

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

工學博士學位論文

Efficient Key Management Schemes in

Multicast Communication

멀티캐스트 통신에서 효율적인 키 관리 방법

2012年 8月

서울大學校 大學院
電氣․컴퓨터工學部

諸 東 炫

Dissertation for the Degree of Doctor

Efficient Key Management Schemes in Multicast
Communication

DongHyun Je

Department of Electrical Engineering and Computer Science

Graduate School

Seoul National University

August 2012

Abstract

Efficient Key Management Schemes in Multicast
Communication

DongHyun Je

Department of Electrical Engineering and Computer Science
Graduate School

Seoul National University

Advisor: Prof. SeungWoo Seo

As the demand of various applications such as entertainment, communica-
tion, and device control has been increased and the network technologies
have been advanced, multicast communication becomes one of the promis-
ing solutions to reduce the communication complexity because it can deliver
a message to a group of users at a single transmission simultaneously. How-
ever, as the information exposure becomes one of the main concerns, key
management scheme is considered as an essential factor in successfully de-
ploying commercialized applications in multicast communication. On the
contrary of unicast, the scalability of multicast is a major obstacle in man-
aging a secret key to provide data confidentiality. Therefore, in this dis-
sertation, I focus on the relations between the security and the resource
requirements in managing the secret key among multicast members, and
propose the several efficient key management schemes in multicast commu-
nication: Computation-and-Storage efficient key tree management protocol,
Optimal batch rekeying interval for secure group communication, Member-
ship Dynamics based Key Management for secure vehicular multicast com-
munication.

Keywords: Secure Multicast, Group Key Management, Key Tree Manage-
ment, Batch Rekeying, Data Confidentiality, Vehicular Multicast Services,
Access Control.

Student number: 2006-21289

Contents

1 Introduction 1
1.1 Background and Motivation 1
1.2 Organization of This Dissertation 3

1.2.1 Computation-and-Storage-Efficient Key Tree Manage-
ment Protocol for Secure Multicast Communications . 3

1.2.2 Optimal Batch Rekeying Interval for Secure Group
Communication . 4

1.2.3 Membership Dynamics based Key Management (MDKM)
for Secure Vehicular Multicast Communications 5

2 Computation-and-Storage-Efficient Key Tree Management
Protocol for Secure Multicast Communications 6
2.1 Introduction . 6
2.2 Key Tree Structures and Key Update 11

2.2.1 Typical Key Tree Structure 12
2.2.2 Level-Homogeneous Key Tree Structure 14
2.2.3 Computation-and-Storage-Efficient Key Tree (CSET) 15
2.2.4 Key Update . 17
2.2.5 Batch Rekeying . 18

2.3 Computation-and-Storage-Efficient Key Tree(CSET) Manage-
ment Protocol . 19
2.3.1 Join Operation . 20
2.3.2 Leave Operation . 24

2.4 Cost Analysis . 27
2.4.1 Analysis of the Computation Cost 27
2.4.2 Analysis of the Storage Cost 28
2.4.3 Analysis of the Communication Cost 28
2.4.4 Cost Tradeoff of CSET 32

2.5 Performance Evaluation . 36

i

2.5.1 Simulation Setup . 36
2.5.2 Comparison of Communication Cost Between Analy-

sis and Simulation . 37
2.5.3 Performance Evaluation of CSET 39

3 Optimal Batch Rekeying Interval for Secure Group Com-
munication 49
3.1 Introduction . 49
3.2 Background . 53
3.3 New Batch Rekeying Scheme 54

3.3.1 Cost Definition . 55
3.3.2 New Batch Rekeying Scheme 56

3.4 Cost Analysis of the Batch Rekeying 60
3.4.1 Analysis of Communication Cost 60
3.4.2 Analysis of Security Damage Cost 61
3.4.3 Analysis of Total Cost 63

3.5 Simulation Results and Discussion 64
3.5.1 Simulation Setup . 64
3.5.2 Performance Evaluation 64

4 Membership Dynamics based Key Management (MDKM)
for Secure Vehicular Multicast Communications 69
4.1 Introduction . 69

4.1.1 Group Key Management 70
4.1.2 Group Key Management in Vehicular Environments . 71
4.1.3 Contribution . 73
4.1.4 Paper Organization 74

4.2 Model . 75
4.2.1 Network Model . 75
4.2.2 Service Model . 76
4.2.3 Vehicle Model . 76
4.2.4 Key Model . 77

4.3 Membership Dynamics based Key Management (MDKM) . . 79
4.3.1 Membership Dynamics based Key Derivation 79
4.3.2 Membership Dynamics based Key Management (MDKM) 82

4.4 Cost Analysis . 91
4.4.1 Computation Cost . 91
4.4.2 Storage Cost . 92
4.4.3 Communication Cost 93

4.5 Cost Optimization . 98

ii

4.5.1 M/G/∞ system . 99
4.5.2 Key Management Cost 102
4.5.3 Cost Optimization . 103

4.6 Simulation . 103
4.6.1 Simulation Setup . 104
4.6.2 Computation Cost . 104
4.6.3 Storage Cost . 106
4.6.4 Communication Cost 106
4.6.5 The Comparison of Key Management Cost 109

5 Conclusion 112

6 Appendix 115
6.1 Useful equations derived from the Binomial Theorem 115

iii

List of Figures

2.1 A classification of key tree structures. 12
2.2 An example of a key tree. 12
2.3 Level-homogeneous key tree structure, T (a1, a2, · · · , aH). . . . 13
2.4 Binary tree . 15
2.5 Computation-and-Storage-Efficient key Tree (CSET) 15
2.6 Flow chart of CSET management for join operation. 21
2.7 Illustration of join operation procedures of CSET manage-

ment when K = 2. 22
2.8 Flow chart of CSET management for leave operation. 25
2.9 Illustration of leave operation procedures of CSET manage-

ment when K = 2. 26
2.10 Comparison of communication cost between analysis and sim-

ulation (H=11, 0< α ≤ 1). 38
2.11 Comparison of communication cost between analysis and sim-

ulation (H=11, 0< α ≤ 0.02). 38
2.12 the communication cost of CSET and the binary tree (H=10,

0< α < 1). 39
2.13 Comparison the communication cost of CSET with that of

the binary tree (H=10, 0< α ≤ 0.02). 40
2.14 Comparison the communication cost of CSET with that of

the binary tree (H=12, 0< α ≤ 0.02). 40
2.15 The communication cost distribution of CSET (H=11, K=7

and α=0.02). 41
2.16 Normalized increment of communication cost of CSET. . . . 43
2.17 Additional energy consumption of CSET with RC5 (H=11). . 44
2.18 Additional energy consumption of CSET with RC6 (H=11). . 46
2.19 Additional energy consumption of CSET with Rijndael (H=11). 46

3.1 An illustration of the batch rekeying process and forward se-
crecy violation. 50

iv

3.2 Illustration of a method for measuring the departure rate of
the group members. 56

3.3 Total cost per unit time according to the communication cost
weight. 65

3.4 Total cost per unit time according to the security damage
cost weight. 65

3.5 Total cost per unit time according to the departure rate. . . . 66

4.1 An illustration of an example for MDKD. 80
4.2 An illustration of MDKD scheme. 82
4.3 An illustration of algorithms for MDKD. 83
4.4 An illustration of an example for KPA, NKIA, and NKDA. . 85
4.5 An illustration of an example for KPAE. 87
4.6 An illustration of an example for unicast communication cost

of KPA. 95
4.7 The Comparison of Key Management Cost for the LKH, Pro-

tocol A, B, and MDKM. 111

v

List of Tables

2.1 Normalized Increment of Communication Cost for Computa-
tion and Storage Reduction (α = 0.01) 43

2.2 CPU cycles for key expansion(per key) and operation nodes(per
byte), energy consumption and decryption delay 45

3.1 Comparison between the optimal batch rekeying and periodic
batch rekeying . 67

4.1 Computation cost of MDKM scheme (U s, Uv) 105
4.2 Storage cost of a server of MDKM scheme (Ss) 105
4.3 Storage cost of a vehicle of MDKM scheme (Sv) 105
4.4 Unicast cost of MDKM scheme (Cu) 107
4.5 Multicast cost of MDKM scheme (Cm) 107

vi

Chapter 1

Introduction

1.1 Background and Motivation

As the demands of data communication extremely increases, it is required to

develop new generation networks to support low latency, high mobility, and

high speed transmission rate. To efficiently deal with the amount of data,

multicast is a promising solution, since multicast can deliver a message to

a number of users simultaneously in a single transmission. But, due to

the transmission characteristic, the multicast data is exposed to the outside

of the multicast members. Thus, group key management has been paid

attention, because it guarantees the data confidentiality in transmission as

well as supports the multicast communication.

Since the key management of multicast is considered as the same as that

of unicast except for the number of users in communication, the key man-

agement is not fully investigated in an aspect of multicast communication.

Furthermore, the key management schemes are not considered as an essen-

tial component in data communication due to the following reasons: First,

1

the key management has no relation with throughput improvement. On the

contrary, the key management lowers the data throughput since it consumes

the network resources to establish and exchange secret information. Second,

key management schemes require other kinds of resources such as memory

space for storing secret information such as a key and computation power

for encryption and decryption. Third, key management schemes increase

end-to-end delay due to cryptographic operations.

However, as commercialized multicast services, in which information ex-

posure is a main concern, have been emerging, the key management becomes

important in transmitting multicast data as well. Compared to key manage-

ment schemes of unicast, those of multicast have to be differently considered.

Major different characteristic of multicast is the number of multicast mem-

bers, which is relatively very larger than that of unicast. To provide the

security in multicast communication, multicast members have to share the

same key management scheme as well as the same secret key. In addition,

the secret key must be hidden from non-multicast members. Since key man-

agement schemes must provide the confidentiality in delivering the shared

secret key, the key management complexity is greatly increased, which is

generally called the scalability problem. Therefore, this dissertation focuses

on efficient key management schemes to alleviate the scalability problem as

well as to provide the data confidentiality in multicast communication.

2

1.2 Organization of This Dissertation

1.2.1 Computation-and-Storage-Efficient Key Tree Manage-
ment Protocol for Secure Multicast Communications

In secure multicast communication, group key management plays an essen-

tial role for the guarantee of data confidentiality and integrity. Because

communication bandwidth is a limited resource, most group key manage-

ment schemes for scalable secure multicast communications have focused on

reducing the number of update messages, i.e., communication cost. To alle-

viate the scalability problem, a key tree structure was proposed and many

group key management schemes have since adopted this approach. Though

a key tree structure reduces communication cost, it often requires, as a

tradeoff, a more powerful computing capability for executing several cryp-

tography algorithms and having enough storage for various kinds of keys,

i.e., computation cost and storage cost, respectively. However, in mobile

devices with limited computation power and storage space, it is crucial to

minimize simultaneously the overheads of computation and storage as well

as that of communication. This paper proposes a computation-and-storage-

efficient key tree structure, and a key tree management protocol for secure

multicast communication. By considering the resource information of each

group member’s device, the proposed protocol manages the key tree struc-

ture to maximize the efficiency of the computation and storage costs, and

to minimize the increment of the communication cost. Through analysis

and simulations using three kinds of cost metrics, it demonstrated that the

3

proposed protocol saves computation and storage costs at the expense of a

very small increase in communication cost as a tradeoff when the number of

total members and the ratio of members leaving in a batch update interval

are moderately large.

1.2.2 Optimal Batch Rekeying Interval for Secure Group
Communication

The design of a group key management scheme in secure group communi-

cation requires an efficient key updating method. Batch rekeying has been

proposed as a way to significantly improve the rekeying efficiency for large-

scale group communication. But this scheme is known to sacrifice the data

confidentiality, which is a crucial requirement in a secure group communica-

tion. Therefore, as well as an efficiency of key updating, the security of the

group key management has to be considered if the design is to be based on

batch rekeying. This paper proposes a new batch rekeying scheme, which

optimizes the long term average cost of the batch rekeying. We model and

quantify the total cost per unit time, which consists of the communication

cost from the rekeying messages, and the security damage cost which oc-

curs from breaking the data confidentiality. The proposed model considers

the various variables such as the communication cost weight, the security

damage cost weight and the departure rate of group members. Simulation

results show that the proposed batch rekeying scheme can adaptively control

the optimal batch rekeying interval and efficiently minimize the total cost

per unit time by more than 50%.

4

1.2.3 Membership Dynamics based KeyManagement (MDKM)
for Secure Vehicular Multicast Communications

As many applications based on wireless communications are being embed-

ded on a vehicular platform, multicast services have begun to be essential

for efficient information delivery. Since multicast services are vulnerable to

unauthorized access, group key management (GKM) is expected to play an

essential role as access control. However, the conventional GKMs are ineffi-

cient and inadequate for use in the vehicular environment because the GKM

schemes are not designed by considering such characteristics as vehicle mo-

bility, transmission delay, and vehicle safety. This paper proposes a GKM

scheme called Membership Dynamics based Key Management (MDKM) for

efficient and secure vehicular multicast services. The proposed scheme can

greatly reduce the communication cost as well as computation and stor-

age costs. These cost reductions are achieved by decomposing the rekeying

data into multicast part and unicast part, and by delivering the minimal

number of keys generated from the Key Packing Algorithm (KPA) and the

reduced Next Key Information (NKI) derived by the Next Key Informa-

tion Algorithm (NKIA). As a design problem, this paper also propose an

optimization method to minimize the key management cost. The simula-

tion results demonstrate that the proposed scheme exceeds the conventional

GKM schemes in terms of the key management cost.

5

Chapter 2

Computation-and-Storage-
Efficient Key Tree
Management Protocol for
Secure Multicast
Communications

2.1 Introduction

Multicast has been an essential communication technology for efficiently

providing multimedia services such as IPTV, Video on Demand(VOD) and

video conferencing. In multicast services, data are usually protected by em-

ploying some cryptographic techniques, thereby guaranteeing confidentiality

and integrity. In practice, data protection is often employed as a way of an

access control, which allows only subscribed customers to access a particular

service. To enforce this, they often use a group key that is used to encrypt

data, and must be shared among the legitimate group members [1], [2], so

that only the members with the group key can successfully decrypt the en-

6

crypted data. Whenever new members join the group, or existing members

leave the group, the group key has to be updated with a new one for forward

and backward confidentiality, and distributed to all authorized group mem-

bers [4], [17]. Here, forward confidentiality means that non-group members,

who have left the group, should not be able to access to any future keys,

and backward confidentiality means that group members who have newly

joined the group should not be able to access to old keys.

For this process, a trusted third-party system, called a ‘Key Distribution

Center (KDC)’ has to exist with an authority to manage the group key. The

KDC is usually assumed to have exchanged the Individual Key (IK) in ad-

vance with each group member. Whenever a group key needs to be changed,

the KDC encrypts the group key by using each member’s IK to provide con-

fidentiality during a key distribution, and distributes the encrypted group

key to all group members, respectively. In this process, the number of mes-

sages which contain the encrypted group key is proportional to the number

of group members. Therefore, as the number of group members increases,

the process causes a scalability problem in distributing a new group key.

To alleviate the scalability problem, many group key management proto-

cols have been proposed which efficiently manage the key update procedure

in a secure group communication [5]-[10]. The protocols are mainly based on

the idea that the KDC divides the group members into sub-groups, and as-

signs sub-group keys to each sub-group shared by only the sub-group mem-

bers. Sub-group members can be further divided into smaller sub-groups

7

which have their own sub-group key. The group key is managed with a key

tree structure which is constructed by the layered sub-group keys. With

the key tree structure, the KDC can deliver secure data (including a new

group key or sub-group keys) to specific sub-group members by using the

sub-group key, shared by the members, in a single transmission. Thus, the

number of update messages increases by the logarithmic order of the number

of group members.

While a key tree structure can alleviate the scalability problem of key

update, it causes other problems. To maintain the key tree structure, group

members have to store many kinds of keys, e.g., group key, sub-group keys

and IK. Whenever the keys need to be updated, group members have to

decrypt the encrypted messages which contain the new keys. The number

of decryptions for each group member is proportional to the number of sub-

group keys each group member has. Although modern mobile devices are

equipped with powerful processors and have become more power efficient,

they still lack major resources. Furthermore, it is known that the computa-

tion of many new complex algorithms for security consume a large amount

of battery power. In the case of cryptography algorithms, the energy con-

sumption of decryption performed by mobile devices increases as much as

30% more than that needed for encryption [11]. In addition, since the KDC

delivers new keys in an encrypted manner, group members have to decrypt

the encrypted messages several times to obtain the new keys. the KDC

cannot adopt the new group key for data encryption until all devices have

8

obtained the new group key after a series of computations. As the number

of the decryptions increase, group communications incur more decryption

delays. Thus, if the number of decryptions is reduced, this will lead to lower

battery consumptions as well as decreases in the decryption delay in the

group communications.

Furthermore, if a device lacks storage capabilities, it may be impossible

within the device to implement a group key management protocol based

on a key tree structure. For example, let us consider the Telos B sensor

node [12] based on Texas Instruments’ 16bit RISC-based MSP430x13x and

MSP430x14x [13], which features ultralow-power consumption, and also as-

sume a case of group communication that each group member has to store

20 keys in their secure memory. Since the key length is normally 128 bits,

it requires 320 bytes (128×20÷8 bits) to store 20 keys. Specifically, in case

of MSP430F133, since it has only 256 byte RAM, it is impossible to store

20 keys. As another case, MSP430F147 with 1 Kbyte RAM consumes the

1
3 amount of its memory only to save 20 keys. Furthermore, in addition to

the key information, sensor nodes also have to store an operating system

such as TinyOS [14] as well as data for a key setup module. Thus, it is

important to reduce the number of group keys for mobile devices which lack

communication resources.

For these reasons, the performance of group key management protocols

is limited by the lowest performance end device with the least amount of

resources within the group [15]. Thus, in ensuring effective group commu-

nication among the devices with limited resources, the computation and

9

storage cost should be minimized as well as the communication cost. As a

result, the overall performance of a group key management protocol has to

be evaluated using three aspects, namely, communication, computation and

storage costs. While these three aspects are all important, the communica-

tion cost has mostly been considered as the evaluation metric since this has

been known to be the most influential factor when addressing the scalability

problem in assessing group key management protocols [4]-[10].

In this chapter, we propose a new key tree called CSET (Computation-

and-Storage-Efficient key Tree structure) and a key tree management pro-

tocol called the CSET management protocol, which incurs less computation

and storage costs and alleviates the scalability problem in rekeying. The

proposed key tree management protocol removes the redundant key tree

levels which have little influence on the communication cost when the ra-

tio of leaving members is moderately large. In addition, we provide a new

analysis method called the balls and baskets model for the analysis of the

communication cost when using a level-homogeneous key tree structure. By

using this model, the communication cost of various key tree structures is

analyzed, such as the A-ary key tree, level-homogeneous key tree structure

and CSET. Moreover, key tree structures are analyzed from three different

views of cost, while most group key management schemes have tended to

consider only the communication cost. To verify the analysis, a full perfor-

mance evaluation of the new protocol is conducted here to demonstrate the

advantages.

10

The main contributions of this chapter can be summarized as follows:

(a) We design CSET management protocol to maximize the efficiency of

the computation and storage costs and minimize the increase in the com-

munication cost; (b) We propose the new key tree structure, CSET, which

enables a device to join a secure multicast group, even though it may have

small memory and low processing power; (c) We define a more general key

tree structure, called the level-homogeneous key tree structure to provide

an expression and its analysis of more general key tree structures; (d) We

provide a new analysis method referred to as the balls and baskets model,

for the analysis of the communication cost of various key tree structures.

The rest of the chapter is organized as follows: Section 2 covers key tree

structures and how such keys are updated and the new proposed protocol is

described in Section 3. In Section 4, the proposed protocol is analyzed using

the three different cost metrics of computation, storage and communication

overheads. Section 5 presents the simulation results and the chapter is

concluded in section 6.

2.2 Key Tree Structures and Key Update

In this section, we propose a new key tree structure, called the Computation-

and-Storage-Efficient Key Tree (CSET), designed to reduce the computation

and storage costs. To start the discussions, brief overview of a typical key

tree structure is given first and a new one, called the level-homogeneous key

tree structure, is then defined. The key tree structures can be classified as

depicted in Fig. 2.1.

11

General key tree

Level-homogeneous

key tree

CSET
Binary

key tree

A-ary

key tree

Figure 2.1: A classification of key tree structures.

IK3 IK4 IK5 IK7 IK8

U3 U4 U5 U6 U7 U8

IK6

k

IK1 IK2

U1 U2

k1

k4 k6k5

k2

k3

TEK

KEKs

KEKs

IK

Level 3

Level 2

Level 1

Level 0

Figure 2.2: An example of a key tree.

2.2.1 Typical Key Tree Structure

In a typical key tree, the keys are classified into three types according to their

specific purposes, namely, the Group Key, Sub-group Key, and Individual

Key (IK). Since a group key on the top level of the key tree is used to encrypt

multicast data, it is known as the Traffic Encryption Key (TEK). The sub-

group key is on the levels between the top and the bottom of a key tree and is

called the Key Encryption Key (KEK) because it is mainly used to encrypt

12

aH

aH-1 aH-1

a1 a1 a1

Level 0

Level 1

Level H-2

Level H-1

Level H

IKs

KEKs

TEK

Members

Figure 2.3: Level-homogeneous key tree structure, T (a1, a2, · · · , aH).

a new key. The IK is on the bottom level of a key tree and is exchanged

between the KDC and each group member. Fig. 2.2 shows an example of

a key tree, including eight group members. The key tree is a binary tree,

where each node has two child nodes. Here, k is the TEK and k1, k2, · · · , k6
are called the KEKs. In case the TEK is changed to a new one, and a

key tree structure is not used, the KDC should transmit four encryption

messages ({k′}IKi , i = 5, 6, 7 and 8) for specific group members(U5, U6,

U7 and U8). Here, {k′}k is the encryption of key k′ using key k, and k′

is an updated one of key k. However, with a key tree structure, the KDC

transmits only one encryption message ({k′}k2) for delivering a new TEK

to the same sub-group members who already have k2.

13

2.2.2 Level-Homogeneous Key Tree Structure

Since a key tree structure alleviates the scalability problem in escalating

communication cost, many researchers have studied the structures in terms

of those which reduce communication cost [4], [10], [18]. However, these

papers provide an analysis of communication cost of only A-ary key tree

structures in terms of the number of rekeying messages. The A-ary key tree

structure is a one in which all intermediate nodes have A number of child

nodes. Therefore, it is only possible to express A-ary key tree as far as,

N = AH . Here, H denotes the height of a key tree. For example, when

the number of group members is 63 or 114, it is not possible to analyze the

communication cost to date.

To express and analyze a more general key tree structure, we define

the level-homogeneous key tree structure as, a tree in which every node

in the same level has the same degree [19]. Let a tree structure, T =

T (a1, a2, ..., aH), denote a level-homogeneous tree of H-level such that ev-

ery parent node on the j-th level from the bottom (j = 1, 2, ..., H) has aj

children as described in Fig. 2.3. Therefore, the A-ary tree is a subset of

the level-homogeneous tree as depicted in Fig. 2.1, which is expressed as

T (A,A, · · · , A).

For example, a key structure with N = 63 can be expressed as T (3, 3, 7),

T (3, 7, 3), T (7, 3, 3), T (7, 9) and T (9, 7). In particular, the key tree structure

depicted in Fig. 2.2 can be expressed as T (2, 2, 2). An accurate method

14

binary

H

KEK

TEK

Member
IK

Figure 2.4: Binary tree

1

KKEK

TEK

Member
IK

binary

flat

Figure 2.5: Computation-and-Storage-Efficient key Tree (CSET)

to analyze the communication cost of this level-homogeneous tree will be

provided in a later section, using the balls and baskets model.

2.2.3 Computation-and-Storage-Efficient Key Tree (CSET)

In the key tree based group key management protocols, the KDC delivers

new keys to group members after encrypting them with the old keys. Thus,

to obtain the new group key and the KEKs, group members should decrypt

the encrypted keys with their old keys, or new keys which are obtained

after decryptions. Lots of computations, such as the decryption, force the

KDC to delay in adopting the new TEK for the data encryption to a group

15

communication system, and devices tend to consume much power to get the

new TEK. Therefore, the number of computations should be minimized in

a group key management protocol.

Moreover, keys including TEK, KEK and IK have to be stored in the

memory of communication devices and group members have to store secure

group keys, not in common memory but in secure memory such as a Uni-

versal Subscriber Identity Module (USIM), to protect them from various

network and software attacks. In addition, communication devices have to

store several programs in their secure memory space. Each program requires

memory spaces to store their own secure keys as well as their secure data,

respectively. Since secure memory space is limited, the number of keys to

be stored must also be minimized.

By considering these constraints, we propose the CSET, considering the

efficiencies of communication, computation and storage costs. The CSET

consists of two hierarchical parts, where the lower part of the CSET consists

of binary trees to reduce the communication cost, and the upper part of the

CSET consists of a flat tree to minimize computation and storage costs. The

TEK is directly connected with the KEKs on the top level of the lower part

of the CSET so that it is a subset of the level-homogeneous tree, as shown

in Fig. 2.1, and expressed as T (2, 2, · · · , 2, 2H−K). Here, H = [log2(N)]+

is the height of a complete binary tree, and N is the total number of the

group members, while K is the height of the lower part of the CSET. If

K = (H − 1), then the CSET is the same as a binary tree.

16

Fig. 2.4 and Fig. 2.5 compares a typical binary tree with the new

proposed CSET where the key on the top level means a group key, TEK,

and the intermediate nodes mean auxiliary keys, KEKs. Each member has

a unique key, IK.

2.2.4 Key Update

Whenever new members join, or old members leave a communication group,

the keys shared by the new, or old members need to be updated with new

ones. For this process, there are many key update algorithms such as Logical

Key Hierarchy (LKH) [6], One-way Function Trees (OFT) [7] and One-way

Key Derivation (OKD) [10] have been proposed. Among them, OKD has

been focused upon for the following two reasons : (1) OKD is as secure as

the LKH if one-way key derivation function provides strong confidentiality.

Furthermore, OKD is more secure than OFT, because OFT is vulnerable to

a collusion attack which means that any set of fraudulent members are able

to deduce the current used key; (2) OKD is known to produce the smallest

communication cost(i.e., the number of update messages) in a leaving sce-

nario and requires no update message in a joining scenario. By using the

same one-way key derivation function, some group members can generate

new keys in the same manners as the KDC. The KDC does not, however,

need to send rekeying messages for delivering the new keys to the group

members. Thus, communication cost is greatly reduced. In view of these

reasons the OKD is adopted as the key update algorithm in this chapter.

17

In a key tree as shown in Fig. 2.2, suppose that U8 leaves the commu-

nication group. For forward secrecy, k, k2 and k6 should be updated. The

KDC randomly selects a key among the child keys of a key to be updated

and the selected key should be unknown to the leaving group members.

Then, the selected key is used for a key generation process. Assume that

the KDC selects k1, k5 and IK7 to generate new keys. The KDC, and the

group members who know k1, k5 or IK7, derive the new keys for themselves

as follows:

k
′
= f(k1 ⊕ k), k

′
2 = f(k5 ⊕ k2), k

′
6 = f(IK7 ⊕ k6).

Here, ⊕ is a mixing operator, such as exclusive OR, and the derivation

function f(·) is a one-way key derivation function, such as a hash. Then, for

the other members who can not make the new keys, the following messages

will be broadcast by the KDC.

KDC → {U5, U6} : {k′}k5

KDC → {U7} : {k′}IK7 , {k
′
2}IK7

2.2.5 Batch Rekeying

Together with a key tree structure, and efficient group key management

schemes, another way to reduce communication cost is by batch rekeying.

Batch rekeying [3], [4], [21], [22], [23], [24] is a scheme that rekeys the group

keys together simultaneously, after the KDC collects join or leave requests

18

during the time duration called the batch rekeying interval. Some KEKs

and TEK are shared among the leaving group members. So, the shared

keys are updated once in the batch rekeying while the keys are updated at

every joining and leaving event in an individual rekeying. In addition, it

can greatly lower the number of rekeying events. For these reasons, batch

rekeying is known to reduce the communication cost significantly and this

is adopted here in the design of the new protocol.

2.3 Computation-and-Storage-Efficient Key Tree(CSET)
Management Protocol

Algorithm 1 Algorithm for calculating, K, the height of the lower part of
CSET
1: Given Parameter SI[N], CI[N]
2: SET K ⇐ infinity
3: SET MinSI ⇐ infinity
4: SET MinCI ⇐ infinity
5: i ⇐ 0
6: while i < N do
7: if SI[i] < MinSI then
8: MinSI = SI[i]
9: end if

10: if CI[i] < MinCI then
11: MinCI = CI[i]
12: end if
13: i ⇐ i+ 1
14: end while
15: if MinSI ≤ MinCI then
16: K = MinSI − 1
17: else {MinCI < MinSI}
18: K = MinCI − 1
19: end if

In section II, we proposed new key tree structures, the level-homogeneous

19

key tree structure and the CSET structure. Now, we design a new key

tree management protocol, CSET management protocol, which takes into

account computation and storage efficiency as well as the communication

overhead.

The CSET management protocol provides the KDC with a method that

can control the CSET considering communication cost and the resource in-

formation such as the CPU power and the amount of free (secure) memory

space of each member’s device. So, when a non-group member wants to

join the group communication, it sends a ‘Join Request’ message which con-

tains its resource information. Then, the KDC adjusts the key tree so as to

accommodate the lowest-end device that has the least amount of resources

by using Algorithm 1. SI[i] and CI[i] are the storage information and

computation information of the i-th device, respectively. In this procedure,

the non-group member simply adds additional information within the ‘Join

Request’ message and sends it to the KDC. Since the size of the ‘Join Re-

quest’ message slightly increases but the CSET management protocol does

not require additional message exchanges, the overhead of this procedure is

negligible, therefore, its affect is not included in the cost analysis.

2.3.1 Join Operation

The join operation of the CSET is depicted in Fig. 2.6. When a new group

member wants to join a communication group, the group member sends a

‘Join Request’ message to the KDC. Using the information within the ‘Join

Request’ message, as well as the information of existing group members,

20

Receive a new Receive a new Receive a new Receive a new ‘‘‘‘Join RequestJoin RequestJoin RequestJoin Request’’’’
(Including information about

computation power, memory state)

KKKK’≥’≥’≥’≥KKKK

Determine a new required level KDetermine a new required level KDetermine a new required level KDetermine a new required level K’’’’
(Considering the GM’s memory state &
decryption delay and communication

cost between GMs and KDC)

Accept Accept Accept Accept ????
Complete KComplete KComplete KComplete K----level level level level

CCST tree CCST tree CCST tree CCST tree ????

Send Send Send Send ‘‘‘‘Join ReplyJoin ReplyJoin ReplyJoin Reply’’’’
(Including TEK and KEKs)

Broadcast Broadcast Broadcast Broadcast ‘‘‘‘Remove KeyRemove KeyRemove KeyRemove Key’’’’
(KEKs that are

on the same level K)

Set K as KSet K as KSet K as KSet K as K’’’’ Send Send Send Send ‘‘‘‘RejectRejectRejectReject’’’’

Broadcast Broadcast Broadcast Broadcast ‘‘‘‘Remove KeyRemove KeyRemove KeyRemove Key’’’’
(KEKs that are on higher level
than or the same level as K’)

Complete Complete Complete Complete K----level level level level
CCST tree CCST tree CCST tree CCST tree ????

Broadcast Broadcast Broadcast Broadcast ‘‘‘‘Remove KeyRemove KeyRemove KeyRemove Key’’’’
(KEKs that are on higher level

than K’)

YES NO

YES

NO YES NO

YES

NO

* GM (group member)
Figure 2.6: Flow chart of CSET management for join operation.

21

U2 U3 U4 U5 U6 U7 U8

k

k7

IK1

U1

IK9

U9

IK3 IK4 IK5 IK7 IK8

U3 U4 U5 U6 U7 U8

IK6

k

IK1 IK2

U1 U2

IK3 IK4 IK5 IK7 IK8IK6IK2

k1

IK3 IK4

k4

IK5

IK7

U3 U4 U5 U6

U7
IK6

k5

k2

k

IK1 IK2

k3

U1 U2

k1

k4 k6k5

k2

k3

k4 k6k5k3

U8 Joins

U9 Joins

IK3 IK4 IK5 IK7 IK8

U3 U4 U5 U6 U7 U8

IK6

k

IK1 IK2

U1 U2

k1

k4 k6k5

k2

k3

Remove Keys

(a) (b)

(c) (d)

Figure 2.7: Illustration of join operation procedures of CSET management
when K = 2.

the KDC determines the newly required level K ′ of the CSET. If the group

member’s device, which wants to join, has the worst performance, the new

level K ′ must be smaller than the level of the present CSET, K.

If K ′ ≥ K, then the KDC does not need to change the key tree level

except for the one case when the present key tree structure is the complete

K-level CSET. The meaning of ‘complete’ is that all group members have

the same number of KEKs. In the case of a completeK-level CSET, because

the key tree structure requires one more level to accept the new member and

to meet the requirement, KDC must broadcast the ‘Remove key’ message

to remove the KEKs in level K.

The relation, K ′ < K, indicates that the height of the CSET has to be

22

lowered from K + 1 to K ′ + 1 in order to support the new device. Because

lowering the height of the CSET increases the communication cost, the

KDC has to determine whether to accept the ‘Join Request’ message from

the device. If the KDC decides that accepting the ‘Join Request’ message

can excessively increase the communication cost for key update, the KDC

can reject the message. Otherwise, the KDC has to support the devices by

lowering the height of the lower part of CSET from K to K ′. Thus, the

KDC broadcasts the ‘Remove key’ message to remove KEKs that are on a

higher level than K ′. If the present tree is a complete K-level CSET, the

KDC has to remove one more key level. In this case, the KDC broadcasts

the ‘Remove key’ message to remove KEKs on the same, or a higher, level

than level K ′.

Fig. 2.7 shows an illustration of the join operation procedures when

new group members join. Assuming a given requirement, K = 2, newly

joining devices have enough memory space and computation power to meet

the requirement. There are seven group members, as seen in Fig. 2.7(a).

U8 wants to join the communication group. Since the present key tree is not

complete, the KDC can accept U8 as a group member without delivering the

‘Remove key’ message and the key tree structure is changed from that seen in

Fig. 2.7(a) to that in Fig. 2.7(b). Next, U9 wants to join the communication

group. If U9 joins, the height of the lower part of the changed key tree will

be three. So, to accept U9 and meet the requirement, the KDC broadcasts

the ‘Remove key’ message to clear KEKs on level K, as depicted in Fig.

23

2.7(c) so that U9 can then join the communication group. Finally, the key

tree structure will be as shown in Fig. 2.7(d).

2.3.2 Leave Operation

The leave operation of the CSET is described in Fig. 2.8; when a group

member wants to leave a communication group, it sends the ‘Leave Request’

message to the KDC. After collecting the ‘Leave Request’ messages during

a batch rekeying interval, the KDC has to update the KEKs to keep confi-

dentiality of the group communication. After group keys are updated, the

height of a new key tree can sometimes be changed due to the empty posi-

tions of leaving group members in a key tree structure. Thus, the KDC has

to recalculate the height of the lower part of the changed key tree structure,

K ′′. Furthermore, if the group member who has the worst performance

leaves the group, the KDC can increase the height of the key tree. So, the

KDC also determines a newly required level K ′, considering the remaining

group members’ memory space and computation power, and computation

cost.

It is self-evident that K ′′ ≤ K ≤ K ′. If K ′′ = K ′, the height of the

changed key tree is the same as the height of the key tree which is required

for the group communication. Therefore, in this case, the KDC does not

need to heighten or lower the height of the key tree. If K ′′ < K ′, then the

KDC determines whether it should raise the height of the key tree structure,

considering three kinds of costs. If the KDC does not want to raise the

height, then it keeps the present key tree. Otherwise, the KDC heightens

24

Receive a Receive a Receive a Receive a ‘‘‘‘Leave RequestLeave RequestLeave RequestLeave Request’’’’

Determine a new required level KDetermine a new required level KDetermine a new required level KDetermine a new required level K’’’’
(Considering the remaining GMs’

memory state & decryption delay and
communication cost between GMs and

KDC)

YES

Updating new KEKsUpdating new KEKsUpdating new KEKsUpdating new KEKs

Recalculating a height of the Recalculating a height of the Recalculating a height of the Recalculating a height of the
changed tree Kchanged tree Kchanged tree Kchanged tree K””””

(Considering the empty positions of
leaving group members)

KKKK’’’’====KKKK””””
NO

Heightening the level of treeHeightening the level of treeHeightening the level of treeHeightening the level of tree????

Create levelsCreate levelsCreate levelsCreate levels
(from levels K”+1 to levels K’)

YES

NO

EndEndEndEnd * GM (group member)
Figure 2.8: Flow chart of CSET management for leave operation.

25

U9 leaves

IK3 IK4 IK5 IK7 IK8

U3 U4 U5 U6 U7 U8

IK6

k

IK1 IK2

U1 U2

k1

k4 k6k5

k2

k3

Create Keys

U2 U3 U4 U5 U6 U7 U8

k

k7

IK1

U1

IK9

U9

IK3 IK4 IK5 IK7 IK8IK6IK2

k4 k6k5k3

U2 U3 U4 U5 U6 U7 U8

k

IK1

U1

IK3 IK4 IK5 IK7 IK8IK6IK2

k4 k6k5k3

U2 U3 U4 U5 U6 U7 U8

k

k7

IK1

U1

IK9

U9

IK3 IK4 IK5 IK7 IK8IK6IK2

k4 k6k5k3

(a) (b)

(c) (d)

Figure 2.9: Illustration of leave operation procedures of CSET management
when K = 2.

the levels of the key tree by creating KEKs from K ′′+1 to K ′ in the similar

manner as for the OKD.

Fig. 2.9 shows an illustration of the leave operation procedures as a group

member leaves. Assume a given requirement, K = 2, considering resource

information including memory space and computation power. There are

nine group members, as shown in Fig. 2.9(a) and U9 wants to leave the

communication group. If U9 leaves, the height of the lower part of the

changed key tree structure, K ′′, will be one, as depicted in Fig. 2.9(c). This

value is smaller than K. So, the KDC should decide whether it heightens

the height of the key tree structure. If the KDC has a policy to maximize

the height of a key tree structure as much as possible, then it generates new

KEKs on level two. Finally, the key tree structure will be one, as in Fig.

26

2.9(d).

2.4 Cost Analysis

In this section, we analyze the performance of the CSET from three different

viewpoints of cost, and compare them with those of a binary tree, because a

binary tree is proven to produce the smallest communication cost in OKD.

Starting with a computation and storage cost analysis of a binary tree and

the CSET structure. In the analysis of communication cost, we first analyze

the communication cost of a level-homogeneous key tree by using the balls

and baskets model in a leaving scenario since a binary tree and CSET struc-

ture are subsets of this type of level-homogeneous key trees, as shown in Fig.

2.1. The analysis of the communication cost of a binary tree and CSET set

up are easily carried out by using the analysis results of a level-homogeneous

key tree and, from the analysis results of a binary tree and CSET cases, the

increment of the communication cost of CSET will be determined.

2.4.1 Analysis of the Computation Cost

Each group member should have one key on each level. Assume that a

group member has a key set K = (k1, k2, · · · , kH), where kH is the key

on the H-th level. In the worst case, all keys that a group member has

must be updated and the KDC needs to transmit the new keys ({k′
1}IK

and {k′
j+1}k′j , j = 1, 2, · · · , h − 1) to the group member. To get the new

TEK(k
′
H), the group member has to decrypt the encrypted H messages in

27

a consecutive order ({k′
1}IK , {k′

2}k′1 , · · · , {k
′
H}

k
′
H−1

). Therefore, the number

of computations is same as the height of the key tree.

In case of a binary tree, N = 2H , the height of a binary tree is H and

hence the group member can finally obtain the new TEK after H number of

decryptions. However, the CSET requires only K+1 computation, because

the height of the CSET is K + 1. Therefore, the reduction of computation

cost is ((H − K − 1)/H). Even though the group members’ devices have

low computation power, the CSET can enable the group members to join

the communication group.

2.4.2 Analysis of the Storage Cost

Each group member has to store one group key on each level. Thus, the

number of group keys that a group member has to store is equal to the

height of the key tree structure. In case of a binary tree, N = 2H , the height

of a binary tree is H. Thus, the group member has to store H number of

group keys. However, the CSET structure requires only enough memory

space to store K+1 number of group keys, because the height of the CSET

is K+1. Therefore, the reduction of storage cost is ((H−K−1)/H). Even

though a group member’s device has small storage, the CSET enables the

group member to join the communication group.

2.4.3 Analysis of the Communication Cost

To analyze the communication cost of a level-homogeneous tree, we derive

an analytical model of the average number of update messages. In this

28

analytical model, the focus is on the leaving scenario since when new group

members join, the number of messages that should be unicast to each joining

member is obviously reduced from H to (K + 1) in the CSET; the current

members can generate new keys for themselves in the similar manner used

in OKD.

In the leaving scenario, even though the number of leaving group mem-

bers is the same, the number of keys to be updated varies according to the

positions of the leaving group members in the tree hierarchy. For example,

if U1, U2 leave, as shown in Fig. 2.2, k, k1 and k3 should be updated. But,

if U1, and U8 leave, as shown in Fig. 2.2, k, k1, k2, k3 and k6 have to be

updated. Therefore, the average number of rekeying messages needs to be

analyzed using a probabilistic method. For the average case analysis, we

model the average number of update messages as the average number of

non-full baskets when balls are picked out randomly from the same-sized

fully occupied baskets; this is called the balls and baskets model. In this

model, the leaving members correspond to the picked balls, and sub-trees

at each level correspond to the fully occupied baskets of size being the same

as the size of the sub-trees at each level. Thus, the keys to be updated

correspond to non-full baskets.

First of all, in order to compute the average number of non-full baskets,

the probability that the number of non-full baskets is l is computed as

follows:

Pr[n(e, v, w) = l] =
Cv
l · F (e, l, w)

Cvw
e

, (2.1)

29

where n(e, v, w) is the number of non-full baskets when e balls are picked

out randomly from v identical w-sized full baskets. A w-sized full basket

holds w balls and Ci
j is the binomial coefficient. F (e, l, w) is the number of

ways that there is no full basket among the l ones when e balls are picked

out from l identical w-sized full baskets, and this can be computed using

the inclusion-exclusion principle [16] as follows:

F (e, l, w) =
l−b∑

k=0

(−1)k · C l
k · Cw(l−k)

e (b ≤ l ≤ B), (2.2)

where b = de/we and B = min(e, l) are the minimum and maximum number

of non-full baskets, respectively. C l
k · Cw(l−k)

e is the number of ways that e

balls are picked out from l baskets after k baskets among l ones are set aside

as full. C l
0 · Cwl

e (k = 0) includes the cases that the number of full baskets

is 0, 1, . . . , (l − b), where each case is counted once. Similarly, C l
1 · Cw(l−1)

e

(k = 1) includes the cases where the number of full baskets is 1, 2, . . . , (l−b),

each of which is counted once, twice, . . . , and C l−b
1 times.

Using Eq (2.1) and (2.2), an analysis of the average number of update

messages, when e members leave, can be obtained as follows:

m(T, e) =

H∑

i=1

Bi∑

ki=bi

Pr

[
n

(
e,N/

i∏

j=1

aj ,

i∏

j=1

aj

)
=ki

]
· ki · (ai − 1)− e.

(2.3)

Here, T is a level-homogeneous key tree structure, i.e., T = T (a1, a2, ..., aH).

Binary tree structure is denoted as Tbinary. Then, from the definition of

a level-homogeneous key tree, Tbinary = T (2, 2, · · · , 2). From the analysis of

30

the communication cost of a level-homogeneous key tree, the average com-

munication cost of a binary tree can be calculated when e group members

leave.

m(Tbinary, e) =
H∑

i=1

Bi∑

ki=bi

Pr

[
n

(
e,N/

i∏

j=1

2,
i∏

j=1

2

)
=ki

]
· ki − e (2.4)

Assume that the tree structure of the CSET isTCSET (K). Then, TCSET (K) =

T (2, 2, · · · , 2, 2H−K) and the average communication cost for the CSET

when e group members leave, can be calculated as follows:

m(TCSET (K), e) =

K∑

i=1

Bi∑

ki=bi

Pr

[
n

(
e,N/

i∏

j=1

2,
i∏

j=1

2

)
=ki

]
· ki

+

BK+1∑

kK+1=bK+1

Pr

[
n

(
e, 1, N

)
=kK+1

]
· kK+1 · (2H−K − 1)− e.

(2.5)

Here bK+1 is zero and BK+1 is one. From the fact that C0
k = 0 for

positive integers k and as e is a positive integer, it is easy to compute

Pr[n(e, 1, N)=0] = C1
0 ·C0

0 ·CN(0−0)
e /CN

e = 0, Pr[n(e, 1, N)=1] = C1
1 · (C1

0 ·

C
N ·(1−0)
e − C1

1 · CN(1−1)
e)/CN

e = 1. The result means that the KDC always

has to update TEK with a new one if group members leave a communication

group. From the result, Eq.(2.5) can be simplified to

m(TCSET (K), e) =

K∑

i=1

Bi∑

ki=bi

Pr

[
n

(
e,N/

i∏

j=1

2,
i∏

j=1

2

)
=ki

]
· ki + (2H−K − 1)− e.

(2.6)

31

2.4.4 Cost Tradeoff of CSET

Since a binary tree was proven to have the best performance in terms of the

communication cost in OKD, the communication cost of the CSET must

evidently be larger than that for a binary tree. The increment of the com-

munication cost of the CSET is the tradeoff in the cost of the reduction of

the computation and storage costs.

The increment of the communication cost can be calculated by subtract-

ing the communication cost of a binary tree from that of the CSET as

follows:

4m(K, e) = m(TCSET (K), e)−m(Tbinary, e)

= (2H−K − 1)−
H∑

i=K+1

Bi∑

ki=bi

Pr

[
n

(
e, 2H−i, 2i

)
=ki

]
· ki.

(2.7)

Here, CSET(K) is the CSET, the height of whose lower part is K. The right

hand side of Eq.(2.7) is expanded as follows:

H∑

i=K+1

2H−i∑

l=0

Pr

[
n

(
e, 2H−i, 2i

)
= l

]
· l

=
H∑

i=K+1

2H−i∑
l=0

l∑
k=0

(−1)k · l · C2i·(l−k)
e · C2H−i

l · C l
k

C2H
e

.

(2.8)

If l = 2H−i − n+ k, the numerator of Eq.(2.8) can be rewritten as

2H−i∑

l=0

l∑

k=0

(−1)k · l · C2i·(l−k)
e · C2H−i

l · C l
k

=
2H−i∑

n=0

C2i·(2H−i−n)
e

n∑

k=0

(−1)k · C2H−i

2H−i−n+k · C2H−i−n+k
k · (2H−i − n+ k).

(2.9)

32

Furthermore, if n is not zero, C2H−i

2H−i−n+k
·C2H−i−n+k

k in Eq.(2.9) can be

simplified to

C2H−i

2H−i−n+k · C2H−i−n+k
k =

(2H−i)!

(n− k)! · (2H−i − n+ k)!
· (2

H−i − n+ k)!

k! · (2H−i − n)!

=
(2H−i)!

(2H−i − n)! · n! ·
n!

k! · (n− k)!
(n 6= 0)

= C2H−i

n · Cn
k .

(2.10)

Thus, if the result of Eq.(2.10) is applied to Eq. (2.9), the result of

Eq.(2.9) is given as

2H−i∑

n=0

C2i·(2H−i−n)
e

n∑

k=0

(−1)k · C2H−i

2H−i−n+k · C2H−i−n+k
k · (2H−i − n+ k)

=
2H−i∑

n=0

C2i·(2H−i−n)
e · C2H−i

n

n∑

k=0

(−1)k · Cn
k · (2H−i − n+ k).

(2.11)

where for n ≥ 2,
n∑

k=0

(−1)k · Cn
k · (2H−i − n + k) is equal to zero from the

results of the derivation of the Binomial Theorem presented in the Appendix

(Eq.(6.3) and Eq.(6.6)). By using Eq.(6.7) and Eq.(6.8) in the Appendix,

Eq.(2.11) can be simplified as

33

2H−i∑

n=0

C2i·(2H−i−n)
e

n∑

k=0

(−1)k · C2H−i

2H−i−n+k · C2H−i−n+k
k · (2H−i − n+ k)

=

1∑

n=0

C2i·(2H−i−n)
e

n∑

k=0

(−1)k · C2H−i

2H−i−n+k · C2H−i−n+k
k · (2H−i − n+ k)

=C2i·(2H−i−0)
e · C2H−i

0 · 2H−i + C2i·(2H−i−1)
e · C2H−i

1 · ((2H−i − 1)− 2H−i)

=2H−i · (C2H

e − C2H−2i

e)

=2H−i · C2H

e ·
(
1− C2H−2i

e

C2H
e

)
.

(2.12)

By applying the result of the Eq.(2.12) to the Eq.(2.8), we can obtain

the result as follows:

H∑

i=K+1

2H−i∑

l=0

Pr

[
n

(
e, 2H−i, 2i

)
= l

]
· l =

H∑

i=K+1

{
2H−i·

(
1− C2H−2i

e

C2H
e

)}
.

(2.13)

Noting that, by Stirling’s approximation, n! can be approximated to

√
2πn(ne)

n for large n, if the number of group members is large enough, the

equations can be simplified. Under this assumption, CN
M can be calculated

as follows:

CN
M =

N !

M ! · (N −M)!
≈

√
1

2π

(
NN+0.5

MM+0.5 · (N −M)N−M+0.5

)
. (2.14)

From Eq.(2.14) and 2H = N , the part of Eq.(2.13) can be expanded as

follows:

34

C2H−2i
e

C2H
e

=
CN−2i
e

CN
e

=

N−2i!
e!·(N−2i−e)!

N !
e!·(N−e)!

=

N−2i!
(N−2i−e)!

N !
(N−e)!

≈

√
1
2π

(
(N−2i)N−2i+0.5

(N−2i−e)N−2i−e+0.5

)

√
1
2π

(
NN+0.5

(N−e)N−e+0.5

)
(2.15)

Continuing the expansion in Eq.(2.15),

C2H−2i
e

C2H
e

≈
(

N − 2i

N − 2i − e

)−2i

·
(

N − e

N − 2i − e

)N−e+0.5

·
(
N − 2i

N

)N+0.5

=

(
1− e

N − 2i

)2i

·
(

(1− e
N)N−e+0.5

(1− 2i+e
N)N−e+0.5

)
·
(
1− 2i

N

)N+0.5

.

(2.16)

From the formal definition of the exponential function, limχ→∞(1 +

−a
χ)χ = e−a for large N (N À e,N À 2i), Eq.(2.16) is simplified as fol-

lows:

C2H−2i
e

C2H
e

≈
(
1− e

N

)2i

· e−e

e−2i−e
· e−2i =

(
1− e

N

)2i

. (2.17)

Finally, from the results of Eq.(2.7), (2.13), (2.17), the increase in the

communication cost for CSET is simplified as follows:

4m(K, e) = m(TCSET (K), e)−m(Tbinary, e)

= (2H−K − 1)−
H∑

i=K+1

{
2H−i

(
1−

(
1− e

N

)2i)}

=
H∑

i=K+1

{
2H−i

(
1− e

N

)2i}
.

(2.18)

35

If Eq.(2.18) is rewritten as a function of the ratio of the leaving members,

then the equation is given by

4m(K, e) = 4m(K,< αN >) ∼=
H∑

i=K+1

{
2H−i(1− α)2

i

}
. (2.19)

Here, α is the ratio of the number of leaving group members to the

number of total group members in a batch update interval, and <X> is

the nearest natural number to X. As either α or K increases, 2H−i(1−α)2
i

goes to zero. Therefore, if the number of group members and the ratio

of members leaving in a batch update interval are moderately large, the

protocol incurs a very small increase of communication cost.

2.5 Performance Evaluation

In this section, using three kinds of cost metrics, we evaluate the performance

of the CSET protocol by varying the ratio of the leaving group members,

the height of a binary tree and the height of the CSET.

2.5.1 Simulation Setup

Throughout the simulation, we consider the centralized group communica-

tion where the KDC takes charge of managing group keys. Let us assume

that N (= 2H) group members are deployed. The KDC manages the group

key by using the CSET (T (2, 2, · · · , 2, 2H−K)). To provide a general sce-

nario, the group members are supposed to randomly leave the communica-

tion group regardless of their positions of a key tree. The counting unit of

36

the communication cost is the number of messages. To compare the compu-

tation cost, we consider a sensor node with limited communication resource,

the Telos B [12] with the processor MSP430 [13]. From the characteristics

of the Telos B, the transmission data rate is set to 250 kbps and the en-

ergy consumption to receive the key update messages is set to 0.276 µJ/bit.

Assuming that the energy consumption per CPU cycle is fixed (which is

justified in [28]), we can calculate the energy consumption to decrypt the

data by measuring the number of CPU cycles. Since MSP430F149 operates

at 1MHz clock frequency in an active mode and draws a nominal current of

420µA at 3V, the energy consumption is 1.26 nJ per CPU cycle. The energy

consumption and decryption delay to decrypt encrypted messages contain-

ing new group keys depend on the computational complexity of a cipher

algorithm. So, in the simulation, we consider 3 kinds of cipher algorithms,

RC5-32, RC6-32 and Rijndael [25][26][27]. The key length is set to 128 bits

equally.

2.5.2 Comparison of Communication Cost Between Analysis
and Simulation

Fig. 2.10 compares the communication costs of the simulation with those

of the analysis, when the ratio of leaving group members (α) ranges from 0

to 1, the height of a key tree structure(H) is 11 and K is 6, 7 and 8, respec-

tively. Simulation was conducted 100 times, and we calculated the average

communication cost from the simulation results. To compare accurately the

results, Fig. 2.11 magnifies the part of Fig. 2.10 (0< α ≤ 0.02). As show in

37

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

C
om

m
un

ic
at

io
n

co
st

The ratio of leaving group members(α)

 K=6 analysis

 K=7 analysis

 K=8 analysis

 K=6 simulation

 K=7 simulation

 K=8 simulation

Figure 2.10: Comparison of communication cost between analysis and sim-
ulation (H=11, 0< α ≤ 1).

0.00 0.01 0.02
0

20

40

60

80

100

120

140

160

180

200

220

C
om

m
un

ic
at

io
n

co
st

The ratio of leaving group members(α)

 K=6 analysis

 K=7 analysis

 K=8 analysis

 K=6 simulation

 K=7 simulation

 K=8 simulation

Figure 2.11: Comparison of communication cost between analysis and sim-
ulation (H=11, 0< α ≤ 0.02).

38

0.0 0.2 0.4 0.6 0.8 1.0

100

200

300

400

C
om

m
un

ic
at

io
n

co
st

The ratio of leaving group members (α)

 CSET(K=6)
 CSET(K=7)
 CSET(K=8)
 binary tree

0

Figure 2.12: the communication cost of CSET and the binary tree (H=10,
0< α < 1).

Fig. 2.10 and Fig. 2.11, the communication costs of analysis are very close

to those of simulation over the entire range of α. Specifically, when K=7

and α = 0.01, the communication cost of the analysis is 116.735, while the

cost of the simulation is 117.06. The difference between the two results is

less than 0.5%.

2.5.3 Performance Evaluation of CSET

In this subsection, we evaluate the performance of the CSET protocol using

three kinds of cost metrics by varying the ratio of the leaving group members,

the height of a binary tree and the height of the CSET.

Communication Overhead

Fig. 2.12 shows the communication cost of a binary tree, and that of the

CSET, as the ratio of leaving group members increases, when H is ten.

39

0.00 0.01 0.02
0

20

40

60

80

100

The ratio of leaving group members (α)

C
om

m
un

ic
at

io
n

co
st

 CSET(K=6)
 CSET(K=7)
 CSET(K=8)
 binary tree

Figure 2.13: Comparison the communication cost of CSET with that of the
binary tree (H=10, 0< α ≤ 0.02).

0.00 0.01 0.02
0

100

200

300

400

The ratio of leaving group members (α)

C
om

m
un

ic
at

io
n

C
os

t

 CSET(K=6)
 CSET(K=7)
 CSET(K=8)
 binary tree

Figure 2.14: Comparison the communication cost of CSET with that of the
binary tree (H=12, 0< α ≤ 0.02).

40

160 180 200 220
0.00

0.01

0.02

0.03

0.04

0.05

0.06

P
ro

ba
bi

lit
y

Communication cost

Figure 2.15: The communication cost distribution of CSET (H=11, K=7
and α=0.02).

The communication cost of a binary tree, and that of the CSET, is almost

identical in the most part. By magnifying the part where α is small the

increment of the communication cost can be observed as Eq.(2.19). Fig.

2.13 and Fig. 2.14 shows the communication cost of the CSET and binary

trees, when α ranges from 0 to 0.02, the K ranges from 6 to 8 and the

height of a binary tree H is ten and twelve, respectively. The results show

that the communication cost of the CSET decreases as K increases and the

communication cost of the CSET increases as α increases. The difference

between the communication cost of CSET and that of a binary tree decreases

as K and α increase. The difference between the communication cost of the

CSET and that of a binary tree is considered as a tradeoff between the

reduction of the computation and storage costs and the increment of the

communication cost.

41

The shapes of the performance curves as shown in Fig. 2.16 demonstrate

the normalized increment of the CSET, Eq.(2.19), which is calculated as

4m(K, e) /m(Tbinary, e). Even if H grows, the shapes of the performance

curves are almost the same on the condition of fixed K. Thus, if K is fixed,

even though H increases, the reduction of the computation and storage costs

is obtained for almost the same increment rate of the communication cost.

In Fig. 2.16, the CSET seems to increase the communication cost seriously.

However, in reality, the absolute increment of the communication cost is

very small as shown in Fig. 2.12, Fig. 2.13 and Fig. 2.14. Therefore, we

confirm that the proposed protocol results in a very small increase of the

communication cost.

Fig. 2.15 shows the communication cost distribution when the number

of group members is 2048 and the ratio of the number of leaving group

members(α) is 0.02. The average communication cost is 193.78 and the

standard deviation (σ) is 6.94. The communication cost in a single rekeying

varies, because of the positions of randomly leaving group members. The

standard deviation is relatively smaller than the average communication

cost, and the costs are close to the average communication cost. So, we

observe that the percentage requiring relatively larger communication cost

is low.

Reduction of Storage and Computation Costs

The normalized increment of the communication cost necessary to reduce

the computation and storage costs by 50% (i.e., (H − K − 1)/H = 0.5) is

42

0.00 0.01 0.02

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 In
cr

em
en

t o
f C

om
m

un
ic

at
io

n
C

os
t

The ratio of leaving group members (α)

 K=6, H=10
 K=6, H=11
 K=6, H=12

 K=7, H=10
 K=7, H=11
 K=7, H=12

 K=8, H=10
 K=8, H=11
 K=8, H=12

Figure 2.16: Normalized increment of communication cost of CSET.

Table 2.1: Normalized Increment of Communication Cost for Computation
and Storage Reduction (α = 0.01)

(H-K-1)/H (50%) 5/10 6/12 7/14 8/16 9/18

Increment 0.5196 0.1825 0.0422 0.0053 0.0002

43

0.00 0.01 0.02 0.03 0.04

-200

0

200

400

600

The ratio of leaving group members(α)

A
dd

iti
on

al
 e

ne
rg

y
co

ns
um

pt
io

n(
μ

J)

 K=6
 K=7
 K=8

Figure 2.17: Additional energy consumption of CSET with RC5 (H=11).

shown in Table. 3.1, when the ratio of the leaving group members is 1%

(α = 0.01). The amount of the normalized increment is less than 1% whenH

is larger than 15. Even though H is small, the proposed protocol can make

the normalized increment less than 1% by slightly increasing α by expanding

the batch update interval. When K = 6,H = 14 ((H − K − 1)/H = 0.5)

and α = 0.01, the normalized increment of the communication cost is only

0.0422 (4.22%). These results confirm that this protocol saves storage cost

at the expense of a small increase in communication cost as a tradeoff when

the number of total members and the ratio of members leaving in a batch

update interval are moderately large.

While the CSET can save the energy in decryption, the additional energy

associated to the communication overhead as shown in Fig. 2.16 may be

needed. The energy saved on decryption depends on the variables such

as characteristics of a microprocessor, a key length and the complexity of a

44

Table 2.2: CPU cycles for key expansion(per key) and operation nodes(per
byte), energy consumption and decryption delay

Cipher Module Decryption Energy consumption Decryption delay

(µJ, per 128 bits) (ms, per 128 bits)

RC5-32 skey 40565 51.112 40.565

CBC 699 14.091 11.184

CFB 691 13.931 11.056

OFB 668 13.467 10.688

CTR 679 13.689 10.864

RC6-32 skey 93808 118.198 93.808

CBC 1132 22.821 18.112

CFB 1129 22.760 18.064

OFB 1120 22.579 17.920

CTR 1125 22.680 18.000

Rijndael skey 5034 6.343 5.034

CBC 223 4.496 3.568

CFB 212 4.274 3.392

OFB 204 4.113 3.264

CTR 213 4.294 3.408

45

0.00 0.01 0.02 0.03 0.04
-600

-400

-200

0

200

400

The ratio of leaving group members(α)

A
dd

iti
on

al
 e

ne
rg

y
co

ns
um

pt
io

n(
μ

J)
 K=6
 K=7
 K=8

Figure 2.18: Additional energy consumption of CSET with RC6 (H=11).

0.00 0.01 0.02 0.03 0.04
-50

0

50

100

A
dd

iti
on

al
 e

ne
rg

y
co

ns
um

pt
io

n(
μ

J)

The ratio of leaving group members(α)

 K=6
 K=7
 K=8

Figure 2.19: Additional energy consumption of CSET with Rijndael (H=11).

46

cipher algorithm. Also, the energy consumption associated to the additional

communication overhead depends on the variables such as characteristics of

a device and a key length. We consider the Telos B nodes as a device with

limited computation power [12]. Table. 2.2 shows the energy consumption

and decryption delay to decrypt the encrypted message according to the

cipher algorithms and operation modes [28]. Fig. 2.17, 2.18 and 2.19 show

the additional energy consumption per each sensor node to obtain a group

key in the CBC operation mode, when the cipher algorithms are RC5-32,

RC6-32 and Rijndael, respectively. In those figures, the fact that additional

energy consumption is lower than 0 means that the CSET reduces the energy

consumption. When the ratio of leaving group members (α) is larger than

a specific threshold, the energy saved on decryption overcomes the energy

consumption associated to the additional communication overhead. This

is because the communication overhead rapidly decreases, as the ratio of

leaving group members increases. From the figures, we can observe that the

threshold depends on the complexity of algorithms.

In case of decryption delay, it takes only 0.512 ms (=128 bits / 250

kbps) to receive a 128 bits message. However, it takes 8.602 ms to decrypt

a 128 bits encrypted message containing a group key when using the Rijn-

dael algorithm, as shown in Table. 2.2. For example, when using H=11,

K=7, α=0.01 and the Rijndeal algorithm with CBC, the reduced delay on

decryptions is 25.806 ms, while the additional delay associated to the addi-

tional communication overhead is only 0.240 ms. Thus, the amount of delay

47

reduction is 25.566 ms. In the most case, the delay saved on decryption

overcomes the delay associated the additional communication overhead, be-

cause the additional communication overhead is relatively small as shown in

Fig. 2.13 and Fig. 2.14.

As a result, the results confirm that the proposed protocol is useful

in mobile communication environments where communication devices have

very limited resources.

48

Chapter 3

Optimal Batch Rekeying
Interval for Secure Group
Communication

3.1 Introduction

As an effective method for simultaneously transmitting identical data to a

number of users, the multicast is widely utilized in multimedia services such

as video conference, IPTV and Video on Demand (VoD) applications [29],

[30]. In multicast, data are generally protected by adopting cryptographic

techniques to guarantee confidentiality. To adopt this, the legitimate group

members have to share a group key called Traffic Encryption Key (TEK), in

order that only the members are successfully able to decrypt the encrypted

data. To manage the group key, a ‘Key Distribution Center (KDC)’ has

to exist as a trusted third-party system. Whenever the group membership

changes, the KDC takes charge of updating the group key. So, the KDC

should encrypt the new group key with each member’s Individual Key (IK)

49

i-1th
rekeying

ith rekeyingU1 leaves U3 leaves

Tp TU1 TU3 Tn
time

ith rekeying interval (Ti)

Forward
secrecy

violation

Figure 3.1: An illustration of the batch rekeying process and forward secrecy
violation.

to provide data confidentiality during the key distribution process, and then

distribute the messages containing the encrypted keys to the authorized

group members. But, frequent key updating due to dynamic change of the

group membership results in a scalability problem.

To alleviate the scalability problem, a batch rekeying has been proposed.

Batch rekeying performs updating the group keys together simultaneously,

after the KDC collects the join or leave requests during the time duration

known as the batch rekeying interval [3]-[24]. Batch rekeying has advantages.

The number of rekeying events can greatly be reduced. And, some Key

Encryption Keys (KEK) and a group key are shared among the leaving group

members. So, the shared keys are updated once in the batch rekeying, while

the keys are updated at every joining and leaving event in an individual

rekeying. For these reasons, the batch rekeying is known to be an efficient

scheme for significantly reducing communication cost.

Although the batch rekeying alleviates the scalability problem, it sac-

rifices the data confidentiality, which is an essential requirement in secure

group communications. In the case of an individual rekeying process, be-

50

cause the KDC immediately starts rekeying after receiving a ‘Leave Request’,

the group communication is secure against the forward security. But, in the

case of a batch rekeying, the KDC is supposed to delay updating the group

key and KEKs during a batch rekeying interval. Because non-group mem-

bers, having left, can still access the secure data, previously secure group

communication may become vulnerable. Consider a pay-per-minute service

in which a service provider, who manages the KDC, provides a service to sub-

scribers for which each subscriber pays a fee. As shown in Fig. 3.1, assume

that U1 and U3 leave a communication group at TU1 and TU3, respectively.

Since U1 and U3 can still access the service without charge for Tn − TU1

and Tn−TU3, respectively, the service provider suffers damage during those

periods. Here, Tp denotes the time when the previous batch rekeying was

executed, and Tn denotes the time when the next batch rekeying will be

executed.

As the batch rekeying interval increases, the number of rekeying messages

decreases because the KDC utilizes the advantages of the batch rekeying.

However, as a batch rekeying interval decreases, the degree of data confiden-

tiality increases because the KDC minimizes the period that a secure group

communication is exposed to non-group members. It is noted that there

is a tradeoff between the number of rekeying messages and the degree of

data confidentiality, according to the batch rekeying interval. Thus, when

designing a batch rekeying, the degree of data confidentiality of a group

communication has to be considered [31], [32].

51

In this chapter, we propose a new batch rekeying scheme which deter-

mines the optimal batch rekeying interval to minimize the total cost per unit

time, i.e., the sum of the communication cost and security damage cost per

unit time. First, we quantify and analyze the communication cost and the

security damage cost. To calculate the communication cost, the number of

rekeying messages is analyzed by using the balls and baskets problem with

a probabilistic approach. The security damage cost is derived from the as-

sumption that the security damage cost is proportional to the duration, such

as on a pay per minute basis. The required network and security character-

istics are also considered for smooth operation of each service. Specifically,

there are services requiring significantly strict security, while others do not.

Also, there are services with plenty of communication resources which have

significantly low costs at the time of the key update. On the contrary, there

are services, limited in communication resources, which have significantly

high costs at the time of the key update. By utilizing the proposed opti-

mization function, the proposed batch rekeying scheme can achieve good

cost efficiencies. The performance evaluations show that there is an optimal

batch rekeying interval. Therefore, the KDC should update the group key

to minimize the total cost according to the optimal batch rekeying interval.

The rest of this chapter is organized as follows: in Section II, the back-

ground of group key management is provided. We provide the proposed

rekeying scheme in Section III. In Section IV, the costs for the optimal

batch rekeying interval are analyzed and Section V presents the simulation

52

results with respect to various variables and discusses the results. Finally,

Section VI summarizes and concludes the chapter.

3.2 Background

Key Tree Structure

To reduce the number of rekeying messages, a key tree structure has been

studied [4], [18], [10]. The KDC and members share the KEKs in addition

to TEK and IK, and all of these keys comprise a key tree structure. So, the

number of rekeying messages is reduced from O(N) to O(logN). However,

previous works have analyzed only the A-ary key tree structure in terms of

the number of messages as this structure is one in which all the intermediate

nodes have A number of child nodes. So, it is only possible to express the A-

ary key tree in so far as, N = AH . Here, H denotes the height of a key tree.

In addition, these papers have considered an individual rekeying. Thus, to

express and analyze a more general key tree structure in the batch rekeying,

the level-homogeneous key tree structure has been adopted as, a tree in which

every node in the same level has the same degree [19]. Υ=Υ(a1, a2, ..., aH)

denotes a level-homogeneous tree of H-level such that all the parent nodes

on the i-th level from the bottom have ai number of children (i = 1, 2, ...,H).

Key Updating Algorithm

As well as a key tree structure, efficient key updating algorithms such as

One-way Key Derivation (OKD) [10], One-way Function Trees (OFT) [7]

and Logical Key Hierarchy (LKH) [6] have been proposed to alleviate the

53

scalability problem. This chapter focuses on the OKD protocol for the

following three reasons: (1) if the one-way key derivation function guarantees

the confidentiality, the OKD is secure against collusion attacks, meaning

that the OKD is more secure than the OFT. Here, a collusion attack means

that any set of fraudulent leaving group members can deduce the current

used keys; (2) the OKD is known as a key update algorithm which produces

the smallest communication cost, i.e., the number of updating messages

in a leaving scenario; and (3) the OKD requires no updating messages in

joining scenarios. Therefore, only backward confidentiality is considered in

the OKD. In the case of a leaving scenario, by using the same one-way key

derivation function, some group members are able to generate a new group

key or KEKs in the same manner as the KDC does. The KDC sends rekeying

messages to only the members who cannot generate the new group key or

KEKs so that the communication cost is much reduced. For these reasons,

this chapter adopts the OKD as the key updating algorithm.

3.3 New Batch Rekeying Scheme

This section defines the two kinds of cost, the communication cost and the

security damage cost. Then, we propose a new batch rekeying scheme, which

optimizes the long term average cost in the batch rekeying process.

54

3.3.1 Cost Definition

Communication Cost

The communication cost is defined as a network burden caused from the

rekeying messages when the KDC updates a new group key. So, the com-

munication cost depends on the cost per key update message, the number of

key update messages and the policy of the network provider. Among them,

the number of key update messages can be varied according to the positions

of the group members having left in a key tree structure. Therefore, an

average number of the key updating messages are analyzed based on the ex-

pectation value of the number of sub-trees, including the nodes left from the

level-homogeneous key tree structure and the cost per key update message

depends on the amount of the communication resources.

Security Damage Cost

The security damage cost is a cost caused by breaking the forward confi-

dentiality of the group communications. Based on the model of pay per

minute, a service provider charges subscribers for the actual content deliv-

ered. This content is normally protected by using a group key shared by the

subscribers (group members) who may be served and the service provider

who may manage the KDC. Because the KDC does not update the group

key immediately when group members leave in a batch rekeying application,

the non-group members can be still served without paying for some time.

The service provider can be damaged by this. Therefore, based on a pay

55

Figure 3.2: Illustration of a method for measuring the departure rate of the
group members.

per minute model, the security damage cost is proportional to the duration

over which the secure group communication is exposed to each non-group

member who has already left the communication group. In addition, the

service characteristics and the policy of the service provider also affects the

security damage cost.

3.3.2 New Batch Rekeying Scheme

The proposed batch rekeying scheme consists of the following 3 steps:

Measuring Departure Rate

When a group member wants to leave the group, the group member has to

send a ‘Leave Request’ to the KDC. While collecting the ‘Leave Request’,

the KDC measures the departure rate of group members shown in Fig.

3.2, where λp denotes the departure rate of group members having left the

communication group, which is currently measured in real time, λi−1 denotes

the departure rate of the group members still left in the i-1 th rekeying.

λi is the departure rate used for determining the following step time, α

denotes an adjustable variable that is determined by the KDC, (0 < α ≤ 1),

56

and specifically, which allows the weights to be adjusted according to the

departure rate of the group members currently leaving and another related

to the departure rate of the group members having already left. Accordingly,

α plays the role of coping with the departure rate that is rapidly changing,

and is used for adjusting the costs created at the time of key updating, which

may be rapidly distorted where the group members are rapidly leaving in

a short time. A delay buffer is used for storing the departure rate of the

group members that have previously left, over the following step time.

Optimization of the Batch Rekeying Cost

After summing up the communication cost and the security damage cost,

the KDC calculates the total cost per single batch rekeying process. Even if

the total cost per batch rekeying is small, the rekeying interval can be short

and the number of the batch rekeying processes can be large. So, the total

cost in a single batch rekeying cannot be optimal over a long term. Thus,

the KDC has to determine an optimal batch rekeying interval (Ti) having a

minimum value of the total cost per unit time over the long term average.

Therefore, we can formulate the problem of determining an optimal batch

rekeying interval as follows:

minimize Ctc(Υ, λ, T)

subject to T > 0, λ > 0

Algorithm 2 provides the optimal batch rekeying interval to minimize the

total cost per unit time by using Newton’s method, considering a departure

57

rate which is calculated as shown in Fig. 3.2. Here, Ctc(Υ, λ, T) is the total

cost per unit time, and this will be fully analyzed in the next section. t

and ε are a fixed step size and a tolerant small value properly selected by

the KDC, respectively. The total cost per unit time is differentiated with

respect to only the batch rekeying interval T . By using the above algorithm,

the KDC can determine the optimal batch rekeying interval.

Lemma 1 The batch rekeying interval obtained by Algorithm 2 is optimal

enough to minimize the total cost per unit time.

Proof 1 Newton’s method is a well-known optimization algorithm and has

been proved in Convex Optimization [34]. Since algorithm 2 is based on

Newton’s method, the batch rekeying interval is optimal.

Execution of the Batch Rekeying

Algorithm 3 provides the proposed batch rekeying algorithm. Since group

members leave a communication group in real time, the optimal batch rekey-

ing interval can be changed because the departure rate (λi) may be changed

in real time. So, whenever a ‘Leave Request’ is received from any leaving

group members, the KDC has to recalculate the optimal batch rekeying

interval by performing the optimization algorithm 2. Assuming that Ti is

determined by the algorithm 2 as the i-th batch rekeying interval. When

Tc denotes the current time, the time when the next batch rekeying will be

executed is given as Tn(= Tp + Ti). If Tc < Tn is satisfied, the KDC mini-

mizes the total cost per unit time by delaying the batch rekeying until Tn.

58

Otherwise, if Tn < Tc, the KDC has to immediately start the batch rekeying

because the total cost per unit time increases over time. Thus, the KDC

is supposed to update a new group key when the following requirement is

satisfied. Tn ≤ Tc

Algorithm 2 Algorithm for determining the optimal batch rekeying inter-
val, Function OPTIMIZATION(Υ,λ, T)

1: Given parameter t, tolerance ε > 0
2: Repeat
3: ∆Tnt := −∇2Ctc(Υ, λ, T)−1∇Ctc(Υ, λ, T)
4: ζ := ∇Ctc(Υ, λ, T)T∇2Ctc(Υ, λ, T)−1∇Ctc(Υ, λ, T)
5: if ζ2/2 ≤ ε then
6: go to step 11
7: else
8: T := T + t∆Tnt

9: go to step 3
10: end if
11: Return T := T

Algorithm 3 The proposed batch rekeying algorithm

1: While(true){
2: Ti:=∞
3: Tp := Tc

4: While (Tc < Tp + Ti){
5: if KDC receives ‘Leave Request’ then
6: recalculate λi

7: if Ti=∞ then
8: Ti:=Ti−1

9: end if
10: Ti:=OPTIMIZATION(Υ,λi, Ti)
11: end if}
12: Updating a group key and KEKs
13: i:=i+1}

59

3.4 Cost Analysis of the Batch Rekeying

This section firstly analyzes the communication cost and the security damage

cost, respectively. Then, the total cost in a single batch rekeying interval

and the total cost per unit time are both calculated.

3.4.1 Analysis of Communication Cost

To calculate the communication cost, we firstly derive an analytical model

to calculate the average number of messages. In a join scenario, since the

current members can generate new keys by themselves in the OKD, the

number of messages is unicast to each joining member. Thus, we focus on

the leaving scenario.

In the case of a leaving scenario, the number of rekeying messages de-

pends on the positions of the leaving members in the tree structure, though

the number of leaving members is the same. So, we analyze the number of

rekeying messages by using a probabilistic method. The number of updat-

ing messages is modeled as the number of non-full baskets when balls are

picked out randomly from the same-sized fully occupied baskets, called the

balls and baskets model. In this model, the leaving members correspond to

the picked balls, and sub-trees at each level correspond to the fully occupied

baskets of size being the same as the size of the sub-trees at each level. Thus,

the keys to be updated correspond to non-full baskets.

According to the analysis result of Eq. 2.3 in Chapter 2, the average

number of updating messages, when e members leave, can be obtained as

60

follows:

m(Υ, e) =

H∑

i=1

Bi∑

ki=bi

Pr

[
n

(
e,N/

i∏

j=1

aj ,
i∏

j=1

aj

)
=ki

]
· ki · (ai − 1)− e.

(3.1)

Here, Υ is a level-homogeneous key tree structure, i.e., Υ = Υ(a1, a2, ..., aH).

In a batch rekeying interval, the KDC cannot predict the exact number

of leaving group members. So, to calculate the average number of rekeying

message in the batch rekeying, the Poisson distribution is used in calculating

the number of leaving group members, Pλ,T (k) = e−λT · (λT)k/k!. Here, k

is the number of leaving group members. Therefore, the average number of

messages in a batch rekeying interval is calculated as follows:

Eλ,T [m(Υ, k)] =
N∑

k=1

m(Υ, k) · Pλ,T (k). (3.2)

ccc denotes the communication cost constant (the communication cost

per unit rekeying message). Then, the communication cost in a single batch

rekeying interval is as follows:

Ctotal
cc (Υ, λ, T) = cccEλ,T [m(Υ, k)] = ccc

N∑

k=1

m(Υ, k) · Pλ,T (k). (3.3)

3.4.2 Analysis of Security Damage Cost

In a group key management protocol based on batch rekeying, the KDC

postpones the rekeying process during a batch rekeying interval. Though

61

some of the group members have left the communication group, the members

are still able to access the group communication. So, a batch rekeying

causes security damage and it is assumed that this security damage cost is

proportional to the lengths of the durations in which non-group member can

still access the communication group.

Firstly, the security damage cost, caused by a single leaving user, is cal-

culated. Each group member leaves a communication group independently

of other group members. So, the security damage cost in a single leaving

group member is as follows:

Cuseri
sd (T) = csdE[T] = csd

Tn∫

Tp

(Tn − t)Psd(t)dt

= csd

Tn∫

Tp

(Tn − t)
1

Tn − Tp
dt =

1

2
csdT.

(3.4)

Here, csd denotes a security damage cost constant (the security damage

cost per unit time) and Psd(t) is 1/(Tn−Tp). Assume that SΥ(λ, T) is the set

of leaving group members within a batch rekeying interval (T = (Tn − Tp))

with λ departure rate. Then, the average number of leaving group members

is given as

E[n(SΥ(λ, T))] =
N∑

k=1

k · Pλ,T (k)

=
N∑

k=1

k ·
(
e−λT · (λT)k

k!

)
= λT.

(3.5)

62

With Eq. (3.4) and Eq. (3.5), the total security damage cost in a single

batch rekeying interval is as follows:

Ctotal
sd (Υ, λ, T) =

∑

useri∈SΥ(λ,T)

Cuseri
sd (T)

= n(SΥ(λ, T)) · Cuseri
sd (T) =

1

2
csdλT

2.

(3.6)

3.4.3 Analysis of Total Cost

If the communication cost and the security damage cost are added, with

weights (Wcc and Wsd)), which denote the weighting values with respect to

the communication cost and the security damage cost, respectively, the total

cost per single batch rekeying interval is obtained as follows:

Ctc(Υ, λ, T) =Wsd · Ctotal
sd (Υ, λ, T) +Wcc · Ctotal

cc (Υ, λ, T)

=
1

2
Wsd · csdλT 2 +Wcc · ccc · Eλ,T [m(Υ, k)].

(3.7)

In this case, the weight values (Wcc and Wsd)) may be determined based

on a policy provided by the contents provider. For example, if a content has

to be securely protected, the content provider can provide more security by

increasing the security damage weight. Therefore, the total cost per unit

time created due to batch rekeying can be calculated as follows:

Ctc(Υ, λ, T) =
Ctc(Υ, λ, T)

T

=
1

2
Wsd · csdλT +

Wcc · ccc
T

· Eλ,T [m(Υ, k)].

(3.8)

63

3.5 Simulation Results and Discussion

This section provides the simulation results of the proposed batch rekeying

scheme in terms of the cost per unit time and discusses the results.

3.5.1 Simulation Setup

In the simulation, we consider the centralized group key management proto-

col where the KDC takes charge of managing group keys with OKD. We de-

ploy 1024 group members and the key structure is Υ(2, 2, 2, 2, 2, 2, 2, 2, 2, 2).

Group members are supposed to randomly leave a communication group and

non-group members are also supposed to randomly join the communication

group. The performance of the proposed scheme is evaluated by varying the

communication cost weight (Wcc), the security damage cost weight (Wsd)

and the departure rate (λ).

3.5.2 Performance Evaluation

Fig. 3.3 shows the total cost per unit time as the communication cost weight

varies, while the security damage cost weight is the same. The results show

that the communication cost per unit time increases as the communication

cost weight increases. This is because the communication cost per unit time

increases as the communication cost weight increases, while the security

damage cost per unit time is the same. Therefore, the KDC has to increase

a batch rekeying interval and delay the rekeying to reduce the increment of

the communication cost per unit time from the communication cost weight.

64

2 4 6 8 10 12 14 16

300

400

500

600

700

800

900

T
ot

al
 c

os
t p

er
 u

ni
t t

im
e

Batch rekeying interval

 Wcc=1
 Wcc =1.5
 Wcc=2
 Wcc =2.5
 Wcc=3

Figure 3.3: Total cost per unit time according to the communication cost
weight.

5 10 15 20

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

T
ot

al
 c

os
t p

er
 u

ni
t t

im
e

Batch rekeying interval

 Wsd =14
 Wsd =18
 Wsd =22
 Wsd =26
 Wsd =30

Figure 3.4: Total cost per unit time according to the security damage cost
weight.

65

2 4 6 8 10 12 14 16 18 20 22 24

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

T
ot

al
 c

os
t p

er
 u

ni
t t

im
e

Batch rekeying interval

 λ=6

 λ=8

 λ=10

 λ=12

 λ=14

Figure 3.5: Total cost per unit time according to the departure rate.

Fig. 3.4 shows the total cost per unit time as the security damage cost

weight varies. The results show that the batch rekeying interval has to

decrease in order to reduce the security damage cost per unit time as the

security damage cost weight increases. This is because the security damage

cost per unit time increases as the security damage cost weight increases,

while the communication cost per unit time is the same. Therefore, the

KDC has to decrease a batch rekeying interval and advance the rekeying

to reduce the increment of the security damage cost per unit time from the

security damage cost weight.

Fig. 3.5 shows the total cost per unit time as a departure rate of group

members increases. The figure shows that the KDC has to shorten the

batch rekeying interval as the departure rate increases. Basically, both the

communication cost and security damage cost per unit time increase as the

66

Table 3.1: Comparison between the optimal batch rekeying and periodic
batch rekeying

optimal
batch

rekeying

periodic
batch

rekeying

cost
reduction

λ T cost T cost reduction %

6 11.5 687.0 4.0 2031.4 1344.4 66.2%

8 10.0 793.3 4.0 2046.4 1253.1 61.2%

10 9.0 887.0 4.0 2066.4 1179.4 57.1%

12 8.0 971.6 4.0 2086.4 1114.8 53.4%

14 7.5 1030.6 4.0 2106.4 1075.8 51.1%

departure rate increases. Thus, the result means that the security damage

cost per unit time is more affected than the communication cost per unit

time by the departure rate.

In Fig. 3.3, as the batch rekeying interval increases, the curves con-

verge regardless of the communication cost weights. This point means that

the communication cost per unit time becomes zero because the number of

shared group keys increases, as the batch rekeying interval increases. In con-

trast with the above result, Fig. 3.4 shows the curves converging regardless

of the security damage cost weight as a batch rekeying interval decreases.

The fact that the batch rekeying interval goes to zero means that the KDC

updates a group key shortly after some group members leave. Therefore, the

security damage cost goes to zero as the batch rekeying interval decreases

and the curves in Fig. 3.4 converge.

The performance of the optimal batch rekeying interval is compared

with that of the periodic batch rekeying in Table 3.1. The simulations

67

are conducted with respect to a departure rate. A key tree structure is

Υ(2, 2, 2, 2, 2, 2, 2, 2, 2, 2) and the other variables, except the batch rekey-

ing interval, are fixed. The proposed scheme can select the optimal batch

rekeying interval. The results are compared with those from a periodic batch

rekeying (T = 4) situation. The results show that, while the periodic batch

rekeying interval causes extra cost, the proposed scheme can adaptively ad-

just the optimal batch rekeying interval to minimize the total cost per unit

time according to the variation of the departure rate.

68

Chapter 4

Membership Dynamics based
Key Management (MDKM)
for Secure Vehicular
Multicast Communications

4.1 Introduction

Over a decade, the communication architecture for vehicle environments

has actively been studied in both academia and industry. Much effort has

been made in developing vehicular networks, consisting of vehicle-to-vehicle

(V2V) and vehicle-to-Infrastructure (V2I) communications, for use in vehic-

ular services such as road safety services, driver assistant services, and conve-

nience services [35], [36], [37]. For providing road safety services (emergency

warnings, and crash warnings), driver assistant services (hazard warning,

and traffic information), and convenience services (Video-on-Demand(VoD),

and navigation systems), multicast communication is known to be a promis-

ing solution as it allows them widely and quickly transmit the data of the

69

services in a single delivery.

However, one of the major problems in deploying the vehicular multicast

communication is the need to maintain service confidentialities which implies

that only the authorized vehicles communicate with each other. To guaran-

tee service confidentialities, a secure Group Key (GK) based on a crypto-

graphic method is generally adopted in transmitting the service data, so that

only the authorized vehicles having the secure GK can successfully encrypt

the service data and decrypt the encrypted data. However, although the

GK preserves the confidentiality in data delivery, it causes another problem

in sharing the secure GK, i.e., the scalability problem. Specifically, whenever

a new vehicle joins a service group or the vehicle in a service group leaves

a service group, the GK must be updated, and the vehicles in the newly-

changed service group have to share the updated GK. In this situation, the

process of updating the GK called rekeying can create a serious bottleneck.

In this paper, we design the new GK management (GKM) scheme for

secure vehicular multicast communication by considering the characteristics

of vehicular communication environments.

4.1.1 Group Key Management

The GKM schemes have been intensively researched as a method for allevi-

ating the communication overhead caused from key updating (or rekeying).

Logical Key Hierarchy (LKH), one of the pioneering schemes, achieves the

reduced overhead [4]. The communication cost is reduced from O(N) to

O(logN); while the storage cost is increased from O(1) to O(logN) at a

70

member, and from O(1) to O(N) at a Key Distribution Center (KDC); the

computation cost is increased from O(1) to O(logN) at both a member and

a KDC.

In addition, Batch Rekeying (BR) updating a GK at the end of the time

duration has been proposed to further reduce the communication overhead

[3], [4], [21], [22], [23], [24]. The BR can provide two advantages: (1) the

number of rekeying events can be greatly reduced, and (2) the number of

rekeying messages of BR is much smaller than that of Individual Rekeying

(IR). However, in exchange for the communication costs reduction, the BR

sacrifices forward and backward confidentialities.

To efficiently manage a GK in the cellular network, Yan Sun et al. pro-

posed the topological-matching key management (TMKM) scheme exploiting

the network topology information [39]. TMKM constructs the logical key

tree by using the topology information of a physical network; so TMKM

can reduce the key updating overhead. However, since TMKM has to bind

the logical key tree structure and location information, it causes additional

overhead in managing the topological information.

4.1.2 Group Key Management in Vehicular Environments

In the predictable future, the vehicular multicast communication will be

enabled by V2V and V2I communications. In this paper, we focus on the

vehicular multicast communications between a central management server

(KDC) and vehicles via a V2I network, through which a service provider

provides vehicular services to drivers. These vehicular service scenarios seem

71

to be similar to those of conventional network services. However, there are

two distinguishable differences between them.

1. High mobility: In a vehicular network, the Road Side Unit (RSU),

which takes charge of establishing the physical communication link

with vehicles in a multicast manner, is supposed to manage the mobil-

ity of each vehicle in order to transmit data from the KDC to a specific

vehicle and vice versa. Thus KDC and RSU have to continually keep

track of the locations of each vehicle. However, some conventional

GKM schemes exploiting the network topology information have not

considered the effect of vehicle mobility [4], [23].

2. Vehicle safety: Unlike the conventional services, road safety services

are significantly critical, since they are closely related to car accidents.

Thus the service reliability is one of the most important factors in

deploying vehicular multicast services. But urgent service scenarios

are not considered in conventional GKM schemes [35].

Because of the above mentioned service characteristics, there are sev-

eral critical problems in adopting the legacy key management schemes in

vehicular networks. They are:

1. Scalability problem: The scalability problem is one of the longstanding

issues in GKM. In vehicular networks, the large number of vehicles

in wide service area and their dynamic mobility make the scalability

problem more complex in designing GKM schemes [39], [38].

72

2. High delay of rekeying operation: The scalability of vehicular service

group may require high communication and computation complexities

in updating GK. However, high delay of rekeying operation from large

communication and computation complexities may cause the instabil-

ity and vulnerability of vehicular multicast services [33].

3. Service vulnerability: Though BR has been a promising approach to

reduce the communication cost, BR basically sacrifices the data for-

ward confidentiality and backward confidentiality, which are essential

requirements in secure multicast communications. When considering

the driver safety service, BR can lead to serious vulnerability in pro-

viding vehicular multicast services [35].

To solve the above design problems in vehicular multicast communica-

tion, we have to design a key management scheme that is totally different

from conventional key management schemes.

4.1.3 Contribution

In this paper we design an efficient and secure GKM scheme that we have

named the Membership Dynamics based Key Management(MDKM) for ve-

hicular multicast services. The proposed scheme has four distinctive contri-

butions as follows: (1) Elimination of the scalability problem caused from

1-affect-all problem: The proposed MDKM scheme can individually derive a

new GK from the pre-delivered keys by using time information sent from the

73

KDC, while conventional schemes adapt a key tree structure where the scal-

ability problem is fundamentally inevitable. Thus the proposed scheme can

greatly reduce the complexity from O(logN) to O(1) in every key updating;

(2) Low delay of rekeying operation: Because the proposed scheme adopts

the key packing and unpacking algorithm which enables vehicles to derive

a new GK from the pre-delivered keys by utilizing a derivation function re-

quiring low computing overhead, the proposed scheme enables a vehicle to

obtain a next GK within a low delay; (3) Guarantee of strict security: As

security is the most important requirement of providing service confiden-

tiality because of the need to support driving safety, the proposed scheme

can provide strict security by utilizing IR; (4) Elimination of the topology

information in GKM: Since the proposed MDKM scheme manages a GK not

combined with network topology information, it does not incur the topol-

ogy management overhead of the key tree caused from the vehicle location

change.

4.1.4 Paper Organization

The rest of the paper is organized as follows. Section II gives the basic

models. The MDKM scheme is described by using the models in section III.

The various kinds of costs associated with the MDKM are fully analyzed in

section IV. In section V, the cost is formulated into an optimization problem

and optimized as the design problem. The simulation results are discussed in

section VI. Finally, in section VII the conclusions of this paper are presented.

74

4.2 Model

Before explaining the proposed scheme, we first define the appropriate net-

work, service, vehicle and key models, respectively. By using the models

and definitions, we describe the proposed scheme in the following section.

4.2.1 Network Model

In this paper, we assume that V2I communication is supported by RSU or

wireless Access Point (AP) of IEEE 802.11 WLAN, IEEE 802,16e WiMAX,

or existing cellular facilities in the end link [40], [41]. In addition, the wired

infrastructure network supports the communications among RSU, AP, and

servers. But since deploying of these infrastructures requires a high cost,

vehicular multicast services will be provided in urban area. Therefore, in this

paper we work with the vehicular multicast service scenario incorporating

heavy traffics.

The network model requires a Time Synchronization method, because

the proposed key management scheme is operated with subscription time.

Thus, we assume a time synchronization method such as Network Time

Protocol (NTP), which is designed to synchronize the clocks of devices over

packet-switched network and variable-latency data networks [42], [43], [44],

[45]. The NTP is fault tolerant, reliable, scalable, and secure [44]. In addi-

tion, the NTP supports clock synchronization by using broadcast.

75

4.2.2 Service Model

In this paper, we assume that vehicular multicast services utilize Pay-per-

minute (PPM) with which a subscriber can be provided with a service during

the subscription period. In vehicular services with PPM, each vehicle de-

livers its subscription period information to the KDC for subscribing the

services.

In this service model, there are three players: (1) KDC (who takes charge

of managing GKs); (2) Vehicles (which subscribe to the services and receive

GKs); (3) The service provider (who provides the vehicular multicast ser-

vices). Vehicles are supposed to subscribe to the group service operated by a

service provider with its subscription period. For a new subscription from a

newly joining vehicle, the KDC has to update a GK and deliver new keys to

the service provider and vehicles in order to maintain service confidentiality.

In the case of leaving a group service, the KDC has to update a GK as well.

In this process, since a service provider is not related to the key updating,

we focus on the role of the KDC and vehicles in this paper.

4.2.3 Vehicle Model

Let Nu be the set of all possible vehicles that have been served by a service

provider. Each vehicle vi ∈ Nu is supposed to join the service group at time

tij and leave the group at time til, without losing the generality of vehicle

behavior, tij < til.

76

Definition 4.2.1 Subscription Period Information (SPI): Let tij be a join-

ing time and til be a leaving time. The Subscription Period Information

(SPI) consists of the time information for i-th vehicle subscription T i
S =

{tij , til}.

For simplified dynamics, we assume that each vehicle is supposed to

subscribe the service once and each vehicle has an unique SPI such that for

any vehicle vi and vj , t
i
j 6= tjj , t

i
l 6= tjl and tij 6= tjl .

As a subset of the set Nu (Nt ⊂ Nu), we define the valid vehicle set at

time t such as Nt={vi|tij < t < til, vi ∈ Nu}. Since vehicles in the set Nu

dynamically join and leave the service group, the valid vehicle set Nt is also

changed in real-time manner. We define the basic functions to accommodate

the vehicles dynamics.

Definition 4.2.2 Membership : Let v be an arbitrary vehicle of the uni-

verse set Nu. Membership at time t consists of vehicles in the valid vehicles

set Nt, such as v ∈ Nt.

By extension of the membership, we notate the membership dynamics.

Vehicle Join(V J{v}) : Nt = Nt−1 ∪ {v} = {x|x ∈ Nt−1 or x ∈ {v}}.

Vehicle Leave(V L{v}) : Nt = Nt−1 − {v} = {x|x ∈ Nt−1 and x /∈ {v}}.

4.2.4 Key Model

We introduce the basic key model for explaining the proposed MDKM. For

the cryptographic operations, all the valid vehicles at time t (Nt) have to

77

share an identically same key(called GK) with the KDC, so that the valid ve-

hicles communicate with the KDC via secure multicast channels. In this pa-

per, we consider the centralized GKM with the KDC, which takes charge of

updating a new GK and delivering the GK encrypted with a cipher method

to vehicles in Nt through internet multicast protocols [52].

The secret key for multicast can be generated in two basic ways. One

is through key generation Gk(·) which is a function to randomly generate

a new seed key (SK). For the sake of confidentiality, only the KDC has the

authority of key generation. The other is through key derivation using a

derivation function Fd(·), such as Message-Digest algorithm (MDx), Secure

Hash Algorithm (SHA-x) or other hash functions [53], [54]. For the sake of

confidentiality as well, secure derivation function have to meet the following

requirement: For kb = Fd(ka), Fd(·) is computationally infeasible to derive

ka, given only kb.

In addition, each vehicle has a unique Individual Key (IK), IKi defined

as the IK of vi, which guarantees the secure communication channel between

vi and the KDC.

The encryption and decryption functions are notated as follows: cipher-

text = Enc(key,plaintext) and plaintext = Dec(key,ciphertext), respectively.

The encryption function can be further simplified to ciphertext={plaintext}key.

78

4.3 Membership Dynamics based KeyManagement
(MDKM)

We begin this section by introducing the derivation function which is a

basic component of the proposed scheme. Then, we propose the MDKM for

vehicular multicast communication. We develop the optimization algorithms

to minimize network resources of vehicular multicast communication and

analyze the costs of the MDKM in the following sections.

4.3.1 Membership Dynamics based Key Derivation

In a group based vehicular communication, vehicle dynamics such as vehicle

join (service subscription) or vehicle leave (service expiration) lead to the

membership change of valid vehicle set (Nt). Here, we define membership

dynamics as the membership change from the vehicle dynamics.

Definition 4.3.1 Membership Dynamics: Let δ be a small positive number

such that for any natural number n, 1/n > δ. Membership dynamics at time

t exists if and only if for two valid vehicle sets Nt at time t and Nt+δ at time

t+ δ, the following requirement is satisfied: |Nt −Nt+δ|+ |Nt+δ −Nt| > 0.

Here, |Nt −Nt+δ| > 0 means that one or more vehicles leave the service

group because of service expiration at time t, and |Nt+δ − Nt| > 0 means

that one or more vehicles newly subscribe to the service group at time t.

According to the membership dynamics, the KDC does not need to up-

date keys as long as the membership is static.

79

K(t1,t7)
K(t3,t6) K(t6,t7)

K(t2,t3)
K(t3,t4)K(t1,t2) K(t4,t5)

K(t5,t6)
K(t1,t3)

t2t1 t3 t4 t5 t6 t7 Time axis
EKs

SK

Figure 4.1: An illustration of an example for MDKD.

Definition 4.3.2 Static Period: Let Nt be a valid vehicle set at time t.

Time period, (a, b), is static if and only if the following requirements are

satisfied for all possible t (a < t < b): |Nt−Na|+ |Na−Nt| = 0, |Nt−Nb|+

|Nb −Nt| = 0.

Now, we define key validity as follows:

Definition 4.3.3 Key Validity (K): Let K be a key. A key, K(ta, tb), is

valid in time period between ta and tb, (ta < tb) if and only if the KDC

allocates the key, K(ta, tb), in time period (ta, tb).

For example, in Fig. 4.1, K(t1, t2) and K(t1, t3) are secret keys that are

valid during the time period (t1, t2) and (t1, t3), respectively.

Among valid keys, not every valid key can be utilized as a GK, because

of the confidentiality problem. Among them, only the Elementary Key (EK)

80

can be used as a GK. The EK can be defined as the key located in a leaf

of the key path. For example in Fig. 4.1, K(t1, t2), K(t2, t3), K(t3, t4),

K(t4, t5), K(t5, t6), and K(t6, t7) are EKs.

Now, we introduce the Membership Dynamics based Key Derivation

(MDKD). Based on the membership dynamics of the SPI, the KDC has to

derive new valid keys.

Definition 4.3.4 Membership Dynamics based Key Derivation (MDKD):

Let t be a time information included in SPI, K be EK valid at time t,

and Fd(·) be a secure derivation function. MDKD represents a new key

derivation method by using vehicle dynamics information.

Specifically, SPI includes membership dynamics such as joining time (tj)

and leaving time (tl). If EK valid at tj is same as EK valid at tl, new EKs are

derived as follows: K(ta, tj) = Fd(K(ta, tb), 1), K(tj , tl) = Fd(K(ta, tb), 3),

and K(tl, tb) = Fd(K(ta, tb), 2) (ta < tj < tl < tb, and K(ta, tb) is an EK).

Otherwise, new EKs are derived with tj and EK valid at tj , and with tl

and EK valid at tl, respectively, as follows: K(ta, tj) = Fd(K(ta, tb), 1)

and K(tj , tb) = Fd(K(ta, tb), 3) (ta < tj < tb, and K(ta, tb) is an EK);

K(tc, tl) = Fd(K(tc, td), 1) and K(tl, td) = Fd(K(tc, td), 3) (tc < tl < td,

and K(tc, td) is an EK).

In MDKD, the derived keys stand for children keys (CK), and the original

key that is used to derive the children keys stands for parent key (PK); so,

we define the following sets: prk(K) = {Kp|K = Fd(Kp, i)} (i = 1, 2, 3),

81

Subscribing
vehicle vi

Existing vehicles

Subscription Request

{SPI}IKi
Generate Key Pack (KPi) by

using KPA with {SPI}IKi

{FKi}IKi

Send the First Key (FKi) in
Key Pack(KPi)

Generate NKI

NKIBroadcast NKI
Derive next GK from
present GK and NKI

Derive next GK from
and FK and NKI

1. Service subscription

KDC

Derive new EKs with SPI

Vehicle vi KDC

Service extention
request

{SPI}IKi Generate Key Pack
(KPi) by using KPAE

with {SPI}IKi

{FKi}IKi

Send new First Key
(FKi) in Key Pack

(KPi)

Append new
FK with old FK

2. Service extension

Derive new EKs with
SPI

KDC Existing vehicles

3. Service expiration

j-th rekeying
Generate NKIj

{NKIj}GK

Derive next GK from
present GK and NKIj

Multicast NKIj

Send next FKi in
KPi if next GK is

the last GK
derived from

present FKi (∀vi) {FKi}IKi

Replace old FKi with
new FKi

Figure 4.2: An illustration of MDKD scheme.

crk(K) = {Kc|Kc = Fd(K, i)} (i = 1, 2, 3), and sbk(K) = {Ki|prk(K) =

prk(Ki)} (for all possible Ki).

Here, prk(K), crk(K), and sbk(K) stand for the parent key of a key K,

the children key of a key K, and the sibling key of a key K, respectively.

Based on the relation, it is noted that any key can not be an EK and a PK

at the same time. Among PKs, there is a SK such that |prk(SK)| = 0. In

other word, the SK is not the key derived from any key and can only be

generated by the KDC. For example, in Fig. 4.1, K(t1, t7) is the only SK.

To sum up, there are two ways to make keys. One is key derivation for

deriving EKs by using the Fd(·). The other is key generation for deriving

SKs by using the Gk(·).

4.3.2 Membership Dynamics based KeyManagement (MDKM)

In this subsection, we present Membership Dynamics based Key Manage-

ment (MDKM), which has the following characteristics: (1) According to

membership dynamics obtained from SPI, the KDC can be aware of the

key updating schedule. Thus, over static period, the KDC does not need

to update a GK. (2) Since unicast method utilizes little network resources

82

YesIs Kp not seed key And
Is prk(Kp) not valid at tp+d

Set the element of prk(Kp)as Kp

And NKI=NKI+00

Is Kp seed key? Set prk(Kp) as Kp

Get the next seed key of Kp
Set the next seed key as Kp

NKI=NKI+00

Yes

No

No
Is Kp a EK?

Return NKI

Is the element of
Fd(Kp,2) valid at tp+d?

Is the element of
Fd(Kp,1) valid at tp+d?

Set the element as Kp

NKI=NKI+10
Set the element as Kp

NKI=NKI+11
Set the element as Kp

NKI=NKI+01

Yes

No No

Yes

Yes

Set GK as Kp , NKI <= Null C1

C2 C3

C4 C5

C6

C8 C9 C10

C11 C12 C13

C14

C7

No

Is the element of
Fd(Kp,3) valid at tp+d?

3. NKIA

Arrange EKs assigned in time
order (t)

Is there any sibling keys? replace the sibling keys with
their parent key

Make the rest keys as KP

Yes

No

A1

A2

A4

A3

1. KPA

Arrange EKs assigned in time
order (t)

Is there any sibling keys? replace the sibling keys with their parent key

Select the first EK in ascent time
order among keys

No

Including previous keys, Is there
the EK＇s parent key?

Replace EK＇s sibling keys with its parent
key and

record the number of keys

Set the keys having the least
number as KP

Yes

No

B1

B2

B4

B5

B7

B3

B6

Yes

2. KPAE

Get first two digits of NKI
And delete the two digits in NKI

Create Kp=Fd(Kp,1) Create Kp=Fd(Kp,2) Create Kp=Fd(Kp,3)

Set a present GK as Kp

Is Kp, a SK?

No

00 10 11 01

Store KpSet next SK as KpSet prk(Kp) as Kp

Yes

NKI=Null ?
Yes

No

End

D1

D2

D3 D4 D5 D6

D7

D8 D9 D10

D11

4. NKDA

Figure 4.3: An illustration of algorithms for MDKD.

than multicast method, the proposed scheme utilizes unicast in delivering

Key Pack (KP). The KP consists of some keys that are utilized in deriving

all the GKs over specific SPI. Because a SPI of a vehicle is different from

those of other vehicles, it is resource-efficient to transmit a KP by using uni-

cast method. (3) The proposed scheme minimizes the amount of message

to be multicast. Since each vehicle already has their own key set delivered

by unicast, the KDC multicasts a simplified Next Key Information (NKI)

which is utilized to derive a next GK. As a result, the proposed scheme can

reduce the amount of network resource usage.

At first, the KDC has to generate SKs, which are periodically assigned

to seed key period Ps. Then, the KDC efficiently manages keys by using the

proposed methods according to the membership dynamics. These dynam-

ics are caused from membership events called Service subscription, Service

83

extension, and Service expiration.

Service Subscription

In case of a service subscription the KDC manages keys as shown in Fig.

4.2. When a vehicle (vi) wants to subscribe to a service, the vehicle has to

send a subscription request message including its SPI including joining time

and leaving time. The KDC derives new EKs with the SPI. Then the KDC

generates KP including the minimized number of keys that can derive all

EKs in the time period between the joining time and leaving time by using

the Key Packing Algorithm (KPA), which will be given in Fig. 4.3. In order

of validity time, the keys in KP is supposed to be delivered to the subscribing

vehicle. Among the keys in KP, the First Key (FK), which is denoted as

the key having the earliest valid time, is delivered to the subscribing vehicle.

By using the FK, the vehicle can derive a GK with one-way function. To

provide the confidentiality of the FK message the KDC has to send the FK

encrypted with the vehicle’s IK. After sending the FK, the FK is deleted in

KP.

• Key Packing Algorithm (KPA)

Fig. 4.3 shows the Key Packing Algorithm (KPA) used to generate Key

Pack (KP). By using KPA as shown in Fig. 4.3, the KDC can generate a

specific KP consisting of some keys that are utilized in deriving all the GKs

in a specific subscription period. For example, when a new vehicle wants to

subscribe over the period of Fig. 4.4, the KDC is supposed to generate KP

by using KPA as follows:

84

k2
k3

k9

k11

k14

k15

k16

k1 k8

k4

k7

k10 k13

k18

00

01

00

10

10

NKI(k2->k3):0001
NKI(k3->k7):00001010

00

k5

k12

k6

Figure 4.4: An illustration of an example for KPA, NKIA, and NKDA.

• A1: The KDC arranges EKs during SPI in time order. KPx={k2, k3,

k7, k9, k10, k11, k13, k14, k15, k16, k18}

• A3: Replace k2 and k3, k9 and k10, and k13 and k14 (the sibling keys)

with k1, k8, and k12 (their PK), respectively. Then, KPx={k1, k7, k8,

k11, k12, k15, k16, k18}

• A2, A3: Because there are still sibling keys in KPx, replace k7, k8,

and k11 and k12, k15, and k16 with k5 and k6, respectively. KPx={k1,

k5, k6, k18}.

• A2, A3: There are still sibling keys (k5, k6, and k18). So, They are

replaced with k4. KPx={k1, k4}

• A4: Finally, the KDC makes KP from the KPx. (KP={k1, k4}).

85

Service Extension

In case of a service extension, the KDC manages keys as shown in Fig. 4.2.

When a vehicle (vi ∈ Nt) wants to extend a service, the vehicle has to send

a service extension request message including its SPI including new leaving

time. The KDC derives new EKs with the SPI. Then the KDC generates

KP covering the extended time period by using Key Packing Algorithm for

Extension (KPAE), which will be given in Fig. 4.3. The KPAE generates

KP similar to the way that KPA does. But, KPAE can further reduce the

size of KP by utilizing the previous keys that the vehicle already has. The

rest of the procedure is very similar to that of service subscription as shown

in Fig. 4.2. Among the keys in KP, the First Key (FK) is delivered to the

vehicle as well. By using the FK, the vehicle can derive a next GK with one-

way function. To provide the confidentiality of the FK message the KDC

has to send the FK encrypted with the vehicle’s IK. After sending the FK,

the FK is deleted in KP.

• Key Packing Algorithm for Extension (KPAE)

Fig. 4.3 shows the Key Packing Algorithm for Extension (KPAE) used to

generate KP, when the subscribed vehicle wants to extend a service. KPAE

includes the minimization algorithm utilizing the keys that the vehicle al-

ready has. Because the subscribed vehicle was aware of previous keys, KPAE

does not violate backward confidentiality. For example, if a subscribed ve-

hicle (from t0 to t6) wants extend a service from t6 and t27 as illustrated in

Fig. 4.5, the KDC has to generate KP by utilizing KPAE as follows:

86

k9k5

k4

k6

Subscription extension Period

k2

k1
k3

k7

k10

k11

k12
k14 k15

k18

k19

k17

k23k21 k25

k26 k27

k24

k22

k16

k20

t6 t27t0 Existing Subscription Period

k13

k8

Figure 4.5: An illustration of an example for KPAE.

• B1-B3: The KDC generates KP0={k7, k11, k13, k20}.

• B4: Among elements of KP0, k7 is selected.

• B5: Because the PK of k7 is k6,

• B6: replace k7 with k6. KP1={k6, k11, k13, k20}. And, |KP1|=4.

• B4: Among elements of KP , k6 is selected.

• B5: Also k8 is the PK of k6.

• B6: Replace k6, k11, and k13(Sibling keys of k6) with k8. KP2={k8,

k20}. And, |KP2|=2.

• B5: Since k8 is a SK,

• B7: Among the KPx(x=0,1,2) obtained from each steps, the KDC

selects a KP having the least number of elements. Thus, KP2 is

selected as a KP .

87

Service Expiration

In the case of service expiration of a certain vehicle, the KDC manages keys

as shown in Fig. 4.2. Based on vehicles’ SPI, the KDC is already aware

of dynamics in a service group and the all relations of keys. Before present

static period is over, the KDC generates NKI for existing subscribed vehicles

to derive a next EK by using NKIA as shown in Fig. 4.2. Then, the KDC

multicasts the NKI just before a present static period ends. After receiving

the NKI, vehicles can successfully derive the next GK in their own FK with

NKDA, shown in Fig. 4.3.

For some vehicles, their FK can be expired. Thus, to derive following

GKs, the KDC has to deliver next FK in their KP to the specific vehicles.

For the confidentiality of the FK message the KDC has to send the FK

encrypted with the vehicle’s IK. After sending the FK, the FK is deleted in

KP.

• Next Key Information Algorithm (NKIA)

NKI is the path information used to derive a next EK from a present

EK. NKI consists of four directions (up, left, right, and middle), and these

four directions are supposed to deliver with the predesignated codes as 00,

10, 01, and 11, respectively. up, left, right, and middle of k indicates prk(k),

Fd(k, 1), Fd(k, 2), and Fd(k, 3), respectively. By way of exception, up of SK

indicates next SK. The specific procedure of algorithm for generating NKI

is as shown in Fig. 4.3.

88

For example, when a present GK is k3 in Fig. 4.4, the KDC can generate

NKI by using NKIA as follows:

• C1: Set a GK, k3, as Kp. KP=().

• C2: k3 is not SK, and prk(k3), k1, is not valid at tp+δ.

• C3: Set k1 as Kp. And NKI=(00).

• C2, C4: Since k1 is a SK,

• C6: get the next SK of k1, k4, and set k4 as Kp. And NKI=(0000).

• C7: k4 is not a EK.

• C8: Since k5, Fd(Kp, 1), is valid,

• C11: set k5 as Kp, and NKI=(000010).

• C7: k5 is also not a EK.

• C8: Since k7, Fd(Kp, 1), is valid as well,

• C11: set k7 as Kp, and NKI=(00001010).

• C7: Because k7 is a EK,

• C14: finally the KDC obtains NKI.

• Next Key Derivation Algorithm (NKDA)

When vehicles receive NKI from the KDC, they start to derive a next

GK by using NKDA. Figure 4.3 shows the NKDA for deriving a new GK

89

from a present GK with own FK. Let us assume that a present GK is k3; a

vehicle receives NKI of 00001010; and the vehicle is aware of k1, k3, k4 as

shown in Fig. 4.4. The vehicle can derive the next GK by using NKDA as

follows:

• D1: A vehicle set k3 as Kp

• D2: The first digits of NKI is 00 and delete the digits in NKI.

• D3, D7: Since Kp is not a SK, prk of Kp, k1, is set as Kp.

• D10, D2: Because NKI(001010) is not an empty, get the first digit

(00).

• D3, D8: Since Kp is a SK, next FK, k4, is set as Kp.

• D10, D2: Because NKI(1010) is still not an empty, get the first digit

(10).

• D4: Derive a child key of k4, k5=Fd(k4, 1).

• D10, D2: Since NKI(10) is not an empty, get the first digit (10) as

well.

• D4: Derive a child key of k5, k7=Fd(k5, 1).

• D10, D11: Because NKI() is an empty, a vehicle can set k7 as a next

EK and utilize the EK as a GK.

90

Early Service Leaving

Sometimes, a vehicle (a driver) can request to leave a service before the

its leaving time, i.e. early leaving. Considering the early leaving case, the

proposed MDKM allows a vehicle to leave a service in the validity time

unit of FK. In MDKM, the KDC is supposed to deliver an one FK at a

time. Thus, by just deleting his KP and not delivering next FK to the

vehicle further, the vehicle can leave service without breaking the service

confidentiality.

4.4 Cost Analysis

This section gives the numerical performance analysis of the proposed MDKM

with various aspects such as computation, storage and communication costs.

4.4.1 Computation Cost

Server: When a vehicle subscribes to a service, a vehicle sends a subscription

request including their SPIs to the KDC. Each SPI consists of join time or

leave time. To support service security against a new vehicle’s dynamics, the

KDC has to generate new keys corresponding to the new static periods. By

using one time information included in SPIs, the KDC can derive two child

keys (K1
i = Fd(Ki, 1) and K3

i = Fd(Ki, 2)). Since time difference between

joining time and leaving time included in a subscription request is normally

greater than average static period, the KDC generally generates four keys

per a single vehicle’s subscription. Therefore the computation cost of a

server is U s'4|Nt|/E[Pv]. Here Pv is the subscription period of a vehicle.

91

Vehicle: Vehicles should be unaware of dynamics of other vehicles for

guaranteeing privacy. Whenever a new key is adopted (or before a present

static period end), vehicles must receive the new NKI for deriving a next

EK. On average, the number of key derivations for vehicles is the same as

that of the KDC. Since each vehicle causes two dynamics, the computation

cost of a vehicle is Uv=U s=4|Nt|/E[Pv].

4.4.2 Storage Cost

Server: Whenever a vehicle subscribes to a service, the KDC has to gen-

erate four keys by using the joining time and leaving time included in a

subscription request. Thus the number of keys to be stored in a sever(Ss)

is 4|Nt|.

Vehicle: Storage cost of vehicles (Sv) consists of three components: One

comes from the depth (AD) of its first EK (Svb); Another comes from the

number of SKs within the joining time and leaving time (Svs); The other

comes from the depth of its last EK (Sve); According to characteristics of

Poisson distribution, it is likely that the vehicles’ subscription time is well

balanced. So, Svb=Sve. Thus Sv=Svs+2AD. Let us firstly analyze the AD.

When the number of dynamics in a single SK is k, the number of EK is

k+1. Note that the sum of the depth of EKs with k dynamics under a single

SK is Dk and the average depth of GK is ADk (= Dk/k+1). For additional

one dynamics, Dk increases as much as AD + 2 (2(d + 1) − d = d + 2).

According to the relation between additional dynamics and the sum of the

92

depth of GKs in a single SK, we can derive the following recurrence formula.

Dk = Dk−1 +ADk + 2 =
k + 1

k
Dk−1 + 2 (4.1)

If we further expand the Eq. 4.1, we can obtain the following equations.

Dk =
k + 1

k

(
k

k − 1
Dk−2 + 2

)
+ 2

=
k + 1

k − 1
Dk−2 + 2

k + 1

k
+ 2

(4.2)

If we expand the Eq. 4.2 until k becomes zero (k = 0 means that there

is no dynamics), we can obtain the equations as follows:

Dk =
k + 1

1
D0 + 2(k + 1)

(
1

k
+

1

k − 1
+ · · · 1

2

)
+ 2

= 2(k + 1)
k∑

i=1

(
1

i

)
− k + 1 (D0 = 1)

(4.3)

Thus, the average depth of GKs can be obtained by dividing ADk by

(k + 1) as ADk = Dk/(k + 1). Since k=|Nt|Ps/E[Pv], the storage cost of

vehicles are obtained as follows:

Sv = Svs + 2ADk =
1

2

(
E[Pv]

Ps

)
− 1

2
+ 2ADk

=
1

2

(
E[Pv]

Ps

)
+ 4

|Nt|Ps
E[Pv]∑

i=1

(
1

i

)
+

4E[Pv]

|Nt|Ps +E[Pv]
− 5

2

(4.4)

4.4.3 Communication Cost

MDKM includes two kinds of communication costs. First, when subscribing

to a service, the vehicle is supposed to receive a unicast message containing

the optimized key set (KP). Second, when there is a membership dynam-

ics caused by other vehicles’ service subscription or expiration, vehicles are

93

supposed to receive multicast messages containing NKI, which is utilized to

derive a next EK. Thus, this subsection investigates the two communication

costs of unicast cost and multicast cost, respectively.

Unicast cost

When a vehicle subscribes to a service, the KDC sends the set of keys

(KP) corresponding to its SPI to the vehicle. If the valid period of a SK is

contained within that of a vehicle subscription period, the SK is included

in the KP. So, unicast overhead (Cu) consists of three components: One

comes from time period between the joining time and the expiration time

of SK valid at the joining time (Cub). Another comes from the number of

SKs within the SPI (Cus). The other comes from the time period between

the beginning time of SK valid at the expiration time and the vehicle’s

service expiration time (Cue). According to characteristics of the Poisson

distribution, it is likely that the vehicles’ subscription time is well balanced.

As a result, the overhead of the former time period is the same as that of

the latter time period on average. Thus the unicast overhead is as follows:

Cu = Cub + Cus + Cue = Cus + 2Cue (4.5)

In addition, it is very likely that the service subscription period is much

longer than the average key update period. Thus, keys under a single SK can

be normally maintained with 2-ary relation. Given “k” level 2-ary relation,

there are 2k elementary keys under a single SK.

94

k1

k2

k3 k4

k5

k6 k7

k8 k9 k10 k11

1 1 1 1 1 2 1

L=1 L=2 L=3

k1 k3 k2 k8 k6 k6,k10 k5

A1 A2 A3

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

(a) (b) (c)

Figure 4.6: An illustration of an example for unicast communication cost of
KPA.

Fig. 4.6 shows an example of key relations in KP. (a), (b), and (c) consist

of structured keys, where, k1, k2, and k5 are SK, which are valid for (t1, t2),

(t3, t5), and (t6, t10), respectively. In the case that vehicles are supposed to

subscribe to a service before t1, t3, and t6, and leave before t2, t5, and t10,

respectively, the number of keys in the KP under a single SK is analyzed.

In Fig. 4.6 (a), there is no dynamics between t1 and t2. So, when a

vehicle leaves at time t2, the number of keys in the KP in the period will

be one (k1). In case of L=2 (layer = 2), there are two cases of vehicles’

leaving. If a vehicle is supposed to leave at t4, the number of keys in the

KP is one (k3). If a vehicle is supposed to leave at t5, the number of keys in

KP is one as well (k2), because a vehicle can derive low layered keys from k2

95

(k3 and k4). In the same way, the number of keys in the KP can be simply

calculated according to vehicles’ service expiration times as shown in Fig.

4.6 (c).

When comparing between A1 and A2 in Fig. 4.6, the structure of A1 is

same as that of A2. In the case that a subscription time is the time period

between t8 and t10, the KP includes k6, which is on the top of A2, and a key

in A3 which has the same structure of A1. For example, when the KDC has

to make the KP valid for (t6, t9), k6 of A2 and k10 of A3 are included in the

KP. By way of exception, when the time period covers the entire period of

a SK (e.g., the time period between t6 and t10), the KP includes not lower

layer keys but a SK, (e.g., not k6 and k7 but k5). From the relations, we

can derive the recurrence formula as follows:

Cu
L = 2Cu

L−1 + 2L−2 − 1. (Cu
1 = 1) (4.6)

Here, Cu
L is the sum of the number of keys against all possible KP cases,

and L is the number of layers of keys.

Cu
L = 2Cu

L−1 + 2L−2 − 1

= 2(2Cu
L−2 + 2L−3 − 1) + 2L−2 − 1

= 22 · Cu
L−2 + 2 · 2L−2 − 1− 2

(4.7)

If we continuously expand the equation until L is one, the following

equation is obtained as Cu
L = 2L−1 · Cu

1 + (L − 1) · 2L−2 − 2L−1 + 1. Since

Cu
1 = 1 in Eq. (4.6), Eq. (4.7) can be simplified as follows:

Cu
L = (L− 1) · 2L−2 + 1 (4.8)

96

Thus
Cu

L

2L
is the average number of keys for generating the KP, which

stands for Cue. Note that 2L−1 − 1=the average number of dynamics in a

single SK=2Nt/(
E[Pv]
Ps

). Ps is the period of a SK. Therefore, from the Eq.

4.5 and Eq. 4.8, we can obtain the unicast communication overhead, the

average number of keys in KP with heavy traffic scenario (2L−1 >> 1), as:

Cu = Cus + 2Cue ≈
[
E[Pv]

Ps

]
− 1

2
+ 2

(
L− 1

2

)

=

[
E[Pv]

Ps

]
+

1

2
+

(
log2

|Nt|Ps

E[Pv]

)
.

(4.9)

Multicast cost

Since each vehicle has the keys used to derive new EKs over their subscrip-

tion period, multicast overhead comes from the only NKI messages issued

whenever vehicle dynamics (join and leave) exist.

When a vehicle subscribes to a service, the next GK is derived from a

present EK based on the subscription time of a vehicle. Each subscription

time information in the SPI makes vehicles perform one key derivation. Since

each key derivation causes one key derivation equivalent to two directions,

the overhead per vehicle subscription is 4 bits (2 bits per direction). On the

other hand, in the case of service expiration of a vehicle, each expiration

time information in the SPI makes vehicles perform two key derivations.

Thus overhead per service expiration is 8 bits.

Since there are |Nt| vehicles during E[Pv] period, the multicast message

overhead is as follows:

Cmo = 12(bits)/
E[Pv]

|Nt| =
12|Nt|
E[Pv]

(bits). (4.10)

97

Since the multicast message utilizes much more network resources, the

multicast cost have to be considered the network overhead. Chuang et al

have researched the network resource usage of multicast, which is |groupsize|0.8

times greater than that of unicast [50]. Here, |groupsize|0.8=Θ is the net-

work overhead ratio between unicast message and multicast message. Thus,

the multicast cost is as follows:

Cm = Θ · Cmo = |Nt|0.8 · Cmo. (4.11)

Communication Cost

The proposed scheme utilizes both unicast and multicast methods. Thus the

communication cost of the proposed scheme can be the sum of the multicast

cost and unicast cost [48], [49]. Therefore, we can obtain the communication

cost as follows.

Cmdkm = Cu + Cm. (4.12)

4.5 Cost Optimization

The previous section presents the computation, storage and communication

costs, which depend on various parameters, including the number of vehicles

|Nt|, the subscription period Pv, and the SK period Ps. By controlling the

parameters, we can model vehicles’ dynamics and set up various situations

in vehicular environments.

In this section, to statistically analyze the performance of proposed

scheme, we develop M/G/∞ system of vehicle membership dynamics in

98

vehicular environments. Based on the statistical analysis, we solve a cost

optimization problem as a design problem.

4.5.1 M/G/∞ system

At first we model vehicle dynamics as a statistical queening system. In this

model we assume that the vehicle subscription rate is a Poisson distribution

with mean rate λs, and the vehicle subscription period follows a gaussian

distribution G(·) with the meanE[Pv] and standard deviationDv. Generally,

it is well known that the assumptions are used in modeling group behavior

[46], [47].

Since vehicles’ dynamics are independent to each other’s demands, ve-

hicles’ dynamics can be modeled as a M/G/∞ system, which is a starting

point for statistical approach. Therefore, the probability that the number

of vehicles in a group at time t can be calculated as follows:

Pk(t) = Pr[N(t) = k]

=
∞∑

n=k

Pk(t|V (t) = n) · e
−λst(λst)

n

n!
.

(4.13)

N(t) = k represents that k vehicles who subscribed before time t are in

service. Let us consider a single vehicle, vi, who subscribed before time t.

Pr[vi subscribed at time x, and vi is in service at time x | vi subscribed

at time (0, t]] = Pr[vi subscribed at time (x, x + dx)| vi subscribed at time

(0, t]]·Pr[vi is in service at time t | vi arrived at time (0, t]]=1/tdx · Pr[vi’s

service is not over during the time period (t− x)]=1/t · [1−G(t− x)]dx.

99

If we substitute y for x, we can obtain an equation as follows:

∫ t

0

1

t
· [1−G(t− x)]dx =

1

t

∫ t

0
[1−G(y)]dy. (4.14)

Let us expand the single vehicle case to n numbers of vehicles case.

V (t) = n represents that n vehicles subscribed during the time period (0, t].

The number of cases that k vehicles are still in service among the n vehicles

is the same as those of picking out k samples among identically same n ones.

Thus, the probability in Eq. 4.13 can be calculated as follows:

Pk(t|V (t) = n)

= Cn
k ·

[
1

t

∫ t

0
[1−G(y)]dy

]k[
1− 1

t

∫ t

0
[1−G(y)]dy

]n−k (4.15)

By adapting the result of Eg. 4.15 to Eq. 4.13, we can obtain the

following results.

Pk(t) =
∞∑

n=k

Cn
k ·

[
1

t

∫ t

0
[1−G(y)]dy

]k

·
[
1− 1

t

∫ t

0
[1−G(y)]dy

]n−k

· e
−λst(λst)

n

n!

(4.16)

If we substitute x+k for n in Eq. 4.16, Eq. 4.16 can be given as follows:

∞∑

x=0

(x+ k)!

k!(x)!
·
[
1

t

∫ t

0
[1−G(y)]dy

]k

·
[
1− 1

t

∫ t

0
[1−G(y)]dy

]x
· e

−λst(λst)
x+k

(x+ k)!

(4.17)

Eq. 4.17 can be further simplified as follows:

[λs

∫ t
0 [1−G(y)]dy]k

k!

·
∞∑

x=0

[λst− λs

∫ t
0 [1−G(y)]dy]x · e−λst

x!
.

(4.18)

100

According to the taylor series of exponential function (ex =
∞∑
n=0

xn

n!), Eq.

4.18 is following to

[λs

∫ t
0 [1−G(y)]dy]k

k!
· e−λs

∫ t
0 [1−G(y)]dy (4.19)

As a result, we can obtain the following equation.

Pk(t) =
exp[−λs

∫ t
0 [1−G(y)]dy] · [λs

∫ t
0 [1−G(y)]dy]k

k!
(4.20)

Eq. 4.20 is a Poisson distribution with the mean of λs

∫ t
0 [1 − G(y)]dy.

Thus, we can calculate the probability of the number of vehicles in a steady

state as follows:

Pk = lim
t−>∞Pk(t) =

e−ρs(ρs)
k

k!
, (ρs = λsE[Pv]). (4.21)

Since the subscription and extension are independent, just by replacing

λs with λ, we can obtain the results. Thus, the number is M/G/∞ system

obeys a Poisson distribution with mean of ρ = λE[Pv], λ=λs+λe, where λe is

the vehicle extension rate. From the characteristics of Poisson distribution,

EPk
[k]=ρ=λE[Pv]=|Nt|.

If we apply the results of M/G/∞ to the three kinds of costs in the

previous section, we can transform the costs into statistical M/G/∞ cost.

As a result, the computation cost of a server and vehicle per unit time

is U s=Uv=4λ.

The storage cost of a server per unit time is Ss=λE[Pv].

101

The storage cost of a vehicle per unit time is

Sv =
1

2

(
E[Pv]

Ps

)
+ 4

λPs∑

i=1

(
1

i

)
+

4

λPs + 1
− 5

2
.

The unicast communication cost per unit time is

Cu =

[
E[Pv]

Ps

]
+

1

2
+

(
log2λPs

)
.

The multicast communication cost per unit time is Cm = 12λ(λ·E[Pv])
0.8(bits).

Therefore the communication cost can be obtained as follows:

Cmdkm = Cu + Cm =[E[Pv]/Ps] +
1

2
+ (log2λPs)

+ 12(E[Pv])
0.8 · (λ)1.8.

(4.22)

4.5.2 Key Management Cost

In this subsection, we analyze the key management cost of MDKM (KMCmdkm)

as the weighted sum of each cost. To sum up the different costs as analyzed

in the previous subsections, we adopt the coefficient to apply appropriate

weight according to the proposed model: γsS and γvS denote the cost required

to store a unit key in a server and vehicles, respectively. γsU and γvU denote

the cost required to compute a unit computation by a server and vehicle,

respectively. γuC and γmC denote the cost required to transmit a unit data by

unicast and multicast, respectively. Then we can derive the key management

cost as follows.

KMCmdkm(Ps) =γsSS
s + γvSS

v + γsUU
s + γvUU

v

+ γuCC
u + γmC Cm

(4.23)

102

4.5.3 Cost Optimization

Now, we are going to formulate the design problem to optimize the weighted

sum of the costs of MDKM which are analyzed in the previous section.

According to the results of the previous subsection, KMCmdkm(Ps) can be

written as a simplified function with the design parameter Ps as follows:

KMCmdkm(Ps) ' α
1

Ps
+ β logPs + δ (α, β, δ ∈ R+). (4.24)

Finally we define the cost optimization as below:

KMCmdkm(P ∗
s) = argmin

α,β,δ∈R+
KMCmdkm (Ps) (Ps ∈ Z+). (4.25)

Since ∇KMCmdkm(Ps) = 0 when Ps=α/β, KMCmdkm(·) is optimized

when P ∗
s=α/β.

4.6 Simulation

This section evaluates the performance of the proposed MDKM with vari-

ous aspects in vehicular group service scenario. As the metric for evaluating

the performance, communication cost, computation cost, and storage cost

are used as measures, while a server operates a service and manages a GK

by using the proposed method. Among the costs, computation and storage

costs will be evaluated with a server (KDC) and vehicles aspects, respec-

tively. Since each cost can be varied with various simulation parameters, we

evaluate the three kinds of costs caused by changes in parameter values such

as the mean of service subscription period (E[Pv]), the standard deviation of

103

service subscription period (Dv), and the subscription rate (λ). Finally, in

terms of key management cost, the MDKM scheme is compared with other

schemes.

4.6.1 Simulation Setup

In order to evaluate the performance of the MDKM, we develop the simula-

tion by using Microsoft Visual Studio C++. In the simulation, we assume

vehicular multicast services. While various kinds of cars such as commut-

ing car, bus and truck are moving around within vehicular service area,

some of them are supposed subscribe to the vehicular service group. In the

vehicular service group, vehicle subscription rate is modeled with Poisson

distribution, and the service subscription period of each vehicle are modeled

as Gaussian distribution. Since drivers’ moving behavior is not affected by

those of other drivers, it is reasonable to assume that each vehicle’s dynam-

ics are also independent from those of each other in the vehicular service

group. As ciphering and derivation algorithm, we adopted Advanced En-

cryption Standard (AES) and SHA-1, and the size of keys is 128 bits [?]

[54].

4.6.2 Computation Cost

In this subsection, we evaluate the computation costs of a server and vehicles

with the variable λ. Table 4.1 shows that the average number of compu-

tations per minute is below 50 times in the all cases, when both a server

and vehicle derive a new GK respectively. Since each AES operation and

104

Table 4.1: Computation cost of MDKM scheme (U s, Uv)

λ (/min) 2.4 4.8 7.2 9.6 12.0

U s, Uv (The number of 9.54 19.21 28.9 38.43 48.01

computations per min)

Table 4.2: Storage cost of a server of MDKM scheme (Ss)

Ss (bits) λ (/min)

2.4 4.8 7.2 9.6 12.0

E[Pv] 333 410k 819k 1.23m 1.64m 2.05m

(min) 667 819k 1.64m 2.46m 3.28m 4.10m

1000 1.23m 2.48m 3.69m 4.92m 6.14m

1333 1.64m 3.28m 4.92m 6.55m 9.22m

1667 2.05m 4.10m 6.14m 8.19m 10.2m

SHA-1 operation is done under a few micro seconds and a few nano second

in the vehicular environment, the computation delay in deriving new keys

is approximately negligible [51].

Table 4.3: Storage cost of a vehicle of MDKM scheme (Sv)

Sv (bits) λ (/min)

2.4 4.8 7.2 9.6 12.0

E[Pv] 333 3.16k 3.51k 3.71k 3.86k 3.97k

(min) 667 4.44k 4.79k 4.99k 5.14k 8.25k

1000 5.72k 6.07k 6.27k 6.42k 6.53k

1333 7.00k 7.35k 7.55k 7.70k 7.81k

1667 8.28k 8.63k 8.83k 8.98k 9.09k

105

4.6.3 Storage Cost

In this subsection, we evaluate the storage costs of a server (Ss) and vehicles

(Sv) with two parameters, such as the variables of the vehicle subscription

rate (λ) and the mean of vehicle subscription period (E[Pv]).

We first examine the effect of λ. Table 4.2 shows Ss, where the x-axis is

E[Pv]. Since the number of computations comes from the vehicle dynamics,

we can observe that Ss increases proportional to the λ. Considering that

the key size is 128 bits as explained, the amount of keys to be stored is not

heavy to a key server. Table 4.3 shows Sv. It is obvious that the λ does not

affect Sv different from Ss, because the new keys from λ can be derived from

the minimized keys in KP. Furthermore, the amount of keys to be stored in

each vehicle is not heavy either.

Next, we investigate the effect of E[Pv]. In Table 4.2, Ss is proportional

to the E[Pv], because the number of vehicles in a group is proportional to

the E[Pv] in given the fixed λ. This trend is also observed in Sv as shown

in Table 4.3, because of the number of SKs in KP that is proportional to

E[Pv].

4.6.4 Communication Cost

The communication cost is decomposed into multicast cost from delivering

the KP and unicast cost from delivering the NKI. In this subsection, we

investigate each cost respectively.

106

Table 4.4: Unicast cost of MDKM scheme (Cu)

Cu (bits per min)

E[Pv] (min) 167 333 500 667 833

Cu 21.6k 32.2k 42.8k 51.1k 63.1k

Dv (min) 16.7 33.3 50.0 66.7 83.3

Cu 42.8k 42.5k 42.5k 42.4k 41.9k

λ (/min) 2.4 4.8 7.2 9.6 12.0

Cu 6.4k 13.5k 21.3k 29.2k 37.4k

Table 4.5: Multicast cost of MDKM scheme (Cm)

Cm (bits per min)

E[Pv] (min) 167 333 500 667 833

Cm 43.2k 73.7k 100.8k 124.9k 146.80k

Dv (min) 16.7 33.3 50.0 66.7 83.3

Cm 100.42k 100.81k 100.35k 100.14k 99.00k

λ (/min) 2.4 4.8 7.2 9.6 12.0

Cm 5.8k 20.3k 42.8k 72.3k 108.3k

107

Unicast Cost

Table 4.4 shows the unicast communication cost (Cu) according to the mean

of vehicle subscription period (E[Pv]). This result shows that the number

of keys in the KP to be delivered is proportional to E[Pv]. In addition, the

table shows Cu as the deviation of vehicle subscription period (Dv) varies,

which shows that the performance is not much affected by the variable.

According to the results, we can observe that the proposed scheme requires

little unicast communication cost, only less 0.6 kbps when E[Pv] is about

500 minutes.

In Table 4.4, Cu isO(λ), while those of conventional schemes areO(λ log λ).

O(λ) is caused from the number of updating GK according to the vehicle

subscription, which means that Cu is scalable (O(1)) at a single GK update.

Therefore, the proposed scheme has no 1-affect-all problem in terms of uni-

cast cost, which is a critical obstacle in designing GKM schemes, while the

conventional schemes requires O(log λ) = O(log |Nt|) (|Nt| = λ · E[Pv]).

Multicast cost

Table 4.5 shows the multicast communication cost (Cm) according to the

mean of vehicle subscription period (E[Pv]), the deviation of vehicle sub-

scription period (Dv), and vehicle subscription rate (λ) as well. These re-

sults showed that the NKI to be delivered is not related with all parameters

but only with λ, because of the two reason. First, the frequency of mul-

ticasting the NKI is related to only the number of updating GK (O(λ)).

108

Second, the MDKM reduces the increment of messages as the number of

vehicles increases by using the proposed algorithms. The increments of Cm

in Table 4.5 are not from 1-affect-all problem but from the network overhead

of multicast (Θ) and the frequency of updating GK. The result proves that

the proposed scheme has no 1-affect-all problem at a single key updating

in terms of multicast cost as well, while conventional ones have. According

to the results in the above table, we can observe that the proposed scheme

requires little multicast communication cost. Even though λ increases, we

can easily expect that the proposed scheme can successfully handle the cost

without network burden in vehicular multicast service.

4.6.5 The Comparison of Key Management Cost

In this subsection, we compare the Key Management Cost of LKH with IR,

Protocol A and B with BR, and the MDKM. Since the Protocol A and B

proposed in Ji et al are designed by using the subscription information as

well as MDKM [55], we compare the performance of the protocol A and B

with that of MDKM. We set the coefficients based on the market prices of

various devices such as flash memory and the price of data rate in cellular

network; γsS = 0.0001, γvS = 0.0005, γsU = 0.0002 and γvU = 0.001, γuC =

γmC = 3, (Assume that the unicast and multicast is delivered through same

cellular network).

Fig. 4.7 shows the key management cost of four different key manage-

ment schemes as the vehicle subscription rate (λ) varies. In the figure, LKH

with IR shows the worst performance since LKH consists of a key tree not

109

considering the vehicles dynamics. It notes that we designed efficient key

management scheme by using subscription information.

MDKM greatly reduces the key management cost than Protocol A and

B. This is because MDKM can minimize the usage of multicast delivery

by decomposing the communication data into unicast data and multicast

data, and by minimizing the multicast data, while Protocol A and B deliver

most of key update messages via multicast. LKH with IR showed the worst

performance. In addition, Protocol A and B, which utilize BR, do not

guarantee the strict confidentiality in vehicular multicast services. As a

result, we can deduce that the MDKM scheme is the most scalable and

suitable method among the schemes for secure vehicular multicast services.

110

Vehicle subscription rate (per min)
0 2 4 6 8 10 12

Ke
y M

an
ag
em

en
t C

os
t

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8
MDKM
LKH + IR
Protocol A + BR
Protocol B + BR

Figure 4.7: The Comparison of Key Management Cost for the LKH, Protocol
A, B, and MDKM.

111

Chapter 5

Conclusion

In this dissertation, I proposed the efficient key management schemes in

multicast communication.

First, I have presented a new key tree structure called the CSET, which

is a subset of a level-homogeneous tree and a key tree management pro-

tocol which dynamically controls the key tree structure, considering the

computation and storage efficiencies as well as the communication cost. By

managing a key tree structure, the CSET greatly reduced the computa-

tion and storage costs. These are critical when designing a new group key

management protocol in mobile communication environments. Though the

CSET does not present the best communication cost, the CSET manage-

ment protocol provided the method which minimizes the increment of the

communication cost by controlling the key tree structure. To verify the ef-

ficiency of the protocol, I also analyzed and simulated the communication

cost of a level-homogeneous tree structure in terms of the average number of

update messages, as well as the storage and computation costs such as the

112

energy consumption and the decryption delay. Based on these analysis and

simulation, I have shown that the proposed protocol can greatly reduce com-

putation and storage costs complexity at the expense of a small increase of

the communication cost as a tradeoff. Even though the application scenarios

in mobile communications are assumed, this approach is also applicable to

wireless sensor networks in which sensor nodes have very limited resources.

Second, since previous researches have mainly focused on the scalability

problem, a batch rekeying approach has been proposed and adopted in a

group key management situation. However, a batch rekeying causes security

damage by breaking the forward confidentiality. Therefore, I proposed a new

batch rekeying scheme which optimizes the total cost per unit time, including

the analytic model for the optimal batch rekeying interval. I modeled and

analyzed the total cost into the communication cost and the security damage

cost from the characteristics of the two costs. I conducted the simulations

with respect to the various variables. The simulation results showed that

the proposed scheme can provide the optimal batch rekeying interval to

minimize the total cost per unit time.

Third, I have designed an efficient GKM scheme called MDKM which

utilizes both unicast and multicast with KPA, KPAE, NKIA and NKDA

to eliminate 1-affects-all problem in vehicular multicast communication. In

addition, I analyzed the performance of the proposed scheme in terms of

communication, storage and computation costs in detail. Furthermore, as a

design problem, I optimized the GKM cost which is the weighted sum of the

113

three kinds of the costs. The simulation results showed that the proposed

scheme has better efficiency than those of the conventional schemes.

114

Chapter 6

Appendix

6.1 Useful equations derived from the Binomial
Theorem

The Binomial theorem is a formula giving the expansion of powers of sums.

The equations that have been derived consist of combinations, most of which

are quite complex to analyze. In order to simplify and analyze the Eq.(2.11),

useful equations have been derived from the Binomial theorem and use the

following results.

The simplest version of the Binomial theorem is as follows:

(a+ b)n =
n∑

k=0

Cn
k · an−k · bk. (6.1)

If a = 1 and b = χ, Eq.(6.1) is given as

(1 + χ)n =
n∑

k=0

Cn
k · χk. (6.2)

If χ = −1, Eq.(6.2) is following to

n∑

k=0

Cn
k · (−1)k = (1 + (−1))n = 0. (6.3)

115

Multiply χ to both sides of Eq.(6.2) then, the following equation is ob-

tained:

χ · (1 + χ)n =
n∑

k=0

Cn
k · χk+1. (6.4)

Differentiating Eq.(6.4) with respect to χ, we can obtain

(1 + χ)n + χ · n · (1 + χ)n−1 =
n∑

k=0

Cn
k · (k + 1) · χk. (6.5)

If n ≥ 2 and χ = −1 in Eq.(6.5), Eq.(6.5) is given as

n∑

k=0

Cn
k · (k + 1) · (−1)k = (1 + (−1))n + (−1) · n · (1 + (−1))n−1 = 0 (6.6)

If n = 1 in Eq.(6.5), then Eq.(6.5) is

1∑

k=0

C1
k · (k + 1) · χk = 1 + χ+ χ = 1 + 2χ. (6.7)

If χ = −1 in Eq.(6.5), then Eq.(6.7) is

1∑

k=0

C1
k · (k + 1) · (−1)k = 1 + 2 · (−1) = −1 (6.8)

With Eq.(6.5), if n = 0, Eq. (6.5) is simplified to one.

116

Bibliography

[1] H.Harney, C.Muckenhirn and E. Harder, ”Group Key Management Pro-

tocol(GKMP) Specification”, RFC2093, 1997.

[2] H.Harney, C.Muckenhirn and E. Harder, ”Group Key Management Pro-

tocol(GKMP) Architecture”, RFC2094, 1997.

[3] D. M. Wallner, E. J. Harder and R. C. Agee, ”Key Management for

Multicast: Issues and Architectures”, RFC 2627, 1999

[4] X. S. Li, Y. R. Yang, M. G. Gouda and S. S. Lam, ”Batch Rekeying for

Secure Group Communications”, in Proc. of 10th International World

Wide Web Conference (WWW10), 2001.

[5] S. M. Ghanem and H. Abdel-Wahab, ”A Secure Group Key Management

Framework: Design and Rekey Issues”, in Proc. of 8th IEEE Interna-

tional Symposium on Computers and Communication (ISCC), 2003.

[6] S. Rafaeli and D. Hutchison, ”A survey of key management for secure

group communication”, in ACM Comput. Surv. 35, 3 (Sep. 2003), 309-

329.

[7] D. A. McGrew and A. T. Sherman, ”Key establishment in large dynamic

groups using one-way function trees”, IEEE Transaction on Software

Engineering, Volume 29, Issue 5, May 2003 Page(s):444-458

[8] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor and B. Pinkas

”Multicast security: a taxonomy and some efficient constructions”, in

Proc. IEEE International Conference on Computer Communication (IN-

FOCOM), 1999.

117

[9] Y. Wang, J. Li, L. Tie and Q. Li, ”An Efficient Key Management for

Large Dynamic Groups”, in Proc. IEEE 2th Annual Conference on Com-

munication Networks and Services Research (CNSR), 2004.

[10] J. Lin, F. Lai and H. C. Lee, ”Efficient Group Key Management Proto-

col with One-Way Key Deriviation,” in Proc. IEEE Conference on Local

Computer Networks (LCN), 2005.

[11] A. Hodjat and I. Verbauwhede, ”The Energy Cost of Secrets in Ad Hoc

Networks (Short Paper),” in Proc. IEEE Circuits and Systems Workshop

(CAS), 2002.

[12] CrossBow Technology Inc. TelosB Mote Platform Datasheet. Available

at: http://www.xbow.com/Products/Product pdf files/Wireless pdf/

TelosB Datasheet.pdf.

[13] Texas Instruments, Inc.: MSP430x13x, MSP430x14x Mixed Signal Mi-

crocontroller. Datasheet, 2001.

[14] TinyOS, http://www.tinyos.net/

[15] W. H. Desmond Ng, M. Howarth, Z. Sun and H. Cruickshank, ”Dy-

namic Balanced Key Tree Management for Secure Multicast Commu-

nications,” in IEEE Trans. Comput., vol. 56, no. 5, pp. 590-605, May,

2007.

[16] A. Tucker, ”Applied Combinatorics 3rd Edition”, John Wiley & Sons,

1995, Chapter 8.

[17] J. Snoeyink and S. Suri and G. Varghese, ”A Lower Bound for Multicast

Key Distribution”, in Proc. IEEE INFOCOM, 2001.

[18] W. T. Zhu, ”Optimizing the Tree Structure in Secure Multicast Key

Management”, Communications Letters, IEEE, Volume 9, Issue 5, May

2005 Page(s):477 - 479.

[19] J. S. Lee, J. H. Son, Y. H. Park and S. W. Seo, ”Optimal Level-

homogeneous Tree Structure for Logical Key Hierarchy,” In Proc. IEEE

Conference on Communication System Software and Middleware work-

shop (COMSWARE), 2008.

118

[20] C. K. Wong, M. G. Gouda and S. S. Lam, ”Secure group communica-

tions using key graphs”, in Proc. ACM Special Interest Group on Data

Communications (SIGCOMM), 1998.

[21] J. Pegueroles and F. Rico-Novella, ”Balanced Batch LKH: New Pro-

posal, Implementation and Performance Evaluation”, in Proc. IEEE

International Symposium on Computers and Communication (ISCC),

2003.

[22] J. Pegueroles, F. Rico-Novella, J. Hernandez-Serrano and M. Soriano,

”Improved LKH for Batch Rekeying in Multicast Groups”, in Proc. IEEE

Information Technology: Research and Education (ITRE), 2003.

[23] S. Xu, Z. Yang, Y. Tan, W. Liu and S. Sesay, ”An Efficient Batch

Rekeying Scheme Based on One-Way Function Tree”, in Proc. IEEE

International Symposium on Communications and Information Technol-

ogy (ISCIT), 2005.

[24] X. B. Zhang, S. S. Lam, Dong-Young Lee and Y. R. Yang, ”Protocol

Design for Scalable and Reliable Group Rekeying”, in Proc. IEEE/ACM

Transactions on Networking, 2003.

[25] R. Rivest, ”The RC5 Encryption Algorithm”, in Proc LeuvenWorkshop

on Fast Software Encryption, 2005.

[26] R. Rivest, M. Robshaw, R. Sidney and Y. Yin, ”The RC6TM Block

Cipher”, 1998.

[27] J. Daemen and V. Rjimen, ”AES Proposal: Rijndael”, 1999.

[28] Y. Law, J. Doumen and P. hartel, ”Survey and Benchmark of Block

Cipers for Wireless Sensor Networks”, ACM Transaction on Sensor Net-

works, Vol. 2(1), 2006.

[29] K. Almeroth and B. Quinn, ”IP multicast applications: Challenges

and solutions”, IETF Draft, Nobember 1998, Filename: draft-quinn-

multicast-apps-00.txt.

[30] R.Canetti, Juan Garay, Gene Itkis, Daniele Miccianancio, Moni Naor

and Benny Pinkas, ”Multicast security: a taxonomy and some efficient

constructions”, in IEEE INFOCOM, 1999, Page(s):708-716.

119

[31] J. H. Cho, I. R. Chen and M. Eltoweissy, ”On optimal batch rekeying for

secure group communications in wireless networks”, Wireless Networks,

Vol. 14, No. 6, pp. 915-927, 2008.

[32] Y. Ji and S. W. Seo, ”Optimizing the Batch Mode of Group Rekeying:

Lower Bound and New Protocols”, in Proc. IEEE INFOCOM 10, 2010.

[33] D. H. Je, J. S. Lee, Y. S. Park and S. W. Seo, ”Computation-and-

storage-efficient key tree management protocol for secure multicast com-

munications,”, Computer Communications, ELSEVIER, Volume 32, Is-

sue 2, pp.136-148, Feb. 2010.

[34] S. Boyd and L. Vandenberghe, ”Convex Optimization”, Cambridge

University Press, 2006, Chapter 9.

[35] National Highway Traffic Safety Administration, CAMP Vehicle Safety

Communications, Vehicle Safety Communications Project, Task 3 Final

Report, Identify intelligent vehicle safety application enabled by DSRC,”

DOT HS 809 859, National Highway Traffic Administration, Washing-

ton, DC, March 2005.

[36] M. Nekovee, Sensor networks on the road: the promises and challenges

of vehicular ad hoc networks and vehicular grids,” in Proc. of the Work-

shop on Ubiquitous Computing and e-Research, Edinburgh, UK, May

2005.

[37] J. Blum, A. Eskandarian, and L. Hoffmman, Challenges of intervehicle

ad hoc networks,” IEEE Trans. Intelligent Transportation Systems, vol.

5, no. 4, pp. 347-351, Dec. 2004.

[38] M. Park, G. Gwon, S. Seo, and H. Jeong, RSU-Based Distributed Key

Management (RDKM) for Secure Vehicular Multicast Communication”.

IEEE Journal on Selected Areas in Communications (JSAC), Vol 29,

No. 3, March 2001.

[39] Y. Sun, W. Trappe, and K. J. R. Liu, A scalable multicast key manage-

ment scheme for heterogeneous wireless networks”, IEEE/ACM trans-

actions on Networking vol. 12, no. 4, pp. 653-666, Aug. 2004

120

[40] IEEE Standard for Information technology. Telecommunications and

information exchange between systems. Local and metropolitan area

networks. Specific requirements Part 11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications, 2007.

[41] IEEE Standard for Local and metropolitan area networks Part 16: Air

Interface for Broadband Wireless Access Systems, 2009.

[42] D. L. Mills, Internet time synchronization: The network time protocol”,

IEEE Transaction on Communication, vol. 3, no. 3, pp. 1482-1493, Oct.

1991.

[43] D. L. Mills, Improbed algorithm for synchromizing computer network

clocks”, IEEE/ACM Transaction on Networking, vol. 3, no. 3, pp. 245-

254, Jun. 1995.

[44] D. L. Mills, J. Martin, Ed., J. Burbank, and W. Kasch, Network Time

Protocol Version 4: Protocol and Algorithms Specification”, RFC5905,

2010.

[45] D. L. Mills, Precision synchronization of computer network clocks”,

ACM SIGCOMM Computer Communication Review, vol. 24, no. 2, Apr.

1994.

[46] K. Almeroth and M. Ammar, Collecting and modeling the join/leave

behavior of multicast group members in the mbone, in Proceeding 5th

IEEE Int. Symp. High Performance Distributed Comput., pp. 209-216,

1996.

[47] K. Almeroth and M. Ammar, multicast group behavior in the Internets

multicast backbone (MBone), IEEE Commun., vol. 35, pp. 224-229, Jun.

1999.

[48] T. Billhartz, J. Cain, E. Farrey-Goudreau, D. Fieg, and S. Batsell,

Performace and Resource Cost Comparisons for the CBT and PIM Mul-

ticast Routing Protocols”, IEEE Journal on Selected Areas in Commu-

nications, vol. 15, no. 3, Apr. 1997

[49] H. Salama, D. Reeves, and Y. Viniotis, Evaluation of Multicast Routing

Algorithms for Real-Time Communication on High-Speed Networks”,

IEEE Journal on Selected Areas in Communications, vol. 15, no. 3, Apr.

1997

121

[50] J. Chuang, and M. Sirbu. Pricing Multicast Communication: A Cost-

Based Approach”, Telecommunication Systems, pp. 281-297, 2001

[51] Crypto++ 5.6 Benchmarks. [Online]. Available:

http://www.cryptopp.com/benchmarks.html

[52] S. Paul, Multicasting on the Internet and Its Applications, Boston, MA:

Kluwer, 1998.

[53] R. Rivest, The MD5 Message-Digest Algorithm”, RFC 1321, 1992.

[54] National Security Agency, US Secure Hash Algorithm (SHA)”, RFC

3174, 2001.

[55] Y. Ji and S. Seo, Optimizing the batch mode of group rekeying: lower

bound and new protocols”, in Proc. IEEE/ACM INFOCOM, 2010.

122

국문 초록

엔터테인먼트, 통신, 기기 제어와 같은 다양한 어플리케이션에 대한

요구가 증가하고 네트워크 기술이 발달되면서, 멀티캐스트 통신은 한 번

의 전송으로 그룹 사용자들에게 동시에 메시지를 전송할 수 있기 때문에

통신 부하를 줄이기 위한 유망한 솔루션들 중 하나가 되고 있다. 그러나

정보 노출이 주요한 관심사중 하나가 됨에 따라 키 관리 방법은 멀티캐스

트 통신에서 상업용 어플리케이션을 성공적으로 보급하는데 필수적인 요

소로 고려되고 있다. 유니캐스트와 다르게 멀티캐스트의 확장성은 데이터

기밀성을 제공하기 위한 비밀 키를 관리하는데 주요한 장애물이다. 따라

서 본 논문에서는 멀티캐스트 사용자들이 비밀 키를 관리하는데 보안과

자원 요구사이의 관계에 대해서 초점을 맞추고, 멀티캐스트 통신에서 다

양한 효율적인 키 관리 방법들에 대하여 제안한다: 연산 저장에 효율적인

키 트리 관리 프로토콜, 안전한 그룹 통신을 위한 최적 키 갱신 주기, 그

리고 안전한 자동차용 멀티캐스트 통신을 위한 구성원의 역동성에 기반을

둔 키 관리 방법.

주요어: 안전한 멀티캐스트, 그룹 키 관리, 키 트리 관리, 일괄 키 갱신,

데이터 기밀성, 자동차용 멀티캐스트 서비스, 접근 제어

학 번: 2006-21289

	1 Introduction
	1.1 Background and Motivation
	1.2 Organization of This Dissertation
	1.2.1 Computation-and-Storage-Efficient Key Tree Management Protocol for Secure Multicast Communications
	1.2.2 Optimal Batch Rekeying Interval for Secure Group Communication
	1.2.3 Membership Dynamics based Key Management (MDKM) for Secure Vehicular Multicast Communications

	2 Computation-and-Storage-Efficient Key Tree Management Protocol for Secure Multicast Communications
	2.1 Introduction
	2.2 Key Tree Structures and Key Update
	2.2.1 Typical Key Tree Structure
	2.2.2 Level-Homogeneous Key Tree Structure
	2.2.3 Computation-and-Storage-Efficient Key Tree (CSET)
	2.2.4 Key Update
	2.2.5 Batch Rekeying

	2.3 Computation-and-Storage-Efficient Key Tree(CSET) Management Protocol
	2.3.1 Join Operation
	2.3.2 Leave Operation

	2.4 Cost Analysis
	2.4.1 Analysis of the Computation Cost
	2.4.2 Analysis of the Storage Cost
	2.4.3 Analysis of the Communication Cost
	2.4.4 Cost Tradeo?of CSET

	2.5 Performance Evaluation
	2.5.1 Simulation Setup
	2.5.2 Comparison of Communication Cost Between Analysis and Simulation
	2.5.3 Performance Evaluation of CSET

	3 Optimal Batch Rekeying Interval for Secure Group Communication
	3.1 Introduction
	3.2 Background
	3.3 New Batch Rekeying Scheme
	3.3.1 Cost Definition
	3.3.2 New Batch Rekeying Scheme

	3.4 Cost Analysis of the Batch Rekeying
	3.4.1 Analysis of Communication Cost
	3.4.2 Analysis of Security Damage Cost
	3.4.3 Analysis of Total Cost

	3.5 Simulation Results and Discussion
	3.5.1 Simulation Setup
	3.5.2 Performance Evaluation

	4 Membership Dynamics based Key Management (MDKM) for Secure Vehicular Multicast Communications
	4.1 Introduction
	4.1.1 Group Key Management
	4.1.2 Group Key Management in Vehicular Environments
	4.1.3 Contribution
	4.1.4 Paper Organization

	4.2 Model
	4.2.1 Network Model
	4.2.2 Service Model
	4.2.3 Vehicle Model
	4.2.4 Key Model

	4.3 Membership Dynamics based Key Management (MDKM)
	4.3.1 Membership Dynamics based Key Derivation
	4.3.2 Membership Dynamics based Key Management (MDKM)

	4.4 Cost Analysis
	4.4.1 Computation Cost
	4.4.2 Storage Cost
	4.4.3 Communication Cost

	4.5 Cost Optimization
	4.5.1 M/G/1 system
	4.5.2 Key Management Cost
	4.5.3 Cost Optimization

	4.6 Simulation
	4.6.1 Simulation Setup
	4.6.2 Computation Cost
	4.6.3 Storage Cost
	4.6.4 Communication Cost
	4.6.5 The Comparison of Key Management Cost

	5 Conclusion
	6 Appendix
	6.1 Useful equations derived from the Binomial Theorem

	Bibliography
	Abstract in korean

<startpage>11
1 Introduction 1
 1.1 Background and Motivation 1
 1.2 Organization of This Dissertation 3
 1.2.1 Computation-and-Storage-Efficient Key Tree Management Protocol for Secure Multicast Communications 3
 1.2.2 Optimal Batch Rekeying Interval for Secure Group Communication 4
 1.2.3 Membership Dynamics based Key Management (MDKM) for Secure Vehicular Multicast Communications 5
2 Computation-and-Storage-Efficient Key Tree Management Protocol for Secure Multicast Communications 6
 2.1 Introduction 6
 2.2 Key Tree Structures and Key Update 11
 2.2.1 Typical Key Tree Structure 12
 2.2.2 Level-Homogeneous Key Tree Structure 14
 2.2.3 Computation-and-Storage-Efficient Key Tree (CSET) 15
 2.2.4 Key Update 17
 2.2.5 Batch Rekeying 18
 2.3 Computation-and-Storage-Efficient Key Tree(CSET) Management Protocol 19
 2.3.1 Join Operation 20
 2.3.2 Leave Operation 24
 2.4 Cost Analysis 27
 2.4.1 Analysis of the Computation Cost 27
 2.4.2 Analysis of the Storage Cost 28
 2.4.3 Analysis of the Communication Cost 28
 2.4.4 Cost Tradeo?of CSET 32
 2.5 Performance Evaluation 36
 2.5.1 Simulation Setup 36
 2.5.2 Comparison of Communication Cost Between Analysis and Simulation 37
 2.5.3 Performance Evaluation of CSET 39
3 Optimal Batch Rekeying Interval for Secure Group Communication 49
 3.1 Introduction 49
 3.2 Background 53
 3.3 New Batch Rekeying Scheme 54
 3.3.1 Cost Definition 55
 3.3.2 New Batch Rekeying Scheme 56
 3.4 Cost Analysis of the Batch Rekeying 60
 3.4.1 Analysis of Communication Cost 60
 3.4.2 Analysis of Security Damage Cost 61
 3.4.3 Analysis of Total Cost 63
 3.5 Simulation Results and Discussion 64
 3.5.1 Simulation Setup 64
 3.5.2 Performance Evaluation 64
4 Membership Dynamics based Key Management (MDKM) for Secure Vehicular Multicast Communications 69
 4.1 Introduction 69
 4.1.1 Group Key Management 70
 4.1.2 Group Key Management in Vehicular Environments 71
 4.1.3 Contribution 73
 4.1.4 Paper Organization 74
 4.2 Model 75
 4.2.1 Network Model 75
 4.2.2 Service Model 76
 4.2.3 Vehicle Model 76
 4.2.4 Key Model 77
 4.3 Membership Dynamics based Key Management (MDKM) 79
 4.3.1 Membership Dynamics based Key Derivation 79
 4.3.2 Membership Dynamics based Key Management (MDKM) 82
 4.4 Cost Analysis 91
 4.4.1 Computation Cost 91
 4.4.2 Storage Cost 92
 4.4.3 Communication Cost 93
 4.5 Cost Optimization 98
 4.5.1 M/G/1 system 99
 4.5.2 Key Management Cost 102
 4.5.3 Cost Optimization 103
 4.6 Simulation 103
 4.6.1 Simulation Setup 104
 4.6.2 Computation Cost 104
 4.6.3 Storage Cost 106
 4.6.4 Communication Cost 106
 4.6.5 The Comparison of Key Management Cost 109
5 Conclusion 112
6 Appendix 115
 6.1 Useful equations derived from the Binomial Theorem 115
Bibliography 117
Abstract in korean 123
</body>

