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ABSTRACT

The multi-view video sequences are essentially used for many computer vision ap-

plications such as surveillance system. For these applications, the correspondence

matching that identifies the corresponding positions of one view to another is essen-

tially required. The correspondence matching has been fundamentally researched

for a long time, however, it is still challenging for multi-view video sequences. In

this dissertation, the correspondence matching algorithm and its applications for the

multi-view video sequences are presented.

First, an accurate and robust similarity measure for the correspondence match-

ing of multi-view video sequences captured by arbitrarily positioned cameras is pro-

posed. We use an activity vector, which represents the temporal occurrence pattern

of moving foreground objects at a pixel position, as an invariant feature for corre-

spondence matching. Activity vectors are derived from a moving object detection

algorithm, so it is robust to illumination changes and additive noises. Then, we

devise a novel similarity measure between two activity vectors by considering the

joint and individual behavior of the activity vectors. Specifically, we define random

variables associated with the activity vectors and represent the similarity between

them using the mutual information based similarity (MIBS) measure. Because the

MIBS measure adaptively explains the behaviors between two activity vectors, it
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outperforms other conventional similarity measures of binary vectors especially for

a correspondence matching problem.

Then, the framework for finding correspondence matching between two multi-

view surveillance sequences is proposed. In order to achieve a more accurate and

robust inter-view homography, three practical techniques are utilized. The first

technique is the adaptive activity area refinement which represents actual ground

regions touched by foreground objects moving on the ground plane. It reduces the

discrepancy between objects areas and actual ground surfaces, so that the activity

vectors can effectively feature geometry surfaces in the scenes. In addition, we pro-

pose the consistent pixel positions on which the MIBS measure is reliably evaluated.

At consistent pixel positions, the maximum MIBS criterion is satisfied backward

and forward, therefore, we can yield more accurate correspondence matchings. Fi-

nally, the correspondence at multiple pixel positions are determined by minimizing

a matching cost function associated with the MIBS measure and structure preser-

vation terms.

The proposed correspondence matching algorithm is robust to various positions

of cameras and illumination/color differences between cameras. Moreover, the pro-

posed MIBS measure reliably represents the similarity of two binary vectors even

under the additive noises. Therefore, the results of proposed algorithm demonstrate

the correspondences between two different views are more accurately and reliably

estimated than the conventional state-of-the-art algorithm with a relatively small

computational complexity. These results indicate that the proposed algorithm is

a very promising technique for various multi-view video applications for a visual

surveillance such as homograpy estimation and panoramic view synthesis.
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Chapter 1

Introduction

1.1 Background and Research Issues

1.1.1 Multi-view Video Sequences

Nowadays, high definite broadcast and blu-ray disc, which are formatted by H.264

standard, has provided a great visual satisfaction. Beyond H.264, the advent of a

new generation technology for the 3-D visual data enables us to experience a virtual

reality, such as multi-view video and hologram. Especially, the multi-view video

has been researched as a practical approach for advanced visual experiences [3–5],

because it is generated by a series of conventional visual cameras with a control unit,

which is easily applicable for a various circumstances as described in Fig. 1.1.

The multi-view video provides a number of fields-of-view from the spatially apart

cameras to the users. Basically, the users can select one of view among the multiple

views and interactively change viewing scenes. Furthermore, the discrepancies of

fields-of-view between multiple cameras provide perspective and spaciousness, which

play a key role to 3-D realities. Therefore, the multi-view video is exploited for many
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object

computer

camera 1

camera 2

camera 3

camera 4

camera 5

camera 6
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time

camera

(b)

Figure 1.1: Multi-view sequence acquisition: (a) multiple cameras. (b) Spatio-

temporal frames of multi-view sequences.
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Figure 1.2: Example of the correspondence problem between two images presented

in [1].

applications such as 3-D TV, 3-D reconstruction and medical imaging.

1.1.2 Correspondence Problem

The correspondence problem of the multi-view sequences is finding the corresponding

position of one view to which position of another view. It facilitates many applica-

tions of visual sensor networks, such as surveillance, environmental monitoring, and

panoramic view synthesis [6–8]. However, multi-view video sequences are often cap-

tured under varying illumination and lighting conditions, and multiple cameras may

have different and unknown parameters, e.g., positions, orientations, and zooming

factors. Therefore, it is a challenging issue to determine the true correspondence

matching among multiple views, and a lot of attempts have been made to develop

robust correspondence matching algorithms [1, 2, 9–18].

Traditional stereo matching techniques provide a pixel-wise dense correspondence

map between two images [9,10]. In general, a window is assigned to each pixel, and
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the distance between two pixels is defined as the sum of differences (SAD) of pixel

intensities between the corresponding windows. Then, the matching pixel is deter-

mined that yields the smallest SAD. These stereo matching techniques are therefore

sensitive to radiometric variations between images. Several advanced stereo match-

ing algorithms have been proposed to alleviate the effect of radiometric variations,

but they still suffer from the uncertainty of camera parameters [11, 12]. Another

approach to the correspondence matching problem is to employ feature detection

techniques, such as scale invariant feature transform (SIFT) [1] or speeded up ro-

bust features (SURF) [13]. Feature-based techniques find the correspondence only

for a selected set of feature points, whereas stereo matching techniques provide

dense correspondence maps over entire images. Feature-based techniques are more

robust to radiometric variations and can reduce the computational complexity to

find the correspondence matching. However, they also fail to work with severely

different viewing positions of cameras and additionally require camera calibration

techniques [19,20]. Therefore, these stereo matching or feature-based techniques are

less efficient for finding the correspondences among multiple views in visual sensor

network applications, where multiple cameras have quite different positions, orien-

tations, exposure and lighting conditions.

In order to find the correspondence matching of two video sequences, Sand et

al. independently applied an image matching method to each pair of frames [14].

This algorithm inherently suffers from the drawbacks of the correspondence match-

ing of still images. On the other hand, several algorithms have been proposed to

exploit temporal information for multi-view video matching [15–18]. The centroids

of moving objects are computed over video sequences, and used as feature points to

estimate the homography between two views [15–17]. However, they do not provide

4



sufficiently reliable matching performance, since they ignore the temporal orders of

the centroids. In contrast, Caspi et al. employed a motion trajectory, which rep-

resents temporal locations of a moving object in order [18]. They estimated the

homography by matching the trajectories of the same object observed in two views.

However, these algorithms require an accurate result of object tracking, which is

hard to be obtained from general video sequences containing many moving objects.

As focusing on time footage of the moving objects, Ermis et al. proposed a cor-

respondence matching algorithm for video sequences based on activity features of

moving foreground objects [2].

1.2 Outline of the Dissertation

In this dissertation, an accurate and robust correspondence matching algorithm for

multi-view video sequences captured by arbitrarily positioned cameras is proposed.

In additional, we propose an inpainting technique based on the exemplar-based

approach for multi-view video sequences.

Chapter 2 reviews the preliminaries about binary similarity measures and mu-

tual information. Then, Chapter 3 proposes a correspondence matching algorithm

using the multi-view video sequences. We use an activity vector, which represents

the temporal occurrence pattern of moving foreground objects at a pixel position, as

an invariant feature for correspondence matching. We first devise a novel similarity

measure between activity vectors by considering the joint and individual behavior

of the activity vectors. Specifically, we define random variables associated with the

activity vectors and measure their similarity using the mutual information between

the random variables. Unlike conventional Hamming distance measure, proposed

5



mutual information based similarity (MIBS) measure can adaptively reflect the dis-

crepancy of different contribution derived from the counts of binary combination

between two activity vectors. Therefore, the results by using the proposed MIBS

measure shows accurate similarity than those by using conventional measures.

In Chapter 4, the system of finding a reliable correspondence matching between

two multi-view video sequences are presented. To achieve a reliable homography

transform between views, we find consistent pixel positions by employing the itera-

tive bidirectional matching. We also refine the matching results of multiple source

pixel positions by minimizing a matching cost function based on the Markov random

field. Experimental results show that the proposed algorithm provides more accurate

and reliable matching performance than the conventional activity-based matching

algorithm, and therefore can facilitate various applications of visual sensor networks.

And finally, results of panoramic view synthesis based on the proposed correspon-

dence matching are proposed. In Chapter 4, we finally conclude this dissertation

and present the limitations of our works and future works.
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Chapter 2

Preliminaries

2.1 Binary Similarity Measures

Measuring the similarity or distance between two vectors are fundamental issues in

many fields, such as engineering, biology, and statistics [21]. Especially, the pattern

matching of unlabeled data is essentially required in most of computer vision prob-

lems. Since the binary vector which consist of 0 and 1 is widely used for pattern

analysis problems such as clustering, correspondence matching and classification,

many efforts have been taken to devise meaningful measure between binary vec-

tors [22].

A binary vector x with T dimension is defined as

x = (x0, x1, · · · , xT−1), (2.1)

where xt ∈ {0, 1}. And the similarity measure S is defined as the function that maps

two binary vectors into a non-negative real number, that is

S : (x,y) → {0} ∪ R
+, (2.2)
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where x and y are binary vectors and R
+ denotes a set of positive real numbers.

To measure the similarity between two binary vector x and y in various ap-

proaches, the number of element-wise combinations are required. First, the occur-

rence count is defined as

δt(i, j) =

⎧⎪⎨
⎪⎩

1 if xt = i and yt = j

0 otherwise
, (2.3)

where i, j ∈ {0, 1}. And the number of element-wise combination with respect to x

and y is defined as follows.

Kij(x,y) =

T−1∑
t=0

δt(i, j). (2.4)

For simple notation, we omit the argument (x,y). Kij is also expressed by the data

matrix of operational taxonomic units which is a 2×2 contingency table representing

all combinations of Kij as shown in Table 2.1. It is noteworthy that K11 is the

number of features where the elements of x and y are both 1, K01 is the number of

feature where the elements of x and y is (0, 1), K10 is for (1, 0) and K00 is for (0, 0).

The diagonal sum K11 +K00 means the total number of matches between x and y,

while the other diagonal sum K01+K10 represents the total number of mismatches.

Finally, the total sum K11 +K01 +K10 +K00 is obviously equals to T .

Among a number of similarity measures for binary vectors, Tubbs especially

have summarized various measures that are widely used in the pattern recognition

area [23]. And Zhang et al. has intensively compared the performance of eight

similarity measures in the application on a handwriting recognition [24]. Cha et al.

proposed weighted binary measurement to improve classification performance based

on the comparative study [22]. Table 2.2 lists eight binary measures widely used for

binary vectors. These similarity measures are classified into two categories, one of

8



Table 2.1: The number of element-wise combinations of x and y

�
�
�
�
�

y

x
1 (active) 0(inactive)

1(active) K11 K01

0(inactive) K10 K00

which is non-correlation based similarity measure and the other is correlation based

similarity measure.

2.1.1 Non-correlation based similarity measures

A natural and intuitively appealing approach to measuring similarity between two

binary vectors is to count the number of relevant matches as shown in the contin-

gency table in 2.1. From the combination of the numbers of relevant matches, there

are various similarity measures to interpret the matches and mismatches. The non-

correlation based similarity measures are consist of the ratio between matches and

mismatches with linear combinations, which are simply computed from Kij .

For the non-correlation based similarity measure, two factors can account for

all the variations [25]. The first factor is the number of 0-0 matches K00 which in-

creases the similarity even when two sparse binary vectors are not related. It would

be misleading to allow these 0-0 matches to contribute to the measure of association

between two totally different vectors. The second factor is the weight of matches and

mismatches. As mentioned above, K11 and K00 represent the number of matches,

while K10 and K01 denote the number of mismatches. Depend on the weight coef-

ficients to the matches and mismatches, the similarity measure can yields various

9



Table 2.2: The famous similarity measures for binary vectors

Similarity measure Definition

Rogers-Tanimoto K11+K00
K11+K00+2(K10+K01)

Jaccard-Needham K11
K11+K10+K01

Dice 2K11
2K11+K10+K01

Sokal-Michener K11+K00
T

Russel-Rao K11
T

Kulczynski K11
K10+K01

Pearson K11K00−K10K01

{(K10+K11)(K01+K00)(K11+K01)(K00+K10)}1/2

Yule K11K00−K10K01
K11K00+K10K01

10



results. Table 2.3 shows a summary of the famous similarity measures according to

the existence of 0-0 matches and the coefficient weights. Nine combinations are de-

scribed in Table 2.3 except the combinations which are apparently worthless. Note

that Table 2.3 includes three unnamed combinations which provides the measures

of similarity, but they have been not widely used.

Jaccard-Needham and Dice similarity measures

SJ =
K11

K11 +K10 +K01
. (2.5)

Historically, Jaccard similarity SJ have been used in ecology fields [26]. It is

clear that SJ → 0 as K11/(K01 + K10) → 0, and that as (K01 + K10) → 0, then

SJ → 1. This SJ does not consider a negative matching K00, so it emphasizes the

number of 1-1 matches K11. As a related similarity measure, Dice similarity SD

have been devised as follows.

SD =
2K11

2K11 +K10 +K01
. (2.6)

It is monotonic with SJ but gives more weight to K11 than to mismatches. Both SJ

and SD vary from 0 to 1.

Sokal-Michener and Rosers-Tanimoto similarity measures

SSM =
K11 +K00

T
. (2.7)

This is one of the oldest and simplest similarity measure for the binary vectors.

From the formulation, it follows that SSM → 0 as (K00+K11)/(K01+K10) → 0. In

its complementary form, 1−SSM , it equals to the squared Euclidean distance, that

11



Table 2.3: Non-correlation based similarity measures

Weighting of 0-0 matches 0-0 matches in numerator

matches, mismatches in denominator Included Excluded

Equal weights Included Sokal-Michener Russel-Rao

K11+K00
T

K11
T

Excluded Jaccard-Needham

K11
K11+K10+K01

Double weight for Included Unnamed

matched pairs 2(K11+K00)
2(K11+K00)+K10+K01

Excluded Dice

2K11
2K11+K10+K01

Double weight for Included Rogers-Tanimoto

unmatched pairs K11+K00
K11+K00+2(K10+K01)

Excluded Unnamed

K11
K11+K00+2(K10+K01)

Matched pairs excluded Unnamed Kulczynski

from denominator K11+K00
K10+K01

K11
K10+K01

12



is,
√
1− SSM = d. Therefore, square root of the complement of SSM is a metric

function. In the view of probability, SSM means the probability that a randomly

chosen data unit achieves the same score on both variables.

As a related similarity measure, Rosers-Tanimoto similarity SRT have been sug-

gested as follows.

SRT =
K11 +K00

K11 +K00 + 2(K10 +K01)
. (2.8)

which doubles the sum of mismatches (K01 +K10). It is monotonic with SSM and

also a metric function.

Russel-Rao similarity measure

SRR =
K11

T
. (2.9)

SRR is simple similarity measure that considers only the number of 1-1 matches

K11. The value of SRR is the probability that a randomly chosen data unit will

score 1 on both variables. It excludes the number of 0-0 matches K00 as irrelevant

in counting the number of times the two variables match but does count K00 in

determining the number of possibilities for a match.

Kulczynski similarity measure

SK =
K11

K10 +K01
. (2.10)

The Kulczynski similarity measure is the ratio of combinations on which the

elements exhibit the number of 1-1 matches to the number of mismatches. Because

the number of matches are not included in the denominator, SK varies from 0 to ∞

13



dramatically, therefore, it may cause unstable results when there is no mismatches

between two binary vectors [27].

2.1.2 Correlation based similarity measure

Unlike the non-correlation based similarity measures, the correlation based similarity

measures include product terms of Kij , which denote the relative dependency. The

correlation based similarity measure can explain more complicate behaviors of input

data [28]. While there are many variations of correlation based similarity measures,

The Pearson similarity measure and Yule similarity measure are famous for pattern

recognition and classification applications [22].

Pearson similarity measure

SC =
K11K00 −K10K01

{(K11 +K10)(K01 +K00)(K11 +K01)(K10 +K00)}1/2
. (2.11)

To measuring the dependence between two general data, the Pearson product-

moment correlation has been fundamentally used in statistics. SC is directly derived

from the general Pearson product-moment correlation based on binary vectors. First,

14



the Pearson product-moment correlation ρ is defined as follows:

ρ =
cov(x,y)

{var(x)var(y)}1/2

=

T−1∑
t=0

(xi − x)(yi − y)

{[
T−1∑
t=0

(xi − x)2

][
T−1∑
t=0

(yi − y)2

]}1/2

=

T−1∑
t=0

xiyi − 1

T

(
T−1∑
t=0

xi

)(
T−1∑
t=0

yi

)
⎧⎨
⎩
⎡
⎣T−1∑

t=0

x2i −
1

T

(
T−1∑
t=0

xi

)2
⎤
⎦
⎡
⎣T−1∑

t=0

y2i −
1

T

(
T−1∑
t=0

yi

)2
⎤
⎦
⎫⎬
⎭

1/2
. (2.12)

For binary vectors x and y, the sums of elements of x and y can be expressed by

using Kij as follows.

T−1∑
t=0

xiyi = K11,

T−1∑
t=0

xi = K11 +K10,

T−1∑
t=0

yi = K11 +K01,

T−1∑
t=0

x2i = K11 +K10,

T−1∑
t=0

y2i = K11 +K01.

Substituting theses expression into Eq. 2.12 gives

ρ =
K11 − (K11 +K10)(K11 +K01)/T

{[K11 +K10 − (K11 +K10)2/T ][K11 +K01 − (K11 +K01)2/T ]}1/2

=
K11T − (K11 +K10)(K11 +K01)

{(K11 +K10)[T − (K11 +K10)](K11 +K01)[T − (K11 +K01)]}1/2

=
K11K00 −K10K01

{(K11 +K10)(K01 +K00)(K11 +K01)(K10 +K00)}1/2
. (2.13)
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The correlation similarity measure take into account the statistical factors such

as means and variances of input data. Therefore, it is invariant to linear transforma-

tions of x and y. The correlation similarity measure is not a metric function. When

it is converted to complementary form to correspond to distance, it cannot satisfy

the triangle inequality and moreover, it shows a perfect correlation between non-

identical elements, such as two column vectors, one of which is the other multiplied

by a scalar.

Yule similarity measure

SY =
K11K00 −K10K01

K11K00 +K10K01
. (2.14)

The Yule similarity measure is closely related with the data matrix in Table 2.1,

which the numerator of SY is the determinant of the data matrix. And the upper

bound of SY is 1 when the match is perfect and the lower bound is −1 when there are

no matches at all. SY balances the number of matches against that of mismatches

effectively, so it is useful for the applications such as classification and taxonomy.

In summary, we have reviewed eight similarity measures which are widely re-

searched in pattern recognition and classification areas. Conventional works have

evaluated the performance of various binary similarity measures for binary template

matching and handwriting identification. The performance of similarity measure

highly depends on the behaviors of the input binary vectors. For instance, the

Yule similarity measure shows a stable performance for the template matching [23],

whereas the Dice and Pearson similarity measures relatively outperform for the

handwriting identification [24]. Therefore, a user should select the similarity mea-

sure which best suited the needs of the particular matching problem.
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2.2 Mutual Information

Since the concept of the mutual information has been originated by Shannon, mutual

information is widely used for many engineering fields such as communication, visual

sensing and complexity analysis. Especially in computer vision area, the mutual

information provides a robust measure of the similarity between two data that are

handled as probability densities. Since Viola et al. first has suggested the mutual

information can be employed to the medical image alignment [29], many researches

apply the mutual information into the registration of multi-modal CT and MR

images [30–32] and stereo matching algorithm [33, 34]. In this section, we review a

fundamental information theory about entropy and mutual information.

We first revisit the entropy which is defined for a discrete random variable X

and its probability mass function p(x) = P (X = x) [35]. The entropy H(X) of a

random variable X is defined as

H(X) = −
∑
x

p(x) log p(x). (2.15)

Obviously, H(X) is always semi positive regardless of X. The entropy means an

expected value of information, which measures an uncertainty of a random variable

X. In a practical usage, we need to extend the entropy to a pair of random variables

X and Y . The joint entropy H(X,Y ) of a pair of discrete random variables (X,Y )

with a joint probability mass function p(x, y) is defined as

H(X,Y ) = −
∑
x

∑
y

p(x, y) log p(x, y). (2.16)

Furthermore, we introduce mutual information, which is a measure of the amount

of information that is commonly contained in X and Y . The mutual information

I(X;Y ) is the relative distance between the joint distribution p(x, y) and the product
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Figure 2.1: Venn diagram for the relationship between mutual information and

entropies of (X,Y ).

of distribution p(x)p(y) as following:

I(X;Y ) = −
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.17)

The mutual information can be interpreted as a linear combination of entropies from

its definition and finally draw following three relationships.

I(X;Y ) = H(X) −H(X|Y ), (2.18)

= H(Y )−H(Y |X), (2.19)

= H(X) +H(Y )−H(X,Y ). (2.20)

Fig. 2.1 shows the Venn diagram for a relationship between H(X), H(Y ), H(X|Y ),

H(Y |X), and I(X;Y ). The areas bounded by circle lines represent the informa-

tion or the uncertainties of the random variables. Note that, the intersection of

information in X and Y is corresponding to the mutual information I(X;Y ).

Because the entropy is always larger than or equals to zero, Eq. (2.18) and (2.19)

represent minimum and maximum boundaries of a mutual information as following:

0 ≤ I(X;Y ) ≤ min(H(X),H(Y )). (2.21)
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Figure 2.2: The graph of H(X) with respect to p.

Notice that, the minimum value of I(X;Y ) occurs when X and Y are independent,

and the maximum value occurs when X and Y completely dependent each other.

It is noteworthy to analyze the entropy of the binary random variable, i.e the

discrete random variableX with the alphabet {0, 1}. When the probability of success

is p, then H(X) is represented as

H(X) = −p log p− (1− p) log(1− p). (2.22)

The graph of H(p) with respect to p is represented in Fig. 2.2. The figure illustrates

that the entropy is zero when p = 0 or 1 which means X has no randomness and

maximized when p = 0.5, which means the uncertainty is maximum.
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Chapter 3

Mutual Information based

Similarity Measure for Binary

Activity Vectors

3.1 Introduction

Recently, video technologies have been converging with networking systems and fa-

cilitating many applications based on visual sensor networks, such as visual surveil-

lance, environmental monitoring and panoramic view synthesis [6–8]. A visual sensor

network usually employs multi-view videos captured by multiple cameras. Corre-

spondence matching among multiple views is one of the most important and chal-

lenging issues to analyze the multiple videos and provide useful visual information.

Practically, we find the corresponding pixels which are the projections of a same

scene point in 3-D space onto the different image planes. A lot of efforts have been

made to efficiently find the correspondence matching [1, 2, 9–18].
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However, in real multiple view video scenarios such as wide area surveillance

applications, the conventional approaches have difficulties to find the reliable cor-

respondence between multiple cameras by the stereo matching algorithms [9–12] or

the feature based matching algorithms [1, 13] due to the large photometric changes

and severely different camera parameters. Compared to the correspondence match-

ing algorithms for the still images, the consecutive frames of the video sequences

enable to utilize the activity information from the moving objects, which provide

robust matching performances to the photometric variations and view differences.

Nevertheless, many algorithms based on the activity information require accurate

object tracking results which are very challenging in general dynamic video se-

quences [15–18] or suffer from erroneous matches due to the unsuitable similarity

measure [2].

The correspondence matching algorithm for the video sequences presented in this

work exploits the activity vectors that the occurrence patterns of the foreground ob-

jects. The primary contribution of this work is to propose a new similarity measure

based on the mutual information of the activity vectors so that it can reliably ex-

plain various behaviors of the activity vectors between the matching position pairs.

For a single position matching, the proposed similarity measure shows more robust

and reliable performance than the Hamming distance measure that the conventional

work used in [2]. As utilizing the proposed similarity measure, our algorithm handles

the correspondence problem for multiple pixel positions in order to estimate the reli-

able homography between two views. We carefully select the multiple pixel position

at which the similarity measures of the corresponding position pairs are reliably

evaluated and determine the corresponding pixel positions by using MRF frame-

work associated both the similarity measures of activity vectors and local structure
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preservation. We demonstrate that the proposed matching algorithm is robust to

the photometric changes and arbitrary camera allocations and also does not need

any prior knowledge such as the camera parameters and the poses of the objects.

In this chapter, we propose a accurate and robust measure to describe the sim-

ilarity between two features for multi-view video sequences. We regard activity

vectors as outputs of binary random variables, and measure their similarity based

on the mutual information between two random variables. While the conventional

Hamming distance only counts the elements with different values between activity

vectors [2], the proposed mutual information based similarity (MIBS) measure con-

siders all possible combinations of 0’s and 1’s between activity vectors and yields

more reliable matching performance. Experimental results demonstrate that the

proposed MIBS measure provides accurate and reliable matching results in various

camera configurations, and yields better performance than other similarity measures

including the work in [2].

The rest of this chapter is organized as follows. In Section 3.2, we present the

mutual information based similarity measure for activity, which is our main idea. In

Section 3.3, we give the qualitative and quantitative experiments results for various

sample video sequences. In Section 3.4, we finally make a conclusion.

3.2 Similarity Measure for Correspondence Matching

The conventional measures including the Hamming distance are devises to measure

the dissimilarity between two activity vectors. However, it cannot fully reflect the

behavior of activity vectors, possibly leading to incorrect matching results. We pro-

pose a more accurate and robust similarity measure, called MIBS, which describes
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A( )p
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Figure 3.1: An example of activity vector. The t-th element in an activity vector

A(p) has binary value 1 or 0, respectively, when p belongs to a foreground object

or the background at time t.

the joint behavior of two activity vectors more faithfully using the mutual informa-

tion.

3.2.1 Activity Based Correspondence Matching

Let I = {It : t = 0, 1, . . . , T − 1} be a video sequence composed of T frames, in

which It denotes an image frame at time t. For each frame It, we detect moving

foreground objects using the background subtraction method in [36]. Then, we

generate the binary map IBt , in which the pixels belonging to the foreground objects

and the static background are assigned binary values of 1 and 0, respectively. We

then define the binary time series A(p) at each pixel position p by

A(p) = (IB0 (p), IB1 (p), ..., IBT−1(p)) (3.1)

where IBt (p) is the binary value of p in IBt . We refer to A(p) as the activity vector,

since it represents the temporal occurrence pattern of moving foreground objects at

p through a video sequence [2]. We also say that pixel p is active at time t when
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IBt (p) = 1, or inactive otherwise. Fig. 3.1 illustrates an activity vector. The left

images represent original video frames, and the middle ones are the binary maps in

which white and black pixels depict foreground objects and the static background,

respectively. The time series A(p) is determined by the binary values at the red

points, which have the same pixel position p through the video sequence.

We assume that cameras are static while capturing multi-view video sequences.

Therefore, each pixel position p corresponds to a unique scene point in the real

world. Also, the activity vector A(p) represents the temporal occurrence pattern

of foreground objects at p. Therefore, when two cameras capture the same scene

point, the corresponding pixels in the two views should yield the same activity vector

in the ideal case. For instance, in Fig. 3.2(a), two cameras, which are networked

and time-synchronized to each other, capture a moving object and generate two

video sequences I and J . In Fig. 3.2(b), p and q are the projected pixels of the

same scene point x onto I and J , respectively. Since p and q correspond to each

other, the activity vectors A(p) and A(q) are identical as shown in Fig. 3.2(c),

even though the cameras have different parameters. This indicates that the activity

vector is an efficient invariant feature to find the correspondences in multi-view

video sequences [2]. More specifically, for a source pixel position p in I, we find

the activity vector A(p). Then, we measure the similarity s(p,q) between A(p) and

A(q) for each candidate pixel position q in J . Finally, we decide the candidate pixel

position q∗, which maximizes the similarity s(p,q∗), as the best matching position.

In other words,

q∗ = argmax
q∈J

s(p,q) (3.2)

for each p ∈ I.
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Figure 3.2: Activity vectors at corresponding pixels. (a) A scene point x is captured

by two different cameras. (b) p and q are the projected pixels of x onto the two

views. (c) The activity vectors at p and q are identical, even though the two cameras

have different parameters.
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3.2.2 Generalized Similarity Measure for Activity

In order to obtain reliable matching results via (3.2), an efficient similarity measure

s(p,q) should be defined. In the Ermis et al.’s algorithm [2], the Hamming distance

is used to measure the dissimilarity between two activity vectors, which is the number

of element positions in which the two vectors have different values. In this work,

we propose the MIBS measure by considering the joint behavior of activity vectors

more thoroughly.

Let us analyze a given pair of activity vectors, A(p) and A(q), by considering all

the possible combinations of the binary values of the corresponding elements. Let

Kmn(p,q) represent the number of element positions, at which A(p) has value m

and A(q) has value n,

Kmn(p,q) = |{t : At(p) = m and At(q) = n}| , m, n ∈ {0, 1}, (3.3)

where | · | denotes the cardinality of a set, and At(·) is the t-th element of an activity

vector A(·). From now on, we omit the arguments p and q from Kmn(p,q) for

simpler notations. We have four numbers K00, K01, K10, and K11, since the activity

vectors are composed of binary elements. Notice that the number of total elements in

each activity vector is T , which equals to the length of the video sequence. Therefore,

Kmn’s have the following properties:

K00 +K01 +K10 +K11 = T, (3.4)

0 ≤ Kmn ≤ T, m, n ∈ {0, 1}. (3.5)

Note that the subscripts m and n of Kmn are associated with A(p) and A(q),

respectively, and thus K01 �= K10 in general.
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In the ideal case, when p and q correspond to each other, the activity vectors

A(p) and A(q) should be exactly the same, resulting in K00 +K11 = T and K01 +

K10 = 0. However, in practical situations, the activity vectors are generally different,

although similar, due to various factors such as acquisition noise, occlusion, and

background subtraction errors. As A(p) and A(q) become more similar, the sum

K00 +K11 increases and the sum K01 +K10 decreases at the same time, according

to the property in (3.4). It is worth to note that K01+K10 is the Hamming distance

in [2], which is a reasonable measure of the dissimilarity between the activity vectors.

However, in a typical video sequence, it is observed that foreground moving

objects occupy relatively smaller areas than the static background. Furthermore,

an activity vector derived at a pixel position is generally very sparse such that

the number of active elements is very small in comparison with the total number

of video frames. Consequently, the information of moving objects has a bigger

contribution in characterizing the behavior of activity vectors than that of the static

background. More specifically, K00, K01, K10, and K11 have different importance

in the correspondence matching procedure. In this context, the Hamming distance,

which counts only K01 and K10 with equal weight regardless of the distributions

of binary elements, cannot fully represent the activity information. Therefore, we

introduce a generalized similarity measure by employing all Kmn’s, which is given

by

s(p,q) =
∑

m,n∈{0,1}
αmn(p,q)Kmn(p,q) (3.6)

where αmn(p,q) is a weighting parameter reflecting the relative importance of

Kmn(p,q) in the similarity measure. For example, when α00(p,q) = α11(p,q) = 1

and α01(p,q) = α10(p,q) = 0, the generalized similarity measure in (3.6) is reduced
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to

s(p,q) = K00 +K11 = T − (K01 +K10). (3.7)

In this case, the maximization of the similarity measure s(p,q) yields the same

result as the minimization of the Hamming distance K01 +K10.

3.2.3 Mutual Information Based Similarity Measure

The relative importance of Kmn’s in the similarity measure relies on the joint prob-

ability distribution of the binary values (m,n)’s in activity vectors. Thus, we regard

activity vectors as the realization of joint random variables, and measure their sim-

ilarity using the mutual information of the random variables. Theoretically, the

mutual information represents the amount of information commonly contained in

two random variables [35]. A large amount of mutual information means that the

random variables are highly correlated and have similar probability distributions.

The mutual information has been employed in many applications. For instance, it

has been used to understand the joint behavior as well as the individual behavior

of two sparse vectors in [29,32]. Moreover, the mutual information does not require

prior knowledge even for multi-modal sequences acquired by different sensors [31].

Because of these desirable characteristics, we also use the mutual information to

measure the similarity between two activity vectors, which are captured by different

cameras with different parameters and separately preprocessed using the background

subtraction method.

Let us first define Bernoulli random variables X and Y at pixel positions p and

q, which randomly take binary values At(p) and At(q) at time t, respectively. Then

the probability distributions of X and Y are empirically estimated from Kmn’s in

(3.3), since the length of a video sequence is long enough to represent the statistical
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properties faithfully. Specifically, the joint probability p(m,n) of the event {X =

m,Y = n} is estimated by

p(m,n) =
Kmn

T
, m, n ∈ {0, 1}. (3.8)

The marginal probabilities of the events {X = m} and {Y = n} are then given by

p(m) = Pr{X = m} =
Km∗
T

=
1

T
(Km0 +Km1), m ∈ {0, 1},

p(n) = Pr{Y = n} =
K∗n
T

=
1

T
(K0n +K1n), n ∈ {0, 1}, (3.9)

where Km∗ denotes the number of elements in A(p) with binary value m, and K∗n

denotes the number of elements in A(q) with value n. Then, the mutual information

I(X;Y ) between X and Y can be written as [35]

I(X;Y ) =
∑

m,n∈{0,1}
p(m,n) log2

p(m,n)

p(m)p(n)

=
∑

m,n∈{0,1}

Kmn

T
log2

TKmn

Km∗K∗n
. (3.10)

We employ this mutual information as the activity similarity measure

s(p,q) = I(X;Y ), (3.11)

and call it as the MIBS measure. Note that this is equivalent to setting the weight

parameters in the generalized measure in (3.6) to

αmn(p,q) =
1

T
log2

TKmn

Km∗K∗n
, m, n ∈ {0, 1}. (3.12)

The mutual information I(X;Y ) is the intersection of the information in X with

the information in Y , and the following inequalities hold [35]:

0 ≤ I(X;Y ) ≤ min{H(X),H(Y )} (3.13)
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where H(X) and H(Y ) are the entropies of X and Y , given by

H(X) = −
∑
m

Km∗
T

log2
Km∗
T

,

H(Y ) = −
∑
n

K∗n
T

log2
K∗n
T

.

In typical video sequences for surveillance applications, the activity vector A(p)

contains much less active elements than inactive ones, i.e., K1∗ 	 K0∗. Thus, the

entropyH(X) gets larger asK1∗ increases, and reaches the maximum value of 1 when

K1∗ = K0∗. In other words, H(X) represents the self information of the activity

vector [35]. Let us consider the extreme case when p always belongs to the static

background at which a foreground object never occurs. Then, we have K1∗ = 0,

K0∗ = T , and H(X) = I(X;Y ) = 0. In such a case, the mutual information cannot

convey meaningful information for the correspondence matching. On the contrary, a

large value of H(X) provides more confidence on the correspondence matching result

of p. Similarly, a large value of H(Y ) increases the reliability of the correspondence

matching of q.

Fig. 3.3 shows the correspondence matching result of the proposed MIBS mea-

sure. In this example, we select a pixel position p in the left view in Fig. 3.3(a) and

find its matching position q in the right view. Fig. 3.3(b) shows the similarities of all

candidate matching positions, which are computed from (3.11), where red and blue

regions represent high and low similarities, respectively. In comparison, Fig. 3.3(c)

shows the similarity map of the Hamming distance measure, where red regions rep-

resent small Hamming distances. We see that the Hamming distance measure does

not generate a compactly distinctive region of small distances and returns an incor-

rect matching position q′ in the right view in Fig. 3.3(a). In contrast, the proposed

MIBS measure clearly identifies the region of high similarities and yields an accurate
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Figure 3.3: Comparison of the activity-based matching results of the proposed MIBS

measure and the conventional Hamming distance measure [2]. (a) q and q′ depict

the best matching points to p, which are obtained by the proposed algorithm and the

conventional algorithm, respectively. (b) The color map of the proposed algorithm,

where red regions depict high similarity values. (c) The color map of the conventional

algorithm, where red regions depict small Hamming distances.
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Table 3.1: Specifications of the sample sequences.

Name Number of frame Camera configuration Activities

ArtCollege 100,000 zoom, rotation low

Crossroad 66,000 perspective high

Desk 150,000 zoom high

Hall 100,000 zoom, rotation medium

ParkingLot 200,000 rotation low

Road 172,000 translation medium

Jahayeon 100,000 zoom, rotation high

Stair 126,000 rotation medium

Library 150,000 zoom, translation medium

Soccer 100,000 perspective high

matching position q.

3.3 Experimental Results

3.3.1 Test Sample Sequences

We evaluate the performance of the proposed algorithm using 10 pairs of test video

sequences for indoor and outdoor scenes. The image resolution is 320× 240 and the

frame lengths are varying from 100,000 to 200,000. The test video sequences are

captured by two synchronized cameras with various configurations, such as trans-

lations for the ‘Library’ and ‘Road’ sequences, different zoom factors for the ‘Hall,’

‘Desk,’ and ‘ArtCollege’ sequences, rotational transformations for the ‘Jahayeon’
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(a)

(b)

(c)

(d)

Figure 3.4: Experimental sequences. Left image is I and right image is J . (a) Hall.

(b) Desk. (c) Road. (d) Stair.
34



(a)

(b)

(c)

Figure 3.5: Experimental sequences. Left image is I and right image is J . (a)

Library. (b) ArtCollege. (c) Jahayeon.
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(a)

(b)

(c)

Figure 3.6: Experimental sequences. Left image is I and right image is J . (a)

ParkingLot. (b) Soccer. (c) Crossroad.
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and ‘ParkingLot’ sequences, and different viewing angles for the ‘Stair,’ ‘Soccer,’

and ‘Crossroad’ sequences.

3.3.2 Performance of MIBS Measure

Next, we compare the matching performance of the proposed MIBS measure with

that of the conventional Hamming distance measure [2]. We sample pixel positions

on a regular grid in one view, which contain activities, and then find the correspond-

ing pixel positions in the other view via (3.2). For a fair comparison, we use the

same adaptive activity areas for generating activity vectors.

In each sub-figure in Fig. 3.7∼3.10, the first column shows one view with reg-

ularly sampled pixel positions. The upper and lower frames in the second column

show the corresponding pixel positions in the other view, which are obtained by

maximizing the MIBS measure and minimizing the Hamming distance measure, re-

spectively. It is observed that the proposed MIBS measure yields accurate matching

results and preserves regular grid structures in the target frames of most test se-

quences. However, the conventional measure causes incorrect matching pixels, for

example, near the boundaries of the active regions in the ‘Library’ and ‘ArtCol-

lege’ sequences, as shown in Fig. 3.8(c) and Fig. 3.9(a). Moreover, when using the

conventional measure, the ‘Soccer’ sequence has a lot of incorrect matching pixels

in Fig. 3.10(a). It is because the ‘Soccer’ sequence contains many large and fast

moving objects, which cannot be clearly detected by the background subtraction

method, and generates erroneous activity vectors. On the contrary, the proposed

similarity measure is more robust to the noise in activity vectors, and therefore pro-

vides a significantly better matching result. Also, in the ‘Crossroad’ sequence in

Fig. 3.10(b), note that the conventional measure fails to find the correspondences of
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(a)

(b)

Figure 3.7: Correspondence matching results of the proposed MIBS measure and the

conventional Hamming distance measure [2]. (a) Hall. (b) Desk. The first column

shows the regularly sampled source pixels in one view, and the upper and lower

figures in the second column show their corresponding pixels found by the proposed

measure and the conventional measure, respectively. The third, fourth, and fifth

columns represent the correspondence matching results when the binary activity

vectors include the noise with probability of 0.02, 0.05, and 0.07, respectively.
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(a)

(b)

(c)

Figure 3.8: Correspondence matching results of the proposed NIBS measure and the

conventional Hamming distance measure [2]. (a) Road. (b) Stair. (c) Library.
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(a)

(b)

(c)

Figure 3.9: Correspondence matching results of the proposed MIBS measure and

the conventional Hamming distance measure [2]. (a) ArtCollege. (b) Jahayeon. (c)

ParkingLot.
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(a)

(b)

Figure 3.10: Correspondence matching results of the proposed MIBS measure and

the conventional Hamming distance measure [2]. (a) Soccer. (b) Crossroad.
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Figure 3.11: Comparison of the correspondence matching errors between the pro-

posed MIBS measure and the conventional Hamming distance measure [2]. The

‘Soccer’ and ‘ParkingLot’ sequences are used in this test. The average Euclidean

distance between computed matching positions and the ground truth ones is mea-

sured according to the noise probability μ. The solid and dashed curves are the

results of the proposed measure (PM) and the conventional measure (CM), respec-

tively.

most pixels. The ‘Crossroad’ sequence contains many foreground objects close to the

cameras, and the detected objects occupy large areas and/or are not fully included

in one of the two views. Therefore, the true object areas on the ground plane cannot

be determined correctly and the activity vectors become unreliable. The proposed

measure also yields a relatively worse matching result on the ‘Crossroad’ sequence

than on the other sequences. However, the proposed measure still provides better

performance than the conventional measure.
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We also test the robustness of the similarity measures against the noise in activity

vectors. We generate a binary random noise image Uµ, whose pixel values are 1 with

probability μ. Then we add the noise image Uµ to a binary map IBt , obtained by

the background subtraction method, to generate a noisy map

ĨBt = IBt ⊕ Uµ, (3.14)

where ⊕ denotes the pixel-wise exclusive OR operation. We derive the activity

vectors from the noisy binary maps and use them to find the correspondences. In

Fig. 3.7∼3.10, the third, fourth, and fifth columns compare the matching results with

the noise probability μ = 0.02, 0.05, and 0.07, respectively. For all test sequences, the

conventional measure provides severely degraded matching results even with a small

noise probability μ = 0.02, and provides almost randomly scattered distributions of

matching pixels at μ = 0.07. In contrast, the proposed measure maintains the robust

matching performance even at μ = 0.07. This is because the conventional Hamming

distance measure only counts the numbers K01 and K10, which are very sensitive

to the noise. On the other hand, the proposed MIBS measure adaptively reflects

all combinations of binary values, and exploits the numbers K00 and K11 as well to

find the corresponding pixels more reliably. For a quantitative comparison, we also

measure the average Euclidean distances between computed matching positions and

the ground truth ones. Fig. 3.11 plots the average matching errors on the ‘Soccer’

and ‘ParkingLot’ sequences according to the noise probability μ. The errors with

the conventional measure rapidly increase as μ gets higher, whereas those with the

proposed measure increase only slightly until μ = 0.1.
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3.3.3 Comparison to Other Similarity Measures

In this subsection, we compare the matching performance of the proposed MIBS

measure with that of various binary similarity measures introduced in Section 2.1.

The pixel positions in I are selected on a regular grid as shown in Fig. 3.12∼3.14(a).

We find the corresponding positions with changing the similarity measures but pre-

serve other conditions for a fair comparison.

For both quantitative and qualitative comparison, we uses three sample se-

quences ‘Soccer,’ ‘ParkingLot,’ and ‘Jahayeon’ that provides the ground truth.

And we exploit 9 different similarity measures ’Hamming(Socak-Michener), ‘Ermis,’

‘Jaccard-Needham,’ ‘Dice,’ ‘Correlation,’ ‘Yule,’ ’Russel-Rao,’ ‘Rogers-Tanmoto,’

and ‘Kulzinsky’ including the proposed MIBS measure. In Fig. 3.12, the results

of the MIBS, ‘Jaccard-Needham,’ ‘Dice,’ and ’Kulzinsky’ show relatively more re-

liable matching than other measures. The results of ‘ParkingLot’ and ‘Jahayeon’

Sequences also demonstrate similar performance trends. For a quantitative compar-

ison, we also measure the average Euclidean distances between computed matching

positions and the ground truth ones as described in Fig. 3.15. The graphs also

demonstrate the MIBS provides less average matching errors than other similarity

measures.

3.4 Conclusion

In this chapter, we proposed a correspondence matching algorithm for multiple video

sequences. We employed the activity vector for correspondence matching, which is

a temporal occurrence pattern of moving foreground objects at a specific pixel posi-

tion. In order to efficiently compare two activity vectors, we considered the activity
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.12: Comparative results to various similarity measures for the ‘Soccer’

sequence. (a) Initial grid positions. (b) Ground truth. (c) The results of MIBS

measure, (d) Hamming, (e) Ermis, (f) Jaccard-Needham, (g) Dice, (h) correlation,

(i) Yule, (j) Russel-Rao, (k) Rosergs-Tanmoto, and (l) Klzinsky.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.13: Comparative results to various similarity measures for the ‘ParkingLot’

sequence. (a) Initial grid positions. (b) Ground truth. (c) The results of MIBS

measure, (d) Hamming, (e) Ermis, (f) Jaccard-Needham, (g) Dice, (h) correlation,

(i) Yule, (j) Russel-Rao, (k) Rosergs-Tanmoto, and (l) Klzinsky.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.14: Comparative results to various similarity measures for the ‘Jahayeon’

sequence. (a) Initial grid positions. (b) Ground truth. (c) The results of MIBS

measure, (d) Hamming, (e) Ermis, (f) Jaccard-Needham, (g) Dice, (h) correlation,

(i) Yule, (j) Russel-Rao, (k) Rosergs-Tanmoto, and (l) Klzinsky.
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Table 3.2: Average errors of correspondence matching according to various similarity

measures

Similarity measure Soccer ParkingLot Jahayeon

MIBS 7.365405 6.298014 0.613001

Hamming 66.217085 11.305671 6.058103

Ermis 64.555733 11.198556 5.454871

Jaccard-Needham 7.242479 6.899561 0.744769

Correlation 35.08293 15.982141 11.824747

Yule 74.904488 24.963444 7.806933

Russel-Rao 7.306032 7.273160 1.641155

Rogers-Tanmoto 66.217085 11.305671 6.058103

Kulzinsky 7.242479 6.899561 0.744769
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Figure 3.15: Average errors of correspondence matching to the ground truth. (a)

‘Soccer,’ (b) ‘ParkingLot,’ and (c) ‘Jahayeon’ sequences.
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vectors as the random variables and measured their similarity by using the mutual

information of the related random variables. Since the mutual information describes

all the behaviors of the activity vectors, it provides more accurate and reliable match-

ing results than that of the conventional Hamming distance measure. Furthermore,

the proposed MIBS measure yields very robust results when the input sequences are

collapsed by the additive noises. Simulation results demonstrated that the matching

pairs from the proposed MIBS measure yielded promising results in both quantita-

tive and qualitative comparison to Hamming distance measure even under the ad-

ditive noises. And the comparison to other similarity measures, the MIBS measure

shows good matching performances. Therefore, the proposed MIBS measure is a

very promising for finding correspondence matching in multi-view video sequences,

furthermore, it is applicable to variable applications such as visual surveillance and

panoramic view generation.
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Chapter 4

Correspondence Matching for

Multi-view Surveillance Video

Sequences using MIBS measure

4.1 Introduction

Recently, video technologies have been converging with networking systems and fa-

cilitating many applications based on visual sensor networks, such as visual surveil-

lance, environmental monitoring and panoramic view synthesis [6–8]. A visual sensor

network usually employs multi-view videos captured by multiple cameras. Corre-

spondence matching among multiple views is one of the most important and chal-

lenging issues to analyze the multiple videos and provide useful visual information.

Practically, we find the corresponding pixels which are the projections of a same

scene point in 3-D space onto the different image planes. A lot of efforts have been

made to efficiently find the correspondence matching [1, 2, 9–18].
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However, in real multiple view video scenarios such as wide area surveillance

applications, the conventional approaches have difficulties to find the reliable cor-

respondence between multiple cameras by the stereo matching algorithms [9–12] or

the feature based matching algorithms [1, 13] due to the large photometric changes

and severely different camera parameters. Compared to the correspondence match-

ing algorithms for the still images, the consecutive frames of the video sequences

enable to utilize the activity information from the moving objects, which provide

robust matching performances to the photometric variations and view differences.

Nevertheless, many algorithms based on the activity information require accurate

object tracking results which are very challenging in general dynamic video se-

quences [15–18] or suffer from erroneous matches due to the unsuitable similarity

measure [2].

We have found the pixel-wise correspondences between two view frames by only

using the MIBS measure in the previous chapter. However, it is insufficient to dis-

cover the homography between two views from the multiple surveillance cameras.

Therefore, as utilizing the proposed similarity measure, our algorithm handles the

correspondence problem for multiple pixel positions in order to estimate the reli-

able homography between two views. We carefully select the multiple pixel position

at which the similarity measures of the corresponding position pairs are reliably

evaluated and determine the corresponding pixel positions by using MRF frame-

work associated both the similarity measures of activity vectors and local structure

preservation. We demonstrate that the proposed matching algorithm is robust to

the photometric changes and arbitrary camera allocations and also does not need

any prior knowledge such as the camera parameters and the poses of the objects.

In this chapter, we propose a more accurate and robust correspondence matching
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algorithm for multi-view video sequences. We regard activity vectors as outputs of

binary random variables, and measure their similarity based on the mutual infor-

mation between two random variables. While the conventional Hamming distance

only counts the elements with different values between activity vectors [2], the pro-

posed mutual information based similarity (MIBS) measure considers all possible

combinations of 0’s and 1’s between activity vectors and yields more reliable match-

ing performance. Moreover, we find the correspondence matching for multiple pixel

positions to estimate the homography transform between two views. Specifically,

we select reliable pixel positions by iteratively applying the bidirectional match-

ing, and refine the matching positions by optimizing a cost function based on the

Markov random field (MRF). Experimental results demonstrate that the proposed

MIBS algorithm provides accurate and reliable matching results in various camera

configurations, and yields better performance than the conventional algorithm [2].

The rest of this chapter is organized as follows. Section 4.2 reviews the previ-

ous researches on the correspondence matching for still images and video sequences.

In Section 4.3, we present the framework of the correspondence matching for the

multi-view surveillance video sequences, which is our main idea. Next, we explain

the correspondence matching for the multiple pixel positions by using MRF frame-

work in order to establish a reliable homography between two different views in

Section 4.3. In Section 4.4, we give the qualitative and quantitative experiments

results for various sample video sequences and applications to the panoramic view

generation. In Section 4.5, we finally make a conclusion.
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4.2 Related Works

4.2.1 Correspondence Matching of Images

Traditional stereo matching algorithms obtain a pixel-wise dense correspondence

map between two rectified images [9, 10]. Specifically, a window is assigned to each

pixel and the corresponding pixels between two images are determined such that

their windows yield the smallest difference of pixel intensities. Hence the stereo

matching is sensitive to the variations of epipolar constraint, illumination, and cam-

era parameters. Advanced stereo matching algorithms are robust to the severe

photometric variations, however, still suffer from the uncertainty of camera param-

eters [11, 12]. Therefore, the stereo matching techniques are not proper to general

surveillance applications in which the parameters of multiple cameras are very dif-

ferent.

Another approach to find the correspondence of images is based on the feature

detection methods such as scale invariant feature transform (SIFT) [1] or speeded

up robust features (SURF) [13]. While the stereo matching techniques provide a

dense correspondence map over a whole image, the feature based methods find the

correspondence only for the selected several feature points. Therefore, they are

robust to the photometric variations including the changes of illumination and/or

lighting conditions, and furthermore, can alleviate the computational complexity to

find the correspondences among multiple images. However, they still fail to work

under severely different camera geometries, e.g., viewing orientation, and therefore

require camera calibration techniques [19,20].
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4.2.2 Correspondence Matching of Videos

In order to find the correspondence matching of two video sequences, Sand et al.

considered a video sequence as a set of image frames and independently applied the

image matching scheme to each pair of image frames [14]. For a given source pixel in

one image, the corresponding target pixel in the other image is selected which yields

the most similar color value to that of the source pixel. Since this algorithm basically

uses the image matching method frame by frame, the correspondence matching result

is also vulnerable to the variations of color and/or lighting conditions.

Several algorithms exploit the temporal information of video sequences for view

matching [15–18]. The methods in [15–17] compute the centroids of the moving

objects over the video sequences, and estimate the homography between two views

by considering the centroids as feature points for matching. However, the temporal

orders of centroids are not considered for matching which yields unreliable match-

ing performances. On the other hand, Caspi et al. employed a motion trajectory

which represents a sequence of temporal locations of a moving object over the video

sequence [18]. They estimated a homography by matching the two trajectories be-

tween two views associated with a same object. However, these algorithms require

an accurate result of object tracking between multiple video sequences, which is

generally hard to be obtained from the video sequences containing many moving

objects.

Ermis et al. proposed a correspondence matching algorithm for multiple video

sequences based on an activity feature of foreground objects [2]. By performing

segmentation to each image, a binary image is obtained which represents the fore-

ground objects and the background region. Then, the activity feature is defined
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at each pixel position in the binary image, as the temporal series of binary values

through the video sequence. Since the corresponding pixels between two different

views should yield a same activity feature, for a given pixel in one view, its corre-

sponding pixel in the other view is selected we determine the corresponding pixels

between two views which yield the most similar activity features each other. The

activity based correspondence matching algorithm only requires a simple moving

object detection, and is more robust to the illumination changes or noises compared

to the object tracking (trajectory) based matching approaches. Moreover, it is also

suitable for the surveillance applications which employ the multiple cameras with

significantly different camera parameters such as viewing angles and positions.

However, the conventional algorithm employs the Hamming distance to measure

the similarity between the binary feature vectors, which is not always optimal to

find the true correspondence [2]. Especially, it may yield unreliable matching results

when the source video includes fast moving objects. Therefore, it is required to devise

a novel similarity measure for activity which is more accurate and robust to the

errors in moving object detection. Furthermore, in order to facilitate various multi-

view applications such as a panoramic view generation, an accurate correspondence

matching algorithm for multiple views is also needed.

4.3 Proposed Algorithm

4.3.1 Adaptive Activity Area

For typical video sequences in surveillance applications, a ground plane is included in

the static background and foreground objects move on the ground plane. Thus, we

practically find the correspondences between the two ground planes of different views
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Figure 4.1: Discrepancy between the detected foreground object and the true object

area on the ground plane.

using activity vectors. However, foreground objects, detected by the background

subtraction method, do not coincide with their touching areas on the ground plane,

since a camera is usually configured at a skew angle from the ground plane. For

example, when the camera is directed toward the ground at a skew angle as shown

in Fig. 4.1, the grey area is detected as an object region, whereas the red area is the

true active area on the ground. Therefore, if we form activity vectors from detected

object regions directly, then we may obtain incorrect matching results.

The Ermis et al.’s algorithm [2] simply uses rectangular bottom areas of bounding

boxes of detected objects to compute activity vectors. In this work, we estimate valid

activity areas adaptively according to the ground direction of a captured scene.

We assume that, as shown in Fig. 4.2(a), a video sequence contains a number of

pedestrians standing on the ground plane and the camera does not capture objects

upside down. This assumption is acceptable in the surveillance scenarios which we

focus on. Then, a moving pedestrian forms an elongated shape along its height

direction in Fig. 4.2(b).
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(a) (b)

h

h�

(c) (d)

Figure 4.2: Adaptive activity areas. (a) The ‘Stair’ sequence. (b) The detected

foreground objects are marked by different colors. The white arrow represents the

ground direction. (c) h denotes the height of an object along the ground direction,

and κ is the ratio for the valid activity area. (d) The adaptive activity areas are

denoted by the red color.
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Then our algorithm estimates the ground direction which indicates the direction

of the ground plane of the objects without any camera parameters. In detail, we

identify the moving objects which is denoted by O as illustrated in Fig. 4.2 (b), and

define the mass covariance matrix B(O) as

B(O) =

⎡
⎢⎣ bxx bxy

bxy byy

⎤
⎥⎦ , (4.1)

bxx =
∑

(ox − cx)
2,

bxy =
∑

(ox − cx)(oy − oy),

byy =
∑

(oy − cy)
2,

where (ox, oy) denote the pixel position in O, and (cx, cy) is the center of mass

of O. B(O) is positive semidefinite, there are two positive eigen values and their

corresponding eigen vectors that represent the dominant directions of the object

shapes [37]. Therefore, we select the eigen vector corresponding to the large eigen

value of B(O), which denotes the long side direction of the object shape. Fig. 4.2 (b)

shows the ground direction n as depicted by a white arrow. Note that we use a single

ground direction which is determined by averaging ground directions, because the

grounds are approximately planar. The ground direction is estimated from all long

side directions of whole objects. We first make 20 angle bins that cover from 0 to

180 degrees and count the number of objects which are dropped into corresponding

angle bins as describe in Fig 4.3.

Finally, we adaptively set the valid activity area as a lower part of each object

along the ground direction, as shown in Fig. 4.2(c), where h is the object height along

the ground direction and the ratio κ is empirically set to 0.25. In Fig. 4.2(d), the
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Figure 4.3: Ground direction is decided from the angle frequency histogram. (a) The

dominant direction of each object is denoted as red lines. (b) The ground direction

of the ‘Soccer’ sequences is determined as denoted by a red line. (c) The histogram

of the angles of the dominant directions.
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(a) (b)

Figure 4.4: Selection of reliable pixel positions. (a) The ‘Soccer’ sequence. (b)

Reliable pixel positions are selected on the regular grid in the white region, in which

there are activities.

resultant adaptive activity areas are depicted by red regions, whereas the initially

detected foreground objects consist of grey as well as red regions.

4.3.2 Selection of Consistent Pixel Positions

In order to select pixel positions for correspondence matching, we first sample initial

positions on the regular grid in I. However, we may not be able to find reliable

matching for some of the pixel positions due to the lack of activity information. For

instance, when p is located within the static background at which no foreground

object appears through the entire video sequence, the activity vector A(p) is a trivial

zero sequence. In such a case, even if the identical vector A(q) is found at q, it is also

a zero sequence. Thus, A(p) and A(q) yieldK00 = T andK01 = K10 = K11 = 0, and

the MIBS measure becomes s(p,q) = I(X;Y ) = 0 according to (3.10). Moreover,

there might be multiple q’s in the static background region, which have the zero

sequence as the activity vectors, causing ambiguity in the correspondence matching.

Therefore, we choose only the pixel positions with some amount of activities. Fig. 4.4

61



shows selected pixel positions for the ‘Soccer’ sequence. The white region represents

the set of pixels at which the numbers of active elements in A(p)’s are larger than 1%

of the total frame length T , and the red dots show regularly sampled pixel positions

within the white region.

Then we refine the initial pixel positions by performing the iterative bidirectional

matching to obtain consistent pixel positions. We say that a pair of pixel positions

p ∈ I and q ∈ J are consistent, when the corresponding pixel of p is q and the

corresponding pixel of q is p. Note that a pair of consistent pixel positions are

highly probable to be the true corresponding points. Let us first define the forward

matching function from pixel p in I to J as

fI→J (p) = argmax
q∈J

s(p,q). (4.2)

Similarly, let us define the backward matching function from pixel q in J to I as

fJ→I(q) = argmax
p∈I

s(q,p). (4.3)

Given an initial pixel p(0), the bidirectional matching process performs the forward

matching and the backward matching iteratively. Specifically, for a given pixel p(k)

in I, we first find its corresponding pixel q(k) = fI→J (p(k)) in J by the forward

matching. Then, by the backward matching of q(k), we find p(k+1) = fJ→I(q(k))

in I. If p(k+1) = p(k), we terminate the bidirectional matching and declare the pair

(p(k), q(k)) as consistent. On the contrary, when p(k+1) �= p(k), we perform the

bidirectional matching again with p(k+1), and check whether p(k+2) = p(k+1). This

is iteratively repeated until p(k) converges to a consistent pixel position. In addition,

to obtain a balanced distribution of consistent pixel positions, we exclude p(k) from

the set of consistent pixel positions when the distance between p(k) and p(0) becomes
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q
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Figure 4.5: The bidirectional matching for selecting consistent pixel positions. p(0)

in the left frame is an initial pixel position, which is matched to q(0) in the right

frame by the forward matching. Then, the backward mapping matches q(0) to p(1).

Finally, p(1) and q(0) are consistent.

larger than the half of the grid interval. Moreover, to prevent the exceptional cases

of infinite loop, we also exclude the pixel positions that do not converge within 10

iterations.

Fig. 4.5 illustrates how the bidirectional matching finds consistent pixel positions

in the ‘ArtCollege’ sequence. An initial pixel position p(0) is depicted by the red

dot in the left frame, and its corresponding pixel position q(0) is found in the right

frame. However, we see that p(0) and q(0) are not the projections of the same scene

point in the real world. Thus, p(1) is found again by the backward matching, which

is in turn matched to q(0) by the forward matching. Therefore, p(1) and q(0) are

declared as a pair of consistent pixel positions.
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4.3.3 MRF-Based Optimization

We optimize the correspondence matching results for multiple consistent pixel posi-

tions based on the MRF [38]. By considering the relationship between neighboring

pixel positions, the MRF optimization refines the correspondence matching result of

each pixel position and improves the matching accuracy. In Fig. 4.6, red dots show

the consistent pixel positions in one view of the ‘Soccer’ sequence and yellow lines

represent the neighboring pairs of consistent pixel positions in the MRF structure.

Let C denote the set of consistent pixel positions in I, and N denote the set of pairs

of neighboring positions in C. We refine the matching results by minimizing the cost

function

E(Q) =
∑
pi∈C

Dpi(qi) +
∑

(pi,pj)∈N
Vpi,pj(qi,qj), (4.4)

where qi denotes the matching pixel in J , which corresponds to a consistent pixel

pi in C, and Q is the set of all qi’s. Also, Dpi(qi) is the data cost, which measures

the dissimilarity between pi and qi, and Vpi,pj(qi,qj) is the smoothness cost, which

measures the discontinuity between the matching results of the neighboring pixels.

For accurate matching, the design of the data cost is the most fundamental

part in the MRF framework [12]. We define the data cost Dpi(qi) using the MIBS

measure:

Dpi(qi) =
smax(pi)− s(pi,qi)

smax(pi)− smin(pi)
, (4.5)

where smax(pi) and smin(pi) are the maximum and the minimum values of s(pi,qi)

over all candidate matching positions in J ; smax(pi) = maxq∈J s(pi,q) and smin(pi) =

minq∈J s(pi,q). Hence Dpi(qi) is normalized into the range of [0, 1]. Also, Dpi(qi)

is inverse proportional to s(pi,qi), and thus yields a small cost when pi corresponds

to qi.
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pi
pj

Figure 4.6: Red dots depict the consistent pixel positions, and yellow lines represent

the pairs of neighboring positions in the MRF optimization.

The smoothness cost Vpi,pj (qi,qj) assumes that the pixels qi and qj in J , corre-

sponding to the neighboring pixels pi and pj in I, should be also spatially adjacent.

We may employ the difference between the displacement vectors, (qi − pi) and

(qj −pj), to define the smoothness cost. However, when the two cameras have very

different configurations, the displacement vectors may not be similar. In order to

compensate for this discrepancy in the camera configurations, we first estimate a

coarse homography H from I to J by using the pairs of consistent pixels, based

on the simple outlier elimination technique, RANSAC [39]. Then we compute the

displacement vectors vpi and vpj , by taking Hpi and Hpj instead of pi and pj ,

which are given by

vpi = qi −Hpi,

vpj = qj −Hpj . (4.6)

The smoothness cost is then defined as the difference between vpi and vpj . More

specifically, we employ the truncated quadratic cost function, which is widely used
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in many energy minimization tasks [38], to define the cost

Vpi,pj(qi,qj) = βmin(‖vpi − vpj‖2, Vmax), (4.7)

where Vmax is a truncation factor and β is a weighting coefficient, which are empir-

ically set to 25 and 0.7, respectively, in all experiments. We obtain the solution of

the energy minimization problem in (4.4) using the graphcut algorithm [38,40], since

it provides a near-optimal solution efficiently [41]. We use the α-β-swap algorithm

rather than the α-expansion algorithm, since the smoothness cost Vpi,pj (qi,qj) is

semi-metric. And it can be optimized by various other discrete MRF solvers, such

as high order max flow [42], belief propagation [43] or tree-reweighting message

passing(TRW) [44,45].

4.3.4 Additional Color Information

While the MIBS measure for activity in the previous chapter efficiently finds the cor-

respondence matching for most of the video sequences, it suffers from the ambiguity

to find the true correspondence when one image contains multiple foreground objects

as shown in Fig. 4.7. For a given active pixel p in IBt , its false correspondences and

the true one in JB
t are denoted by the blue and red arrows, respectively. In general,

this ambiguity may be alleviated by comparing the activity vectors through all the

frames, however, it still yields a drawback when the temporal activity characteris-

tics of multiple moving objects are also similar. Thus this ambiguity causes an error

to count Kij and degrades the performance of the activity based correspondence

matching.

Therefore, we employ a color similarity measure together with the activity simi-

larity measure, assuming that a same object yields almost a same color in the images
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Figure 4.7: The uncorrelative activities: the blue arrows represent the objects that

definitely not include the position corresponding to the p. The red arrow indicates

the correlative object that p is located on.

of different views. Let It(p) and Jt(q) denote the 3-tuple vectors of red, green and

blue color values at the pixels p ∈ It and q ∈ Jt, respectively. If the number of

frames, at which It(p) and Jt(q) are similar each other, is larger, then p and q are

more probable to be corresponding each other. Hence we first count the number of

frames yielding the similar color values between two active pixels p and q as

C(p,q) =
∣∣{t | ‖It(p)− Jt(q)‖ < σ and IBt (p) = JB

t (q) = 1
}∣∣, (4.8)

where. ‖ · ‖ denotes the Euclidean distance between the color vectors, and σ is the
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threshold of the color similarity which is fixed to 30 in our experiments. SinceC(p,q)

is meaningful only when both p and q are active simultaneously, we normalize

C(p,q) by K11 and define a color similarity measure as follows.

scolor(p,q) =

⎧⎪⎨
⎪⎩

0, N11(p,q) = 0,

C(p,q)/K11(p,q), otherwise.
(4.9)

Note that p and q are highly probable to be corresponding each other when scolor(p,q)

is larger, and 0 ≤ scolor(p,q) ≤ 1.

In the sequel, we consider the similarity measure for activity in (3.11) and the

similarity measure for color in (4.9) together, to define a total similarity measure

stotal.

stotal(p,q) = (1− α)sMIBS(p,q) + αscolor(p,q), (4.10)

where sMIBS is the MIBS measure and α is a weighting parameter and empirically

set to a constant belonging to the range [0, 1]. The weighting factor α is constant

for any p and q, but it depends on the input video sequences I and J in order to

take account of the variances of the video sequence containing the colorful objects.

In order to test the effect of the color similarity, we find the corresponding

position q of the given reliable site p by the following criterion

q∗ = argmax
q∈J

stotal(p,q). (4.11)

Note that, total similarity stotal provides both activity information and color infor-

mation for finding the correct correspondence.

Fig. 4.8 demonstrates the comparison results on the ‘Parkinglot’ sequence whose

the ground truth correspondence is available. For the reliable sites in Fig. 4.8 (a),

Fig. 4.8 (b) shows the corresponding positions by considering the color similarity
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(a)

(b)

(c)

Figure 4.8: (a) Consistent pixel positions in I. (b) Matching result without the

color similarity measure. (c) Matching results with the color similarity.
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Figure 4.9: Average errors of correspondence matching according to the color simi-

larity measure.

cost, which α is set to 0.42 in Eq. (4.11). For comparison, Fig. 4.8 (c) illustrates

the corresponding positions of the identical reliable sites using the criterion without

the color similarity cost by setting α to zero in Eq. (4.11). The average Euclidean

distance to the ground truth diminishes when the color similarity cost is considered

as shown in Fig. 4.8 (d).

4.4 Experimental results

4.4.1 Performance Evaluation of Adaptive Activity Area

In Fig. 4.10, we compare the correspondence matching errors, which are obtained

with adaptive activity areas, rectangular bottom areas [2], and entire object areas.

Each matching error is the average Euclidean distance between computed matching

pixels and the ground truth ones, which are manually obtained. Both the adaptive

activity areas and the rectangular bottom areas reduce the matching errors signifi-
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Figure 4.10: Comparison of the correspondence matching errors, which are obtained

with the proposed adaptive activity areas, the rectangular bottom areas [2], and the

entire object areas. The average Euclidean distance is measured between computed

matching pixels and the manually obtained ground truth ones.
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cantly as compared with the entire object areas. The adaptive activity areas yield a

comparable result to the rectangular bottom areas on the ‘Soccer’ sequence, which

has the vertical ground direction. However the proposed adaptive areas provide

a smaller matching error than the rectangular bottom areas on the ‘ParkingLot’

sequence, where the ground direction forms an oblique angle with the horizontal

line.

4.4.2 MRF Optimization with Consistent Pixel Positions

The next experiment demonstrates how the iterative bidirectional matching in the

previous section improves the matching performance. In other words, we compare

the matching performance of initially sampled pixel positions (IP’s) and consistent

pixel positions (CP’s). Figs. 4.11(a) and (b) show IP’s in I and their matching

positions in J on the ‘Crossroad’ sequence. Outlier pixels with incorrect matching

results are marked by yellow boxes. Fig. 4.11(c) shows the CP’s, which are refined

from the IP’s by employing the bidirectional matching, and Fig. 4.11(d) shows their

matching positions, which yield more reliable and consistent results. In Fig. 4.13,

we also quantitatively compare the matching performance by measuring the average

transform errors, ‖q − Hp‖, where H is the homography transform between the

two views obtained with IP’s or CP’s, respectively. An inlier ratio is defined as the

number of matching pairs in RANSAC [39] to the total number of pairs. We see that

CP’s always provide smaller transform errors than IP’s, regardless of inlier ratios.

Fig. 4.14∼4.16 evaluates the performance of the MRF optimization. The left-

most column shows consistent pixel positions in one view. The second and the third

columns show the matching results in the other view, which are obtained by the pro-

posed correspondence matching algorithm with and without the MRF optimization,

72



(a) (b)

(c) (d)

Figure 4.11: Matching results with initial pixel positions (IP’s) and consistent pixel

positions (CP’s) on the ‘Crossroad’ sequence. (a) IP’s and (b) their matching po-

sitions, where outlier pixels are marked by yellow boxes. (c) CP’s and (d) their

matching positions.
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(a) (b)

(c) (d)

Figure 4.12: Matching results with initial pixel positions (IP’s) and consistent pixel

positions (CP’s) on the ‘ArtCollege’ sequence. (a) IP’s and (b) their matching

positions, where outlier pixels are marked by yellow boxes. (c) CP’s and (d) their

matching positions.
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Figure 4.13: Average errors of the homography transforms computed with IP’s and

CP’s, respectively, in terms of the inlier ratios.
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(a)

(b)

(c)

(d)

Figure 4.14: Matching results on the (a) ‘Library,’ (b) ‘Road,’ (c) ‘Hall,’ (d) ‘Desk,’

(e) ‘ArtCollege’ sequences.The leftmost column shows consistent pixel positions in

one view. The second and third columns show the matching positions in the other

view, obtained by the proposed algorithm with and without the MRF based opti-

mization, respectively. The last column shows the matching results by the conven-

tional algorithm [2].
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(a)

(b)

(c)

Figure 4.15: Matching results on the (a) ‘ArtCollege,’ (b) ‘Jahayeon,’ (c) ‘Park-

ingLot’ sequences. The leftmost column shows consistent pixel positions in one

view. The second and third columns show the matching positions in the other view,

obtained by the proposed algorithm with and without the MRF based optimiza-

tion, respectively. The last column shows the matching results by the conventional

algorithm [2].
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(a)

(b)

(c)

Figure 4.16: Matching results on the (a) ‘Stair,’ (b) ‘Soccer,’ and (c) ‘Crossroad’

sequences. The leftmost column shows consistent pixel positions in one view. The

second and third columns show the matching positions in the other view, obtained by

the proposed algorithm with and without the MRF based optimization, respectively.

The last column shows the matching results by the conventional algorithm [2].
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respectively. We see that the MRF optimization provides more reliable matching re-

sults by enforcing the smoothness constraint between neighboring pixels, especially

on the ‘Hall,’ ‘Desk,’ ‘ArtCollege,’ and ‘Jahayeon’ sequences in Fig. 4.14(c) and (d),

Fig. 4.15(a) and (b).

In addition, Fig. 4.14∼4.16 also compares the performance of the proposed al-

gorithm with that of the conventional activity-based matching algorithm [2]. In

both algorithms, we apply the same foreground detection method in [36] to gener-

ate binary activity maps and use the same set of consistent pixels to determine the

correspondence matching. Note that the conventional algorithm uses rectangular

bottom areas of object regions to derive activity vectors and does not refine the

matching results using the MRF optimization. The last column in Fig. 4.14∼4.16

shows the results of the conventional algorithm. Compared with the proposed al-

gorithm in the second column, the conventional algorithm yields a larger number

of incorrect matching positions. In particular, whereas the proposed algorithm is

robust to the rotational transformations between cameras, the conventional algo-

rithm provides severely erroneous matching results on the ‘Jahayeon,’ ‘ParkingLot,’

and ‘Stair’ sequences in Fig. 4.15(b) and (c) and Fig. 4.16(a). It is because the

conventional algorithm always uses bottom areas of foreground objects to form ac-

tivity vectors and generates unreliable activity information under severely rotated

cameras. Moreover, due to sudden illumination changes and shadows, many errors

occur in the background subtraction, especially on outdoor scenes with large fast

moving objects, such as the ‘Soccer’ and ‘Crossroad’ sequences in Fig. 4.16(b and

(c). In such cases, the conventional algorithm provides poor matching results or

simply fails. On the contrary, the proposed algorithm is very robust to the noise

in activity vectors and therefore yields faithful correspondence matching results on
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Figure 4.17: Quantitative comparison of the correspondence matching performance

of the proposed algorithm with that of the conventional algorithm [2]. The average

Euclidean distances between computed matching positions and the ground truth

ones are measured.

these challenging sequences.

Fig. 4.17 assesses the matching performance on the ‘Soccer’ and ‘ParkingLot’

sequences quantitatively. The proposed algorithm yields much smaller matching

errors than the conventional algorithm [2]. More specifically, the matching errors of

the proposed algorithm are 5.2 times smaller on the ‘Soccer’ sequence and 9.5 times

smaller on the ‘ParkingLot’ sequence, respectively, than those of the conventional

algorithm. Note that the MRF optimization further reduces the matching errors.

4.4.3 Application to Panoramic View Synthesis

As an exemplar application of the proposed correspondence matching algorithm,

let us synthesize a panoramic view from two different views. We first estimate

the homography between two views using multiple pairs of corresponding pixels,
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(a)

(b)

(c)

Figure 4.18: Panoramic view synthesis for the (a) ‘Soccer,’ (b) ‘Road,’ and (c) ‘Ja-

hayeon’ sequences. The first and second columns represent the two views, respec-

tively. The third and fourth columns show the resultant panoramic views obtained

by the proposed algorithm and the conventional algorithm [2], respectively.
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(a)

fail

(b)

Figure 4.19: Panoramic view synthesis for the (a) ‘Desk’ and (b) ‘Stair’ sequences.

The first and second columns represent the two views, respectively. The third and

fourth columns show the resultant panoramic views obtained by the proposed algo-

rithm and the conventional algorithm [2], respectively.
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and then project one view onto the other view. Fig. 4.18 and Fig. 4.19 shows

the synthesized panoramic views. The first and the second columns present the

two views in I and J , respectively. The third and the fourth columns are the

panoramic views, obtained by the proposed correspondence matching algorithm and

the conventional algorithm [2], respectively. To clearly visualize the accuracy of

an estimated homography, we multiply each color channel of the two views by 0.5

and then add the transformed view of I to the view of J . The overlapped regions

are hence brighter than the other regions, which are observed from only one of

the two cameras. In general, when the correspondence matching is not accurate,

the synthesized panoramic view tends to be blurred. We see that the proposed

algorithm faithfully blends two different views without severe blurring artifacts.

However, the conventional algorithm causes noticeable misalignment between the

white center lines in the ‘Soccer’ sequence and blurs the lanes and crosswalk in

the ‘Road’ sequence, as shown in Fig. 4.18(a) and (b). Moreover, the conventional

algorithm suffers from severe ghost artifacts around the trees in the ‘Jahayeon’

sequence and blurred stripe patterns on the floor in the ‘Desk’ sequence, as shown

in Fig. 4.18(c) and Fig. 4.18(a). The panoramic view synthesis is challenging for

the ‘Stair’ sequence, since there is the camera rotation of almost 180 degrees as

shown in Fig. 4.19(c). Whereas the conventional algorithm fails to estimate the

homography for the ‘Stair’ sequence, the proposed algorithm successfully estimates

the homography and provides a relatively accurate panoramic view.
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4.5 Conclusion

In this chapter, we proposed a framework of finding correspondence between mul-

tiple video sequences. We employed the MIBS measure to describe the similarity

between position pairs. To enhance the performance of the MIBS measure which is

based on the activity information of moving foreground objects, we employed the

adaptive activity areas representing actual bottom areas of the objects touching the

ground planes. Also, the proposed algorithm selected the consistent pixel positions

using the iterative bidirectional matching to evaluate the reliable matching pairs be-

tween two views. Moreover, we optimized the correspondence matching results for

multiple pixel positions by minimizing the cost function based on the MRF frame-

work. Experimental results demonstrated that the proposed algorithm finds the

correspondence matching between two different views more accurately and reliably

than the conventional state of the art method. Therefore, the proposed algorithm is

a very promising technique for various multi-view video applications such as visual

surveillance and panoramic view generation.
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Chapter 5

Conclusions

In this dissertation, a new similarity measure based on mutual information and a

framework of correspondence matching algorithm for multi-view surveillance video

sequences were presented.

First, a noble correspondence matching algorithm for multiple video sequences

was proposed. We exploited an activity vector for the correspondence matching,

which is the temporal occurrence pattern of foreground objects at a specific pixel

position. In order to compare two activity vectors efficiently, we considered them

as the realization of random variables and measured their similarity using the mu-

tual information of the random variables. Since the mutual information describes

the joint and individual behavior of the activity vectors faithfully, the proposed

mutual information based similarity (MIBS) measure provides more accurate and

reliable matching results than the conventional Hamming distance measure. The

experimental results with additive noises also demonstrated the MIBS measure is

robust to additive random noises. Furthermore, we showed that the MIBS measure

outperformed other similarity measures for binary vectors.
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Next, the framework for finding a dense correspondence matching between multi-

view video sequences was proposed. In order to find reliable and accurate matching

pairs, three practical techniques was developed. The proposed algorithm refines

moving foreground areas into adaptive activity areas coinciding with actual regions

on the ground, which are touched by moving objects. And we suggested consistent

pixel positions where the MIBS measure can be reliably evaluated. Finally, the

proposed algorithm utilize the MRF optimization to refine the matching results of

multiple source pixel positions by minimizing a matching cost function based on the

Markov random field. The experimental results demonstrated that the proposed

algorithm can estimate the correspondence matching results of consistent pixel po-

sitions over the entire view areas faithfully.

The main features of our approach can be summarized in following.

• Robustness to noise: The MIBS measure yields stable correspondence match-

ing results under additive noises as shown in Fig. 3.7∼3.10. Noisy components

are easily added in various causes such as CCD heat noises in cameras, fore-

ground detection, and geometric dissimilarity. Compared to other similarity

measures, the proposed measure shows more reliable matching performances

even when the activity vectors are severely collapsed by random noises.

• Without a supervision: The proposed algorithm does not need the knowledge

of camera locations, camera parameters, and illumination conditions. More-

over, the proposed method does not require calibration or rectification between

cameras. The only requirement is the timely synchronized multi-view video

sequences. Therefore, it is applicable to the challenging situations in which the

users hardly access the cameras such as skyscraper or highway surveillances.
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The several future works can be considered as

• Additional photometry information for similarity measure: In proposed algo-

rithm, only binary activity information is considered for evaluating a similarity

measure. This approach is efficient due to the small computational complexity,

however, it disregards a plenty of color or intensity information. As in tradi-

tional stereo matching algorithms [10, 12], utilizing photometry information

can reduce an ambiguous similarity measurement and improve the matching

performance.

• Synthesizing a panoramic view from multiple view videos: In this dissertation,

we have shown simple example results of a panoramic view synthesis with two

different views. However, for many applications such as surveillance systems

and virtual street views, more effective panoramic view generation technique

is required [46–49]. The reliable correspondence matching from proposed al-

gorithm is essential to preserve a visual consistency of the panoramic views.

• Object removal and completion of multi-view video sequences: The inpaint-

ing technique, which removes the selected objects and fills the area without

visual artifacts, has been widely researched [50–54]. Since the correspondence

matching can provides a initial seed position of the source blocks, it will be

helpful in developing a reliable inpainting algorithm for video sequences.

To summarize, the proposed algorithm presents a new approach to find the

correspondence matching for the multi-view video sequences. The proposed algo-

rithm utilizes an activity information to feature the pixel positions of multi-view

videos. The proposed MIBS measure efficiently represents the similarity between

two activity vectors and outperforms other conventional similarity measures. Then,
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the proposed algorithm suggested the framework for finding dense correspondences.

Adaptive activity area refinement enhances the performance of activity vectors to

represent a ground surface. And the proposed algorithm selects consistent pixel po-

sitions where the MIBS measure is reliably evaluated. Finally, the correspondence

matching at multiple pixel positions are refined by a MRF-based energy minimiza-

tion technique. Therefore, it is believed that the proposed correspondence matching

algorithm yields reliable matching results enough to be applicable to computer vision

and surveillance applications.
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