab a b a ad d d d gP = + +   (2.1.17) 

and the third ‘mixed’ term in Eq. (1.2.5), which is used as the constraint 

equations, is expressed as 

 ( )(0) * *
3 3 3 3 3 0,Sa a b b ag s ds- =   (2.1.18) 

where 

 (0) (1) * 2 *
3 3, 3 3, [ , , ] [1, ], .o Du u N M Q xa a a ab ab a ab ag s s= + =   (2.1.19) 

The independent transverse shear force *Qa  considering in-plane correction 

factor can be expressed as: 

 ( )* (0) (3) (1) (2)
3 3 3 3 , 3 3 1,

1ˆ ˆ ˆ ,
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è ø

  (2.1.20) 
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  (2.1.21) 

From the constraint conditions expressed as Eq. (2.1.18), the component of the 

independent transverse shear stresses based on the EHOPT_TN ( (3)ua ) can be 

expressed in terms of the variables from assumed displacement fields of the 



25 

 

FSDT_TN ( 3ag ) as follows [19]: 
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where 
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  (2.1.23) 

which renders final form of the relationship as follows: 
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  (2.1.25) 

Substituting Eq. (2.1.24) into Eq. (2.1.20), transverse shear forces can be 

expressed as [19]: 
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where 

 

( )

( )

( )

1
* (0) (0) (0)

3 3 3 3 3 3 3 3

1
* (0) (0) (0) (1) (1)

3 3 3 3 3 3 3 3 3 3 3 3

1
* (0) (0) (0) (2) (2)

3 3 3 3 3 3 3 3 3 3 3 3

ˆ ˆ ,

ˆ ˆˆ ,

ˆ ˆˆ .

A A A A

B A A B A A

D A A D A A

a b a m m g g b

a b a m m g g b g b a b

a b a m m g g b g b a b

-

-

-

=

é ù= - +ë û

é ù= - +ë û

%

% %

% %

  (2.1.27) 

In Eq. (2.1.26), * *
3 3 3 3,A Ba b a b  and *

3 3Da b  will play a major role in deriving 

FSDT_TN-like governing equations as modified shear correction factors, which 

renders a so-called ‘effective shear stiffness modulus’. These effective shear 

modulus can’t be directly obtained in the initial statement because the in-plane 

correction factors depend on the transverse shear relations. Thus repeated 

computational process is required to derive reasonable in-plane correction 

factors and effective shear stiffness modulus. The detailed expression for the 

computational process is given in Fig. 2.1.1. Using the final relationships, 

FSDT_TN-like governing equations can be derived in which it is the same with 

the FSDT_TN governing equations except for the transverse shear stiffness 

modulus. 

 

2.1.3.2. Equilibrium equations and boundary conditions of the 

EFSDTM_TN 

The constraint equations, which play a major role in matching process, are 
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solved in previous section and then mixed terms are dismissed in MVT. Thus, 

the two-dimensional Hellinger-Reissner functional given in Eq. (2.1.17) can be 

reasonably applied to solve the problem. From Eq. (2.1.17), the governing 

equations for the present model can be derived as follows: 
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  (2.1.28) 

Their associated boundary conditions are given as: 
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  (2.1.29) 

Note that the terms of the uniform and linear distributed temperature loading in 

modified transverse shear forces act like the external loading.  

 

2.1.3.3. Displacement and stress recovery 

Once the governing equations for the EFSDTM_TN are solved, accuracy of 

their local distributions through the thickness of the plate can be improved by 

using the recovery process. In this paper, EHOPT_TN is used as the post-

processor to restore their results. This can be achieved by expressing the 

displacement fields of EHOPT_TN in terms of the variables of the EFSDTM_TN.  

The mid-plane stretching component of the EHOPT_TN can be approximated 
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by using the least square sense. The relationship of the mid-plane stretching 

component can be given as follows: 

 
(0)

2
0,min a

u

u u
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a- =   (2.1.30) 

where ua  are based on the Eq. (2.1.7) which are not including in-plane 

correction factor to find a reasonable kinematical relation. The least square 

approximation for the in-plane displacement fields will render as following 

forms: 
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Substituting Eq. (2.1.31) into Eq. (2.1.11), displacement fields of the 

EHOPT_TN can be rewritten as follows [18, 19]: 
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  (2.1.32) 

According to the relationships of the transverse shear forces (Eq. (2.1.24)), the 

terms (3)ua  can be expressed by EFSDTM_TN variables. 

Thus, one can now express the EHOPT_TN in terms of the variables of the 

EFSDTM_TN as given by: 
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where  

 *( ) ( ) ( )1
.i i i

h
ab ab abF = F - F   (2.1.34) 

For the calculation of the transverse stresses, the transverse normal stress can’t 

be directly calculated by the constitutive relation approach because plane stress 

condition is assumed in this model. To derive this one, the equilibrium approach 

should be utilized. Thus, three dimensional equilibrium equations are 

additionally considered to more accurately predict the distribution of the 

transverse shear and normal stresses. From the Eq. (2.1.16), the three-

dimensional equilibrium equations can be given as: 
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In Eq. (2.1.35), superscripts, ( )e·  and ( )c· , denote the results calculated by the 

equilibrium approach and constitutive one, respectively. The results based on 

equilibrium approach can obviously improve their accuracy for the local 

distribution, and makes it mathematically more reasonable. 
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2.1.4. Numerical examples and discussion 

In order to verify the efficiency and accuracy of the present model (i.e. 

EFSDTM_TN), several thermo-elastic problems for the laminated composite and 

sandwich plates are analyzed in this section. The analytical solutions are 

obtained for a plate that is formed of length a, width b, and height h. The results 

of present model are compared to the solutions obtained by FSDT_TN as well as 

the three-dimensional elasticity solutions. The Pagano solutions for the simply-

supported rectangular plates under thermal loadings are used as the benchmark 

solutions. In the FSDT_TN, a shear correction factor is assumed to be 5/6.  

The ply material properties of composite and sandwich plates considered herein 

are given as follows: 

Material properties for composite plates: 
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  (2.1.36) 

Material properties for sandwich plates: 

-Face sheets (h/5ⅹ2) 
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-Core material (3h/5) 
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  (2.1.38) 

Where L represents a parallel direction to the fiber, while T denotes a 

perpendicular direction to the fiber.  

For all of the problems, thermal loading is linearly prescribed through the 

thickness direction of the plate, which is expressed as follows: 

 [ ]3 1 1 2( ) sin( )sin( ),i oT x T x T px qx= +   (2.1.39) 

Where 
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The primary variables of the EFSDTM_TN are assumed to be a double 

trigonometric series to satisfy the simply supported boundary conditions, which 

is given as follows: 
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  (2.1.41) 

To compare the results obtained by present model with those of other theories, 
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the results reported herein are normalized as following forms: 
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  (2.1.42) 

where the in-plane stresses are obtained by using the constitutive equations, 

whereas the transverse shear and normal stresses are calculated by integrating 

the three-dimensional equilibrium equations. 

 

2.1.4.1. Uniform temperature loading case 

Considering thermal loading with uniform temperature, several cases of 

laminated composite and sandwich plates are analyzed. The uniform temperature 

can be expressed as 1 2 3 0 1 2( , , ) sin( )sin( )T x x x T px pxD = . Following assumptions are 

used for all cases of the laminated composite and sandwich plates: aspect ratio 

as 1 2L L=  and length-to-thickness ratio as 1 / 5S L h= = . 

Firstly, the normalized transverse shear and normal stresses for a single layer 

composite plate are shown in Figs. 2.1.2 and 2.1.3. Distribution of the 

transverse shear stresses depicted in Fig. 2.1.2 shows the roughly cubic shape, 

and transverse normal stresses depicted in Fig. 2.1.3 shows compression at the 

plate center which is based on the lentil-like deformation. The present 

EFSDTM_TN, as shown in Figs. 2.1.2 and 2.1.3, yields relatively accurate 

cubic shape of the transverse shear stresses as well as lentil-like deformation of 

the transverse normal stress with comparison to the exact solutions, although 
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providing slightly over-estimated distributions. But results of FSDT_TN, which 

delivers zero values for the transverse stresses, entirely fail to describe 

transverse shear and normal stresses for the single layer composite plate under 

uniform temperature loading. In particular, it is noteworthy that EFSDTM_TN 

can predict accurate results which are in good agreement with those obtained by 

exact solutions just by solving FSDT_TN-like governing equations. 

Figs. 2.1.4-2.1.6 show the normalized in-plane and transverse stresses for a 

symmetric cross-ply [0/90/0] composite plates. The present EFSDTM_TN agree 

well with the exact solutions for the distribution of the in-plane stress 22s  in 

Fig. 2.1.4 , whereas FSDT_TN can’t describe accurate distribution. The 

distributions of the transverse shear stress through the thickness of the plates are 

depicted in Fig. 2.1.5. In this result, it can be found that present model provides 

fairly accurate semi-cubic variation in 13s , whereas FSDT_TN cannot. Fig. 2.1.6 

compares distributions of the normalized transverse normal stress. In the results 

of transverse normal stress, FSDT_TN fail to accurately predict biquadratic 

variation for the distribution of the transverse normal stress; however, it can be 

found that present EFSDTM _TN accurately describe the shape of biquadratic 

variation precisely. 

The distribution of the in-plane displacement for an anti-symmetric cross-ply 

[0/90/0/90] composite plates are presented in Fig. 2.1.7. From this result, it can 

be observed that the EFSDTM_TN can provides reliable result by capturing their 

unsymmetrical parabolic distribution. In the anti-symmetric case, sudden 

changes of the elastic stiffness modulus between adjacent layers lead to zig-zag 

shape for the transverse shear stress. This distribution is reflected by Fig. 2.1.8. 
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The present model and FSDT_TN somewhat agree well with the exact solution. 

Results of transverse shear and normal stresses for the many layer symmetric 

cross-ply [0/90/0/90/0]s composite plates are given in Figs. 2.1.9 and 2.1.10 . In 

the many layer plates case, distributions of the transverse shear stress exist in 

the shape of a zig-zag mode because of the sharp change of their stiffness 

between adjacent layers in case of the cross-ply. As shown in Fig. 2.1.9 , present 

model gives best compromised results which can predict the distribution of the 

zig-zag shape of the 13s  through the thickness, whereas the result of FSDT_TN 

gives imprecise distribution. The distribution of the transverse normal stress are 

compared in Fig. 2.1.10. In the distribution of the transverse normal stress, it 

can be shown that the result is compressive at the plate center. While this lentil-

like deformation can be fairly well described by the EFSDTM_TN, the result of 

the FSDT_TN, which provides tensile value, is totally inaccurate compared to 

the exact solutions. 

When it comes to sandwich plates, a square [0/core/0] sandwich plates is 

considered to validate the performance of the present model. In-plane and 

transverse stresses for the uniform thermal loading are shown in Figs. 2.1.11-

2.1.13. As shown in Fig. 2.1.11, present model can accurately predict non-

continuous distribution of the in-plane stress. From the results of transverse 

stresses (Figs. 2.1.12 and 2.1.13), it can be seen that the results obtained by 

present model are in excellent agreement with the exact solution. FSDT_TN, 

however, fails to describe kink shape of the transverse shear stress and provides 

over-estimated value for the transverse normal stress. 
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2.1.4.2. Linear temperature loading case 

Just like the previous chapter, several cases of laminated composite and 

sandwich plates under linear temperature loading 

( 1 2 3 3 1 1 2( , , ) sin( )sin( )T x x x x T px pxD = ) are also analyzed.  

The distributions of the transverse shear and normal stress for a single layer 

composite plate are depicted in Figs. 2.1.14 and 2.1.15 . Linear distributed 

thermal loading lead to a bending deflection for the single layer plate. From Fig. 

2.1.14, it can be described that the present EFSDTM_TN yields relatively 

accurate prediction for the bending deformation of the transverse shear stress as 

compared to that of FSDT_TN. In the case of transverse normal stress (Fig. 

2.1.15), EFSDTM_TN can accurately capture the roughly cubic variation which 

contains compressive stress in the upper half and tensile one in the lower half of 

the plate. FSDT_TN, however, entirely fail to describe transverse normal stress 

distributions for the single layer plate under linear distributed thermal loading. 

The point which special attention should be paid is that EFSDTM_TN can 

accurately predict distribution of the transverse normal stress, which can’t be 

obtained by FSDT_TN, just by solving similar procedure as that of FSDT_TN. 

The normalized in-plane and transverse normal stresses for a symmetric cross-

ply composite plates are presented in Figs. 2.1.16 and 2.1.17. For distribution of 

the in-plane stress as shown in Fig. 2.1.16, the result based on the present model 

is in good accord with the exact solution, whereas FSDT_TN can’t describe 

precise distribution. The distributions of the transverse normal stress is depicted 

in Fig. 2.1.17. From this result, it can be found that present EFSDTM_TN 
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precisely describes the shape of quintic variation which can’t be captured by 

FSDT_TN. 

For the case of an anti-symmetric cross-ply composite plates, Fig. 2.1.18  shows 

the distribution of the transverse shear stress which have value of opposite sign 

in the upper and lower half of the plate. This shape can be fairly well captured 

by the present model as well as FSDT_TN. The results of the transverse normal 

stress are compared in Fig. 2.1.19. The result of present model can accurately 

describe the roughly cubic variation of the transverse normal stress, whereas 

FSDT_TN provides somewhat over-estimated value. 

The case of the many layers which are stacked as the symmetric cross-ply lay-

up composite plates is considered. Fig. 2.1.20 compares normalized transverse 

shear stress for a [0/90/0/90/0]2. From Fig. 2.1.20, it can be observed that 

present EFSDTM_TN provides almost same distribution as compared with the 

FSDT_TN, and their results can accurately describe the distribution shape of the 

exact solution. In the distribution of the transverse normal stress given in Fig. 

2.1.21, present model gives best compromised results by precisely describing the 

shape of exact solution, whereas FSDT_TN provides entirely opposite 

distribution. 

Finally, the distributions of the in-plane and transverse stresses for a [0/core/0] 

sandwich plates are presented in Figs. 2.1.22-2.1.24 . As shown in Fig. 2.1.22, 

present model provides accurate result of the in-plane stress by precisely 

describing the non-continuous shape of the exact solution. From the distribution 

of the transverse shear stress given in Fig. 2.1.23, it can be observed that present 

model can fairly well capture the kink shape, whereas FSDT_TN can’t take 
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account. The result of transverse normal stress is plotted in Fig. 2.1.24. The 

present model shows excellent agreement with the exact solution. FSDT_TN, 

however, provides quite under-estimated distribution of the transverse normal 

stress. 
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Fig. 2.1.1. Flowchart of the EFSDTM_TN 
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Fig. 2.1.2. Transverse shear stress of a single layer composite plate (T0≠0) 

 

 

Fig. 2.1.3. Transverse normal stress of a single layer composite plate (T0≠0) 
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Fig. 2.1.4. In-plane stress of a [0/90/0] composite plates (T0≠0) 

 

 

Fig. 2.1.5. Transverse shear stress of a [0/90/0] composite plates (T0≠0) 
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Fig. 2.1.6. Transverse normal stress of a [0/90/0] composite plates (T0≠0) 

 

 

Fig. 2.1.7. In-plane displacement of a [0/90/0/90] composite plates (T0≠0) 
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Fig. 2.1.8. Transverse shear stress of a [0/90/0/90] composite plates (T0≠0) 

 

 

Fig. 2.1.9. Transverse shear stress of a [0/90/0/90/0]s composite plates (T0≠0) 
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Fig. 2.1.10. Transverse normal stress of a [0/90/0/90/0]s composite plates (T0≠0) 

 

 

Fig. 2.1.11. In-plane stress of a [0/Core/0] sandwich plates (T0≠0) 
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Fig. 2.1.12. Transverse shear stress of a [0/Core/0] sandwich plates (T0≠0) 

 

 

Fig. 2.1.13. Transverse normal stress of a [0/Core/0] sandwich plates (T0≠0) 
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Fig. 2.1.14. Transverse shear stress of a single layer composite plate (T1≠0) 

 

 

Fig. 2.1.15. Transverse normal stress of a single layer composite plate (T1≠0) 
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Fig. 2.1.16. In-plane stress of a [0/90/0] composite plates (T1≠0) 

 

 

Fig. 2.1.17. Transverse normal stress of a [0/90/0] composite plates (T1≠0) 
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Fig. 2.1.18. Transverse shear stress of a [0/90/0/90] composite plates (T1≠0) 

 

 

Fig. 2.1.19. Transverse normal stress of a [0/90/0/90] composite plates (T1≠0) 
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Fig. 2.1.20. Transverse shear stress of a [0/90/0/90/0]s composite plates (T1≠0) 

 

 

Fig. 2.1.21. Transverse normal stress of a [0/90/0/90/0]s composite plates (T1≠0) 
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Fig. 2.1.22. In-plane stress of a [0/Core/0] sandwich plates (T1≠0) 

 

 

Fig. 2.1.23. Transverse shear stress of a [0/Core/0] sandwich plates (T1≠0) 
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Fig. 2.1.24. Transverse normal stress of a [0/Core/0] sandwich plates (T1≠0) 
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2.2. Enhanced First-order Shear Deformation Theory in 

Laplace domain 

2.2.1. Literature Review 

Recently, many branches of the engineering fields still demand light-weighted 

and high-stiffened structures. The advanced laminated composite and sandwich 

structures can satisfy high stiffness-to-weight characteristics by reasonably 

stacking sequence of laminates. So, they have been widely used in automobile, 

marine, aerospace and many other industrial facilities due to their advantages. 

With the increased use of laminated composite structures, a number of analysis 

models are therefore developed to accurately predict their static and dynamic 

responses. 

Meanwhile, most of the mentioned composite plate models (FSDT, EHOPT, 

EFSDT, etc.) have been used to analyze the linear elastic behavior of composite 

structures. Composite materials, however, are inhomogeneous materials 

composed of reinforced elastic fibers and temperature-sensitive viscoelastic 

matrix. Thus, fiber-reinforced composite materials have viscoelastic 

characteristics such as creep strain, stress relaxation and time-dependent failure. 

These viscoelastic behaviors can lead to critical problems when the composite 

structures are in high hygro-thermal conditions. For this reason, the viscoelastic 

effects of composite materials should be considered for reliable analysis in high 

temperature environments [43, 44]. 

To accurately analyze the time-dependent behaviors of laminated composite and 
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sandwich plates, several studies on their viscoelastic responses were performed 

over the past three decades. Some researchers employed numerical procedures 

based on the Taylor method [45-48] to solve the linear viscoelastic Boltzmann 

superposition integral equation. Zak [49] proposed an iterative numerical 

procedure to circumvent storage of the solutions over all time steps. Vallala et al 

[50] predicted the geometrically nonlinear deformations for linear viscoelastic 

materials by applying a trapezoidal rule. Other researchers [51, 52] proposed 

nonlinear constitutive models to analyze the nonlinear viscoelastic materials.  

Another interesting scheme, which is based on the Laplace or Fourier 

transformations [53-58], is applied to linear viscoelastic materials in order to 

examine their dynamic and quasi-static responses. The Laplace transformation 

was not applied to nonlinear viscoelastic constitutive equations in the literature, 

because extremely complicated equations can be introduced during the 

transformation process. Thus the transformation was restricted to linear 

viscoelastic materials. Once the linear viscoelastic problem is solved in the 

Laplace domain, results in the real time domain can be obtained by applying the 

inverse Laplace transformation based on numerical inversion techniques. Since 

this method only requires a simple calculation process without time integration, 

it can be an effective approach for long-term simulation. Recently, Nguyen et al. 

[57, 58] presented the method of using Laplace transformation for FSDT, HSDT 

and EHOPT to investigate the viscoelastic behavior of laminated composite and 

sandwich plates. Especially for the EHOPT model, their approach [58] provides 

one important benefit in that the transverse shear continuity conditions can be 

easily implemented. It is extremely complicated to enforce the continuity 
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conditions on the linear viscoelastic materials in the real-time domain. In order 

to take advantage of the accuracy of EHOPT and the simplicity of FSDT, the 

Laplace transformation can be applied to both shear stress continuity conditions 

(EHOPT) and strain energy transformation (EFSDT) in order to develop a 

simple yet accurate linear viscoelastic model. This will allow us to efficiently 

analyze the laminated composite plates under mechanical loadings and to 

investigate the time-responded results for the viscoelastic behaviors. 

In this section, as a new way to address the aforementioned issues, EFSDT via 

strain energy transformation is applied to the linear viscoelastic problem in the 

Laplace domain and tested numerically. The main objective herein is to 

systematically establish the relationships between the two theories (conventional 

FSDT and EHOPT) in the Laplace domain via strain energy transformation as 

well as the least-square sense approximation. According to the relationships, the 

FSDT-like theory incorporating the efficiency of the conventional FSDT as well 

as the accuracy of the EHOPT for linear viscoelastic analysis can be derived. In 

addition, the time-integral form of the Boltzmann superposition equation can be 

simplified by employing Laplace transformation. Hence, the calculation process 

can be further improved as compared to the linear elastic counterpart. 

Furthermore, transverse shear continuity conditions at layer interfaces can be 

easily enforced in the Laplace domain. Several numerical examples are given to 

show the performance of the proposed method and the results for the present 

theory are compared with data available in the open literature to demonstrate 

their accuracy and efficiency. 
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2.2.2. Constitutive equation for linear viscoelastic materials 

The constitutive equation for linear viscoelastic materials can be obtained from 

the time-integral equation as follows:  
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where t is time, t denotes a dummy variable for time integration, and ( )ij ts  

and ( )ij te  are time-dependent stress and strain, respectively. The time-

dependent compliance and relaxation modulus based on a prony series of 

decaying exponentials can be expressed as [44]:  
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where 
0
ijklQ  denotes the relaxation modulus at the initial time, which can be 

obtained from the linear elastic material properties. The viscoelastic coefficient 

p
ijklb  and characteristic time constant 

p
ijkla  are determined from the 

experimental relaxation curve.  

Several experimental works have been conducted to investigate the time-

dependent relaxation moduli of some real composite materials such as 
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GY70/339, T300/5209 and T300/934. According to previous work by Crossmann 

et al [44], to reflect the experimental master curves for the realistic viscoelastic 

behavior of composite materials, the prony series needs to be extended to 

higher-order terms. 

In this study, viscoelastic responses based on the real composite material 

GY70/339 are investigated at room temperature (T=75oF) with a moisture 

condition of M=0.1%. Detailed expression of the time-dependent material 

properties for the GY70/339 will be described in the section on numerical 

examples and discussion. 

By applying the convolution theorem of the Laplace transformation to Eq. 

(2.2.1), the constitutive equation for the linear viscoelastic materials can be 

simplified as follows [57, 58]:  
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where superscript ( )* represents the parameters in the Laplace domain. 

From Eq. (2.2.3) in the Laplace domain, it is apparent that the simplified forms 

of the constitutive equation for the linear viscoelastic materials are similar to 

those of the generalized Hook’s law for linear elastic materials. Therefore, we 

can solve the linear viscoelastic problem as compared with the linear elastic 

counterpart. 

 

2.2.3. Enhanced first order shear deformation theory for the 
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linear viscoelastic model 

In this section, a new type of model based on the enhanced first order shear 

deformation theory (EFSDT) is derived to analyze the linear viscoelastic 

problem by employing the strain energy relationships and Laplace 

transformation. The main feature of the proposed theory is to systematically 

derive an improved strain energy expression for conventional FSDT via the 

scheme of strain energy transformation in the Laplace domain, and then provide 

a way to recover the stresses and displacements in the real-time domain to 

improve their accuracy. 

 

2.2.3.1. Displacement and strain fields  

When it comes to the interior solution, the general form of time-dependent 3-D 

displacement based on the asymptotic approach can be expressed by 
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In addition, those of FSDT are given as follows: 

 
3

3 3

( ) ( ) ( ),

( ) ( ),

o
i

o
i

u x u x x x

u x u x

a a b a b

b

q= + ×

=
  (2.2.5) 

where the superscript ( )o·  indicates the displacement components in the 

reference plane, the over-bar ( )·  denotes the averaged values, respectively. 
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( )iW xa  and 3( )iW x  represent the through-the-thickness warping functions. In 

order to simplify the problem, in-plane warping function can be split into the 

through-the-thickness function (F ) and the effective transverse shear strain (f ) 

as follows [18]: 

 3( ) ( ) ( ).iW x x xa ag g bf=F ×   (2.2.6) 

In general, it is hard to determine an appropriate in-plane warping function for 

accurate analysis of the laminated composite plates. Thus, some refined plate 

theories are considered to extract in-plane warping function. Among many 

refined higher-order plate theories, the EHOPT is utilized to obtain the in-plane 

warping functions due to their simplicity and accuracy. The in-plane 

displacement fields of the EHOPT are composed of global and layer-local 

components, in which layer-local zig-zag displacement is superimposed to a 

smooth globally cubic varying displacement to satisfy the static as well as the 

geometric continuity conditions. It can be expressed in terms of the only five 

primary D.O.F by enforcing the transverse shear stress conditions (transverse 

shear free conditions at top and bottom surfaces and transverse shear stress 

continuity conditions across the laminate interfaces). Thus, the final form of 

time-dependent displacement fields of the EHOPT can be given as follows [18]: 
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in which 
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where N is the number of layers, agd  denotes the Kronecker delta function, and 

3 3( )( )kH x x-  is the Heaviside unit step function. The coefficient ( )kaag , which 

depends upon the material properties of each layer, can be obtained from the 

interface continuity conditions [12,13].  

The time-dependent in-plane warping functions can be explicitly determined 

from those of EHOPT given in Eq. (2.2.7), so that the general form of 3-D 

displacement fields can be expressed in the compact form: 
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where the out-of-plane warping function 3( )iW x  can be negligible in Eq. (2.2.9) 

because it is considerably small as compared to the effective transverse shear 

strains, af , for moderately thick plate in general [18]. 

By applying the Laplace transformation to the time-dependent displacement 

fields, displacement fields in Laplace domain can be given by the following 

relationship: 
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in which 
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where the superscript 
*( )·  denotes the variables in the Laplace domain, 

*( )kaag  

represents the change of the slope angle at each layer in the Laplace domain to 

satisfy the transverse shear continuities [12, 13, 58]. The detailed expression of 

*( )kaag  can be found in Appendix D. 

The displacement fields of FSDT in the Laplace domain are given by: 
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From Eqs. (2.2.10) and (2.2.12), the corresponding in-plane and transverse shear 

strains are subsequently given as:  
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  (2.2.13) 

in which 
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  (2.2.14) 

 

2.2.3.2. Relationships between the two theories (EHOPT and 

FSDT) in the Laplace domain 

Although conventional FSDT is attractive due to its simplicity and efficiency, it 

requires appropriate shear correction factors and fails to provide accurate results 

for the through-the-thickness local distribution of stress and deformations. In 

order to compensate for the aforementioned drawbacks, the conventional FSDT 

is reconstructed via the proper strategies.  

In the proposed approach, the displacement field assumptions of the 

conventional FSDT are retained so that extensional and bending strain energy is 

the same as those of the conventional FSDT. However, the transverse shear 

strain energy will be derived from that of EHOPT by introducing the averaged 

strain concept in this subsection. 

In order to derive the relationships between the EHOPT and FSDT, the least-

square sense approximation is applied to the displacement fields in the Laplace 

domain (Eqs. (2.2.10) and (2.2.12)). Consequently, the least-square sense 

minimization of error between EHOPT and FSDT yields the following 

relationships [18]: 
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in which 

 * * * *
33

1 12
, .C x

h h
ag ag ag ag= F G = ×F   (2.2.16) 

From Eq. (2.2.15) and the out-of-plane warping condition 3 0W » , the 

averaged transverse shear strain, 
* *

3,
oua aq +  from Eq. (2.2.12), can be expressed 

in terms of the effective transverse shear strain 
*
af  as follows: 

 * * * * *
3 3, .oua a a ag gg q f= + = G ×   (2.2.17) 

On the other hand, the relationships for the in-plane strain fields can be 

expressed in the form of a matrix: 
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,

,

o o h

o o h

C= + ×

= +G ×

%

%

E E K

K K K
  (2.2.18) 

* *,o oE K  etc. are defined in Appendix E. 

From Eqs. (2.2.17) and (2.2.18), the strain energy for the EHOPT can be 
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transformed into that of conventional FSDT because the strain relationships 

between the two theories are defined.  

In contrast with the linear elastic model, the strain energy expression for the 

linear viscoelastic model is considerably complicated because it contains the 

process of time integration. Thus, we use a compact expression for the reduced 

strain energy in the Laplace domain as follows:  

 * * * * * * *
3 3 3 3( ) ( ) ( ) ( ) ( ) ( ) ,U Q s Q sabgm gm ab a b b a

h
h e h e h h g h g hé ù= I - + -ë û   (2.2.19) 
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The complex variable in Eq. (2.2.20) is only used to define the strain energy 

relationships between the two theories, so it is not involved in deriving the 

governing equation for the present theory. The detailed procedure for Eq. (2.2.19) 

is presented in Appendix F. 

The reduced strain energy of EHOPT for the linear viscoelastic problem can be 

written by substituting Eq. (2.2.13) into Eq. (2.2.19): 
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  (2.2.21) 
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The stiffness matrices are defined in Appendix E. 

To utilize the variables of the conventional FSDT, the reduced strain energy of 

EHOPT should be rewritten based on the strain relationships of Eqs. (2.2.17) 

and (2.2.18). Substituting the previously mentioned strain relationships (Eqs. 

(2.2.17) and (2.2.18)) into the above expression of the strain energy (Eq. 

(2.2.21)) yields the following equation. 

 

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

* * * * * * *

* * * * * * *

* * * * *

* * * * * * *

* * * * * * * *

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T

o h o h

T

o h o h

T

o h h

T

o h o h

T

EHOPT o h o h

o

C A s C s

C B s s

C E s

B s C s

U D s s
h

h h h h

h h h h

h h h

h h h h

h h h h

- - - -

+ - - -G -

+ - -

+ -G - - -

=I + - G - -G -

+

% %

% %

%

%%

% %

E K E K

E K K K

E K K

K K E K

K K K K

K( )
( )
( )

( )

* * * * *

* * * * *

* * * * *

* * * * * * * *

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( )

T

h h

T T
h o h

T T
h o h

T T T
h h

F s

E s C s

F s s

H s G s

h h h

h h h

h h h

h h g h g h

é ùæ ö
ê úç ÷
ê úç ÷
ê úç ÷
ê úç ÷
ê úç ÷
ê úç ÷
ê úç ÷
êç ÷
êç ÷
êç ÷
êç ÷
ê - G -ç ÷
êç ÷
êç ÷+ - - -
êç ÷
êç ÷+ - -G -
êç ÷
êç ÷+ - + G G -
êç ÷
è øë û

%

%

%

K K

K E K

K K K

K K

.

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

  (2.2.22) 

After rearranging the strain energy expression of Eq. (2.2.22), one can 

decompose *
EHOPTU  into those of the conventional FSDT-like theory and error 

energy as follows: 

 * * * ,EHOPT FSDT like ErrorU U U-= +   (2.2.23) 

The detailed expression for 
*
FSDT likeU -  and 

*
ErrorU  is given by 
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Where 

 

* * * * *
1

* * * * *
2

* * * * * * *
3 1 2

,

,

.T T T T

R A C B E

R B C D F

R C R R E C F H

= - - G +

= - - G +

= - × - G × - - G +

% %

% %

% %% %

  (2.2.26) 

ErrorU  indicates the strain energy difference between the two theories. Then, the 

relationship matrices C%  and G%  are determined by minimizing ErrorU  to be as 

close to zero as possible under the condition where 1 2, 0R R » . Once we have 

found the solution for minimizing the error energy ( 0ErrorU » ), the strain energy 

of EHOPT can be successfully expressed in terms of the variables of 

conventional FSDT-like theory and their effective transverse shear stiffness can 

be obtained by 
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Note that the stiffness matrices coincide with those of conventional FSDT 

except for the transverse shear stiffness matrix. Matrices *A , *B  and *D  are 

the well-known transformed reduced stiffness of the conventional FSDT in the 

Laplace domain, whereas the transverse shear stiffness moduli are modified by 

applying the strain energy transformation. Therefore, the effect of the shear 

correction factor is automatically identified through mechanics-based 

consideration in the present model.  

 

 

2.2.3.3. Recovery process 

Once the linear viscoelastic behavior was examined with the conventional 

FSDT-like theory, the displacement fields of EHOPT in the Laplace domain 

could be recovered by substituting the relationships of Eq. (2.2.15) into the 

displacement fields of Eq. (2.2.10) as follows [18]: 

 
{ } ( )

1* * * * * * *
3 3, 3 3

* *
3 3

( ) ( ) ( ) ( ) ( ),

( ) ( ).

o o
i

o
i

u x u x x u x x C x

u x u x

a a b a b ag ag gm m b

b

g
-

= - × + F - × G ×

=
  (2.2.28) 

Consequently, In-plane and transverse stresses are estimated based on the 

recovered EHOPT displacements. Note that the averaged values, which are 

expressed as ( )· , are obtained from the FSDT-like theory with the effective 

transverse shear stiffness Ĝ  instead of the conventional FSDT with G
)

, where 

3 3G Qa b=
)

. 
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Theoretical calculation results for the present theory in the Laplace domain 

should be converted into those of the real-time domain to examine the time-

dependent behaviors. Several numerical techniques have been proposed to 

conduct inverse Laplace transformations and some researchers have listed and 

compared the numerical algorithms for that inverse process [58-63]. 

In this study, we use the fast Fourier transform (FFT) method to convert the 

results in the Laplace domain back into the real-time domain. The inversion 

technique based on the Fourier series method is given as follows: 

 ( ) ( ) ( )
1

1
Re 1 .

2

at m
k

k

e k
f t F a F a j

t t

p

=

ì üæ ö
= + + -í ýç ÷

è øî þ
å   (2.2.29) 

( )F s  is a function in the Laplace domain, whereas ( )f t  is a converted function 

in the real-time domain. The parameters, a  and m , should be optimized to 

improve their accuracy for the Laplace inversion. The accuracy of FFT 

techniques for complicated functions is less than desirable. For the polynomial 

based displacement field, however, inversion using FFT techniques can provide 

accurate results for both dynamic and quasi-static problems, and the accuracy 

can be further improved by optimizing the parameters used in Eq. (2.2.29). From 

the FFT techniques, one can analyze the linear viscoelastic behaviors in the real-

time domain [58]. 

 

2.2.4. Numerical examples and discussion 

In order to verify the efficiency and accuracy of the present theory (EFSDT in 
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the Laplace domain), rectangular composite and sandwich plates with cross-ply 

layup configurations are evaluated. As mentioned previously, Laplace 

transformation is still limited for application to the nonlinear viscoelastic 

constitutive equation. Thus, quasi-static analysis results for linear viscoelastic 

materials are taken into account in this work as numerical examples. The quasi-

static bending problem of the plates subjected to doubly sinusoidal loading is 

used as a test-bed, in which the Pagano solution is labeled as “exact”. The 

results of the present theory are compared to the exact solution as well as those 

of conventional FSDT and EHOPT. The real composite material considered 

herein is GY70/339 and the material properties are measured at room 

temperature (T=75oF) and low moisture conditions (M=0.1%) to determine the 

linear viscoelastic behavior. The linear elastic material properties of GY70/339 

are given as: 

 
/ 47.73, / 0.68,

/ 0.34, 0.31.

L T LT T

TT T LT TT

E E G E

G E v v

= =

= = =
  (2.2.30) 

where the subscript ( )L·  and ( )T·  represent a fiber direction and a 

perpendicular direction to the fibers, respectively. The time-dependent linear 

viscoelastic function, ( )ijkl tj , for the material GY70/339 is listed in Table 2.2.1, 

which  can be obtained from the master curve of Crossmann’s experimental data 

[44]. For the carbon-fiber reinforced composite materials, one can assume that 

the modulus 1111( )Q t  is time-independent (i.e., 1111( ) 1tj = ), because the fiber 

modulus is dominant. On the other hand, it is assumed that the other moduli 
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have the same time-dependent linear viscoelastic function ( ( ) ( )ijkl t tj j= ) due to 

their matrix-dominant characteristics. 

For the sandwich plates, the linear elastic material properties of a face sheet are 

the same as Eq. (2.2.30), and those of the core material are taken as  
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  (2.2.31) 

As given in Table 2.2.2, the decaying rate of the time-dependent linear 

viscoelastic function in the core material is relatively faster than that of 

GY70/339 mainly due to the softness of the core portion. 

For all of the examples considered herein, simply supported boundary conditions 

are applied. The mechanical loading is prescribed on the top surface of the 

plates, such that  
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where 0( )H t t-  is the Heaviside unit step function which accounts for linear 

viscoelastic creep ( 0t t> ) and relaxation ( 0t t< ) processes.  

The normalized values reported in Figs. 2.2.1-2.2.10 are defined by 
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where the length-to-thickness ratio, S, are selected for both the laminated 

composite and sandwich plates (S=4 or 6 for composite plates, S=10 for 

sandwich plates), and indicates that the plate is considerably thick.  

The following six different cases are investigated to demonstrate the accuracy 

and efficiency of the present theory. 

· Case 1: A four-layered symmetric cross-ply [0/90/0] composite square plate. 

Each layer has the same thickness h/3. 

· Case 2: A four-layered anti-symmetric cross-ply [90/0/90/0] composite square 

plate. Each layer has the same thickness h/4. 

· Case 3: A ten-layered symmetric cross-ply [0/90/0/90/0]s composite square 

plate. Each layer has the same thickness h/10. 

· Case 4: An eight-layered anti-symmetric cross-ply [90/0/90/0]2 composite 

square plate. Each layer has the same thickness h/8. 

· Case 5: A symmetric cross-ply [0/Core/0] sandwich square plate, the thickness 

of each face sheet is equal to h/10. 

· Case 6: An anti-symmetric cross-ply [90/Core/0] sandwich square plate, the 

thickness of each face sheet is equal to h/10. 

The two types of well-known processes for the linear viscoelastic behavior are 

considered; these are the creep and relaxation processes.  

 

2.2.4.1. Creep strain and stress distribution 
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In the creep process, we investigate the time-dependent creep strains and stress 

distributions under steady-state external loading conditions (i.e., ( )p t =const). 

The normalized deflections of the linear elastic and linear viscoelastic responses 

are presented in Table 2.2.3 for the laminated composite plates (Case 1-4). The 

results obtained herein are compared to those of the conventional FSDT and 

EHOPT proposed by Nguyen Sy et al [35, 36]. From Table 2.2.3 , it can be seen 

that the linear elastic deflections are constant over the elapsed time, because the 

time-dependent effect is not considered in linear elastic analysis. In contrast, the 

viscoelastic deflections increase over time. For the composite plates (Case 1-4), 

the viscoelastic deflections have the same value as the linear elastic solutions at 

the initial time. Subsequently, the deflections vary from the linear elastic 

solutions to 7.98-8.98% after 106 s (over 11 days) and to 19.71-22.25% after 

108s (approximately over 3 years). This tendency is dependent upon the 

viscoelastic decaying rate of the relaxation moduli or the damping effect. In 

addition, it is observed that the linear elastic deflections of the present theory 

and EHOPT give the best compromised results as compared to the exact solution 

when both symmetric and anti-symmetric laminated composite plates are 

considered. The linear elastic and linear viscoelastic deflections for the 

sandwich plates are presented in Table 2.2.4. For the sandwich plates (Case 5-6), 

it is found that the variation rate of viscoelastic deflections increase faster than 

those of the composite plates due to their flexible core material. They are 

sequentially increased by 10.21-54.85% after 106 s and 24.67-114.94% after 108s. 

As shown in Table 2.2.4 , the linear elastic deflections predicted by the 

conventional FSDT shows very poor performance, while those of the present 
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theory and EHOPT provide reliable results compared to the exact solution. Even 

for the very thin sandwich plate, S=100, the conventional FSDT has a significant 

error [18, 19]. It is noteworthy that the first-order theory is not a satisfactory 

method to analyze the global response of sandwich plates. 

To further investigate the linear viscoelastic creep strain, the distributions of in-

plane displacements as well as transverse shear stresses are considered for both 

laminated composite plates (S=4) and sandwich plates (S=10). The variations of 

normalized viscoelastic in-plane displacements with respect to the elapse of time 

are illustrated in Figs. 2.2.1-2.2.3. The results obtained herein are compared to 

the exact solutions as well as those predicted by conventional FSDT and EHOPT. 

In all the plots shown below, the black lines represent the exact solution, while 

the red lines denote the results of EHOPT and the magenta lines represent those 

of conventional FSDT. Results from the present theory are shown in blue lines, 

and variations in their viscoelastic behavior are expressed using symbolic 

markers. The in-plane displacements of cross-ply composite plates (Case 1 and 2) 

are plotted in Figs. 2.2.1 and 2.2.2 . From the results, one can see that the 

present theory and EHOPT show good agreement with the exact solution. Zig-

zag variations of in-plane displacement are suitably captured by the present 

theory and EHOPT, while conventional FSDT is unable to represent the zig-zag 

distribution. To assess the present theory further for sandwich plates, the in-

plane displacements of a sandwich plate (Case 5) is presented in Fig. 2.2.3 . A 

sandwich plate is a challenging problem due to its flexible core material. From 

Fig. 2.2.3, the result of conventional FSDT shows inaccurate distribution as it 

cannot describe the severe zig-zag distribution with slop discontinuities at the 
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layer interfaces, whereas the present theory and EHOPT can. 

When it comes to dealing with viscoelastic responses, these theories provide 

flexible solutions over time. For the carbon-fiber reinforced laminated plates, 

the out-of-plane responses are more likely to be influenced by viscoelastic 

effects than the in-plane responses.  

This tendency is natural in arbitrary layup laminates since viscoelastic 

characteristics are attributed to matrix-dominant behavior that is prominent in 

the out-of-plane direction. It is important to note that in the present theory and 

EHOPT, the in-plane displacement fields contain the 3
ou  component. Thus, both 

models predict fairly flexible deformations as time progresses. 

Unlikely both theories, the conventional FSDT exhibits only slight variations of 

in-plane responses since FSDT does not account for the 3
ou  component in its in-

plane displacement fields. 

The variations in the normalized transverse shear stresses with the elapsed time 

for the creep process are presented in Figs. 2.2.4 and 2.2.5, where the results of 

transverse shear stresses are obtained using the equilibrium approach. Figures 

2.2.4 and 2.2.5  compare the transverse shear stresses of symmetric cross-ply 

composite (Case 1) and sandwich plates (Case 5). Figures. 2.2.4 and 2.2.5 show 

that the present theory and EHOPT are capable of providing considerably 

accurate transverse shear stresses for both the laminated composite plates (Fig. 

2.2.4) and the sandwich plates (Fig. 2.2.5). The kink shapes of transverse shear 

stress can be accurately captured by the present theory and EHOPT, whereas 
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conventional FSDT cannot represent the kink shape. In simple viscoelastic 

models such as the Maxwell and Kelvin model, distributions of stresses are 

time-independent for the creep process. However, as shown in Figs. 2.2.4 and 

2.2.5, the individual ply stresses can change over time for the general 

viscoelastic model because of their different viscoelastic characteristics 

according to the direction of the fibers. Figures 2.2.4 and 2.2.5 show that the 

kink shapes of the transverse shear stresses become significant as time passes 

due to variations in their individual ply stresses. The transverse shear forces, 

however, remain consistent with the passage of time for the creep process 

because the external loading applied is constant. 

 

2.2.4.2. Stress relaxation 

We also investigate the time-dependent stress relaxation under the steady 

deflection condition ( 3u =const) assigned. In the relaxation process, the 

distributions of the stresses tend to decrease as time passes due to the 

viscoelastic effect of the decayed relaxation modulus. This statement is 

explicitly demonstrated in Figs. 2.2.6-2.2.10. 

To investigate the stress relaxation, the distributions of in-plane and transverse 

shear stresses are evaluated for the laminated composite plates (S=4) as well as 

the sandwich plates (S=10). 

Figures 2.2.6 and 2.2.7 show the linear-elastic as well as the viscoelastic 

distributions of the normalized in-plane stresses over time for the relaxation 
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process. With regard to prediction of in-plane stresses, one can see that the 

present theory and EHOPT can accurately predict sudden change at the layer 

interface whereas the predictions by the conventional FSDT deviate significantly 

from the exact solution. Especially for the sandwich plate (Fig. 2.2.7), 

conventional FSDT provides excessively underestimated results for the in-plane 

stress distribution. This means that conventional FSDT may not be an 

appropriate model to analyze the mechanical response of sandwich plates. As far 

as viscoelastic behavior is concerned, it can be observed that the viscoelastic 

responses of the in-plane stresses are increased in the upper-half of the plates, 

whereas they are decreased in the lower-half over time. It is noteworthy that the 

bending moment decreases gradually with the elapsed time for the relaxation 

process. 

The through-the-thickness distributions of the normalized transverse shear 

stresses over time for the relaxation process are plotted in Figs. 2.2.8-2.2.10. 

The transverse shear stresses of the cross-ply composite plates (Case 2 and 4) 

are shown in Fig. 2.2.8 and 2.2.9. The present theory and EHOPT show 

excellent agreement with the exact solution for the transverse shear stresses. 

They are able to accurately capture the severe kink shape in the vicinity of the 

layer interfaces, whereas the conventional FSDT does not. Fig. 2.2.10 presents 

the transverse shear stress results for a sandwich plate (Case 6). Even if the 

sandwich plates are considerably thick (S=10), it can be observed that their 

unsymmetrical kink shape is precisely described by the present theory and 

EHOPT. For the viscoelastic behavior, it can be seen that the transverse shear 

stress decreases over time. In contrast to the creep process, in which the shear 
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force is almost constant, the transverse shear forces during the relaxation 

process gradually decrease as time passes because of the viscoelastic effect of 

the decayed relaxation modulus. 
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Table 2.2.3. The time-dependent function of relaxation modulus of GY70/399 

composite material 

p bp ap 

0 0.669825e-1 ∞ 

1 0.813977e-2 5.516602214e+02 

2 0.484272e-1 1.494783951e+04 

3 0.710360e-1 5.288067476e+05 

4 0.114155e+0 1.846670914e+07 

5 0.102892e+0 5.253922053e+08 

6 0.146757e+0 1.799163029e+10 

7 0.148508e+0 4.761315266e+11 

8 0.150514e+0 1.477467149e+13 

9 0.696426e-1 4.976486103e+14 

10 0.729459e-1 8.174141919e+15 

 

  



77 

 

 

 

Table 2.2.2. The time-dependent function of relaxation modulus of the core of 

sandwich plate 

p bp ap 

0 0.3844 ∞ 

1 0.0806 0.9196 

2 0.0172 0.9812e+01 

3 0.0429 0.9527e+02 

4 0.0491 0.9432e+03 

5 0.0647 0.9207e+04 

6 0.0753 0.8997e+05 

7 0.0888 0.8685e+06 

8 0.0874 0.8514e+07 

9 0.1096 0.7740e+08 
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Table 2.2.3. The value of time-dependent creep deflection W for the laminated 

composite plates 

Lay-up case Theory 

Linear-

elastic 

solution 

Time (Viscoelastic solution) 

t=100s t=102s t=104s t=106s t=108s 

[0/90/0] 

(S=6) 

Exact 0.7678 - - - - - 

FSDT 0.6981 0.6981 0.6989 0.7147 0.7649 0.8631 

EFSDT  0.7980 0.7980 0.7990 0.8179 0.8776 0.9940 

EHOPT  0.7656 0.7656 0.7664 0.7832 0.8360 0.9371 

[90/0/90/0] 

(S=6) 

Exact 0.7247 - - - - - 

FSDT 0.6138 0.6138 0.6144 0.6260 0.6628 0.7348 

EFSDT 0.7253 0.7253 0.7261 0.7415 0.7904 0.8867 

EHOPT 0.7052 0.7052 0.7060 0.7204 0.7662 0.8555 

[90/0/90/0]2 

(S=6) 

Exact 0.6300 - - - - - 

FSDT 0.5777 0.5777 0.5782 0.5896 0.6255 0.6963 

EFSDT 0.6374 0.6374 0.6381 0.6513 0.6936 0.7769 

EHOPT 0.6300 0.6300 0.6306 0.6435 0.6845 0.7648 

[0/90/0/90/0]s 

(S=6) 

Exact 0.6116 - - - - - 

FSDT 0.5736 0.5736 0.5742 0.5855 0.6217 0.6930 

EFSDT 0.6228 0.6228 0.6235 0.6365 0.6781 0.7600 

EHOPT 0.6158 0.6158 0.6165 0.6291 0.6694 0.7484 
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Table 2.2.4. The value of time-dependent creep deflection W for the sandwich 

plates 

Lay-up case Theory 

Linear-

elastic 

solution 

Time (Viscoelastic solution) 

t=100s t=102s t=104s t=106s t=108s 

[0/Core/0] 

(S=10) 

Exact 9.3868 - - - - - 

FSDT 1.2334 1.2350 1.2385 1.2685 1.3593 1.5377 

EFSDT 10.1579 10.6335 11.3698 12.7771 15.7295 21.8333 

EHOPT 9.4279 9.8346 10.4529 11.6234 14.0067 18.6344 

[90/Core/0] 

(S=10) 

Exact 10.3052 - - - - - 

FSDT 4.1526 4.1564 4.1678 4.3020 4.7190 5.5369 

EFSDT 10.5281 10.9281 11.5503 12.7760 15.3576 20.6926 

EHOPT 10.3501 10.7164 11.2814 12.4029 14.7509 19.3267 
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Fig. 2.2.1. [0/90/0]: time-dependent in-plane displacements for the creep process 

 

 

Fig. 2.2.2. [90/0/90/0]: time-dependent in-plane displacements for the creep 

process 
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Fig. 2.2.3. [0/Core/0]: time-dependent in-plane displacements for the creep 

process 

 

 

Fig. 2.2.4. [0/90/0]: time-dependent transverse shear stresses for the creep 

process 
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Fig. 2.2.5. [0/Core/0]: time-dependent transverse shear stresses for the creep 

process 

 

 

Fig. 2.2.6. [0/90/0]: time-dependent in-plane stresses for the relaxation process 
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Fig. 2.2.7. [0/Core/0]: time-dependent in-plane stresses for the relaxation 

process 

 

 

Fig. 2.2.8. [90/0/90/0]: time-dependent transverse shear stresses for the 
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relaxation process 

 

Fig. 2.2.9. [90/0/90/0]2: time-dependent transverse shear stresses for the 

relaxation process 

 

 

Fig. 2.2.10. [90/Core/0]: time-dependent transverse shear stresses for the 

relaxation process 
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Chapter 3 

Enhanced Higher-order 

Shear Deformation Theory 

3.1. Enhanced Higher-order Shear Deformation Theory 

based on the MVT 

3.1.1. Literature Review 

As mentioned in previous chapter 2, with the increased use of laminated 

composite structures, a number of analysis models are therefore developed to 

accurately predict their static and dynamic responses. Conventional theories 

(CLPT, FSDT), higher order theories (TSDT, HSDT, LCW), refined zig-zag 

theories (EHOPT, EHOZT) and analysis models based on post-process method 

(EFSDT, EFSDTM) have been sequentially developed. Among others, theories 

based on post-process method is very attractive because it can provide a 

reasonable compromise between solution accuracy as well as efficiency. 
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Moreover, they have the same primary variables as the FSDT, which is well 

suited for the implement to a commercial software. They however have a 

drawback in that the boundary layer effect is not properly captured. Even though 

both EFSDT and EFSDTM is capable to predict its qualitative behavior, they are 

still based on the FSDT and share the same fundamental characteristics as the 

FSDT. 

There have also been the C0-based higher-order zigzag plate theories reported in 

literature to address the aforementioned issues. Averill [64] employed the penalty 

function concept to circumvent the C1 continuity while satisfying the shear stress 

continuity and free conditions. Tessler et al. [65] developed a refined zigzag plate 

theory, in which they did not enforce full continuity of the transverse stresses. 

However the results obtained therein were matched very well with elasticity and 

3D FEM solutions for both simply supported and clamped-free boundary 

conditions, when the equilibrium approach is adopted. Petrolo et al. [66] 

developed the mixed plate theories based on the axiomatic/asympotic method [67] 

and the Carrera Unified Formulation [68]. Even though the models developed are 

highly accurate as compared to the elasticity approach, the number of degrees of 

freedom is relatively high. 

In this section, the enhanced higher order shear deformation theory based on 

mixed variational theorem (EHSDTM), which was developed by Kim [20], is 

extended to the boundary layer state prediction for clamped and free boundaries. 

In the previous work [20], the in-plane correction factor did not considered in the 

analysis model, and thus the recovered stress fields cannot satisfy the self-

equilibrium state. It plays a crucial role in the recovering process to improve the 

in-plane and transverse stresses. Thus, in-plane correction factor is additionally 
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introduced in the proposed model to satisfy the self-equilibrium state. 

 

The present EHSDTM is able to provide the following features: 

 

l The C0 characteristics for the favorable finite element implementation. 

l The minimal number of degrees of freedom (the same as the classical 

HSDT). 

l The accurate prediction of in-plane and transverse stresses including the 

boundary layer state 

 

To achieve the main features of the present plate theory, three key ingredients 

are formulated as follows: 

 

l The mixed variational theorem is employed. The transverse shear stress 

field is derived by employing the quantic zig-zag displacement field. The 

displacement field is taken as the same as the conventional HSDT. 

l The strain energy transformation is carried out by expressing the variables 

of the stress field in terms of those of the conventional HSDT. This yields 

the refined HSDT model which is referred to as the EHSDTM. 

l The stress recovery process is then applied, in which the quantic 

displacement field is expressed by the EHSDTM solution. The in-plane 

stress filed is corrected by introducing the factor that is calculated by 

minimizing the stress resultant variation between the two models. The 

transverse shear stress is subsequently computed by employing either the 
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constitutive or equilibrium approaches. 

 

The transverse shear stresses via the constitutive approach requires only the first-

order derivatives of the primary variables of the EHSDTM. Using the transverse 

shear stresses, the transverse normal stress can be calculated via the equilibrium 

approach. Consequently the highest-order of derivatives is just the second one 

while providing the comparable accuracy to the quintic zigzag model. Therefore 

proposed model makes it possible to predict the boundary layer state. For the 

purpose of the proper illustration of the EHSDT, two examples are considered, 

such as simply-supported and clamped-free boundary conditions. To demonstrate 

accuracy and efficiency of the present theory, the results obtained herein are 

compared to those of three-dimensional elasticity (3D exact), three-dimensional 

finite element method (3D FEM) and the models available results in the literature. 

 

3.1.2. Mixed Formulation 

To accurately and efficiently analyze the boundary layer state of the laminated 

composite and sandwich plates, EHSDTM is developed in this dissertation via 

the mixed variational theorem. In the MVT, the first variation of two-

dimensional HR functional, which is given in Eqs. (1.2.4) and (1.2.5), is 

employed to derive the relationships between the independent two fields (HSDT 

and quantic zig-zag model).  
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3.1.2.1. Independent transverse shear stress fields 

In the MVT, two independent displacement fields (
iu ) and transverse shear stress 

fields ( *
3as ) are assumed in the MVT. In this subsection, a quintic zig-zag model 

is introduced to derive independent transverse shear stress fields which are to be 

used as *
3as  in MVT. A reliable transverse shear stress field, which fulfills the 

equilibrium conditions for transverse shear stresses (shear free conditions on the 

surface of the structures as well as shear continuity conditions at the layer 

interfaces), can be derived by employinga the displacement field that includes a 

quintic polynomial and a linear zigzag function. 

The displacement field is initially assumed by 
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å

å   (3.1.1) 

where N is the number of layers, and 3 3( )( )kH x x-  is the Heaviside unit step 

function. 

The continuity conditions of transverse shear stresses at layer interfaces are 

applied, as are the bounding traction-free conditions on the top and bottom 

surfaces. The transverse shear strain is then obtained as follows: 

 
3

( ) ( 2)
3 ,3 3, 3

1

( ) ( ) ( ),i i
i

i

x u u x xa a a ab b ag y +

=

= + =åA   (3.1.2) 
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in which 
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where 

 3
3 3( ) 3 3( )

1
( , ) ( ).

2
k k

x
f x x H x x

h
= - - + -   (3.1.4) 

abd  is the Kronecker delta function. The terms of 
( ) ( ),k ka bab ab  and 

( )kcab  are the 

functions of the material properties that account for the transverse shear stress 

continuity, and their explicit calculations can be found in Ref. [20]. 

By using the Eq. (3.1.2), the transverse shear stress to be used in Eqs. (1.2.4) 

and (1.2.5) can be calculated by 

 3 3 3 3,Ca a b bs g=   (3.1.5) 

which the transverse shear strains has three independent variables 
( ) ( 3,4,5)i igy = . 

Those variables are eventually expressed in terms of the variables used in the 

assumed displacement fields ( )iu  that will be described in the next subsection. 

The independent transverse shear strains and stresses make it possible to find the 

reasonable relationships between the independently assumed displacement fields. 
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3.1.2.2. Displacement fields 

 The displacement fields to be used in Eqs. (1.2.4) and (1.2.5) is assumed to 

have the following form. 
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  (3.1.6) 

which is often referred to as a conventional higher-order shear deformation 

theory or simply HSDT. In what follows, it will shown that the variables given 

in Eq. (3.1.6) become the primary variables in the two-dimensional Hellinger-

Reissner functional of Eq. (1.2.4). Additionally, the components of the 

conventional HSDT are given with overbar ( )·  to clear distinguish between 

those of quintic zig-zag model and conventional HSDT. By employing the 

displacement fields given in Eq. (3.1.6), corresponding strain fields can be 

subsequently derived as follows: 
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where  
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By using the Eq. (3.1.7), the in-plane stress to be used in Eqs. (1.2.4) can be 

calculated by 

 ,Qab abgw gws e=   (3.1.9) 

where Qabgw  are the reduced elastic stiffness tensor given in Eq. (1.2.6). 

 

3.1.2.3. Relationships between the two theories 

 From the constraint equation in Eq. (1.2.5), the variables of quintic zig-zag 

model given in Eq. (3.1.2) can be expressed in terms of the variables of 

conventional HSDT given in Eq. (3.1.6). Substituting (3.1.2), (3.1.5) and (3.1.7) 

into the first term in Eq. (1.2.5) yields 
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in which 
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h
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  (3.1.12) 

Note that Eq. (3.1.10) plays a crucial role in deriving the enhanced higher-order 

shear deformation theory based on the MVT (EHSDTM) and recovering the stress 

and displacement fields. This will be described in detail in the following 

subsection. 

 

3.1.3. Enhanced higher-order shear deformation theory based on 

the MVT 

In this subsection, the enhanced higher-order shear deformation theory is 

derived by substituting the transverse shear stress field and the displacement 

fields obtained in the previous subsection into the two-dimensional Hellinger-

Reissner functional of Eq. (1.2.4). Thus, governing equation of the present 

theory is based on the FSDT_TN. In addition, recovery process is also 

considered in this section to more accurately predict the thermo-elastic response 

of the laminated composite structures. Once we obtained the relationship 

between the independent two fields which is given in Eq. (3.1.10), the HR 

functional can be rewritten in terms of the primary variables of conventional 

HSDT as follows: 
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where 

 ( ) ( ) ( 1)
3 3 3, , ,i i i iN M x Q xab ab ab ab a as s s-= = =   (3.1.14) 

in which the transverse shear force Qa  needs a special attention, because the 

transverse shear stress 3as  is not expressed in terms of the primary variables of 

conventional HSDT. By applying Eq. (3.1.10) to the transverse shear force, one 

can obtain as follows: 
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where 

 1
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  (3.1.16) 

which is the transverse shear stiffness of EHSDTM that differs from those 

obtained by either the fifth-order zig-zag theory (Eq. (3.1.3)) or conventional 

HSDT (Eq. (3.1.6)). 

 

3.1.3.1. Governing equations and boundary conditions 
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 The governing equations are obtained by applying the integration by parts to 

the Eq. (3.1.13). The governing equations of EHSDTM are then given as follows: 
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and the associated boundary conditions are given by 
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  (3.1.18) 

Here one can clearly see that the present EHSDTM does modify the transverse 

shear stress resultant only, as compared to a conventional HSDT. Thus a 

physical inconsistency (or anomaly) in the definition of the transverse shear 

force, which were discussed in Refs. [64, 65], dose not present in the proposed 

model. 

 

3.1.3.2. Displacement and stress recovery 

Once the governing equations of EHSDTM (Eq. (3.1.17)) is solved, one can 

recover the fifth-order zig-zag displacement field, Eq. (3.1.1), in terms of the 

variables of the EHSDTM. Utilizing the transverse shear strain given in Eq. 

(3.1.2), the displacement field can be rewritten as: 
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in which 
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h
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and 
( 2)i
by +

 can be expressed by the transverse shear strain of the EHSDTM, 

( )
3
igg , using the relationships of Eq. (3.1.10). The transverse displacement 3u  is 

assumed to be the same as the EHSDTM, since it is improved as compared to the 

conventional HSDT. 

 Now one needs to express the constant displacement 
(0)ua  in terms of the 

variables of the EHSDTM. Unlike the constant displacement component in 

EHSDTM, the recovered one does not necessarily mean the displacement at the 

middle plane of a plate. This enforces us to employ an average matching 

between the EHSDTM and the recovered one. The least square minimization of 
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the difference between two displacement fields with respect to the unknown 

(0)ua  is given by 

 ( )
(0)

2
min 0,
u

u u
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a a- =   (3.1.22) 

which yields 
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where ca  is an unknown function to be determined later. This in-plane 

correction factors play a crucial role to calculate the stresses using three-

dimensional stress equilibrium equations. The recovered displacement field is 

finally obtained by 
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which include the first-order derivatives with respect to in-plane coordinates xa . 

The determination procedure of the in-plane correction function ca  is given in 

Appendix G. 

 To obtain the improved stress components, strains are calculated first by using 

Eq. (3.1.24), subsequently stresses are manipulated via the two-dimensional 

constitutive equation given in Eq. (1.2.6). There are two ways to calculate 

transverse shear stresses, such as constitutive and equilibrium approaches. The 

constitutive approach is to use the transverse shear constitutive equation (Eq. 
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(3.1.5)), in which the shear strains are evaluated by the displacements of Eq. 

(3.1.24). The results obtained in this way are called ‘EHSDTM(c)’. The 

equilibrium approach is to utilize the three-dimensional stress equilibrium 

equation such that 

 
3

3 , 3/2
ˆ .

x

h
dxa ab bs s

-
=-ò   (3.1.25) 

Once the shear stresses of Eq. (3.1.25) are calculated, a transverse normal stress 

can be improved. This however requires fourth-order derivatives with respect to 

in-plane coordinates xa . To circumvent this, the transverse shear stresses via the 

constitutive equation (Eq. (3.1.5)) are utilized, as the equilibrium approach is 

employed. That is, 
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x

h
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Henceforth, the transverse shear and normal stresses predicted by the Eqs. 

(3.1.25) and (3.1.26) are referred to as ‘EHSDTM(e)’. 

 

3.1.4. Numerical results and discussion 

To demonstrate the efficiency and accuracy of a present theory, semi-infinite 

laminated composite plates are considered in this study. Two boundary conditions 

are taken as test-beds, which are simply-supported (SS) and clamped-free (CF) 

boundary conditions (see Fig. 3.1.1). The SS conditions are useful when the 

accuracy assessment of proposed theories is needed, while the CF conditions are 
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essential for the investigation of edge-effects. The SS plates are subjected to a 

sinusoidal loading, and the CF plates are under an uniformly distributed pressure. 

The material properties of each ply are assumed to have 

 
172.4 , 6.9 , 3.45 ,

1.38 , 0.25,

L T LT
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= = =
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where subscripts ‘L’ and ‘T’ denote the direction parallel to the fiber and the 

direction perpendicular to the fiber, respectively. For sandwich configurations, 

the material properties of face sheets are the same as those in Eq. (3.1.27), and 

the core material properties are given as: 
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Four different laminate configurations are considered, which are listed in Table 

3.1.1. The fiber angle is misaligned in order to utilize the work of Pagano, and 

the exact solutions are reproduced, according to the fiber angles given in Table 

3.1.1, in this paper. 

For the purpose of comparison, the displacement and stresses reported herein are 

normalized as follows: 
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where S is the length-to-thickness ratio, 1 /L h , and 0q  is the maximum of an 
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applied pressure.  

 

 

3.1.4.1. Interior solutions: simply-supported boundary conditions 

Simply-supported conditions are analyzed first, in order to analytically asses the 

accuracy of interior solutions via the present EHSDTM theory. The results 

obtained herein are then compared to those of FSDT, HSDT, EFSDT [18], 

EFSDTM [19], FAMPA [69] as well as the elasticity approach. The results of 

FSDT, HSDT, EFSDT, EFSDTM and elasticity approach are reproduced in this 

work.  

For the four cases, normalized center deflections are listed and compared to 

those of other theories in Table 3.1.2. Classical theories, such as FSDT and 

HSDT, tend to underestimate the deflections as the plate becomes thick (S=4). 

This tendency is significant when the sandwich configuration (case 4) is 

considered. The results of EFSDT and EFSDTM are comparable to those of the 

FAMPA2nd which is based on an asymptotic expansion method. The asymptotic 

method requires the iterative calculation that is computationally expensive. Their 

results still deviate from the exact solutions (about 40%), although they are much 

better than the classical theories. Table 3.1.2 clearly indicates that the present 

EHSDTM is the best compromised theory in terms of the numerical efficiency 

and accuracy. Moreover, the EHSDTM has the same degrees of freedom as the 

conventional HSDT, and therefore it only requires the 0C  continuity without any 

additional numerical treatments.  

In addition to the accurate prediction of global responses, the present 
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EHSDTM is able to predict precisely the through-the-thickness distributions of 

displacement and stress. The in-plane displacement of Case 1 and transverse 

shear stress of Case 2, for the very thick plate of S = 4, are plotted in Fig. 3.1.2. 

The conventional HSDT, EFSDTM and EHSDTM are able to capture the 

qualitative behavior of the displacement and transverse shear stress. Especially 

the present EHSDTM yields almost identical results with the elasticity approach. 

There are two ways for the calculation of transverse shear stresses, such as 

constitutive and equilibrium approaches, as described in subsection 3.1.3.2. The 

equilibrium approach, EHSDTM(e), shows a highly accurate prediction of 13s , 

while the constitutive approach, EHSDTM(c), is comparable to HSDT(e). One 

should notice here that the EHSDTM(c) only requires the first-order derivatives 

of primary variables with respect to the in-plane coordinates xa . This is a great 

feature when the theory is applied to a finite element method, which shall be 

addressed in next subsection. This feature subsequently leads to the accurate 

prediction of transverse normal stresses, which are of practical importance for the 

possible initiation of a delamination. The transverse normal stress distribution for 

antisymmetric cross-ply (S = 4) and sandwich (S = 10) configurations are 

illustrated in Fig. 3.1.3. One can see that only the EHSDTM has a high fidelity 

for the accurate prediction of the through-the-thickness distribution for both cases. 

In this regard, EHSDTM has a great advantage for analytical and numerical 

researches of composite plates including a sandwich plate. 

 

3.1.4.2. Edge effects: clamped-free boundary conditions 
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Next the semi-infinite plates with clamped-free boundary conditions are 

considered to assess the performance of EHSDTM when the edge effects are 

presented. To this end, a three-noded element based on Lagrangian polynomials is 

employed, and 80 elements are used to calculate the stress distributions on 

various axial locations. The plate is assumed to be very thick, which allows us to 

emphasize the significance of edge effects for all the cases. 

Normalized tip deflections of a clamped-free plate with varying the length-to-

thickness ratio S are shown in Fig. 3.1.4 . The conventional FSDT and HSDT 

underestimate the deflection, whereas EFSDTM overestimates it. In contrast to 

this, the present EHSDTM shows an excellent agreement with the 3D FEM, even 

for the very thick case of S = 4. As the length-to-thickness ratio increases, the 

conventional HSDT that has the same degrees of freedom with the EHSDTM still 

deviates from the 3D FEM. This clearly indicates that the present theory is a best-

compromised theory in terms of accuracy and efficiency. 

Local stress distributions are also investigated to assess the accuracy of 

EHSDTM near the boundaries. To this end, stresses are computed at the 10th 

element ( 1 10.12x L= ) for the clamped end effect and at the 70th element 

( 1 10.87x L= ) for the free end effect. All the derivatives with respect to the axial 

coordinate are carried out at the mid-node. The in-plane stresses of the 

antisymmetric angle-ply plate with S = 4 are plotted in Fig. 3.1.5 . The results 

obtained are compared to those of FSDT, HSDT, EFSDTM and 3D FEM, which 

are reproduced in this work. It can be seen that the conventional FSDT is not able 

to predict the boundary effect at all, especially for the free end. On the other hand, 

the EHSDTM can predict the stress distributions qualitatively as well as 
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quantitatively.  

Transverse shear stresses are of great importance in composite plates. The 

stresses are also calculated at near both clamped and free ends. They can be 

calculated via either constitutive approach or equilibrium approach. Unlike the 

simply-supported boundary condition in the preceding section, there is a 

numerical difficulty in the calculation of higher-order derivatives. For this very 

reason, the constitutive approach is employed. The stresses calculated are then 

illustrated in Fig. 3.1.6 for the nearly symmetric cross-ply (case 1) that is 

selected as a representative example. The theories considered herein are not able 

to capture the kinky shape of the stresses. The present EHSDTM is however well 

correlated with the 3D FEM. One should note that the transverse shear stress via 

the constitutive approach only requires the first-order derivatives with respect to 

the axial coordinate. This is one of the merits of using the EHSDTM. Now one 

can calculate transverse normal stresses via the equilibrium approach of Eq. 

(3.1.26) that require the second-order derivatives. The normal stresses are 

calculated and plotted in Fig. 3.1.7  for the sandwich configuration (case 4) with S 

= 4. It is observed again that the present EHSDTM shows an excellent agreement 

with the 3D FEM. The results predicted by FSDT and EFSDTM significantly 

deviate from those of the 3D FEM. As amply demonstrated so far, the EHSDTM 

is capable of predicting the boundary layer states. In what follows, the boundary 

layer zone shall be calculated by using the present theory. 

 

3.1.4.3. Boundary layer zone 

It is of interest to investigate how far the edge effects propagate. To this end, 



104 

 

one needs to employ alternative definition of the stresses. For the clamped-free 

boundary condition, the stresses vary from one end to the other. In order to 

consider such a variation, the boundary coordinate bx  is introduced (see Fig. 

3.1.8). In Fig. 3.1.8, cL  and fL  denote the boundary layer zone at clamped and 

free ends, respectively. The normalized stresses, which are defined in Eq. (3.1.29), 

are scaled in the following manner: 
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In addition, the change in the maximum value of stresses is introduced to 

determine the interior zone or the boundary layer zone. 
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where the superscript ‘(k)’ indicates the k-th element. It is assumed that the 

criteria of the interior zone is taken as: 

 0.1cr
ijs £   (3.1.32) 

For the comparison purpose, three cases are considered in this section, which 

include an isotropic plate as well as the symmetric cross-ply (case 1) and the 

sandwich plate (case 4) given in Table 1. The length-to-thickness ratio (S) is 

assumed to be 40, and the number of the elements is 200 to accurately calculate 

the stresses. The boundary layer zones for both clamped and free ends are 

estimated and listed in Table 3.1.3  and illustrated in Fig. 3.1.9. 
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For the isotropic case, the interior zone is more than 90%, as expected. It is seen 

that the boundary layer state of the transverse shear stress decays faster than that 

of the in-plane normal stress. This is reasonable because the higher order states 

rapidly decay in general. This trend is observed in all the cases considered herein.  

For the sandwich plate, the boundary layer state of the in-plane normal stress 

deeply penetrates into the interior of the plate (see Fig. 3.1.9). In fact, there is no 

interior state for this case (S = 40). This implies that one should employ a higher-

order theory with a proper shear correction (like the EHSDTM) to analyze the 

plate made of highly anisotropic materials. 

To investigate the boundary layer states further, the through-the-thickness 

distributions are plotted in Figs. 3.1.10-3.1.12, for the isotropic, composite and 

sandwich plate. It is of interest to see that the signs of the stresses at the interface 

are changed. They have mean values at near the mid-span where the through-the-

thickness distribution of the conventional FSDT is identical that of the EHSDTM. 

This indicates that the stress distribution of the conventional FSDT is invariant 

with respect to the axial coordinate. The change in the stresses estimated by the 

EHSDTM is very small near the mid-span, which is spotted by the dark area in 

Fig. 3.1.10-3.1.12, and indicates the interior zone. Although the conventional 

FSDT is a shear deformable theory, it is not able to predict the boundary layer 

stress state at all. 
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Table 3.1.1. A list of lamination sequence for laminated and sandwich plates 
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Table 3.1.2. Comparison of center deflections of simply-supported semi-infinite 

plates under a sinusoidal load 
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Table 3.1.3. Comparison of boundary layer and interior zones of the clamped-

free edge plates 
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(a) Simply-supported plate under sinusoidal pressure 

 

 

(b) Clamped-free plate under uniform pressure 

 

Fig. 3.1.1. Loading and boundary conditions of semi-infinite plates 
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(a) Displacements of the symmetric cross-ply, Case 1 

 

 

(b) Transverse shear stresses of the anti-symmetric cross-ply, Case 2 

 

Fig. 3.1.2. Displacement and stress of a simply-supported plate, S=4 
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(a) Transverse normal stresses of the anti-symmetric cross-ply (S=4) 

 

 

(b) Transverse normal stresses of the sandwich (S=10) 

 

Fig. 3.1.3. Transverse normal stresses of a simply-supported plate, Case 2 and 4 
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Fig. 3.1.4. Normalized tip deflections of the clamped-free sandwich plate 
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(a) In-plane stresses at near clamped end (0.12L1) 

 

 

(b) In-plane stresses at near free end (0.87L1) 

 

Fig. 3.1.5. In-plane normal stresses of the clamped-free plate for the anti-

symmetric angle-ply (Case 3), S=4 
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(a) Transverse shear stresses at near clamped end (0.12L1) 

 

 

(b) Transverse shear stresses at near free end (0.87L1) 

 

Fig. 3.1.6. Transverse shear stresses of the clamped-free plate for the nearly 

symmetric cross-ply (Case 1), S=4 
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(a) Transverse normal stresses at near clamped end (0.12L1) 

 

 

(b) Transverse normal stresses at near free end (0.87L1) 

 

Fig. 3.1.7. Transverse normal stresses of the clamped-free plate for the sandwich 

(Case 4), S=4 
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Fig. 3.1.8. Schematic of a semi-infinite clamped-free plate for the boundary 

layer and interior zone 
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(a) The change in the maximum value of the in-plane stress 

 

 

(b) The change in the maximum value of the transverse shear stress  

 

Fig. 3.1.9. The change in the maximum value of the stresses along the axial 

coordinate (S=40) 
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(a) Variations of the in-plane stress 

 

 

(b) Variations of the transverse shear stress 

 

Fig. 3.1.10. Variations of the through-the-thickness stress distributions of the 

clamped-free isotropic plate (S=40) 
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(a) Variations of the in-plane stress 

 

 

(b) Variations of the transverse shear stress 

 

Fig. 3.1.11. Variations of the through-the-thickness stress distributions of the 

symmetric cross-ply composite plates (S=40) 



120 

 

 

(a) Variations of the in-plane stress 

 

 

(b) Variations of the transverse shear stress 

 

Fig. 3.1.12. Variations of the through-the-thickness stress distributions of the 

sandwich plates (S=40) 
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3.2. Enhanced Lo-Christensen-Wu Theory via the MVT 

3.2.1. Literature Review 

As mentioned above, with the improvement of technology, advanced composite 

materials can be applied to severe engineering environment such as high 

temperature situations. The thermal loading based on rising temperature often 

represent a crucial factor, which can give a rise to significant thermal 

deformation and stresses due to the transverse normal deformation effect. Thus, 

tremendous interest in the thermo-mechanical analysis of the laminated 

composite plates has emerged in many decades. 

Because the previous conventional works (CLPT, FSDT) are inapplicable to 

accurate analysis of their thermo-elastic response, many researchers focus on 

their interest in refined higher order shear deformation theories to accurately 

predict the thermos-elastic response of the thick laminated composite and 

sandwich structures [23-41]. 

Rohwer et al estimate thermal stresses of the laminated composite structures 

under uniform and linear distributed temperature loading through the thickness 

by extending displacement fields to be third or fifth order [25]. They ascertain 

the relationships between accuracy of the results and order of the assumed 

displacement fields, and make sure that conventional FSDT is inadequate for the 

accurate prediction of the transverse shear stresses under thermal loading 

conditions.  

Zenkour developed unified shear deformable plate theory and predicted the 
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bending response of the cross-ply laminated composite plates under thermo-

mechanical loading conditions [26]. Zenkour showed that the thermo-mechanical 

behavior of the composite structures can be more accurately characterized by 

using the higher-order theories. However, the transverse shear stresses 

demonstrated by unified theory can’t satisfy shear continuity conditions across 

the layer interface. Matsunaga introduced ninth-order theory to analyze thermos-

elastic behavior of laminated composite and sandwich plates, and certified the 

effects of ninth-order displacement fields on predicting thermo-elastic responses 

[27-29]. Ninth-order theory provides more accurate results, while it needs much 

more computational resources with increasing the order of displacement fields. 

Other higher order composite theories which is not mentioned in this paper can 

be founded in refs. [30-34]. 

Likewise mechanical loading case, various zig-zag theories are introduced to 

improve aforementioned deficiencies in analyzing thermo-elastic response of the 

laminated structures [35-39]. Oh and Cho proposed efficient higher order zig-

zag theory (EHOZT) to predict the electro-thermo-mechanical fully coupled 

behavior of the laminated composite plates [35, 36]. This theory satisfies 

transverse shear continuity conditions at the layer interfaces as well as shear free 

conditions at the surfaces of the structures. In addition, transverse displacement 

field is assumed to be a smooth parabolic distribution to quite well consider 

transverse normal strain effect. Oh and Cho subsequently applied the EHOZT to 

three node triangular finite element method, and further extended it to smart 

composite shell structures [37, 38].  

Kapuria and Achary proposed an efficient two dimensional higher order zig-zag 
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theory for the thermal stress analysis of laminated composite structures by 

introducing thermal expansion coefficients in their transverse displacement field 

[39]. This model can consider contribution of the transverse normal strain effect 

without increasing unknown variables in their displacement fields. However, in 

case of sandwich plates which contain different thermal expansion coefficients 

in adjacent layers, transverse displacement continuity conditions at the layer 

interfaces can’t be satisfied automatically.  

Zhen et al are attempted to propose an efficient global-local higher order 

theory by considering global and local variables in their computational process 

[40, 41]. Thermal contribution can be reasonably considered in this theory by 

extending transverse displacement field, so it can accurately predict the thermo-

elastic behavior of the laminated composite structures. Additionally, the 

displacement continuity conditions are enforced by using the local variables [41]. 

These mentioned higher-order theories achieve accurate and reliable 

prediction of the thermo-mechanical response of the composite structures. 

However, derivatives of the transverse displacement field were contained in the 

in-plane displacement fields of mentioned theories, so that these theories require 

C1-continuous kinematic interpolation functions in their finite element 

implementation, which is not available on commercial finite element software. 

Furthermore, although the mentioned C0-continuous theories, such as EFSDT, 

EFSDTM, EHSDTM, etc., are somewhat successful for elasto-static problems, it 

is not appropriate for thermo-mechanical problems because the significant 

transverse normal deformation effect is neglected in these theories. This brings 

us to develop a new enhanced higher-order shear deformation theory by 
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extending the concept of the strain energy transformation to the LCW. This will 

allow us to analyze accurately the laminated composite plates under thermal 

loadings and to investigate the transverse normal effects for the thermo-

mechanical behavior.    

In this subsection, to address the aforementioned issues, the enhanced LCW 

theory (ELCWM) via the mixed variational theorem is proposed and tested 

numerically. The main objective herein is to systematically establish the 

relationship between the LCW displacement field and the fifth-order zig-zag 

displacement field, so that one can come up with the LCW-like theory (i.e. 

ELCWM) incorporating the simplicity of LCW and the accuracy of the fifth-

order zig-zag model. The temperature field takes the form of a linear 

distribution through the thickness of the plate. Finally the results obtained are 

assessed by comparing them to those reported in the open literature.  

 

3.2.2. Mixed Formulation 

To accurately and efficiently analyze the thermo-mechanical response of the 

laminated composite and sandwich plates, ELCWM is developed in this 

dissertation via the mixed variational theorem. In the MVT, the three-

dimensional Hellinger-Reissner (HR) functional, which is given in Eqs. (1.2.1), 

is employed to derive the relationships between the independent two fields 

(conventional LCW and fifth-order zig-zag model).  
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3.2.2.1. Independent transverse stress fields  

A fifth-order zig-zag model is introduced to derive the transverse stress field to 

be used in Eq. (1.2.1). The displacement field of the fifth-order zigzag model 

can be expressed as follows: 
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where N is the number of layers, 
( )kSa  and 3 3( )H( )kx x-  are the linear zig-zag 

terms and Heaviside unit step function, respectively. The transverse 

displacement field of the fifth-order zig-zag model is assumed to be smooth 

parabolic distribution to efficiently consider contribution of the transverse 

normal deformation effect. Additionally, the components of the fifth-order zig-

zag model are given with superscript 
*( )·  to clear distinguish between those of 

conventional LCW and fifth-order zig-zag model. 

Applying the transverse shear stress free conditions on top and bottom surface 

as well as shear continuity conditions at the interfaces between layers [12, 13, 

20, 35, 36], the following displacement fields can be derived as follows:. 
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where  



126 

 

 ( )(1) (3) (2) (2) (4) (3) (5)
3,

ˆ3 ,  ,  ,ua a a a a a af x f x f x= + = =   (3.2.3) 

and  

 

2 1
*(1) 2 ( )

3 3 3 3( )
1

2 1
*(2) 2 2 ( )

3 3 3 3( )
1

2 1
*(3) 4 ( )

3 3 3 3( )
1

( ) *( ) *( )
3/2

1
( , ),

2 4

( , ),
2

5
( , ),

16

1
,     

N
k

k
k

N
k

k
k

N
k

k
k

i i i

h

h
x x a f x x

h
x x b f x x

h
x x c f x x

dx
h

ab ab ab

ab ab ab

ab ab ab

ab ab ab

d

d

d

-

=

-

=

-

=

-

æ ö
F = - +ç ÷

è ø

æ ö
F = - +ç ÷

è ø

æ ö
F = - +ç ÷

è ø

F = F - F · = ·

å

å

å

/ 2

,  
h+

ò

  (3.2.4) 

where abd  is the Kronecker delta function.  The terms of 
( ) ( ),k ka bab ab  and 

( )kcab  

are function of the material properties which can enforce the transverse shear 

continuity conditions on layer interfaces, and the derivation of these coefficients 

can be found in Refs. [12, 13, 20, 35, 36], and 
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From Eq. (3.2.2), one can now obtain the corresponding strains as follows: 
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where  
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Equation (3.2.6) allows us to derive the transverse stress field via the 

constitutive equation in Eq. (1.2.2) as follows: 
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3.2.2.2. Displacement fields  

The displacement field of LCW [9], which is to be used for the strain and 

displacement fields in MVT, which is Eq. (1.2.1), is given as follows:  
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which is often referred to as a conventional Lo-Christensen-Wu theory or simply 

LCW. In what follows, it will be shown that the variables given in Eq. (3.2.9) 

become the primary variables in the three-dimensional Hellinger-Reissner 

functional of Eq. (1.2.1). By employing the displacement fields given in Eq. 

(3.2.9), corresponding strain fields can be subsequently derived as follows: 
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where 
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  (3.2.11) 

From the Eq. (3.2.9), in-plane stress to be used in Eq. (1.2.1) can be expressed 

by 

 ( ) ( )33 33 33 .C Cab abgw gw gw abs e a q e a q= - + -   (3.2.12) 

 

3.2.2.3. Relationships between the two theories 

The equation presented in the second line of Eq. (1.2.1) plays a crucial role to 

derive the enhanced LCW model. In fact, it provides the relationships between 

the two theories (i.e. conventional LCW and the fifth-order zigzag models) or 

the constraint to connect the displacement field and the transverse stress field.  

This constraint equation is given by 

 * * * *
3 3 3 33 33 33( ) ( ) 0,

V
dVa a ag g ds e e dsé ù- + - =ë ûò   (3.2.13) 

where the second term is zero because the transverse normal strains in the two 

theories are identical. This also implies that the transverse normal stress can be 

approximated by that of the conventional LCW.  That is 

 
* *
33 33 33 33.e e s s= ® »   (3.2.14) 
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Then we have the equation to be solved as follows: 

 * *
3 3 3( ) 0,

V
dVa a ag g dsé ù- =ë ûò   (3.2.15) 

in which the transverse shear strains based on the independent two theories are 

given in Eqs. (3.2.6) and (3.2.10), and the transverse shear stress of fifth-order 

zig-zag model is given in Eq. (3.2.8).  

Substituting these equations into Eq. (3.2.15) yields 
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  (3.2.16) 

where  
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  (3.2.17) 

Equation (3.2.16) implies that the variables of the fifth-order zig-zag theory can 

be expressed in terms of those of the conventional LCW.  

In the displacement field of the fifth-order zig-zag model, there is still an 

unknown variable, i.e., the mid-plane stretching term. In order to express Eq. 

(1.2.1) in terms of the variables given in Eq. (3.2.9) completely, one needs to 

determine it in advance. Here we employ the least square approximation for the 

in-plane displacement [20]. Then one can write 
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which will render relationship of the mid-plane stretching terms as following 

forms: 

 

2
(1)

3
ˆ ,

24
o o h

u ua a ag= +         (3.2.19) 

where 

 ( )(1) (2) (1)
3 3,2 .ua a ag y= +   (3.2.20) 

By substituting Eq. (3.2.19) into Eq. (3.2.2), one can now express all the 

variables in the fifth-order zigzag theory in terms of the variables of the 

conventional LCW. 

 

3.2.3. Enhanced Lo-Christensen-Wu theory based on the MVT 

In subsection 3.3.2, the constraint equations are solved, and therefore, they are 

dismissed in Eq. (1.2.1). By assuming that the prescribed traction is applied to x3 

direction only, the remaining equation is given by 

 *
3 3 33 33 3 3 0.

V S
dV t u dS

s
ab ab a a ss de s dg s de dé ù+ + - =ë ûò ò %   (3.2.21) 

Notice here that the transverse normal stress is regarded as the displacement-

based one because of Eq. (3.2.14). Thus the transverse shear stress only comes 
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from the independent stress field. This greatly simplifies the governing 

equations to be derived.  

By applying the integration by parts and defining the stress resultants, the 

equilibrium equations for the problem are obtained as follows:  
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  (3.2.22) 

In addition, the associated boundary conditions are given by 
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  (3.2.23) 

 

3.2.3.1. Plate constitutive equations 

As listed in Eq. (23.2.22, there are many stress resultants that should be 

expressed in terms of the variables of the conventional LCW. The constitutive 

equations are then summarized as follows: 
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where 

 

33 33

3 3 33 33

(2) 2 2
3 3 33 33

(3) 3 3
3 3 33 33

,  

,  

,  

.

N C C

M x C x C

R x C x C

R x C x C

q
ab abgw gw ab

q
ab abgw gw ab

q
ab abgw gw ab

q
ab abgw gw ab

a q a q

a q a q

a q a q

a q a q

= +

= +

= +

= +

  (3.2.25) 

These equations are the same as those defined in the conventional LCW, 

whereas the transverse shear stress resultants are not, which are given as follows:  
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where 

 1
3 3 3 3 3 3 3 3

ˆ[ ] [ ][ ] [ ] .TG B D Ba b a m m l l b
-=   (3.2.27) 

According to Eq. (3.2.14), the transverse normal stress resultants based on the 

conventional LCW are defined by  
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where  
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3.2.3.2. Displacement and stress recovery 

Substituting Eqs. (3.2.24), (3.2.26) and (3.2.28) into Eq. (3.2.22) yields the 

governing equations to be solved for the enhanced LCW theory. As compared to 

the conventional LCW, they take the complicated forms. However, the primary 

variables and the strain energy (except for the stiffness) are the same as those of 

the conventional LCW while enhancing its performance. Here it should be noted 

that the assumption we made is the equivalence of the transverse normal strain 

between the two theories, and therefore, the transverse normal stress. This does 

not necessarily mean that the transverse normal stresses obtained by the two 

theories are identical, since the transverse normal stress will be evaluated by 

using the three-dimensional stress equilibrium equations.  

Once the governing equations of the enhanced LCW are solved, one can now 

recover the displacements and stresses to further improve the predictions. For 

instance, the displacement field of Eq. (3.2.2) and the transverse stress field of 

Eq. (3.2.8) can be obtained by employing the relationships between the two 
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theories (i.e. conventional LCW and the fifth-order zigzag models) as following 

forms  
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where the terms 
( )i
bf , which are the variables of the fifth order zig-zag model, 

can be expressed in terms of the conventional LCW-based variables by using the 

constraint relationship of Eq. (3.2.16). In Eq. (3.2.30), in-plane correction 

factors, ca , are newly considered to satisfy the in-plane equilibrium equations 

and their detailed expression for the derivation process of the in-plane correction 

factors are given in the Appendix H. 

In this procedure, the constraint equations of Eq.(3.2.15) and the least square 

approximation of Eq.(3.2.19) play a significant role to recover both the stresses 

and displacements. This procedure is outlined in Fig. 3.2.1 . 

 

3.2.4. Numerical investigation and Discussion 

For cross-ply lay-up rectangular composite and sandwich plates, the analytical 

solutions are derived in this section to demonstrate the efficiency and accuracy 

of the proposed theory (ELCWM). In these cases, there are no bending-shear and 

stretching-shear couplings. The temperature is linearly prescribed through the 

thickness of the plate, which is given as: 
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 ( )0 3 1( ) sin( ) sin( ),ix T x T px pyq = +   (3.2.31) 

where 

 
1 2

,  .p q
L L

p p
= =   (3.2.32) 

The mechanical loading t3 is prescribed on the top surface, which takes the form 

of 

 3 2( , ) sin( )sin( ).ht x Q px pya =   (3.2.33) 

The primary variables of the enhanced LCW are assumed to have double 

trigonometric series for simply supported boundary conditions as follows: 
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where the superscript i takes the values of 1,2,3, while the superscript a takes 

the values of 1,2.  

Substituting Eqs. (3.2.31), (3.2.33) and (3.2.34) into Eq. (3.2.22) via Eqs. 

(3.2.24), (3.2.26) and (3.2.28) yields the simultaneous algebraic equation as 

follows: 

 ,   ( , 1,2, ,11)ij j iL X F i j= = L   (3.2.35) 



136 

 

where the jX  is the vector of unknown variables, and it can be expressed as 

follows: 

 (1) (1) ( 2 ) (2 ) (3) (3) (1) ( 2 )
1 2 1 2 1 2, , , , , , , , , , ,

T

X U V W W Wê ú= Y Y Y Y Y Yë û   (3.2.36) 

The detailed expression of the symmetric operator Li j and loading vector iF  are 

given in the Appendix I. 

To evaluate accuracy and efficiency of the thermo-mechanical prediction for 

rectangular laminated composite and sandwich plates using proposed theory, 

several cases of numerical examples are considered and discussed in this section. 

All of the example models assume the aspect ratio as 1 2L L= , and the material 

properties of the laminated composite and sandwich plates which are used in this 

study are given as follows: 

 

 

-Material(1) for the laminated composite plates: 
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  (3.2.37) 

 

 

-Material(2) for the laminated composite plates: 
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  (3.2.38) 

 

 

- material(3) for the sandwich plates: 

 

Face sheets: 
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  (3.2.39) 

Core material: 
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  (3.2.40) 

where subscript L represents a parallel direction to the fibers, while T denotes a 

transverse direction to the fibers. LTv  is a Poisson’s ratio, and La , Ta  are the 

thermal expansion coefficients. The results of the proposed theory are compared 

with those obtained by other theories as well as the exact solutions. The exact 

solutions of the thermo-mechanical problems developed by Pagano are 

reproduced and used as the benchmark solutions. In conventional FSDT, a shear 

correction factor is assumed to be 5/6. In order to facilitate comparison of their 
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accuracy and performance, the results of displacement and stress are normalized 

according to the case of the numerical examples.  

 

 

3.2.4.1. Mechanical loading problem 

Several cases of laminated composite and sandwich plates subjected to a lateral 

sinusoidal upward mechanical loading ( 0 10, 0, 0Q T T¹ = = ) are considered to 

validate accuracy of the present theory. The results are compared with those 

obtained by FSDT, HSDT, LCW, EHOPT, EFSDT and also with benchmark 

solutions (the exact solution developed by Pagano). In the pure mechanical 

loading problems, relatively thick plates models ( 1 2/ / 4S L h L h= = = ) are 

considered and material properties are given according to material (1) or (3). 

The results obtained herein are normalized as follows: 
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  (3.2.41) 

First of all, the normalized distributions of displacements and stresses for 

symmetric cross-ply laminated composite plates [ 0 / 90 / 0o o o ] of material (1) 

have been plotted in Figs. 3.2.2-3.2.5. The distributions of displacements are 

shown in Fig. 3.2.2. From Fig. 3.2.2, one can be observed that the result of 

displacement obtained by present theory (ELCWM) agree well with the exact 

solutions. Although zig-zag distributions with slope discontinuities at interfaces 

have been well described by EHOPT, EFSDT and ELCWM which are contained 
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zig-zag displacement fields, present ELCWM provides most accurate solution 

which is substantially coincides with the exact solutions. Fig. 3.2.3 shows the 

distributions of in-plane stresses. As shown in Fig. 3.2.3 , present result of 11s  

yields indistinguishable result in compared with the exact solution which is 

discontinuous distribution at interfaces. And it can be also seen that results of 

the EHOPT and EFSDT are fairly well captured discontinuous distributions of 

in-plane stresses. However, LCW, HSDT and FSDT provide somewhat 

inaccurate distributions of in-plane stress. And the results of transverse shear 

stresses have been plotted in Figs. 3.2.4 and 3.2.5. Distributions of the 

transverse shear stresses can be obtained in a twofold manner: one way is based 

on the constitutive approach and the other way is based on equilibrium approach. 

Results of transverse shear stresses obtained by direct constitutive approach are 

presented in Fig. 3.2.4, and those obtained by equilibrium approach are shown 

in Fig. 3.2.5. The equilibrium approach can provides much more accurate results 

than direct constitutive approach, however it requires the higher derivative terms 

which cause a numerical problem in calculation process. From Fig. 3.2.4, it can 

be found that the results of EHOPT, EFSDT and ELCWM can satisfy the 

transverse shear stress conditions which are not satisfied by LCW, HSDT and 

FSDT. It is noteworthy that the present theory provides attractive advantage 

because the result of present theory based on direct constitutive equation gives 

quite accurate distributions of transverse shear stresses. The kinky distribution 

of transverse shear stress can be well captured by EHOPT, EFSDT and ELCWM 

in Fig. 3.2.5, while LCW, HSDT and FSDT cannot describe such a kinky 
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distribution. And the present theory gives a best compromised result which 

coincides with the exact solution. 

In addition, mechanical behaviors of anti-symmetric cross-ply laminated 

composite plates [ 0 / 90 / 0 / 90o o o o ] of material (1) have been analyzed and 

corresponding results of displacements and stresses are plotted in Figs. 3.2.6-

3.2.9. The distributions of displacements and in-plane stresses are shown in Figs. 

3.2.6 and 3.2.7, respectively. As shown in Figs. 3.2.6 and 3.2.7, it can be 

observed that the results of EHOPT, EFSDT and ELCWM which are contained 

zig-zag displacement fields can provide reliable distributions by capturing the 

unsymmetrical zig-zag shape of displacement as well as the discontinuous shape 

of in-plane stresses. However, the results of LCW, HSDT and FSDT provide 

somewhat inaccurate results. Numerical results show that present results provide 

most accurate solution which is remarkably consistent with the exact solutions.  

Variations of the transverse shear stresses are illustrated in Figs. 3.2.8 and 3.2.9 . 

Fig. 3.2.8 represents distribution of the transverse shear stresses obtained by 

direct constitutive approach and those obtained by equilibrium approach are 

shown in Fig. 3.2.9. For results in Fig. 3.2.8 , in common with symmetric cross-

ply case, the results of LCW, HSDT and FSDT can’t satisfy the transverse shear 

stress conditions. However, it can be seen that the results of the present theory 

provides quite accurate distributions of transverse shear stresses. In Fig. 3.2.9, 

results of EHOPT, EFSDT and ELCWM precisely describe the kinky 

distribution of transverse shear stress. Furthermore, it can be observed that the 

results of present theory match the exact solutions with excellent accuracy.  

To further investigate the mechanical behavior of the laminated structures, a 

sandwich plate [ 0 / / 90o ocore ] of material (3) with the thickness of each face 
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sheet that equals to h/5 is considered. Figs. 3.2.10 and 3.2.11  compare 

normalized distributions of the displacements and in-plane stresses, respectively. 

From the results presented above, EHOPT, EFSDT and ELCWM among others 

capture well the severe zig-zag variation of displacement and discontinuous 

distribution of the in-plane stresses. It can be shown that the results of presented 

theory give best compromised performance in terms of accuracy and efficiency 

in compared with the exact solutions. Results of transverse shear stresses 

obtained by direct constitutive approach and equilibrium approach are plotted in 

Figs. 3.2.12 and 3.2.13, respectively. From these results, it can be found that the 

results of present ELCWM in Figs. 3.2.12 and 3.2.13  are in excellent agreement 

with the exact solution and the results of EHOPT, EFSDT based on equilibrium 

approach are fairly-well capture the kinky shape of transverse shear stress.  

 

3.2.4.2. Thermal loading problem 

To validate accuracy of the present theory for the thermo-elastic response, some 

cases of laminated composite and sandwich plates under thermal loading are also 

analyzed. The results of present theory are compared to the exact solutions as 

well as to those obtained by some theories which are selected for comparison in 

the pure mechanical loading problem. In the thermal loading problem, relatively 

thick plates models ( 1 2/ / 5S L h L h= = = ) are considered and material properties 

are given according to material (2) or (3). 

The results obtained herein are normalized as follows: 
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Laminated cross-ply composite and sandwich plates subjected to thermal loading 

of uniform temperature ( 0 10, 0, 0Q T T= ¹ = ) are considered. Normalized 

distributions of in-plane and transverse shear stresses for a single layer 

composite plate of material (2) are shown in Fig. 3.2.14 and 3.2.15. The 

distributions of transverse shear stresses obtained by direct constitutive 

approach are omitted in thermal loading problems. From these figures, it can be 

seen that the results of LCW and present ELCWM can accurately predict both 

the cubic distribution of the transverse shear stress as well as the parabolic 

distribution of the in-plane stresses as compared to the exact solutions. However, 

results obtained by other theories, which neglected the contribution of the 

transverse normal deformation effect, entirely fail to describe distributions of in-

plane and transverse shear stresses for the single layer composite plate under 

uniform temperature loading. Fig. 3.2.16 and 3.2.17 present the normalized 

displacements and transverse shear stresses of anti-symmetric cross-ply 

laminated composite plates [ 0 / 90 / 0 / 90o o o o ] of material (2). From the results, 

the asymmetrical parabolic distributions of the displacements and zig-zag 

variation of transverse shear stresses are precisely captured by LCW and present 

ELCWM. Other numerical results, however, are unable to produce accurate 

distributions of displacements and transverse shear stresses because the effect of 

transverse normal deformation has been ignored. To demonstrate capability and 

accuracy of the present theory in predicting thermo-elastic response of the 

laminated sandwich plates, Figs. 3.2.18 and 3.2.19 compare normalized 
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distributions of the in-plane stresses and transverse shear stresses for the 

laminated sandwich plates of material (3) under uniform temperature loading. In 

Figs. 3.2.18 and 3.2.19, LCW and present ELCWM give best compromised 

results which can precisely predict the local distribution of the laminated 

sandwich plates subjected to uniform temperature loading as compared to the 

exact solutions. Although other theories can describe global thermo-elastic 

behavior of the laminated sandwich plates, they fail to provide accurate local 

distribution of the laminated sandwich plates under uniform temperature loading.  

Additionally, laminated cross-ply composite plates subjected to thermal loading 

of temperature gradient ( 0 10, 0, 0Q T T= = ¹ ) are considered. The normalized 

distributions of in-plane and transverse shear stresses for symmetric cross-ply 

laminated composite plates [ 0 / 90 / 0o o o ] of material (2) have been presented in 

Figs. 3.2.20 and 3.2.21. For distributions of the in-plane and transverse shear 

stresses as shown in Figs. 3.2.20 and 3.2.21, it can be found that the results 

based on LCW and present ELCWM are in good accord with the exact solutions, 

whereas results obtained by other theories provide somewhat inaccurate 

distributions of in-plane and transverse shear stresses. And Figs. 3.2.22 and 

3.2.23 compare normalized distributions of the in-plane stresses and transverse 

shear stresses for the anti-symmetric cross-ply laminated composite plates 

[ 0 / 90 / 0 / 90o o o o ] of material (2) under temperature gradient loading. As Figs. 

3.2.22 and 3.2.23 show, non-continuous distribution of in-plane stresses and 

zig-zag variation of transverse shear stresses are fairly well captured by LCW 

and present ELCWM, while the results of other theories provide slightly over-

estimated values for the distribution of in-plane and transverse shear stresses. 
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In the thermo-elastic analysis, excellent agreements of results obtained by 

present theory with the exact solutions suggest that the present theory is capable 

to predict thermo-elastic responses of the laminated composite and sandwich 

plates. Whereas the point which special attention should be paid is that the 

theories which can’t consider contribution of the transverse normal deformation 

effect fail to predict accurate thermo-elastic responses of the laminated 

composite and sandwich plates subjected to thermal loading, especially uniform 

temperature loading. 

 

3.2.4.3. Thermo-mechanical coupled loading problem 

To investigate the capability and accuracy of the present theory for the thermo-

mechanical response, some case of laminated composite plates subjected to 

thermo-mechanical coupled loading are also analyzed. The results of present 

theory are compared to those obtained by LCW and exact solutions. In the 

thermo-mechanical coupled loading problem, relatively thick plates models 

( 1 2/ / 4S L h L h= = = ) are considered and material properties are given according 

to material (1). 

Laminated cross-ply composite plates subjected to uniform temperature-

mechanical coupled loading ( 0 110, 1, 0Q T T= = = ) are considered. Figs 3.2.24 

and 3.2.25  show the normalized distributions of in-plane and transverse shear 

stresses for a symmetric cross-ply laminated composite plates [ 0 / 90 / 0o o o ]. As 

can be seen from Figs. 3.2.24 and 3.2.25 , present ELCWM gives comparable 

results of in-plane and transverse shear stress as compared to the exact solutions, 
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whereas LCW fail to give accurate distributions of in-plane and transverse shear 

stress. Although LCW can describe relatively accurate global thermo-

mechanical behavior, they can’t provide accurate local distribution of the 

laminated composite plates under uniform temperature-mechanical coupled 

loading. The normalized distributions of in-plane and transverse shear stresses 

of an anti-symmetric cross-ply laminated composite plates [ 0 / 90 / 0 / 90o o o o ] are 

depicted in Figs. 3.2.26 and 3.2.27. From these figures, it can be seen that the 

results of in-plane and transverse shear stresses obtained by present ELCWM are 

in excellent agreement with the exact solutions, while LCW fail to describe 

accurate local distribution of the in-plane stress as shown in Fig. 3.2.26 and 

provide somewhat inaccurate result of transverse shear stress as shown in Fig. 

3.2.27.  

Secondly, laminated cross-ply composite plates subjected to temperature 

gradient-mechanical coupled loading ( 0 110, 0, 1Q T T= = = ) are also considered. 

Figs. 3.2.28 and 3.2.29 compare normalized distributions of in-plane and 

transverse shear stresses for a symmetric cross-ply laminated composite plates 

[ 0 / 90 / 0o o o ]. And the results of in-plane and transverse shear stresses for an 

anti-symmetric cross-ply laminated composite plates [ 0 / 90 / 0 / 90o o o o ] under 

temperature gradient-mechanical coupled loading are plotted in Figs. 3.2.30 and 

3.2.31. As shown in Fig. 3.2.30, results of present ELCWM can match the exact 

solutions with excellent accuracy by capturing the shape of non-continuous zig-

zag variation of in-plane stress precisely. The results of LCW, however, fail to  

provide accurate distributions of in-plane stresses because they can’t describe 

non-continuous zig-zag variation. From the Fig. 3.2.31 , it can be seen that 
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results of present ELCWM capture well the kinky variations in the transverse 

shear stresses, whereas LCW can’t give reasonable results due to their 

inaccurate description on local variation of transverse shear stresses as 

compared to the exact solutions. 
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Fig. 3.2.1. Flowchart of the ELCWM 
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Fig. 3.2.2. In-plane displacements for [ 0 / 90 / 0o o o ] laminated plates under 

mechanical loading 

 

 

Fig.3.2.3. In-plane stresses for [ 0 / 90 / 0o o o ] laminated plates under mechanical 

loading 
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Fig. 3.2.4. Transverse shear stresses computed from constitutive equations for 

[ 0 / 90 / 0o o o ] laminated plates under mechanical loading 

 

 

Fig. 3.2.5. Transverse shear stresses computed from equilibrium equations for 

[ 0 / 90 / 0o o o ] laminated plates under mechanical loading 
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Fig. 3.2.6. In-plane displacements for [ 0 / 90 / 0 / 90o o o o ] laminated plates under 

mechanical loading 

 

 

Fig. 3.2.7. In-plane stresses for [ 0 / 90 / 0 / 90o o o o ] laminated plates under 

mechanical loading 
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Fig. 3.2.8. Transverse shear stresses computed from constitutive equations for 

[ 0 / 90 / 0 / 90o o o o ] laminated plates under mechanical loading 

 

 
Fig. 3.2.9. Transverse shear stresses computed from equilibrium equations for 

[ 0 / 90 / 0 / 90o o o o ] laminated plates under mechanical loading 
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Fig. 3.2.10. In-plane displacements for [ 0 / / 0o ocore ] sandwich plates under 

mechanical loading 

 

 

Fig. 3.2.11. In-plane stresses for [ 0 / / 0o ocore ] sandwich plates under mechanical 

loading 
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Fig. 3.2.12. Transverse shear stresses computed from constitutive equations for 

[ 0 / / 0o ocore ] sandwich plates under mechanical loading 

 

 

Fig. 3.2.13. Transverse shear stresses computed from equilibrium equations for 

[ 0 / / 0o ocore ] sandwich plates under mechanical loading 
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Fig. 3.2.14. In-plane stresses for a single layer plate under uniform temperature 

 

 

Fig. 3.2.15. Transverse shear stresses for a single layer plate under uniform 

temperature 
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Fig. 3.2.16. In-plane displacements for [ 0 / 90 / 0 / 90o o o o ] laminated plates under 

uniform temperature 

 

 

Fig. 3.2.17. Transverse shear stresses for [ 0 / 90 / 0 / 90o o o o ] laminated plates 

under uniform temperature 



156 

 

 
Fig. 3.2.18. In-plane stresses for [ 0 / / 0o ocore ] sandwich plates under uniform 

temperature 

 

 

Fig. 3.2.19. Transverse shear stresses for [ 0 / / 0o ocore ] sandwich plates under 

uniform temperature 
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Fig. 3.2.20. In-plane stresses for [ 0 / 90 / 0o o o ] laminated plates under 

temperature gradient 

 

 

Fig. 3.2.21. Transverse shear stresses for [ 0 / 90 / 0o o o ] laminated plates under 

temperature gradient 
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Fig. 3.2.22. In-plane stresses for [ 0 / 90 / 0 / 90o o o o ] laminated plates under 

temperature gradient 

 

 
Fig. 3.2.23. Transverse shear stresses for [ 0 / 90 / 0 / 90o o o o ] laminated plates 

under temperature gradient 
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Fig. 3.2.24. In-plane stresses for [ 0 / 90 / 0o o o ] laminated plates under uniform 

temperature-mechanical coupled load 

 

 
Fig. 3.2.25. Transverse shear stresses for [ 0 / 90 / 0o o o ] laminated plates under 

uniform temperature-mechanical coupled load 
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Fig. 3.2.26. In-plane stresses for [ 0 / 90 / 0 / 90o o o o ] laminated plates under 

uniform temperature-mechanical coupled load 

 

 

Fig. 3.2.27. Transverse shear stresses for [ 0 / 90 / 0 / 90o o o o ] laminated plates 

under uniform temperature-mechanical coupled load 
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Fig. 3.2.28. In-plane stresses for [ 0 / 90 / 0o o o ] laminated plates under 

temperature gradient-mechanical coupled load 

 

 

Fig. 3.2.29. In-plane stresses for [ 0 / 90 / 0o o o ] laminated plates under 

temperature gradient-mechanical coupled load 
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Fig. 3.2.30. In-plane stresses for [ 0 / 90 / 0 / 90o o o o ] laminated plates under 

temperature gradient-mechanical coupled load 

 

 

Fig. 3.2.31. In-plane stresses for [ 0 / 90 / 0 / 90o o o o ] laminated plates under 

temperature gradient-mechanical coupled load 
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Chapter 4 

Enhanced Zig-zag 

Shear Deformation Theory 

4.1. Enhanced C0-type Efficient Higher-Order Zig-zag 

Theory based on the MVT 

4.1.1. Literature Review 

As mentioned in previous subsections, a number of analysis models have been 

developed to accurately predict their static and dynamic responses. Conventional 

theories (CLPT, FSDT) and refined higher order theories (TSDT, HSDT, LCW) 

have been sequentially developed [1-10].  

On the other hand, various zig-zag plate theories were also developed to 

improve their accuracy and compatibility [11-15]. Among others, the efficient 

higher-order plate theory(EHOPT) [12,13], which satisfy the transverse shear 

stress conditions (stress free at top and bottom surface and stress continuity at 

interfaces) by superimposing linear zig-zag field to the globally cubic in-plane 
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displacement field, has been considered as the best 5 D.O.F model. However, 

derivatives of transverse displacement field were contained in the in-plane 

displacement field of the EHOPT, so that it requires C1-continuity conditions in 

their finite element implementation, which is not available in commercial finite 

element software. 

To avoid using the C1 interpolation function in the finite element 

implementation, C0-type zig-zag theory was proposed by Xiaohui et al [70] for 

the accurate analysis of laminated composite and sandwich plates with general 

configuration. They give simple method to construct C0-continuous finite 

element implementation based on C0-type zig-zag theory by employing shear 

free conditions at the top and bottom surface to eliminate derivatives of 

transverse displacement field from the in-plane displacement fields. In addition, 

they can also provide accurate distributions of the transverse shear stress by 

integrating three-dimensional equilibrium equations. 

Meanwhile, advanced composite materials can be applied to severe engineering 

environment such as high temperature situations. The thermal loading based on 

rising temperature often represent a crucial factor, which can give a rise to 

significant thermal deformation and stresses due to the transverse normal 

deformation effect. Thus, tremendous interest in the thermo-mechanical analysis 

of the laminated composite plates has emerged in many decades. 

Although C0-type zig-zag theory gives reliable results for the mechanical 

loading problems, it was developed under the plane stress assumption in which 

transverse normal strain effect is neglected. However, transverse normal strain 

effect plays a significant role in thermal loading problems [35, 36]. This brings 
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us to develop a new C0-type composite plate theory for the accurate thermo-

mechanical analysis of laminated composite and sandwich plates. By assuming 

transverse displacement field as smooth parabolic distribution [35, 36], proposed 

theory will allow us to analyze accurately the thermo-mechanical behavior of the 

laminated composite plates. 

In this subsection, as a new way to address the aforementioned issues (C0 

interpolation function in the FE implementation as well as the accurate thermo-

mechanical analysis), the C0-type efficient higher-order zig-zag theory via the 

mixed formulation is developed and tested numerically. The main objective 

herein is to systematically set-up the relationships between the C0-type efficient 

higher- order zig-zag theory and the seventh order zig-zag model. Transverse 

displacement field is assumed to be a smooth parabolic distribution through the 

thickness direction to consider transverse normal strain effect. And derivatives 

of transverse displacement field can be eliminated from the in-plane 

displacement fields of the C0-type EHOZT by employing transverse shear stress 

conditions in a different way. Finally the results obtained herein are compared 

with those of other theories reported in the open literature. 

 

4.1.2. Mixed Formulation 

To accurately and efficiently analyze the thermo-mechanical response of the 

laminated composite and sandwich plates, Enhanced C0-type EHOZT is 

developed in this dissertation via the mixed variational theorem. In the MVT, the 

three-dimensional Hellinger-Reissner (HR) functional, which is given in Eqs. 
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(1.2.1), is employed to derive the relationships between the independent two 

fields (C0-type EHOZT and seventh-order zig-zag model).  

4.1.2.1. Independent transverse stress fields  

The independent transverse stress field, which is to be used in Eq. (1.2.1), is 

derived based on the seventh order zig-zag model including transverse normal 

strain effect. The initial displacement field of the seventh order zig-zag model is 

given as follows: 

 

7 1
* ( ) ( ) ( )

3 3 3( ) 3 3( )
1 1

* (1) (2) 2
3 3 3 3 3 3

ˆ ˆ ( ) ( ),

ˆ ˆ ˆ ,

N
o k k k

k k
k k

o

u u u x S x x H x x

u u u x u x

a a a a

-

= =

= + + - -

= + +

å å   (4.1.1) 

where N, 
( )kSa  and 3 3( )( )kH x x-  represent the number of layers, change in 

slope at each layer interface and Heaviside unit step function, respectively. The 

superscript ( )o denotes the variable on the reference plane. And transverse 

displacement is assumed to be a form of parabolic variational field to consider 

contribution of the transverse normal strain effect. For monoclinic layers, the 

transverse shear stresses depend only on the components of transverse shear 

strain. Thus some relationships can be calculated by applying the transverse 

shear stress conditions (stress free at top and bottom surface and stress 

continuity at interfaces) [12,13, 16-20, 35-38]. 
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Substituting Eq. (4.1.2) into Eq. (4.1.1), initial displacement field can be 

rewritten as follows: 
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In the displacement fields of Eq. (4.1.3), the in-plane warping functions (
( )k
abF ) 

can be defined as follows: 
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in which 

 
21 1

3 3( ) 3 3 3 3( ) 3 3( )2 2( , ) ( ) ( ).k k khf x x x x x x H x x=- - + - -   (4.1.6) 

abd  is the Kronecker  delta function, and the terms of 
( )kaab , 

( )kbab , 
( )kcab , 

( )kdab  

and 
( )keab  are functions of the material properties which are based on the 

transverse shear continuity conditions. 

From Eq. (4.1.3), corresponding in-plane and transverse strains are then 

obtained by: 
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Thus, independent transverse stress field based on the constitutive equation of 

Eq. (1.2.2) can be written as: 

 
( ) ( )
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33 33 3333 33 33

,

.

C

C C
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ab ab ab

s g

s e a q e a q

=
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  (4.1.8) 

 

4.1.2.2. Displacement fields  

C0-type efficient higher order plate theory (C0-type EHOPT) is introduced to 

derive the displacement field to be used for the components of strain and 

displacement presented in Eq. (1.2.1). The initial displacement field of the third-
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order zig-zag model including transverse normal strain effect can be written as 

follows: 

 

3 1
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The displacement field of Eq. (4.1.9) is quite distinguished from those based on 

the independent transverse stress field by superscript ( )*. By applying the shear 

free conditions at the top and bottom surfaces as well as the shear continuity 

condition at the 3(1)x  interface, the first derivatives of the transverse 

displacement field can be eliminated from the in-plane displacement field as 

following relationships: 
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In addition, applying the shear continuity conditions at the interfaces other than 

3(1)x  interface yield the following relationships: 

 
( ) ( ) ( ) (1). (2 1)k k kS a b S k Na ag g ag gf= + £ £ -   (4.1.11) 

Thus, the final displacement field of C0-type efficient higher-order zig-zag 

theory (C0-type EHOZT) can be obtained by substituting Eqs. (4.1.10) and 

(4.1.11) into Eq. (4.1.9) . This can be expressed as: 
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where 
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where the terms of 
( )kaab and 

( )kbab , like the independent transverse stress field, 

are functions of the material properties which are derived from the transverse 

shear continuity conditions [12, 13]. 

Subsequently, in-plane and transverse strains can be obtained from the final 

displacement field given as Eq. (4.1.12) as follows: 
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The in-plane stress to be used in Eq. (1.2.1) can be expressed as follows: 
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 ( ) ( )33 33 33 .C Cab abgw gw gw abs e a q e a q= - + -   (4.1.16) 

In the final displacement field of C0-type EHOZT, the derivatives of 

transverse displacement field have been taken out from the in-plane 

displacement field, so that the C0-continuous element is only required for their 

finite element implementation.    

 

4.1.2.3. Relationships between the two theories  

The displacement fields and independent transverse stress fields, which are 

required in the MVT, are independently defined in the previous subsections. In 

the MVT, the ‘mixed’ terms plays an important role to derive the Enhanced C0-

type EHOZT via the MVT. It is acting as constraint equation to connect the 

displacement fields and the independent transverse stress fields, thus it provides 

the reliable relationships between the two fields (i.e. C0-type EHOZT and 

seventh-order zig-zag model including transverse normal strain effect).  

Constraint equation in Eq. (1.2.1) is given by 

 * * * *
3 3 3 33 33 33( ) ( ) 0,

V
dVa a ag g ds e e dsé ù- + - =ë ûò   (4.1.17) 

where the transverse normal strains based on displacement field is exactly equal 

to those obtained from independent transverse stress field, therefore the second 

term of the constraint equation become negligible. This also means that the 

transverse normal stress can be approximated by that of the C0-type EHOZT. 
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 * *
33 33 33 33.e e s s= ® »   (4.1.18) 

Then constraint equation given as Eq. (4.1.17) can be simplified as follows: 

 * *
3 3 3( ) 0,

V
dVa a ag g dsé ù- =ë ûò   (4.1.19) 

in which the components of the transverse shear strains are given in Eqs. (4.1.7) 

and (4.1.15), and the transverse shear stress based on the seventh order zig-zag 

model is given in Eq. (4.1.8). 

Relationships between the two fields can be derived by substituting these 

components of the transverse shear strains into the simplified constraint 

equation given in Eq. (4.1.19). 
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in which 
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From Eq. (4.1.20), transverse shear stress based on the seventh order zig-zag 

model can be expressed in terms of those of the variables of C0-type EHOZT. 

Thus, transverse shear stress resultants of C0-type EHOZT can be improved by 

the relationships between the two theories. 

 

4.1.3. Enhanced C0-type Efficient Higher-Order Zig-zag Theory 

via the MVT 

Independently assumed transverse shear stresses and displacement fields are 

described in the previous subsection. Additionally, the relationships between 

independent two fields was systematically established via the MVT. In this 

subsection, an enhanced C0-type higher-order zig-zag theory is derived. The 

governing equation of the present model is based on the C0-type higher-order 

zig-zag theory. In addition, recovery process is also considered in this 

subsection to more accurately predict the thermo-mechanical response of the 

laminated composite and sandwich structures. 

 

4.1.3.1. Governing equations 
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The constraint equation, which plays a major role in deriving the relationships 

between the two theories, are systematically solved in previous subsection and 

therefore ‘mixed terms’ can be dismissed in the MVT. Thus, three-dimensional 

Hellinger-Reissner functional given in Eq. (1.2.1) can be rewritten as: 

 * *
3 3 33 33 3 3 0,

V S
dV t u dS

s
ab ab a a ss de s dg s de dé ù+ + - =ë ûò ò %   (4.1.23) 

where *
3t%  is the prescribed traction force which is applied to 3x  direction only, 

and the transverse normal stress is considered as the displacement field-based 

one because of Eq. (4.1.18). Thus the transverse shear stress is only derived 

from the independent transverse stress field.  

Form Eq. (4.1.23), the governing equation for the enhanced C0-type EHOZT 

via the MVT can be derived by applying the definition of the stress resultants as 

well as the integration by parts. This can be expressed as: 
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4.1.3.2. Transverse shear stress recovery 

Once the governing equations of the present theory (enhanced C0-type 
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EHOZT via MVT) are solved, accuracy of the transverse shear stresses can be 

improved by using the recovery process. The independent transverse stress fields 

can be utilized to increase the accuracy of the prediction. This can be achieved 

by expressing the independent transverse stress fields in terms of the variables 

obtained by solving the governing equations. In this procedure, the relationships 

between the two fields given in Eq. (4.1.20) plays a significant role to recover 

the transverse shear stresses. Substituting Eqs. (4.1.7) and (4.1.20) into Eq. 

(4.1.8), the independent transverse stress fields can be rewritten as follows: 

 ( )*
3 3 3 3 3 31

ˆ ,
k

Ta a b b l ls gé ùé ù= Gë û ë û   (4.1.26) 

where 
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  (4.1.27) 

Thus, transverse shear stresses are completely recovered in terms of variables of 

the present theory and accuracy of the results can be systematically improved. 

 

4.1.4. Numerical investigation and Discussion 

In order to verify the efficiency and accuracy of the present theory (enhanced 

C0-type EHOZT via MVT), cross-ply lay-up rectangular composite plates are 

analyzed in this section. The mechanical loading is prescribed on the top surface, 

which is expressed as follows: 
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The thermal loading is linearly prescribed through the thickness of the plates, 

which take the form of  

 ( )0 3 1( ) sin( )sin( ).ix T x T px qyq = +   (4.1.30) 

The primary variables of the enhanced C0-type EHOZT via MVT are assumed to 

be a double trigonometric series to satisfy the simply supported boundary 

conditions as follows: 
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  (4.1.31) 

Example models assume the aspect ratio as 1 2L L= , length-to-thickness ratio as 

1 2/ / 4S L h L h= = =  for the mechanical analysis and 1 2/ / 5S L h L h= = =  for 

the pure thermal analysis. 

The material properties of the composite plates are given as follows: 

 

 

-material (1) for the mechanical loading problem: 
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-material (2) for the thermal loading problem: 
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where the subscript ( )L represents a parallel direction, while ( )T denotes a 

transverse direction to the fibers. 

 

 

The results obtained herein are normalized as follows: 

-Mechanical analysis: 
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-Thermal analysis: 
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4.1.4.1. Symmetric Cross-ply Layup case 
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Symmetric cross-ply [0 / 90 / 0 ]o o o  laminated composite plates subjected to 

thermo-mechanical loading is considered.  

In the uniform thermal loading case ( 0 10, 0, 0Q T T= ¹ = ), normalized 

distributions of displacement and stresses of material (2) are shown in Figs. 

4.1.1-4.1.4 . The result of in-plane displacement for a symmetric cross-ply 

composite plates is plotted in Fig. 4.1.1 . For the results of in-plane displacement, 

it can be observed that the present model and LCW give a best compromised 

results as compared with the exact solution. FSDT and EHOPT, however, 

provide constant distribution, and HSDT fail to accurately describe the parabolic 

distribution of in-plane displacement. Figs. 4.1.2 and 4.1.3 represent normalized 

distributions of in-plane stresses. It can be seen that the present model and LCW 

can provide reliable result by capturing its non-continuous distributions of in-

plane stresses. However, results obtained by other theories, which neglected the 

contribution of the transverse normal strain effect, entirely fail to give accurate 

distributions as compared with the exact solution. Normalized distribution of 

transverse shear stress is given in Fig. 4.1.4. In this result, it can be found that 

present model and LCW provide fairly accurate semi-cubic variation in 

transverse shear stress, whereas other theories cannot. 

Figs. 4.1.5-4.1.7 show the normalized distributions of displacement and 

stresses of material (2) subjected to the temperature gradient 

( 0 10, 0, 0Q T T= = ¹ ). For the distribution of the in-plane displacement, as shown 

in Fig. 4.1.5 , it can be found that present model and LCW yield almost identical 

results with the exact solution. In addition, the FSDT, HSDT and EHOPT are 
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able to capture the qualitative response of the in-plane displacement. The results 

of in-plane and transverse shear stresses are depicted in Figs. 4.1.6 and 4.1.7. 

From the results of stresses, it can be seen that the results of present model and 

LCW are well correlated with those of the exact solution. HSDT and EHOPT can 

provide somewhat accurate result of in-plane and transverse shear stresses. 

FSDT, however, fails to accurately capture the shape of exact solution. 

To demonstrate the mechanical responses ( 0 10, 0, 0Q T T¹ = = ) of composite 

plates, normalized displacement and stresses of material (1) are given in Figs. 

4.1.8-4.1.11. Normalized distribution of in-plane displacements is shown in Fig. 

4.1.8. From the result of in-plane displacement, one can be observed that the 

result obtained by present model agree well with the exact solutions. Although 

zig-zag distributions with slope discontinuities at interfaces have been well 

described by EHOPT which are contained zig-zag displacement fields, present 

model provides most accurate solution which is substantially coincides with the 

exact solutions. Fig. 4.1.9 shows the distributions of in-plane stresses. As shown 

in Fig. 4.1.9 , present result of 11s  gives best compromised result in compared 

with the exact solution which is discontinuous distribution at interfaces. In 

addition, it can be also seen that result of the EHOPT provides relatively 

accurate distributions of in-plane stresses. LCW, HSDT and FSDT, however, 

give somewhat inaccurate results for the distribution of in-plane stress. The 

results of transverse shear stresses have been plotted in Figs. 4.1.10 and 4.1.11. 

Distributions of the transverse shear stresses are obtained by equilibrium 

approach. As shown in Figs. 4.1.10 and 4.1.11, the kinky distribution of 

transverse shear stress can be well captured by present model and EHOPT (Fig. 
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4.1.10), while LCW, HSDT and FSDT cannot describe such a kinky distribution. 

Additionally, it can be observed that the present model can gives identical 

results with the exact solution. 

 

4.1.4.2. Anti-symmetric Cross-ply Layup case 

To further investigate the thermo-mechanical behaviors of composite plates, 

anti-symmetric cross-ply [0 / 90 / 0 / 90 ]o o o o  laminated composite is also 

considered. 

Figs. 4.1.12-4.1.15 show the normalized distributions of displacement and 

stresses of material (2) subjected to the uniform temperature. Figs. 4.1.12 

present the normalized distributions of in-plane displacement. The asymmetric 

parabolic distribution of in-plane displacement (Fig. 4.1.12) is fairly well 

captured by present theory and LCW. The other theories, however, entirely fail 

to describe such a asymmetric parabolic shape because the transverse normal 

strain effect has been ignored in FSDT, HSDT and EHOPT. Normalized 

distributions of in-plane stresses are illustrated in Figs. 4.1.13 and 4.1.14 . From 

the results, it can be seen that the present model and LCW show a highly 

accurate prediction of in-plane stresses by capturing discontinuous distribution 

of 11s  as well as symmetric parabolic shape of 12s . The results obtained by 

other theories, however, significantly deviate from the exact solution. Fig. 

4.1.15 shows the normalized distribution of transverse shear stress. Form the Fig. 

4.1.15, one can see that the present model and LCW have a highly fidelity for 
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the accurate predict the distribution of transverse shear stress. Zig-zag variation 

of 13s  is precisely described by present model and LCW. 

 Next the anti-symmetric cross-ply composite plates of material (2) subjected to 

the gradient temperature are considered to assess the performance of present 

model. Fig. 4.1.16 shows the result of in-plane displacement. As one can see 

form Fig. 4.1.16, the results obtained by present model and LCW show excellent 

agreement with the exact solution. FSDT, HSDT and EHOPT, however, provide 

somewhat inaccurate result of in-plane displacement. Normalized distributions 

of in-plane and transverse shear stresses are plotted in Figs. 4.1.17 and 4.1.18. 

From the results, it can be observed that the results of present model and LCW 

match the exact solution with excellent accuracy, while the other theories 

provide slightly over-estimated results for the distributions of in-plane and 

transverse shear stresses. 

 For the mechanical loading case, normalized distributions of displacement and 

stresses of material (1) are shown in Figs. 4.1.19-4.1.21. Normalized 

distribution of the in-plane displacement is presented and examined in Fig. 

4.1.19. As shown in Fig. 4.1.19, the results of the present model show excellent 

agreement with the exact solution. In addition, a good agreement between the 

EHOPT and exact solution is found for the in-plane displacement under 

mechanical loading. Present model and EHOPT can provide reliable 

distributions by accurately capturing the asymmetrical zig-zag shape of in-plane 

displacement. The results of FSDT, HSDT and LCW, however, provide 

somewhat inaccurate results. Variations of the in-plane and transverse shear 

stresses are illustrated in Figs. 4.1.20 and 4.1.21. For results in Figs. 4.1.20 and 
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4.1.21, the results of present model and EHOPT provide a best compromised 

results as compared with the exact solution. In Fig. 4.1.21, results of present 

model and EHOPT can precisely describe the kinky distribution of transverse 

shear stress. Especially the present model yields almost identical results with the 

exact solution. This clearly indicates that the present model has a great 

advantages in terms of accuracy and efficiency.  
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Fig. 4.1.1. In-plane displacements for [ 0 / 90 / 0o o o ] laminated plates under 

uniform temperature 

 

 
Fig. 4.1.2. In-plane stresses for [ 0 / 90 / 0o o o ] laminated plates under uniform 

temperature 
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Fig. 4.1.3. In-plane stresses for [ 0 / 90 / 0o o o ] laminated plates under uniform 

temperature 

 

 

Fig. 4.1.4. Transverse shear stresses for [ 0 / 90 / 0o o o ] laminated plates under 

uniform temperature 
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Fig. 4.1.5. In-plane displacements for [ 0 / 90 / 0o o o ] laminated plates under 

temperature gradient 

 

 
Fig. 4.1.6. In-plane stresses for [ 0 / 90 / 0o o o ] laminated plates under  

temperature gradient 
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Fig. 4.1.7. Transverse shear stresses for [ 0 / 90 / 0o o o ] laminated plates under 

temperature gradient 

 

 

Fig. 4.1.8. In-plane displacements for [ 0 / 90 / 0o o o ] laminated plates under 

mechanical loading 
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Fig. 4.1.9. In-plane stresses for [ 0 / 90 / 0o o o ] laminated plates under mechanical 

loading 

 

 

Fig. 4.1.10. Transverse shear stresses for [ 0 / 90 / 0o o o ] laminated plates under 

mechanical loading 
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Fig. 4.1.11. Transverse shear stresses for [ 0 / 90 / 0o o o ] laminated plates under 

mechanical loading 

 

 

Fig. 4.1.12. In-plane displacements for [ 0 / 90 / 0 / 90o o o o ] laminated plates under 

uniform temperature 
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Fig. 4.1.13. In-plane stresses for [ 0 / 90 / 0 / 90o o o o ] laminated plates under 

uniform temperature 

 

 

Fig. 4.1.14. In-plane stresses for [ 0 / 90 / 0 / 90o o o o ] laminated plates under 

uniform temperature 
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Fig. 4.1.15. Transverse shear stresses for [ 0 / 90 / 0 / 90o o o o ] laminated plates 

under uniform temperature 

 

 

Fig. 4.1.16. In-plane displacements for [ 0 / 90 / 0 / 90o o o o ] laminated plates under 

temperature gradient 
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Fig. 4.1.17. In-plane stresses for [ 0 / 90 / 0 / 90o o o o ] laminated plates under 

temperature gradient 

 

 

Fig. 4.1.18. Transverse shear stresses for [ 0 / 90 / 0 / 90o o o o ] laminated plates 

under temperature gradient 
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Fig. 4.1.19. In-plane displacements for [ 0 / 90 / 0 / 90o o o o ] laminated plates under 

mechanical loading 

 

 
Fig. 4.1.20. In-plane stresses for [ 0 / 90 / 0 / 90o o o o ] laminated plates under 

mechanical loading 
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Fig. 4.1.21. Transverse shear stresses for [ 0 / 90 / 0 / 90o o o o ] laminated plates 

under mechanical loading 
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Chapter 5 

Geometrically Nonlinear Analysis 

Based on Enhanced FSDT 

5.1. Co-rotational Geometrically Nonlinear Formulation 

based on EFSDT 

5.1.1. Literature Review 

Thin and moderately thick laminated composite and sandwich plates with their 

excellent mechanical performance have been increasingly used in various fields 

of structural engineering. When the loading is applied, this type of structures is 

prone to geometrically nonlinear phenomena which is large displacement and 

rotation. So, geometrically nonlinear analysis should be considered in order to 

accurately predict their large deformed behavior as well as optimally design the 

laminated structures. The geometrically nonlinear analysis of laminated shell 

and plate structures is a complicated problem because their equilibrium state 

should be defined in the deformed configuration. According to the description 
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method for each element motion, the existing Lagrangian kinematic descriptions 

for geometrically nonlinear finite element method can be divided into three 

categories: (1) Total Lagrangian (TL), (2) Updated Lagrangian (UL) and Co-

rotational (CR) formulation. For the TL formulation, equilibrium equations are 

established with respect to the initial configuration. For the UL formulation, 

those are referred to a deformed configuration which is based on the last 

converged solution. The CR formulation, which is based on the fixed 

configuration as in the TL formulation with a co-rotational configuration, is 

another efficient method to analyze the geometrically nonlinear behavior with 

large rotation and small strain.  

Along these lines, the concept of an element independent co-rotational (EICR) 

formulation was introduced by Rankin and Brogan [71]. Further works on the 

EICR formulation were done by Rankin and Nour-Omid [72, 73] by considering 

a rotational projector matrix into the EICR formulation. Pacoste and Battini [74-

76] employed the concept of rotational pseudo-vector in the EICR formulation to 

accurately describe the total rotation of element node. In addition, they provide 

the schemes to improve computational efficiency. Felippa and Haugen [77] 

summarized the existing EICR formulation and presented a unified CR 

formulation with small strain for geometrically nonlinear analysis. They also 

introduced the consistent symmetrizable equilibrated (CSE) CR formulation 

including the translational projection matrix to improve their numerical stability. 

Based on the CSE CR formulation, geometrically nonlinear dynamic analysis of 

laminated composite shell structures were carried out by Almeida and Awruch 

[78]. Furthermore, Yang and Xia [79] conducted nonlinear analysis for the thin 

shell structures with large rotation by employing the CSE CR formulation. 
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The main feature of the CR formulation is to extract pure elastic deformational 

motion from the total motion by introducing the CR frame which continuously 

translates and rotates with the element but does not deform with it. Due to the 

assumption of the small strain in the local CR frame, total deformation of each 

element can be decomposed into two parts: the rigid body motion of element and 

the pure elastic deformational motion based on the local CR configuration. Thus, 

element stiffness matrix and internal force vector of element can be established 

in the local CR frame by using the linear elastic finite element formulation, 

while the geometrically nonlinear effects are considered by transforming the 

element stiffness matrix and internal force vector in the local CR frame to those 

in the global coordinate system. Consequently, the main advantage of the CR 

formulation is that the existing excellent performance of linear elastic element 

can be transformed to a geometrically nonlinear one with just a little extra work. 

In addition, another advantage is that the transformation matrices are 

independent of the assumptions made for elements. This is to say that CR 

formulation for arbitrary element with the same geometry and node degrees of 

freedom (DOFs), the CR framework is exactly the same. Hence, the CR 

formulation is element independent. 

In this subsection, to predict the geometrically nonlinear behavior of the 

relatively thick and thin laminated composite structures, the EFSDT based on 

co-rotational formulation is proposed and tested numerically. By applying the 

co-rotational configuration, the strain energy relationships between two theories 

(conventional FSDT and EHOPT) for the geometrically nonlinear analysis can 

be defined with similar manner as that of linear analysis model in the local CR 

frame. Therefore, one can come up with the conventional FSDT-like theory (i.e. 
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EFSDT) incorporating the simplicity of conventional FSDT and the accuracy of 

the third-order zig-zag model. Finally the results obtained are assessed by 

comparing them to those reported in the open literature.  

 

5.1.2. Co-rotational Formulation 

To analyze the geometrically nonlinear behavior of the laminated composite and 

sandwich plates, enhanced first-order shear deformation theory (EFSDT) based 

on the co-rotational formulation is considered in this subsection. The main 

feature of the co-rotational formulation is to decompose the motion of an element 

into the pure elastic deformational motion based on the local CR frame and the 

rigid-body translational and rotational motion. In EICR [77], decomposition of 

the total motion is purely based on its kinematic relations; the pure linear elastic 

deformational motion can be completely extracted from nonlinear deformational 

motion by applying EICR formulation to the local element (i.e., element 

independent formulation). Therefore, we efficiently implement the enhanced plate 

element based on EFSDT, which improve not only the accuracy of the 

geometrically nonlinear solution but also the efficiency of the computational 

process. Therefore, EICR is the effective method to analyze the geometric 

nonlinear behavior of the plate and shell structures. The matrix notation for the 

EICR formulation follows that of Ref. [79]. 
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5.1.2.1. Co-rotational Kinematics of element 

To enable kinematic extraction of rigid-body motions from the total element 

motion, co-rotational formulation requires different three configurations in terms 

of the before and after deformation of element, as shown in Fig. 5.1.1 . These are 

the initial 0C , deformed DC , and co-rotational RC  configurations. The initial 

configuration, 0C , is related to the undeformed condition without any motion of 

each element. The latter, RC , is a theoretical concept introduced to intermediate 

phase between the initial and deformed configuration, which is based on the 

configuration of element after rigid-body translational and rotational motion 

before the elastic deformation. The deformed configuration, DC , refers to the 

deformed condition of each element after pure elastic deformation in the local CR 

frame. 

To describe the total motion of element, two kinds of coordinate systems (global 

and local coordinate system) are defined. RC  and DC  are defined the same 

local frame, as shown in Fig. 5.1.1, because the local frame is not translates and 

rotates during the linear elastic deformation. The local frame ( 0 ,i ie e ) and the 

local-to-global transformation matrix ( 0 ,T T ) are calculated in each element. 

Located at the centroid of each element, the local axis of 1e  can be defined as 

parallel to side 1-2 of each element, whereas 3e  is perpendicular vector to the 

plane of element. Based on the above definition of local axis, the local-to-global 

transformation matrix of the initial coordinate system can be given by: 
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  (5.1.1) 

where 0 0 0
21 2 1x x x= - , 0

ax  is the global coordinate-based position vector of the 

element node a  in the initial configuration 0C . The transformation matrix of 

the element in the co-rotated coordinate system is then obtained with similar 

manner as that of the initial coordinate system as follows: 
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  (5.1.2) 

Based on the Eqs. (5.1.1) and (5.1.2), the transformation relationships between 

the vectors in the global and local coordinate system can be defined as 
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0 0 0 0
0 0

0
0 0

,
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3 3
0 0

1 1

1 1
, .

3 3
a C aC

a a

x x x x
= =

= =å å   

The total deformational motion process of the element from the initial to 

deformed state needs two steps in terms of the intermediate configuration (local 

CR frame). In the first step, the element based on the initial configuration ( 0C ) is 

converted to the co-rotated configuration by the rigid body translational and 

rotational motion. The rigid body translation can be defined by the displacement 

vector in the global coordinate system, and the rigid body rotation can be 

described by the continuous rotation matrix. The second step is to extract the pure 
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elastic translation and rotation of element in the co-rotated coordinate system. 

Based on the above two steps, total deformation of each element can be 

decomposed into independent two parts: the rigid body translational and 

rotational motion of element and the pure elastic deformational motion in the 

local CR frame. So, elastic translation ( dau ) and rotation ( daR ) in the local 

coordinate system can be defined according to the geometric consideration. 

In the global coordinate system, the pure elastic translation of node a  can be 

defined by vector operation relationships as follows: 

 0

0 0 .R R
da a a a a C CaC

u x x u x u x x= - = + - - -   (5.1.4) 

The pure elastic rotation of node a  in the global coordinate system can be 

obtained by the rotational matrix ( aR ) as well as the transformation relationship 

for continuous rotation ( a da oR R R= ): 

 0 .T
da aR R R=   (5.1.5) 

From the deformational components in the global coordinate system ( dau  and 

daR ), the pure elastic displacement in the local CR frame can be obtained by 

using the transformation relationship between the global and local coordinate 

system: 

 
( )0 0

0 0 0

0

,

.

da da a a C C C a

T T
da da a

u Tu T u x u x x

R TR T TR T

= = + - - -

= =
  (5.1.6) 
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5.1.2.2. Nodal Degrees of Freedom 

In the process of EICR formulation, the rotation matrix ( R ) and the rotational 

pseudo-vector (q ) are assumed to describe the finite rotation. The rotational 

pseudo-vector can be obtained from the rotation matrix because the rotation 

matrix is a nonlinear function of the rotational pseudo-vector. 
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  (5.1.7) 

where ijR  are the component of the rotational matrix.  

In the iterative process for solving geometrically nonlinear problem, the iterative 

incremental solutions are updated by additional infinitesimal incremental rotation 

( dadw ). This infinitesimal incremental rotation is based on the finite rotation 

which can be obtained by the rotational pseudo-vector ( dadq ). Because dadw  and 

dadq , however, are not exactly same ( da da da daq dw q dq+ ¹ + ), the rotational pseudo-

vector of the finite rotation cannot be directly calculated as da daq dw+  in 

updating the rotational degrees of freedom of each node. Therefore, 

transformation process between dadw  and dadq  is firstly required to express the 

same incremental rotation with the superposition characteristic. 

The transformation relationship in the local coordinate system can be given by: 
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where 3I  is a 3 3´  identity matrix and the spinor matrix operator is  
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  (5.1.9) 

Where for the small angle ( 0daq » ), the coefficient h  can be obtained by the 

power series expansion to improve their numerical stability. 

The total displacement of the node in the global coordinate system is given as 

following vector: 

 .
TT T

a a ad u Ré ù= ë û   (5.1.10) 

In the solving process, the increment of total displacement vector of node a  

expressed by translation and incremental rotation ( [ ]a a ad ud d dw= ). One 

essential step for the nonlinear analysis is to updating the nodal increment at the 

end of each iteration. Thus, the increment of rotational pseudo-vector adw  is 

used to update the rotational matrix aR  in the global coordinate system in each 
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iteration. 

The procedure can be given as follows: 
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where 2 2 2
a ax ay azdw dw dw dw= + + . 

  

5.1.2.3. Variation of Displacement Vector 

In the global coordinate system, the consistent tangent stiffness matrix TK  of 

the element is obtained by the variation of the global internal force vector f  

relative to the global degrees of freedom. 

 , .T T

f
f K d K

d
d d

¶
= =

¶
  (5.1.12) 

In order to calculate the TK  of the element, it is necessary to extract the 

increment of the elastic displacement vector in the local coordinate system 
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(
T

d dud dqé ùë û ) from the increment of the total displacement vector in the global 

coordinate system ( [ ]
T

ud dw ). 

The relationship between the variation of the total and elastic deformational 

displacement vector of node a  can be defined by: 
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  (5.1.14) 

abP  is a sub-block matrix of the projector matrix P . Projector matrix plays a 

role in preservation of pure deformational motion, while discarding the rigid body 

motion. Through the projector matrix, the increment of pure elastic deformational 

displacement can be extracted from the increment of total displacement in the 

local coordinate system. 

Final expression for the variation of pure elastic displacement vector can be 

given as follows: 
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  (5.1.15) 

 

5.1.3. Enhanced First-order Shear Deformation Theory 

In this subsection, finite element model based on enhanced first-order shear 

deformation theory is considered in CR formulation to accurately and efficiently 

analyze the geometrically nonlinear behavior of laminated composite and 

sandwich plates. The main feature of the EFSDT is to systematically derive an 

improved strain energy expression for conventional FSDT in the co-rotated 

coordinate system, and then provide a way to recover the stresses and 

displacements to improve their accuracy. In EFSDT, the displacement fields of 

EHOPT and FSDT are independently assumed. The displacement fields based on 

EHOPT in the co-rotated coordinate system can be expressed as: 
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  (5.1.16) 

The displacement fields of conventional FSDT in the co-rotated coordinated 
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system are given as: 
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The improved strain energy expression of EFSDT are systematically derived in 

co-rotated coordinated system. In order to derive the relationships between the 

EHOPT and conventional FSDT, the least-square sense approximation is applied 

to the displacements in co-rotated coordinate system (Eqs. (5.1.16) and (5.1.17)). 

Consequently, the least-square sense minimization of error between EHOPT and 

conventional FSDT yields the following relationships: 
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  (5.1.18) 

From Eq. (5.1.18), the relationships for the in-plane strain and effective 

transverse shear strain vectors can be expressed in the following form: 
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208 

 

From the eq. (5.1.19), the strain energy of the EHOPT can be transformed into 

that of conventional FSDT because the strain relationships between the two 

theories are defined. The reduced strain energy expression of EHOPT can be 

written as: 
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To utilize the variables of the conventional FSDT, the reduced strain energy 

expression of EHOPT should be rewritten based on the strain relationships of Eq. 

(5.1.19). Substituting the Eq. (5.1.19) into the above expression for the strain 

energy of EHOPT yields 
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  (5.1.21) 

After rearranging the strain energy expression of Eq. (5.1.21), one can 

decompose (CR)
EHOPTU  into those of the conventional FSDT-like theory and error 

energy as follows: 

 (CR) (CR) (CR)2 2 2 ,EHOPT FSDT like ErrorU U U-= +   (5.1.22) 
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The detailed expression of (CR)
FSDT likeU -  and (CR)

ErrorU  is given by: 
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The ErrorU  indicates the strain energy difference between the two theories. Then, 

the relationship matrices C%  and G%  are determined by minimizing ErrorU  as 

close to be zero as possible. That can be fulfilled by satisfying the following 

relationships: 

 
0,

0.T

AC B E

B C D F

- - G+ =

- - G+ =

% %

% %
  (5.1.25) 

Once we have found the solution for minimizing the error energy ( 0ErrorU » ), 

the strain energy of EHOPT can be successfully expressed in terms of the 

variables of conventional FSDT-like theory and their effective transverse shear 

stiffness can be obtained by 

 ˆ ˆ ˆ .TG G= G × ×G   (5.1.26) 

Note that the stiffness matrices coincide with that of conventional FSDT except 

the transverse shear stiffness matrix. Matrices A , B  and D  are the well-
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known transformed reduced stiffness of the conventional FSDT, whereas the 

transverse shear stiffness modulus are modified by applying the strain energy 

transformation. Therefore, the effect of shear correction factor automatically 

identified through mechanics-based consideration in the present model.  

 

5.1.3.1. Tangent Stiffness Matrix and Internal Force 

A conventional Newton-Raphson algorithm is used to solve the geometrically 

nonlinear finite element equations. An adaptive step-size control scheme 

depending on the stiffness matrix conditions [80] is also used to improve their 

iteration stability. The tangent stiffness matrix of the element in the global 

coordinate system can be given by: 
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  (5.1.27) 

where MK  is the material stiffness matrix in the global coordinate system, in 

which local stiffness matrix based on EFSDT ( eK ) is employed to derive MK . 

GRK , GMK  and GPK  are the geometric stiffness matrices. 

The internal force vector of the element in the global coordinate system can be 
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expressed as: 

 (K d ).T T T e T T T e
df T P H f T P HD = =   (5.1.28) 

As shown in Eq. (5.1.27), the material and geometric stiffness matrices are 

categorized according to the geometric nonlinearity; ( GRK : rotational geometric 

stiffness, GMK : moment correction geometric stiffness, GPK : eauilibrium 

projection geometric stiffness). The subscripts M, GR, GM and GP are related to 

the variations of matrices f, T, H and P, respectively. The assembled global 

tangent stiffness matrix is expressed as K. From Eq. (5.1.27), it can be seen that 

the tangent stiffness matrix of the element is a non-symmetric matrix. 

 

5.1.3.2. Linear triangular element based on OPT and EFSDT 

 The finite element formulation of the linear elastic element is defined based on 

the virtual work variational principle; its derivation can be given by: 
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 The first term on the right-hand side accounts for the prescribed boundary state; 

thus the stiffness matrix can be constructed by employing the second term in Eq. 

(5.1.29) as follow: 
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with ( ), , / 2ij i j j iu uw = - . Because the element rotation tensor is skew-symmetric 

matrix ( w w
ij ijs s= - ), component of strain-rotation coupling can be negligible in 

their finite element equation. Therefore, the formulation for each plate element 

given as follows: 

 ,e
d dW d K dd d= × ×   (5.1.31) 

with  

 2 ,e m b mb sK K K K Ké ù é ù= + + +ë û ë û   (5.1.32) 

in which 
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 The superscripts ,e k  and f  in the series of B matrices in Eq. (5.1.33) stand 

for the strain, curvature, and rotation, respectively. In this subsection, linear 

triangular elements with 18 degrees of freedom is employed to analyze 

geometrically nonlinear behavior of the composite and sandwich plates, which is 

illustrated in Fig. 5.1.2. In this plate element, the optimal membrane triangular 

(OPT) element proposed by Felippa [81] is used to construct the membrane and 

membrane-bending coupling stiffness of the element ( mK  and mbK ). It is based 

on the ANDES natural strain, especially optimized for in-plane bending behavior 

and numerically circumvent the aspect-ratio locking problem. The OPT elements 
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are used to calculate the membrane strain and drilling rotation in terms of 

, ,x y zu u q .  

For the bending and transverse shear behavior of the plate, mindlin triangular 

elements based on the enhanced first-order shear deformation theory [18] are 

utilized. The bending and transverse shear part of the motion is denoted by the 

superscript b and s, respectively. Curvature-related strain ( abk  and 3ag ) in terms 

of zu , xq  and yq  are calculated by using the EFSDT element. To circumvent 

shear locking problem, adequate scheme proposed by Kim et al [82] is considered 

in mindlin triangular element. It should be point out that the material stiffness 

matrix can be established in the initial configuration because the local coordinate 

system in each element are exactly same. In addition, it should be emphasized 

that the plate element based on EFSDT only needs to replace the material 

stiffness matrix eK  of the element to consider other elements with 3 nodes and 

18 DOF. 

 

 

5.1.4. Numerical results and Discussion 

 The ability of combining the EICR formulation with the EFSDT plate elements 

to solve geometrically nonlinear problems of laminated composite and sandwich 

structures is demonstrated in this subsection. To investigate the capability of the 

proposed model (CR formulation with the EFSDT) and to identify its limitation, 

some geometric nonlinear problems were tested. The results used for comparison 

in the following are mainly taken from the popular benchmark problems for 
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geometric nonlinear analysis proposed by Sze et al [80]. For the numerical 

example, (1) cantilever isotropic plate (thickness is assumed to be thin), (2) 

cantilever laminated composite plates (thickness is assumed to be thin) and (3) 

moderately thick sandwich plate with simply supported as well as all clamped 

boundary conditions are considered. 

5.1.4.1. Cantilever isotropic plate  

 A narrow cantilever isotropic plate subjected to the end shear force is 

considered as shown in Fig. 5.1.3. The material properties and its length, width 

and thickness are given as follows: 
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  (5.1.34) 

 The cantilever isotropic plate is modeled with 32ⅹ4ⅹ2 triangular element in 

the CR formulation based on EFSDT, 32ⅹ4 rectangular element in the 2-D FEM 

solution and 200ⅹ20ⅹ6 solid element in 3-D FEM solution by using the 

commercial software (ANSYS and ABAQUS). The results obtained by present 

model are compared with those calculated by 3-D and 2-D FEM solution as well 

as CR formulation based on conventional FSDT. Fig. 5.1.4  plots the end shear 

force against the vertical and horizontal tip deflections. In addition, Fig. 5.1.5  

shows the middle axis displacements at each step of the end shear force.  Form 

the results plotted in Figs. 5.1.4 and 5.1.5, it can be observed that the result 
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obtained by present model are in good agreement with those of commercial 

software (3-D and 2-D FEM solution) and CR formulation based on 

conventional FSDT.  

 As the second numerical example, a narrow cantilever isotropic plate subjected 

to the end moment is considered (Fig. 5.1.6). The material properties and its 

length, width and thickness are given as follows: 
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  (5.1.35) 

Using the classical flexural formula /R EI M= , the analytical normalized 

deflections for the cantilever bending problem can be derived as follows: 

 sin 1, 1 cos .o o

o o

M MU M W M

L M M L M M

æ ö
= - = -ç ÷

è ø
  (5.1.36) 

where /oM EI L= . The maximum maxM  is taken to be 2 oMp  at which the 

cantilever beam will be bent into a circle. In this problem, Fig. 5.1.7 plots the 

end moment against the vertical and horizontal tip deflections. Additionally, 

middle axis deformations at each step of the end moment is depicted in Fig. 

5.1.8. As can be seen in Figs. 5.1.7 and 5.1.8 , the result obtained by present 

model agrees well with the analytical solution as well as those of 2-D FEM 

solution and CR formulation based on conventional FSDT. 
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5.1.4.2. Cantilever composite plates  

A narrow cantilever orthotropic composite plates is considered. The material 

properties of the composite plates and it’s length, width and thickness are given 

as follows: 
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  (5.1.37) 

The cantilever composite plate is modeled with 32ⅹ4ⅹ2 triangular element in 

the CR formulation based on EFSDT and 200ⅹ20ⅹ6 solid element in 3-D FEM 

solution. The results obtained by present model are compared with those 

calculated by 3-D FEM solution as well as CR formulation based on 

conventional FSDT. 

Fig. 5.1.9 plots the end shear force against the vertical and horizontal tip 

deflections for the symmetric cross-ply [0 / 90 / 90 / 0 ]o o o o  composite plates. As 

can be seen in Fig. 5.1.9, present model are in good agreement with comparable 

results (3-D FEM solution and CR formulation based on conventional FSDT). 

The vertical and horizontal tip deflections against the end shear force for the 

anti-symmetric cross-ply [90 / 0 / 90 / 0 ]o o o o  composite plates is presented in Fig. 

5.1.10. From the result, like the symmetric cross-ply case, it can be observed 

that the result obtained by present model are fairly well matched with those of 3-

D FEM solution. From Fig. 5.1.9 and Fig. 5.1.10, it can be also seen that the 

magnitude of the tip deflection can become severe in the case of anti-symmetric 
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cross-ply lay-up. In addition, the results obtained by CR formulation based on 

EFSDT and conventional FSDT are almost same because the effect of transverse 

shear deformation can be negligible in the case of thin plates. 

 

 

5.1.4.3. Moderately thick sandwich plates  

To further investigate geometric nonlinear behavior of the laminated structures, 

moderately thick sandwich plate ( 1 2/ / 10L h L h= = ) is also considered. A 

sandwich plate is a very challenging problem because it experiences a 

significant shear deformation due to the flexible core material. For the sandwich 

plate, the material properties of a face sheet are the same as Eq. (5.1.37), and 

those of the core material are taken as: 
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  (5.1.38) 

The sandwich plate is modeled with 100ⅹ100ⅹ2 triangular element in the CR 

formulation based on EFSDT and 100ⅹ100ⅹ40 quadratic solid element in the 

3-D FEM analysis. The results obtained by present model are compared with 

those calculated by commercial software 3-D FEM solution as well as CR 

formulation based on conventional FSDT.  

The rectangular sandwich plates with simply supported boundary condition is 
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considered. The geometry of the sandwich plates illustrated in Fig. 5.1.11 . For 

the simply supported boundary condition, double sinusoidal mechanical pressure 

is prescribed on the top surface of the structure, which take the form of 

 
1 22( , ; ) sin( ) sin( ).h

o L LP x t P x yp p
a = × × ×   (5.1.39) 

The deflections for the center point of the structure against the magnitude of the 

sinusoidal pressure is depicted in Fig. 5.1.12. From Fig. 5.1.12 , it can be 

observed that the deflections obtained by present model are fairly well matched 

with 3-D FEM solution in the case of linear elastic as well as geometrically 

nonlinear solution. The result of conventional FSDT, however, provides 

significantly underestimated value because conventional FSDT cannot 

accurately describe the severe transverse shear deformation of the sandwich 

plates. Additionally, geometric nonlinearity cannot be observed in the result of 

conventional FSDT due to their inflexible behavior. To further study on the 

geometrically nonlinear behavior, displacement and stresses are also 

investigated. The global distribution of the in-plane displacement is given in Fig. 

5.1.13. For the in-plane displacement, the result of present model agree well 

with the 3-D FEM solution by capturing the zig-zag distribution, while 

conventional FSDT gives inaccurate distribution for the in-plane displacement. 

Figs. 5.1.14 and 5.1.15 show the normalized distribution of in-plane stress. As 

can be seen in Figs. 5.1.14 and 5.1.15, present model fairly well capture the 

discontinuous distribution of the in-plane stresses, whereas conventional FSDT 

cannot. The normalized distribution of transverse shear stress based on 

constitutive (Fig. 5.1.16) as well as equilibrium approach (Fig. 5.1.17) are also 
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presented. In Fig. 5.1.16 , transverse shear stress obtained by present model 

comparatively accurate by satisfying the shear free condition at the surfaces of 

the structure as well as shear continuity conditions at the layer interfaces. 

Conventional FSDT, however, cannot satisfy the transverse shear stress 

conditions and provide severe overestimated distribution at the face sheets of the 

sandwich plates. Transverse shear stress based on the equilibrium approach 

provides more accurate results as shown in Fig. 5.1.17 . The kink shapes of 

transverse shear stress can be accurately captured by the present model, whereas 

conventional FSDT cannot represent the kink shape. Additionally, the result of 

present model is qualitatively and quantitavely close to the 3-D FEM solution as 

compared to the conventional FSDT. It is noteworthy that transverse shear forces 

obtained by present model and conventional FSDT are not exactly same because 

moment is dependent on the shear correction factors in 2-D plate problem. This 

is one of the merits of using the present model. 

 The rectangular sandwich plates with all clamped boundary condition is also 

investigated. In this case, uniform distributed pressure is applied on the top 

surface of the structure. The deflections for the center point of the structure 

against the magnitude of the uniform pressure is presented in Fig. 5.1.18. The 

present model provides reliable deflection as compared to the 3-D FEM solution 

in the case of linear elastic and geometrically nonlinear behavior. The result of 

the present model, however, is comparatively inaccurate as compared to those of 

Fig. 5.1.12 because present model cannot accurately consider the edge effect 

caused by clamped boundary condition. Fig. 5.1.19 shows the global distribution 

of the in-plane displacement, and results of the in-plane stress are depicted in 
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Figs. 5.1.20 and 5.1.21. As can be seen in Figs. 5.1.19-21, present model 

captures very well both the zig-zag shape of displacement as well as the 

discontinuous through-the-thickness variations of in-plane stress. However, 

conventional FSDT fail to provide reliable distributions of in-plane 

displacement and stresses. The results of transverse shear stress based on the 

constitutive and equilibrium approach are plotted in Figs. 5.1.22 and 5.1.23. 

From the Figs. 5.1.22 and 5.1.23, present model gives best compromised results 

as compared to the 3-D FEM solution. In prediction of transverse shear stress, 

conventional FSDT shows a terribly poor performance because conventional 

FSDT cannot describe the severe transverse shear deformation caused by 

flexible core material. 
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Fig. 5.1.1. Kinematics of EICR 

 

 

Fig. 5.1.2. Three-node plate element with 18 DOF 
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Fig. 5.1.3. Cantilever plate subjected to end shear force 

 

 

Fig. 5.1.4. Load-deflection curves for isotropic cantilever subjected to end shear 

force 
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Fig. 5.1.5. Middle axis deformation for isotropic cantilever subjected to end 

shear force 
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Fig. 5.1.6. Cantilever plate subjected to end bending moment 

 

 

Fig. 5.1.7. Load-deflection curves for isotropic cantilever subjected to end 

bending moment 
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Fig. 5.1.8. Middle axis deformation for isotropic cantilever subjected to end 

bending moment 
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Fig. 5.1.9. Load-deflection curves for [0 / 90 / 90 / 0 ]o o o o  composite cantilever 

subjected to end shear force 

 

 

Fig. 5.1.10. Load-deflection curves for [90 / 0 / 90 / 0 ]o o o o  composite cantilever 

subjected to end shear force 
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Fig. 5.1.11. Geometry of the sandwich plates 

 

 

Fig. 5.1.12. Variation of deflection against the magnitude of pressure 
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Fig. 5.1.13. In-plane displacement under sinusoidal pressure 

 

 

Fig. 5.1.14. In-plane stress under sinusoidal pressure 



229 

 

 

Fig. 5.1.15. In-plane stress under sinusoidal pressure 

 

 

Fig. 5.1.16. Transverse shear stress (c) under sinusoidal pressure 
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Fig. 5.1.17. Transverse shear stress (e) under sinusoidal pressure 

 

 

Fig. 5.1.18. Variation of deflection against the magnitude of pressure 
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Fig. 5.1.19. In-plane displacement under uniform pressure 

 

 

Fig. 5.1.20. In-plane stress under uniform pressure 
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Fig. 5.1.21  In-plane stress under uniform pressure 

 

 

Fig. 5.1.22 Transverse shear stress (c) under uniform pressure 
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Fig. 5.1.23 Transverse shear stress (e) under uniform pressure 

 

  



234 

 

 

 

 

Chapter 6 

Concluding Remarks 

Efficient and accurate models based on enhanced theories are proposed in this 

dissertation for the thermo-mechanical analysis of laminated composite and 

sandwich plates. Enhanced theories can be categorized as follows: (1) enhanced 

first-order theories, (2) enhanced higher-order theories, (3) enhanced zig-zag 

theory. In addition, enhanced first-order theory is further extended to co-

rotational formulation for the geometrically nonlinear analysis. The features of 

the enhanced theories developed in this dissertation can be summarized as 

follows: 

 

l An enhanced first order shear deformation theory including transverse 

normal strain effect based on mixed variational theorem (i.e. 

EFSDTM_TN) has been developed in order to efficiently and accurately 

predict the thermo-elastic response of the laminated composite and 

sandwich plates. In EFSDTM_TN, an inventive approach is employed to 

effectively consider the contribution of the transverse normal strain 

effects without increasing unknown variables. Moreover, in-plane shear 
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correction factors are newly considered in EHOPT_TN to satisfy self-

equilibrium state of the stress for the general configuration of the 

structures. Relationships between EHOPT_TN and FSDT_TN were 

systematically derived by the mixed variational theorem and least-square 

approximation. Through these relationships, the EHOPT_TN is recast by 

a FSDT_TN-like theory. Thus, the present method corresponding to the 

enhanced plate theory is similar to the FSDT_TN except for the 

transverse shear stiffness. Once the EFSDTM_TN is solved, the results 

of displacements and stresses are improved by using the recovery 

procedure. And then the transverse shear and normal stresses are 

reasonably improved by utilizing three dimensional stress equilibrium 

equations.  

 

l EFSDT in the Laplace domain is proposed and tested numerically for the 

efficient and accurate viscoelastic analysis of laminated composite and 

sandwich plates. After applying Laplace transformation, the complexity 

of dealing with viscoelastic material behavior is equivalent to the linear 

elastic version in the Laplace domain. The relationships between 

conventional FSDT and EHOPT in the Laplace domain are 

systematically established by using strain energy transformation as well 

as least-square sense approximation. The accuracy of the results can be 

further improved via post-processing. Thus, the present theory preserves 

the computational advantage of conventional FSDT while improving the 

through-the-thickness local distributions of the displacements and 
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stresses.  

 

l The enhanced higher-order shear deformation theory based on mixed 

formulation (EHSDTM) is fully developed to analyze the static behavior 

of laminated composite and sandwich plates. The mixed variational 

theorem (MVT) is employed to synthesize the quantic zig-zag model and 

the conventional HSDT. The MVT allows one to embrace the 

characteristics of the quantic zig-zag model as the conventional HSDT. 

This results in EHSDTM. The recovery process is then applied by 

introducing the in-plane correction factor that makes it possible to 

satisfy the stress condition at the top and bottom surfaces of plates. The 

EHSDTM is able to provide the accurate stress state including the 

boundary layer zone in practice. 

 

l The enhanced Lo-Christensen-Wu theory is systematically derived by 

employing the mixed variational theorem (i.e. ELCWM). The 

independent transverse shear stresses fields based on the fifth-order 

zigzag theory assumed in this model, whereas the displacements, strains, 

and other stresses are based on the conventional LCW theory. The 

relationship between the two theories can be systematically established 

by solving the constraint equation for the independently assumed 

transverse shear strains. The recovery procedure is outlined, in which the 

least square concept is employed in order to correct the in-plane 
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stretching displacement. The ELCWM is efficient because it does not 

require the C1 continuity shape function for the finite element 

implementation. At the same time, it could outperform the classical LCW, 

since it satisfies the transverse shear stress conditions without additional 

cost in terms of the number of unknown variables. Therefore, present 

ELCWM will be a viable means of analyzing the thermo-mechanical 

responses of the laminated composite and sandwich plates. 

 

l The enhanced C0-type efficient higher-order zig-zag theory via the mixed 

variational theorem (i.e. Enhanced C0-type EHOZT) is systematically 

derived for the efficient and accurate thermo-mechanical analysis of 

laminated composite plates. The independent transverse shear stresses 

are obtained from the seventh order zig-zag model, whereas the 

displacements, strains, and other stresses are based on the C0-type 

efficient higher-order zig-zag theory. The relationships between the two 

theories are derived by employing constraint equation of mixed 

variational theorem. The accuracy of the transverse shear stress can be 

reasonably improved by utilizing the recovery procedure. In addition, 

Enhanced C0-type EHOZT possess the computational advantage because 

C0-continuity shape function is only required in their finite element 

implementation by eliminating the first derivatives of the transverse 

displacement field. 

 

l Co-rotational formulation based on the EFSDT is developed in order to 
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efficiently and accurately predict the geometrically nonlinear behavior of 

the laminated composite and sandwich plates. In EICR, the strain energy 

relationships between two theories (conventional FSDT and EHOPT) can 

be defined with similar manner as that of linear analysis model. 

Therefore, efficient and accurate analysis model based on the EFSDT can 

be further extended to the geometrically nonlinear problem. 

 

To demonstrate the robustness, applicability, computational efficiency and 

accuracy of enhanced theories, a number of numerical problems were considered 

and compared with benchmark solution as well as those of available in the open 

literature. From the numerical results, one can conclude that the enhanced 

theories proposed in this dissertation can provide efficient and accurate tools for 

the thermo-mechanical, viscoelastic and geometrically nonlinear analysis of 

multilayered composite and sandwich plates. 
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Appendix 

 

Appendix A. Derivation of the layer-wise constant to 

satisfy plane stress condition 

Considering thermo-elastic problem, constitutive equation for the transverse 

normal stress in each layer can be given as: 

( ) ( ) ( ) ( )
33 3311 11 11 3322 22 22

( ) ( ) ( )
3333 33 33 3312 12

( ) ( )

( ) ( ),

i i i i

i i i

C T C T

C T C

s e a e a

e a g

= - D + - D

+ - D +
              

(A.1) 

Under the plane stress condition 33 0s » , following relationship can be derived 

as: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )3311 3322 3312
33 11 11 22 22 12 33( ) ( ) ( )

3333 3333 3333

,
i i i

i i i i

i i i

C C C
T T T

C C C
e e a e a g a= - - D - - D - + D    

(A.2) 

where the transverse normal strain, ( )
33

ie , can be considered as pure mechanical 
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and thermal related terms: 

( ) ( )
33 33 33 .i i Mechanical ThermalTe j e e= D = +      

(A.3) 

From Eqs. (A.2) and (A.3), following relationships of the transverse normal 

strain can be expressed as: 

( ) ( ) ( )
3311 3322 3312

33 11 22 12( ) ( ) ( )
3333 3333 3333

( ) ( )
( ) ( ) ( ) ( )3311 3322

33 11 22 33( ) ( )
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é ù
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(A.4) 

where the relationship of the mechanical transverse normal strain, 33
Mechanicale , is 

same with the general plane stress relationship. According to the thermal 

relationship in Eq. (A.4), layer-wise constant to satisfy plane stress condition 

can be derived as: 

( ) ( )
( ) ( ) ( ) ( )3311 3322

11 22 33( ) ( )
3333 3333

.
i i

i i i i

i i

C C

C C
j a a a= + +             

(A.5) 
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Appendix B. Calculation process to determine ( )kSa  and 

( )
3
kS  

The continuity conditions of transverse displacement field at the layer interfaces 

can be satisfied by applying the following relationship: 

( ) ( )( ) ( ) ( 1) ( ) ( 1) 2
3 3( ) 1 3( )

1
.

2
k k k k k

o k kS T x T xj j j j+ += - + -         (B.1) 

From Eq. (B.1), the coefficients ( )
33

kb  and ( )
33

kc , which are the functions of layer-

wise constant ( (k)j ), can be derived as: 

( ) ( )( ) ( ) ( 1) ( ) ( ) ( 1) 2
33 3( ) 33 3( ), .k k k k k k

k kb x c xj j j j+ += - = -     

(B.2) 

In addition, the shear continuity conditions at layer interfaces can be expressed 

of the matrix form as: 

      

(3) (3)
1 1 2 2 1 0,1 2 0,2

1 1,1 2 1,2

[ ][ ] [ ] [ ] [ ] [ ]
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where 
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Matrix [K] is derived from this following algorithm: 

 

( 1) ( )
1313 1313 3( )

( 1) ( )
1323 1323 3( )

( 1) ( )
2313 2313 3( )

( 1) ( )
2323 2323 3

1: ( 1)

1: ( 1)

( , ) ( )( / 1/ 2 1)

( , 1 ) ( )( / 1/ 2 1)

( 1 , ) ( )( / 1/ 2 1)

( 1 , 1 ) ( )(

i i
i

i i
i

i i
i

i i

for i N

for j i

K i j Q Q x h

K i N j Q Q x h

K N i j Q Q x h

K N i N j Q Q x

+

+

+

+

= -

= -

= - + -

- + = - + -

- + = - + -

- + - + = - ( )

( 1) ( )
1313 1313 3( )

( 1) ( )
1323 1323 3( )

( 1) ( )
2313 2313 3( )

( 1) ( )
2323 2323 3(

/ 1/ 2 1)

1: ( 1)

( , ) ( )( / 1/ 2)

( , 1 ) ( )( / 1/ 2)

( 1 , ) ( )( / 1/ 2)

( 1 , 1 ) ( )(

i

i i
i

i i
i

i i
i

i i

h

end

for j i N

K i j Q Q x h

K i N j Q Q x h

K N i j Q Q x h

K N i N j Q Q x

+

+

+

+

+ -

= + -

= - +

- + = - +

- + = - +

- + - + = - )

( 1) ( )
1313 3( ) 1313 3( )

( 1) ( )
1323 3( ) 1323 3( )

( 1) ( )
2313 3( ) 2313 3( )

23

/ 1/ 2)

( , ) ( / 1/ 2 1) ( / 1/ 2)

( , 1 ) ( / 1/ 2 1) ( / 1/ 2)

( 1 , ) ( / 1/ 2 1) ( / 1/ 2)

( 1 , 1 )

i

i i
i i

i i
i i

i i
i i

h

end

K i i Q x h Q x h

K i N i Q x h Q x h

K N i i Q x h Q x h

K N i N i Q

+

+

+

+

= + - - +

- + = + - - +

- + = + - - +

- + - + = ( 1) ( )
23 3( ) 2323 3( )( / 1/ 2 1) ( / 1/ 2)i i

i ix h Q x h

end

+ + - - +

   

(B.5) 

  



254 

 

 

Components of [ ]Aa , [ ]Ba  and [ ]Ca  are computed as: 
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(B.6) 

where 
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( )
11

ka  represents k-th row of 
1

1[ ] [ ]K A-
, 

( )
21
ka  is ( 1 )N k- + th row of 

1
1[ ] [ ]K A-

, 

( )
12

ka  is k-th row of 
1

2[ ] [ ]K A-
, and 

( )
22
ka  is ( 1 )N k- + th row of 

1
2[ ] [ ]K A-

. 
( )kbab  and 

( )kcab  can be calculated with similar manner as that of 
( )kaab  (components of 

1[ ] [ ]K Ba
-

 and 
1[ ] [ ]K Ca
-

). 

Appendix C. In-plane correction factors of EFSDTM_TN 

The in-plane strains based on the FSDT_TN displacement fields (Eq. (2.1.14)) 

can be expressed as 

0 3 0 3 ,e e rx x I= + +E E K K     

(C.1) 

where 

(0) (0) (0) (0)
11 22 12 1,1 2,2 1,2 2,1

(0) (0) (0) (0) (0) (0) (0)
3,11 3,22 3,12 31,1 32,2 31,2 32,1

2 , ,

2 , ,

TT

o

T T

o r

u u u u

u u u g g g g

é ùé ù= = +ë û ë û

é ù é ù= - =ë û ë û

E E E E E

K K
   

(C.2) 

and 

1 0 0 0

0 1 0 0 .

0 0 1 1
eI

é ù
ê ú= ê ú
ê úë û

     

(C.3) 

From the Eq. (A.1), vectors of the resultant forces and moments are given by 
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2
_ 11 22 12 0 0

2
_ 11 22 12 3 0 0

,

,

T D
FSDT TN e r

T D
FSDT TN e r

N N N N A B BI

M M M M x B D DI
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s

s

é ù= = = + +ë û

é ù= = = + +ë û

%

%

E K K

E K K
   (C.4) 

In which 

2
3 3, , .A Q B x Q D x Q= = =% % %          

(C.5) 

The in-plane strains derived from the EHOPT_TN displacement fields (Eq. 

(2.1.33)) are expressed by 

*(1) *(2) *(3)
0 3 0 1 3

1
,

2
N M

e r ox T T C x C
æ ö

= + +F +F +F - -ç ÷
è ø
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(C.6) 

in which  

( , ) ( , ) ( , ) ( , ) ( , )
11 22 12 1,1 2,2 1,2 2,1

(3) (3) (3) (3)
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K
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i i

é ù
ê ú
ê ú
ê úFë û
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(C.7) 

In order to derive in-plane correction factors ( ( , )N MC ), it is needed to express the 

resultant forces and moments based on EHOPT_TN in the vector form as 

follows: 
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(1) (2) (3)
_ 0 0 1

(1) (2) (3)
_ 0 0

1

1
,

2

1
.

2

N M
EHOPT TN r o

N M
EHOPT TN r o

N A B E E T E T AC BC

M B D F F T F T BC DC

æ ö
= + + + + - -ç ÷
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æ ö
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(C.8) 

where 

( ) *( ) ( ) *( )
3, .i i i iE Q F x Q=< ×F > =< ×F >% %% %    

(C.9) 

According to the relationships of Eq. (2.1.24), stress resultants of FSDT_TN 

can be rewritten as: 

*(1) *(2) *(3)
_ 0 0 1

*(1) *(2) *(3)
_ 0 0 1

1
,

2

1
.

2

FSDT TN r o
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 (C.10) 

where 
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(C.11) 

Based on the Saint-Venant’s principle, the differences between resultant forces 
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and moments presented in Eqs. (C.8) and (C.10) can be expressed as  

(1) *(1) (2) *(2)
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 (C.12) 

From the Eq. (C.12), the in-plane correction factors can be obtained by: 
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(C.13) 

where 
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 (C.14) 

In this study, the underline terms given Eq. (C.14) are selected as coefficients 
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of the in-plane correction factors. 
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Appendix D. Calculation process to determine *( )kaag  

The shear continuity conditions at layer interfaces can be expressed of the 

matrix form as: 

    * * * * * *
1 1 2 2[ ][ ] [ ] [ ] ,K S A Af f= +                      

(D.1) 

   
* *(1) *( 1) *(1) *( 1) *( ) *( ) *

1 1 2 2[ ] [ ] ,N N T k kS S S S S S aa ab bf
- -= ××× × × × =           

(D.2) 

Matrix [K*] is derived from this following algorithm: 
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And the components of *[ ]Aa  are computed as: 
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(D.4) 

*( )
11

ka  represents ( )k th row of * 1 *
1[ ] [ ]K A- , *( )

21
ka  is ( 1 )N k- + th row of 

* 1 *
1[ ] [ ]K A- , *( )

12
ka  is ( )k th row of * 1 *

2[ ] [ ]K A- , and *( )
22

ka  is ( 1 )N k- + th row of 

* 1 *
2[ ] [ ]K A- .  
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Appendix E. Definitions of the resultants and stiffness 

Stress resultants and stiffness given in Eqs. (2.2.18) and (2.2.21) are defined by: 

* * * * * * * *
11 22 12 11 22 12
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And 
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Appendix F. Strain energy expression for the viscoelastic 

materials 

The strain energy expressions for the linear-elastic and viscoelastic materials are 

given as: 

    
33

3
3 30

min ( ) ( ) ( ) ( ) .
t

DU U w w w w dwab ab a a
e

s e s g= = +ò & &            

(F.1) 

By applying the Laplace transformation to Eq. (F.1), strain energy expression in 

Laplace domain can be derived as follows: 
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*
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(F.2) 

Eq. (F.2) can be rearranged with considering multiplication and convolution 

theorem of the Laplace transformation as: 

* * *

*
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The compact form of the strain energy expression in Laplace domain can be 

written as: 

* * * * * * *
3 3 3 3( ) ( ) ( ) ( ) ( ) ( ) .U Q s Q sabgm gm ab a b b a

h
h e h e h h g h g hé ù= I - + -ë û      

(F.5) 

Appendix G. In-plane correction factor of EHSDTM 

The in-plane strains based on the conventional HSDT displacement field given 

in Eq. (3.1.6) can be expressed by: 

3
( )
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,i i
e e g
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and 

1 0 0 0

0 1 0 0 .

0 0 1 1
eI
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(G.3) 

The stress resultants vector using Eq. (G.1) is given by 
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in which 
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(G.5) 

where Q%  is 3 3´  matrix corresponding to Qabgw  given in Eq. (1.2.6), A and B 

are 3 3´  matrices that are well-known transformed reduced stiffness matrices in 

the conventional FSDT. The higher-order stiffness matrix ( )iF  is defined as 

( ) ( )
3

i iF x Q= % .  

The in-plane strains based on the recovered displacement field given in Eq. 

(3.1.24) are written by 

2 3
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in which 

*( ) ( ) ( )
3 3 3

1
( ) ( ) ( ) .i i ix x x

h
F = F - F% % %                  

(G.8) 

In order to calculate the three-dimensional in-plane stresses, it is needed to 

express the transverse normal stress in the vector form. Furthermore, it should be 

expressed in terms of the two-dimensional in-plane strains to obtain arbitrary 

functions ca . From equations (3.1.2), (3.1.5) and (3.1.26), the recovered 

transverse normal stress can be rewritten by 

3
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33 3
1

ˆ ( ) ,t i i
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Form Eqs. (G.6) and (G.9), the stress resultants vector is expressed by 
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2
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in which 
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Now one needs to express the higher-order strain vector ( )i
yK  of the recovered 

displacement field in terms of the strain vector ( )i
gK  of the conventional HSDT. 

To this end, using equation (3.1.10) yields 

( ) ( ) ( ) ,i i i
R gy = GK K                   (G.14) 

where the 4 × 4 matrix ( )i
RG  can be calculated by using (3.1.10). This procedure 

is cumbersome but straightforward, and therefore omitted for a brevity.  

The difference between in-plane stress resultants presented in (G.4) and 

(G.12), after applying (G.14), can be expressed as: 

( )
23

( ) ( ) ( ) ( ) ( ) (2)

1

c 0,
24

i t i i i i
R e g e g

i

h
E E F I AI A

=

é ù- ×G - + - =ë ûå %K K       (G.15) 

The difference should be vanished so that the recovered strain vector satisfies the 

equilibrium. From equation (G.15), the correction strain vector can be calculated, 

since the matrix A is always invertible, as follows: 

3
( ) ( )

1

,i i
g

i

c c
=

=å% % K                    (G.16) 

in which ( )ic%  are 3 × 4 matrices. 
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Appendix H. In-plane correction factors of ELCWM 

The in-plane strains based on conventional LCW which given in Eq. (3.2.9) can 

be expressed as 

 ( )
3

( ) ( 1) ( ) ( 1)
3 3

1

1
,k k k k

e o o e r
k

x x I
k

- -

=

é ù
= + +ê úë û

åE E K K   (A.40) 

Where 

 

[ ]11 22 12

1,1 2,2 1,2 2,1

( ) ( ) ( ) ( )
3,11 3,22 3,12

( ) ( ) ( ) ( ) ( )
31,1 32,2 31,2 32,1

2 ,

,

2 ,

,

T

e

To o o o
o

Ti i i i
o

Ti i i i i
r

u u u u

u u u

g g g g

=

é ù= +ë û

é ù= - ë û

é ù= ë û

E E E E

E

K

K

  (A.41) 

and 

 

1 0 0 0

0 1 0 0 .

0 0 1 1
eI

é ù
ê ú= ê ú
ê úë û

  (A.42) 

Using the Eq. (H.1), vector of the stress resultants forces is given as follows: 

 

[ ]11 22 12

3
(0) ( ) ( 1) ( ) ( 1)

1

(0) (1) (1) (2)
3 3

1 1

2 ,

T

m m m m
o o e r

m

N N N N

A A A I
k k

A u A u N

ab ab

q
ab

s

- -

=

= =

é ù
= + +ê úë û

+ + -

å

%

%

E K K   (A.43) 

in which 
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 ( ) ( ) ( ) ( )
3 3, , ,k k k kA A x C x Cé ùé ù = < > < >ë û ë û
%   (A.44) 

where C% is 3 x 3 matrix corresponding to Cabgw  and C  is 3 x 1 vectors 

corresponding to 33Cab  given in Eq. (3.2.24). And Nq
ab
%  is vector of the thermal 

stress resultants forces as follows: 

 (0) (0)
11 22 12 ,

T
N N N N A Aq q q q q

ab ab q qs qé ù é ù= = = +ë û ë û
%   (A.45) 

in which 

 

(0) (0)
33

11 22 12

, , ,

[ ] .T

A A C Cq q a a

a a a a

é ùé ù = < > < >ë û ë û

=

% %

%
  (A.46) 

And the in-plane strains derived from the recovered displacements given in Eq. 

(3.2.30) are expressed as 

 

2 3
* (1) ( ) ( 1) ( ) ( )

3
1

1
,

24
k k k k

e o r o h
k

h
x c

k
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-

=

é ù
= + + +F -ê úë û

å %E E K K K
  (A.47) 

in which  

 

* * * *
11 22 12

( ) ( ) ( ) ( )
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é ù= +ë û%

E E E E

K   (A.48) 

In the Eq. (H.8),superscript *( )·  makes distinctly difference between vector of 

in-plane strain fields based on recovered displacements and those of obtained by 
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conventional LCW which given in Eq. (H.1).  

Through the relationships between the two theories given in Eq. (3.2.16), 

transverse shear strain based on the recovered fifth-order zig-zag model can be 

expressed in terms of the conventional LCW as following different manner: 

 

(1) (0)
11 12 13 3

(2) (1)
21 22 23 3

(3) (2)
31 32 33 3

.
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ê úê ú ê úG G Gë û ë ûë û

% % %
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% % %

  (A.49) 

In order to calculate these in-plane correction factors, it is needed to express the 

stress resultant forces based on ELCW in the vector form. From Eq. (H.8), 

vectors of the stress resultants forces are given by 
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where, 
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By means of considering Saint-Venant’s principle the differences between in-

plane stress resultant forces given as Eqs. (H.4) and (H.11) can be expressed as  

 

2
* (0) (1)

3 3
( ) ( ) ( 1) (0)

1
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  (A.52) 

Using Eq. (H.9), vector of in-plane correction factors, c% , can be obtained as 

follows: 

- In-plane correction factors: 
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Appendix I. Expression of the symmetric operator and 

loading vector 

Algebraic equation of ELCW given in Eq. (3.2.35) as follows: 

 ,   ( , 1, 2, ,11)ij j iL X F i j= = L   (I.1) 

where ijL  is a symmetric operator to solve algebraic equation, and it can be 

expressed as  

 

( )
( )
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(1,1) 11 66 (1,2) 12 66
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And the loading vector iF  can be obtained by following the same procedure 

described above in Eqs. (3.2.22) and (3.2.25).  
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Detail expression of loading vector iF  can be expressed as: 

 

(1,1) 11,1 12,2 (2,1) 21,1 22,2
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In the symmetric operator ijL , it should be noted that the coefficients, such as 

( )k
ijA , etc., are the same as those obtained by LCW except for the transverse shear 

stiffness, i.e., ( )
44

kA  and ( )
55

kA  terms.  
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국문 요약 

 

본 논문에서는 복합재료 구조물의 보다 향상된 열-기계적 거동 및 점탄성 거

동에 대한 해석을 위한 개선된 해석 모델들이 제안되었다. 또한, 선형 해석에 

국한되어 있던 개선된 해석 모델에 비선형 특징을 추가적으로 고려해줌으로

써 복합재료 구조물의 기하 비선형 거동을 보다 정확하게 해석하고자 하였다. 

개선된 해석 모델에서는 계산 과정의 효율성과 변위 및 응력 분포 결과의 정

확도를 동시에 만족시키기 위한 방안으로써 서로 독립적인 두 개의 변위장이 

각각 가정되며, 본 연구의 주된 목적으로써 변형 에너지 변환 과정 또는 혼

합 변분 이론의 구속 방정식에 근거하여 각각 독립적으로 가정되는 두 변위

장 사이의 관계를 정의해주고자 하였다. 정의되는 관계식에 따라, 개선된 이

론들은 복합재료 구조물의 거동을 해석함에 있어서 비교적 간단한 계산 과정

만이 요구되는 동시에 후처리 과정을 통해 고차 성분들을 복원하여 줌으로써 

변위 및 응력 분포 결과의 정확도를 비약적으로 향상시키고자 하였다.  

 

본 논문을 통해 제안된 개선된 해석 모델들은 다음과 같은 장점을 갖는다.  

l  적층 구조물의 각 층별 경계에서의 횡방향 전단응력 연속 조건이 만

족된다. 

l  적층 구조물의 표면 전단 무응력 조건이 만족된다.  

l  주 변수는 적층 수에 독립적이기 때문에, 계산의 효율성이 증대된다.  
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l   유한요소 해석 과정에서 C0 함수만이 요구된다. 

개선된 해석 모델들의 정확성 및 효율성은 여러 수치예제 결과들로부터 엄밀

하게 검증하였다. 
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