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Abstract

Feng Luan
School of Electrical Engineering and Computer Science

The Graduate School
Seoul National University
Magnetoencephalography (MEG) is a common noninvasive biomedical
technique used to measure weak electromagnetic fields generated by some
ensembles of neurons inside the brain with high temporal resolution. The
main objective of neuroelectromagnetic source signal analysis is to accurately
estimate the location, distribution of a neuronal signal at a fine time series
resolution, and to provide functional information about source dynamics
based on the outside electromagnetic field measurement. Since the widely
recognized ill-posed problem of the neuroelectromagnetic source imaging, the
source signal estimation is not unique unless some possible and reasonable
constraints are imposed, and consequently various methods have been
proposed in this thesis to obtain an optimal resolution by adding
computationally tractable and biophysically plausible constraints to the source

imaging algorithms.

The abilities of the generalized cross validation (GCV) method and the L-
curve method for the determination of the optimal regularization parameter
are studied and compared for the inverse algorithms of neuroelectromagnetic
problems. The results verify that the GCV method is a better choice when the

measurement noise is relatively high, and the L-curve method seems to be



more effective when the source is mainly dominated by errors such as brain

perturbation.

An improved inverse algorithm for precisely estimating the correlated
neuroelectromagnetic activities in the deep source space is proposed. A novel
weighting matrix building method obtained from the sensitivity similarity
degree of the sensor array between the sources is presented, so as to enhance
the property representation for the correlated deep sources. The results
confirm that the proposed technique provides more detailed information for
the source estimation, improves the result accuracy, and is physically more

reasonable than the conventional inverse algorithms.

Recent studies on neuroelectromagnetic inverse problems have shown that a
satisfactory understanding of source mechanisms requires to perform source
connectivity analysis. This thesis studies inverse algorithms for reconstructing
the source connectivity network. The results confirm that the noise effect for
linear estimation algorithm is direct, while, for spatial filtering technique the
effect is indirect. Linear estimation is advantageous for the connectivity
reconstruction of high quality outside electromagnetic measurements, while,
the benefit for the case of spatial filter is the low measurement environments.
This thesis also proposes a modified spatial filtering algorithm to improve the
source connectivity reconstruction by using the correlation gram matrix. The
results show that the proposed algorithm can increase the reconstruction
accuracy, decrease the error fluctuation and enhance the representation for

profiles of the original source connectivity network.
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Finally, this thesis proposes a subspace decomposition imaging (SDI) method
for measuring a neuroelectromagnetic source signal. The SDI technique is
based on spatiotemporal signal analysis from a matrix perspective that
decomposes the source into low-rank and sparse components in a manner
consistent with the underlying bio-mechanism in statistics. The SDI method
can capture dynamic details in the source space that would sometimes be too
weak to be recognized by conventional methods, but can also recover the
stationary source signal contaminated by large brain perturbation. The results
establish the feasibility of the SDI method for neuroelectromagnetic source
signal measurement, with resulting solutions that provide substantial
performance improvement over conventional methods. Moreover, noise
suppression in MEG measurement is particularly challenging because it is
difficult to remove the noise and preserve the information components in the
MEG data. In this thesis, a novel noise suppression method, based on SDI
technique, is also studied and applied to neuroelectromagnetic source
estimation. The results show that the proposed method can significantly

improve the estimation performance.

Keywords: Electromagnetic brain imaging, magnetoencephalography (MEG),
neuroelectromagnetic inverse problem, source signal imaging, subspace

decomposition imaging (SDI)

Student Number: 2008-31105
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1 Introduction

Magnetoencephalography (MEG) is a common noninvasive biomedical
technique used to measure weak electromagnetic fields generated by some
ensembles of neurons inside the brain with high temporal resolution [1]. The
main objective of neuroelectromagnetic source signal analysis is to accurately
estimate the location, distribution of a neuronal signal at a fine time series
resolution, and to provide functional information about source dynamics

based on the outside electromagnetic field measurement [2-10].

To solve the inverse problem, the field is sampled at different sensor locations
and the underlying activity pattern is then determined [11, 12]. In the case
where no a priori information is known about the source to be estimated, a
method named Moore-Penrose Inverse estimates the source signal solely by
the outside measurement without any constraints [13, 14]. The minimum
norm (MN) estimation minimizes the L2-norm of the estimated source in the
sense that the overall intensity of the source current should be as low as
possible. Unfortunately, this constraint is not necessarily physiologically valid
because there is no proof that the source current configuration with the second
lowest intensity is not actually the correct one. The MN estimation thus favors
the superficial source that the deeper source will be incorrectly estimated on
the shallower position than the actual situation [5]. In order to compensate for
the disfavored deep source, various weighted minimum norm estimation

(WMNE) methods have been developed by applying a weighting matrix to the



estimated source. The weighting matrix can have different forms but the
simplest possible weighting is based on the norm of the columns of the lead
field matrix, which has been shown to improve localization result [5, 10, 15].
The well known low-resolution electromagnetic tomography (LORETA) sets
the weighting matrix to an approximation of the Laplacian operator and favors
spatially smooth current distribution, however the spatial resolution of
LORETA is blurry and relatively low [2, 16]. Two noise normalized MN
estimation methods, dynamic statistical parametric mapping (dSPM) and
standardized low-resolution electromagnetic tomography (SLORETA), which
can implicitly perform depth weighting by a normalization with the estimated
noise at each source [15, 17]. The variants of MN techniques mentioned
above is appropriate for estimating spatially extended source. Nevertheless,
intracranial experiments have demonstrated that the some neural activities are
sparsely localized in the brain, such as early sensory activity and focal
epilepsy [18, 19]. The MN based methods are not suitable for localization of
spatially focal source since the minimum L2-norm constraint penalizes such
estimates [20]. The Focal underdetermined system solver (FOCUSS) [21, 22]
iteratively updates the weight according to the source estimated in previous
step, leading to a more focal source estimate, but the drawback of the
FOCUSS is its sensitivity to noise and initial estimated source [16, 20].
Moreover, the Lp-norm (p<:2) iterative sparse solution (LPISS) integrates the
Lp-norm constraint for sparse source into the iterative procedure of FOCUSS.
Compared with FOCUSS, LPISS forces the estimated source to converge to a
sparse one effectively, however, it needs much more computation because of

solving the Lp-norm constrained problem [23]. Another set of methods aimed



at providing bias toward sparse and focal sources use the L1-norm of the
estimated source as a constraint. Such considerations yield several related
optimization estimations. For instance, one of the most popular types is
known as the minimum current estimation (MCE), which minimizes the sum
of the source absolute current and leads to more focal source estimates than
estimates using L2-norm [24, 25]. Over the years, this scheme and its
modifications have been extensively studied by various authors. Huang et al.
[26] present a vector based spatial-temporal analysis using a L1-minimum
norm (VESTAL) to remedy the spatial "jumping" and temporal "spiky-
looking" encountered in the conventional focal estimations. In the VESTAL
approach, the temporal information of the outside measurement is used to
enhance the stability of the estimated source. In an attempt to fix the
orientation discrepancy problem arising in the L1-norm based methods, the
sparse source imaging (SSI) technique which is achieved by the second order
cone programming has been developed [27]. Based on the assumption that the
source activity is sparse in the space-time plane, Bolstad et al. [16] develop an
event sparse penalty procedure using the spatiotemporal framework. A
solution space sparse coding optimization (3SCO) algorithm is taken by Xu et
al. [3] in which the LO-norm constraint is introduced to guarantee the sparse

source is estimated by using the particle swarm optimization procedure [28].

Finally, the choice of estimation methods can be different depends on the
nature of brain activities in various conditions. L2-norm based estimations are
suited to image diffuse source whereas L0 and L1-norm based estimations are
suited to image focal source. Therefore, it is hard to find a universal

estimation method to accurately image all kinds of brain activities, e.g.,



diffuse activities in cognitive tasks or spontaneous states, focal activities
induced by somatosensory stimulation. The choice of estimation methods and
the understanding of the nature of brain activities in different applications are
the challenges in neuroelectromagnetic source imaging [29, 30]. In addition,
as far as the estimation methods are concerned, we are not aware of the
uncertain brain activity, e.g., composite activity. Recently, a novel
compressive neuromagnetic tomography (CENT) method based on the
assumption that the current sources are compressible is proposed. Instead of
explicitly favoring either spatially more sparse or extended sources, the CENT
method yields better estimate than the L1 or L2-norm methods when both

focal and diffuse sources are present simultaneously [2].

As mentioned above, due to the widely recognized ill-posed nature of the
neuroelectromagnetic inverse problem, the source signal estimation is not
unique unless some possible and reasonable constraints are imposed [2, 3, 16,
30-33]. Consequently, in this thesis, various inverse algorithms are proposed
to obtain an optimal resolution by adding computationally tractable and

biophysically plausible constraints to the source signal imaging method.
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As shown in Figure 1-1, this thesis consists of 6 chapters. The remainder of
the thesis is organized as follows. In chapter 2, the abilities of the generalized
cross validation (GCV) method and the L-curve method for the determination
of the optimal regularization parameter are studied and compared for
neuroelectromagnetic source estimation. The results verify that the GCV
method is a better choice when the measurement noise is relatively high, and
the L-curve method seems to be more effective when the source is mainly

dominated by errors such as brain perturbation.

In chapter 3, an improved inverse technique for precisely estimating the
correlated neuroelectromagnetic activities in the deep source space is
proposed. A novel weighting matrix building method obtained from the
sensitivity similarity degree of the sensor array between the sources is
presented, so as to enhance the property representation for the correlated deep
sources. The results confirm that the proposed technique provides more
detailed information for the source estimation, improves the result accuracy
and is physically more reasonable than the conventional linear estimation and

spatial filtering techniques.

Recent studies on neuroelectromagnetic inverse problems have shown that a
satisfactory understanding of source mechanisms requires to perform source
connectivity analyses. Chapter 4 focuses on the comparison of inverse
techniques for reconstructing the source connectivity network. The results
confirm that the noise effect for linear estimation technique is direct, while,
for spatial filtering technique the effect is indirect. Linear estimation is

advantageous for the connectivity reconstruction of high quality MEG data,



while, the benefit for the case of spatial filter is low signal-to-noise ratio (SNR)
environments. This chapter also proposes a modified spatial filtering method
to improve the source connectivity reconstruction by using the correlation
gram matrix. The results show that the proposed method can increase the
reconstruction accuracy, decrease the error fluctuation and enhance the

representation for profiles of the original source connectivity network.

In chapter 5, a subspace decomposition imaging (SDI) method for measuring
neuroelectromagnetic source signal is proposed. The SDI technique is based
on spatiotemporal signal analysis from matrix perspective that decomposes
the source into low-rank and sparse components in a manner consistent with
underlying bio-mechanism in statistics. The results establish the feasibility of
SDI method for neuroelectromagnetic source signal measurement, with
resulting solutions that provide substantial performance improvement over
conventional method. Moreover, noise suppression in MEG measurement is
particularly challenging because it is difficult to remove the noise and
preserve the information components in the MEG data. In this chapter, a novel
noise suppression method, based on SDI technique, is also studied and applied
to neuroelectromagnetic source estimation. The results show that the proposed

method can significantly improve the estimation performance.

Finally, brief conclusion and future work are given in chapter 6.



2 Regularization Techniques for
Neuroelectromagnetic Source Imaging

2.1 Introduction

In this chapter, the effectiveness of the generalized cross validation (GCV)
and the L-curve methods for selecting the regularization parameter for
neuroelectromagnetic inverse problem is assessed [34]. By considering two
factors, sources contaminated by brain perturbations and sensors contaminated
by measurement noise, the performance of these two methods is tested in
terms of the intuitive comparison of the reconstructed cortical topography, and
the quantitative comparison of the relative error (RE) and the correlation
coefficient (CC) [35, 36]. Finally, through simulations, some guidelines are

proposed for determining the optimal degree of regularization.

2.2 Neuroelectromagnetic  Forward and Inverse

Problems

As shown in Figure 2-1, the neuroelectromagnetic forward problem considers
modeling the relationship between inside brain electrical sources and the

outside electromagnetic fields [37], which is formulated in matrix notation as,

Y=LX @.1)



where Y is an MxT matrix of the outside electromagnetic measurement from
M sensors at T time points, L is the MxD lead field matrix (or forward
model), and X is the DxT matrix of the unknown source from D discrete

dipole locations.

As shown in Figure 2-2, neuroelectromagnetic source imaging is an inverse
problem of the formula (2.1). The estimation accuracy of the
neuroelectromagnetic sources is crucially dependent on the conditioning of
the lead field matrix to be inverted. However, the signals measured from the
MEG have very small values, and thus they are easily influenced by various
external disturbances and noise. Furthermore, because of the limited number
of sensors, there is an underdetermined relationship between the sources and
the sensors [38, 39]. For these reasons, the neuroelectromagnetic inverse
problem is very often ill-posed, which means that there is not a single, well-
behaved solution. The solution is very sensitive to even small perturbations in
the measurement data and the brain model. Therefore, in order to prevent
oscillatory behavior in the presence of noise, the development of a very robust
inverse algorithm with an optimal regularization determination method is
highly desired [40-43]. In such cases, the well-known Tikhonov regularization

scheme is employed.

The regularized solution for the neuroelectromagnetic inverse problem in the
absence of reliable a priori information about the generating sources can be

formulated as,



X' =arg X{ninHY—LX* “i +73(3(X+))2 (2.2)

where X is the DxT matrix of the estimated source, ||F denotes the

2
Frobenius norm, Y—LX+”F is a measure of the difference between the

outside measured data Y and the data that would be obtained. 4 (3(X+))2 is

a Tikhonov regularization term that penalizes large constraint solutions. A
denotes the regularization parameter, which controls the amount of

regularization. The value of A controls the properties of the regularized

solution. In equation (2.2), 3(") acts as a constraint term and defines the

imaging method. The choice of 3(-) crucially affects the result of the

estimated source [44].
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2.3 Regularization Techniques

The efficiency of Tikhonov regularization method is highly dependent on the
proper choice of A that produces a fair balance between the perturbation error
and the regularization error [45-47]. If too much regularization is imposed, the
result of the estimation will become less sensitive to perturbations in the data.
On the other hand, if too little regularization is used, the estimation will be
dominated by the contributions from various types of errors. However, the
determination of the value of A is not straightforward in practical applications
without a prior knowledge of either the neuroelectromagnetic sources or the
noise. Therefore, two methods have been widely used, the GCV method and
the L-curve method, which do not require prior information in order to

determine the optimal regularization parameter [48-50].

The GCV method is based on the principle that, if an arbitrary data point is
left out, then the regularized solution should correctly estimate this missing
data. This leads to the choosing of the regularization parameter which

minimizes the GCV function,

Jux -]
[trace(I-LL_ )T

regu

GCV() = (2.3)

where y is the vector of the outside electromagnetic measurement from M

sensors at a time point, X is the vector of the unknown source from D discrete
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dipole locations at a time point, x* is the estimated vector of x, and L isa

regu

matrix which produces the x* when multiplied with y.

The L-curve method is a graphical tool with a log-log plot of ||X||2 Versus

||Lx—y||2 for all valid regularization parameters. The optimal value of

regularization parameter can then be determined by choosing the point of
maximum curvature on the graph. More details of the GCV and the L-curve

methods are presented in [48-50].

2.4 Assessment Criteria of Source Estimation

In this chapter, the effectiveness of the GCV and the L-curve methods is
evaluated by computing two indexes. The first one is the RE, computed

according to the formula,

_[x -+,
TN 0

where X represents the vector of the true sources, x° denotes the

reconstructed sources, and || ||2 is the standard L2-norm. The second one is the

CC between X and x', according the formula,
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X ex

CC=———— (2.5)

<l
2 2

where @ stands for the inner product. A larger CC implies that the stronger

pairs of the true and reconstructed sources are related.

2.5 Simulations and Results

The performance of the inverse algorithm is hard to verify by in vivo
experiments because the exact underlying sources inside of a real human brain
cannot be estimated a priori. Therefore, we resort to a simulation with known
source configurations implemented in MATLAB. The system configurations
for the simulations use 151-channel sensors (axial gradiometers) on MEG
machine. Furthermore, to utilize anatomical information, the interface
between white and grey matter is extracted from magnetic resonance imaging
(MRI) T1 images of a standard brain and tessellated to build the source space
(10004 source dipoles) [51]. Each possible cortical source is represented by a
current dipole oriented normal to the cortical surface, i.e., both the location
and orientation are constrained by the cortical surface. A spherical
homogeneous volume conductor model is made as the electromagnetic field
model in order to compute the external fields and scalp potentials for a
specific set of brain electrical sources. It is obvious that the use of the realistic

head model enhances the solution accuracy, but the spherical head model has
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been widely used, especially for MEG simulation studies, considering
computational cost [52]. We then artificially construct forward data sets,

assuming a single activity and two simultaneous activities. In the simulation

here, we define 3() in (2.2) as Frobenius norm.

2.5.1 Sources Contaminated by Brain Perturbation

In this section, practical aspects of two regularization parameter determination
methods are related as to the level of sources contaminated by brain
perturbations and the accuracy of reconstruction. Before the forward
calculation, brain perturbations are added to the original source signals, to
reach different levels of SNR. Figure 2-3 shows an example of the assumed
cortical patch activities, Figures 2-3(a) and (b) are the original sources with
one and two activities, Figures 2-3(c) and (d) show examples of the sources
contaminated by brain perturbations in the case of one and two activities.
Then, after calculating the forward problem, we construct the artificial MEG
measurement data. The validation consists of the estimation of the source
distribution with the regularization parameters provided by the GCV and L-

curve methods taken from the MEG data.
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(a) (b)
‘ ‘ I
i0
(©) (d)

Figure 2-3 Example of cortical patch activities. (a) Original sources with one activity.
(b) Original sources with two activities. (c) Sources with one activity contaminated by
brain perturbation (-12.065dB SNR). (d) Sources with two activities contaminated by

brain perturbation (-1.763dB SNR).
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Figures 2-4(a) and (b) show the source distribution of a single activity
estimated at a -12.065dB SNR of brain perturbation by the L-curve and the
GCV. Figures 2-4(c) and (d) show the source distribution of two activities
estimated at a -1.763dB SNR of brain perturbation by the L-curve and the
GCV, respectively. As illustrated, the locations of the unknown activities are
revealed with the estimated source distributions obtained from the two
methods. However, the efficiency of the L-cure and GCV cannot be
determined easily, just as in the case of direct intuitive comparisons of the

figures.

For more quantitative comparisons, the REs and CCs are evaluated from 9000
repeated simulations, assuming seven levels of brain perturbations. As shown
in Table 1, we can see the L-curve appears to give a better choice of the
regularization parameter for the estimation than the GCV since the RE of the
estimated source distribution is smaller over the range having a low SNR,
although the difference is very small. As the SNR of the sources decreased the
L-curve method produces more successful estimation results than the GCV
method because of the larger CC, as shown in the Table 2. In the next section,
the capability of the GCV method is demonstrated and compared to that of the

L-curve when the sensors are dominated by measurement noise.
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Figure 2-4 Estimation results. (a) Estimated by the L-curve (one activity). (b)

Estimated by GCV (one activity). (c¢) Estimated by the L-curve (two activities). (d)

Estimated by GCV (two activities).
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Table 1 REs in the L-curve and GCV estimations (sources contaminated by brain
perturbation)

One Activity Two Activities

SNR RE SNR RE

(dB) L-curve GCV (dB) L-curve GCV
28.451 0.977 0.977 30.790 0.967 0.967

8.449 0.978 0.978 10.790 0.968 0.968
-3.592 0.981 0.981 -1.251 0.970 0.970
-10.635 0.994 0.995 -7.272 0.977 0.977
-11.550 0.998 0.999 -8.294 0.979 0.979
-15.073 1.023 1.025 -12.732 0.997 0.998
-17.570 1.056 1.061 -15.230 1.018 1.020

Table 2 CCs in the L-curve and GCV estimations (sources contaminated by brain
perturbation)

One Activity Two Activities

SNR CC SNR CC
(dB) L-curve GCV (dB) L-curve GCV
28.451 0.253 0.253 30.790 0.293 0.293
8.449 0.250 0.250 10.790 0.291 0.291
-3.592 0.211 0.210 -1.251 0.271 0.271
-10.635 0.137 0.135 -7.272 0.221 0.221
-11.550 0.126 0.124 -8.294 0.208 0.208
-15.073 0.087 0.084 -12.732 0.141 0.141
-17.570 0.064 0.062 -15.230 0.105 0.104
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2.5.2 Sensors Contaminated by Measurement Noise

Since contamination caused by various kinds of errors in the measurements is
inevitable, as an extension to the simulations presented in previous section,
the sensor data are contaminated by different levels of artificial measurement
noise, in order to compare directly the abilities of the two methods in this
different noise environment. Figure 2-5 shows the assumed scalp topographies
of the sensors, Figures 2-5(a) and (b) show the original sensor data of the
single and the double activities, Figures 2-5(c) and (d) show an example of the
sensors contaminated by measurement noise in the cases of a -7.762dB SNR

(one activity) and a -2.484dB SNR (two activities).

Figure 2-6 shows the reconstructed sources applied to the example shown in
Figure 2-5. Figures 2-6(a) and (b) show the source distribution (one activity)
estimated at the -7.762dB SNR of measurement noise by the L-curve and the
GCV. Figures 2-6(c) and (d) show the source distribution (two activities)
estimated at the -2.484dB SNR of measurement noise by the two methods. It
can be seen from the figures that the source distributions obtained from the L-
curve method are discontinuous and include many noisy sources, and the
location of the unknown activities cannot be found. On the contrary, the GCV
method seems to be more robust than the L-curve because a more focused
source distribution with less spurious sources is obtained from the GCV

method and the activities can be observed.
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Figure 2-5 Scalp topographies of MEG data. (a) Original MEG data in the case of one
activity. (b) Original MEG data in the case of two activities. (¢) MEG data
contaminated by measurement noise (-7.762dB SNR) in the case of one activity. (d)
MEG data contaminated by measurement noise (-2.484dB SNR) in the case of two

activities.
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Figure 2-6 Estimation results. (a) Estimated by the L-curve (one activity). (b)
Estimated by GCV (one activity). (¢) Estimated by the L-curve (two activities). (d)

Estimated by GCV (two activities).
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To synthesize the results more quantitatively, Tables 3 and 4 show the
variations of the RE and the CC evaluated from 9000 repeated simulations,
respectively. We can see from the tables that the evaluation results produced
by the L-curve and GCV are almost same in the regions with relatively low
level measurement noise, but the accuracy of the L-curve gets worse as the
level of measurement noise becomes higher, e.g., SNR = -2.020, -8.052, -
12.908, and -16.004dB, in the case of one activity. However, the RE and the
CC of the GCV method are not affected much by the measurement noise as
compared to the L-curve. Similar trends are found in the case having two

activities, e.g., SNR = -2.980 and -4.552dB.

We can conclude from these comparisons that it appears that the GCV method
is a better choice for estimating optimal regularization parameter when the
MEG source reconstruction results are mainly dominated by measurement
noise. However, the L-curve can be a more effective method when the brain

perturbation levels are relatively high.
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Table 3 REs in the L-curve and GCV estimations (sensors contaminated by
measurement noise)

One Activity Two Activities

SNR RE SNR RE
(dB) L-curve GCV (dB) L-curve GCV
63.989 0.978 0.977 64.993 0.969 0.968
43.996 0.979 0.979 44.988 0.972 0.973
23.990 0.982 0.987 24.985 0.978 0.982
-2.020 2.719 0.999 1.473 1.127 1.012
-8.052 76.063 1.013 -1.036 1.869 1.010
-12.908 203.967 1.066 -2.980 4.244 1.015
-16.004 301.654 1.063 -4.552 11.664 1.004

Table 4 CCs in the L-curve and GCV estimations (sensors contaminated by
measurement noise)

One Activity Two Activities

SNR CcC SNR CcC
(dB) L-curve GCV (dB) L-curve GCV
63.989 0.249 0.251 64.993 0.287 0.287
43.996 0.231 0.244 44,988 0.259 0.265
23.990 0.222 0.223 24.985 0.238 0.240
-2.020 0.127 0.146 1.473 0.164 0.163
-8.052 0.026 0.112 -1.036 0.140 0.150
-12.908 -0.001 0.082 -2.980 0.112 0.140
-16.004 -0.003 0.061 -4.552 0.084 0.131
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3 Estimation of Correlated
Neuroelectromagnetic Activities in Deep
Source Space

3.1 Introduction

Studies of cognitive functions and resting state networks require estimation of
electromagnetic activities emanating from deep source space, such as the
hippocampus and thalamus. However, since the activities from deep source
space are poorly represented in MEG signals, and their electromagnetic fields
drop rapidly with distance, the challenge of the electromagnetic activities

estimation lies in the limited sensitivity to the deep source space [30, 53].

To solve electromagnetic inverse problems, various approaches for estimating
spatiotemporal activities have been proposed. Among such approaches, two
class inverse algorithms called linear estimation and spatial filter have been
widely used recently [7, 54, 55]. The well-known weakness of spatial filter is
that it requires a large number of recordings time samples to build recordings
covariance matrix, therefore, it can hardly be applied to single time sample
data [56]. Another weakness common to the spatial filter is the significant
degradation in performance in the presence of high correlated activities [57].
In this chapter, we focus on the linear estimation technique, which does not
suffer from these weaknesses. Generally, the linear estimation requires a
weighting matrix to represent the metric associated with the knowledge about

locations or relationships of sources [14]. However, this knowledge cannot be
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determined a priori by electromagnetic nondestructive methods, the
conventional linear estimations have usually assumed that all source activities
are completely uncorrelated, which means that relationships between
neighboring sources are ignored. When using the conventional linear
estimations, the estimated amplitude for a source at the deep locations is
always weaker than actual [17]. Furthermore, the deeper an activity lies and
the more it is surrounded by anisotropic sources [51], the more complex
source relationships influence on the inverse estimation. Since a satisfactory
understanding of the functional mechanism between different activities
requires consideration of the complex relationships [58], an appropriate
relationship should be taken into account when building the weighting matrix
to improve the quality of the source estimation. Towards this goal, the
geometrical information, such as, the Euclidean distance and the three-
dimensional geodesic distance of the adjacent sources, is used to make the
artificial relationship [54]. Indeed, the appropriate weighting matrix should be
designed in order to reflect the desired property of the sources. In other words,
when estimating the temporarily correlated source activities, we should plan

this property with respect to the correlation [59].

This chapter suggests a modified linear inverse operator with a proposed
weighting matrix obtained from the relationship between electromagnetic flux
densities and dipole sources so as to reflect the correlation property of the
sources. This approach is applied to the realistic MEG simulations and the
results demonstrate that the proposed approach can estimate the correlated
deep activities more precisely than the conventional linear estimation and

spatial filtering techniques.
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3.2 Methods

3.2.1 Inverse Algorithms

The expression for the linear inverse operator W is,

W=(LRL +C)'LR, X'=W’Y 3.1)

where R is the weighting matrix and C is the noise covariance matrix [60]. In
the conventional linear estimations, the relationships between the neighboring
sources are assumed to be ignored, which means that the weighting matrix is a
diagonal matrix. If the activity can be expected at any location in the source

space equally, this diagonal matrix becomes identity matrix [14]. Otherwise,

the /(d) can be imposed to each diagonal entry of the weighting matrix [61],

then R is expressed as,

e, 0 0
0 i - o
R,Z . . . . . .
1o 0 - Juaf - o |G
I 0 0 0 ||I(D)||§_
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where D is the number of sources, ||l|| s is the standard L2-norm of a vector 7,

and / will be explained hereunder.

3.2.2 Proposed Approach

The recording of the mth sensor is denoted as / (d) when a single unit-

magnitude source exists at the dth volume element of the source space,

therefore, /, (d) indicates the sensitivity of the mth sensor to a source located

at the dth volume element. The vector I(d)=[l,(d),l,(d),--,L (d),--,1,,(d)]"

expresses the sensitivity of the whole sensor array for the mth unit-magnitude

source, here M is the number of sensors, and this sensitivity information can

be revealed by using the lead field matrix

LD 1L(2)
L) L)

) 1,2

(@D 1,Q)

=y 12 -

[,(d)
L,(d)

,(d)

' lM (d)
Id) -

1,(D) |
L,(D)

LD (33

' ZM (D )_
I(D)]

Physically, the deeper an activity source is located, the more it is surrounded

by other sources, and the more complex relationships will influence on the
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final inverse resolution. Since close similar /s have larger relationship and
mutual effect, in order to improve the estimation quality, those influencing
factors should be taken into account when building the weighting matrix. In
this chapter, the source relationship is defined as the similarity degree of the
sensitivities of the whole sensor array for the neighboring sources, thereby the

weighting matrix is expressed as,

_R1,1 R1,2 Rl,j R],D |
R2,1 Rz,z R2,j RZ,D
R =
Ri,J R[,z "' le o Rd,D
. . . . (3.4)
_RD,] RD,Z RD,j RD,D_
1G)e1())

R

R,; reveals MEG recording similarity degree between the ith and jth sources.
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3.3 Simulations and Results
3.3.1 Simulation Setups

Original locations of two point active sources indicated by small black dots in
Figure 3-3 are selected in order to represent the locations in the deep source

space. The time series are generated according to the following model,

-7

s(t)zs)t-e_(EJ SInR7- £ (t—A)] (3.5)

where R, 7, Q, f and A are the parameters controlling the shapes of the
time series. The values of these parameters used in this chapter are listed in
Table 5. Time series S1(f) and s2A¢)at 1 ms intervals from 1 to 375 ms are

shown in blue and green broken lines in Figure 3-1. The third time series

calculated using,
s36)=E&-s1t)+ - s21) (3.6)

where parameter f and é/ control the degree of correlation between $3(¢)

and s2¢). Time series s3(¢) when £=0.5, {=0.25 is shown by the red

broken line in Figure 3-1. In this case, the correlation information between

any pair of the three time series are shown in Table 6.
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The simulated magnetic recordings shown in Figure 3-2 are calculated by
assigning the s1(f) and s2At) to the Ist and 2nd activities in Figure 3-3,

respectively, when the overlapping spheres model is used as the forward

model.
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Table 5 Values of the parameters used for generating s/ and s2

R(pA.m) T (ms) Q(ms) f(kHz) A (ms)
s 25 63.5625 205.3125 0.0101 130.3125
s2 50 98.7188 230.6250 0.0169 115.3125
Table 6 Correlations between the time series
s1-s2 sl-s3 s2-53
Correlation coefficient 0.0890 0.6671 0.8014
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Figure 3-1 Time series used for the simulations.
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Figure 3-2 Simulated magnetic field recordings.
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3.3.2 Estimation Results of Localizations

The source estimation is performed by using the three linear inverse operators
and the spatial filter. Here, the spatial filter is chosen for comparison, because
it is a method representative of another popular estimation technique. The
source distribution (average over the time series), is estimated by using the s2
and s/ as the 1st and 2nd point activity time series, and the results are
displayed in Figure 3-3. It can be clearly seen that the proposed inverse
operator estimated the two deep activities at the correct locations. On the
contrary, other methods failed to localize the 1st and 2nd activities. From the
intuitive comparisons, we can evidently observe that the proposed technique is

able to precisely estimate the correlated activities in the deep source space.
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' (a) l (b)
' (c) l (d)
Figure 3-3 Estimation results obtained by assigning the s2 and s/ as the 1st and 2nd
activity time series. Original locations of the activities are indicated by the small black
dots. (a) Spatial filter. (b) Conventional linear estimation with identity weighting

matrix. (¢) Conventional linear estimation with weighting matrix R;. (d) Proposed

linear estimation with weighting matrix R..



In the previous simulation, the temporal correlation of the 1st and 2nd
activities is low, i.e., correlation coefficient is 0.0890 as shown in Table 6. We
then perform simulations in which activities are highly correlated, thereby,
checking the sensitivity of the inverse methods to the correlation. Without
changing the time series of the 1st activity, we assign the time series s3 to the
2nd activity. In this case, the correlation coefficient between the two activities
turned out to be 0.8014. The estimation results of high correlated activities is
shown in Figure 3-4. Despite the localization accuracy, it can be seen that the
results obtained from three linear estimations are identical with those of
Figure 3-3, suggesting that the linear estimations are not influenced by the
source correlation. However, as shown in Figures 3-3(a) and 3-4(a), the result
of the spatial filter shows a severe influence from the source correlation, i.e.,
the estimation results of the two cases are significantly different. On the other
hand, the proposed inverse operator seems to be very effective and stable
because two activities are again well localized even though they are highly

correlated, as illustrated in Figure 3-4(d).
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Figure 3-4 Estimation results obtained by assigning the s2 and s3 as the 1st and 2nd
activity time series. Original locations of the activities are indicated by the small black
dots. (a) Spatial filter. (b) Conventional linear estimation with identity weighting

matrix. (¢) Conventional linear estimation with weighting matrix R,. (d) Proposed

linear estimation with weighting matrix R..



3.3.3 Estimation Results of Activity Time Series

The estimated time series of the activity obtained by the proposed linear
estimation in the cases of low and high correlations are shown in Figures 3-5
and 3-6, respectively. Here, the estimated activities are the point sources that
give the local maxima in Figures 3-3(d) and 3-4(d). As shown in Figures 3-5
and 3-6, the broken and solid green lines are almost overlapped, indicating
that the proposed method is valid for retrieving the original s2 time series for
the 1Ist activity. However, since the original time series of the 2nd activity are
weaker than that of the Ist activity, the estimated time series for the 2nd
activities are distorted in varying degrees as shown in Figures 3-5 and 3-6.
Yet we should note that compared with the distortion in the case of low
correlation (see blue lines in Figure 3-5), the distortion in the case of high
correlation (see red lines in Figure 3-6) is relatively slight, the reason for this
is the compensating effect of the high correlation from the 1st activity. The
results demonstrate that the proposed estimation can provide almost accurate
time series estimation for the strong signal of the deep activity, nearly
accurate estimation for the weak activity in the case of high correlated with
the strong one, and distort time series estimation for the weak activity which

is low correlated with the strong one.
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Figure 3-5 Estimated time series of the two activities obtained using the proposed

method in the case of the low correlation.
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Figure 3-6 Estimated time series of the two activities obtained using the proposed

method in the case of the high correlation.
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4 Reconstruction of Neuroelectromagnetic
Source Connectivity Network

4.1 Introduction

The traditional studies of the MEG source reconstruction have been proposed
to localize the activities and study such activity-specific changes in isolation,
however, this isolated study is insufficient. A satisfactory understanding of the
source mechanisms requires measuring of relationship analyses between
activities [30, 58, 62]. Many methods for connectivity analyses have been
proposed, e.g. synchrony, coherence, and Granger [63-65]. Among these
methods, synchrony and coherence are used to assess undirected connectivity.
Granger can reveal information about direction and degree of connectivity and
is widely used by several groups [58, 64]. One benefit of MEG is that it can
extract the time series of the sensor level measurement with excellent
temporal resolution [66], therefore, MEG is a very promising tool to
investigate the sensor level connectivity. However, MEG measurement is
sensitive to the field spread effect, the connectivity analyses at the sensor level
cannot generate straightforward interpretations at the source level. Another
benefit of MEG is that it can estimate the activities with good spatial
resolution, thereby, MEG source connectivity network reconstruction is
becoming main issue in the neuroelectromagnetic inverse computation

researches recently [58, 63, 66-73].
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The inverse techniques can effectively reduce the field spread effect, and have
been successfully used to MEG source reconstruction problems. Although
inverse algorithms are constantly being improved and different methods have
been comprehensively compared [56], most comparisons mainly focus on
localization bias or spatial resolution instead of fully comparing unique source
connectivity reconstruction characteristics [6, 34, 39, 74, 75]. Thus, a
complete and rigorous comparison of the performance of inverse techniques
for MEG source connectivity network reconstruction is placing increasing
demands. There are two popular types of inverse techniques. One class is the
linear estimation based technique whose result mainly depends on the
measurement geometry and the source covariance matrix. Another class is the
minimum variance spatial filtering technique, the result of which depends on
the measurement geometry as well as the covariance matrix of the

measurement [56, 74].

This chapter evaluates two inverse algorithms, with respect to the
effectiveness of the MEG source connectivity network reconstruction. By
considering the reconstructed source series, the reconstructed connectivity
strength and the violation by the measurement noise, a thorough comparison
is performed when the underlying sources condition is in a connectivity
network form. This chapter also suggests a modified spatial filter with a
proposed correlation gram matrix to improve the reconstruction result. Finally,
through simulations, some guidelines are proposed for a consensus on using

inverse algorithms of the source connectivity network reconstruction.
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4.2 Methods
4.2.1 Granger Causality Connectivity Analysis

Granger causality implements a statistical interpretation of directed
connectivity in which U causes V if knowing the past of U can help predict the
future of V, better than knowing the past of V alone. Granger causality can
identify the directed functional connectivity, and give a satisfactory

understanding of neural mechanisms. To calculate Granger causality, suppose
that the temporal connectivity of two time series u#(f) and W(f) can be

estimated by the following models,

u(t) = iA(i)u(t —i)+e,(f)

» 0 (4.1)
W)=Y Bt —i)+ ) Clu(t—i)+e,(t)

where 4, B and C contain the model coefficients, O, P and Q (the model
orders) represent the number of considered past time points, ¢, and e, are the
regression residuals (prediction errors) for each time series. The magnitude of
connectivity in the direction of #(f) causes V(¢), for instance, is the log ratio
of the prediction error variances for the restricted (omitting time series u(¢) in
the autoregressive model of W(¢)) and full models (refer to [64, 76, 77] for

more details).
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4.2.2 Inverse Algorithms

The expression for the inverse operator W,, according to the linear estimation

is rewritten as follows,

W,=(LR, L +C)'LR,, X' =W'Y (4.2)

le>

where R, is the weighting matrix according to the linear estimation, and C is

the noise covariance matrix. Using the spatial filtering technique, the resultant

inverse operator W is derived as,

W, =R;L(LTR;L)‘1, X" :VV;Y (4.3)

R, is the spatial covariance matrix of the measurement [56, 74].

4.2.3 Proposed Approach

We denote the output of the mth sensor at time ¢ as y,(m), the vector

y(m)=Lv,(m) y,(m) - y(m) --- y,(m)] expresses the whole time

series (from 7 to T') of the mth sensor output, and Y is,
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where M is the number of sensors. The inverse operator W of the proposed

approach is then obtained by substituting R ,, for R, in (4.3),

-l Tp-17 -1 + _ vl
Wpa—R paL(L RpaL) , X —WWY 4.5)

R, is the correlation gram matrix, defined as,
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R, reveals the similarity degree between the ith and the jth sensor

measurements.

4.2.4 Reconstruction Process
The detailed process of the connectivity network reconstruction is as follows.

Step 1) The locations of the patch source activities are selected on the cortical
surface.

Step 2) Data generated by an autoregressive model are assigned as the time
series to the activities.

Step 3) The underlying source connectivity is revealed by using the Granger
causality.

Step 4) Source time series are employed to generate MEG sensor
measurements by using forward computation.

Step 5) Inverse algorithms are used to estimate the source time series
considering cortical connectivity.

Step 6) The estimated source time series are analyzed for connectivity, the
reconstructed source connectivity is projected onto the cortical surface.

Step 7) The adequacy of inverse techniques are evaluated by comparing the
difference between the reconstructed and the underlying connectivity

networks.
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4.3 Simulations and Results
4.3.1 Simulation Setups

Three extended patch source activities shown in Figure 4-2 are selected on the

cortical surface in order to represent the locations of the occipital lobe tip, the

top of the central sulcus, and the deeper insula. Three time series s (¢), s, (1)

and s_(?), as shown in Figure 4-1, according to the following autoregressive

model are assigned as activity time series to the sources 1, 2 and 3.

5,(6)=0.65,(t—1)+0.65s, (¢ —2)
s,6)=055,(t-1)-035,(t-2)-03s.(t=4) (4.7
s (6)=0.8s (t—1)—0.7s_(t—2)

The connectivity information of the time series revealed by the Granger
causality is shown in Table 7. The network form connectivity of the sources,
shown in Figure 4-2, is considered as the underlying true source connectivity
network. The arrow reveals the connectivity direction, the source 3 causes 2,
and 2 causes 1. The width of solid line points out the connectivity strength,
which means the connectivity strength of the source 2 to 1, i.e. 0.4070 is
stronger than that of 3 to 2, i.e. 0.1634. The dash line indicates there is no
connectivity between the endpoints, i.e. the connectivity strength of sources 3
and 1 is 0. An overlapping spheres model is applied for the forward
calculation of the magnetic fields. Gaussian noise with SNR values (15, 10, 5,

3 dB) are added to MEG sensors to represent the range of the inevitable noise.
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Figure 4-1 Time series used for the simulation. The blue, green and red lines indicate

the series s.(1), s,(¢) and s.(?), respectively.
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Table 7 Connectivity information of the time series

Direction Connectivity Strength
s, S, 0.4070
5. > S, 0
s, 7 s, 0.1634
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5,(0)=055,(t=1)=03s,(t—2)-03s.(1—4)

5, (1)=0.6s (1 —1)+0.65s (- 2)

5.(0=085.(-)-075.(-2)

Figure 4-2 Underlying source connectivity network.
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4.3.2 Results of Reconstructed Time Series

The source time series are the precondition for connectivity network
reconstruction. We first reconstruct the source time series at the three
locations of interest using the linear estimation, the spatial filter and the
proposed approach. Figure 4-3 shows the reconstructed time series when the
SNR is 10 dB. As can be seen, the black and red lines are almost overlapped,
indicating that the proposed approach is valid for retrieving the original time
series. The time series obtained by the linear estimation and the spatial filter

shown in blue and green lines are distorted.

In order to quantitatively compare the performance of the inverse methods,
the error of reconstructed time series is defined as the sum of absolute
difference between the reconstructed and the original series at each time point.
We can see that the proposed approach appears to give a better result than the
other methods since the error of the reconstructed time series is smaller over
the whole SNR range, as shown in Table 8. The results confirm that the
proposed approach can increase the accuracy of the source time series
reconstruction when the underlying sources are in the form of a connectivity

network.
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Figure 4-3 Reconstructed time series of the three patch activities when the SNR is 10
dB. The black lines indicate the original time series. The blue, green and red lines
indicate the reconstructed source time series obtained by the linear estimation, the

spatial filter and the proposed approach, respectively.
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Table 8 Error of the reconstructed time series

SNR Linear Spatial Proposed
(dB) Estimation Filter Approach
15 7.2248 8.8882 6.4940
10 9.0557 9.3821 7.4533

11.1950 10.6023 9.6889
3 12.2879 11.4894 11.1104
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4.3.3 Results of Reconstructed Connectivity Networks

Next, the Granger connectivity measure is applied to the reconstructed source
time series. Table 9 shows the reconstructed connectivity network of the three
activities, where "i — ;" represents the connectivity direction from the activity
i to j. As shown, the underlying connectivity network can be revealed by all
three inverse techniques, however, the reconstructed connectivity magnitudes
from the proposed approach are in closer agreement with the underlying truth
than those from the linear estimation and the spatial filter. This indicates that
the use of correlation gram matrix can prevent the inclusion of spurious

connectivity degree in the reconstructed connectivity network.
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Table 9 Reconstructed connectivity network

Connectivity Strength

?(11\113% Direction L.inea.r Spatial Proposed
Estimation Filter Approach
2—1 0.4041 0.3808 0.4015
15 3—1 0 0 0
3—>2 0.1530 0.1527 0.1562
2—1 0.4102 0.3844 0.4053
10 3—1 0 0 0
3—>2 0.1484 0.1529 0.1568
2—>1 0.4186 0.4121 0.4088
5 3—1 0 0 0
3—>2 0.1445 0.1428 0.1572
2—>1 0.4222 0.4148 0.4087
3 31 0 0 0
3—>2 0.1427 0.1420 0.1567
57

A &) 8



In order to examine the trends of the resultant connectivity networks obtained
by different inverse algorithms, the reconstruction error is defined as the L2-
norm of the difference between the reconstructed and the underlying true
connectivity. As shown in Table 10, for the linear estimation, there is an
increase in reconstruction error as SNR decreases. This reflects the direct
pattern of noise effect on the source connectivity network reconstruction of
the linear estimation. At high SNRs (15 and 10 dB) the results of the linear
estimation are better than those of the spatial filter, while at low SNRs (5 and
3 dB) the linear estimation shows worse results than the spatial filter. For the
spatial filter, the results at low SNRs are better than those at high SNRs,
which shows a somewhat reversed pattern compared to the linear estimation.
Hence, we can point out that the noise cannot influence the source
connectivity network reconstruction directly when using the spatial filter.
Moreover, the proposed approach has lower error than other two methods for
all SNR cases, also, the error fluctuates within a narrow range. This leads to
the fact that the proposed approach can contribute robust abilities to the

connectivity network reconstruction.
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Table 10 Error of the reconstructed connectivity network

L2-Norm Error (%)

?;\]Igl? Linear Spatial Proposed
Estimation Filter Approach
15 2.46 6.45 2.07
10 3.50 5.68 1.55
5 5.06 4.84 1.47
3 5.86 5.19 1.58
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S Analysis of Neuroelectromagnetic Source
Signal via Subspace Decomposition Imaging

5.1 Introduction

A subspace decomposition imaging (SDI) method for analysis of
neuroelectromagnetic source signals is proposed in this chapter. The SDI
technique can capture dynamic details in the source space that would
sometimes be too weak to be recognized by conventional methods, but can
also recover the stationary source signal contaminated by large brain
perturbation. The SDI method is motivated by the conclusion of recent
biomedical study that the neuronal signals have low intrinsic dimensionality,
i.e., they lie on some low-dimensional subspace, or they are sparse [16, 78].
Naturally, the source can be separated into two components, in this situation,
none of the above mentioned estimation algorithms is desirable. This brings
us to the work shown in this chapter, which aims to address the following
problems. Can we develop a source estimating algorithm that a better
estimated result can be obtained when we decompose the source into low-rank
and sparse components, assuming the underlying source is a superposition of
those two, and simultaneously use these two as the constraints in some
computationally tractable algorithm to the source imaging problem [79]. This

is the main contribution of this chapter.
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5.2 Subspace Decomposition Imaging Method

The inverse solution for the neuroelectromagnetic source imaging can be

formulated as,
X' =arg X{ni11“Y—LX “i (5.1)

The SDI method proposes a novel decomposition source model from the
matrix perspective. Mathematically, this means the source matrix is the

superposition of a low-rank matrix and a sparse matrix. Therefore, every

source distribution X can be separated into parts X, and X, such that,
X=X, +X; (5.2)
where X, has low rank and Xj is sparse. Obviously, the component X, is

stable over time with respect to the component X; in the source space. If we

require that two components explain the outside measurement exactly, the

forward problem can be modeled as,

Y=L(X, +X,) (5.3)
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For the source signal imaging problem, we do not know the source matrix X,
not even the low-dimensional subspace of X, as well as the locations and
number of the nonzero entries of X;. The SDI algorithm is defined as the

following constrained minimization of a cost function,

min
XE, X

subjectto Y=L(X] +X})

X[, +AX;

1

(5.4)

where

., denotes the matrix nuclear norm, i.e., the sum of singular values,
||||l denotes the L1 norm, i.e., the sum of the absolute values of matrix entries,

X is the estimated low-rank source matrix, Xj is the estimated sparse
source matrix, and ¥ is a positive weighting parameter to balance the two

terms,

1
VE (5.5)

Jmax (D,T)

The SDI algorithm recovers low-rank and sparse sources via the following

optimization,
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(x;.X;)=

i*‘ (5.6)

X;

A+

X

arg min £ [Y ~L(X; +X;)
xx; 2 !
where / is the parameter to be determined. There are several algorithms for

solving this optimization problem [80-84]. In this work, the SDI adopts a fast
and accurate algorithm for the low-rank and sparse decomposition, namely the
augmented Lagrange multiplier (ALM) method [81]. The ALM method

operates on the augmented Lagrangian,

L(XZ7X§7LA7IIJ):‘

X,

4

+<LA,X+ -X; —X§> (5.7)

X

+§”Y—F(xz +X0)

2
F

where L, is the Lagrange multiplier matrix and <> denotes the standard trace

inner product. Specifically, equation (5.4) can be practically solved by

repeatedly minimizing equation (5.7) with respect to X,

argmin (X] ,X,L,,4)=U (Fm.l [S])VT (5.8)

L1
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where (U,S,VT)ZSVd(XJr—X; +4,'L AL), L, is the Lagrange multiplier

Ay

matrix at the iteration time &, I, [x] is the shrinkage operator,

x—gifx>¢e
l—;[x]Z x+&ifx<—¢€ (5.9)

0, otherwise
where ¢ is a positive value. This operator can be extended to vectors and
matrices by applying it element-wise.

Then minimizing equation (5.7) with respect to X§,

arg min L(XJL'M , X;M L, u)=

X . . L (5.10)
FM; [X _XLk + U, LAk:I

equation (5.8) is an update of XZM and equation (5.10) is an update of X;H

in the iterative ALM method loop.

Finally updating L, based on the residual X" -X; - X,

LAM = LAk + 4, (X+ - XJLL, - X;H. ) (5.11)

64 1 & 71 =



as well as updating 4 by

My =154, . (5.12)

The repetition will terminate when the number of successive iterations

without improvements in X, and X} reaches a specified number.

5.3 Verification by Simulation Studies

In the following simulations, implementations of SDI is described that
optimally exploits the strengths of this method, and allows for efficient data
processing, detailed analysis of results, and visualization. The system
configurations for the simulation use whole-head MEG system, which
consists of 306 channels arranged in triplets of two planar gradiometers (204
channels) and one magnetometer (102 channels). The interface between white
and grey matter is extracted from MRI T1 standard brain images and
tessellated into 3502 elements to build the cortical surface. As shown in
Figures 5-1 and 5-2, the present study applied a boundary element method

(BEM) model for the forward calculation of MEG measurements.
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Figure 5-1 Boundary element meshes generating.
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Figure 5-2 Forward model building.
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5.3.1 Two Typical Simulations

Two locations indicated by red patches in Figure 5-3 are selected to represent
original active sources in the brain. The area of each active source is assumed
to be approximately 10 c¢m’, and the locations are selected in order to
represent the activities within the left superior temporal and precentral gyri.
The stable and sharp time series of the active sources are generated according

to the following models,

s()=2-¢ " -sin[0.004-7-(t—10)]
08¢ ~) -sin[0.016-7-(1—150)] (512
(0<£<300 ms)

5,(t)=0 (0<¢<200ms, 205<t <300ms)

where 4 is the parameter controlling the amplitude of the time series s, (%) .

Since the MEG channel contamination from noise is inevitable, we
contaminate the MEG measurements by adding artificial noise for 50 trials.
The noise level is set to achieve an average SNR of 15 dB after averaging

over all epochs.
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Figure 5-3 Original locations of two active sources.
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The sensitivity of the methods to a weak activity s2 (A4 =0.2) is investigated

in Figures 5-4 to 5-6. The original time series of active sources s,() and

s,(t) according to the equations (5.12) and (5.13) at 1 ms intervals from 1 to
300 ms are shown in red and blue lines in Figure 5-4. The simulated magnetic
field recordings calculated by assigning the s,(#) and s,(f) to the two

activities are also shown in Figure 5-4.

The estimation results obtained by using MN and SDI at 203 ms are shown in
Figure 5-5, individually. We first use intuitive comparisons to capture relevant
features for evaluating the results. As shown in the figure, each image is
normalized to its maximum values, such that also smaller details of the
distributions remain visible. The color scale was set such that grey color
reflects 0 to 5 percent of the maximum intensity within each map. Red color

indicates the upper and yellow color indicates the lower intensity range.

Figure 5-5 shows that the source distribution obtained from the MN
completely missed the active source s2 at 203ms. The MN generates an active
source estimate regardless of the underlying source time series configurations,
therefore, the weak sharp signal s2 is easily overlain by the strong signal s1 (at
203 ms, the amplitude of sl is nearly five times higher than that of s2). The
SDI using a decomposition technique overcame this problem, leading to two
separate results. The first one being the low-rank component was able to
recover correctly the activity s1. The second being the sparse component

produced two activities simultaneously and detected correctly the existence of

70 3 '-: |'



the activity s2, though the intensity of the estimated s2 is lower than that of

the estimated s1.

Moreover, as shown in Figure 5-6, the estimated time series of s1 obtained by
MN and the low-rank component are similar to the original time series,
indicating that MN and the low-rank component are valid for retrieving the
active source with stronger time series. We should note that compared with
the estimated time series in the case of the MN, the estimated result in the
case of the low-rank component is much smoother, the reason for this is the
compensating effect of stabilization from the low-rank component. Since the
original time series of s2 is too weak, the estimated time series of s2 are

distorted in varying degrees.

These results demonstrate that the SDI can provide almost identical estimate
for the strong activity with stable time series, and it can also detect the

existence of weak activity with varying time series.
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Figure 5-5 Source estimates obtained by MN, SDI: low-rank component and SDI:

sparse component at 203ms (4=0.2).
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Figure 5-6 Estimated source time series obtained by MN, SDI: sparse component and

SDI: low-rank component (4=0.2).
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The performance of the estimation methods to a strong activity s2 (4=5) is
investigated. The original time series and magnetic recordings are shown in

Figure 5-7.

Similar to Figure 5-5, all intensity maps in Figure 5-8 are normalized to their
maximum value, so that smaller details can still be identified. Figure 5-8
shows that the source distributions obtained from the MN missed the weak
active source sl at 203ms. However, the SDI recovered the activities of s1 and

s2.

As about time series of s2 shown in Figure 5-9, the estimates obtained by MN
and the sparse component are almost same as the original s2. In terms of time
series of sl, the estimate in the case of MN is contaminated by the strong
sharp signal s2 which leads to the unsmooth estimated time series of s1, yet
the contamination of strong sharp activity to the estimate of SDI is reduced

since the stabilization of the low-rank component.

The results demonstrate that the SDI can provide almost identical estimates
for both the weak activity with stable time series and strong activity with

varying time series.
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Figure 5-9 Estimated source time series obtained by MN, SDI: sparse component and
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5.3.2 Simulation of Multi-varying Time Series

In this section, the sensitivity of the estimation methods to the multi-varying
time series is investigated. We follow the settings in the previous section. The
original locations of two active sources are the same as those represented in
the section of 5.3.1. The time series of sl is generated according to equation

(5.14), and the time series of s2 is generated according to equation (5.15).

t—200]2

5,(¢) :e{ © ) .sin[0.004 7- (t—10)]

(=207
—04-¢ [ % ) -sinf[0.016-7- (¢ —150)] (5.14)

(0<<300 ms)

5,()=0 (0<£ <120 ms)

=1.5-5in(0.2-7-7) (120<¢<125 ms)

=0 (125<£ <150 ms)

=0.1-sin(02- 1) (150<¢<155 ms)

=0 (155<£ <170 ms)

=0.5-sin(0.2-7z-¢) (170<t <175 ms)

=0 (175<£ <200 ms)

=0.9-5in(02-7-7) (200<¢<205ms) 1)
=0 (205<¢ <230 ms)

=2.5-5in(02- 77-£) (230<1 <235 ms)

=0 (235<¢ <250 ms)

=02-5in(02- 77-£) (250<t <255 ms)

=0 (255<¢ <300 ms)
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The time series of active sources used for simulations and the simulated

magnetic field recordings are shown in Figures 5-9 and 5-10, respectively.

The sources and the time series of estimation results are shown in Figures 5-
11 and 5-12, respectively. The MN method generated active source estimates
regardless of the underlying source time series configurations, therefore, the
weak active sources are easily overlain by the strong ones. The source
estimates of SDI can flexibly and more accurately reflect the active state of
the true simulated sources in the simulation because of the decomposition.
The low-rank component of SDI can estimate relatively stationary active
source, and the sparse component can product the estimate, which is varying
over time. For the integration of the low-rank and sparse components, the SDI

result is more similar to the underlying sources than the MN method.

In conclusion, the present simulation studies address the question as to
whether the SDI algorithm for neuroelectromagnetic problems improves the
estimation of the source signals. The results confirm that using the SDI
increases the accuracy of the estimation, and demonstrates that the proposed
method is reliable over large underlying source time series configurations, and
concludes that the SDI enhances the representation of the original source
profiles. In general, the SDI method for measuring neuroelectromagnetic
source signals can capture dynamic details and recover the stationary source

signal.
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Figure 5-12 Estimation results.
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Figure 5-13 Estimated time series of the active sources.
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5.4 Application to Practical Measurements

In order to illustrate the performance of the SDI method with practical data,
we applies the proposed method to localize the epileptic activity in a patient
with medically intractable epilepsy requiring a resective surgery [85]. The
patient underwent pre-surgical evaluation was scanned using MR unit with a
conventional head gradient coil. The MR images were acquired using a
regular T1-weighted sequence for head images. The slice thickness was 1.5
mm with acquisition in the sagittal orientation with a matrix size of 256 by
256. Using scanned MR images, BEM models and a cortical source space
were extracted using Brainstorm [86]. MEG signals were acquired by the
whole-head MEG system (VectorViewTM, Elekta Neuromag Oy, Helsinki,
Finland), which consists of 306 channels arranged in triplets of two planar
gradiometers (204 channels) and one magnetometer (102 channels). The
sampling frequency was 600.615Hz, and the signal was filtered by a band-
pass filter in the range of 0.1~200Hz. Since the post-operative MR images of
the patient were also acquired, we thus know where the epileptogenic zone is,
and therefore, the inverse algorithms can be verified against the exact location
of epileptogenic zone. The real epileptic data offers a unique opportunity to
verify and compare different inverse algorithms on the same real data [87-94].
As shown in Figure 5-14, we segmented the resection region from the post-
operative MR images and co-registered the resection region to the cortex
surface segmented by pre-operative MR images using Brainstorm software
[86]. Figure 5-15 schematically illustrates the overall procedure of localizing

epileptic activity
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Figure 5-14 Resection region.
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Figure 5-15 Overall procedure of localizing epileptic activity.
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We take into account two assessment criteria using the surgical resection
region on the cortex surface as a reference to quantitatively evaluate the
performance of the source estimation. The first criterion is localization error
(LE), which is determined as the shortest distance from the source location
with maximum source strength to the boundary of the resection region, to
assess the performance of localization. If the location with the maximum
value is localized within the resection region, the localization error is assigned

the value zero [88, 91].

We use another criterion denoted as degree of focalization (DF) to quantify
the consistency of the estimated source distribution with resection region [95].
DF is defined as the estimated source energy contained in the reference source
space (i.e., the surgical resection region in this study) divided by the overall
source energy, which is the source energy in the whole source space. This
criterion can be applied in the subject study because of the explicit resection
region [96]. Thus, the larger the DF value the more accurate source

distribution that the estimation method can obtain [13, 97].

In epilepsy studies, the accuracy of source estimation is variable across
different time points of an interictal spike, unfortunately, the relationship is
not yet well understood [88]. Since all the methods get their best DF values at
the 223th sample point shown in Figure 5-16, we investigates source

estimation of interictal spike activity at this point.
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We first use intuitive criterion to capture relevant features for evaluating the
spatial resolutions. As shown in Figure 5-17, the results estimated by MN and

SDI are shown under the same conditions.

The figure shows that the source distribution obtained from MN method is
discontinuous and contains several local maxima (spurious sources) at a
considerable distance from the true source location. This reflects the MN bias
in epileptic activity localization. If such a result was encountered in a real
experiment, without prior knowledge of the true number of sources, the

location of the unknown epileptic activity would not be found successfully.

However, the SDI sparse component seems to be more effective, it obtains
more focused source distribution with less spurious sources, and the epileptic
activity is well localized. This result also exactly confirms that the pattern of
epileptic activity is sparse. The result of SDI low-rank component is similar to

that of MN because of the sparse pattern of epileptic activity.

The LE and DF results are presented in the top left corner of Figure 5-17 to
quantitatively compare the performance of the estimations. All the methods
produce the location with the maximum value in the resection region because
all the LE results are 0. Since SDI sparse component gets the largest the DF

value, the SDI sparse obtains the most accurate source distribution.

The intuitive and quantitative comparisons suggest that the proposed SDI

enhances the estimation accuracy.
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Figure 5-17 Estimated results of epileptic activity.
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5.5 Noise Suppression in MEG Measurement for

Improving Neuroelectromagnetic Source Estimation

MEG uses an array of sensors positioned over the whole head that are
extremely sensitive to the minuscule changes in the magnetic fields produced
by the electrical activity in the brain. Recently, the development of whole-
head MEG sensor arrays and of methods for estimation of
neuroelectromagnetic sources from the MEG measurement has been
remarkable. Nevertheless, all existing methods for neuroelectromagnetic
source estimation are hampered by the many sources of noise present in the
outside measurement [98-100]. Much research has been performed over the
years on noise suppression in neuroelectromagnetic measurement. For
example, principal component analysis (PCA) has been used for data
processing, analysis and noise reduction. However, many research works have
been proposed to address the brittleness of the classical PCA with respect to
outliers and gross corruption in the literature over several decades [80]. In this
chapter, a novel noise suppression method, based on SDI technique, is
presented and applied to the estimation of neuroelectromagnetic field in
source space for the first time. The proposed method gives a constrained
optimization of MEG electromagnetic domain transformations such that the
matrix of transformed MEG measurement can be decomposed as the sum of a
sparse matrix of noise and a low-rank matrix of denoised data. The
decomposition is a unique feature of the proposed method which not only can
suppress the noise, but also can preserve the information about the underlying

neuroelectromagnetic sources. We verified the efficacy of the proposed
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method with a number of simulations under different configurations. Our
results indicated that the performance of source estimation is significantly

improved.

5.5.1 Method

In MEG, the electromagnetic measurement is a superposition of information
component and noise component, therefore, the component of MEG data has
low intrinsic dimensionality, i.e., it lies on some low-dimensional subspace, or
it is sparse. Mathematically, this means the measured electromagnetic field Y
can be decomposed into a low-rank matrix and a sparse matrix such that Y =
Y, + Ys, where Y, has low rank and Ys is sparse. Obviously, the component
Y carries the information of the neuroelectromagnetic source signal, and the
component Yg carries the noise. Given these properties, we present in this
work a novel method based on SDI to suppress the noise in MEG data. The
proposed method is defined as the following constrained optimization of a

cost function,

min"YL”* + ;/"YS”l subject to Y=Y, +Y, (5.16)

Y, Y

For the problem of neuroelectromagnetic source estimation, we do not know

the low-dimensional subspace of Y, as well as the locations and number of
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the nonzero entries of Y. Figure 5-18 shows the overall procedure for solving

the SDI-based noise suppression in MEG measurement.
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Figure 5-18 The overall procedure for solving the SDI-based noise suppression.
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5.5.2 Simulations and Results

The system configuration for the simulation is shown in Fig. 2(b). The BEM
model with 3502 source dipoles is applied for the forward calculation of MEG
measurements. Two regions indicated by red patches in Fig. 2(a) are selected
to represent original neuroelectromagnetic active sources in the brain. The
time series of two activies are also shown in Fig. 2(a). The MEG measurement
noise is set to an SNR of -5 dB, and Fig. 2(b) shows the simulated

electromagnetic field measurements.

We first use intuitive comparisons to capture relevant feature for evaluating
the spatial resolutions. Figures 5-19(c) and (d) show the neuroelectromagnetic
source distributions at 227 ms estimated by the traditional and proposed
methods under the SNR of -5 dB. Figure 5-19(c) shows that the source
distributions obtained from the traditional method are discontinuous and
contain several spurious sources around the true activity regions. This reflects
the weakness of the traditional method under the high noise condition.
However, the proposed method seems to be more effective. Figure 5-19(d)
shows that the proposed method obtains more focused source distributions
with less spurious sources, and the true activities are well estimated. The
intuitive comparisons suggest that the proposed method enhances the

estimation accuracy.

Furthermore, the DF is used to quantify the consistency of the estimated
source distributions with the regions of true activities. According to definition

mentioned above, the larger the DF value the more accurate source
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distribution that the method can obtain. The application of the proposed
method resulted in significant performance improvements over the traditional
method, with DF improvement of 3.30% compared to the traditional method.
The result demonstrates the effectiveness of the proposed method for

enhanced the focal characteristic.

Since the MEG measurement is severely contaminated by the high level noise,
the estimated time series of two activities at the regions of interest are
unsmooth. However, we should note that compared with the estimated time
series in the case of the traditional method, the estimated results in the case of
the proposed method are much smoother, the reason for this is the
compensating effect of stabilization from the low-rank constraint. Moreover,
The CC of the original source time series and the estimated one is presented to
quantitatively compare the performance of the traditional and proposed
methods. The quantitative improvements are also observed that the CCs of sl
and s2 are improved by 0.0314 and 0.0478 respectively. All of those
demonstrates the ability of the proposed method in suppressing noise while

preserving the information of neuroelectromagnetic source signals.
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Figure 5-19 Simulation setups and results. (a) The locations and time series of the
active sources. (b) The simulated electromagnetic field measurements under -5 dB
SNR. (c) The results (estimated source distributions at 227 ms and estimated source

time series) via traditional method. (d) The results via proposed method.
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Table 11 shows the comparison between the DF values obtained by traditional
method and proposed method under different noise conditions. Table 12
shows the comparison between the CC values of the true and estimated time
series of sl and s2 obtained by two different methods. As shown in Tables 11
and 12, much of noise in MEG measurements has been suppressed by the
proposed method, yielding more accurate estimates (larger DF and CC values),

compared with those from traditional method.

In this study, we demonstrated the efficacy of a sparse and low-rank
constrained optimization to suppress the noise in MEG measurement for
improving neuroelectromagnetic source estimation. The decomposition of
MEG data into a sparse matrix of noise and a low-rank matrix of underlying
bio-electromagnetic information is a unique feature of the proposed method
which not only can suppress the noise, but also can preserve the underlying
information about the neuroelectromagnetic sources. In general, the
application of this technique to the processing of neuroelectromagnetic source
imaging significantly improved the estimate quality. The results suggest that
the proposed method could be a powerful tool for many future

neuroelectromagnetic applications.
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Table 11 DFs of the estimated source distributions

5dB 0dB  5dB -10dB -15dB
Traditional
at the raditional )\ o0 9750, 5.98%  3.82%  2.10%
. . Method
time point Proposed
227 ms p 13.85% 10.91% 9.28%  6.02%  3.72%
Method
average  Traditional o0 s 36 1950 1.13%
result of Method el o R o e
all time Proposed
: 849%  690% 532% 3.67%  2.32%
points Method
Table 12 CCs of the true and estimated time series
5dB_ 0dB _ -5dB  -10dB -15dB
Traditional
raditional ) oo 09528 09271 08790  0.6931
! Method
S
P
roposed 9014 09798 0.9585  0.8898  0.8040
Method
Traditional ) o cce 00244 08922 08242 0.6804
5 Method
S
P d
ropose 09780 0.9681 09400 08763 0.7551
Method
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6 Conclusion

In this thesis, the techniques to enhance estimating accuracy of
neuroelectromagnetic sources were studied. The subspace decomposition
imaging and inverse algorithms, which can overcome several problems of the
conventional approaches, were proposed. The methods presented in this thesis
employ the biologic characteristics to constrain the neuroelectromagnetic
source signal imaging. The constraint effectively integrates the spatial and
temporal information and improves the resolution of the source estimation.
Results reported in this thesis suggest that it is possible to obtain real
improvement in the details of the estimated distributed sources by
implementing the proposed approaches. Based on the simulations and
practical application, the general efficacy and contribution of this thesis can

be confirmed by the following observations.

First, the abilities of two different methods, the GCV and the L-curve, in order
to determine the proper degree of regularization have been simulated for a
range of MEG estimation conditions in conjunction with brain perturbations
and measurement noise. Even though the cases investigated in this thesis
demonstrate that there is no absolutely better method, the results presented
may become useful guidelines for the correct choice of the regularization
parameter determination method used in real world neuroelectromagnetic

source imaging.
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Second, we focused on inverse algorithms and examined their strengths and
weaknesses in estimating deep space activities, in the presence of correlation,
and compared the performance of the spatial filter, the conventional and
proposed linear estimations under such conditions. Based on simulations
carried out, we demonstrated that the ability to estimate such activities
depends on the weighting matrix and the proposed method performed
significantly better than the conventional linear estimations and spatial filter.
The linear inverse operator proposed in this thesis employed the suggested
correlation weighting matrix to enhance the representation for profiles of
correlated neuroelectromagnetic activities located in the deep source space.
We relied on realistic simulations to show that the proposed method
effectively enlarged the property of the deep sources, provided more detailed
information for the source localization, and then improved the final estimation,
therefore is physically more reasonable. In this study, the use of the
correlation to build the weighting matrix is just an ideal starting point. In fact,
revealing the relationship of sources is an active topic in the research
community, many methods have been proposed, such as, correlation
coefficient, synchrony, coherence, Granger causality, etc. Therefore,
reasonable use of more sophisticated relationship analysis methods is required
for a more efficient and broad application of the proposed inverse technique in
estimating the correlated deep active sources. This also provides a motivator

for future works.

Third, we described the inverse algorithms to reconstruct source connectivity
network from MEG data, and compared the effectiveness of the linear

estimation, the spatial filter and the proposed approach, on the metrics of the
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source series, the connectivity magnitude and norm error. We confirmed that
the noise effect for the linear estimation is direct, while the effect for the
spatial filtering technique is indirect. Moreover, the linear estimation is
advantageous for the connectivity reconstruction of high quality outside
measurement data, while, the benefit for the case of spatial filter is the low
SNR environment. This thesis also proposed a modified spatial filtering
technique to improve the neuroelectromagnetic source connectivity network
reconstruction. The results indicated that the proposed approach prevents the
inclusion of the spurious connectivity, decreases the error fluctuation,
improves the reconstruction accuracy, enhances the robustness with respect to
the inevitable noise, therefore, represents the profiles of original source

connectivity network precisely.

Fourth, the decomposition of source signal into low-rank and sparse
components is a unique feature of the SDI method which not only can capture
dynamic details in the source space that would sometimes be too weak to be
recognized by the conventional method, but also can recover the stationary
source signal contaminated by large brain perturbation. The source estimates
of SDI can flexibly reflect the active state of the underlying source. In general,
SDI demonstrates qualitatively the benefit of using the decomposition
technique in analysis of neuroelectromagnetic inverse problems. The proposed
SDI is not only tied to a particular inverse algorithm for source estimation, in
other words, one is free to choose the type of inverse algorithm, i.e.,
algorithms such as wMNE, spatial filter, LORETA, dSPM, etc., are valuable
candidates for the SDI approach. In the implementation of SDI presented here,

we use the least constraint method, i.e., MN linear estimation. In principal,
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using other inverse algorithms in SDI is equivalent to the method

demonstrated in this thesis.

Fifth, MEG is a promising technology, which could be used in a variety of
biomedical applications, however, MEG electromagnetic measurement is
usually degraded by noise. The SDI-based noise suppression method gives a
constrained optimization of MEG electromagnetic domain transformations
such that the matrix of transformed MEG measurement can be decomposed as
the sum of a sparse matrix of noise and a low-rank matrix of denoised data.
Applying the proposed method to a number of simulations showed significant

improvement of the result accuracy.

Finally, it should be pointed out that, revealing biophysical phenomena with
inverse techniques is a hot topic in the neuroscience community, therefore,
after reasonable interpretation of well-known and acknowledged biophysical
characteristics, we may also build other sophisticated approaches for analysis

of neuroelectromagnetic problems in the future.
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