
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 

DOCTORAL THESIS 

Analysis of Neuroelectromagnetic 
Problems via Subspace Decomposition 

Imaging and Inverse Algorithm 

 

BY 

Feng Luan 

August 2012 

DEPARTMENT OF ELECTRICAL ENGINEERING AND  
COMPUTER SCIENCE 

COLLEGE OF ENGINEERING 
SEOUL NATIONAL UNIVERSITY 



공학박사학위 논문 
 
 
 

Analysis of Neuroelectromagnetic 
Problems via Subspace Decomposition 

Imaging and Inverse Algorithm 
 

부분공간분해영상법 및 역알고리즘을 이용한 
신경전자기 문제 해석 

 
 
 
 

2012 년 8 월 
 
 
 
 
 

서울대학교 대학원 
전기 컴퓨터 공학부 

루 안 펑 

  



i 
 

Abstract 
 

Feng Luan 

School of Electrical Engineering and Computer Science 

The Graduate School 

Seoul National University 

Magnetoencephalography (MEG) is a common noninvasive biomedical 

technique used to measure weak electromagnetic fields generated by some 

ensembles of neurons inside the brain with high temporal resolution. The 

main objective of neuroelectromagnetic source signal analysis is to accurately 

estimate the location, distribution of a neuronal signal at a fine time series 

resolution, and to provide functional information about source dynamics 

based on the outside electromagnetic field measurement. Since the widely 

recognized ill-posed problem of the neuroelectromagnetic source imaging, the 

source signal estimation is not unique unless some possible and reasonable 

constraints are imposed, and consequently various methods have been 

proposed in this thesis to obtain an optimal resolution by adding 

computationally tractable and biophysically plausible constraints to the source 

imaging algorithms. 

The abilities of the generalized cross validation (GCV) method and the L-

curve method for the determination of the optimal regularization parameter 

are studied and compared for the inverse algorithms of neuroelectromagnetic 

problems. The results verify that the GCV method is a better choice when the 

measurement noise is relatively high, and the L-curve method seems to be 
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more effective when the source is mainly dominated by errors such as brain 

perturbation. 

An improved inverse algorithm for precisely estimating the correlated 

neuroelectromagnetic activities in the deep source space is proposed. A novel 

weighting matrix building method obtained from the sensitivity similarity 

degree of the sensor array between the sources is presented, so as to enhance 

the property representation for the correlated deep sources. The results 

confirm that the proposed technique provides more detailed information for 

the source estimation, improves the result accuracy, and is physically more 

reasonable than the conventional inverse algorithms. 

Recent studies on neuroelectromagnetic inverse problems have shown that a 

satisfactory understanding of source mechanisms requires to perform source 

connectivity analysis. This thesis studies inverse algorithms for reconstructing 

the source connectivity network. The results confirm that the noise effect for 

linear estimation algorithm is direct, while, for spatial filtering technique the 

effect is indirect. Linear estimation is advantageous for the connectivity 

reconstruction of high quality outside electromagnetic measurements, while, 

the benefit for the case of spatial filter is the low measurement environments. 

This thesis also proposes a modified spatial filtering algorithm to improve the 

source connectivity reconstruction by using the correlation gram matrix. The 

results show that the proposed algorithm can increase the reconstruction 

accuracy, decrease the error fluctuation and enhance the representation for 

profiles of the original source connectivity network. 
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Finally, this thesis proposes a subspace decomposition imaging (SDI) method 

for measuring a neuroelectromagnetic source signal. The SDI technique is 

based on spatiotemporal signal analysis from a matrix perspective that 

decomposes the source into low-rank and sparse components in a manner 

consistent with the underlying bio-mechanism in statistics. The SDI method 

can capture dynamic details in the source space that would sometimes be too 

weak to be recognized by conventional methods, but can also recover the 

stationary source signal contaminated by large brain perturbation. The results 

establish the feasibility of the SDI method for neuroelectromagnetic source 

signal measurement, with resulting solutions that provide substantial 

performance improvement over conventional methods. Moreover, noise 

suppression in MEG measurement is particularly challenging because it is 

difficult to remove the noise and preserve the information components in the 

MEG data. In this thesis, a novel noise suppression method, based on SDI 

technique, is also studied and applied to neuroelectromagnetic source 

estimation. The results show that the proposed method can significantly 

improve the estimation performance. 

 

Keywords: Electromagnetic brain imaging, magnetoencephalography (MEG), 

neuroelectromagnetic inverse problem, source signal imaging, subspace 

decomposition imaging (SDI) 
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1 Introduction 

 

Magnetoencephalography (MEG) is a common noninvasive biomedical 

technique used to measure weak electromagnetic fields generated by some 

ensembles of neurons inside the brain with high temporal resolution [1]. The 

main objective of neuroelectromagnetic source signal analysis is to accurately 

estimate the location, distribution of a neuronal signal at a fine time series 

resolution, and to provide functional information about source dynamics 

based on the outside electromagnetic field measurement [2-10]. 

To solve the inverse problem, the field is sampled at different sensor locations 

and the underlying activity pattern is then determined [11, 12]. In the case 

where no a priori information is known about the source to be estimated, a 

method named Moore-Penrose Inverse estimates the source signal solely by 

the outside measurement without any constraints [13, 14]. The minimum 

norm (MN) estimation minimizes the L2-norm of the estimated source in the 

sense that the overall intensity of the source current should be as low as 

possible. Unfortunately, this constraint is not necessarily physiologically valid 

because there is no proof that the source current configuration with the second 

lowest intensity is not actually the correct one. The MN estimation thus favors 

the superficial source that the deeper source will be incorrectly estimated on 

the shallower position than the actual situation [5]. In order to compensate for 

the disfavored deep source, various weighted minimum norm estimation 

(wMNE) methods have been developed by applying a weighting matrix to the 
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estimated source. The weighting matrix can have different forms but the 

simplest possible weighting is based on the norm of the columns of the lead 

field matrix, which has been shown to improve localization result [5, 10, 15]. 

The well known low-resolution electromagnetic tomography (LORETA) sets 

the weighting matrix to an approximation of the Laplacian operator and favors 

spatially smooth current distribution, however the spatial resolution of 

LORETA is blurry and relatively low [2, 16]. Two noise normalized MN 

estimation methods, dynamic statistical parametric mapping (dSPM) and 

standardized low-resolution electromagnetic tomography (sLORETA), which 

can implicitly perform depth weighting by a normalization with the estimated 

noise at each source [15, 17]. The variants of MN techniques mentioned 

above is appropriate for estimating spatially extended source. Nevertheless, 

intracranial experiments have demonstrated that the some neural activities are 

sparsely localized in the brain, such as early sensory activity and focal 

epilepsy [18, 19]. The MN based methods are not suitable for localization of 

spatially focal source since the minimum L2-norm constraint penalizes such 

estimates [20]. The Focal underdetermined system solver (FOCUSS) [21, 22] 

iteratively updates the weight according to the source estimated in previous 

step, leading to a more focal source estimate, but the drawback of the 

FOCUSS is its sensitivity to noise and initial estimated source [16, 20]. 

Moreover, the Lp-norm (p≤2) iterative sparse solution (LPISS) integrates the 

Lp-norm constraint for sparse source into the iterative procedure of FOCUSS. 

Compared with FOCUSS, LPISS forces the estimated source to converge to a 

sparse one effectively, however, it needs much more computation because of 

solving the Lp-norm constrained problem [23]. Another set of methods aimed 
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at providing bias toward sparse and focal sources use the L1-norm of the 

estimated source as a constraint. Such considerations yield several related 

optimization estimations. For instance, one of the most popular types is 

known as the minimum current estimation (MCE), which minimizes the sum 

of the source absolute current and leads to more focal source estimates than 

estimates using L2-norm [24, 25]. Over the years, this scheme and its 

modifications have been extensively studied by various authors. Huang et al. 

[26] present a vector based spatial-temporal analysis using a L1-minimum 

norm (VESTAL) to remedy the spatial "jumping" and temporal "spiky-

looking" encountered in the conventional focal estimations. In the VESTAL 

approach, the temporal information of the outside measurement is used to 

enhance the stability of the estimated source. In an attempt to fix the 

orientation discrepancy problem arising in the L1-norm based methods, the 

sparse source imaging (SSI) technique which is achieved by the second order 

cone programming has been developed [27]. Based on the assumption that the 

source activity is sparse in the space-time plane, Bolstad et al. [16] develop an 

event sparse penalty procedure using the spatiotemporal framework. A 

solution space sparse coding optimization (3SCO) algorithm is taken by Xu et 

al. [3] in which the L0-norm constraint is introduced to guarantee the sparse 

source is estimated by using the particle swarm optimization procedure [28]. 

Finally, the choice of estimation methods can be different depends on the 

nature of brain activities in various conditions. L2-norm based estimations are 

suited to image diffuse source whereas L0 and L1-norm based estimations are 

suited to image focal source. Therefore, it is hard to find a universal 

estimation method to accurately image all kinds of brain activities, e.g., 
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diffuse activities in cognitive tasks or spontaneous states, focal activities 

induced by somatosensory stimulation. The choice of estimation methods and 

the understanding of the nature of brain activities in different applications are 

the challenges in neuroelectromagnetic source imaging [29, 30]. In addition, 

as far as the estimation methods are concerned, we are not aware of the 

uncertain brain activity, e.g., composite activity. Recently, a novel 

compressive neuromagnetic tomography (CENT) method based on the 

assumption that the current sources are compressible is proposed. Instead of 

explicitly favoring either spatially more sparse or extended sources, the CENT 

method yields better estimate than the L1 or L2-norm methods when both 

focal and diffuse sources are present simultaneously [2]. 

As mentioned above, due to the widely recognized ill-posed nature of the 

neuroelectromagnetic inverse problem, the source signal estimation is not 

unique unless some possible and reasonable constraints are imposed [2, 3, 16, 

30-33]. Consequently, in this thesis, various inverse algorithms are proposed 

to obtain an optimal resolution by adding computationally tractable and 

biophysically plausible constraints to the source signal imaging method. 
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Figure 1-1 Thesis outline.  
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As shown in Figure 1-1, this thesis consists of 6 chapters. The remainder of 

the thesis is organized as follows. In chapter 2, the abilities of the generalized 

cross validation (GCV) method and the L-curve method for the determination 

of the optimal regularization parameter are studied and compared for 

neuroelectromagnetic source estimation. The results verify that the GCV 

method is a better choice when the measurement noise is relatively high, and 

the L-curve method seems to be more effective when the source is mainly 

dominated by errors such as brain perturbation. 

In chapter 3, an improved inverse technique for precisely estimating the 

correlated neuroelectromagnetic activities in the deep source space is 

proposed. A novel weighting matrix building method obtained from the 

sensitivity similarity degree of the sensor array between the sources is 

presented, so as to enhance the property representation for the correlated deep 

sources. The results confirm that the proposed technique provides more 

detailed information for the source estimation, improves the result accuracy 

and is physically more reasonable than the conventional linear estimation and 

spatial filtering techniques. 

Recent studies on neuroelectromagnetic inverse problems have shown that a 

satisfactory understanding of source mechanisms requires to perform source 

connectivity analyses. Chapter 4 focuses on the comparison of inverse 

techniques for reconstructing the source connectivity network. The results 

confirm that the noise effect for linear estimation technique is direct, while, 

for spatial filtering technique the effect is indirect. Linear estimation is 

advantageous for the connectivity reconstruction of high quality MEG data, 
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while, the benefit for the case of spatial filter is low signal-to-noise ratio (SNR) 

environments. This chapter also proposes a modified spatial filtering method 

to improve the source connectivity reconstruction by using the correlation 

gram matrix. The results show that the proposed method can increase the 

reconstruction accuracy, decrease the error fluctuation and enhance the 

representation for profiles of the original source connectivity network. 

In chapter 5, a subspace decomposition imaging (SDI) method for measuring 

neuroelectromagnetic source signal is proposed. The SDI technique is based 

on spatiotemporal signal analysis from matrix perspective that decomposes 

the source into low-rank and sparse components in a manner consistent with 

underlying bio-mechanism in statistics. The results establish the feasibility of 

SDI method for neuroelectromagnetic source signal measurement, with 

resulting solutions that provide substantial performance improvement over 

conventional method. Moreover, noise suppression in MEG measurement is 

particularly challenging because it is difficult to remove the noise and 

preserve the information components in the MEG data. In this chapter, a novel 

noise suppression method, based on SDI technique, is also studied and applied 

to neuroelectromagnetic source estimation. The results show that the proposed 

method can significantly improve the estimation performance. 

Finally, brief conclusion and future work are given in chapter 6. 
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2 Regularization Techniques for 
Neuroelectromagnetic Source Imaging 

 

2.1 Introduction 

In this chapter, the effectiveness of the generalized cross validation (GCV) 

and the L-curve methods for selecting the regularization parameter for 

neuroelectromagnetic inverse problem is assessed [34]. By considering two 

factors, sources contaminated by brain perturbations and sensors contaminated 

by measurement noise, the performance of these two methods is tested in 

terms of the intuitive comparison of the reconstructed cortical topography, and 

the quantitative comparison of the relative error (RE) and the correlation 

coefficient (CC) [35, 36]. Finally, through simulations, some guidelines are 

proposed for determining the optimal degree of regularization. 

 

2.2 Neuroelectromagnetic Forward and Inverse 

Problems 

As shown in Figure 2-1, the neuroelectromagnetic forward problem considers 

modeling the relationship between inside brain electrical sources and the 

outside electromagnetic fields [37], which is formulated in matrix notation as, 

 

LXY=  (2.1) 
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where Y  is an M×T matrix of the outside electromagnetic measurement from 

M sensors at T time points, L  is the M×D lead field matrix (or forward 

model), and X  is the D×T matrix of the unknown source from D discrete 

dipole locations. 

As shown in Figure 2-2, neuroelectromagnetic source imaging is an inverse 

problem of the formula (2.1). The estimation accuracy of the 

neuroelectromagnetic sources is crucially dependent on the conditioning of 

the lead field matrix to be inverted. However, the signals measured from the 

MEG have very small values, and thus they are easily influenced by various 

external disturbances and noise. Furthermore, because of the limited number 

of sensors, there is an underdetermined relationship between the sources and 

the sensors [38, 39]. For these reasons, the neuroelectromagnetic inverse 

problem is very often ill-posed, which means that there is not a single, well-

behaved solution. The solution is very sensitive to even small perturbations in 

the measurement data and the brain model. Therefore, in order to prevent 

oscillatory behavior in the presence of noise, the development of a very robust 

inverse algorithm with an optimal regularization determination method is 

highly desired [40-43]. In such cases, the well-known Tikhonov regularization 

scheme is employed. 

The regularized solution for the neuroelectromagnetic inverse problem in the 

absence of reliable a priori information about the generating sources can be 

formulated as, 



10 
 

 

( )222

F
)( min  arg +++ ℑ+−=

+
XLXYX

X

λ  (2.2) 

 

where +X  is the D×T matrix of the estimated source, 
F

⋅  denotes the 

Frobenius norm, 
2

F

+−LXY  is a measure of the difference between the 

outside measured data Y  and the data that would be obtained. ( )22 )( +ℑ Xλ  is 

a Tikhonov regularization term that penalizes large constraint solutions. λ  

denotes the regularization parameter, which controls the amount of 

regularization. The value of λ  controls the properties of the regularized 

solution. In equation (2.2), )(⋅ℑ  acts as a constraint term and defines the 

imaging method. The choice of )(⋅ℑ  crucially affects the result of the 

estimated source [44]. 
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Figure 2-1 Neuroelectromagnetic forward problem.  
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Figure 2-2 Neuroelectromagnetic inverse problem.  



13 
 

2.3 Regularization Techniques 

The efficiency of Tikhonov regularization method is highly dependent on the 

proper choice of λ  that produces a fair balance between the perturbation error 

and the regularization error [45-47]. If too much regularization is imposed, the 

result of the estimation will become less sensitive to perturbations in the data. 

On the other hand, if too little regularization is used, the estimation will be 

dominated by the contributions from various types of errors. However, the 

determination of the value of λ  is not straightforward in practical applications 

without a prior knowledge of either the neuroelectromagnetic sources or the 

noise. Therefore, two methods have been widely used, the GCV method and 

the L-curve method, which do not require prior information in order to 

determine the optimal regularization parameter [48-50]. 

The GCV method is based on the principle that, if an arbitrary data point is 

left out, then the regularized solution should correctly estimate this missing 

data. This leads to the choosing of the regularization parameter which 

minimizes the GCV function, 

 

2

2

2

)]  [trace(
)GCV(

reguLLI

yLx

−
−

=
+

λ  (2.3) 

 

where y is the vector of the outside electromagnetic measurement from M 

sensors at a time point, x is the vector of the unknown source from D discrete 
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dipole locations at a time point, x+ is the estimated vector of x, and reguL  is a 

matrix which produces the x+ when multiplied with y. 

The L-curve method is a graphical tool with a log-log plot of 
2

x  versus 

2
yLx−  for all valid regularization parameters. The optimal value of 

regularization parameter can then be determined by choosing the point of 

maximum curvature on the graph. More details of the GCV and the L-curve 

methods are presented in [48-50]. 

 

2.4 Assessment Criteria of Source Estimation 

In this chapter, the effectiveness of the GCV and the L-curve methods is 

evaluated by computing two indexes. The first one is the RE, computed 

according to the formula, 

 

2

2RE
x

xx −
=

+

 (2.4) 

 

where x  represents the vector of the true sources, +x  denotes the 

reconstructed sources, and 
2
 is the standard L2-norm. The second one is the 

CC between x  and +x , according the formula, 
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2

2

2

2

CC
xx

xx

⋅

•=
+

+

 (2.5) 

 

where • stands for the inner product. A larger CC implies that the stronger 

pairs of the true and reconstructed sources are related. 

 

2.5 Simulations and Results 

The performance of the inverse algorithm is hard to verify by in vivo 

experiments because the exact underlying sources inside of a real human brain 

cannot be estimated a priori. Therefore, we resort to a simulation with known 

source configurations implemented in MATLAB. The system configurations 

for the simulations use 151-channel sensors (axial gradiometers) on MEG 

machine. Furthermore, to utilize anatomical information, the interface 

between white and grey matter is extracted from magnetic resonance imaging 

(MRI) T1 images of a standard brain and tessellated to build the source space 

(10004 source dipoles) [51]. Each possible cortical source is represented by a 

current dipole oriented normal to the cortical surface, i.e., both the location 

and orientation are constrained by the cortical surface. A spherical 

homogeneous volume conductor model is made as the electromagnetic field 

model in order to compute the external fields and scalp potentials for a 

specific set of brain electrical sources. It is obvious that the use of the realistic 

head model enhances the solution accuracy, but the spherical head model has 
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been widely used, especially for MEG simulation studies, considering 

computational cost [52]. We then artificially construct forward data sets, 

assuming a single activity and two simultaneous activities. In the simulation 

here, we define )(⋅ℑ  in (2.2) as Frobenius norm. 

 

2.5.1 Sources Contaminated by Brain Perturbation 

In this section, practical aspects of two regularization parameter determination 

methods are related as to the level of sources contaminated by brain 

perturbations and the accuracy of reconstruction. Before the forward 

calculation, brain perturbations are added to the original source signals, to 

reach different levels of SNR. Figure 2-3 shows an example of the assumed 

cortical patch activities, Figures 2-3(a) and (b) are the original sources with 

one and two activities, Figures 2-3(c) and (d) show examples of the sources 

contaminated by brain perturbations in the case of one and two activities. 

Then, after calculating the forward problem, we construct the artificial MEG 

measurement data. The validation consists of the estimation of the source 

distribution with the regularization parameters provided by the GCV and L-

curve methods taken from the MEG data. 
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Figure 2-3 Example of cortical patch activities. (a) Original sources with one activity. 

(b) Original sources with two activities. (c) Sources with one activity contaminated by 

brain perturbation (-12.065dB SNR). (d) Sources with two activities contaminated by 

brain perturbation (-1.763dB SNR). 

  



18 
 

Figures 2-4(a) and (b) show the source distribution of a single activity 

estimated at a -12.065dB SNR of brain perturbation by the L-curve and the 

GCV. Figures 2-4(c) and (d) show the source distribution of two activities 

estimated at a -1.763dB SNR of brain perturbation by the L-curve and the 

GCV, respectively. As illustrated, the locations of the unknown activities are 

revealed with the estimated source distributions obtained from the two 

methods. However, the efficiency of the L-cure and GCV cannot be 

determined easily, just as in the case of direct intuitive comparisons of the 

figures. 

For more quantitative comparisons, the REs and CCs are evaluated from 9000 

repeated simulations, assuming seven levels of brain perturbations. As shown 

in Table 1, we can see the L-curve appears to give a better choice of the 

regularization parameter for the estimation than the GCV since the RE of the 

estimated source distribution is smaller over the range having a low SNR, 

although the difference is very small. As the SNR of the sources decreased the 

L-curve method produces more successful estimation results than the GCV 

method because of the larger CC, as shown in the Table 2. In the next section, 

the capability of the GCV method is demonstrated and compared to that of the 

L-curve when the sensors are dominated by measurement noise. 
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Figure 2-4 Estimation results. (a) Estimated by the L-curve (one activity). (b) 

Estimated by GCV (one activity). (c) Estimated by the L-curve (two activities). (d) 

Estimated by GCV (two activities). 
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Table 1 REs in the L-curve and GCV estimations (sources contaminated by brain 
perturbation) 

 

One Activity Two Activities 
SNR 
(dB) 

RE SNR 
(dB) 

RE 
L-curve GCV L-curve GCV 

28.451 0.977 0.977 30.790 0.967 0.967 
8.449 0.978 0.978 10.790 0.968 0.968 
-3.592 0.981 0.981 -1.251 0.970 0.970 
-10.635 0.994 0.995 -7.272 0.977 0.977 
-11.550 0.998 0.999 -8.294 0.979 0.979 
-15.073 1.023 1.025 -12.732 0.997 0.998 
-17.570 1.056 1.061 -15.230 1.018 1.020 

 

 

Table 2 CCs in the L-curve and GCV estimations (sources contaminated by brain 
perturbation) 

 

One Activity Two Activities 
SNR 
(dB) 

CC SNR 
(dB) 

CC 
L-curve GCV L-curve GCV 

28.451 0.253 0.253 30.790 0.293 0.293 
8.449 0.250 0.250 10.790 0.291 0.291 
-3.592 0.211 0.210 -1.251 0.271 0.271 
-10.635 0.137 0.135 -7.272 0.221 0.221 
-11.550 0.126 0.124 -8.294 0.208 0.208 
-15.073 0.087 0.084 -12.732 0.141 0.141 
-17.570 0.064 0.062 -15.230 0.105 0.104 
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2.5.2 Sensors Contaminated by Measurement Noise 

Since contamination caused by various kinds of errors in the measurements is 

inevitable, as an extension to the simulations presented in previous section, 

the sensor data are contaminated by different levels of artificial measurement 

noise, in order to compare directly the abilities of the two methods in this 

different noise environment. Figure 2-5 shows the assumed scalp topographies 

of the sensors, Figures 2-5(a) and (b) show the original sensor data of the 

single and the double activities, Figures 2-5(c) and (d) show an example of the 

sensors contaminated by measurement noise in the cases of a -7.762dB SNR 

(one activity) and a -2.484dB SNR (two activities). 

Figure 2-6 shows the reconstructed sources applied to the example shown in 

Figure 2-5. Figures 2-6(a) and (b) show the source distribution (one activity) 

estimated at the -7.762dB SNR of measurement noise by the L-curve and the 

GCV. Figures 2-6(c) and (d) show the source distribution (two activities) 

estimated at the -2.484dB SNR of measurement noise by the two methods. It 

can be seen from the figures that the source distributions obtained from the L-

curve method are discontinuous and include many noisy sources, and the 

location of the unknown activities cannot be found. On the contrary, the GCV 

method seems to be more robust than the L-curve because a more focused 

source distribution with less spurious sources is obtained from the GCV 

method and the activities can be observed.  
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Figure 2-5 Scalp topographies of MEG data. (a) Original MEG data in the case of one 

activity. (b) Original MEG data in the case of two activities. (c) MEG data 

contaminated by measurement noise (-7.762dB SNR) in the case of one activity. (d) 

MEG data contaminated by measurement noise (-2.484dB SNR) in the case of two 

activities. 
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Figure 2-6 Estimation results. (a) Estimated by the L-curve (one activity). (b) 

Estimated by GCV (one activity). (c) Estimated by the L-curve (two activities). (d) 

Estimated by GCV (two activities). 
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To synthesize the results more quantitatively, Tables 3 and 4 show the 

variations of the RE and the CC evaluated from 9000 repeated simulations, 

respectively. We can see from the tables that the evaluation results produced 

by the L-curve and GCV are almost same in the regions with relatively low 

level measurement noise, but the accuracy of the L-curve gets worse as the 

level of measurement noise becomes higher, e.g., SNR = -2.020, -8.052, -

12.908, and -16.004dB, in the case of one activity. However, the RE and the 

CC of the GCV method are not affected much by the measurement noise as 

compared to the L-curve. Similar trends are found in the case having two 

activities, e.g., SNR = -2.980 and -4.552dB. 

We can conclude from these comparisons that it appears that the GCV method 

is a better choice for estimating optimal regularization parameter when the 

MEG source reconstruction results are mainly dominated by measurement 

noise. However, the L-curve can be a more effective method when the brain 

perturbation levels are relatively high. 
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Table 3 REs in the L-curve and GCV estimations (sensors contaminated by 
measurement noise) 

 

One Activity Two Activities 
SNR
(dB)

RE SNR
(dB)

RE 
L-curve GCV L-curve GCV 

63.989 0.978 0.977 64.993 0.969 0.968 
43.996 0.979 0.979 44.988 0.972 0.973 
23.990 0.982 0.987 24.985 0.978 0.982 
-2.020 2.719 0.999 1.473 1.127 1.012 
-8.052 76.063 1.013 -1.036 1.869 1.010 

-12.908 203.967 1.066 -2.980 4.244 1.015 
-16.004 301.654 1.063 -4.552 11.664 1.004 

 

 

Table 4 CCs in the L-curve and GCV estimations (sensors contaminated by 
measurement noise) 

 

One Activity Two Activities 
SNR
(dB)

CC SNR
(dB)

CC 
L-curve GCV L-curve GCV 

63.989 0.249 0.251 64.993 0.287 0.287 
43.996 0.231 0.244 44.988 0.259 0.265 
23.990 0.222 0.223 24.985 0.238 0.240 
-2.020 0.127 0.146 1.473 0.164 0.163 
-8.052 0.026 0.112 -1.036 0.140 0.150 

-12.908 -0.001 0.082 -2.980 0.112 0.140 
-16.004 -0.003 0.061 -4.552 0.084 0.131 
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3 Estimation of Correlated 
Neuroelectromagnetic Activities in Deep 

Source Space 

 

3.1 Introduction 

Studies of cognitive functions and resting state networks require estimation of 

electromagnetic activities emanating from deep source space, such as the 

hippocampus and thalamus. However, since the activities from deep source 

space are poorly represented in MEG signals, and their electromagnetic fields 

drop rapidly with distance, the challenge of the electromagnetic activities 

estimation lies in the limited sensitivity to the deep source space [30, 53]. 

To solve electromagnetic inverse problems, various approaches for estimating 

spatiotemporal activities have been proposed. Among such approaches, two 

class inverse algorithms called linear estimation and spatial filter have been 

widely used recently [7, 54, 55]. The well-known weakness of spatial filter is 

that it requires a large number of recordings time samples to build recordings 

covariance matrix, therefore, it can hardly be applied to single time sample 

data [56]. Another weakness common to the spatial filter is the significant 

degradation in performance in the presence of high correlated activities [57]. 

In this chapter, we focus on the linear estimation technique, which does not 

suffer from these weaknesses. Generally, the linear estimation requires a 

weighting matrix to represent the metric associated with the knowledge about 

locations or relationships of sources [14]. However, this knowledge cannot be 



27 
 

determined a priori by electromagnetic nondestructive methods, the 

conventional linear estimations have usually assumed that all source activities 

are completely uncorrelated, which means that relationships between 

neighboring sources are ignored. When using the conventional linear 

estimations, the estimated amplitude for a source at the deep locations is 

always weaker than actual [17]. Furthermore, the deeper an activity lies and 

the more it is surrounded by anisotropic sources [51], the more complex 

source relationships influence on the inverse estimation. Since a satisfactory 

understanding of the functional mechanism between different activities 

requires consideration of the complex relationships [58], an appropriate 

relationship should be taken into account when building the weighting matrix 

to improve the quality of the source estimation. Towards this goal, the 

geometrical information, such as, the Euclidean distance and the three-

dimensional geodesic distance of the adjacent sources, is used to make the 

artificial relationship [54]. Indeed, the appropriate weighting matrix should be 

designed in order to reflect the desired property of the sources. In other words, 

when estimating the temporarily correlated source activities, we should plan 

this property with respect to the correlation [59]. 

This chapter suggests a modified linear inverse operator with a proposed 

weighting matrix obtained from the relationship between electromagnetic flux 

densities and dipole sources so as to reflect the correlation property of the 

sources. This approach is applied to the realistic MEG simulations and the 

results demonstrate that the proposed approach can estimate the correlated 

deep activities more precisely than the conventional linear estimation and 

spatial filtering techniques.  
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3.2 Methods 

3.2.1 Inverse Algorithms 

The expression for the linear inverse operator W is, 

 

YWXLRC)(LRLW TT =+= +−     ,1  (3.1) 

 

where R is the weighting matrix and C is the noise covariance matrix [60]. In 

the conventional linear estimations, the relationships between the neighboring 

sources are assumed to be ignored, which means that the weighting matrix is a 

diagonal matrix. If the activity can be expected at any location in the source 

space equally, this diagonal matrix becomes identity matrix [14]. Otherwise, 

the )(dl  can be imposed to each diagonal entry of the weighting matrix [61], 

then SR  is expressed as, 
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where D is the number of sources, 
2
l  is the standard L2-norm of a vector l , 

and l  will be explained hereunder.  

 

3.2.2 Proposed Approach 

The recording of the mth sensor is denoted as d)lm(  when a single unit-

magnitude source exists at the dth volume element of the source space, 

therefore, d)lm(  indicates the sensitivity of the mth sensor to a source located 

at the dth volume element. The vector T
21 ](,,(,,(,([( d)ld)ld)ld)ld) Mm =l  

expresses the sensitivity of the whole sensor array for the mth unit-magnitude 

source, here M is the number of sensors, and this sensitivity information can 

be revealed by using the lead field matrix 
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Physically, the deeper an activity source is located, the more it is surrounded 

by other sources, and the more complex relationships will influence on the 
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final inverse resolution. Since close similar l s have larger relationship and 

mutual effect, in order to improve the estimation quality, those influencing 

factors should be taken into account when building the weighting matrix. In 

this chapter, the source relationship is defined as the similarity degree of the 

sensitivities of the whole sensor array for the neighboring sources, thereby the 

weighting matrix is expressed as, 
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i,jR  reveals MEG recording similarity degree between the ith and jth sources.  
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3.3 Simulations and Results 

3.3.1 Simulation Setups 

Original locations of two point active sources indicated by small black dots in 

Figure 3-3 are selected in order to represent the locations in the deep source 

space. The time series are generated according to the following model, 

 

)](2sin[)(
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 (3.5) 

 

where ℜ , τ , Ω , f  and Δ  are the parameters controlling the shapes of the 

time series. The values of these parameters used in this chapter are listed in 

Table 5. Time series )(ts1  and )(ts2 at 1 ms intervals from 1 to 375 ms are 

shown in blue and green broken lines in Figure 3-1. The third time series 

calculated using, 

 
)()()( ts2ts1ts3 ⋅+⋅= ζξ  (3.6) 

 

where parameter ξ  and ζ  control the degree of correlation between )(ts3  

and )(ts2 . Time series )(ts3  when 5.0=ξ , 25.0=ζ  is shown by the red 

broken line in Figure 3-1. In this case, the correlation information between 

any pair of the three time series are shown in Table 6. 



32 
 

The simulated magnetic recordings shown in Figure 3-2 are calculated by 

assigning the )(ts1  and )(ts2  to the 1st and 2nd activities in Figure 3-3, 

respectively, when the overlapping spheres model is used as the forward 

model. 
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Table 5 Values of the parameters used for generating s1 and s2 

 

 ℜ(pA.m) τ (ms) Ω (ms) f (kHz) Δ (ms) 

s1 25 63.5625 205.3125 0.0101 130.3125 
s2 50 98.7188 230.6250 0.0169 115.3125 

 

 

 

 

 

Table 6 Correlations between the time series 

 

 s1-s2 s1-s3 s2-s3 
Correlation coefficient 0.0890 0.6671 0.8014 
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Figure 3-1 Time series used for the simulations. 
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Figure 3-2 Simulated magnetic field recordings. 
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3.3.2 Estimation Results of Localizations 

The source estimation is performed by using the three linear inverse operators 

and the spatial filter. Here, the spatial filter is chosen for comparison, because 

it is a method representative of another popular estimation technique. The 

source distribution (average over the time series), is estimated by using the s2 

and s1 as the 1st and 2nd point activity time series, and the results are 

displayed in Figure 3-3. It can be clearly seen that the proposed inverse 

operator estimated the two deep activities at the correct locations. On the 

contrary, other methods failed to localize the 1st and 2nd activities. From the 

intuitive comparisons, we can evidently observe that the proposed technique is 

able to precisely estimate the correlated activities in the deep source space. 
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Figure 3-3 Estimation results obtained by assigning the s2 and s1 as the 1st and 2nd 

activity time series. Original locations of the activities are indicated by the small black 

dots. (a) Spatial filter. (b) Conventional linear estimation with identity weighting 

matrix. (c) Conventional linear estimation with weighting matrix Rs. (d) Proposed 

linear estimation with weighting matrix Rc. 
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In the previous simulation, the temporal correlation of the 1st and 2nd 

activities is low, i.e., correlation coefficient is 0.0890 as shown in Table 6. We 

then perform simulations in which activities are highly correlated, thereby, 

checking the sensitivity of the inverse methods to the correlation. Without 

changing the time series of the 1st activity, we assign the time series s3 to the 

2nd activity. In this case, the correlation coefficient between the two activities 

turned out to be 0.8014. The estimation results of high correlated activities is 

shown in Figure 3-4. Despite the localization accuracy, it can be seen that the 

results obtained from three linear estimations are identical with those of 

Figure 3-3, suggesting that the linear estimations are not influenced by the 

source correlation. However, as shown in Figures 3-3(a) and 3-4(a), the result 

of the spatial filter shows a severe influence from the source correlation, i.e., 

the estimation results of the two cases are significantly different. On the other 

hand, the proposed inverse operator seems to be very effective and stable 

because two activities are again well localized even though they are highly 

correlated, as illustrated in Figure 3-4(d). 
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Figure 3-4 Estimation results obtained by assigning the s2 and s3 as the 1st and 2nd 

activity time series. Original locations of the activities are indicated by the small black 

dots. (a) Spatial filter. (b) Conventional linear estimation with identity weighting 

matrix. (c) Conventional linear estimation with weighting matrix Rs. (d) Proposed 

linear estimation with weighting matrix Rc. 
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3.3.3 Estimation Results of Activity Time Series 

The estimated time series of the activity obtained by the proposed linear 

estimation in the cases of low and high correlations are shown in Figures 3-5 

and 3-6, respectively. Here, the estimated activities are the point sources that 

give the local maxima in Figures 3-3(d) and 3-4(d). As shown in Figures 3-5 

and 3-6, the broken and solid green lines are almost overlapped, indicating 

that the proposed method is valid for retrieving the original s2 time series for 

the 1st activity. However, since the original time series of the 2nd activity are 

weaker than that of the 1st activity, the estimated time series for the 2nd 

activities are distorted in varying degrees as shown in Figures 3-5 and 3-6. 

Yet we should note that compared with the distortion in the case of low 

correlation (see blue lines in Figure 3-5), the distortion in the case of high 

correlation (see red lines in Figure 3-6) is relatively slight, the reason for this 

is the compensating effect of the high correlation from the 1st activity. The 

results demonstrate that the proposed estimation can provide almost accurate 

time series estimation for the strong signal of the deep activity, nearly 

accurate estimation for the weak activity in the case of high correlated with 

the strong one, and distort time series estimation for the weak activity which 

is low correlated with the strong one.  
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Figure 3-5 Estimated time series of the two activities obtained using the proposed 

method in the case of the low correlation. 
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Figure 3-6 Estimated time series of the two activities obtained using the proposed 

method in the case of the high correlation. 
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4 Reconstruction of Neuroelectromagnetic 
Source Connectivity Network 

 

4.1 Introduction 

The traditional studies of the MEG source reconstruction have been proposed 

to localize the activities and study such activity-specific changes in isolation, 

however, this isolated study is insufficient. A satisfactory understanding of the 

source mechanisms requires measuring of relationship analyses between 

activities [30, 58, 62]. Many methods for connectivity analyses have been 

proposed, e.g. synchrony, coherence, and Granger [63-65]. Among these 

methods, synchrony and coherence are used to assess undirected connectivity. 

Granger can reveal information about direction and degree of connectivity and 

is widely used by several groups [58, 64]. One benefit of MEG is that it can 

extract the time series of the sensor level measurement with excellent 

temporal resolution [66], therefore, MEG is a very promising tool to 

investigate the sensor level connectivity. However, MEG measurement is 

sensitive to the field spread effect, the connectivity analyses at the sensor level 

cannot generate straightforward interpretations at the source level. Another 

benefit of MEG is that it can estimate the activities with good spatial 

resolution, thereby, MEG source connectivity network reconstruction is 

becoming main issue in the neuroelectromagnetic inverse computation 

researches recently [58, 63, 66-73]. 
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The inverse techniques can effectively reduce the field spread effect, and have 

been successfully used to MEG source reconstruction problems. Although 

inverse algorithms are constantly being improved and different methods have 

been comprehensively compared [56], most comparisons mainly focus on 

localization bias or spatial resolution instead of fully comparing unique source 

connectivity reconstruction characteristics [6, 34, 39, 74, 75]. Thus, a 

complete and rigorous comparison of the performance of inverse techniques 

for MEG source connectivity network reconstruction is placing increasing 

demands. There are two popular types of inverse techniques. One class is the 

linear estimation based technique whose result mainly depends on the 

measurement geometry and the source covariance matrix. Another class is the 

minimum variance spatial filtering technique, the result of which depends on 

the measurement geometry as well as the covariance matrix of the 

measurement [56, 74]. 

This chapter evaluates two inverse algorithms, with respect to the 

effectiveness of the MEG source connectivity network reconstruction. By 

considering the reconstructed source series, the reconstructed connectivity 

strength and the violation by the measurement noise, a thorough comparison 

is performed when the underlying sources condition is in a connectivity 

network form. This chapter also suggests a modified spatial filter with a 

proposed correlation gram matrix to improve the reconstruction result. Finally, 

through simulations, some guidelines are proposed for a consensus on using 

inverse algorithms of the source connectivity network reconstruction. 
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4.2 Methods 

4.2.1 Granger Causality Connectivity Analysis 

Granger causality implements a statistical interpretation of directed 

connectivity in which U causes V if knowing the past of U can help predict the 

future of V, better than knowing the past of V alone. Granger causality can 

identify the directed functional connectivity, and give a satisfactory 

understanding of neural mechanisms. To calculate Granger causality, suppose 

that the temporal connectivity of two time series )(tu  and )(tv  can be 

estimated by the following models, 
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where A, B and C contain the model coefficients, O, P and Q (the model 

orders) represent the number of considered past time points, ue  and ve  are the 

regression residuals (prediction errors) for each time series. The magnitude of 

connectivity in the direction of )(tu  causes )(tv , for instance, is the log ratio 

of the prediction error variances for the restricted (omitting time series )(tu  in 

the autoregressive model of )(tv ) and full models (refer to [64, 76, 77] for 

more details). 
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4.2.2 Inverse Algorithms 

The expression for the inverse operator leW  according to the linear estimation 

is rewritten as follows, 

 

YWXLRC)L(LRW T
lele

T
lele =+= +−     ,1  (4.2) 

 

where leR  is the weighting matrix according to the linear estimation, and C is 

the noise covariance matrix. Using the spatial filtering technique, the resultant 

inverse operator spW  is derived as, 

 

YWXL)RL(LRW T
spsp

T
spsp == +−−−     ,111  (4.3) 

 

spR  is the spatial covariance matrix of the measurement [56, 74]. 

 

4.2.3 Proposed Approach 

We denote the output of the mth sensor at time t as )(myt , the vector 

[ ])()()()()( mymymymym Tt21 =y  expresses the whole time 

series (from 1 to T ) of the mth sensor output, and Y  is, 
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where M is the number of sensors. The inverse operator paW  of the proposed 

approach is then obtained by substituting paR  for spR  in (4.3), 

 

YWXL)RL(LRW T
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T
papa == +−−−     ,111  (4.5) 

 

paR  is the correlation gram matrix, defined as, 

 

22
)()(

)()(

ji

ji
R

RRRR

RRRR

RRRR

RRRR

i,j

M,MM,jM,2M,1

m,Mm,mm,2m,1

2,M2,m2,22,1

1,M1,m1,21,1

pa

yy
yy

⋅
•=



























=













R

 (4.6) 

 



48 
 

i,jR  reveals the similarity degree between the ith and the jth sensor 

measurements.  

 

4.2.4 Reconstruction Process 

The detailed process of the connectivity network reconstruction is as follows. 

Step 1) The locations of the patch source activities are selected on the cortical 

surface. 

Step 2) Data generated by an autoregressive model are assigned as the time 

series to the activities. 

Step 3) The underlying source connectivity is revealed by using the Granger 

causality. 

Step 4) Source time series are employed to generate MEG sensor 

measurements by using forward computation. 

Step 5) Inverse algorithms are used to estimate the source time series 

considering cortical connectivity. 

Step 6) The estimated source time series are analyzed for connectivity, the 

reconstructed source connectivity is projected onto the cortical surface. 

Step 7) The adequacy of inverse techniques are evaluated by comparing the 

difference between the reconstructed and the underlying connectivity 

networks. 

 



49 
 

4.3 Simulations and Results 

4.3.1 Simulation Setups 

Three extended patch source activities shown in Figure 4-2 are selected on the 

cortical surface in order to represent the locations of the occipital lobe tip, the 

top of the central sulcus, and the deeper insula. Three time series )(tsx , )(ts y  

and )(tsz , as shown in Figure 4-1, according to the following autoregressive 

model are assigned as activity time series to the sources 1, 2 and 3. 

 

)2( 7.0)1( 8.0)(

)4( 3.0)2( 3.0)1( 5.0)(

)2( 65.0)1( 6.0)(

−−−=

−−−−−=

−+−=

tststs

tstststs

tststs

zzz

zyyy

yxx

 (4.7) 

 

The connectivity information of the time series revealed by the Granger 

causality is shown in Table 7. The network form connectivity of the sources, 

shown in Figure 4-2, is considered as the underlying true source connectivity 

network. The arrow reveals the connectivity direction, the source 3 causes 2, 

and 2 causes 1. The width of solid line points out the connectivity strength, 

which means the connectivity strength of the source 2 to 1, i.e. 0.4070 is 

stronger than that of 3 to 2, i.e. 0.1634. The dash line indicates there is no 

connectivity between the endpoints, i.e. the connectivity strength of sources 3 

and 1 is 0. An overlapping spheres model is applied for the forward 

calculation of the magnetic fields. Gaussian noise with SNR values (15, 10, 5, 

3 dB) are added to MEG sensors to represent the range of the inevitable noise. 
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Figure 4-1 Time series used for the simulation. The blue, green and red lines indicate 

the series sx(t), sy(t) and sz(t), respectively. 
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Table 7 Connectivity information of the time series 

 

Direction Connectivity Strength 

ys  → xs  0.4070 

zs  → xs  0 

zs  → ys  0.1634 
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Figure 4-2 Underlying source connectivity network. 

 

  



53 
 

4.3.2 Results of Reconstructed Time Series 

The source time series are the precondition for connectivity network 

reconstruction. We first reconstruct the source time series at the three 

locations of interest using the linear estimation, the spatial filter and the 

proposed approach. Figure 4-3 shows the reconstructed time series when the 

SNR is 10 dB. As can be seen, the black and red lines are almost overlapped, 

indicating that the proposed approach is valid for retrieving the original time 

series. The time series obtained by the linear estimation and the spatial filter 

shown in blue and green lines are distorted. 

In order to quantitatively compare the performance of the inverse methods, 

the error of reconstructed time series is defined as the sum of absolute 

difference between the reconstructed and the original series at each time point. 

We can see that the proposed approach appears to give a better result than the 

other methods since the error of the reconstructed time series is smaller over 

the whole SNR range, as shown in Table 8. The results confirm that the 

proposed approach can increase the accuracy of the source time series 

reconstruction when the underlying sources are in the form of a connectivity 

network. 
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Figure 4-3 Reconstructed time series of the three patch activities when the SNR is 10 

dB. The black lines indicate the original time series. The blue, green and red lines 

indicate the reconstructed source time series obtained by the linear estimation, the 

spatial filter and the proposed approach, respectively. 
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Table 8 Error of the reconstructed time series 

 

SNR 
(dB) 

Linear 
Estimation 

Spatial 
Filter 

Proposed 
Approach 

15 7.2248 8.8882 6.4940 
10 9.0557 9.3821 7.4533 
5 11.1950 10.6023 9.6889 
3 12.2879 11.4894 11.1104 
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4.3.3 Results of Reconstructed Connectivity Networks 

Next, the Granger connectivity measure is applied to the reconstructed source 

time series. Table 9 shows the reconstructed connectivity network of the three 

activities, where "i → j" represents the connectivity direction from the activity 

i to j. As shown, the underlying connectivity network can be revealed by all 

three inverse techniques, however, the reconstructed connectivity magnitudes 

from the proposed approach are in closer agreement with the underlying truth 

than those from the linear estimation and the spatial filter. This indicates that 

the use of correlation gram matrix can prevent the inclusion of spurious 

connectivity degree in the reconstructed connectivity network. 
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Table 9 Reconstructed connectivity network 

 

SNR 
(dB) 

Direction 
Connectivity Strength 

Linear 
Estimation 

Spatial 
Filter 

Proposed 
Approach 

15 

2 → 1 0.4041 0.3808 0.4015 

3 → 1 0 0 0 

3 → 2 0.1530 0.1527 0.1562 

10 

2 → 1 0.4102 0.3844 0.4053 

3 → 1 0 0 0 

3 → 2 0.1484 0.1529 0.1568 

5 

2 → 1 0.4186 0.4121 0.4088 

3 → 1 0 0 0 

3 → 2 0.1445 0.1428 0.1572 

3 

2 → 1 0.4222 0.4148 0.4087 

3 → 1 0 0 0 

3 → 2 0.1427 0.1420 0.1567 
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In order to examine the trends of the resultant connectivity networks obtained 

by different inverse algorithms, the reconstruction error is defined as the L2-

norm of the difference between the reconstructed and the underlying true 

connectivity. As shown in Table 10, for the linear estimation, there is an 

increase in reconstruction error as SNR decreases. This reflects the direct 

pattern of  noise effect on the source connectivity network reconstruction of 

the linear estimation. At high SNRs (15 and 10 dB) the results of the linear 

estimation are better than those of the spatial filter, while at low SNRs (5 and 

3 dB) the linear estimation shows worse results than the spatial filter. For the 

spatial filter, the results at low SNRs are better than those at high SNRs, 

which shows a somewhat reversed pattern compared to the linear estimation. 

Hence, we can point out that the noise cannot influence the source 

connectivity network reconstruction directly when using the spatial filter. 

Moreover, the proposed approach has lower error than other two methods for 

all SNR cases, also, the error fluctuates within a narrow range. This leads to 

the fact that the proposed approach can contribute robust abilities to the 

connectivity network reconstruction. 
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Table 10 Error of the reconstructed connectivity network 

 

SNR 
(dB) 

L2-Norm Error (%) 
Linear 

Estimation 
Spatial 
Filter 

Proposed 
Approach 

15 2.46 6.45 2.07 
10 3.50 5.68 1.55 
5 5.06 4.84 1.47 
3 5.86 5.19 1.58 
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5 Analysis of Neuroelectromagnetic Source 
Signal via Subspace Decomposition Imaging 

 

5.1 Introduction 

A subspace decomposition imaging (SDI) method for analysis of 

neuroelectromagnetic source signals is proposed in this chapter. The SDI 

technique can capture dynamic details in the source space that would 

sometimes be too weak to be recognized by conventional methods, but can 

also recover the stationary source signal contaminated by large brain 

perturbation. The SDI method is motivated by the conclusion of recent 

biomedical study that the neuronal signals have low intrinsic dimensionality, 

i.e., they lie on some low-dimensional subspace, or they are sparse [16, 78]. 

Naturally, the source can be separated into two components, in this situation, 

none of the above mentioned estimation algorithms is desirable. This brings 

us to the work shown in this chapter, which aims to address the following 

problems. Can we develop a source estimating algorithm that a better 

estimated result can be obtained when we decompose the source into low-rank 

and sparse components, assuming the underlying source is a superposition of 

those two, and simultaneously use these two as the constraints in some 

computationally tractable algorithm to the source imaging problem [79]. This 

is the main contribution of this chapter.  
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5.2 Subspace Decomposition Imaging Method 

The inverse solution for the neuroelectromagnetic source imaging can be 

formulated as, 

 
2

F
 min  arg ++ −=

+
LXYX

X
 (5.1) 

 

The SDI method proposes a novel decomposition source model from the 

matrix perspective. Mathematically, this means the source matrix is the 

superposition of a low-rank matrix and a sparse matrix. Therefore, every 

source distribution X  can be separated into parts LX  and SX  such that, 

 

SL XXX +=  (5.2) 

 

where LX  has low rank and SX  is sparse. Obviously, the component LX  is 

stable over time with respect to the component SX  in the source space. If we 

require that two components explain the outside measurement exactly, the 

forward problem can be modeled as, 

 

)( SL XXLY +=  (5.3) 
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For the source signal imaging problem, we do not know the source matrix X , 

not even the low-dimensional subspace of LX  as well as the locations and 

number of the nonzero entries of SX . The SDI algorithm is defined as the 

following constrained minimization of a cost function, 

 

)(  

  min
1*,

++

++

+=

+
++

SL

SL

tosubject
SL

XXLY

XX
XX

γ
 (5.4) 

 

where 
*

⋅  denotes the matrix nuclear norm, i.e., the sum of singular values, 

1
⋅  denotes the L1 norm, i.e., the sum of the absolute values of matrix entries, 

+
LX  is the estimated low-rank source matrix, +

SX  is the estimated sparse 

source matrix, and γ  is a positive weighting parameter to balance the two 

terms, 

 

),(  max

1

TD
=γ  (5.5) 

 

The SDI algorithm recovers low-rank and sparse sources via the following 

optimization, 
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where μ  is the parameter to be determined. There are several algorithms for 

solving this optimization problem [80-84]. In this work, the SDI adopts a fast 

and accurate algorithm for the low-rank and sparse decomposition, namely the 

augmented Lagrange multiplier (ALM) method [81]. The ALM method 

operates on the augmented Lagrangian, 
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where AL  is the Lagrange multiplier matrix and ⋅  denotes the standard trace 

inner product. Specifically, equation (5.4) can be practically solved by 

repeatedly minimizing equation (5.7) with respect to +
LX , 
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where ( ) ( )
kk AkS

TVSU LXX 1 svd,, −++ +−= μ , 
kAL  is the Lagrange multiplier 

matrix at the iteration time k, [ ]xεΓ  is the shrinkage operator, 
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where ε  is a positive value. This operator can be extended to vectors and 

matrices by applying it element-wise. 

Then minimizing equation (5.7) with respect to +
SX , 
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equation (5.8) is an update of +
+1kLX  and equation (5.10) is an update of +

+1kSX  

in the iterative ALM method loop. 

Finally updating AL  based on the residual +++ −− SL XXX , 

 

( )+++
+++

−−+=
111 kkkk SLkAA XXXLL μ  (5.11) 
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as well as updating μ  by 

 

kk μμ 5.11 =+ . (5.12) 

 

The repetition will terminate when the number of successive iterations 

without improvements in +
LX  and +

SX  reaches a specified number.  

 

5.3 Verification by Simulation Studies 

In the following simulations, implementations of SDI is described that 

optimally exploits the strengths of this method, and allows for efficient data 

processing, detailed analysis of results, and visualization. The system 

configurations for the simulation use whole-head MEG system, which 

consists of 306 channels arranged in triplets of two planar gradiometers (204 

channels) and one magnetometer (102 channels). The interface between white 

and grey matter is extracted from MRI T1 standard brain images and 

tessellated into 3502 elements to build the cortical surface. As shown in 

Figures 5-1 and 5-2, the present study applied a boundary element method 

(BEM) model for the forward calculation of MEG measurements.  
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Figure 5-1 Boundary element meshes generating. 
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Figure 5-2 Forward model building.  
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5.3.1 Two Typical Simulations 

Two locations indicated by red patches in Figure 5-3 are selected to represent 

original active sources in the brain. The area of each active source is assumed 

to be approximately 10 cm2, and the locations are selected in order to 

represent the activities within the left superior temporal and precentral gyri. 

The stable and sharp time series of the active sources are generated according 

to the following models, 
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where A is the parameter controlling the amplitude of the time series )(2 ts . 

Since the MEG channel contamination from noise is inevitable, we 

contaminate the MEG measurements by adding artificial noise for 50 trials. 

The noise level is set to achieve an average SNR of 15 dB after averaging 

over all epochs. 
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Figure 5-3 Original locations of two active sources. 
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The sensitivity of the methods to a weak activity s2 ( 2.0=A ) is investigated 

in Figures 5-4 to 5-6. The original time series of active sources )(1 ts  and 

)(2 ts  according to the equations (5.12) and (5.13) at 1 ms intervals from 1 to 

300 ms are shown in red and blue lines in Figure 5-4. The simulated magnetic 

field recordings calculated by assigning the )(1 ts  and )(2 ts  to the two 

activities are also shown in Figure 5-4. 

The estimation results obtained by using MN and SDI at 203 ms are shown in 

Figure 5-5, individually. We first use intuitive comparisons to capture relevant 

features for evaluating the results. As shown in the figure, each image is 

normalized to its maximum values, such that also smaller details of the 

distributions remain visible. The color scale was set such that grey color 

reflects 0 to 5 percent of the maximum intensity within each map. Red color 

indicates the upper and yellow color indicates the lower intensity range. 

Figure 5-5 shows that the source distribution obtained from the MN 

completely missed the active source s2 at 203ms. The MN generates an active 

source estimate regardless of the underlying source time series configurations, 

therefore, the weak sharp signal s2 is easily overlain by the strong signal s1 (at 

203 ms, the amplitude of s1 is nearly five times higher than that of s2). The 

SDI using a decomposition technique overcame this problem, leading to two 

separate results. The first one being the low-rank component was able to 

recover correctly the activity s1. The second being the sparse component 

produced two activities simultaneously and detected correctly the existence of 
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the activity s2, though the intensity of the estimated s2 is lower than that of 

the estimated s1. 

Moreover, as shown in Figure 5-6, the estimated time series of s1 obtained by 

MN and the low-rank component are similar to the original time series, 

indicating that MN and the low-rank component are valid for retrieving the 

active source with stronger time series. We should note that compared with 

the estimated time series in the case of the MN, the estimated result in the 

case of the low-rank component is much smoother, the reason for this is the 

compensating effect of stabilization from the low-rank component. Since the 

original time series of s2 is too weak, the estimated time series of s2 are 

distorted in varying degrees. 

These results demonstrate that the SDI can provide almost identical estimate 

for the strong activity with stable time series, and it can also detect the 

existence of weak activity with varying time series. 
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Figure 5-4 Time series of active sources used for simulations and the simulated 

magnetic field recordings (A=0.2). 
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Figure 5-5 Source estimates obtained by MN, SDI: low-rank component and SDI: 

sparse component at 203ms (A=0.2). 
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Figure 5-6 Estimated source time series obtained by MN, SDI: sparse component and 

SDI: low-rank component (A=0.2).  
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The performance of the estimation methods to a strong activity s2 ( 5=A ) is 

investigated. The original time series and magnetic recordings are shown in 

Figure 5-7. 

Similar to Figure 5-5, all intensity maps in Figure 5-8 are normalized to their 

maximum value, so that smaller details can still be identified. Figure 5-8 

shows that the source distributions obtained from the MN missed the weak 

active source s1 at 203ms. However, the SDI recovered the activities of s1 and 

s2.  

As about time series of s2 shown in Figure 5-9, the estimates obtained by MN 

and the sparse component are almost same as the original s2. In terms of time 

series of s1, the estimate in the case of MN is contaminated by the strong 

sharp signal s2 which leads to the unsmooth estimated time series of s1, yet 

the contamination of strong sharp activity to the estimate of SDI is reduced 

since the stabilization of the low-rank component. 

The results demonstrate that the SDI can provide almost identical estimates 

for both the weak activity with stable time series and strong activity with 

varying time series. 
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Figure 5-7 Original source time series and the simulated magnetic field recordings 

(A=5). 
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Figure 5-8 Source estimates obtained by MN, SDI: low-rank component and SDI: 

sparse component at 203ms (A=5). 
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Figure 5-9 Estimated source time series obtained by MN, SDI: sparse component and 

SDI: low-rank component (A=5).  
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5.3.2 Simulation of Multi-varying Time Series 

In this section, the sensitivity of the estimation methods to the multi-varying 

time series is investigated. We follow the settings in the previous section. The 

original locations of two active sources are the same as those represented in 

the section of 5.3.1. The time series of s1 is generated according to equation 

(5.14), and the time series of s2 is generated according to equation (5.15). 
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The time series of active sources used for simulations and the simulated 

magnetic field recordings are shown in Figures 5-9 and 5-10, respectively. 

The sources and the time series of estimation results are shown in Figures 5-

11 and 5-12, respectively. The MN method generated active source estimates 

regardless of the underlying source time series configurations, therefore, the 

weak active sources are easily overlain by the strong ones. The source 

estimates of SDI can flexibly and more accurately reflect the active state of 

the true simulated sources in the simulation because of the decomposition. 

The low-rank component of SDI can estimate relatively stationary active 

source, and the sparse component can product the estimate, which is varying 

over time. For the integration of the low-rank and sparse components, the SDI 

result is more similar to the underlying sources than the MN method.  

In conclusion, the present simulation studies address the question as to 

whether the SDI algorithm for neuroelectromagnetic problems improves the 

estimation of the source signals. The results confirm that using the SDI 

increases the accuracy of the estimation, and demonstrates that the proposed 

method is reliable over large underlying source time series configurations, and 

concludes that the SDI enhances the representation of the original source 

profiles. In general, the SDI method for measuring neuroelectromagnetic 

source signals can capture dynamic details and recover the stationary source 

signal. 
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Figure 5-10 Multi-varying time series of active sources used for simulation. 
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Figure 5-11 Simulated magnetic field recordings. 
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Figure 5-12 Estimation results.  
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Figure 5-13 Estimated time series of the active sources.  
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5.4 Application to Practical Measurements 

In order to illustrate the performance of the SDI method with practical data, 

we applies the proposed method to localize the epileptic activity in a patient 

with medically intractable epilepsy requiring a resective surgery [85]. The 

patient underwent pre-surgical evaluation was scanned using MR unit with a 

conventional head gradient coil. The MR images were acquired using a 

regular T1-weighted sequence for head images. The slice thickness was 1.5 

mm with acquisition in the sagittal orientation with a matrix size of 256 by 

256. Using scanned MR images, BEM models and a cortical source space 

were extracted using Brainstorm [86]. MEG signals were acquired by the 

whole-head MEG system (VectorViewTM, Elekta Neuromag Oy, Helsinki, 

Finland), which consists of 306 channels arranged in triplets of two planar 

gradiometers (204 channels) and one magnetometer (102 channels). The 

sampling frequency was 600.615Hz, and the signal was filtered by a band-

pass filter in the range of 0.1~200Hz. Since the post-operative MR images of 

the patient were also acquired, we thus know where the epileptogenic zone is, 

and therefore, the inverse algorithms can be verified against the exact location 

of epileptogenic zone. The real epileptic data offers a unique opportunity to 

verify and compare different inverse algorithms on the same real data [87-94]. 

As shown in Figure 5-14, we segmented the resection region from the post-

operative MR images and co-registered the resection region to the cortex 

surface segmented by pre-operative MR images using Brainstorm software 

[86]. Figure 5-15 schematically illustrates the overall procedure of localizing 

epileptic activity  
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Figure 5-14 Resection region. 
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Figure 5-15 Overall procedure of localizing epileptic activity.  
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We take into account two assessment criteria using the surgical resection 

region on the cortex surface as a reference to quantitatively evaluate the 

performance of the source estimation. The first criterion is localization error 

(LE), which is determined as the shortest distance from the source location 

with maximum source strength to the boundary of the resection region, to 

assess the performance of localization. If the location with the maximum 

value is localized within the resection region, the localization error is assigned 

the value zero [88, 91]. 

We use another criterion denoted as degree of focalization (DF) to quantify 

the consistency of the estimated source distribution with resection region [95]. 

DF is defined as the estimated source energy contained in the reference source 

space (i.e., the surgical resection region in this study) divided by the overall 

source energy, which is the source energy in the whole source space. This 

criterion can be applied in the subject study because of the explicit resection 

region [96]. Thus, the larger the DF value the more accurate source 

distribution that the estimation method can obtain [13, 97]. 

In epilepsy studies, the accuracy of source estimation is variable across 

different time points of an interictal spike, unfortunately, the relationship is 

not yet well understood [88]. Since all the methods get their best DF values at 

the 223th sample point shown in Figure 5-16, we investigates source 

estimation of interictal spike activity at this point. 
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Figure 5-16 MEG waveform of the epilepsy patient. 
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We first use intuitive criterion to capture relevant features for evaluating the 

spatial resolutions. As shown in Figure 5-17, the results estimated by MN and 

SDI are shown under the same conditions.  

The figure shows that the source distribution obtained from MN method is 

discontinuous and contains several local maxima (spurious sources) at a 

considerable distance from the true source location. This reflects the MN bias 

in epileptic activity localization. If such a result was encountered in a real 

experiment, without prior knowledge of the true number of sources, the 

location of the unknown epileptic activity would not be found successfully.  

However, the SDI sparse component seems to be more effective, it obtains 

more focused source distribution with less spurious sources, and the epileptic 

activity is well localized. This result also exactly confirms that the pattern of 

epileptic activity is sparse. The result of SDI low-rank component is similar to 

that of MN because of the sparse pattern of epileptic activity.  

The LE and DF results are presented in the top left corner of Figure 5-17 to 

quantitatively compare the performance of the estimations. All the methods 

produce the location with the maximum value in the resection region because 

all the LE results are 0. Since SDI sparse component gets the largest the DF 

value, the SDI sparse obtains the most accurate source distribution. 

The intuitive and quantitative comparisons suggest that the proposed SDI 

enhances the estimation accuracy.  
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Figure 5-17 Estimated results of epileptic activity.  
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5.5 Noise Suppression in MEG Measurement for 

Improving Neuroelectromagnetic Source Estimation 

MEG uses an array of sensors positioned over the whole head that are 

extremely sensitive to the minuscule changes in the magnetic fields produced 

by the electrical activity in the brain. Recently, the development of whole-

head MEG sensor arrays and of methods for estimation of 

neuroelectromagnetic sources from the MEG measurement has been 

remarkable. Nevertheless, all existing methods for neuroelectromagnetic 

source estimation are hampered by the many sources of noise present in the 

outside measurement [98-100]. Much research has been performed over the 

years on noise suppression in neuroelectromagnetic measurement. For 

example, principal component analysis (PCA) has been used for data 

processing, analysis and noise reduction. However, many research works have 

been proposed to address the brittleness of the classical PCA with respect to 

outliers and gross corruption in the literature over several decades [80]. In this 

chapter, a novel noise suppression method, based on SDI technique, is 

presented and applied to the estimation of neuroelectromagnetic field in 

source space for the first time. The proposed method gives a constrained 

optimization of MEG electromagnetic domain transformations such that the 

matrix of transformed MEG measurement can be decomposed as the sum of a 

sparse matrix of noise and a low-rank matrix of denoised data. The 

decomposition is a unique feature of the proposed method which not only can 

suppress the noise, but also can preserve the information about the underlying 

neuroelectromagnetic sources. We verified the efficacy of the proposed 
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method with a number of simulations under different configurations. Our 

results indicated that the performance of source estimation is significantly 

improved.  

 

5.5.1 Method 

In MEG, the electromagnetic measurement is a superposition of information 

component and noise component, therefore, the component of MEG data has 

low intrinsic dimensionality, i.e., it lies on some low-dimensional subspace, or 

it is sparse. Mathematically, this means the measured electromagnetic field Y 

can be decomposed into a low-rank matrix and a sparse matrix such that Y = 

YL + YS, where YL has low rank and YS is sparse. Obviously, the component 

YS carries the information of the neuroelectromagnetic source signal, and the 

component YS carries the noise. Given these properties, we present in this 

work a novel method based on SDI to suppress the noise in MEG data. The 

proposed method is defined as the following constrained optimization of a 

cost function, 

 

SLSL tosubject
SL

YYYYY
YY

+=+   min
1*,

γ  (5.16) 

 

For the problem of neuroelectromagnetic source estimation, we do not know 

the low-dimensional subspace of YL as well as the locations and number of 
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the nonzero entries of YS. Figure 5-18 shows the overall procedure for solving 

the SDI-based noise suppression in MEG measurement.  
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Figure 5-18 The overall procedure for solving the SDI-based noise suppression. 
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5.5.2 Simulations and Results 

The system configuration for the simulation is shown in Fig. 2(b). The BEM 

model with 3502 source dipoles is applied for the forward calculation of MEG 

measurements. Two regions indicated by red patches in Fig. 2(a) are selected 

to represent original neuroelectromagnetic active sources in the brain. The 

time series of two activies are also shown in Fig. 2(a). The MEG measurement 

noise is set to an SNR of -5 dB, and Fig. 2(b) shows the simulated 

electromagnetic field measurements. 

We first use intuitive comparisons to capture relevant feature for evaluating 

the spatial resolutions. Figures 5-19(c) and (d) show the neuroelectromagnetic 

source distributions at 227 ms estimated by the traditional and proposed 

methods under the SNR of -5 dB. Figure 5-19(c) shows that the source 

distributions obtained from the traditional method are discontinuous and 

contain several spurious sources around the true activity regions. This reflects 

the weakness of the traditional method under the high noise condition. 

However, the proposed method seems to be more effective. Figure 5-19(d) 

shows that the proposed method obtains more focused source distributions 

with less spurious sources, and the true activities are well estimated. The 

intuitive comparisons suggest that the proposed method enhances the 

estimation accuracy. 

Furthermore, the DF is used to quantify the consistency of the estimated 

source distributions with the regions of true activities. According to definition 

mentioned above, the larger the DF value the more accurate source 
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distribution that the method can obtain. The application of the proposed 

method resulted in significant performance improvements over the traditional 

method, with DF improvement of 3.30% compared to the traditional method. 

The result demonstrates the effectiveness of the proposed method for 

enhanced the focal characteristic. 

Since the MEG measurement is severely contaminated by the high level noise, 

the estimated time series of two activities at the regions of interest are 

unsmooth. However, we should note that compared with the estimated time 

series in the case of the traditional method, the estimated results in the case of 

the proposed method are much smoother, the reason for this is the 

compensating effect of stabilization from the low-rank constraint. Moreover, 

The CC of the original source time series and the estimated one is presented to 

quantitatively compare the performance of the traditional and proposed 

methods. The quantitative improvements are also observed that the CCs of s1 

and s2 are improved by 0.0314 and 0.0478 respectively. All of those 

demonstrates the ability of the proposed method in suppressing noise while 

preserving the information of neuroelectromagnetic source signals. 
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Figure 5-19 Simulation setups and results. (a) The locations and time series of the 

active sources. (b) The simulated electromagnetic field measurements under -5 dB 

SNR. (c) The results (estimated source distributions at 227 ms and estimated source 

time series) via traditional method. (d) The results via proposed method. 
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Table 11 shows the comparison between the DF values obtained by traditional 

method and proposed method under different noise conditions. Table 12 

shows the comparison between the CC values of the true and estimated time 

series of s1 and s2 obtained by two different methods. As shown in Tables 11 

and 12, much of noise in MEG measurements has been suppressed by the 

proposed method, yielding more accurate estimates (larger DF and CC values), 

compared with those from traditional method. 

In this study, we demonstrated the efficacy of a sparse and low-rank 

constrained optimization to suppress the noise in MEG measurement for 

improving neuroelectromagnetic source estimation. The decomposition of 

MEG data into a sparse matrix of noise and a low-rank matrix of underlying 

bio-electromagnetic information is a unique feature of the proposed method 

which not only can suppress the noise, but also can preserve the underlying 

information about the neuroelectromagnetic sources. In general, the 

application of this technique to the processing of neuroelectromagnetic source 

imaging significantly improved the estimate quality. The results suggest that 

the proposed method could be a powerful tool for many future 

neuroelectromagnetic applications. 

  



100 
 

 

 

 

Table 11 DFs of the estimated source distributions 

 

 5 dB 0 dB -5 dB -10 dB -15 dB 

at the 
time point 

227 ms 

Traditional 
Method 

11.25% 9.75% 5.98% 3.82% 2.10% 

Proposed 
Method 

13.85% 10.91% 9.28% 6.02% 3.72% 

average 
result of 
all time 
points 

Traditional 
Method 

6.27% 4.65% 3.16% 1.95% 1.13% 

Proposed 
Method 

8.49% 6.90% 5.32% 3.67% 2.32% 

 

 

 

Table 12 CCs of the true and estimated time series 

 

 5 dB 0 dB -5 dB -10 dB -15 dB 

s1 

Traditional 
Method 

0.9804 0.9528 0.9271 0.8790 0.6931 

Proposed 
Method 

0.9914 0.9798 0.9585 0.8898 0.8040 

s2 

Traditional 
Method 

0.9588 0.9244 0.8922 0.8242 0.6804 

Proposed 
Method 

0.9780 0.9681 0.9400 0.8763 0.7551 
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6 Conclusion 

 

In this thesis, the techniques to enhance estimating accuracy of 

neuroelectromagnetic sources were studied. The subspace decomposition 

imaging and inverse algorithms, which can overcome several problems of the 

conventional approaches, were proposed. The methods presented in this thesis 

employ the biologic characteristics to constrain the neuroelectromagnetic 

source signal imaging. The constraint effectively integrates the spatial and 

temporal information and improves the resolution of the source estimation. 

Results reported in this thesis suggest that it is possible to obtain real 

improvement in the details of the estimated distributed sources by 

implementing the proposed approaches. Based on the simulations and 

practical application, the general efficacy and contribution of this thesis can 

be confirmed by the following observations.  

First, the abilities of two different methods, the GCV and the L-curve, in order 

to determine the proper degree of regularization have been simulated for a 

range of MEG estimation conditions in conjunction with brain perturbations 

and measurement noise. Even though the cases investigated in this thesis 

demonstrate that there is no absolutely better method, the results presented 

may become useful guidelines for the correct choice of the regularization 

parameter determination method used in real world neuroelectromagnetic 

source imaging. 
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Second, we focused on inverse algorithms and examined their strengths and 

weaknesses in estimating deep space activities, in the presence of correlation, 

and compared the performance of the spatial filter, the conventional and 

proposed linear estimations under such conditions. Based on simulations 

carried out, we demonstrated that the ability to estimate such activities 

depends on the weighting matrix and the proposed method performed 

significantly better than the conventional linear estimations and spatial filter. 

The linear inverse operator proposed in this thesis employed the suggested 

correlation weighting matrix to enhance the representation for profiles of 

correlated neuroelectromagnetic activities located in the deep source space. 

We relied on realistic simulations to show that the proposed method 

effectively enlarged the property of the deep sources, provided more detailed 

information for the source localization, and then improved the final estimation, 

therefore is physically more reasonable. In this study, the use of the 

correlation to build the weighting matrix is just an ideal starting point. In fact, 

revealing the relationship of sources is an active topic in the research 

community, many methods have been proposed, such as, correlation 

coefficient, synchrony, coherence, Granger causality, etc. Therefore, 

reasonable use of more sophisticated relationship analysis methods is required 

for a more efficient and broad application of the proposed inverse technique in 

estimating the correlated deep active sources. This also provides a motivator 

for future works. 

Third, we described the inverse algorithms to reconstruct source connectivity 

network from MEG data, and compared the effectiveness of the linear 

estimation, the spatial filter and the proposed approach, on the metrics of the 
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source series, the connectivity magnitude and norm error. We confirmed that 

the noise effect for the linear estimation is direct, while the effect for the 

spatial filtering technique is indirect. Moreover, the linear estimation is 

advantageous for the connectivity reconstruction of high quality outside 

measurement data, while, the benefit for the case of spatial filter is the low 

SNR environment. This thesis also proposed a modified spatial filtering 

technique to improve the neuroelectromagnetic source connectivity network 

reconstruction. The results indicated that the proposed approach prevents the 

inclusion of the spurious connectivity, decreases the error fluctuation, 

improves the reconstruction accuracy, enhances the robustness with respect to 

the inevitable noise, therefore, represents the profiles of original source 

connectivity network precisely. 

Fourth, the decomposition of source signal into low-rank and sparse 

components is a unique feature of the SDI method which not only can capture 

dynamic details in the source space that would sometimes be too weak to be 

recognized by the conventional method, but also can recover the stationary 

source signal contaminated by large brain perturbation. The source estimates 

of SDI can flexibly reflect the active state of the underlying source. In general, 

SDI demonstrates qualitatively the benefit of using the decomposition 

technique in analysis of neuroelectromagnetic inverse problems. The proposed 

SDI is not only tied to a particular inverse algorithm for source estimation, in 

other words, one is free to choose the type of inverse algorithm, i.e., 

algorithms such as wMNE, spatial filter, LORETA, dSPM, etc., are valuable 

candidates for the SDI approach. In the implementation of SDI presented here, 

we use the least constraint method, i.e., MN linear estimation. In principal, 
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using other inverse algorithms in SDI is equivalent to the method 

demonstrated in this thesis. 

Fifth, MEG is a promising technology, which could be used in a variety of 

biomedical applications, however, MEG electromagnetic measurement is 

usually degraded by noise. The SDI-based noise suppression method gives a 

constrained optimization of MEG electromagnetic domain transformations 

such that the matrix of transformed MEG measurement can be decomposed as 

the sum of a sparse matrix of noise and a low-rank matrix of denoised data. 

Applying the proposed method to a number of simulations showed significant 

improvement of the result accuracy. 

Finally, it should be pointed out that, revealing biophysical phenomena with 

inverse techniques is a hot topic in the neuroscience community, therefore, 

after reasonable interpretation of well-known and acknowledged biophysical 

characteristics, we may also build other sophisticated approaches for analysis 

of neuroelectromagnetic problems in the future. 
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초록 

 

   뇌자도는 뇌 안쪽에 존재하는 뉴런의 조합에 의해 생성되는 약한 

전자기장을 비침습적으로 측정할 수 있는 생물의학적인 기법이다. 

신경전자기신호원 해석의 주요 목표는 외부에서 측정된 전자기장을 

이용해서 신호원 활동의 기능적 정보를 제공하기 위해 특정시점에서의 

신호원 분포와 위치를 파악하는 것이다. 이 문제는 부가적인 

제안조건이 주어지지 않으면 유일한 신경전자기신호원을 복원할 수 

없는 역문제의 일종이다. 본 논문에서는 정확하게 신호원을 복원할 수 

있는 다양한 제안조건과 기법들을 소개하고 새로운 기법들을 

제안하였다. 

   잡음이 수반된 측정치를 이용해 신호원을 복원하는 경우 최적의 

정규변수를 추정해야 하는데 이 과정에서 널리 사용되고 있는 

일반교차평가법(GCV)과 L-curve 방법을 비교, 분석하였다. 

일반교차평가법은 센서잡음이 높은 경우에 정규변수를 정확히 

추정하였고 L-curve 방법은 신호원잡음이 높은 경우에 GCV 보다 

정규변수를 정확히 추정한다는 결과를 얻었다. 

   뇌 안쪽에 위치한 연결성이 있는 신경전자기신호원 활동을 정확히 

복원하기 위해 개선된 역문제기법을 제안하였다. 신호원과 측정센서 

사이의 민감유사도를 이용한 새로운 가중치 행렬 설계법을 제안했으며 

이는 연결된 깊은 신호원의 특성을 복원하는데 효과적이었다. 

시뮬레이션 결과 제안된 비법은 기존 방법보다 신호원 추정에 

구체적인 정보를 제공했으며 복원정확도를 높일 수 있었다. 
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   최근 신경전자기신호원의 연결성 분석에 대한 연구가 활발히 

진행되고 있다. 본 논문에서는 신호원의 연결성을 복원하는 기법에 

대한 비교연구를 진행하였다. 선형추정법은 외부잡음에 직접적인 

영향을 받으며 공간필터법은 잡음에 민감하지 않은 특성을 가지는데 

본 연구에서는 신호원의 연결성을 정밀히 추정하기 위해 공간필터법을 

발전시킨 새로운 기법을 제안했다. 시뮬레이션 결과를 통해 새로운 

기법이 기존 방법보다 평균 정확도를 향상시키고 오차의 분산을 줄일 

수 있다는 것을 확인하였다. 

   마지막으로 본 논문에서는 신경전자기신호원의 다양한 시공간적 

변화를 추정할 수 있는 부분공간분해영상법(SDI)을 제안하였다. 

신호원이 순간적인 변화를 가지는 성분과 안정적인 성분이 동시에 

존재하는 경우 공간분해법을 통해 각각 추정하여 신경신호원의 분포 

및 시간에 따른 변화를 복원할 수 있었다. 측정된 뇌자도 데이터의 

잡음성분을 제거하거나 이를 고려해 신경전자기신호원을 복원하기 

위해 부분공간분해영상법(SDI)을 이용했으며 신호원 복원 결과를 

현저하게 향상시킬 수 있었다. 

 

키워드: 전자기적 뇌영상, 뇌자도(MEG), 신경전자기 역문제, 신호원 영상, 

부분공간분해영상(SDI) 
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