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We propose a unified visualization model, called a ripple graph, that takes the benefits 

of both of the bar graph and line graph with enhanced graphical integrity for not only 

the regularly measured but also irregularly measured time-series data. The ripple 

graph also unveils uncertainty of values between two temporal measurements by 

varying color intensity depending upon the confidence of the values. In doing so, it 

can effectively reveal the measurement frequency or interval while still showing the 

overall temporal pattern of change. We further extend the ripple graph representation 

into a single unified multi-scale visualization model via an interactive 2D widget to 
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accommodate the advantages of other efficient time-series data visualization 

techniques while addressing the scalability issue. We have conducted a controlled 

user study to show the efficacy of the ripple graph by comparing it to existing 

representations (i.e. line graph, bar graph, and interactive horizon graph), after 

selecting representative tasks (i.e. Max, Same, Frequency, and Confidence task) for 

time-series data visualization. Results show that ripple graph is overall the best 

performing in terms of task time, correctness, and subjective satisfaction across all 

task types. 

Following a participatory design process with neurologists, we design an 

interactive visual exploration tool for time-series data, called Stroscope, based on the 

ripple graph representation and the widget. Stroscope provides various interactions 

to navigate data in temporal aspect and supports algorithmic time-series analysis 

methods to accomplish certain analytical tasks. We have also performed long-term 

case studies with two neurologists dealing with blood pressure measurements for 

1600 stroke patients to show the effectiveness of Stroscope. They have could visually 

explore individual blood pressure values and their changes over time while 

maintaining the context, which could lead to save time and effort on exploratory 

analyses in comparison with using conventional statistical tools. In analyzing blood 

pressure data, Stroscope enables them to (1) find patients with anomalous patterns, 

(2) compare between two groups in terms of measurement values, measurement 

frequency, and fluctuation, (3) confirm what they already knew, and (4) formulate a 
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new hypothesis. 

 

keywords : Irregularly measured time-series data, Frequency-aware 

visualization, Uncertainty visualization, Controlled user study, Long-term case 

study 

student number : 2008-30243 



 

 iv

 



 

 v

Contents 

Abstract                      i 

Contents                      v  

List of Figures                    viii 

List of Tables                     xiii 

Chapter 1  Introduction                1 

1.1 Background & Motivation . . . . . . .  . .. . . . 1 

1.2 Main Contribution . . . . . . . . . . . . . . . 6 

1.3 Organization of the Dissertation  . . . . . . . . . 9 

Chapter 2  Related Work                11 

2.1 (Large) Time-series data visualization . . . . . . . . 11 

2.2 Event sequences data visualization . . . . . . . . . 16 

2.3 Interaction . . . . . . . . . . . . . . . . . . 17 

2.4 Evaluation . . . . . . . . . . . . . . . . . . 19 

Chapter 3  Problem Analysis               21 



 

 vi

3.1 Dataset . . . . . . . . . . . . . . . . . . . 22 

3.2 A Scenario – Status Quo . . . . . . . . . . . . . 24 

3.3 Design Process . . . . . . . . . . . . . . . . 25 

3.4 Design Rationale . . . . . . . . . . . . . . . . 26 

Chapter 4 Ripple Graph: A Multi-scale Visualization Model for time-

series data                 29 

4.1 Visual Representation . . . . . . . . . . . . . . 30 

4.2 Multi-scale Modeling . . . . . . . . . . . . . . 32 

4.2.1  Dimension zooming with range of interest (ROI) . . 32 

4.2.2  Color mapping to further distinguish bars . . . . . 33 

4.2.3  Moving the horizontal axis . . . . . . . . . . 34 

4.3 Visualizing degree of certainty between measurements . . . 35 

4.4 User interface for ripple graph manipulation . . . . . . 37 

4.4.1  Control panel . . . . . . . . . . . . . . 37 

4.4.2  Focus lens . . . . . . . . . . . . . . . 39 

Chapter 5  Usability Study               43 

5.1 Participants and materials . . . . . . . . . . . . . 43 

5.2 Tasks . . . . . . . . . . . . . . . . . . . . 44 

5.3 Procedure . . . . . . . . . . . . . . . . . . 46 

5.4 Results . . . . . . . . . . . . . . . . . . . 48  

5.5 Discussion . . . . . . . . . . . . . . . . . . 50 

Chapter 6  Controlled User Study             55 

6.1 Participants and materials . . . . . . . . . . . . . 55 



 

 vii

6.2 Visualization techniques . . . . . . . . . . . . . 56 

6.3 Tasks  . . . . . . . . . . . . . . . . . . . 57  

6.4 Study design and procedure . . . . . . . . . . . . 58 

6.5 Results . . . . . . . . . . . . . . . . . . . 60 

6.6 Discussion . . . . . . . . . . . . . . . . . . 68 

Chapter 7  Stroscope                 69 

7.1 Layout . . . . . . . . . . . . . . . . . . . 69 

7.2 User Interaction . . . . . . . . . . . . . . . . 71  

7.3 Analytical Features . . . . . . . . . . . . . . . 74 

7.4 Implementation . . . . . . . . . . . . . . . . 78 

Chapter 8  Case Study                 79 

8.1 Procedure . . . . . . . . . . . . . . . . . . 79 

8.2 Participant 1 (P1)  . . . . . . . . . . . . . . 80 

8.3 Participant 2 (P2)  . . . . . . . . . . . . . . 85 

8.4 Discussion . . . . . . . . . . . . . . . . . .  89 

Chapter 9  Conclusion                 93 

Bibliography                     95 

Abstract in Korean                  105 

                        

 



 

 viii

 

List of Figures 

Figure 1.1 Visualization tools for large time-series data. It is difficult to show 

the measurement frequency or degree of irregularity in 

measurement intervals. . . . . . . . . . . . . 3 

Figure 1.2 Concept of Ripple Graph. Ripple graph (c) takes the benefits of 

both line graph (a) and bar graph (b). . . . . . . . . 6 

Figure 1.3 Ripple graph seamlessly integrates different existing time-series 

representations (a)-(f) into a unified interface framework for 

supporting different tasks for exploratory data analysis. All graphs 

revealing the measurement frequency are representations made by 

using a control panel for ripple graph manipulation. . . . 6 

Figure 1.4 Overview of Stroscope. (left) control panel for ripple graph 

manipulation, (center) timeline view for representing multiple 

time-series data, and (right) detail view showing the information 

of the selected series. . . . . . . . . . . . . . 8 

Figure 2.1 Visualization tools for a (few) long time-series data. These are 

designed for handling a few long time-series, but not for showing 

an intuitive over-view of multiple time-series. . . . . . 13 

Figure 2.2 Visualization tools for large time-series data. It is difficult to show 

the measurement frequency because connected lines or filled areas 



 

 ix

made it difficult to tell if measurement points are real or not. 15 

Figure 4.1 Concept of Ripple Graph. Ripple graph (c) takes the benefits of 

both line graph (a) and bar graph (b) while revealing the 

uncertainty of values between two adjacent real measurements: It 

effectively shows the overall temporal trend and the measurement 

frequency/interval while revealing the uncertainty of values 

between real measurements. . . . . . . . . . . 30 

Figure 4.2 Dimension zooming and color mapping in ripple graph. The ripple 

graph represents a time-series with a sequence of 12 values ranging 

from min to max for the given height h. (a) General ripple graph.  

(b) Ripple graph after applying ROI parameters: Bars are more 

distinguishable from each other than bars in (a). (c) Ripple graph 

after assigning colors to measurement values: A color strip on the 

right is a user-defined color table. . . . . . . . . . 31 

Figure 4.3 Moving the horizontal axis. The ripple graph represents the time-

series used in Figure 4.2. The horizontal axis is located at the 

bottom. (a) Bars with the values less than ROIlow are filtered out. 

(b) All bars have the same height when ROIlow and ROIhigh are 

set to the minimum of the measurement value. . . . . . 34 

Figure 4.4 Ripple graph with confidence interval of (a) 3-hour and (b) 6-hour. 

The ripple graph fills the area between bars with changing the 

alpha value. . . . . . . . . . . . . . . . . 36 

Figure 4.5 Control panel for ripple graph manipulation. Controls for (a)  

connecting bars and flipping bars downward around the horizontal 

time axis, (b) adjusting confidence interval, (c) adjusting ROI 

values, (d) showing a preview and changing a position of the time 

axis, (e) selecting a pre-defined color palette, and (f) manipulating 

color-related parameters. . . . . . . . . . . . . 38 

Figure 4.6 Ripple graph with the focus lens. (a) A user has a difficulty in 



 

 x

seeing overall temporal pattern of change for the time-series within 

an orange rectangle.  (b) After designating the corresponding 

time-series using the focus lens, the user can see the overall 

temporal pattern of the time-series while making the best use of 

the given space. . . . . . . . . . . . . . . 40 

Figure 5.1 Usability testing software, showing the task in the Usability 

category. Participants had to make a graph (lower graph) the same 

as the given ripple graph (upper graph). . . . . . . . 47 

Figure 5.2 Participant’s Strategies for Question T8 “What are the dates in 

which the rainfall exceeds 1000mm?”  (a) Maximization of the 

height of the bars for measurements greater than 1000 (b) 

Differentiation by the horizontal axis with measurement 1000 (c) 

Assigning a red color to measurements greater than 1000. (d) 

Minimization of the height of the bars for measurements less than 

1000; This strategy caused a problem that the bars with values 

slightly greater than 1000 are indistinguishable from minimized 

bars. . . . . . . . . . . . . . . . . . . 51 

Figure 5.3 Participant’s Strategies for Question T13 “Find periods in which 

the price of Apple stocks is over $620.” (a) Minimization in the 

height of the bars for measurements less than 620 (b) 

Differentiation by the horizontal axis with measurement 620. 52 

Figure 6.1 Visualization techniques for time-series. (a) filled line graph. (b) 

bar graph. (c) horizon graph by default. (d) horizon graph after pan 

and zoom interaction . . . . . . . . . . . . . 57 

Figure 6.2 (a) Task time, (b) Correctness, and (c) Difficulty for each 

visualization technique by task type. . . . . . . . . 60 

Figure 6.3 Task time for each visualization technique by number of time-

series (i.e. 20 and 40). * indicates a significant difference in task 

time between 20 and 40 time-series (p<.05). . . . . . 64 



 

 xi

Figure 6.4 Average of subjective confidence results for each visualization 

technique by time point type . . . . . . . . . . 65 

Figure 7.1 Overview of Stroscope.  .  .  .  .  .  .  .  .  .  .  .  .  70 

Figure 8.1 Stroscope showing only SBP increasing periods. The yellow mark 

indicates when an SHT onset event occurred. . . . . . 82 

Figure 8.2 Stroscope showing only SBP decreasing periods. After selecting 

SBP (a difference between consecutive SBP values) as a 

measurement variable, P1 can observe SBP values less than -20. 

The yellow mark indicates when an SHT onset event occurred.  .

 . . . . . . . . . . . . . . . . . . . 82 

Figure 8.3 Stroscope showing a “SBP-SBPMean” variable. A black arrow 

indicates a patient with an anomalous pattern. Dark blue represents 

a sudden decrease in SBP (a great negative value of “SBP-

SBPMean”). The yellow mark is the indicator of SHT onset event. .

 . . . . . . . . . . . . . . . . . . . 84 

Figure 8.4 Stroscope showing the detail of the patient with anomalous pattern 

in Figure 8.3. P1 identified that the “SBP-SBPMean” value 

decreased approximately from 25 to -50 about 7 hours before the 

SHT onset. The yellow mark is the indicator of SHT onset event. .

 . . . . . . . . . . . . . . . . . . . 84 

Figure 8.5 MRI scans before (left) and after (right) the treatment to remove 

the offending thrombus. . . . . . . . . . . . . 85 

Figure 8.6 Stroscope showing values under 85 in blue color. An orange arrow 

indicates a patient with an anomalous pattern because low values 

(i.e. values under 85) are observed frequently for only the patient.

 . . . . . . . . . . . . . . . . . . . 86 

Figure 8.7 Stroscope that all values are represented by the same height and 

color. An orange arrow indicates a patient with an anomalous 

pattern because measurement frequency is higher for the patient 



 

 xii

than others. . . . . . . . . . . . . . . . . 87 

Figure 8.8 Stroscope showing the fluctuation around the value of 110. An 

orange arrow indicates a patient with an anomalous pattern 

because of a sharp fluctuation. . . . . . . . . . . 87 

Figure 8.9 Stroscope showing hierarchical grouping result. P2 aligned 

patients by onset time of stroke and grouped patients according to 

Cluster and END variables after performing a clustering function. 

Black rectangular spots in the timeline view represent the 

END_progression event. In the two clusters with low blood 

pressure (the first and last clusters), the event tends to occur within 

about 30 hours from onset. . . . . . . . . . . .  88



 

 xiii

List of Tables 

Table 3.1 Four Clinical Variables (selected). There are 29 clinical variables in 

the 1600 acute ischemic stroke patients’ data that we used for the 

design and development of Stroscope. END (Early Neurological 

Deterioration) stands for neurological worsening within 

hospitalization period from stroke onset.  . . . . . . . 23 

Table 5.1 Tasks of Utility Category. Elementary tasks to focus on an individual 

value for a time-series and Synoptic tasks to focus on the overall 

trend or relation with other series. . . . . . . . . . 45 

Table 5.2 Number of participants who failed and average completion time for 

each task. . . . . . . . . . . . . . . . . . 49 

Table 6.1 Results of post-hoc test by each task type. The < sign represents the 

inequality relation with a statistical difference (p < .05). . . 61 

Table 6.2 Results of Post-hoc test by each task type for the task time. * means 

that there is a significant difference between the mean task times of 

two techniques. . . . . . . . . . . . . . . . 62 

Table 6.3 Results of Post-hoc test by each task type for the correctness. * 

means that there is a significant difference between the mean 

correctness of two techniques.. . . . . . . . . . . 63 

Table 6.4 Results of Bonferroni correction by each task type for the difficulty. 

 . . . . . . . . . . . . . . . . . . . . 67 



 

 xiv



 

 1

Chapter 1  

Introduction 

 Background & Motivation 

A time-series data is a sequence of data points, measured at successive points in time. 

It is common across various domains such as finance, science, business, biographies, 

history, planning, and medicine. Domain experts want to predict the future trends by 

exploring and understanding time-series data. Because data points of time-series are 

inherently linked to time, time-series data need to be considered differently than other 

kinds of data and require appropriate visual and analytical methods to investigate 

temporal aspects of underlying problems [5].  

Well-known time-series data visualization, the line graph, is effective in 

revealing overall temporal trend of a time-series; however, it is not accurate in 

showing the measurement frequency or interval. Moreover, in some sense, it harms 

the graphical integrity [52] because the connected lines lead to false confidence in 

values between measurements, especially for irregularly measured time-series data. 
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In contrast, the bar graph is effective in showing frequency/interval without 

interpolating values between measurements, but it is less efficient in showing an 

overall pattern than the line graph. 

In information visualization domain, growing needs of finding important 

patterns and trends in time-series data have spurred the development of many 

interactive visual exploration tools: Line Graph Explorer [31], LiveRAC [35], 

SignalLens [30], and Data Vases [53] to name a few (Figure 1.1). As the size and 

complexity of time-series data increase, visualization researchers now face new 

challenges and requirements for design of the interactive visual exploration tools. In 

this dissertation, we identify some of such challenges and requirements and address 

them in a new interactive visualization tool. 

Most existing time-series data visualization techniques or tools assume that (1) 

each time-series data is measured regularly over time and (2) all time-series data have 

the same measurement range. However, there are often the cases that the time-series 

data do not meet the conditions, e.g. online auction data, regional rainfall/snowfall 

data, and credit card usage data. For these data, existing visualization tools do not 

help us much in answering questions regarding frequency-related patterns or trends: 

For example, (a) which item has the greatest number of bids? (b) in which city does 

it seldom rain in summer? (c) what is the difference in monthly credit card usage 

pattern in terms of the amount and frequency? 
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(a) Line Graph Explorer [31] provides an interactive interfaces as well as 

overview for multiple time-series using Focus+Context technique. 

(b) Horizon Graph [40] is a space-efficient technique by increasing the density of 

time series graphs by dividing and layering filled line charts 

Figure 1.1. Visualization tools for large time-series data. It is difficult to show the 

measurement frequency or degree of irregularity in measurement intervals. 
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Not much effort has been put into developing visualization models or tools for 

such datasets in the infovis community. Aris et al. [9] called these data unevenly-

spaced time-series data and suggested four representations (i.e. Sampled Events, 

Aggregated Sampled Event, Event Index, and Interleaved Event Index) for the 

interactive visual exploration of such data. The Sampled Events method and the 

Aggregated Sampled Event method generate an evenly spaced time-series data by 

sampling at a specific regular interval. The Event Index method distorts the time axis 

to highlight the number of events. The Interleaved Event Index method represents the 

sequence of events while preserving temporal order of events regardless of their real 

time interval. However, the first two methods can cause the data loss that can come 

from sampling and aggregation and the last two methods can distort the time axis by 

arbitrarily changing the time intervals between two consecutive events.  

All of them basically regularize the measurement interval, which could lead to 

loss of information such as measurement frequency or interval which is likely crucial 

for many tasks. To address this problem, a new visual representation for irregularly 

measured time-series data is required to reveal the measurement frequency while 

maintaining graphical integrity. 

These kinds of data are fairly abundant in the medical domain as well. The 

examples include, but are not limited to, body temperature, blood sugar level, and 

blood pressure level in patient records, where the number/interval of measurements 

and hospitalization time can vary depending on patients’ condition. Researchers in 



 

 5

the medical domain often have to arduously collect these data to formulate and test 

hypotheses. Although they may rely on conventional statistical software or Excel for 

that matter, exploratory analyses for hypothesis formulation are not easy, not to 

mention that it is neither intuitive to use nor easy to understand the results. As the 

number of records and number of measurements each record are increased, 

researchers spend more time and effort on exploratory analyses. An interactive time-

series data, especially large and irregularly measured time-series data, visualization 

tool is required to facilitate exploratory data analysis.  

The visualization tool of large time-series involves effective interaction 

techniques to support the dialogue between users and data [54], which can lead to 

focusing on different parts of the data. For time-series data in distinction from other 

kinds of data, users need to interact with time such as aligning with a specific time, 

sorting by duration, or navigating in time. 

In summary, the following two problems are identified in visually exploring and 

analyzing large time-series data. First, most existing time-series data visualization 

techniques or tools cannot reveal the measurement frequency or interval although 

irregularly measured time-series data are abundant in various domains. Second, in the 

medical domain, there is no visualization tool for exploratory data analysis of large 

time-series data while supporting interaction to navigate data. 
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 Main Contribution 

First, we propose a unified visualization model, called a ripple graph, that takes the 

benefits of both of the bar graph and line graph with enhanced graphical integrity for 

not only the regularly measured but also irregularly measured time-series data (Figure 

1.2). The ripple graph also unveils uncertainty of values between two temporal 

 

Figure 1.2. Concept of Ripple Graph. Ripple graph (c) takes the benefits of both line

graph (a) and bar graph (b). 

 

 

Figure 1.3. Ripple graph seamlessly integrates different existing time-series 

representations (a)-(f) into a unified interface framework for supporting different 

tasks for exploratory data analysis. All graphs revealing the measurement frequency

are representations made by using a control panel for ripple graph manipulation. 
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measurements by varying color intensity depending upon the confidence of the values. 

In doing so, it can effectively reveal the measurement frequency or interval while 

still showing the overall temporal pattern of change. We further extend the ripple 

graph representation into a single unified multi-scale visualization model via an 

interactive 2D widget to accommodate the advantages of other efficient time-series 

data visualization techniques while addressing the scalability issue (Figure 1.3). To 

verify the usefulness of ripple graph, we have conduct a usability study from usability 

and utility aspects. We have also conducted a controlled user study to show the 

efficacy of the ripple graph by comparing it to existing representations (i.e. line graph, 

bar graph, and interactive horizon graph), after selecting representative tasks (i.e. 

Max, Same, Frequency, and Confidence task) for time-series data visualization. 

Results show that ripple graph is overall the best performing in terms of task time, 

correctness, and subjective satisfaction across all task types. 

Second, we design an interactive visual exploration tool for time-series data, 

called Stroscope (Figure 1.4), based on the ripple graph representation and the widget, 

following a participatory design process with neurologists. Stroscope provides 

various interactions to navigate data in temporal aspect. Stroscope supports 

algorithmic time-series analysis methods and on-demand on-the-spot visualization of 

statistical summary measures according as tightly integrating statistics and 

visualization improves exploratory data analysis, enabling users to generate 

significant discoveries [38]. 
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We have performed long-term case studies following the Multi-Dimensional In-

Depth Long-Term Case Studies protocol [51] to show the effectiveness of Stroscope 

with two neurologists dealing with time-series data of blood pressure measurements 

for 1600 acute ischemic stroke patients in their workplaces. They have could visually 

explore individual blood pressure values and their changes over time while 

maintaining the context, which could lead to save time and effort on exploratory 

analyses in comparison with using conventional statistical tools. In analyzing blood 

pressure data for stroke study, Stroscope enables them to (1) find patients with 

anomalous patterns, (2) compare between two groups in terms of measurement values, 

measurement frequency, and fluctuation, (3) confirm what they already knew, and (4) 

formulate a new hypothesis. 

 Organization of the Dissertation 

This dissertation is organized as follows. In Chapter 2, we will describe the related 

works in time-series visualization, evaluation studies on graphical perception of 

visual representations for time-series data, and dynamic query interface. In Chapter 

3, we will describe the design rationale along with real world data and a user scenario. 

Then, we explain the ripple graph and present the controlled user study results. After 

we introduce the visualization tool – Stroscope, we present the long term case study 

results. And then, we close this dissertation with plans for future work and 

conclusions in Chapter 9. 
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Chapter 2  

Related Work 

In this section, we review previous work on representation techniques and interactive 

visualization tools for time-series data. We deal with temporal event sequence 

visualization separately, since it has different design requirements than general time-

series data visualization. We also review previous work on interaction and evaluation 

of time-series data visualizations. 

 (Large) Time-series data visualization 

The goals of analyzing time-series are to grasp the evolution of data over time and 

detect trends and patterns for gaining insights and understanding data [4]. The most 

often used visual representations for time-series data are line graph [52], which 

encode time along the horizontal axis and encode time-varying values along the 

vertical axis. Users are understands easily and no learning is required because of their 
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simplicity and well-known form. 

Line graph is effective in revealing overall temporal trend rather than individual 

values because it connects data points. As the size and complexity of time-series data 

increase, many representation techniques or visualization tools were developed. 

VizTree [34] allows user to find anomalies by converting a time-series into a 

symbol string and visualizing the symbol as a tree. The flexible multi-foci navigation 

techniques were proposed in KronoMiner [68], TraXplorer [27] and SignalLens [30]. 

BinX [14] supports different aggregations on time dimension according to the 

abstraction level defined by a user. ChronoViz [18] is a visualization and analysis tool 

for time-based data from multiple sources. Visual exploration tools for patient data 

were proposed in [16], [23] and [43]. These tools are designed for handling a few 

long time-series, but not for showing an intuitive overview of multiple time-series 

(Figure 2.1). 

Many representation techniques or interactive tools for large amounts of time-

series have been developed. Based on the two-tone pseudo coloring by Saito et al. 

[44], a more space-efficient visualization technique called a horizon graph [40] was 

developed using dividing, mirroring, and layering techniques. However, our 

controlled user study showed that this technique based on filled line chart is not 

suitable for frequency-related task. 
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(a) SignalLens [30] shows an amplitude modulated electronic signal. 

(b) CareCruiser [23]. The time-oriented view of CareCruiser focuses on the 

temporal-qualities of applied treatment plans, clinical actions. 

  

(c) KronoMiner [68] allows a user to explore four time-series 

Figure 2.1. Visualization tools for a (few) long time-series data. These are designed 

for handling a few long time-series, but not for showing an intuitive over-view of 

multiple time-series. 
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Line Graph Explorer [31] and LiveRAC [35] provide interactive interfaces for 

exploratory analysis as well as overview for multiple time-series using a 

Focus+Context technique. ATLAS [17] visualizes massive temporal data using line 

graphs after pre-fetching data from remote database servers. Thakur et al. [53] 

suggested a two-dimensional representation using a symmetric glyph, called a kite 

diagram and presented Data Vases to compactly display multiple time-series. In [11], 

several representation techniques, each of which is efficient in revealing a different 

level-of-details were introduced using medical data as examples. All these techniques 

and visualization tools were designed assuming regularly measured time-series. Thus, 

it is difficult for them to show the measurement frequency or degree of irregularity in 

measurement intervals (Figure 1.1 and Figure 2.2). 

Aris et al. [9] suggested four representations for unevenly spaced time-series 

data. The Sampled Events method and the Aggregated Sampled Event method 

generate an evenly spaced time-series data by sampling at a specific regular interval. 

The Event Index method distorts the time axis to highlight the number of events. The 

Interleaved Event Index method represents the sequence of events while preserving 

temporal order of events regardless of their real time interval. However, the first two 

methods can cause the data loss that can come from sampling and aggregation and 

the last two methods can distort the time axis by arbitrarily changing the time intervals 

between two consecutive events.  
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(a) LiveRAC [35] shows multiple time-series using a reorderable matrix of area-aware 

charts. (left) an overview of 50 time-series. (right) detail of time-series as sparkline 

charts 

 

(b) A visual comparison of the financial market for all assets in 3 countries and 28 market 

sectors [69]. 

Figure 2.2. Visualization tools for large time-series data. It is difficult to show the 

measurement frequency because connected lines or filled areas made it difficult to 

tell if measurement points are real or not. 
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TimeRider [42] also deals with irregularly sampled data and reveals temporal 

aspects using animation in an animated scatter plot. In this tool, however, it is hard to 

see an overview because only one time frame can be seen at a time. Our tool supports 

an intuitive overview while maintaining the graphical integrity for irregularly 

sampled data. 

 Event sequences data visualization 

Temporal event sequences in the data such as electronic health records, highway 

incident logs or web logs, can be thought of as a kind of time-series, where each event 

does not have a quantitative property but a categorical one with a timestamp. The 

irregularly measured time-series data handled in this dissertation covers this event 

sequence data. There have been visualization tools to help users discover frequent or 

anomalous patterns in these temporal categorical event sequence data. 

VISUAL-TimePAcTS [56] shows activities of individuals during a day using a 

space-time path. ActiviTree [57] visualizes a single event sequence using a circular 

tree-like representation and Continuum [7] visualizes a hierarchical relationship 

between temporal events. Lifelines2 provides visual temporal summaries to compare 

trends across multiple records [59] and an alignment operation that aligns sequences 

by a specific event [60]. Wongsuphasawat et al. [63] proposed a temporal categorical 

similarity measure, called a “Match & Mismatch”, to find similar records. LifeFlow 

[64] visualizes all possible patterns of event sequences through aggregation while 

maintaining temporal interval between events. CloudLines [32] represents each event 
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as a circle with the size and opacity varied by importance of the event. These tools 

represent multiple event sequences by stacking and interpolating them vertically after 

aligning each sequence by a time attribute. We took these approaches, except for 

interpolation, in our tool to show an overview and compare trends across multiple 

time-series.  

 Interaction 

Brushing & linking is a well-known interaction, which means the connection of two 

or more views of the same data, such that a change to the representation in one view 

affects the representation in the other [12]. Hauser et al. introduced brushing based 

on angles between data items [24] .  

Dynamic queries are a well-known successful approach to information seeking 

that can allow users to deal with information overload by interactively formulating 

query and rapidly showing the results [3][48]. Many information visualization 

research and commercial systems adopted dynamic queries as an essential component.  

Dynamic HomeFinder [62] was one of the first example systems that 

implemented dynamic queries. It helps users explore a real-estate database and find 

satisfying homes. Dynamap [41] also implemented traditional dynamic queries to 

help users find trends in Census data overlaid on a 2D map. PhotoFinder allows users 

to specify multiple disjunctive range selections using multiple two-sided slider bars 

to show a histogram chart for each attribute [29]. Filmfinder [50] supports users to 

search for certain films in large film database using various dynamic query devices. 
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Spotfire [1] is the first commercially successful information visualization tool that is 

based on traditional dynamic queries. These applications and tools implement 

traditional dynamic query widgets and support only conjunct of disjuncts [49]. Spatial 

proximity queries need dynamic queries that support disjunct of conjuncts.  

Various interface widgets such as range sliders, check boxes, and buttons are 

used to formulate traditional dynamic queries. There also have been a few approaches 

to extend the expressive power of traditional dynamic queries. AlphaSlider [2][37] is 

a query device to allow users to select one item from an alphabetically arranged list 

without using a keyboard. Timebox widget of TimeSearcher [26] enables users to 

draw multiple rectangular boxes to specify conjunctive queries and find the time 

series data with a certain pattern. QuerySketch [58] allows users to draw a freehand 

line graph and find data that match the graph.  

Young and Shneiderman also presented a novel water flowing model to support 

a complete set of Boolean expressions [67]. There also have been some approaches 

to allow users to perform more general Boolean queries using the dynamic query 

technique. Fishkin [20] presented a new dynamic query interface to support 

compound queries by overlapping multiple filters such as Magic Lens filters [15]. 

Users can formulate queries of various combinations such as disjunction of 

conjunctions as well as conjunction of disjunctions. This work is most similar to our 

approach, but it was not design to support the formation of the spatial proximity query 

where the degree-of-interest varies (gradually increased/decreased) depending on the 
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distance to the query point.  

 Evaluation 

There have been evaluation studies on graphical perception of visual representations 

for time-series data to recommend appropriate representations for different types of 

tasks. Javed et al. conducted a controlled user study to evaluate four different 

visualization techniques (simple line graph, braided graph, small multiples and 

horizon graph) for local/global tasks in terms of the graphical perception of multiple 

time-series [28]. This study showed that shared-space techniques are more efficient 

for local comparison tasks and separate-space techniques are more efficient for 

dispersed comparison tasks. Aigner et al. showed that an indexing technique - 

transforming scale of data to a comparable unit - was superior among different 

representation techniques in comparing two heterogeneous time-series data through 

a comparative study [6]. A study by Heer et al. [25] compared the performance time 

and accuracy between line graph and horizon graph. One of their results was that 

layered bands are more efficient for a small display space. They also proposed an 

optimal chart height for better graphical perception. These evaluation studies were 

concerned with line graph and its variants. 

A task model was introduced by Andrienko and Andrienko [8] to specify the 

domain problems that users face in time-series data visualization and analyses. 

According to the model, there are two different classes of tasks: (1) Elementary tasks 

to focus on an individual value for a time-series data and (2) Synoptic tasks to focus 
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on the entire trend or relation with other data for multiple time-series data. We 

performed a usability study based on this model to evaluate the ripple graph.  

Shneiderman et al. introduced “Multi-dimensional In-depth Long-term Case 

Studies (MILCs)” to evaluate information visualization tools in case studies with real 

users dealing with real datasets in their workplaces [51][48]. This is a qualitative 

evaluation methodology for evaluating the efficacy and utility of tool from diverse 

perspectives using a combination of methods such as interview, survey and 

observation. This evaluation method has been used in many studies [19], [21], [35], 

[46], [47], [61], [64], [65], and [66]. We also performed long-term case studies 

following the MILCs. 

Arias-Hernandez introduced PairAnalytics [10], which is a method for capturing 

reasoning processes when users interact with visual representations of massive data. 

This method is an approach that a subject matter expert (SME) and a visual analytics 

expert (VAE) perform a given task together for real data and problems. In our case 

studies, we also employed a modified pair analytics method where an experimenter 

(i.e., SME) demonstrated our tool to participants (i.e., VAE) only when they asked 

for help as used in [33]. In this way, participants tried using our tool and quickly 

became familiar. Then we could improve our tool iteratively by removing roadblocks. 
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Chapter 3  

Problem Analysis 

One of the ultimate goals of medicine is to take care of the health and well-being of 

patients for their whole lifespan. To achieve this goal, it becomes necessary to keep 

track of individual health records throughout their entire lifespan, which makes it 

inevitable to deal with irregularly measured time-series data. Body temperature, 

blood sugar level, blood pressure level, and liver enzyme level are good examples. 

As an attempt to promote interactive information visualization techniques in the 

medical domain, a collaborative participatory project was launched with neurologists 

interested in analyzing relationship between the progression of stroke and the blood 

pressure change over time. In the following subsections, we explain the clinical 

research problems with the blood pressure data. 
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 Dataset 

A group of neurologists collected time-series data of blood pressure measurements 

for 1600 acute ischemic stroke patients at the Seoul National University Bun-dang 

Hospital in Korea. All patients in this dataset were hospitalized within 48 hours after 

the onset of stroke.  

There are two sets of data. One includes stroke-related clinical information with 

29 clinical variables such as age, gender, and medical history. Four important 

variables are summarized in Table 3.1. The other dataset includes systolic blood 

pressure (SBP) and diastolic blood pressure (DBP) values along with the time of 

measurements. This dataset is different from the usual time-series data handled in 

most conventional time-series data visualization tools. First, it is measured irregularly 

over time. Second, each patient has a unique hospitalization period, i.e. the total 

measurement period is different for each patient, ranging from 3 days to 60 days. 

Third, the first/last measurement time is different for each patient. 
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Table 3.1. Four Clinical Variables (selected). There are 29 clinical variables in the

1600 acute ischemic stroke patients’ data that we used for the design and development

of Stroscope. END (Early Neurological Deterioration) stands for neurological 

worsening within hospitalization period from stroke onset. 

Variable Value Description 

TOAST 

(Classification of 

types according to 

cause of stroke) 

1 
Cases in which the size of the lesion seen 

from the brain image is greater than 2cm 

2 
Cases in which the size of the lesion seen 

from the brain image is less than 2cm 

3 Cases in which cerebral infarction occurs 

4 
Cases in which it cannot be classified as 

remainder 

5 Cases in which there are more than 2 causes 

6 
Cases in which causes are not identified after 

all necessary inspections 

7 
Cases in which causes are not identified due 

to incomplete inspection 

8 
Cases in which cerebral infarction occurs 

temporarily and disappears 

END_Progression 1 or 0 
Occurrence of  symptom that gets 

worsening within 24 hours or not  

END_Recur 1 or 0 
Occurrence of symptom that gets worsening  

after 24 hours or not 

END_Sym_ht 1 or 0 
Case in which hemorrhage is observed in 

image, which is related to the END 
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 A Scenario – Status Quo 

At the beginning of our participatory design process, we observed how neurologists 

analyzed blood pressure data in their clinical practice. As a result, we came up with a 

primary persona, Dr. Lee - a neurologist with 20 years of experience, and a 

representative user scenario that explained the status quo of the data analysis process 

in the field. 

Dr. Lee’s goal is to examine if there are differences in blood pressure value and 

variability between the patients whose symptoms worsen within 24 hours from the 

onset of stroke and others. He needs to focus on the effect of the END_progression 

to achieve his goal. He first separated the patients into two groups: patients with 

END_progression value of 1 (group A) and other patients (group B). He consulted a 

statistician and decided to control two most important compounding variables – 

gender and age. They generated a new group B’ by choosing the ones in the group B 

that matched the ones in the group A in terms of gender and age. They used the 

statistical software R for the matching task, and then they compared the two groups 

of A and B’ in SPSS in terms of initial value, mean, standard deviation, maximum, 

and minimum of blood pressure. Although he wanted to see an overview of each 

group at once, descriptive statistics did not tell him an overall temporal trend in 

intuitive ways. 

Carefully comparing the two groups, he formulated hypotheses. For example, 

he hypothesized that there would be a meaningful blood pressure change when an 
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END_progression occurs. To verify this hypothesis, he needed to examine how the 

measurements fluctuate around a clinically meaningful value and how the mean value 

changes every three- or six-hour period during 24 hours before and after 

END_progression occurs. These analyses were arduous and time consuming with 

conventional statistical tools because the numerous iterative filtering of patients and 

the quantization of time intervals were not efficiently supported in such tools. A 

bigger problem was that every patient’s data in group B’ was required to be aligned 

along a simulated event to be fairly compared with group A, where a simulated event 

could be defined as a virtual event occurring at the event time of the matched patient 

in group A. 

 Design Process 

We have learned that the neurologists have never seen their data in a visualization 

tool. The fact that they could “see” the data in a more intuitive and informative way 

and interactively manipulate the data highly motivated them to participate in the 

design process. 

We as information visualization designers collaborated with the real users – 3 

neurologists to understand each other’s work. We had met them at the hospital 6 times 

over a 6-month period. We alternated between observing users while they performed 

data analyses with their conventional tools and discussing what they did and why. We 

also showed them what is possible with interactive visualization tools to educate them 

about information visualization and to strengthen the partnership. 
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 Design Rationale 

As a result of our observations of and discussions with the real users, we have came 

up with the following design rationale of Stroscope using ripple graph representation.  

(1) Reveal measurement frequency/interval  

Blood pressure measurement frequency tells analysts a patient’s condition, an 

occurrence of event, or a change in surroundings. Thus, we decided to design a 

new representation based on bar graph which is useful to grasp the measurement 

frequency. 

(2) Show fluctuation 

Neurologists observe changes in blood pressure around a clinically meaningful 

reference value possibly different for each patient, which can lead to finding 

patients with anomalous patterns. We decided to show the fluctuation of 

measurement values around a user-defined clinically meaningful value. 

(3) Use focus+context technique  

Systolic blood pressure values are concentrated in a narrow range around 120. It 

is necessary to enable users to interactively adjust their specific range of interest 

and see the detail while maintaining the context. 

(4) Keep familiarity 

We integrated well-known bar graph and line graph into a new visual 

representation to keep the learning curve steep for the new representation.  

(5) Provide unified interface 
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Different representations are necessary for supporting different tasks for 

exploratory data analysis. We designed a unified interface framework into which 

we can seamlessly integrate multiple representations.  

(6) Support multiple time-series  

For visual exploration of multiple time-series, we have to support an intuitive 

overview and user interactions such as zooming, sorting, filtering, and grouping. 

(7) Facilitate comparison task 

One of the main tasks in the analytical exploration of the blood pressure data is 

to compare between two groups. To reduce bias and the effect of compounding 

variables in the comparison task, selecting well-matched entities from each 

group is important. Interactive matching and alignment of patients across two 

groups are important for accurate comparison. 

(8) Integrate visualization and statistical methods 

To facilitate exploratory data analysis, on-demand on-the-spot visualization of 

statistical summary measures is required. It enables users to perform a quick-and 

dirty hypothesis testing on the spot. 
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Chapter 4  

Ripple Graph: A Multi-scale 
Visualization Model for time-series data 

We propose a multi-scale time-series data visualization model, “ripple graph,” to 

represent measurement frequency and uncertainty between measurement points as 

well as measurements of time-series data. We integrate line graph and bar graph into 

ripple graph (Figure 4.1c) to take the benefits of both, i.e. line graph (Figure 4.1a) for 

showing the overall temporal trend and bar graph (Figure 4.1b) for revealing 

measurement frequency. Furthermore, it also takes advantages of space-efficient 

representation techniques such as horizon graph [40] and heatmap-like graph [31] in 

a multi-scale model. 
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 Visual Representation 

The ripple graph aligns time points horizontally and measurements vertically (Figure 

4.2a). The horizontal axis runs vertically in the middle of the given space by default. 

For example, in case of the blood pressure data, the horizontal temporal axis is 

positioned vertically at the midpoint of the blood pressure value range, and each bar 

anchored to the horizontal axis is displayed upward for the values over the midpoint 

value and downward for the values under the midpoint value. 

 

Figure 4.1. Concept of Ripple Graph. Ripple graph (c) takes the benefits of both line

graph (a) and bar graph (b) while revealing the uncertainty of values between two

adjacent real measurements: It effectively shows the overall temporal trend and the 

measurement frequency/interval while revealing the uncertainty of values between 

real measurements. 
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Figure 4.2. Dimension zooming and color mapping in ripple graph. The ripple graph

represents a time-series with a sequence of 12 values ranging from min to max for

the given height h. (a) General ripple graph.  (b) Ripple graph after applying ROI

parameters: Bars are more distinguishable from each other than bars in (a). (c) Ripple

graph after assigning colors to measurement values: A color strip on the right is a

user-defined color table. 
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In this way, it is easy to see how the blood pressure measurements fluctuate 

around a specific value which can be any user-defined meaningful value. The default 

position of the horizontal axis can be changed depending on the problem domain. For 

example, in case of stock data, the horizontal axis is better to be positioned at the 

bottom, i.e. at zero.  

When one measurement is exactly equal to the user-defined value that the 

horizontal axis represents, the graph cannot show that measurement point because the 

height of its corresponding bar is zero, which gives a false impression to users that it 

was not even measured at the time point. To remedy this problem, we made the 

horizontal axis a tube-like dual line with the thickness of a small number of pixels. 

Then, the measurement point can be clearly shown as a blob in the tube as the eighth 

bar in Figure 4.2a (indicated by the green arrow). 

 Multi-scale Modeling 

Quantitative comparison in a ripple graph becomes challenging when many graphs 

have to be shown on the screen. Then, the height of a ripple graph becomes too small 

to discriminate each value in the data. In order to resolve this problem, we developed 

three space-efficient methods in a multi-scale model. 

4.2.1 Dimension zooming with range of interest (ROI) 

The first method allows a user to zoom in to a specific range of values that the user 
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is interested in by adjusting the range of the vertical axis. It adjusts the height of a bar 

accordingly to the range of measurements of interest defined by the user, where the 

vertical axis spans from the lowest value ( ) to the highest value ( ) in 

the range. Then, the bars for any values out of the range have the same height, i.e. 

reach the top or the bottom of the given space.  In this way, the user can zoom in to 

a specific range of interest to compare values in the range in detail, while maintaining 

the context, i.e. knowing the existence of the values outside the range. The four 

downward bars with similar height in Figure 4.2a (see the bars within the green dotted 

circle) can be more clearly distinguishable after setting  and  

properly as shown in Figure 4.2b (see the bars within the green solid circle). 

4.2.2 Color mapping to further distinguish bars 

The second method allows a user to assign colors to measurements, through which 

each bar is painted in the corresponding color determined by a user-defined color 

table. This method was similarly used in [11] as “height-coded timelines,” but the two 

methods are different in that our method fills only the bars whereas the height-coded 

timelines fill the whole space including gaps between bars as well. Figure 4.2c shows 

that the first two bars with the same height are differentiated by color (gray for first 

bar and blue for second bar) and so are the third and fourth bars to the right end. The 

user-defined color mapping is shown in the vertical color strip on the right side of 

Figure 4.2c. To give users more flexible control over the visual encoding, the color 

mapping is independent of ROI as shown in Figure 4.2c. 
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4.2.3 Moving the horizontal axis 

The last method allows a user to change the vertical location of the horizontal time 

axis. To see the bars with the values over a specific value in detail, a user can move 

the horizontal axis downwards. The horizontal axis can be even located at the bottom 

of the given space representing the value of , and then the bars with the values 

less than  disappear. Figure 4.3a shows that the first three bars, which have 

values less than , are filtered out. In this way, the vertically movable 

horizontal axis enables users to filter out some measurements. 

When both  and  are set to the minimum in the whole 

measurements range and the horizontal time axis is located at the bottom (Figure 

4.3b), all bars have the same height, i.e. the height of the given space for each series. 

The visualization then becomes a heatmap-like graph [31] where each measurement 

 

Figure 4.3. Moving the horizontal axis. The ripple graph represents the time-series 

used in Figure 4.2. The horizontal axis is located at the bottom. (a) Bars with the

values less than ROIlow are filtered out. (b) All bars have the same height when ROIlow

and ROIhigh are set to the minimum of the measurement value. 
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is represented by a vertical strip with a specific color assigned by users. Since users 

can reduce the given height per series down to 1 pixel, this method provides one of 

more scalable representations regarding the number of series shown at once. 

 Visualizing degree of certainty between measurements 

While the ripple graph emphasizes individual measurements, it can also show the 

overall pattern of change over time. Although the blood pressure changes 

continuously, it is measured discretely. A linear interpolation is conventionally 

employed as a simple way to fill the gap between discrete measurements. However, 

we note that the degree of certainty of an interpolated value between measurements 

decreases proportionally to the distance from a real measurement point. To the best 

of our knowledge, there has been no attempt to show the degree of certainty 

information in time-series data visualizations, which we believe contributes to 

enhancing the graphical integrity. The ripple graph fills the area between bars with 

the color of the closest bar while changing the alpha-channel value, where the color 

becomes more transparent as it gets farther from the closest real measurement point. 

Let x be the distance between a real measurement point and a specific point 

between measurements. The degree of certainty (DOC) at the in-between point is 

determined as follows: 

DOC x 	 1 

, where c is a confidence interval, defined by users, which represents the temporal 
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range over which a real measurement holds its confidence. The alpha value at the in-

between point is the product of DOC(x) and a maximum alpha threshold (≤1). The 

maximum alpha threshold is empirically set to 0.8. Figure 4.4a and Figure 4.4b shows 

ripple graphs when the confidence interval is 3-hour and 6-hour, respectively. The 

upper graph in the figure shows how the alpha value changes over time. 

The ripple graph has the following advantages with the degree of certainty 

representation: (1) it enhances the graphical integrity by showing predicted (or 

interpolated) values along with important context, i.e. the confidence of the predicted 

values; (2) the variability of measurement values along with measurement frequency 

is shown more clearly; (3) and it can effectively approximate the real continuous 

change over time for irregularly measured time-series data. 

 

 

Figure 4.4. Ripple graph with confidence interval of (a) 3-hour and (b) 6-hour. The 

ripple graph fills the area between bars with changing the alpha value. 
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 User interface for ripple graph manipulation 

4.4.1 Control panel  

We design an interface to enable users to flexibly adjust the parameters for a ripple 

graph (Figure 4.5). To adjust the range of the vertical axis for a ripple graph, user can 

drag two draggable vertical edges of the rectangle-shaped range slider on the ROI-

widget histogram (Figure 4.5c) to set the range from  to  (e.g. 110 

to 150 in Figure 4.5c). Users can also directly enter the desired value in an edit box 

on the top of each vertical line. A grey vertical line between two draggable vertical 

edges indicates the vertical location of the horizontal time axis. When  or 

 is changed, the grey vertical line moves to the midpoint between  

and .  

A preview (Figure 4.5d) below the ROI widget shows the height and color of a 

bar depending on its value ranging from minimum to maximum. A horizontal line on 

the preview indicates the time axis. To examine the fluctuation of measurements 

around a specific meaningful value, a user can move the horizontal axis by dragging 

the line up and down to change the location of the axis between  and 

. Then, the grey vertical line within the ROI widget (e.g. 130 in Figure 4.5c) 

also moves accordingly. Any changes of ROI values and the horizontal axis position 

cause immediate updates in the preview, the ROI widget, and the timeline view. 
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Figure 4.5. Control panel for ripple graph manipulation. Controls for (a)  

connecting bars and flipping bars downward around the horizontal time axis, (b) 

adjusting confidence interval, (c) adjusting ROI values, (d) showing a preview 

and changing a position of the time axis, (e) selecting a pre-defined color palette, 

and (f) manipulating color-related parameters. 
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4.4.2 Focus lens 

When users know their range of interest of values in navigating time-series data, they 

can zoom in or assign colors to their specific value range using a control panel in 

Figure 4.5. But, if they want to see temporal pattern before and after a specific time 

or compare several time-series for multiple time-series, they might have a difficulty 

in assigning proper values to ripple graph parameters because they do not know the 

range of measurement value within the time range. To resolve this problem, we 

propose a new interaction technique, called focus lens, to interactively set ripple 

graph parameters according to regions defined by user on the ripple graph.  

Users can designate several of regions of interest by using a rubber-band 

selection on the ripple graph while holding down the Shift key. Then, ripple graph 

automatically assign the minimum value and maximum value among measurement 

values within selected regions to  and , respectively.  

Figure 4.6 shows ripple graph to represent overall temporal pattern of change 

for a specific time-series using the focus lens. Because all measurement values are 

over ROIhigh, all bars reach the top of the given space in Figure 4.6a. A user has a 

difficulty in seeing overall temporal pattern of change for the corresponding time-

series. If a user designates the corresponding time-series using the focus lens, ripple 

graph assigns the minimum value and maximum value of the time-series to ROIlow 

(i.e.147) and ROIhigh (i.e. 205), respectively (Figure 4.6b). The user can see the overall 

temporal pattern of the time-series within orange rectangle.   
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Figure 4.6. Ripple graph with the focus lens. (a) A user has a difficulty in seeing

overall temporal pattern of change for the time-series within an orange rectangle. 

(b) After designating the corresponding time-series using the focus lens, the user can 

see the overall temporal pattern of the time-series while making the best use of the 

given space. 
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The ripple graph has the following advantages with the focus lens interaction: 

(1) Focus lens prevents from splitting users’ attention between controlling the ripple 

graph parameters and observing the graph; (2) Focus lens allows users to facilitate 

comparison task among time-series when they do not have a priori knowledge about 

measurement values; (3) Users can zoom in to measurement values within their 

specific regions of interest while maintaining the context. 
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Chapter 5  

Usability Study 

To verify the usefulness of ripple graph, we have conducted a usability study from 

usability and utility aspects [36]. For the usability aspect, we investigate whether 

users can easily and quickly become familiarized with the ripple graph. For the utility 

aspect, we check whether the ripple graph supports what users want for any problems 

they encounter. 

 Participants and materials 

12 (5 females) volunteers from Seoul National University have participated in the 

study. The average age of participants was 27.6, ranging from 23 to 33 years of age. 

Four of them majored in computer science and engineering, and others were from 

four different majors (i.e., psychology, pharmacy, biology, and history). All 

participants were familiar with line graph or bar graph. The experiment took about 
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30 minutes and participants were rewarded about $10. We prepared two time-series: 

a regional rainfall data and a stock market data. The rainfall data was a series of the 

amount of rainfall per rainy day in a specific region in 2011. Therefore, the interval 

of measurements of this data was irregular. The stock market data was a series of the 

prices of Google and Apple stocks from 1 January 2011 to 31 May 2012. Unlike the 

rainfall data, the interval of its measurements was regular. We included this data in 

our study to see if ripple graph works well with regular time-series data. Because all 

participants were familiar with the data, we gave only a brief description of the data. 

 Tasks 

Participants performed 14 tasks of two different categories; usability category and 

utility category.  For tasks in the usability category, participants had to make a graph 

the same as a given ripple graph. Participants were required to identify values of 

ripple graph parameters, such as ROI values, confidence interval, color, and position 

of the horizontal axis in the given ripple graph first. Because it was difficult for them 

to exactly identify and set these parameter values, we gave them some hints. For color, 

we made them select one of pre-defined color presets. For ROI values, we provided 

one of , , and position of the horizontal axis. Also, a position of 

mouse on graph defined by a participant was highlighted at the corresponding 

position on the given example graph. They performed one task at a time limit of 40 

seconds not to spend too much time in fine-tuning the graph to make it perfectly same 

as the given ripple graph. 
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For tasks in the utility category, the participants had to answer to a question about 

time-series. To cover most common tasks in analyzing time-series data, we selected 

representative tasks, i.e. questions based on the task model suggested by Andrienko 

and Andrienko [8]. The tasks were divided into two classes: (1) Elementary tasks to 

focus on an individual value for a time-series and (2) Synoptic tasks to focus on the 

overall trend or relation with other series. We list 3 elementary tasks and 5 synoptic 

tasks in Table 5.1. 

Table 5.1. Tasks of Utility Category. Elementary tasks to focus on an individual value

for a time-series and Synoptic tasks to focus on the overall trend or relation with other

series. 

Class Task Question 

Elementary 

T7 Did it rain on July 3? If yes, how much rain fell? 

T8 What are the dates in which the rainfall exceeds 1000mm? 

T9 How many rainy days does A city have during June? 

Synoptic 

T10 What was the trend of Google stock? 

T11 Compare the rainfalls of A city and B city on June 22. 

T12 
Find period in which the price of Apple stock higher than 

that of Google stock. 

T13 
Find periods in which the price of Apple stocks is over 

$620. 

T14 
Compare the amount and frequency of precipitation in 

January and July. 
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 Procedure 

Before beginning a task, participants were given a tutorial on the ripple graph and the 

corresponding interface for about 15 minutes. Then they had time to try out the 

interface alone freely. After answering 4 practice questions correctly, participants 

performed 14 tasks (6 tasks in the Usability category and 8 tasks in the Utility 

category). 

When performing a task, participants first had to understand the task appearing 

on the top pane in the usability testing software (Figure 5.1), and then they pressed 

the “Start” button when they were ready. After completing the task, they were asked 

to press the “Finish” button. They were asked to finish these tasks as fast and precisely 

as they could. At the end of a study session, we received comments on ripple graph. 
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 Results 

For all tasks in the Usability category, most participants made a graph the same as a 

given graph and the average completion time was 11.08(±7.16) seconds. There was a 

slight error of ROI values when no ROI values were provided as hint, but this error 

did not make a difference between two graphs. For accurate analysis, we defined 

match rate as a percentage of exactly matched pixels out of all pixels in a ripple graph. 

For tasks T1 throughT4, match rate of all participants was 100%. For T5, match rate 

of a participant (P5) was 98.4% and that of all others was 100%. For T6, match rate 

was range from 99.8% to 100%. 

For tasks in Utility category, most participants gave the correct answers. The 

average completion times for Elementary and Synoptic tasks were 43.5(±14.8) and 

44.7(±7.1) seconds, respectively. Excluding T11, the completion time for Elementary 

tasks was 37.43(±6.6) seconds, which means participants spent much more time 

completing T11 than other tasks. Because we stacked two graphs for Google stock 

and Apple stock vertically instead of overlapping two graphs in the same graph space 

for less visual clutter, it made comparison between two graphs difficult. Also, the 

price of Apple stock was higher than that of Google stock for only 5 days of the year, 

and the stock price difference was $6 at most. So, participants spent much of their 

time adjusting ROI values and time range to find the answer. Table 5.2 shows the 

number of participants who failed and the average completion time for each task. 
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Participants were asked to answer the following 5 questions to collect subjective 

ratings about the ripple graph by using a 7 point Likert scale [Rating: 1=Strongly 

disagree; 7=Strongly agree]. 

Q1. This interface is easy to learn. 

Q2. This interface is easy to use. 

Q3. This interface is fun. 

Q4. Overall, I like this interface. 

Q5. I would like to use this interface again. 

The average rating result was 5.7, 5.9, 6.6, 5.7 and 6.5, in order from Q1 to Q5. 

The result shows that participants gave positive ratings for all questions, and 

Table 5.2. Number of participants who failed and average completion time for 

each task. 

Class Task 
number of participants 

failing task 

average completion 

time (seconds) 

Elementary 

T7 0 29 

T8 2 35.6 

T9 1 43.6 

Synoptic 

T10 0 47.8 

T11 0 55.8 

T12 3 64.7 

T13 1 41.6 

T14 0 59.1 
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especially they enjoyed using the ripple graph. 

Participants commented on the ripple graph as follows: “It’s nice to analyze data 

after focusing on the my range of interest”, “It’s very useful in identifying whether a 

value at a certain time is larger or smaller than a specific value”, “The preview helped 

me to understand the resulting graph”, “It is likely that I’ll be able to make various 

types of graphs once I get more used to it” and “I was satisfied with representation 

using confidence interval because it was easy to grasp the frequency for rainfall data 

while reducing visual clutter from a series of bars.” 

 Discussion  

We analyzed how participants resolved problems for tasks in the Utility category and 

summarized their strategies as follows. 

(1) Grasp of bar density 

For a frequency-related question, all participants easily answered T9 by just 

counting bars and T14 by comparing density of bars. 

(2) Maximization / Minimization of bar height 

Some participants used a strategy to maximize the height of the bars for 

measurements with the range of interest. For example, in case of T8, a participant 

assigned ROIlow and ROIhigh to 0 and 1000, respectively and moved the 

horizontal axis to the bottom. As a result, the bars with values greater than 1000 

reached the top, and then he/she was able to answer the question just by counting 

the bars that met the top (Figure 5.2a).  
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Figure 5.2. Participant’s Strategies for Question T8 “What are the dates in which the

rainfall exceeds 1000mm?”  (a) Maximization of the height of the bars for 

measurements greater than 1000 (b) Differentiation by the horizontal axis with

measurement 1000 (c) Assigning a red color to measurements greater than 1000. (d) 

Minimization of the height of the bars for measurements less than 1000; This strategy 

caused a problem that the bars with values slightly greater than 1000 are

indistinguishable from minimized bars. 
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On the contrary, some participants used a complement strategy to minimize 

the height of the bars for measurements out of range of interest. For example, in 

case of T13, a participant moved the horizontal axis to the bottom and changed 

ROIlow to 620 so the height of bars with values less than 620 was minimized to 

the thickness of the horizontal axis. He/she could easily find the satisfying bars 

by just excluding the minimized bars (Figure 5.3a). 

However, one participant made an error using this strategy for T8. He/she 

minimized the height of corresponding bars for values less than 1000, and made 

the height of bar for the values over 1000 to be proportional to the corresponding 

values. Consequently, it was difficult for him/her to distinguish bars with a value 

slightly greater than 1000 (e.g. 1020) from other minimized bars (note the red 

Figure 5.3. Participant’s Strategies for Question T13 “Find periods in which the price

of Apple stocks is over $620.” (a) Minimization in the height of the bars for

measurements less than 620 (b) Differentiation by the horizontal axis with

measurement 620. 
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arrow in Figure 5.2d). Although the correct answer for T8 was August 7 and 

November 18, where the amount of rainfall was 3002 and 1020 respectively, 

he/she answered only August 7. 

(3) Differentiation by the horizontal axis 

Some participants differentiated the range of interest and the range out of interest 

by the horizontal axis. For T8, a participant assigned ROIlow and ROIhigh to the same 

value 1000. Then, the bars for the values less than 1000 were maximized 

downward from the axis. For the values more than 1000, the corresponding bars 

were maximized upward from the axis (Figure 5.2b). For T13, a participant 

moved the horizontal axis until its value became 620.  He/she could get the 

right answer by just noting upward bars while adjusting the time range (Figure 

5.3b). 

(4) Utilization of color 

For questions regarding a specific value, some participants assigned different 

colors to two ranges separated by a specific value. For example, for T8, a 

participant assigned gray to values less than 1000 and red to values over 1000. 

Then, he/she could easily perform the task by just identifying bars with red color 

(Figure 5.2c) 

(5) Utilization of confidence interval 

For a trend-related question, most participants analyzed the trend after filling 

area between bars while changing the transparency according to the confidence 
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interval. For T10, 8 out of 12 participants manipulated the slider bar for the 

confidence interval control without adjusting ROI values or adding colors. 

 

Participants found an appropriate representation for given problems by making 

full use of an interactive widget. For a frequency-related question, their strategy (i.e. 

grasp of bar density) and very low incorrect answer rate implies that ripple graph 

based on bar graph is appropriate for visual analysis, especially frequency-related 

analysis, of irregularly measured time-series data. 

Through the usability study, we found that participants preferred visualizing 

degree of certainty between measurements. They could see the variability clearly 

because this approach enabled them to perceive individual bars for a time-series as a 

gestalt (i.e. unified whole) instead of a series of scattered bars. Though ripple graph 

fills the area between bars according to degree of certainty, there was nothing wrong 

with grasping the measurement frequency because they had only to identify opaque 

bars (i.e. real measured values).  

In spite of participants’ efficient utilization and positive comments, it is difficult 

to conclude that our ripple graph is generally applicable visualization model for time-

series because we focused quantitative values at only time points, not time intervals. 
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Chapter 6  

Controlled User Study 

We conducted a controlled user study to show the efficacy of the ripple graph by 

comparing it to existing representations (i.e. line graph, bar graph, and interactive 

horizon graph).  

 Participants and materials 

We recruited 14 (5 females) volunteers from Seoul National University for the study. 

The average age of participants was 28.4, ranging from 23 to 35 years of age. Five of 

them majored in computer science and engineering, and the others were from four 

different majors, i.e. chemical and biological engineering, pharmacy, economics, and 

communication studies. All participants were familiar with the line graph and bar 

graph. The experiment took about 40 minutes and they were rewarded about $5.  

We prepared a time-series dataset of blood pressure measurements for 1600 
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stroke patients. We only used the measurements during the first 3 days after 

hospitalization to keep participants from distinguishing records by their different 

measurement periods. 

 Visualization techniques 

We compared the following four visualization techniques for time-series data. The 

first three were among the most representative techniques. 

(1) Line graph (LG)  

We actually used a filled line graph with gray color to ease identification [28] 

(Figure 6.1a). To perform comparison tasks on different line graphs, they share 

the same range of values. 

(2) Bar graph (BG)  

Each bar with 3 pixels width was filled with gray color (Figure 6.1b). Like line 

graph, different bar graphs share the same range of values. 

(3) Interactive horizon graph (IHG)  

We implemented the horizon graph with zoom and pan interaction introduced in 

[39] (Figure 6.1d). The pan and zoom were provided using the mouse by 

dragging vertically anywhere on the screen with one of the two mouse buttons 

pressed. The left button triggered the zoom and the right button the pan as 

introduced in [39]. 

(4) Ripple graph (RG)  

For a fair comparison with other three techniques, participants were only allowed 
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to change the ROI values and move the horizontal axis from a control interface 

for the ripple graph.  

We used a split-space technique where each time-series is shown in a row of the 

same height [28]. We fixed the height for each time-series at 24 pixels to facilitate 

comparison between our results and previous studies in [25] and [39]. 

 Tasks 

Based on the task model suggested by Andrienko and Andrienko [8] and user studies 

on the graphical perception of multiple time-series [25][39], we chose the following 

three types of tasks.  

 

Figure 6.1 Visualization techniques for time-series. (a) filled line graph. (b) bar 

graph. (c) horizon graph by default. (d) horizon graph after pan and zoom interaction
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(1) Max  

Selecting a time-series with the highest value across all records.  

(2) Same 

Selecting a time-series which is exactly the same as a given record. 

(3) Frequency  

Selecting the most frequently measured time-series.  

(4) Confidence  

Determining the subjective confidence in the value at a given time point. The 

same number of time points was selected from real measurement points and 

those in-between. The value for a point between two adjacent measurement 

points was linearly interpolated. Because BG represents only real measurement 

points, it was excluded from the confidence task. 

 Study design and procedure 

We ran the study as a within-subjects design, with each participant performing all the 

tasks using all the visualization techniques. We ran the experiment as a 4 

(Visualization technique: LG, BG, IHG, and RG)  4 (Task type: Max, Same, 

Frequency, and Confidence)  2 (Number of time-series: 20 and 40)  2 (trials) 

deign while counterbalancing the order of visualization techniques. Performance time 

and correctness of answers were the dependent variables of this study. For each trial, 

we randomly selected a small number (20 or 40) of time-series from the pool of 1600 

time-series to avoid a learning effect, keeping the following constraints to maintain 
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the same level of task difficulties across the four techniques. For all measurements of 

selected time-series 

(1) The mean of all measurements for selected time-series: 142(±5) 

(2) The standard deviation of all measurements for selected time-series 

: 17(±2) 

(3) The difference between the largest and the fifth largest measurements  

: 14 occupying 3 pixels on screen 

Before beginning real tasks, we gave participants a tutorial on a visualization 

technique and showed them how to perform 4 types of tasks with an example. They 

also had enough time to try out each technique by themselves. Then, they performed 

12 (3  2  2) tasks for BG or 16 (4  2  2) tasks for others. They were asked 

to finish tasks as fast and precisely as they could. We measured the task time and 

correctness. At the end of a study session, participants filled in a questionnaire for 

subjective evaluation of each visualization technique. 

We established three hypotheses for this study. 

(1) For the Max and Same tasks, IHG and RG will outperform LG and BG in 

both the task time and correctness. 

(2) For the Frequency task, BG and RG will outperform LG and IHG in both 

the task time and correctness. 

(3) For the Confidence task, RG will outperform LG and IHG in distinguishing 

between real measurement values and interpolated values. 
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 Results 

We analyzed the task time and correctness with a 4 (Visualization technique)  3 

(Task type excluding Confidence)  2 (Number of time-series) repeated-measures 

analysis of variance (RM-ANOVA). Regarding the task time, we found a significant 

main effect of Visualization technique (F3, 312 = 3.53, p < .05).  

 

Figure 6.2a and Figure 6.2b show the mean task time and correctness for each 

 

Figure 6.2. (a) Task time, (b) Correctness, and (c) Difficulty for each visualization 

technique by task type. 
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technique by task type, respectively. To analyze differences among the visualization 

techniques, we also conducted Tukey’s HSD post-hoc test for each task type (Table 

6.1, Table 6.2, and Table 6.3). 

 

 

Table 6.1. Results of post-hoc test by each task type. The < sign represents the 

inequality relation with a statistical difference (p < .05). 

Records Task Pairwise comparisons 

Task completion time

Max RG < IHG < LG & BG 

Same RG & BG & IHG < LG 

Frequency RG & BG < LG & IHG 

Correctness 

Max LG & BG < IHG & RG 

Same LG < BG & IHG & RG 

Frequency LG & IHG < BG & RG 

Difficulty 

Max RG & IHG < LG & BG 

Same RG & IHG < LG 

Frequency RG & BG < LG & IHG 

Confidence RG < LG & IHG 
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Table 6.2 Results of Post-hoc test by each task type for the task time. * means that 

there is a significant difference between the mean task times of two techniques. 

Task Technique 

Mean  

Task Time 

(s) 

p values  

with Tukey's HSD post-hoc 

BG IHG RG 

Max 

LG 20.86  0.657  0.003* < 0.001* 

BG 19.12  - 0.046* < 0.001* 

IHG 15.45    - < 0.001* 

RG 7.28      - 

Same 

LG 16.13  < 0.001* < 0.001* < 0.001* 

BG 10.46  - 0.967  0.965  

IHG 10.98    - 0.786  

RG 9.93      - 

Frequency 

LG 11.73  < 0.001* 0.965  < 0.001* 

BG 4.21  - < 0.001* 0.998  

IHG 14.37    - < 0.001* 

RG 3.91      - 
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Table 6.3 Results of Post-hoc test by each task type for the correctness. * means that 

there is a significant difference between the mean correctness of two techniques. 

Task Technique 
Mean  

Correctness 

p values  

with Tukey's HSD post-hoc 

BG IHG RG 

Max 

LG 0.70  0.955  0.027* 0.006* 

BG 0.66  - 0.006* 0.001* 

IHG 0.89    - 0.955  

RG 0.93      - 

Same 

LG 0.71  0.005* 0.011* 0.005* 

BG 0.93  - 0.992  1.000  

IHG 0.91    - 0.992  

RG 0.93      - 

Frequency 

LG 0.50  < 0.001* 1.000  < 0.001* 

BG 0.95  - < 0.001* 0.995  

IHG 0.50    - < 0.001* 

RG 0.96      - 
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The results supported our first and second hypotheses except for the Same task 

with BG. Participants completed the Same task in a significantly less time and with 

significantly more correct answers with BG than with LG. The reason might be that 

BG enabled participants to quickly filter the target time-series by preattentively 

perceiving the measurement frequency of time-series. 

Participants usually spent more time in completing tasks with 40 time-series than 

with 20 time-series as shown in Figure 6.3. However, there were exceptions where 

participants showed similar performance for both cases. The likely reasons for the 

exceptions are as follows. 

 

 

Figure 6.3. Task time for each visualization technique by number of time-series (i.e. 

20 and 40). * indicates a significant difference in task time between 20 and 40 time-

series (p<.05). 
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For the Max task with RG, participants could identify the target time-series at 

once just by narrowing the range of interest of values down to maximum value.  

For the Same task, participants could identify the target time-series at once by 

preattentively perceiving a different color of a band with IHG and by grasping the 

distinctive bar occurrence frequency with BG and RG. In contrast, with LG, they had 

to use their elementary perceptual skills to find the target. 

For the Frequency task, participants could grasp the frequency at a glance with 

BG and RG by just perceiving the overall occurrence pattern of bars. 

For the Confidence task, we analyzed the results after dividing selected time points 

into three categories: (1) real measurement points with extreme values, (2) real 

measurement points with non-extreme values, and (3) interpolated points between 

two adjacent real measurement points (Figure 6.4).  

 

 

Figure 6.4. Average of subjective confidence results for each visualization technique 

by time point type 
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For real measurement points, the confidences with LG and IHG were lower than 

those with RG. Especially, for real measurement points with non-extreme values, the 

confidences of LG and IHG were as low as those for interpolated points. It is likely 

because connected lines or filled areas in LG and IHG made it difficult to tell if such 

measurement points are real or not. Participants also answered that they actually felt 

a difficulty in performing the Confidence task with LG and IHG (Figure 6.2c). In 

contrast, participants easily performed the Confidence task with more reasonable 

rating of the confidence values with RG (Figure 6.2c and Figure 6.4). 

We asked each participant to rate how difficult each task was by using a 7 point 

Likert scale [Rating: 1 = Very easy; 7 = Very difficult] (Figure 6.2c). We analyzed the 

subjective rating results using Friedman test with Bonferroni correction. We found a 

significant main effect of Visualization technique (Χ2(3) = 53.2, p < .001). Pairwise 

comparisons among visualization techniques for each task show that participants had 

less or same difficulty in performing a task with RG than others across all task types 

(Table 6.1 and Table 6.4). 
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Table 6.4 Results of Bonferroni correction by each task type for the difficulty.  

* means that there is a significant difference between the mean difficulties of two 

techniques. 

Task Technique 
Mean  

Difficulty 

p values  

with Bonferroni correction 

BG IHG RG 

Max 

LG 5.29  0.333  < 0.001* < 0.001* 

BG 4.50  - < 0.001* < 0.001* 

IHG 2.43    - 0.606  

RG 1.86      - 

Same 

LG 4.93  0.190  0.010* 0.002* 

BG 4.00  - 0.598  0.251  

IHG 3.43    - 0.924  

RG 3.14      - 

Frequency 

LG 4.93  < 0.001* 0.249  < 0.001* 

BG 1.50  - < 0.001* 0.674  

IHG 5.64    - < 0.001* 

RG 1.93      - 

Confidence 

LG 5.21  - 0.987 < 0.001* 

BG - - - - 

IHG 5.29    - < 0.001* 

RG 2.14      - 
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 Discussion 

Our controlled user study results supported the three hypotheses, suggesting that the 

ripple graph was overall the best performing in terms of task time, correctness, and 

subjective satisfaction. Our results also suggested that the interactive horizon graph 

was not an appropriate technique for measurement frequency-related analysis of 

irregularly measured time-series data even though it was known to be good for 

quantitative comparison of multiple time-series [39]. Although there was no 

difference in performance for the Frequency task between BG and RG, participants 

commented that the bar graph caused confusion and eye fatigue when multiple time-

series were displayed. 

We found in several participants’ comments that it was helpful to see the degree 

of certainty between real measurements. They could see the variability clearly in the 

ripple graph because visualizing the degree of certainty enabled them to perceive a 

time-series with many individual bars as a gestalt (i.e. unified whole) instead of a 

series of scattered bars. 
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Chapter 7  

Stroscope 

Our 6 month-long participatory design with the neurologists leads us to implementing 

an interactive visualization tool for time-series data, entitled “Stroscope,” where the 

ripple graph is the main visualization component. In this section, we explain the user 

interface and interaction models of Stroscope along with related analytical features. 

 Layout 

Stroscope consists of three main areas (Figure 7.1): Control panel, timeline view, and 

detail view. The control panel in the left area has four tabs: (1) the control tab for 

sorting, filtering, and aligning time-series, (2) the fine-tuning tab for adjusting various 

parameters of the ripple graph, (3) the grouping and layout tab for changing the view 

layout and dividing records into groups, and (4) the variable tab for creating a custom 

variable out of existing variables. 
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The timeline view in the middle area visualizes multiple time-series using the 

ripple graph, where each series is vertically stacked with the same height. All series 

are aligned by the first measurement time by default. The alignment indicator (i.e. the 

green marks in the upper timeline view and the vertical line in the lower time-line 

view in Figure 7.1) highlights the alignment time, where the relative time is zero. 

The detail view in the right area shows the information of the selected series in 

the timeline view, and this information is immediately updated upon any selection. 

 User Interaction 

Stroscope provides effective means to help users efficiently explore a large time-

series data. They include common operations that many existing time-series 

visualization tools support, e.g. ARF framework in [60] for alignment, ranking, and 

filtering. 

(1) Select a measurement variable 

Time-series data can have more than two contemporaneous variables changing 

over time, i.e. multivariate time-series. In blood pressure data, there are two such 

variables: SBP and DBP. Furthermore, Stroscope automatically generates a delta 

measurement variable that is defined as a sequence of differences between 

consecutive measurements (△SBP and △DBP) to help users easily examine 

variability. Users can select one of these measurement variables using a combo 

box (Figure 7.1ⓐ). 
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(2) Align 

An alignment operation enables users to effectively compare temporal patterns 

before and after a specific event across multiple records. It helps users to predict 

prognosis and determine a treatment for a patient. Stroscope allows a user to 

align all records by a clinical variable (such as onset time and hospital arrival 

time) or by a specific event (such as END_progression). In addition, all records 

can be aligned by an absolute time, e.g. the oldest time among timestamps. Then, 

the time label is shown in the form of  “yyyy-mm-dd.”  Users can select one 

of these variables for alignment in a combo box (Figure 7.1ⓑ). 

The alignment indicator at the top of the timeline view is positioned at the 

top left end by default and filled with the corresponding color to the selected 

alignment variable. Users can drag the indicator left or right within the entire 

time range to check the trend before and after the alignment point in detail. 

(3) Event display 

Stroscope displays events with a colored rectangle at the corresponding location. 

Users can select the events to see by checking a check box and change the color 

for the event by clicking the colored rectangle in a check box. 

(4) Filter/preset 

The user can filter out the unnecessary records by adjusting the range slider bar 

for a continuous variable and by unchecking the check box for a categorical 

variable. It is also possible to save the filtering conditions as a preset and reuse 
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it later. 

(5) Zoom 

Our multi-scale visualization model, the ripple graph allows users to 

dynamically change the visual representation depending upon the available 

display space. To maximize space utilization, Stroscope provides a vertical 

zooming to adjust the height of the ripple graph for each record through wheeling 

the mouse on the timeline view. A zooming on the horizontal axis is also 

provided to help users focus on a temporal period of interest (Figure 7.1ⓓ). 

(6) Hierarchical grouping 

To detect differences among groups classified by categorical variables (e.g. 

gender or age group) is one of the routine analytic tasks for neurologists. 

Stroscope facilitates this task by enabling hierarchical groupings. The result of a 

grouping is summarized in an enhanced treeview control (Figure 8.9) where each 

node has both the number of corresponding records and a check box to show/hide 

the corresponding group. The control panel in Figure 7.1 shows the result of a 

hierarchical grouping where all records are divided into groups by “Cluster” first 

and then by “END” categorical variable. 

(7) Side-by-side comparison 

One of the main tasks in the analytical exploration of the blood pressure data is 

to compare between groups. To facilitate such comparison task, a 

horizontal/vertical juxtaposition of views for the two groups is necessary. A user 
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can define new groups by making filter presets (Figure 7.1ⓒ) and apply a 

different preset to each view after splitting the timeline view horizontally or 

vertically into two. The zoom factor and the position of the alignment indicator 

are synchronized between two views. Figure 7.1 shows two horizontally split 

views. 

 Analytical Features 

(1) Statistical summary measures on demand 

Providing statistical summary measures on users’ demand is important for 

gaining insights and performing a quick-and-dirty hypothesis testing in an 

interactive visualization tool. In Stroscope, a user can designate a region of 

interest by using a rubber-band (rectangle) selection on the timeline view, and 

check the descriptive statistical summary measures of the region. The summary 

measures include the number of records, number of measurements, average, 

standard deviation, minimum value, and maximum value. Stroscope provides 

the summary measures not only numerically, but also graphically in a histogram 

and a box plot together within the selection rectangle (grey rectangle on timeline 

view in Figure 7.1). 

Using the side-by-side comparison feature, users can instantly compare two 

groups in terms of the statistical summary measures. The linking and brushing 

technique implemented in Stroscope enables a user to select a rectangular region 
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in one timeline view and see the same region selected in the other timeline view. 

This feature could encourage users to interactively perform their routine analytic 

task without cognitive overload. 

(2) Accommodating individual differences 

In the blood pressure data, there exist individual differences among patients in 

terms of age, weight, medical history, and so on. A value of 150 is generally 

considered a slightly higher value, but the value can be a critical value for a 

patient with relatively lower blood pressure. However, for all patients, the value 

of 150 was represented by the same height and color in the ripple graph. To 

resolve this issue, Stroscope allows a user to define a reference variable with a 

different basis value for each patient. For example, let us consider that a user 

defines the average blood pressure during 3 days before discharge as a reference 

variable with “SBPMean” name. Then Stroscope calculates the basis value for 

every patient according to the definition of the reference variable, and generates 

a new measurement variable that is defined as the difference between the real 

blood pressure value and the basis value for each patient. Consequently, a user 

can accommodate individual differences among patients using the reference 

variable. 

(3) Generate evenly spaced dataset 

In blood pressure data, the measurement intervals are irregular and the number 

of measurements is different for each patient. For example, when a user 
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compares group A that TOAST value is 1 and group B that TOAST value is 2, 

the number of blood pressure measurements exceeding a specific threshold can 

be larger in group B. This could be because patients in group B actually have 

more blood pressure measurements exceeding the threshold because of a risky 

factor, e.g. size of lesion. But it might be in part due to the fact that the blood 

pressure was measured more frequently in group B than group A. To address this 

issue, Stroscope allows users to generate a time-series data with a regular 

interval. If a user designates Interval and Aggregated value 

(mean/maximum/nearest neighbor value), Stroscope generates a sequence of 

aggregated values with the regular interval.  

In our case study, this feature was used as secondary method for gaining 

insights, because this method causes losing the measurement frequency and may 

result in loss or duplication of the measurements according to the sampling 

interval. 

(4) Matching 

Users are commonly interested in identifying factors that may contribute to a 

clinical outcome such as recurrence of END by comparing patients who have the 

condition (case) with patients who do not have the outcome (control) but are 

otherwise similar [13]. To help users conduct this kind of case-control study, 

Stroscope supports the matching of the case to the control. For example, users 

can match ‘patients with the END_recur event’ to ‘patients without the 
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END_recur event’ according to various variables (e.g. gender should be exactly 

matched and the age should not be different by more than 5). Then, Stroscope 

generates a new variable with a user-defined name, where one record in the case 

and one or more matched record(s) in the control have the same value for the 

variable. 

(5) Data-space clustering and image-space clustering 

Users can gain insights by finding any regularities or anomalies through 

clustering. We used the I-kMeans algorithm [55], an interactive k-Means 

clustering method taking advantage of the multi-resolution property of wavelets. 

We enhanced this algorithm by making it applicable to irregularly measured 

time-series data because the algorithm assumes that each time-series data is 

measured regularly over time. 

Stroscope provides two kinds of clustering techniques: data-space clustering 

and image-space clustering. For the data-space clustering, records that have 

similar measurement values are grouped together, which always results in the 

same clusters for the same dataset. However, a coarse color mapping could result 

in a visual inconsistency problem that the resulting visualization does not look 

well-clustered. For example, a neurologist assigned any measurements of 180 or 

greater to a red color because those are considered as critical values. However, 

data-space clustering could separate two measurements in the same red, e.g. 180 

and 240 because they were numerically very different in the data space. This 
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result could confuse users due to the inconsistency between users’ mental model 

expressed in color mapping and clustering results based on actual data values.  

 The neurologist suggested an image-space clustering during the participatory 

design process in order to resolve this visual inconsistency problem of the data-

space clustering. In the image-space clustering, records with a similar color 

pattern are clustered together, where the clustering results could vary according 

to the color table defined by the user, but the results make more sense to the user 

who expresses his intention in his color mapping choice. 

 

 Implementation 

Stroscope is implemented in C# with Windows Presentation Foundation (WPF). We 

used an observer pattern, one of software design patterns [22]. This pattern supports 

that for any state change of an object called subject, other objects called observers are 

automatically notified, where subject maintains a list of its dependents, i.e. observers. 

This pattern is efficient in implementing the linking and brushing.  

Stroscope can display more than two different time-series datasets in a multi-

monitor environment. It is possible to individualize or synchronize parameters of 

ripple graph among different monitors. In a 24-inch 1920 x 1080 resolution monitor, 

Stroscope can display up to about 950 (1900 in the side-by-side comparison mode) 

time-series interactively on screen at once. 
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Chapter 8  

Case Study 

We designed and developed Stroscope involving three neurologists in the design 

process. After completing an initial prototype, we have conducted two case studies 

with neurologists dealing with the blood pressure data for four months to show the 

efficacy of Stroscope in the real field. 

 Procedure 

We had a meeting with two participants (female and male doctors enrolled in a stroke 

fellowship program) together for about 90 minutes every 2 or 3 weeks for the first 

two months for exchanging ideas and sharing findings while improving the prototype 

as well if necessary. We had a 1-hour meeting with each participant every 2 weeks 

for the rest two months. We used the following procedure for each meeting: (1) 

Participants gave us feedback on Stroscope. (2) We installed an improved version and 



 

 80

explained the improvements. (3) We let participants try Stroscope to confirm whether 

they understood the new features. In this stage, we employed a modified pair analytics 

method, where assistance is provided only when participants asked for help. (4) After 

the meeting, we updated Stroscope following the feedback and maintained contact 

with the participants by answering their questions via e-mails or phone calls.  

When the two participants first tried Stroscope, they were impressed by its visual 

and interactive nature because they had never used such a visualization tool before. 

They were also excited that they could find significant patterns in a specific group by 

comparing different groups using matching, aligning, and clustering. 

 Participant 1 (P1) 

P1 was interested in the relationships between the variability in blood pressure and 

the occurrence of symptomatic hemorrhagic transformation (SHT) of acute ischemic 

stroke. SHT is one of the important factors that influence the outcome of stroke 

treatment. Previous studies have shown that the occurrence of SHT relates to high 

variability in blood pressure. But statistical summary measures did not bring him an 

intuitive understanding and it was always elusive to examine each record separately 

in detail using conventional statistical tools. 

P1 decided to conduct a case-control study with Stroscope. He first defined two 

groups: cases are the patients who have had a SHT and controls are the patients who 

have not had a SHT. He used the matching function of Stroscope to match each patient 

in the cases to the patients in the controls according to the initial SBP (± 5mmHg) and 
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age (± 5 years). After he split the timeline view into two (up and down), he assigned 

the cases to the upper view and the controls to the lower view. He immediately noticed 

without any additional manipulation that the blood pressure was measured more 

frequently and the hospitalization period was longer for the patients in the cases. For 

a detailed analysis, he aligned patients by the SHT onset time, while aligning patients 

in the controls by the SHT onset time of the patient matched in the cases. High or low 

values are observed more frequently near the SHT event in the cases than in the 

controls.  

To analyze the variability of SBP, he first selected SBP as a measurement 

variable and manipulated the color palette to make positive values red and negative 

values blue. It was difficult to see the difference of variability between cases and 

controls by just checking the occurrence of dark blue or dark red regions. So, he 

dragged the horizontal axis of the ripple graph to the bottom to see only the increasing 

periods with positive SBP values (Figure 8.1). 

In the same manner, he dragged the horizontal axis to the top to see only the 

decreasing periods with negative SBPs (Figure 8.2). Then he could clearly see the 

difference between cases and controls, e.g. a rapid change in the blood pressure was 

observed more frequently in the cases near the occurrence of SHT event. During 6 

hours before and after the SHT onset event in Figure 8.2, blue regions representing 

the periods with decreasing  SBP by more than 20 appear more frequently in the 

cases (upper timeline view) than in the controls (lower timeline view). 
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Figure 8.1. Stroscope showing only SBP increasing periods. The yellow mark 

indicates when an SHT onset event occurred. 

 

Figure 8.2. Stroscope showing only SBP decreasing periods. After selecting SBP (a 

difference between consecutive SBP values) as a measurement variable, P1 can

observe SBP values less than -20. The yellow mark indicates when an SHT onset

event occurred. 
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To minimize the influence of individual differences among patients, he decided 

to examine the deviation of SBP values.  He first defined a reference variable named 

“SBPMean” as the average SBP during 3 days before discharge. And then, he 

changed the measurement variable to a new reference variable defined by SBP-

SBPMean. He easily found that there were many extreme values, especially higher 

values in dark red in the cases, before the occurrence of SHT (Figure 8.3). In addition, 

dark red and dark blue colors were observed more frequently in the cases, indicating 

that the variability of SBP was high. 

While observing the patients in the cases, he found one patient with an 

anomalous pattern: the patient exhibited a dramatic decrease of the “SBP-SBPMean” 

value about seven hours before the occurrence of SHT (see the black arrow in Figure 

8.3). After zooming in to the patient further, he found that the “SBP-SBPMean” value 

decreased approximately from 25 to -50 (see the black arrow in Figure 8.4). 
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Figure 8.3. Stroscope showing a “SBP-SBPMean” variable. A black arrow indicates 

a patient with an anomalous pattern. Dark blue represents a sudden decrease in SBP

(a great negative value of “SBP-SBPMean”). The yellow mark is the indicator of

SHT onset event. 

 

Figure 8.4. Stroscope showing the detail of the patient with anomalous pattern in

Figure 8.3. P1 identified that the “SBP-SBPMean” value decreased approximately 

from 25 to -50 about 7 hours before the SHT onset. The yellow mark is the indicator

of SHT onset event. 

 

 



 

 85

 

He wondered why the SBP value suddenly decreased. He checked the medical 

history of the patient in the EMR (electronic medical record) system. He found that 

the patient received a treatment called mechanical thrombectomy for an occlusion in 

the sphenoid segment of the middle cerebral artery (a part of blood vessel in the brain). 

He reconfirmed the sudden decline in the SBP value though two MRI scans before 

and after the treatment to remove the offending thrombus (Figure 8.5). 

 Participant 2 (P2) 

In P2’s clinical research, she often found that patients’ blood pressure increased or 

decreased rapidly when they got worse. But there are previous studies that have 

shown conflicting results because most of these studies were cross-sectional which 

compared only statistical summary measures between groups without taking into 

 

Figure 8.5. MRI scans before (left) and after (right) the treatment to remove the

offending thrombus. 
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account the temporal aspect of blood pressure change. P2 wanted to go beyond the 

statistical summary measures by visually exploring individual blood pressure values 

and their changes over time using Stroscope. 

As soon as she loaded her dataset and sorted patients by TOAST (a classification 

stroke according to the causes of stroke), P2 started to make her discoveries in her 

dataset: (1) Overall, SBP value was decreasing during a day after the first 

measurement; (2) patients in ‘TOAST 2’ and ‘TOAST 6’ groups were hospitalized 

for a shorter period of time; and (3) SBP values of patients in ‘TOAST 3’ and ‘TOAST 

4’ groups tended to be relatively low. P2 also found patients with anomalous patterns 

differentiated by color (Figure 8.6), frequency (Figure 8.7), or fluctuation (Figure 8.8). 

Figure 8.6. Stroscope showing values under 85 in blue color. An orange arrow 

indicates a patient with an anomalous pattern because low values (i.e. values under 

85) are observed frequently for only the patient. 
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Figure 8.7. Stroscope that all values are represented by the same height and color. An

orange arrow indicates a patient with an anomalous pattern because measurement

frequency is higher for the patient than others. 

Figure 8.8. Stroscope showing the fluctuation around the value of 110. An orange 

arrow indicates a patient with an anomalous pattern because of a sharp fluctuation. 
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Using the matching and alignment functions in Stroscope, P2 also figured out 

that the blood pressure of patients with lacunar infarcts in ‘TOAST 2’ was increasing 

or decreasing rapidly before and after an END_progression event. Then, she 

partitioned patients with lacunar infarcts into 5 clusters by performing a clustering 

Figure 8.9. Stroscope showing hierarchical grouping result. P2 aligned patients by

onset time of stroke and grouped patients according to Cluster and END variables

after performing a clustering function. Black rectangular spots in the timeline view

represent the END_progression event. In the two clusters with low blood pressure

(the first and last clusters), the event tends to occur within about 30 hours from onset.
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using our enhanced I-kMeans algorithm (section 7.3): two clusters with high blood 

pressure, two clusters with low blood pressure, and a cluster with slightly high blood 

pressure. She aligned records by the onset time to check whether there exists any 

difference among the clusters in the elapsed time from onset to the END_progression 

event. She observed that the END_progression event occurred within about 30 hours 

from onset in the clusters with low blood pressure (Figure 8.9). But, the number of 

patients with the event was not enough to conclude that her observation was 

meaningful. So she decided to explore in the same manner after collecting more time-

series for patients with lacunar infarcts. 

 Discussion 

Two long-term case studies helped us test the efficacy and utility of Stroscope. 

Although Stroscope was the two participants’ first visualization tool for time-series 

data, they became rapidly proficient in using it. We allowed them to ask us for help 

whenever they were faced with any problems. But, they used Stroscope skillfully 

without any help after the first one month of the case study. 

They used sorting, aligning, and matching functions for comparison of two 

groups, which was one of the main tasks in the analytical exploration of the blood 

pressure data. They could easily find differences in measurement frequency and 

variability as well as measurements, especially before and after a specific event. 

These findings confirmed what they already knew and also yielded the results 

contradicting previous studies. 
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They changed the visual representation from a familiar graph such as the line 

graph or bar graph to their own ripple graph using the interactive widget depending 

upon their goals and the available display space. To see an intuitive overview of 

multiple records, they often made all bars have the same height of 1 pixel and then 

adjusted the color palette and confidence interval (Figure 8.9). For participant 1, to 

see only the increasing/decreasing periods, he adjusted the position of horizontal axis 

and ROI values. He was satisfied with that he created his own graph to show the peak 

only. He could also observe one record in detail by adjusting ROI values after 

increasing the height of the ripple graph (Figure 8.4). He commented on our 

visualization model and interactive widget as follows: “It is very nice that I can 

progressively narrow down to a range of values of my interest after understanding the 

context.” 

Although our multi-scale visualization model enables users to choose the best 

representation for a given display space, the scalability issue still remains. It can only 

scale up to a point where each time-series takes a pixel height. It is possible to scale 

up further by employing aggregation or data reduction techniques, but then we may 

lead to a more aggregated overview, thus inducing information loss. Such information 

loss is in general unacceptable in the medical field since it could complicate or 

mislead medical decision-making.  

Another limitation is that we conducted two case studies in only one domain, i.e. 

medical domain with a blood pressure data. Further case studies are required to show 
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that Stroscope based on the ripple graph is not a domain-specific tool. Thus, more 

case studies in other domains can be meaningful future work. 
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Chapter 9  

Conclusion 

In this dissertation, we presented a multi-scale visualization model, i.e. a ripple graph 

for irregularly measured time-series data, concerned with measurement frequency 

and confidence in values between measurements. For large time-series data, we 

developed three space-efficient methods in a multi-scale model (i.e. Dimension 

zooming with range of interest, Color mapping, and moving the horizontal axis). We 

then evaluated the ripple graph by conducting a usability to verify the usefulness of 

ripple graph. We also conducted a controlled user study to evaluate the ripple graph 

in terms of how well people could learn and use it in performing graphical perception 

tasks, compared to other visualization techniques for time-series data. Results showed 

that the ripple graph was overall the best performing in terms of task time, correctness, 

and subjective satisfaction. 



 

 94

To investigate the efficacy and potential of the ripple graph and to promote 

interactive information visualization techniques in the medical domain, we 

implemented an interactive visualization tool, called Stroscope, through a 

collaborative participatory design with neurologists. Stroscope provides an 

interactive widget to enable intuitive control of the ripple graph and several analytical 

functions. We then evaluated Stroscope by conducting case studies with two 

neurologists. They could efficiently exploit the visualization model and the analytical 

functions of Stroscope throughout their exploratory analysis processes. 

In summary, this work’s contributions are three-fold: (1) introducing a new 

representation to enhance the graphical integrity in visual analysis of irregularly 

measured time-series, (2) seamlessly integrating different existing time-series 

representations into a unified interface framework for supporting different tasks for 

exploratory data analysis, and (3) presenting neurologists with an interactive 

visualization tool for analyzing blood pressure measurement data for stroke study. 
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요약 
 

본 논문에서는 일정한 시간 간격으로 측정된 시계열 데이터뿐만 아니라 

불규칙하게 측정된 시계열 데이터를 가시화하기 위한 리플 그래프(ripple 

graph)를 제안한다. 리플 그래프는 시간의 흐름에 따른 변화를 잘 나타

내주는 선 그래프와 데이터의 측정 빈도를 잘 나타내주는 막대 그래프의 

장점을 취하여 고안되었다. 또한, 리플 그래프는 실제 측정값은 불투명하

게, 측정값 사이의 선형 보간 영역은 값에 대한 확신 정도에 따라 불투명 

정도를 서로 다르게 표현함으로써 데이터를 왜곡 없이 표현한다. 더 나아

가 많은 수의 시계열 데이터를 한정된 공간에 효율적으로 시각화 하기 

위하여 세가지 기법인 (1)관심 영역 설정, (2)칼라 맵핑, (3)시간 축의 

이동을 개발하여 리플 그래프에 적용하였다. 또한, 사용자가 이 기법을 

유연하게 사용하고 기존의 시계열 데이터의 시각적 표현 방법들을 통합

하기 위해 대화형의 사용자 인터페이스를 고안하였다. 리플 그래프의 효

율성을 평가하기 위하여 기존의 대표적인 시계열 데이터 표현 방법인 선 

그래프, 막대 그래프, 호라이즌(horizon) 그래프와의 비교 실험을 진행하

였다. 그 결과 리플 그래는 실험에 사용된 모든 태스크에 대하여 수행 시

간, 정확도, 만족도 측면에서 가장 좋은 결과를 얻었다. 

    본 논문에서는 리플 그래프의 효율성과 잠재성을 살펴봄과 동시에 

시계열 데이터의 시각적 탐색을 위한 가시화 툴인 Stroscope을 제안한

다. Stroscope은 시간적인 관점에서 데이터를 탐색하기 위한 다양한 사

용자 인터액션과 특정 작업을 수행하기 위한 통계적인 분석 방법을 제공

한다. Stroscope의 효율성을 보여주기 위해 두 명의 신경과 전문의들와 

함께 뇌졸중으로 입원한 환자 1600명의 혈압데이터에 대한 사례 연구를 

실시하였다. 두 명의 참가자들은 다수의 환자에 대해 혈압의 변화 패턴을 
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눈으로 확인하고 관심 영역을 쉽게 탐색해 봄으로써, 기존의 통계 툴을 

이용하여 데이터를 분석하는 것에 비해 시간과 노력을 덜 수 있었다. 사

례 연구를 통해 참가자들은 (1) 이상이 있는 패턴을 가진 환자 발견, (2) 

혈압 값, 혈압 측정 빈도, 혈압의 변동 정도에 따른 특정 두 그룹간의 비

교, (3) 이미 알고 있었던 사실에 대한 확인, (4)새로운 가설의 설정 등

의 작업을 용이하게 수행하였음을 발견할 수 있었다. 
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