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Abstract

New PTS Schemes Using
Reduced-Complexity Generation of
Alternative OFDM Signal Vectors

Young-Jeon Cho
Department of ECE

The Graduate School
Seoul National University

This dissertation proposes several research results on the peak-to-average

power ratio (PAPR) reduction schemes for the orthogonal frequency divi-

sion multiplexing (OFDM) systems. The PAPR is the one of major draw-

back of OFDM system which causes signal distortion when OFDM signal

passes through nonlinear high power amplifier (HPA). Various schemes

have been proposed to reduce the PAPR of OFDM signals such as clip-

ping, selected mapping (SLM), partial transmit sequence (PTS), active

constellation extension (ACE), companding, and tone reservation (TR).

Among them, PTS scheme can transmit an OFDM signal vector by gen-

erating many alternative OFDM signal vectors using the partitioned sub-

block signals and selecting the optimal OFDM signal vector with the

minimum PAPR. However, the PTS scheme requires large computational

complexity, because it needs many inverse fast Fourier transforms (IFFTs)

of subblock signals and lots of alternative OFDM signal vectors are gener-

ated. In this dissertation, we concentrate on reducing the computational

complexity of the PTS scheme.
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In the first part of this dissertation, we propose a new PTS scheme

with low computational complexity using two search steps to find a sub-

set of phase rotating vectors showing good PAPR reduction performance.

In the first step, sequences with low correlation are used as phase rotat-

ing vectors for PTS scheme, which are called the initial phase vectors.

Kasami sequence and quaternary sequence are used in this step as the

initial phase vectors. In the second step, local search is performed based

on the initial phase vectors to find additional phase rotating vectors which

show good PAPR reduction performance. Numerical analysis shows that

the proposed PTS scheme can achieve almost the same PAPR reduction

performance as the conventional PTS scheme with much lower computa-

tional complexity than other low-complexity PTS schemes.

In the second part of the dissertation, we propose another low-complexity

PTS schemes using the dominant time-domain OFDM signal samples,

which are only used to calculate PAPR of each alternative OFDM sig-

nal vector. In this PTS scheme, we propose efficient metrics to select the

dominant time-domain samples. For further lowering the computational

complexity, dominant time-domain samples are sorted in decreasing or-

der by the proposed metric values and then the power of each sample is

compared with the minimum PAPR of the previously examined alterna-

tive OFDM signal vectors. Numerical results confirm that the proposed

PTS schemes using new metrics show large computational complexity re-

duction compared to other existing low-complexity PTS schemes without

PAPR degradation.

ii
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In the last part of the dissertation, for the reduced-complexity PTS

scheme, a new selection method of the dominant time-domain samples is

proposed by rotating the IFFTed signal samples to the area on which the

IFFTed signal sample of the first subblock is located in the signal space.

Moreover, the method of pre-exclusion of the phase rotating vectors us-

ing the time-domain sample rotation is proposed to reduce the number of

alternative OFDM signal vectors. Further, three proposed PTS schemes

are introduced to reduce the computational complexity by using simple

OFDM signal rotation and pre-exclusion of the phase rotating vectors. Nu-

merical analysis shows that the proposed PTS schemes achieve the same

PAPR reduction performance as that of the conventional PTS scheme

with the large computational complexity reduction.

Keywords: Fast Fourier transform (FFT), inverse fast Fourier transform

(IFFT), Kasami sequences, orthogonal frequency division multiplexing

(OFDM), partial transmit sequence (PTS), peak-to-average power ratio

(PAPR), phase rotating vector, quaternary sequences.

Student ID: 2010-30801
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Chapter 1. Introduction

1.1. Background

The idea of orthogonal frequency-division multiplexing (OFDM) has

been proposed since the 1950s. It has been used from at least the 1960s

as multicarrier modulation opposed to the single-carrier modulation, but

OFDM is hard to implement with the electronic hardware at that time

[1]. Thus, it does not have been used in commercial communication sys-

tems due to its high cost for hundreds of oscillators. In the 1990s, the

OFDM has experienced a breakthrough with developments of digital sig-

nal processing technology. Due to its bandwidth efficiency and robustness

against frequency selective fading, OFDM has been widely used in modern

wireless communications.

With rapid development of wireless communication theory and hard-

ware technologies, OFDM has been adopted in many wireless commu-

nication systems [2], for example, the digital audio broadcasting (DAB),

the digital video broadcasting (DVB), IEEE 802.11a/g/n standards, long-

term evolution (LTE), ultra-wideband (UWB), wideband wireless metropolitan-

area network (MAN), WiMAX, etc.

OFDM has many advantages such as high data transmission rate and

robustness against intersymbol interference (ISI) and fading from multi-

path propagation. However, the OFDM signal is basically a sum of N

1
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complex random variables, each of which can be considered as a complex

modulated signal at different frequencies. Thus, all the signal components

may add up in phase and produce a large output causing large peak-to-

average power ratio (PAPR), which degrades the efficiency of nonlinear

high power amplifier (HPA) [3]. The main purpose of this dissertation is

to reduce the PAPR of OFDM signals.

In order to alleviate the PAPR problem of OFDM signals, many PAPR

reduction schemes have been proposed. Clipping is the simplest scheme to

reduce PAPR, but it gives rise to regrowth of peak and increases bit error

rate (BER) [4]. The tone reservation (TR) reserves some tones for gener-

ating a PAPR reduced OFDM signal vector [5]. However, these reserved

tones are not used for data transmission, which causes data rate loss.

The selected mapping (SLM) [6] and partial transmit sequence (PTS) [7]

generate alternative OFDM signal vectors and then select the alternative

OFDM signal vector with the minimum PAPR, but they requires side in-

formation and many inverse fast Fourier transforms (IFFTs). Also, there

are many PAPR reduction schemes such as active constellation extension

(ACE) [8] and companding [9][10]. None of them are perfect solution,

which increases power, BER, data rate loss, and computational complex-

ity.

Modified PTS schemes are proposed to reduce computational complex-

ity of the conventional PTS scheme. Particularly, when the number of

IFFTs is fixed, generation and PAPR comparison of alternative OFDM

signal vectors are mainly considered to alleviate the computational com-

2



✐
✐

“YJCho_Dissertation” — 2014/1/6 — 16:50 — page 3 — #17 ✐
✐

✐
✐

✐
✐

plexity.

1.2. Overview of Dissertation

Chapter 2 explains OFDM system model, characteristic of nonlinear

HPA, and the definition of PAPR. Also, two type of HPA and several dif-

ferent methods to define the ratio of the peak power to the mean power are

explained. Further, some analytical methods to derive the complementary

cumulative distribution function (CCDF) of PAPR are explained.

In Chapter 3, the well-known PAPR reduction schemes are explained,

which include clipping, SLM, and PTS. Since this dissertation focus on

low-complexity PTS, some existing low-complexity PTS schemes are also

reviewed.

In Chapter 4, a new PTS scheme with low computational complexity

is proposed, where two search steps are taken to find a subset of phase

rotating vectors showing good PAPR reduction performance. In the first

step, sequences with low correlation are used as phase rotating vectors

for PTS scheme, which are called the initial phase vectors. In the sec-

ond step, local search is proposed based on the initial phase vectors to

find additional phase rotating vectors which show good PAPR reduction

performance.

In Chapter 5, another low-complexity PTS schemes are proposed, where

the PAPR values of alternative OFDM signal vectors are approximately

computed based on the dominant time-domain samples selected by us-

ing a simple power metric. Here, two new effective metrics for select-

3
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ing dominant time-domain samples are proposed for the low-complexity

PTS scheme. For further lowering the computational complexity, two low-

complexity PTS schemes are proposed by sorting the dominant time-

domain samples in decreasing order by their metric values. Simulation

results confirm that the proposed PTS schemes show identical PAPR re-

duction performance with substantially reduced computational complex-

ity, compared to the conventional PTS scheme.

In Chapter 6, a new selection method of the dominant time-domain

samples are proposed by rotating the IFFTed signal samples to the area

on which the IFFTed signal sample of the first subblock is located on the

signal space. Moreover, the method of pre-exclusion of the phase rotating

vectors using the time-domain sample rotation is proposed to reduce the

number of alternative OFDM signal vectors. Further, three proposed PTS

schemes are introduced to reduce the computational complexity by using

simple OFDM signal rotation and pre-exclusion of the phase rotating vec-

tors. Numerical results confirm that the proposed PTS schemes show large

computational complexity reduction without PAPR degradation.

Finally, some concluding remarks are given in Chapter 7.

4
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Chapter 2. PAPR in OFDM System

OFDM becomes an essential modulation technique in modern wireless

communication systems due to its bandwidth efficiency and robustness

to the multipath fading. However, PAPR of OFDM signals causes sig-

nal distortion due to the nonlinear effect of HPA, which causes in-band

distortion, out-of-band radiation, and BER degradation at the receiver.

In this chapter, an analytical model of OFDM system is described. Also,

the input-output characteristic of HPA and basic concept of PAPR are

explained.

2.1. OFDM System Model

Fig. 2.1 shows the typical OFDM transmitter. Serial binary bits are

modulated by constellation mapping. This mapping can be used by phase

shift keying (PSK) or quadrature amplitude modulation (QAM). The in-

put symbol vector is fed into a serial to parallel (S/P) conversion that

forms a parallel symbol streams.

Signal
mapping

IFFT
Add
CP

D/A HPA
Re{ }tx

Im{ }tx

cos(2 )cf t

sin(2 )cf t





X

tx

0x

1Nx 

x
s/p p/s

x

x

Figure 2.1: Block diagram of OFDM transmitter.
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After serial to parallel conversion, an input symbol vector of length N

can be represented as a vector X = [X0, X1, · · · , XN−1]
T , where Xk, k =

0, 1, · · · , N − 1, are input symbols.

Taking IFFT operation on the input symbol vector, discrete baseband

OFDM signal is expressed as

xn =
1√
N

N−1∑
k=0

Xke
j2πkn/N , 0 ≤ n ≤ N − 1 (2.1)

where x = [x0, x1, · · · , xN−1]
T denotes the OFDM signal vector.

After that, cyclic prefix (CP) or guard interval of length Ng is appended

to it. The CP helps in mitigating the effect of time delay by multipath

fading, but it wastes bandwidth by using repeated symbols. The cyclically

extended discrete complex OFDM signal is converted into a serial stream

using parallel to serial (P/S) conversion. Then, the serial symbol stream

passes through a digital-to-analog (D/A) converter to form the continuous

baseband OFDM signal as

xt =
1√
N

N−1∑
k=0

Xke
j2πk∆ft, 0 ≤ t ≤ Tu (2.2)

where ∆f is the frequency spacing between adjacent subchannels and Tu

is OFDM symbol duration, that is, ∆f = 1/Tu.

The continuous baseband OFDM signal is modulated using a carrier

frequency for transmission through a wireless channel which is called a

passband OFDM signal. The passband OFDM signal ẋt is written as

ẋt = Re{xtej2πfct} (2.3)

6
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where Re{·} is the real part of the complex signal and fc is the carrier

frequency. Finally, the passband OFDM signal goes through nonlinear

HPA, which causes signal distortion due to the amplitude fluctuation of

the OFDM signal.

2.2. Nonlinear High Power Amplifier Models

Amplitude fluctuation of OFDM signal is highly sensitive to the nonlin-

earity of HPA, which causes in-band distortion and out-of-band radiation

of OFDM signals. Traveling wave tube amplifier (TWTA) and solid state

power amplifier (SSPA) are well-known as two types of HPA. In order

to approximate the amplitude modulation (AM) nonlinearity of TWTA

and SSPA for the OFDM signals, simple mathematical models of AM

distortion in TWTA and SSPA are explained.

An output of nonlinear HPA for a baseband OFDM signal xn = |xn|ejφn

is given as

yn = G[|xn|]ej(φn+Φ[|xn|]) (2.4)

where the functions G[·] and Φ[·] denote the AM/AM and AM/PM con-

version characteristics of the nonlinear amplifier, respectively. Based on

(2.4), TWTA can be given as Saleh’s model [11]

G[|xn|] =
αG|xn|

1 + βG|xn|2
and Φ|xn| =

αΦ|xn|2

1 + βΦ|xn|2
(2.5)

where αG, βG, αΦ, and βΦ determine the characteristics of TWTA.

In SSPA models, Rapp model and polynomial model are widely used

7



✐
✐

“YJCho_Dissertation” — 2014/1/6 — 16:50 — page 8 — #22 ✐
✐

✐
✐

✐
✐

in communication system. The Rapp model of SSPA [12] can be given as

G[|xn|] = |xn|
[
1 +

( |xn|
G0

)2P ]−1
2p (2.6)

where G0 is the maximum amplifier output and p determines the smooth-

ness of the transition from the linear region to the saturation region. The

AM/PM distortion is very limited for applications.

The output of the SSPA polynomial model [13] can be expressed as

yn =

K∑
k=1

αkxn|xn|k−1 (2.7)

where K is the order of nonlinearity and αk is the polynomial coefficients.

In the polynomial model, it is sufficient to use third-order and odd-order

nonlinearity for the purpose of estimation of the distortion-to-signal power

ratio. Thus, the output of polynomial model can be approximated as

yn ≈ α1xn + α3|xn|2xn (2.8)

where the coefficients α1 and α3 can be obtained by (2.4) and (2.8).

2.3. Peak-to-Average Power Ratio

There are several methods to define the ratio of the peak power to the

mean power such as peak envelop power (PEP), peak to mean envelope

power ratio (PMEPR), PAPR, and crest factor (CF) [14]. The PEP is

defined as

PEP = max
t

|xt|2 (2.9)
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where the maximum value of the peak power of complex baseband OFDM

signal is used. The PMEPR is expressed as

PMEPR(xt) =
max |xt|2

Pav[xt]
(2.10)

where Pav[·] is the average power of the OFDM signal.

The PAPR is defined as the ratio of the peak power to the average

power of the passband OFDM signal, that is,

PAPR(ẋt) =
max

∣∣Re{xtej2πfct}
∣∣2

Pav{Re[xtej2πfct]}
=

max |ẋt|2

Pav[ẋt]
. (2.11)

Assume that input OFDM symbols are identically and independently dis-

tributed. Then the average power Pav[ẋt] is σ2.

In this dissertation, an approximation will be made in that LN samples

of xt are considered, where L is oversampling factor. The PAPR of discrete

baseband OFDM signal xn is defined as

PAPR(xn) =
maxLN−1

n=0 |xn|2

Pav[xn]
. (2.12)

The another useful method to measure envelope variation of the OFDM

signals is the crest factor, which is equivalent to the square root of PAPR

as

CF =
√
PAPR. (2.13)

For large N , the OFDM signal xn can be modeled as a zero-mean

complex Gaussian random variable and thus the magnitude of xn follows

Rayleigh distribution. In order to analyze PAPR, it is convenient to check

9
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the CCDF of PAPR, i.e., the probability that the PAPR of OFDM signals

exceeds a given threshold δ given as

P (PAPR > δ) = 1− (1− e−δ2)αN (2.14)

where α is usually determined as 2.8 from numerical analysis [15].

In [16], analytical CCDF expression of PAPR in OFDM systems is given

by extreme value theory as

P (PAPR > δ) ∼= 1− exp

{
−2e−δ

√√√√ πδ

NPav[xt]

K∑
k=−K

k2ηk

}
(2.15)

where ηk is the power allocated to the k-th subcarrier.

Equivalently, by simply changing δ as
√
δ, the CCDF of CF is also given

as

P (CF >
√
δ) = 1− (1− e−δ)αN (2.16)

where α is determined as 0.64 [17].

Fig. 2.2 shows the simulation results for the CCDF of PAPR distribu-

tion for OFDM signal with L = 4 and N = 256 for various constellation,

that is, QPSK, 16-QAM, and 64-QAM, which tells us that PAPR distri-

bution is the same regardless of signal constellation.

The continuous baseband OFDM signals can be obtained by low-pass

filtering the discrete baseband OFDM signals, which gives us different

PAPR. In order to approximate the PAPR of the continuous baseband

OFDM signals, numerical analysis for PAPR is performed with oversam-

pling factor L. Fig. 2.3 shows the PAPR for the various oversampling
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Figure 2.2: CCDF of PAPR distribution of OFDM signals with L =

4, N = 256, and various constellations QPSK, 16-QAM,
and 64-QAM.

factors L = 1, 4, 8, 12 with N = 256 and 16-QAM. It is shown that the

oversampling factor L = 4 is sufficient to approximate the PAPR of the

continuous OFDM signal.

Fig. 2.4 shows the CCDF of PAPR for the various N = 64, 128, 256, 1024,

L = 4, and 16-QAM. It is shown that the PAPR decreases as N decreases.

Therefore, L = 4 and 16-QAM constellation are used in this dissertation

with various number of subcarriers.
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Figure 2.3: CCDF of PAPR distribution of OFDM signals with 16-
QAM, N = 256, and various L = 1, 2, 4, 8, 16.
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Figure 2.4: CCDF of PAPR distribution of OFDM signals with L =

4, 16-QAM, and various N = 64, 128, 256, 1024.
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Chapter 3. Conventional PAPR
Reduction Schemes

3.1. Clipping

The simplest PAPR reduction scheme in OFDM system is to clip the

IFFTed signal with relevant threshold. The clipped signal is usually de-

fined as

x̄n =


Aejθn , |xn| > A

xn, |xn| ≤ A

(3.1)

where A is the threshold and θn is the phase of xn. However, clipping the

IFFTed signal causes in-band distortion and out-of-band radiation, which

deteriorate BER.

In order to reduce the out-of-band radiation, clipping and filtering

(CAF) scheme was introduced in [18]. The CAF scheme is the iterative

scheme, that is, clipped signal is transformed to the frequency domain

symbol by fast Fourier transform (FFT) to remove out-of-band radiation

and it is transformed to time-domain signals by iterative IFFT again.

However, this process generates the peak regrowth and increases com-

plexity due to IFFT and FFT operations. In [19], deep clipping scheme

has been proposed, which deeply clips the high peaks to a level smaller
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than a clipping level. Nevertheless, the BER is increased, because clipping

cuts signals intentionally.

3.2. Selected Mapping

SLM scheme generates alternative OFDM signal vectors and selects the

one with the minimum PAPR for transmission. In SLM scheme, the input

symbol vector X is multiplied with U phase vectors given as

P(u) =[P
(u)
0 , P

(u)
1 , · · · , P (u)

N−1] (3.2)

where P
(u)
n = ejφ

(u)
n with φn ∈ [0, 2π) for n = 0, · · · , N − 1. In general,

binary or quaternary elements are used for P (u)
k , that is, {±1} or {±1,±j}.

Using componentwise multiplication of the input symbol vector and U

phase vectors, we can obtain U alternative input symbol vectors as

X(u) = X⊗P(u) 0 ≤ u ≤ U − 1. (3.3)

After IFFT is performed, the PAPR is calculated.

Then, an OFDM signal vector with the minimum PAPR among U

alternative OFDM signal vectors is selected and transmitted. The side

information for denoting the selected phase vector should be transmit-

ted accompanying with the transmitted alternative OFDM signal vector.

Modified SLM schemes have been proposed to reduce the computational

complexity [20]-[22].

15



✐
✐

“YJCho_Dissertation” — 2014/1/6 — 16:50 — page 16 — #30 ✐
✐

✐
✐

✐
✐

Serial
 to

 parallel 
and 

partitioning 
into 

subblocks

Generation of phase rotating vector 

Select 
a signal 
with the 
minimum 

PAPR

X

1X

0X

2X

1M X

1Mb 

1b

0b

2b

N

  -point
IFFT

N

  -point
IFFT

N

  -point
IFFT

N

  -point
IFFT

Transmit

Figure 3.1: Block diagram of the conventional PTS.

3.3. Partial Transmit Sequence

In the conventional PTS scheme, an input symbol vector X is parti-

tioned into M disjoint input symbol subvectors Xm = [Xm,0, Xm,1, · · · , Xm,N−1]
T ,

0 ≤ m ≤ M − 1, that is,

X =

M−1∑
m=0

Xm (3.4)

where Xm,n is the m-th element of X or zero. There are three partitioning

methods, which are random, interleaving, and adjacent partitionings [23].

By applying IFFT to each Xm, the OFDM signal subvector xm =

[xm,0, xm,1, · · · , xm,N−1]
T is generated and each xm is independently ro-

tated by the phase rotating factor bm = ejφm , where φm ∈ [0, 2π) for

m = 0, · · · ,M − 1. In practice, the phase rotating factor bm is an element

of the finite set given as

16
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Table 3.1: An example of the OFDM signal vector at each subblock
xm in the PTS for M = 4 and N = 8.

xm,n xm,0 xm,1 xm,2 xm,3 xm,4 xm,5 xm,6 xm,7

x0 0
0.04−
j0.09

0.13−
j0.13

0.21−
j0.09

0.25
0.21 +
j0.09

0.13 +
j0.13

0.04 +
j0.09

x1 0
0.09 +
j0.04

−0.13+
j0.13

−0.09−
j0.21

0.25
−0.09+
j0.21

−0.13−
j0.13

0.09−
j0.04

x2 0
0.04−
j0.09

−0.13+
j0.13

0.21−
j0.09

−0.25
0.21 +
j0.09

−0.13−
j0.13

0.04 +
j0.09

x3 0.25
−0.09+
j0.21

0.13 +
j0.13

0.09−
j0.04

0.25
0.09 +
j0.04

0.13−
j0.13

−0.09−
j0.21

|xn| −0.25
−0.09+
j0.21

0.13 +
j0.13

0.09−
j0.04

0.25
0.09 +
j0.04

0.13−
j0.13

−0.09−
j0.21

bm ∈ {ej2πl/W | l = 0, 1, · · · ,W − 1} (3.5)

where W is the number of allowed phase rotating factors. Then, the

phase rotating vectors are defined as b(u) = [b
(u)
0 , b

(u)
1 , · · · , b(u)M−1], u =

0, 1, · · · , U − 1, and the u-th alternative OFDM signal vector x(u) is gen-

erated as

x(u) = [x
(u)
0 , x

(u)
1 , · · · , x(u)N−1]

T =

M−1∑
m=0

b(u)m xm, u = 0, 1, · · · , U − 1 (3.6)

where U is the number of alternative OFDM signal vectors.

Since the phase rotating factors b
(u)
0 for the first subblock x0 are fixed

to 1, we have U = WM−1. Finally, the optimal OFDM signal vector x(uopt)

with the minimum PAPR is selected and transmitted. Fig. 3.1 shows a

block diagram of the conventional PTS scheme.

An example of the conventional PTS scheme is given for M = 4, W = 2,

and N = 8. The input symbol vector is given as X = [1,−1, 1,−1,−1, 1,−1,−1],

which is divided into four subblocks with the adjacent method, that is,
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X0 = [1,−1, 0, 0, 0, 0, 0, 0], X1 = [0, 0, 1,−1, 0, 0, 0, 0], X2 = [0, 0, 0, 0,−1, 1, 0, 0],

X3 = [0, 0, 0, 0, 0, 0,−1,−1].

After being transformed by IFFT, the OFDM signal vector subblock

xm is shown in Table 3.1. Since the phase rotating factor bm is selected

in {±1}, we have U = WM−1 = 8 phase rotating vectors as b(0) =

[1, 1, 1, 1], b(1) = [1,−1, 1, 1], b(2) = [1, 1,−1, 1], b(3) = [1, 1, 1,−1],

b(4) = [1,−1,−1, 1], b(5) = [1,−1, 1,−1], b(6) = [1, 1,−1,−1], and b(7) =

[1,−1,−1,−1]. Using (3.6), we can generate U = 8 alternative OFDM

signal vectors by rotating xm with phase rotating vectors, that is, x(u) =

b
(u)
0 x0 + b

(u)
1 x1 + b

(u)
2 x2 + b

(u)
3 x3, u = 0, 1, · · · , 7.

Two disadvantages of the conventional PTS scheme are loss of data

transmission rate due to the side information and large computational

complexity. The side information of ⌈log2WM−1⌉ bits for the selected

phase rotating vector should be transmitted accompanying with the se-

lected alternative OFDM signal vector. It was proposed to transmit OFDM

signal vectors of PTS scheme without side information [24]-[26].

The computational complexity of PTS increases exponentially with the

number of the subblocks, which comes from many IFFTs and lots of al-

ternative OFDM signal vectors. The computational complexity of PTS

scheme is determined by the following three parts;

a) M IFFTs for M subblocks.

b) Generation of U alternative OFDM signal vectors.

c) Computation and comparison of PAPRs of U alternative OFDM signal

18
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Figure 3.2: Comparison of PAPR reduction performance of PTS
scheme with 16-QAM, L = 4, W = 4, N = 256, and
various M = 4, 6, 8, 16.

vectors.

Fig. 3.2 shows the comparison of PAPR reduction performance of PTS

scheme with 16-QAM, L = 4, W = 4, N = 256, and various M =

4, 6, 8, 16. As the number of subblocks M is larger, the PAPR reduction

performance is getting better. Note that as M increases, the computa-

tional complexity of IFFT and multiplications and additions for the al-

ternative OFDM signal vectors also increases.

Fig. 3.3 shows the comparison of PAPR reduction performance of PTS

scheme with 16-QAM, M = 4, N = 256, L = 4, and various W = 2, 4, 6, 8.
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Figure 3.3: Comparison of PAPR reduction performance of PTS
scheme with 16-QAM, M = 4, N = 256, L = 4, and
various W = 2, 4, 6, 8.

It is shown that the PAPR reduction performance is getting better as W

is larger, but the number of bits for side information also increases.

Fig. 3.4 shows the comparison of PAPR performance of OFDM with

M = 4, L = 4, N = 256, W = 4, and random, interleaving, and adjacent

partitionings. The random partitioning shows the best PAPR reduction

performance than any other partitioning methods. Thus, the random par-

titioning method is only used in this dissertation.
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Figure 3.4: Comparison of PAPR performance of OFDM with M = 4,
L = 4, N = 256, W = 4 and random, interleaving, and
adjacent partitionings.

3.4. Low-Complexity PTS Schemes

The PTS scheme requires the exhaustive search to find the best phase

rotating vectors to minimize the PAPR of the OFDM signal vector. In or-

der to reduce the computational complexity, three types of low-complexity

PTS schemes have been considered. The first type of PTS scheme is to

reduce the computational complexity for IFFTs which uses the modified

IFFTs [27]. The next low-complexity PTS schemes reduce the number of U

alternative OFDM signal vectors such as iterative PTS (IPTS) [28], sphere

decoding (SD-PTS) [29], suboptimal PTS [30], and PTS using sequences
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[31][32]. Considering the PAPR problem of the PTS scheme as combinato-

rial optimization (CO) problem, heuristic algorithms have been proposed

to reduce the number of phase rotating vectors for the PTS scheme, which

includes the simulated anealing (SA) [33], the particle swarm optimiza-

tion (PSO-PTS) [34], the genetic algorithm [35], the tabu search algorithm

[36], and the artificial bee colony algorithm (ABC-PTS) [37]. And the last

type of low-complexity PTS is to reduce the number of time-domain sam-

ples used for peak power computation in each alternative OFDM signal

vectors [38]-[40].

3.4.1. Reduction of the Number of Alternative OFDM Sig-
nal Vectors Using Sphere Decoding

Low-complexity PTS scheme using sphere decoding (SD-PTS) is pro-

posed in [29]. The power of x(u)n is written as

∣∣∣x(u)n

∣∣∣2 = bHFH
n Fnb− α2M (3.7)

where α is an arbitrary nonzero real number, (·)H denotes the conjugate

transpose, and Fn is an upper-triangular matrix given as

Fn =



Fn
1,1 . . . Fn

1,M

0 Fn
2,2 Fn

2,M

...
. . .

...

0 0 Fn
M,M


.
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In order to find the PAPR of the OFDM signal, the power of x(u)n is subject

to the following constraint:

||Fnb||2 < µ2 + α2M (3.8)

where µ is the some positive number.

Only those phase rotating vectors that lie inside the sphere of radius

µ2 + α2M are searched in SD-PTS, which can reduce the computational

complexity of the search by limiting the sphere radius.

3.4.2. Reduction of the Number of Alternative OFDM Sig-
nal Vectors Using ABC Algorithm

When the number M of subblocks is fixed, the generation of U alter-

native OFDM signal vectors is mainly considered for reducing the com-

putational complexity of the PTS scheme. The search problem of PTS as

a CO problem enables us to adapt efficient search algorithms.

We can formulate the vector search of PTS as a binary CO problem,

that is;

Minimize

f(b) =
maxN−1

n=0

∣∣∣∑M−1
m=0 bmxm,n

∣∣∣2
E[|xn|2]

(3.9)

subject to

b ∈ {±1}M−1. (3.10)

In order to solve the optimization problem, the modified ABC algorithm

PTS (ABC-PTS) for PAPR reduction is proposed in [37]. In the ABC
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algorithm, the bees search the food source position which represents a

possible solution to the problem to be optimized. And the nectar amount

of a food source corresponds to the quality of the associated solution.

At first, ABC algorithm is to set food source positions randomly, which

is the same as the phase rotating vectors of PTS scheme. A food source

position from the previous one is produced by

b
(u)
nl = bnl + βnl(bnl − bkl) (3.11)

where l ∈ {1, 2, . . . ,M} and k ∈ {1, 2, . . . , J}, i ̸= k, J is the number of

food sources, and β is a random number between [−1, 1].

Next, corresponding nectar amount in the food source is calculated.

The nectar amount is considered as the PAPR of alternative OFDM signal

vectors. If the nectar amount of a food source is much lower than other

food sources, it is abandoned and replaces another food source. This steps

are repeated until the value of limit meets.

The procedure of the RC-PTS schemes is summarized as follows.

1) Initialize food source positions which are the same as the initial phase

rotating vectors in PTS.

2) Calculate the nectar amount which is the PAPR of alternative OFDM

signal vectors in PTS scheme.

3) Find the abandoned food source and replace it to a neighbour food

source position.

4) Iterate this steps until pre-determined limit meets.
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5) Memorize the position of the best food source.

3.4.3. PTS Scheme with Dominant Time-Domain Samples

Reduced-complexity PTS (RC-PTS) scheme has been proposed to re-

duce the computational complexity of the conventional PTS scheme [38].

In the RC-PTS, the summed power of the n-th time-domain samples in

each subblock is considered to find the indices of the dominant time-

domain samples with power larger than preset threshold of the alternative

OFDM signal vectors.

This approach is useful in that it does not reduce the number of alter-

native OFDM signal vectors but reduce the time-domain samples of the

alternative OFDM signal vectors to find the peak value.

The power of x(u)n is written as

|x(u)n |2 =

∣∣∣∣∣
M−1∑
m=0

b(u)m xm,n

∣∣∣∣∣
2

=
M−1∑
m=0

|xm,n|2︸ ︷︷ ︸
Qn

+

M−1∑
m1=0

M−1∑
m2=0
m2 ̸=m1

(b(u)m1
xm1,n)(b

(u)
m2

xm2,n)
∗

︸ ︷︷ ︸
B

(u)
n

(3.12)

where Qn is a metric which is independent of the phase rotating vector

for a given X and B
(u)
n is the cross term of the |x(u)n |(2) affected by the

phase rotating vector. Let SQ be the set of indices defined as

SQ = {n | Qn ≥ γ, 0 ≤ n ≤ N − 1} (3.13)

25



✐
✐

“YJCho_Dissertation” — 2014/1/6 — 16:50 — page 26 — #40 ✐
✐

✐
✐

✐
✐

where γ is the threshold of Qn. Then, only the samples x
(u)
n with n ∈

SQ are multiplied with phase rotating vectors to compute the PAPR of

alternative OFDM signal vectors.

Thus, the RC-PTS can reduce the computational complexity by only

considering a subset of the time-domain samples of OFDM signal vectors

in order to find an OFDM signal vector with the minimum PAPR. The

optimal OFDM signal vector x(uopt) is obtained as

uopt = arg
U−1
min
u=0

max
n∈SQ

∣∣∣∣∣
M−1∑
m=0

b(u)m xm,n

∣∣∣∣∣
2

E[|xn|2]
. (3.14)

The procedure of the RC-PTS schemes is summarized as follows.

1) Evenly partition the input symbol block X into M disjoint subblocks.

2) Find xm = [xm,0 xm,1 · · · xm,N−1]
T by IFFT.

3) Compute Q = {Q0, Q1, · · · , QN−1}, where Qn =
∑M−1

m=0 |xm,n|2.

4) Record the time indices n such that Qn > γ as a set SQ.

5) Only the samples x
(u)
n with n ∈ SQ are used to compute the PAPR.

6) Select the optimal vector b(uopt).

7) Generate x(uopt) using the phase rotating vector b(uopt) and transmit

it.

In [38], the PAPR reduction performance of RC-PTS with small domi-

nant time-domain samples is shown to be the same as that of the conven-

tional PTS.
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Chapter 4. A New Low-Complexity PTS
Schemes Based on Successive Local Search

Using Sequences

4.1. Introduction

A new PTS scheme with low computational complexity is proposed,

where two search steps are taken to find a subset of phase rotating vectors

showing good PAPR reduction performance. In the first step, sequences

with low correlation are used as phase rotating vectors for PTS scheme,

which are called the initial phase vectors. In the second step, local search

is performed based on the initial phase vectors to find additional phase ro-

tating vectors which show good PAPR reduction performance. Numerical

analysis shows that the proposed PTS scheme achieves better PAPR re-

duction performance with significantly reduced computational complexity

than the existing low-complexity PTS schemes.

This chapter is organized as follows. In Section 4.2, a new PTS scheme

with two sequential steps using sequences with low correlation property

is proposed to reduce computational complexity of the PTS scheme. In

Section 4.3, computational complexity of the proposed PTS scheme is

compared and then, numerical analysis is shown. Finally, conclusion is

given in Section 4.4.
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4.2. A New PTS Scheme Based on Sequences with
Good Correlation

In this section, a new PTS scheme with two search steps is proposed,

where the initial phase vectors are generated by using sequences with good

correlation property in the first step and then additional phase rotating

vectors are generated by changing one symbol of the initial phase vectors

in the second step.

4.2.1. First Step: Initial Phase Vectors

Kasami sequences [41] and quaternary sequences of Family A [42] are

considered as initial phase vectors for the proposed PTS scheme. Kasami

sequences are important binary sequences having very low cross-correlation

values, which are generated by taking the modulo-2 sum of a binary m-

sequence and its decimated sequences [41]. There are two different sets

of Kasami sequences, a large set and a small set. In this chapter, we use

a small set of Kasami sequences having an optimal correlation property

with respect to Welch bound.

To generate a small set of Kasami sequences, we begin with a binary

m-sequence µ of period 2r − 1 for even r and a shorter-period sequence

µ
′ obtained by decimating µ by 2r/2 + 1. Note that the resulting shorter-

period sequence µ
′ is an m-sequence of period 2r/2 − 1. Then a small

set of Kasami sequences is generated by taking the modulo-2 sum of µ

and all the cyclically shifted sequences of µ′ , which results in 2r/2 binary

sequences of period 2r − 1. The total number of Kasami sequences and
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their all cyclically shifted sequences is 2r/2(2r−1). Thus, the total number

NK of phase rotating vectors selected from them should satisfy

NK ≤ 2r/2(2r − 1). (4.1)

These NK binary sequences are used as initial phase vectors for the pro-

posed PTS scheme, where the alphabet size for the phase rotating factors

is W = 2.

A family of quaternary sequences over Z4 with optimal correlation prop-

erty, called Family A, has been proposed in [42], which consists of 2r + 1

quaternary sequences of period 2r − 1. Clearly, the total number of qua-

ternary sequences of Family A and their all cyclically shifted sequences

is (2r + 1)(2r − 1). Then, the total number NQ of initial phase vectors

selected from them should satisfy

NQ ≤ (2r + 1)(2r − 1). (4.2)

For example, the Kasami and quaternary sequences of period 15 can

be used as the initial phase vectors for the proposed PTS scheme with

M = 16, where the phase rotating factor b
(u)
0 for the first subblock is

fixed to one. In this case, the maximum number of binary initial phase

vectors of length 15 is NK = 60 from (4.1) and the maximum number

of quaternary initial phase vectors of length 15 is NQ = 225 from (4.2).

However, it is not guaranteed to find a good solution for the proposed

PTS scheme only by using these initial phase vectors. Therefore, in the

second step, one symbol of each initial phase vector is further changed to
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generate additional phase rotating vectors. Note that, by using sequences

with low correlation as initial phase vectors, the search in the second step

becomes more efficient.

4.2.2. Second Step: Local Search

Suppose that P0 initial phase vectors are generated in the first step,

where P0 = NK or NQ. Then P1 vectors giving the smallest PAPRs are

selected from these P0 initial phase vectors, 0 < P1 ≤ P0, which are used

to generate additional phase rotating vectors by changing one symbol from

each of them, called local search.

This local search will be explained by using an example. Assume that

the phase rotating factor for the second subblock of the alternative OFDM

signal vector x(u) is changed from b
(u)
1 to b

(u′)
1 , where b

(u′)
1 can take any

phase rotating factor except b
(u)
1 . Then the additional alternative OFDM

signal vector x(u′) can easily be obtained as

x(u′) = x(u) + (b
(u′)
1 − b

(u)
1 )x1 (4.3)

without summing all xm’s weighted by a new phase rotating vector b(u′).

Compared with the conventional PTS, the computational complexity to

obtain additional alternative OFDM signal vectors in (4.3) can be sub-

stantially reduced. The phase rotating factor for the second subblock of

other alternative OFDM signal vector can be changed in the same fashion

to generate additional alternative OFDM signal vectors. Then, P1(W −1)

additional phase rotating vectors are generated by changing the phase ro-
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Table 4.1: Pm values for 900 phase rotating vectors in the proposed
PTS scheme using Kasami sequences when M = 16.

P0 P1(W − 1) P2(W − 1) P3(W − 1)
60 60× 1 60× 1 60× 1

P4(W − 1) P5(W − 1) P6(W − 1) P7(W − 1)
60× 1 60× 1 60× 1 60× 1

P8(W − 1) P9(W − 1) P10(W − 1) P11(W − 1)
60× 1 60× 1 60× 1 60× 1

P12(W − 1) P13(W − 1) P14(W − 1) P15(W − 1)
60× 1 60× 1 30× 1 30× 1

tating factor for the second subblock. After calculating PAPRs of these

P1(W −1) alternative OFDM signal vectors and comparing PAPRs of to-

tal P1W alternative OFDM signal vectors, we can select P2 phase rotating

vectors giving the smallest PAPRs.

Similar to the second block case, P2(W − 1) additional phase rotating

vectors are generated from these P2 phase rotating vectors by changing the

phase rotating factor for the third subblock, and the same comparison and

selection are performed. This procedure continues up to the last subblock

and the total number T of phase rotating vectors in the proposed PTS

scheme becomes

T = P0 + (W − 1)

M−1∑
m=1

Pm. (4.4)

Extensive simulation is performed to find Pm for good PAPR reduction

performance. As an example, for the case of M = 16, the number Pm(W−

1) of additional phase rotating vectors generated by local search for each

subblock is listed in Table 4.1, where a small set of Kasami sequences

of length 15 and local search are used to select T = 900 phase rotating

vectors out of 215 = 32768 binary vectors.
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4.3. Computational Complexity and Simulation Re-
sults

4.3.1. Comparison of Computational Complexity

The computational complexity of PTS scheme is determined by the

following three parts:

a) M IFFTs for M subblocks.

b) Generation of U alternative OFDM signal vectors.

c) Computation and comparison of PAPRs of U alternative OFDM signal

vectors.

In general, when M subblocks is fixed, the computational complexity for

the part a) is also fixed, and the part b) is mainly considered for reducing

the computational complexity of the PTS scheme, while the computa-

tional complexity of part c) is negligible.

In order to reduce the computational complexity, the optimal search

has been proposed in [29], where the computational complexity is reduced

by restricting searching among the alternative OFDM signal vectors inside

a sphere by using sphere decoding algorithm. Recently, combinatorial op-

timization algorithms including ABC-PTS [37] and parallel TS-PTS [36]

have been used to efficiently search a good subset of phase rotating vec-

tors for the PTS scheme to further reduce the computational complexity

of the part b).
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Table 4.2 compares the computational complexity of the conventional

PTS, the optimal search, the parallel TS-PTS, ABC-PTS, and the pro-

posed PTS scheme for M = 16, L = 4, W = 2, N = 256, and T = 900.

Since the computational complexity due to the complex additions shows

the same tendency, only the complex multiplications for generating alter-

native OFDM signal vectors in the part b) are considered in Table 4.2.

The optimal search algorithm in [29] searches the alternative OFDM

signal vectors inside a sphere corresponding to γ2 = 6.8, which results

in generating A = 16253 alternative OFDM signal vectors on average.

Note that while the conventional PTS and the optimal search generate

WM−1 = 215 = 32768 and A = 16253 alternative OFDM signal sequences,

respectively, the other low-complexity PTS schemes generate T = 900 al-

ternative OFDM signal vectors. Table 4.2 shows that, compared with the

number of complex multiplications required by the conventional PTS, the

optimal search requires 49.6% of computational complexity and each of

parallel TS-PTS and ABC-PTS requires 2.75% of computational com-

plexity, whereas the proposed PTS scheme requires only 0.42% of com-

putational complexity by using Pm in Table 4.1. Clearly, the proposed

PTS scheme shows the lowest computational complexity among other low-

complexity PTS schemes.

In the next subsection, it will be shown that the proposed PTS scheme

can give almost the same PAPR reduction performance as the conven-

tional PTS scheme.
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Table 4.2: Comparison of computational complexity of the proposed
PTS scheme and other PTS schemes for M = 16, L = 4,
W = 2, N = 256, A = 16253 and T = 900.

PTS schemes No. of complex multiplications Percentage

Conventional PTS (M − 1)LNWM−1 100%

Optimal search (M − 1)LNA 49.6%

Parallel TS-PTS (M − 1)LNT 2.75%

ABC-PTS (M − 1)LNT 2.75%

Proposed PTS
(M − 1)LNP0

+LN(W − 1)
∑M−1

m=1 Pm
0.42%

4.3.2. Simulation Results

Fig. 4.1 compares the PAPR reduction performance of the conventional

PTS scheme, the proposed PTS scheme with Kasami sequences (K-PTS),

and the proposed PTS scheme with quaternary sequences of Family A

(Q-PTS) for M = 16, L = 4, N = 256, and 16-QAM. Fig. 4.1 shows

that Q-PTS outperforms K-PTS. Note that Q-PTS with T = 1200 shows

almost the same PAPR reduction performance as the conventional PTS

with W = 2 and U = 32768.

Fig. 4.2 compares the PAPR reduction performance of the conventional

PTS, the optimal search, ABC-PTS, and the parallel TS-PTS for W = 2,

the random search (RS) for W = 2 and 4, and the proposed K-PTS

and Q-PTS. An OFDM system with M = 16, L = 4, N = 256, and 16-

QAM is considered. For the optimal search, A = 16253 alternative OFDM

signal vectors are generated and for other low-complexity PTS schemes,

T = 900 alternative OFDM signal vectors are generated. It can be seen

that the PAPRs of the random search at CCDF = 10−3 for W = 2 and
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W = 4 are the same as 7.15dB. Meanwhile, the PAPRs of ABC-PTS,

the parallel TS-PTS, K-PTS, and Q-PTS are 7.02dB, 6.85dB, 6.9dB, and

6.72dB at CCDF = 10−3, respectively. As expected, the optimal search

shows identical PAPR reduction performance with the conventional PTS

scheme. Compared with other PTS schemes, the proposed PTS scheme

shows similar or better PAPR reduction performance with much lower

computational complexity as given in Table 4.2.

4.4. Conclusion

In this chapter, a new two-step search algorithm for PTS scheme is pro-

posed to reduce the computational complexity. In the first step, sequences

with good correlation property such as Kasami and quaternary sequences

are used as the initial phase vectors. In the second step, by using the initial

phase vectors, local search is performed for further searching the phase

rotating vectors with very low computational complexity. Numerical anal-

ysis shows that the proposed PTS scheme can achieve almost the same

PAPR reduction performance as the conventional PTS scheme with much

lower computational complexity than other low-complexity PTS schemes.
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Figure 4.1: Comparison of PAPR reduction performance of the con-
ventional and the proposed PTS schemes using various
sequences with M = 16, L = 4, N = 256, and 16-QAM.
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Figure 4.2: Comparison of PAPR reduction performance of various
PTS schemes with M = 16, L = 4, T = 900, N = 256,
and 16-QAM.
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Chapter 5. Low-Complexity PTS Schemes
Using Dominant Time-Domain Samples

5.1. Introduction

The PTS scheme requires an exhaustive search over all combinations of

allowed phase rotating vectors, whose complexity increases exponentially

with the number of subblocks. Many low-complexity PTS schemes have

been proposed to simplify search of the optimal phase rotating vector over

many phase rotating vectors in the PTS scheme.

The RC-PTS [38] was proposed to reduce the computational complex-

ity, which selects dominant time-domain samples based on symbol powers

and then, by using those selected samples, find alternative OFDM signal

vector with the minimum PAPR. In this chapter, two new metrics are

proposed to select dominant time-domain samples in the RC-PTS. For

further lowering the computational complexity, dominant time-domain

samples are sorted in decreasing order using their metric values and then

the power of each sample is compared with the minimum PAPR of the

previously examined alternative OFDM signal vectors. Simulation results

confirm that the proposed PTS schemes show identical PAPR reduction

performance with substantially reduced computational complexity, com-

pared to the conventional PTS scheme.
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Figure 5.1: The block diagram of the PTS scheme using the dominant
time-domain samples.

The rest of the chapter is organized as follows. Low-complexity PTS

schemes using new metrics and sorting method are proposed in Section 5.2.

In Section 5.3, the computational complexity of the proposed PTS schemes

is analyzed and the simulation results are provided. Finally, conclusions

are given in Section 5.4.

5.2. New Low-Complexity PTS Schemes

5.2.1. Selection of Dominant Time-Domain Samples Using
New Metrics

Fig. 5.1 shows the block diagram of the PTS scheme using the domi-

nant time-domain samples. In the RC-PTS scheme, more accurate PAPR

estimation is achieved by using a lower threshold, which selects more sam-

ples, but it gives rise to an increase in the computational complexity. In
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this subsection, two new metrics are proposed by analyzing the crest fac-

tor of alternative OFDM signal vectors, which show better PAPR estima-

tion with less dominant time-domain samples compared with the RC-PTS

scheme.

To select the alternative OFDM signal vector with the minimum PAPR,

the magnitude of the n-th sample over all alternative OFDM signal vectors

should be calculated as

|x(u)n | =

∣∣∣∣∣
M−1∑
m=0

b(u)m xm,n

∣∣∣∣∣ . (5.1)

However, |x(u)n | clearly depends on the phase rotating vector b(u) and,

in order to select dominant time-domain samples, metrics which are in-

dependent of phase rotating vector are needed similar to Qn in (3.12)

for the RC-PTS scheme. Therefore, two new metrics will be proposed by

analyzing |x(u)n |.

The magnitude of x(u)n can be rewritten as

|x(u)n | =

∣∣∣∣∣
M−1∑
m=0

|xm,n| e(jθm,n+jφ
(u)
m )

∣∣∣∣∣ (5.2)

where θm,n and φ
(u)
m are the phases of xm,n and b

(u)
m , respectively. The

first proposed metric Yn is obtained by removing the phase part of the

summand in (5.2) as

Yn =
M−1∑
m=0

|xm,n| . (5.3)

Clearly, Yn ≥ |x(u)n | and as W increases, Yn approaches to the real max-

imum magnitude maxU−1
u=0 |x

(u)
n |, whereas the metric Qn in RC-PTS does
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not approach to maxU−1
u=0 |x

(u)
n | due to the term B

(u)
n . Therefore, for large

W , it is highly probable that the dominant time-domain samples obtained

by using Yn give real peak and through numerical analysis, it will be shown

that the proposed low-complexity PTS scheme using Yn outperforms the

RC-PTS scheme using Qn even for small W .

In order to propose the second metric, |x(u)n | is rewritten as

|x(u)n | =

∣∣∣∣∣
M−1∑
m=0

b(u)m (Re{xm,n}+ jIm{xm,n})

∣∣∣∣∣ (5.4)

where Re{xm,n} and Im{xm,n} are the real and imaginary parts of xm,n,

respectively. Then, the second proposed metric An is defined as

An =

∣∣∣∣∣
M−1∑
m=0

(|Re{xm,n}|+ j |Im{xm,n}|)

∣∣∣∣∣ . (5.5)

In case of W = 2, it is clear that An ≥ |x(u)n | and An is equal to the real

maximum magnitude maxU−1
u=0 |x

(u)
n |, when the signs of real (and imagi-

nary) parts of samples from subblocks are the same. However, if W > 2,

An ≥ |x(u)n | is not always true.

Now, the sets of indices of the dominant time-domain samples selected

by using the metrics Yn and An are defined as

SY = {n | Yn ≥ ThY }

SA = {n | An ≥ ThA} (5.6)

where ThY and ThA are the thresholds on Yn and An, respectively. The

cardinality of SY and SA is denoted by |SY | = KY and |SA| = KA,
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respectively. In general, the threshold is determined by considering the

tradeoff between the computational complexity and the PAPR reduction

performance. Note that only the dominant time-domain samples with the

indices in SY or SA are multiplied with the phase rotating vectors to

find the alternative OFDM signal vector with the minimum PAPR. Thus,

the computational complexity of the proposed PTS scheme substantially

reduces.

5.2.2. Sorting of Dominant Time-Domain Samples

For further lowering the computational complexity of the low-complexity

PTS schemes in Subsection 5.2.1 without degrading the PAPR reduction

performance, the selected dominant time-domain samples are sorted in

decreasing order using their metric values. Thus, the sorted index sets in

decreasing order from SY and SA are given as

ŜY = {p0, · · · , pk, · · · , pKY −1}, pk ∈ SY

ŜA = {q0, · · · , qk, · · · , qKA−1}, qk ∈ SA. (5.7)

Note that for a given phase rotating vector, the power of each sample with

the index in ŜY or ŜA is calculated in that order to calculate the PAPR

and find the alternative OFDM signal vector with the minimum PAPR.

The next step is to set γ as the maximum sample power of the first

alternative OFDM signal vector. Then γ is compared with each sample

power of the second alternative OFDM signal vector in order of indices in

ŜY or ŜA. For instance, γ is compared with the power of x(1)pk in order of
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Figure 5.2: Comparison of the average number of compared samples
for the sorted and unsorted cases with L = 4, M = 8,
W = 2, N = 1024, and 16-QAM.

indices in ŜY . If the selected sample power is larger than γ, stop calculat-

ing the power of the remaining samples and move to the third alternative

OFDM signal vector. If all the sample powers are smaller than γ, then

γ is updated with the maximum sample power of the second alternative

OFDM signal vector and move to the third alternative OFDM signal vec-

tor. This procedure is repeated until all alternative OFDM signal vectors

are compared with γ and the phase rotating vector giving the final value

of γ is selected and the corresponding alternative OFDM signal vector is

transmitted.

Since the dominant time-domain samples are rearranged in decreasing
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order by their metric values, it is highly probable that samples with large

power are firstly dealt with. Let η be the average number of samples

compared with γ until a sample with the power bigger than γ is found.

Using Monte Carlo simulation, Fig. 5.2 compares η for the sorted ŜY and

the unsorted SY for various set size, when L = 4, M = 8, W = 2, N =

1024, and 16-QAM are used. It is clear that η for the sorted case is much

smaller than that of the unsorted case and therefore, the computational

complexity of the proposed scheme can be reduced by sorting the samples

without performance degradation.

The procedure of the proposed low-complexity PTS schemes is summa-

rized as follows.

1) An input data vector is divided into M disjoint subblocks and each of

them is IFFTed.

2) Determine SY or SA in (5.6).

3) If the proposed scheme in Subsection 5.2.1 is only considered, the

sample x
(u)
n in the set obtained in Step 2) is multiplied with all phase

rotating vectors to calculate the PAPR of x(u) and then go to Step 8).

Otherwise, go to Step 4).

4) Sort the elements in SY or SA in decreasing order using their corre-

sponding metric values and make the sorted index sets ŜY and ŜA.

5) Set γ as the maximum sample power of the first alternative OFDM

signal vector.
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Table 5.1: Computational complexity of the Con-PTS, RC-PTS, and
the proposed PTS schemes.

Complexity Number of real multiplications
Step 2) 3), 4) 5), 6), 7) 8)

Con-PTS 4MLNU + 2LNU
RC-PTS 2MLN

4KMU 4LNMProposed(Y) 3MLN
+2KU

0
+2LNProposed(A) 2LN

Proposed(SY) 3MLN 0 4ηMU 4LNMProposed(SA) 2LN +2ηU +2LN
Complexity Number of real additions

Step 2) 3), 4) 5), 6), 7) 8)
Con-PTS 2MLNU + 2LNU(M − 1) + 2LNU + U

RC-PTS LN(M − 1)+
MLN + LN 2KU(M − 1) 2LN(M − 1)

Proposed(Y) LN(M − 1)+
MLN + LN

+2KMU 0 +2LNM

Proposed(A) 2LN(M−1)+
2LN

+2KU + U

Proposed(SY) 2LN(M − 1)
K log2 K

2ηMU+ 2LN(M − 1)
Proposed(SA) 2LN(M − 1) 2ηU(M − 1) + ηU +2LNM

6) Each sample power with index in ŜY or ŜA is compared with γ. If a

sample power is larger than γ, stop calculating sample power and go

to Step 7). Otherwise, γ is updated by the maximum sample power of

the second alternative OFDM signal vector and go to Step 7).

7) Repeat Step 6) for all the remaining alternative OFDM signal vectors

and then, the phase rotating vector corresponding to the final γ is used

to make the optimal OFDM signal vector x(uopt).

8) Transmit the optimal OFDM signal vector x(uopt) with the side infor-

mation on uopt.
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5.2.3. Computational Complexity Analysis

Table 5.1 compares the computational complexity in terms of real mul-

tiplications and real additions for the conventional PTS (Con-PTS), RC-

PTS, two proposed PTS schemes using SY (Proposed(Y)) and using SA

(Proposed(A)), and two proposed PTS schemes using ŜY (Proposed(SY))

and using ŜA (Proposed(SA)).

When the number of subblocks is fixed, the computational complexity

for Step 1) is the same for all PTS schemes, and therefore, only the other

steps are considered. In general, one complex multiplication requires four

real multiplications and two real additions, and one complex addition

requires two real additions. Also, one comparison and one square root

operation are equivalent to one real addition and one real multiplication,

respectively. The number of selected dominant time-domain samples with

each metric is denoted by K and quick sorting algorithm [43] is used at

Step 4), which requires K log2K real additions. Note that the average

number of samples compared with γ is denoted by η as in Fig 5.2.

It is clear that K is an important factor for the computational complex-

ity of Proposed(Y) and Proposed(A), whereas η is also an important fac-

tor for the computational complexity of Proposed(SY) and Proposed(SA).

The detailed numerical analysis is given in the following section.

5.3. Simulation Results

Fig. 5.3 compares the PAPR reduction performance of four proposed

PTS schemes (Proposed(Y), Proposed(A), Proposed(SY), and Proposed(SA)),
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with that of RC-PTS and Con-PTS, when N = 1024, L = 4, M = 8,

W = 2, and 16-QAM are used. For fair comparison, the same K is used

for the proposed low-complexity PTS schemes by adjusting thresholds

for each scheme and the corresponding η is determined as η = 76 for

K = 800 and η = 92 for K = 1100 from extensive numerical analysis.

Fig. 5.3 shows that the PAPR reduction performance of Proposed(SY)

and Proposed(SA) is exactly the same as that of Proposed(Y) and Pro-

posed(A), respectively, as expected. For the same K, the proposed PTS

schemes show better PAPR reduction performance than RC-PTS scheme.

Moreover, K = 800 for Proposed(A), η = 76 (K = 800) for Proposed(SA),

K = 1100 for Proposed(Y), η = 92 (K = 1100) for Proposed(SY), and

K = 1400 for RC-PTS are needed to show the same PAPR reduction

performance as the conventional PTS (Con-PTS).

The computational complexity of the proposed schemes is compared

with that of Con-PTS in Fig. 5.4 in terms of relative computational

complexity(%) when the PAPR reduction performance is the same as ex-

plained in the above. The relative computational complexity of real mul-

tiplications for RC-PTS, Proposed(Y), Proposed(A), Proposed(SY), and

Proposed(SA) compared with that of Con-PTS are 35.3%, 27.6%, 20.3%,

3.6%, and 2.7%, respectively. Also, the relative computational complexity

of real additions shows a similar tendency as the relative computational

complexity of real multiplications, which are 33.9%, 28%, 20.7%, 3.4%,

and 2.9%. Under the same PAPR reduction performance, Proposed(SA)

needs less than 3% of the computational complexity of Con-PTS.
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Fig. 5.5 compares the PAPR reduction performance of Con-PTS, RC-

PTS, and four proposed PTS schemes with N = 1024, L = 4, M = 4, W =

4, and 16-QAM. It is shown that Proposed(Y) needs K = 120 to achieve

the same PAPR reduction performance as Con-PTS, meanwhile RC-PTS

and Proposed(A) need K = 250 and K = 450, respectively. Proposed(SY)

needs η = 24 with K = 120, whereas Proposed(SA) needs η = 55 with

K = 450. Using Table 5.1, the relative computational complexity of real

multiplications for RC-PTS, Proposed(Y), Proposed(A), Proposed(SY),

and Proposed(SA) are calculated as 8.4%, 5.5%, 12.5%, 3.1%, and 3.1%,

respectively, and the relative computational complexity of real additions

is calculated as 8.3%, 5.1%, 13.1%, 2.6%, and 3.5%, respectively.

5.4. Conclusion

In this chapter, two effective metrics are proposed to select dominant

time-domain OFDM signal samples and two low-complexity PTS schemes

based on these two metrics are proposed. For more complexity reduction,

sorting the selected dominant time-domain samples is proposed. Numeri-

cal analysis shows that the proposed PTS schemes can achieve the same

PAPR reduction performance as that of the conventional PTS scheme

with substantially reduced computational complexity.
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Figure 5.3: Comparison of PAPR reduction performance of Con-PTS,
RC-PTS, and four proposed PTS schemes for N = 1024,
L = 4, M = 8, W = 2, and 16-QAM.
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Figure 5.4: Comparison of computational complexity of Con-PTS,
RC-PTS, and four proposed PTS schemes under the same
PAPR reduction performance for N = 1024, L = 4,
M = 8, W = 2, and 16-QAM.
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RC-PTS, and four proposed PTS schemes for N = 1024,
L = 4, M = 4, W = 4, and 16-QAM.
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Chapter 6. Low-Complexity PTS
Schemes Using OFDM Sample Rotation

6.1. Introduction

The computational complexity of PTS scheme increases exponentially

with the number of the subblocks, which comes from many IFFT and

PAPR computation of lots of alternative OFDM signal vectors. When the

number of IFFTs is fixed, the computational complexity of PTS scheme is

determined by generation of many alternative OFDM signal vectors and

computation of PAPRs of alternative OFDM signal vectors.

In the RC-PTS, summing the power of the n-th time-domain samples

of each subblock is used to find the indices of the dominant time-domain

samples exceeding the preset threshold of the alternative OFDM signal

vectors. Only the selected dominant time-domain samples are multiplied

with the phase rotating vectors to calculate PAPR of each alternative

OFDM signal vector, which substantially reduces the computational com-

plexity.

In this chapter, a new selection method of the dominant time-domain

samples is proposed by rotating the IFFTed signal samples to the area

on which the IFFTed signal sample of the first subblock is located in the

signal space. Moreover, the method of pre-exclusion of the phase rotat-

ing vectors using the time-domain sample rotation is proposed to reduce
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the number of alternative OFDM signal vectors. Numerical results con-

firm that the proposed PTS schemes show large computational complexity

reduction without PAPR degradation.

The rest of this chapter is organized as follows. In Section 6.2, new low-

complexity PTS schemes using the time-domain sample rotation and the

pre-exclusion of the phase rotating vectors are proposed. In Section 6.3,

the computational complexity of the proposed PTS schemes is analyzed

and the simulation results are provided. Finally, conclusion is given in

Section 6.4.

6.2. New Low-Complexity PTS Schemes

In this section, two method of the computational complexity reduction

of PAPR of the PTS schemes are proposed. In Subsection 6.2.1, a new

method to select the dominant time-domain samples is proposed to fur-

ther reduce the computational complexity of PAPR of alternative OFDM

signal vectors. Moreover, the number of alternative OFDM signal vectors

is reduced by eliminating a subset of phase rotating vectors in Subsection

6.2.2. And using two proposed methods, three new low-complexity PTS

schemes are proposed in Subsection 6.2.3.
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Figure 6.1: The n-th IFFTed signal sample rotation by 180◦ to the
IFFTed signal sample of the first subblock reflecting by
(a) real axis (b) imaginary axis (c) real axis with π/4

rotation (d) imaginary axis with π/4 rotation for M = 4

and W = 2.

6.2.1. A New Selection Method of Dominant Time-Domain
Samples Using Signal Rotation

Let Vn denote the maximum magnitude of n-th sample among U alter-

native OFDM signal vectors in the PTS scheme, which is

Vn =
U−1
max
u=0

∣∣∣∣∣
M−1∑
m=0

b(u)m,nxm,n

∣∣∣∣∣ = U−1
max
u=0

∣∣∣x(u)n

∣∣∣ , n = 0, 1, · · · , N − 1 (6.1)

54



✐
✐

“YJCho_Dissertation” — 2014/1/6 — 16:50 — page 55 — #69 ✐
✐

✐
✐

✐
✐

0,nx

2,nx

1,nx

1, 1,n nb x

3, 3,n nb x

3,nx

Re

Im2, 2,n nb x

(a)

0,nx

2,nx

1,nx
3, 3,n nb x

3,nx

Re

Im
2, 2,n nb x

(b)

Figure 6.2: The n-th IFFTed signal sample rotation to (a) one quad-
rant (b) one rotated quadrant by π/4 for M = 4 and
W = 4.

where b
(u)
m,n and the metric Vn constitute the n-th phase rotating vector

b
(u)
n = [b

(u)
0,n, b

(u)
1,n, · · · , b

(u)
M−1,n] and V = [V0, V1, · · · , VN−1], respectively.

For a preset threshold γ, the index set of the dominant time-domain sam-

ples is given as

SV = {n | Vn ≥ γ, 0 ≤ n ≤ N − 1}. (6.2)

Using only the selected dominant time-domain samples with indices in

SV instead of all time-domain samples, we calculate the PAPRs of all

alternative OFDM signal vectors. However, Vn needs full search over all

phase rotating vectors, which requires U = WM−1 searches.

Thus, in this subsection, we propose a new metric for SV using time-

domain signal sample rotation with significantly less computational com-

plexity. The n-th IFFTed signal samples of subblocks are rotated to the
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area on which the IFFTed signal sample x0,n of the first subblock is lo-

cated in the signal space to approximately find the maximum magnitude

of the n-th time-domain sample. Fig. 6.1 shows four different types of the

n-th IFFTed signal sample rotation of each subblock in the signal space

for M = 4 and W = 2. In Fig. 6.1(a), the n-th IFFTed signal samples

of subblocks are rotated to the first and the second quadrants reflecting

them by the real axis, because x0,n is located in the second quadrant. In

Fig. 6.1(b), the n-th IFFTed signal samples of subblock are rotated to

the second and the third quadrants reflecting them by the imaginary axis,

where x0,n is located. The axes of real and imaginary in Figs. 6.1(c) and

6.1(d) are rotated by π/4. And the IFFTed signal samples of subblocks

are rotated by altered axes as the same manner of Figs. 6.1(a) and 6.1(b).

Fig. 6.2 shows two different types of the n-th IFFTed signal sample

rotation by ±90◦ and 180◦ in the signal space for M = 4 and W = 4

to approximately find the maximum magnitude of the n-th time-domain

sample. It is possible to rotate IFFTed signal samples to the quadrant

where the IFFTed signal sample x0,n of the first subblock is located be-

cause of W = 4.

Using Fig. 6.1 or Fig. 6.2, we have the C alternative time-domain sam-

ples at the n-th position given as [x
(un,0)
n , x

(un,1)
n , · · · , x(un,C−1)

n ], where

un, n = 0, 1, · · · , N−1, is the selected indices among U alternative OFDM

signal vectors with C = 4 in Fig. 6.1 and C = 2 in Fig. 6.2. Therefore, a

new metric Pn to find SV instead of the true maximum magnitude Vn is
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proposed as

Pn =
C−1
max
c=0

|x(un,c)
n |. (6.3)

Let SP be the index set of the dominant time-domain samples defined as

SP = {n | Pn ≥ γp, 0 ≤ n ≤ N − 1} (6.4)

where γp is the preset threshold for Pn. Then only the n-th samples of

subblocks with indices n ∈ SP are used for calculation of PAPR val-

ues of alternative OFDM signal vectors. In fact, Pn is considered as an

approximation of Vn, which gives us the substantial reduction of the com-

putational complexity.

Now, we can compute the estimation error of Vn by Pn. The normalized

mean square error (NMSE) defined by

NMSE =
1

N

N−1∑
n=0

(Pn − Vn)
2

E[Pn]E[Vn]
. (6.5)

Table 6.1 lists the NMSE for the metric Pn (or Qn) and Vn with M = 4,

L = 4, C = 4 (for W = 2), C = 2 (for W = 4), and N = 1024. The

NMSE of Pn and Vn is much lower than that of Qn and Vn regardless of

M and W , which means that Pn can be more closely approximated to Vn

compared to Qn.

6.2.2. Pre-Exclusion of Phase Rotating Vectors

The proposed low-complexity PTS scheme can also reduce alternative

OFDM signal vectors by eliminating some phase rotating vectors. The

eliminated phase rotating vectors are called pre-excluded phase rotating
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Table 6.1: NMSE for the metrics and Vn in case of M = 4, L = 4,
and N = 1024 with different W.

Number of W = 2(C = 4) W = 4(C = 2)

subblocks Pn Qn Pn Qn

4 1.4× 10−5 5.4× 10−3 1.0× 10−4 6.7× 10−3

6 4.0× 10−5 6.9× 10−3 1.4× 10−4 8.2× 10−3

8 6.6× 10−5 7.8× 10−3 1.6× 10−4 9.1× 10−3

vectors. Using Fig. 6.1 or Fig. 6.2, we obtain the C phase rotating vectors

as [b
(un,0)
n ,b

(un,1)
n , · · · ,b(un,C−1)

n ], which are the phase rotating vectors

to approximately find the maximum magnitude of the n-th time-domain

sample.

Let EP be the set of the pre-excluded phase rotating vectors defined

by

EP = {b(un,c)
n | |x(un,c)

n | ≥ γv, 0 ≤ c ≤ C − 1, 0 ≤ n ≤ N − 1} (6.6)

where γv is the preset threshold to find the pre-excluded phase rotating

vectors, which is excluded from U phase rotating vectors.

Therefore, Us survived phase rotating vectors to generate alternative

OFDM signal vectors is obtained by removing pre-excluded phase rotating

vectors from U phase rotating vectors, that is,

Us = U − Up (6.7)

where Up is the number of pre-excluded phase rotating vectors given as

Up = |EP |.
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Table 6.2: An example of xm in the proposed PTS using dominant
time-domain samples for M = 4 and N = 8.

xm,n xm,0 xm,1 xm,2 xm,3 xm,4 xm,5 xm,6 xm,7

x0 0 0 0
0.21−
j0.09

0.25
0.21 +
j0.09

0 0

x1 0 0 0
−0.09−
j0.21

0.25
−0.09+
j0.21

0 0

x2 0 0 0
0.21−
j0.09

−0.25
0.21 +
j0.09

0 0

x3 0 0 0
0.09−
j0.04

0.25
0.09 +
j0.04

0 0

6.2.3. The Proposed Low-Complexity PTS Schemes

Using the two proposed methods in Subsections 6.2.1 and 6.2.2, the

optimal phase rotating vector b(uopt) is obtained as

uopt = arg
Us−1
min
u=0

maxn∈SP

∣∣∣∑M−1
m=0 b

(u)
m xm,n

∣∣∣2
E[|xn|2]

. (6.8)

That is, selecting x(uopt) by using (6.8) adopts two proposed methods,

which are selection of the dominant time-domain samples using SP in

Subsection 6.2.1 and the reduction of the U alternative OFDM signal

vectors by using pre-excluded phase rotating vectors in Subsection 6.2.2.

Now, we propose three low-complexity PTS schemes using two proposed

methods in the previous subsections, that is, a PTS scheme using the dom-

inant time-domain samples (PS-PTS), a PTS scheme using pre-excluded

phase rotating vectors (PE-PTS), and a PTS scheme using combination

of two proposed methods (PC-PTS). Fig. 6.3 shows the block diagram of

the proposed PTS scheme to find x(uopt) by using (6.8).

Using the example of the conventional PTS scheme with M = 4,
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W = 2, and N = 8 in Section 3.3, we can give an example of the

proposed schemes. Considering Fig. 6.1, we can obtain Pn for N samples

as [0.25, 0.43, 0.56, 0.60, 0.75, 0.60, 0.56, 0.43]. When γp = 0.6, we have the

index set SP = {3, 4, 5}. In order to reduce the computational complexity,

we can select the dominant time-domain samples as xm = [0, 0, 0, xm,3, xm,4, xm,5, 0, 0]

from Table 3.1 by a proposed metric, which is shown in Table 6.2. Also,

b(0) and b(5) phase rotating vectors are used to make the three largest Pn

values. Then we can make three low-complexity PTS schemes as follows:

1) The samples xm,3 and xm,5 are combined with U phase rotating vectors

to calculate PAPR of each alternative OFDM signal vector (PS-PTS).

2) If b(0) and b(5) phase rotating vectors are survived by using signal

rotation, 8 alternative OFDM signal vectors are reduced to 2 alterna-

tive OFDM signal vectors by pre-excluding the phase rotating vectors

(PE-PTS).

3) The samples xm,3 and xm,5 are only combined with b(1) and b(5) to

calculate PAPR of each alternative OFDM signal vector (PC-PTS).

The thresholds γp and γv can be determined differently, because select-

ing many dominant time-domain samples with γp may results in elimi-

nation of too many phase rotating vectors. Fig. 6.4 shows the number of

selected dominant time-domain samples using SP with different γp ver-

sus the average number of survived phase rotating vectors for N = 1024,

L = 4, and 16-QAM with 105 iterations. It is shown that selecting more

than 280 and 500 dominant time-domain samples by γp results in elim-
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Figure 6.3: The block diagram of the proposed PTS scheme.

inating almost all the phase rotating vectors for M = 4, W = 4, and

M = 8, W = 2, respectively.

The procedures of the proposed low-complexity PTS schemes are sum-

marized as follows:

1. PS-PTS scheme:

(a) An input data vector is divided into M disjoint subblocks,

which are IFFTed.

(b) In order to approximate the maximum magnitude of x
(u)
n by

using Fig. 6.1 or Fig. 6.2, calculate Pn.

(c) Find the index set SP with γp.

(d) Only the dominant time-domain samples in the set SP are used

to calculate the PAPR of x(u) and select the optimal phase

rotating vector b(uopt).
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Figure 6.4: The number of selected dominant time-domain samples
versus the average number of survived phase rotating vec-
tors for N = 1024, L = 4, and 16-QAM.

(e) Generate x(uopt) using b(uopt) and transmit it.

2. PE-PTS scheme:

(a) An input data vector is divided into M disjoint subblocks,

which are IFFTed.

(b) By computing the approximated maximum magnitude of x(u)n

using Fig. 6.1 or Fig. 6.2, find the set of pre-excluded phase

rotating vectors using (6.6).

(c) Using (6.6) and (6.7), the Us survived phase rotating vectors

are obtained.
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(d) Among Us alternative OFDM signal vectors, find x(uopt) and

transmit it.

3. PC-PTS scheme:

(a) An input data vector is divided into M disjoint subblocks,

which are IFFTed.

(b) By computing the approximated maximum magnitude of x(u)n

using Fig. 6.1 or Fig. 6.2;

b-1) Find the set of pre-excluded phase rotating vectors using

(6.6) and the Us survived phase rotating vectors are ob-

tained from (6.6) and (6.7).

b-2) Calculate Pn and find the index set SP with γp.

(c) Select the optimal phase rotating vector b(uopt) using (6.8).

(d) Generate x(uopt) using b(uopt) and transmit it.

6.3. Computational Complexity and Simulation Re-
sults

6.3.1. Computational Complexity

In this subsection, we compare the computational complexity of the

conventional PTS, RC-PTS, and three proposed PTS schemes, which are

PS-PTS, PE-PTS, and PC-PTS for M = 8, L = 4, W = 2, N = 1024,

and C = 4. Since the computational complexity of the complex additions

shows the similar tendency, only the complex multiplication for generating

alternative OFDM signal vectors is considered. For a fair comparison, the
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Table 6.3: Computational complexity for the conventional PTS, RC-
PTS, and the proposed schemes with M = 8, L = 4,
W = 2, N = 1024.

Schemes Number of complex multiplications PAPR(10−4)

Conventional LNU = 524288(100%) 8.4dB

RC-PTS MLN + pαLNU = 69468.16(13.3%) 10dB

PS-PTS CLN + pαLNU = 53084.16(10.1%) 8.4dB

PE-PTS CLN + LNUs = 86016(16.4%) 8.4dB

PC-PTS CLN + pαLNUs = 6021.12(1.1%) 8.4dB

average probability pα of the selected dominant time-domain samples is

set to 0.07 and Us is set to 17 for the same PAPR reduction performance

as the conventional one, which will be shown in the next subsection.

Note that while RC-PTS needs MLN complex multiplications to make

the metric Qn [38], the proposed PTS schemes need CLN complex multi-

plications. Table 6.3 shows that, compared with the number of complex

multiplications required by the conventional PTS, the PC-PTS requires

the lowest computational complexity of 1.1% with PAPR 8.4dB, which

gives the same PAPR reduction performance as the conventional PTS,

whereas the RC-PTS requires the computational complexity of 13.3%

with PAPR 10dB. Although the computational complexity of PE-PTS

is higher than that of RC-PTS, PE-PTS is very useful in that the num-

ber of alternative OFDM signal vectors can be reduced by pre-excluding

phase rotating vectors. Thus, in general, the PE-PTS can be combined

with other low-complexity PTS schemes using the dominant time-domain

samples including the conventional PTS.
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Figure 6.5: Comparison of PAPR reduction performance of the con-
ventional PTS, RC-PTS, and PS-PTS schemes with N =

1024, L = 4, M = 4, C = 2, W = 4, 16-QAM, and
pα = 0.01, 0.03.

6.3.2. Simulation Results

Fig. 6.5 compares the PAPR reduction performance of PS-PTS with

RC-PTS and the conventional PTS, where N = 1024, L = 4, M = 4, C =

2, W = 4, and 16-QAM are used. The pα is set to 0.01 and 0.03 for different

γp. It is shown that 3% of time-domain samples of PS-PTS is sufficient

to perform the same PAPR reduction performance as the conventional

PTS, whereas 3% of time-domain samples of RC-PTS degrades the PAPR

reduction performance by 0.4dB.
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Figure 6.6: Comparison of PAPR reduction performance of the con-
ventional PTS, RC-PTS, and PS-PTS schemes with dif-
ferent C in case of N = 1024, L = 4, M = 8, W = 2,
16-QAM, and pα = 0.05, 0.07.

Fig. 6.6 shows that the PAPR reduction performance of the conven-

tional PTS, RC-PTS, and PS-PTS schemes with different C for N = 1024,

L = 4, M = 8, W = 2, 16-QAM, and pα = 0.05, 0.07. Two PS-PTS

schemes are simulated, which are PS-PTS with C = 2 using Fig. 6.1(a)

and Fig. 6.1(b), and PS-PTS with C = 4 using all four cases in Fig. 6.1. It

is shown that PS-PTS with C = 4 shows the same PAPR reduction per-

formance as the conventional one with only 7% of time-domain samples.

Also, the PAPR reduction performance of two proposed PTS schemes
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Figure 6.7: Comparison of PAPR reduction performance of the con-
ventional PTS and PE-PTS schemes with N = 1024,
L = 4, 16-QAM, M = 4, 6, 8, and W = 2, 4.

shows better than that of RC-PTS.

Fig. 6.7 demonstrates the PAPR reduction performance of the conven-

tional PTS and PE-PTS with N = 1024, L = 4, 16-QAM, M = 4, 6, 8,

and W = 2, 4. The conventional PTS needs U = 128 alternative OFDM

signal vectors with M = 8 and W = 2, meanwhile the PE-PTS needs

only 17 alternative OFDM signal vectors. Also, when the conventional

PTS needs U = 64 with M = 4 and W = 4, and U = 1024 with M = 6

and W = 4, the PE-PTS needs only Us = 20 and Us = 440, respectively.

Fig. 6.8 shows the PAPR reduction performance of the PC-PTS with
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Figure 6.8: Comparison of PAPR reduction performance of the con-
ventional PTS and two PC-PTS schemes with N = 1024,
L = 4, 16-QAM, M = 4, 8, and W = 2, 4.

N = 1024, L = 4, 16-QAM, M = 4, 8, and W = 2, 4. When Us is used

as the same Us in Fig. 6.7, the PAPR reduction performance of PC-PTS

with pα = 0.07 is the same as that of the conventional PTS for M = 8

and W = 2, but its computational complexity is substantially reduced by

using small number of alternative OFDM signal vectors. For M = 4 and

W = 4, it is shown that the PAPR reduction performance of the PC-PTS

with substantially reduced Us = 20 alternative OFDM signal vectors is

the same as that of the PS-PTS.

Fig. 6.9 compares the PAPR reduction performance of PS-PTS with
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Figure 6.9: Comparison of PAPR reduction performance of the con-
ventional PTS, RC-PTS, and PS-PTS schemes with N =

128, L = 4, M = 4, C = 2, W = 4, 16-QAM, and
pα = 0.13, 0.17.

RC-PTS and the conventional PTS, where N = 128, L = 4, M = 4,

C = 2, W = 4, and 16-QAM are used. The pα is set to 0.13 and 0.17

for different γp. It is shown that 13% of time-domain samples of PS-PTS

is sufficient to perform almost the same PAPR reduction performance as

the conventional PTS.

Fig. 6.10 shows the PAPR reduction performance of the conventional

PTS and PE-PTS with N = 128, L = 4, 16-QAM, M = 4, 8, and W =

2, 4. The PE-PTS for M = 8 and W = 2 needs only 35 alternative OFDM
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Figure 6.10: Comparison of PAPR reduction performance of the con-
ventional PTS and PE-PTS schemes with N = 128,
L = 4, 16-QAM, M = 4, 8, and W = 2, 4.

signal vectors among U = 128 alternative OFDM signal vectors. Also,

when the conventional PTS needs U = 64 with M = 4 and W = 4, the

PE-PTS needs only Us = 20.

6.4. Conclusion

In this chapter, three proposed PTS schemes are introduced to reduce

the computational complexity by using simple OFDM signal rotation and

pre-exclusion of the phase rotating vectors. The computational complex-
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ity for the computation of PAPRs of alternative OFDM signal vectors is

reduced by using the selected dominant time-domain samples by a new

simple proposed metric. Also, the number of alternative OFDM signal

vectors is reduced by pre-excluding the phase rotating vectors. Numerical

analysis shows that the proposed PTS schemes achieve the same PAPR

reduction performance as that of the conventional PTS scheme with the

large computational complexity reduction.
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Chapter 7. Conclusions

This dissertation proposes several research results on the PAPR reduc-

tion schemes for the OFDM systems. Although OFDM has bandwidth

efficiency and robustness in the fading channel, it has high PAPR, which

degrades power efficiency of the nonlinear HPA at the transmitter. Among

many PAPR reduction schemes, the PTS scheme can transmit an OFDM

signal without signal distortion, but generating many alternative OFDM

signal vectors requires the large computational complexity and causes the

rate loss in the PTS scheme. In this dissertation, we propose several PTS

schemes to reduce the computational complexity.

In Chapter 4, a new two-step search algorithm for PTS scheme is pro-

posed to reduce the computational complexity. In the first step, sequences

with good correlation property such as Kasami and quaternary sequences

are used as the initial phase vectors. In the second step, by using the initial

phase vectors, local search is performed for further searching the phase

rotating vectors with very low computational complexity. Numerical anal-

ysis shows that the proposed PTS scheme can achieve almost the same

PAPR reduction performance as the conventional PTS scheme with much

lower computational complexity than other low-complexity PTS schemes.

In Chapter 5, it is proposed that the PAPR values of alternative OFDM

signal vectors are approximately computed based on the dominant time-
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domain samples selected by using a simple metric. In this chapter, two

new effective metrics for selecting the dominant time-domain samples are

proposed for the low-complexity PTS scheme. For further lowering the

computational complexity, two low-complexity PTS schemes are proposed

by sorting the dominant time-domain samples in decreasing order by their

metric values. Simulation results confirm that the proposed PTS schemes

show identical PAPR reduction performance with substantially reduced

computational complexity, compared to the conventional PTS scheme.

In Chapter 6, three proposed PTS schemes are introduced to reduce

the computational complexity by using simple OFDM signal rotation and

pre-exclusion of the phase rotating vectors. A new selection method of

the dominant time-domain samples is proposed by rotating the IFFTed

signal samples to the area on which the IFFTed signal sample of the first

subblock is located in the signal space. The computational complexity for

the computation of PAPRs of alternative OFDM signal vectors is reduced

by using the selected dominant time-domain samples by a new simple

proposed metric. Also, the number of alternative OFDM signal vectors

is reduced by pre-excluding the phase rotating vectors. Numerical results

confirm that the proposed PTS schemes show large computational com-

plexity reduction without PAPR degradation.

73



✐
✐

“YJCho_Dissertation” — 2014/1/6 — 16:50 — page 74 — #88 ✐
✐

✐
✐

✐
✐

Bibliography

[1] R. W. Chang and R. A. Gibby, “A theoretical study of performance of

an orthogonal multiplexing data transmission scheme,” IEEE Trans.

Commun., vol. COM-16, no. 4, Aug. 1968.

[2] IEEE Standard for Information Technoloy-Telecommunications and

Information Exchange Between Systems-Local and Metropolitan

Area Networks-Specific Requirements Part II :Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) Specifications

Amendment 4: Further Higher Data Rate Extension in the 2.4 GHz

Band, IEEE Standard 802.11g–2003, Jun. 2003.

[3] V. Tarokh and H. Jafarkhani, “On the computation and reduction

of the peak-to-average power ratio in multicarrier communications,”

IEEE Trans. Commun., vol. 48, no. 1, pp. 37–44, Jan. 2000.

[4] R. Gross and D. Veeneman, “Clipping distortion in DMT ADSL sys-

tems.” Electron. Lett., vol. 29, no. 24, pp. 2080–2081, Nov. 1993.

[5] J. Tellado and J. M. Cioffi, Multicarrier Modulation with Low PAR:

Apprication to DSL and Wireless. Boston, MA: Kluwer Academic

Publisher, 2000.

74



✐
✐

“YJCho_Dissertation” — 2014/1/6 — 16:50 — page 75 — #89 ✐
✐

✐
✐

✐
✐

[6] R. W. Bäuml, R. F. H. Fischer, and J. B. Huber, “Reducing the

peak-to-average power ratio of multicarrier modulation by selected

mapping,” Electron. Lett., vol. 32, no. 22, pp. 2056-2057, Oct. 1996.

[7] S. H. Müller, R. W. Bäuml, R. F. H. Fischer, and J. B. Huber, “OFDM

with reduced peak-to-average power ratio by multiple signal repre-

sentation,” Ann. Telecommun., vol. 52, no. 1-2, pp. 58-67, Feb. 1997.

[8] B. S. Krongold and D. L. Jones, “PAR reduction in OFDM via active

constellation extension,” IEEE Trans. Broadcast., vol. 49, no. 3, pp.

258–268, Sep. 2002.

[9] X. Wang, T. T. Tjhung, and C. S. Ng, “Reduction of peak-to-average

power ratio of OFDM system using a companding technique,” IEEE

Trans. Broadcast., vol. 45, no. 3, pp. 303–307, Sep. 1999.

[10] X. Huang, J. Lu, J. Zheng, K. B. Letaief, and J. Gu, “Companding

transform for reduction in peak-to-average power ratio of OFDM sig-

nals,” IEEE Trans. Wirelss Commun., vol. 3, no. 6, pp. 2030–2039,

Nov. 2004.

[11] A. M. Saleh, “Frequency-independent and frequency-dependent non-

linear models of TWT amplifiers,” IEEE Trans. Commun., vol. 29,

no.11, pp. 1715–1720, Nov. 1981.

[12] C. Rapp, “Effects of HPA nonlinearity on a 4-DPSK/OFDM signal

for a digital sound broadcasting system,” in Proc. Sixth International

75



✐
✐

“YJCho_Dissertation” — 2014/1/6 — 16:50 — page 76 — #90 ✐
✐

✐
✐

✐
✐

Conference on Digital Processing of Signals in Communications, Sep.

1991, vol. 1, pp. 193–197, Leicestershire, UK.

[13] V. Bohara and S.H. Ting, “Theoretical analysis of OFDM signals in

nonlinear polynomial models,” in Proc. IEEE Int. Conf. Inf, Com-

mun. Signal precess., 2007, pp. 1–5.

[14] J. Palicot and Y. Louët, “Power ratio definitions and analysis in single

carrier modulation,” EUSIPCO, Antalya, Turkey, Sep. 2005.

[15] R. van Nee and A. de Wild, “Reducing the peak-to-average power ra-

tio of OFDM,” in Proc. IEEE Vehicular Technology Conf. (VTC’98),

May. 1998, vol. 3, pp. 2072–2076.

[16] S. Q. Wei, D. L. Goeckel, and P. E. Kelly, “A modern extreme value

theory approach to calculating the distribution of the peak-to-average

power ratio in OFDM systems,” in Proc. IEEE Int. Conf. Com-

mun.(ICC), pp. 1686–1690, Apr. 2004.

[17] H. Ochiai and H. Imai, “On the distribution of the peak to average

power ratio in OFDM signals,” IEEE Trans. Commun., vol. 49, no.

2, pp. 282–289, Feb. 2001.

[18] J. Armstrong, “Peak-to-average power reduction for OFDM by re-

peated clipping and frequency domain filtering,” Electron. Lett., vol.

38, no. 5, pp. 246–247, Feb. 2002.

[19] S. Kimura, T. Nakamura, M. Saito, and M. Okada, “PAR reduc-

tion for OFDM signals based on deep clipping,” 3rd International

76



✐
✐

“YJCho_Dissertation” — 2014/1/6 — 16:50 — page 77 — #91 ✐
✐

✐
✐

✐
✐

Symposium on Communications, Control and Signal Processing, pp.

911–916, Mar. 2008.

[20] S.-J. Heo, H.-S. Noh, J.-S. No, and D.-J. Shin, “A modified SLM

scheme with low complexity for PAPR reduction of OFDM systems,”

IEEE Trans. Broadcast., vol. 53, no. 4, pp. 804–808, Dec. 2007.

[21] H.-B. Jeon, K.-H. Kim, J.-S. No, and D.-J. Shin, “Bit-based SLM

schemes for PAPR reduction in QAM modulated OFDM signals,”

IEEE Trans. Broadcast., vol. 55, no. 3, pp. 679–685, Sep. 2009.

[22] D.-W. Lim, S.-J. Heo, and J.-S. No, “On the phase sequence set of

SLM OFDM scheme for a crest factor reduction,” IEEE Trans. Signal

Process., vol. 54, no. 5, pp. 1931–1935, May 2006.

[23] S. G. Kang, J. G. Kim, and E. K. Joo, “A noble subblock partition

scheme for partial transmit sequence OFDM,” IEEE Trans. Broad-

cast., vol. 45, no. 3, pp. 333–338, Sep. 1999.

[24] L. Guan, T. Jiang, D. Qu, and Y. Zhou, “Joint channel estimation

and PTS to reduce peak-to-average-power ratio in OFDM systems

without side information,” IEEE Signal Process. Lett., vol. 17, no.

10, pp. 883–886, Oct. 2010.

[25] A. D. S. Jayalath and C. Tellambura, “SLM and PTS peak-power

reduction of OFDM signals without side information,” IEEE Trans.

Wirelss Commun., vol. 4, no. 5, pp. 2006–2013, Sep. 2005.

77



✐
✐

“YJCho_Dissertation” — 2014/1/6 — 16:50 — page 78 — #92 ✐
✐

✐
✐

✐
✐

[26] L. Yang, K. K. Soo, S. Q. Li, and Y. M. Siu, “PAPR reduction using

low complexity PTS to construct of OFDM signals without side in-

formation,” IEEE Trans. Broadcast., vol. 57, no. 2, pp. 284–290, Jun.

2011.

[27] D.-W. Lim, S.-J. Heo, J.-S. No, and H. Chung, “A new PTS OFDM

scheme with low complexity for PAPR reduction,” IEEE Trans.

Broadcast., vol. 52, no. 1, pp. 77–82, Mar. 2006.

[28] L. J. Cimini and N. R. Sollenberger, “Peak-to-average power ratio

reduction of an OFDM signal using partial transmit sequences,” IEEE

Commun. Lett., vol. 4, no. 3, pp. 86–88, Mar. 2000.

[29] A. Alavi, C. Tellambura, and I. Fair, “PAPR reduction of OFDM

signals using partial transmit sequence: an optimal approach using

sphere decoding,” IEEE Commun. Lett., vol. 9, no. 11, pp. 982–984,

Nov. 2005.

[30] L. Wang and Y. Cao, “Sub-optimum PTS for PAPR reduction of

OFDM signals,” Electron. Lett., vol.44, no. 15, pp. 921–922, Jul. 2008.

[31] Y.-J. Cho, J.-S. No, and D.-J. Shin “A new low-complexity PTS

scheme based on successive local search using sequences,” IEEE Com-

mun. Lett., vol. 16, no. 9, pp. 1470–1473, Sep. 2012.

[32] Y.-J. Cho, J.-S. No, and D.-J. Shin “PTS scheme with low complexity

for PAPR reduction by using Kasami sequences,” in Proc. KICS Int.

Conf. Commun., pp. 120, May 2011.

78



✐
✐

“YJCho_Dissertation” — 2014/1/6 — 16:50 — page 79 — #93 ✐
✐

✐
✐

✐
✐

[33] T. T. Nguyen and L. Lampe, “On partial transmit sequences for PAR

reduction in OFDM system,” IEEE Trans. Wirelss Commun., vol. 7,

no. 2, pp. 746–755, Feb. 2008.

[34] J. -H. Wen, S. -H. Lee, and Y.-F. Hunag, “A suboptimal PTS algo-

rithm based on particle swarm optimization for PAPR reduction in

OFDM systems,” EURASIP J. Wireless Commun. Netw., vol. 2008,

article no. 14.

[35] Y. Zhang, Q. Ni, and H. -H. Chen, “A new partial transmit sequence

scheme using genetic algorithm for peak-to-average power ratio re-

ductionin a multi-carrier code division multiple access wireless sys-

tem,” Interantional J. Autonomous Adaptive Commum. Systems, vol.

2, no. 1/2009, pp. 40–57.

[36] N. Taspinar, A. Kalinli, and M. Yildirim, “Partial transmit sequences

for PAPR reduction using parallel tabu search algorithm in OFDM

systems,” IEEE Commun. Lett., vol. 15, no. 9, pp. 974–976, Sep.

2011.

[37] Y. Wang, W. Chen, and C. Tellambura, “A PAPR reduction method

based on artificial bee colony algorithm for OFDM signals,” IEEE

Trans. Wirelss Commun., vol. 9, no. 10, pp. 2994–2999, Oct. 2010.

[38] S. -J. Ku, C. -L. Wang, and C. -H. Chen, “A reduced-complexity PTS-

based PAPR reduction scheme for OFDM systems,” IEEE Trans.

Wirelss Commun., vol. 9, no. 8, pp. 2455–2460, Aug. 2010.

79



✐
✐

“YJCho_Dissertation” — 2014/1/6 — 16:50 — page 80 — #94 ✐
✐

✐
✐

✐
✐

[39] Y. Xiao, X. Lei, Q. Wen, and S. Li, “A class of low complexity PTS

techniques for PAPR reduction in OFDM systems,” IEEE Sinal Pro-

cess. Lett., vol. 14, no. 10, pp. 680–683, Oct. 2007.

[40] Y.-J. Cho, J.-S. No, and D.-J. Shin, “Low-complexity PTS scheme for

reducing PAPR in OFDM systems,” J. Commun. Netw., vol. 38A, no.

2, pp. 201–208, Feb. 2013.

[41] T. Kasami, “Weight distribution formula for some class of cyclic

codes,” Tech. Report No. R–285, Univ. of Illinois, 1966.

[42] P. V. Kumar, T. Helleseth, A. R. Calderbank, and A. R. Hammons,

Jr, “Large families of quaternary sequences with low correlation,”

IEEE Trans. Inf. theory., vol. 42, no. 2, pp. 579–592, Mar. 1996.

[43] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-

tion to Algorithms, 3rd ed. Cambridge, MA: MIT Press, 2009.

80



✐
✐

“YJCho_Dissertation” — 2014/1/6 — 16:50 — page 81 — #95 ✐
✐

✐
✐

✐
✐

초 록

본 논문은 직교주파수분할다중화 시스템의 최대전력대평균전력비를

감소시키는몇가지방법을제안한다.먼저직교주파수분할다중화시스템

의기본원리,최대전력대평균전력비의정의,비선형고출력증폭기를설명

한다. 직교주파수분할다중화 시스템에서 최대전력대평균전력비는 가장

큰단점중의하나이며이는비선형고출력증폭기에서신호의왜곡을발생

시키는 원인이 된다. 많은 최대전력대평균전력비의 감소 방법이 제안되

어져 왔으며 그 중에 클리핑 기법, 선택사상기법, 부분전송수열, 능동형

심볼성상 확장기법, 압축확장기법, 톤삽입 기법등이 있다. 그중에 부분

전송 수열은 많은 후보신호를 생성한 후에 가장 작은 최대전력대평균전

력비를가지는신호하나를선택하여전송하는기법이다.그러나이부분

전송수열은몇번의역퓨리에변환과많은후보신호의생성이라는계산복

잡도를 가지고 있다. 우리는 여기서 후자의 계산복잡도를 감소시키는데

집중한다.

논문의 첫번째 분야에서는 새로운 저복잡도를 가지는 부분 전송 수열

기법이 제안되어지는데 여기서는 좋은 최대전력대평균전력비를 가지는

위상벡터들을 찾는 것을 두가지 연속적인 단계로서 제안한다. 첫번째 단

계는 초기 위상 벡터라고 불리는데 상호연관성이 매우 낮은 수열을이용

하여 이를 위상 벡터로서 사용한다. 여기서는 카사미 수열과 4진 수열이

사용되어진다. 두번째 단계에서는 지역적인 탐색을 수행하는데 이는 먼

저 초기 위상 벡터에 기본을 두고 좋은 최대전력대평균전력비를 가지는

추가적인 위상 벡터를 찾는 것을 말한다. 수적 분석은 제안하는 방법이

기존의 방법이나 기존에 제안된 저복잡도 부분 전송 수열 방법보다 훨씬
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적은 계산복잡도로 좋은 성능을 보여준다.

논문의 두번째 분야에서는 또다른 저복잡도 부분 전송 수열 방법이

제안되어진다. 이때는 후보신호를 만들기 위한 덧셈과 곱셈을 줄이는데

집중한다.우선적인샘플이선택되어지는데이러한샘플들은후보신호의

최대전력대평균전력비를 계산하기 위해서 위상 벡터와 곱해진다. 제안

하는 방법은 이러한 우선적인 샘플을 찾기위한 미터법을 생성한다. 이를

위해 세가지의 미터법이 제안되어진다. 또한 더 많은 계산복잡도를 감소

시키기 위해 선택된 우선적인 샘플들은 미터법의 크기에 따른 순서대로

재배열되고각각의파워들은전후보신호의최대전력대평균전력비와비

교되어진다. 또한 위상 벡터의 갯수도 미터법을 관찰함으로서 미리 제거

되어진다. 수적 분석은 이러한 방법이 어떠한 최대전력대평균전력비의

손실도 없이 다른 저복잡도 부분 전송 수열 방법보다 더 낮은 계산복잡

도를 가진다는 것을 볼 수 있다.

논문의 마지막 분야에서는 우선적인 샘플을 선택하기 위한 새로운 선

택 방법이 제안되어지는데 이때 신호 공간에서 첫번째 서브블록의 샘플

이위치해있는그지역으로모든시간축신호들을돌려준다.더구나위상

벡터의 우선 제거 방법이 후보 신호의 개수를 줄이기 위해 제안되어진

다. 따라서 세가지의 제안하는 부분 전송 수열 기법이 제안되어지는데

이는 단순한 신호 회전과 위상벡터의 우선 제거 방법을 이용한다. 후보

신호의 최대전력대평균전력비를 계산하기 위한 복잡도는 새로운 간단

한 제안하는 미터법을 이용한 우선 신호의 선택에 의해서 감소되어진다.

또한 위상 벡터의 우선 제거방법에 의해 후보신호의 개수가 제거되어진

다. 수적 분석은 제안하는 부분 전송 수열 기법들이 기존 방법과 같은

최대전력대평균전력비를 가지면서 계산복잡도는 크게 감소한다.
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