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ABSTRACT

Nonlinear Observer Design via Reduced-Order Dynamic

Observer Error Linearization and Extended Nonlinear

Observer Canonical Form

by

Hansung Cho

Department of Electrical Engineering and Computer Science

College of Engineering

Seoul National University

August 2014

This dissertation contributes to the observer design problem for some classes

of nonlinear systems. The observer design problem is to construct a dynamic

system (called observer) that can estimate the state of a given dynamic system

by using available signals which are commonly the input and the output of the

given system. While a standard solution (called Luenberger observer) to the

problem was solved for linear systems, there has not been a unified solution for

general nonlinear systems. However, there have been significant research efforts

on the problem of designing observers for special classes of nonlinear systems.

Observer error linearization (OEL) is one of the well-known methods, and it is

the problem of transforming a nonlinear system into a nonlinear observer canonical

form (NOCF) that is an observable linear system modulo output injection. If a

nonlinear system can be transformed into the NOCF, then all the nonlinearities
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of the system are restricted to the output injection term which is a vector-valued

function of the system input and the system output. As a result, we can design

a Luenberger-type observer that cancels out the output injection and thus has a

linear observer error dynamics in the transformed coordinates. In order to extend

the class of systems to which the OEL approach is applicable, a lot of attempts

have been made in the past three decades. One of them is to transform a nonlinear

system into a higher-dimensional NOCF: system immersion and dynamic observer

error linearization (DOEL). In particular, the main idea of DOEL is twofold:

the first is to introduce an auxiliary dynamics whose input is system output,

and the second is to transform the extended system into a generalized nonlinear

observer canonical form (GNOCF) that is an observable linear system modulo

generalized output injection depending not only on the system output but also

on the state of auxiliary dynamics. By introducing such an auxiliary dynamics,

the DOEL problem can be solved for a larger class of systems compared with the

(conventional) OEL problem. However, it has a drawback on the dimension of

observer. That is, the dimension of observer designed by the DOEL approach is

larger than that of the given system, because the dimension of GNOCF equals to

the sum of dimensions of the given system and the auxiliary dynamics. Recently,

inspired by this fact, a new approach called reduced-order dynamic observer error

linearization (RDOEL) was proposed for single output nonlinear systems. In the

framework of RDOEL, we also introduce an auxiliary dynamics and transform the

extended system into GNOCF in a similar fashion to DOEL, but the coordinate

transformation preserves the coordinates corresponding to the state of auxiliary

dynamics so that the dimension of GNOCF equals to that of the given system.

Although RDOEL is a special case of DOEL (that is, the class of systems to which

the RDOEL approach can be applied is a subset of that of DOEL), the RDOEL

approach offers a lower-dimensional observer compared to the DOEL approach,

and it is also applicable to a larger class of systems compared to the (conventional)

OEL approach. In addition, since the framework of RDOEL is coterminous with

that of OEL (in fact, the OEL problem is identical to the RDOEL problem with

no auxiliary dynamics), most of results for the RDOEL problem can be also used

to analyze the OEL problem by slight modification.
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In this respect, one of the topics of this dissertation is to deal with the RDOEL

problem for multi-output systems. We first formulate the framework of RDOEL

for multi-output nonlinear systems and provide three necessary conditions. And

then, by means of the necessary conditions, we derive a geometric necessary and

sufficient condition in terms of Lie algebras of vector fields. Since the proposed

RDOEL problem is a natural extension of the (conventional) OEL problem, the

result can be easily translated into a geometric necessary and sufficient condition

for the OEL problem, which has not yet been completely established in the case

where an output transformation of general form is considered.

The other topic of the dissertation is to introduce an extended nonlinear ob-

server canonical form (ENOCF) whose linear part also depends on the system

output and the state of auxiliary dynamics, and to deal with the problem of

transforming a single output nonlinear system with an auxiliary dynamics into

the ENOCF as an extension of the RDOEL problem. Since the proposed ENOCF

admits a kind of high-gain observer, the solvability of the problem allows us to de-

sign observers for a class of single output nonlinear systems. We also first present

two necessary conditions, and then derive a geometric necessary and sufficient

condition for the problem. Furthermore, as a case study, we apply the results to

the Rössler system in order to show that the proposed method enlarges the class

of applicable systems compared with the RDOEL approach.

Keywords: nonlinear observer design, nonlinear observer canonical form, ob-

server error linearization, system immersion, dynamic observer error lineariza-

tion, reduced-order dynamic observer error linearization

Student Number: 2005–21511
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Chapter 1

Introduction

1.1 Research Background

In control theory, a state observer (also called a state estimator) is a dynamic

system that provides an estimate of the internal state of a given dynamic system

by using available signals which are commonly the input and the output of the

given system. Knowing the system state is necessary to solve many problems in

control theory, for example, state feedback controller design, fault detection and

diagnosis, and so on. For this reason, the observer design problem for linear/non-

linear systems has been an important issue in control theory, and has been ap-

plied to various fields of application: robot manipulators, aerial and ground ve-

hicles, electric motors, biological systems, chemical systems, image processing,

secure communication, and so on. In the case of linear systems, a standard so-

lution called Luenberger observer was developed in [Lue64]. On the other hand,

there has been no unified approach to the case of nonlinear systems, although

significant research efforts have been devoted to the problem since its advent

[Tha73]. However, there have been varied methodologies for special classes of

nonlinear systems, such as observer error linearization [BZ83, KI83, KR85], ap-

proximate observer error linearization [BL95, BS97, LB97, LB01, Nam97], high-

gain observers [BH91, CMG93, DBGR92, GHO92, GK94, HBB10, SSS01], slid-

ing observers [CS91, SHM86, XS01], observers for Lipschitz nonlinear systems

[KE03, Raj98, RC98, ZH02], and so on (surveys of various nonlinear observer

design approaches can be found in [MH89, NF99]).
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2 Chap. 1. Introduction

In particular, the concept of observer error linearization (OEL) is to trans-

form a nonlinear system into a nonlinear observer canonical form (NOCF) which

is an observable linear system modulo output injection. If a nonlinear system is

transformed into the NOCF, then all nonlinearities of the system are restricted

to the output injection that is a function of the system input and the system

output which are available information. As a result, on the transformed coordi-

nates, we can design a Luenberger-type observer which has linear error dynam-

ics because the nonlinearities can be cancelled out by the output injection. Fur-

thermore, we can arbitrarily assign the eigenvalues of the system matrix of the

linear observer error dynamics because the linear part of NOCF is observable.

This approach was first introduced in [KI83] and [BZ83] for time-invariant and

time-varying single output systems respectively, and has been extended to multi-

output systems [BBHB09, HP99, KR85, Phe91, XG89] and discrete-time sys-

tems [LAM08, LB95, LN91]. Meanwhile, the author of [Kel87] developed a char-

acteristic equation approach which is a different characterization of OEL com-

pared with the original work [KI83]. In addition, since the result of [KI83] is

based on coordinate transformation that is a diffeomorphism, in order to re-

lax the condition, the authors of [XZ97] investigated the possibility of taking

coordinate transformation as a smooth map with continuous inverse (which is

called a semi-diffeomorphism). Besides the above works, many studies have

been conducted on the OEL problem, such as introducing generalized output

injections depending on time derivatives of system input and/or system out-

put [DGMS94, GMP96, Kel87, LPG99, PG97], employing output transforma-

tions [BBHB09, GMP96, KR85] and/or output-dependent time-scale transfor-

mations [Gua01, Gua02, Gua05, RPN01, RPN04, WL10], developing construc-

tive algorithms not only to check the possibility of transforming a given system

into NOCF but also to design the transformation via a straightforward proce-

dure [BBHB09, BL95, BS97, GMP96, Gua02, Gua05, PG97], designing nonlinear

adaptive observers based on NOCF [Mar90, MT92a, MT92b], and so on.

In order to extend the class of systems to which the OEL method can be

applied, there have been attempts to immerse a nonlinear system into a higher-

dimensional NOCF. Since the first contribution to the system immersion technique
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was made in [LM86], the concept has been refined in [BS02, Jou03] and some con-

structive algorithms to solve the problem have been developed in [BS04, BS06].

Furthermore, inspired by system immersion and dynamic feedback linearization

[CLM89, CLM91], the concept of dynamic observer error linearization (DOEL)

was first proposed in [NJS04] and generalized in [BYS06]. The main idea of DOEL

is twofold:

• The one is to introduce an auxiliary dynamics of which input is the output

of a given system.

• The other is to transform the extended system, consisting of the given sys-

tem and the auxiliary dynamics, into a generalized nonlinear observer canon-

ical form (GNOCF), which is an observable linear system modulo general-

ized output injection depending not only on the system output but also on

the state of auxiliary dynamics, via a coordinate transformation that is a

diffeomorphism on the state of the extended system.

In a similar fashion to the (conventional) OEL approach, if there exists an aux-

iliary dynamics for a given system such that the extended system can be trans-

formed into the GNOCF (i.e. if the given system is dynamic observer error lin-

earizable (DOEL)), then it is also possible to construct a Luenberger-type ob-

server which has linear error dynamics. Moreover, by introducing such an aux-

iliary dynamics, DOEL is applicable to a class of systems not covered by OEL.

Furthermore, in the case of single output systems, one of the results in [BYS06]

showed that the concept of DOEL strictly covers that of system immersion. That

is to say, if an n-dimensional system is immersible into an (n + d)-dimensional

NOCF, then it is also DOEL via a d-dimensional auxiliary dynamics, however,

the converse is not true. As regards the DOEL problem, the works [BB09, YJS06]

made some contributions to multi-output case and there also have been researches

on developing constructive algorithms to solve the problem [BB09, YBS07].

As mentioned above, DOEL has an advantage over OEL such that it can be

applied to a larger class of systems. However, it also has a drawback such that the

dimension of observer is larger than that of a given system because the dimension

of GNOCF is equal to that of the extended system composed of the given system
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and its auxiliary dynamics. In fact, this implies that the observer estimates not

only the state of the given system, which is what we want to estimate, but also

the state of auxiliary dynamics, which is already known. Recently, motivated by

this fact, the authors of [BB11, YBSS10] proposed a new observer design scheme

called reduced-order dynamic observer error linearization (RDOEL) for single out-

put systems, which is a modification of DOEL as well as a natural extension of

OEL. Compared with DOEL, RDOEL shares the same idea of introducing such

an auxiliary dynamics to a given system and transforming the extended system

into GNOCF. In the framework of RDOEL, however, the coordinate transforma-

tion preserves a part of coordinates, which corresponds to the state of auxiliary

dynamics, so that the extended system is transformed into the system composed

of the auxiliary dynamics intact and GNOCF of which dimension is equal to that

of the given system. As a result, RDOEL offers a lower-dimensional observer than

DOEL, though RDOEL is a special case of DOEL (that is, the class of applicable

systems of RDOEL is included in that of DOEL). Moreover, RDOEL also can

be applied to a class of systems not covered by OEL due to employing auxiliary

dynamics, and most of results for the RDOEL problem can be used to analyze the

OEL problem by slight modification because the framework of RDOEL is quite

coterminous with that of OEL (they are identical when auxiliary dynamics is not

considered; NOCF by OEL and GNOCF by RDOEL have the same dimensions

and similar structures, even if auxiliary dynamics is considered). For the RDOEL

problem, a complete solution to a special case was derived in [YBS11] and the con-

cept has been extended to discrete-time single output systems [YYS12, YYS13].

However, there has so far been no work dealing with the problem for multi-output

systems.

This dissertation deals with two topics in regard to RDOEL. One is to extend

the concept of RDOEL to multi-output systems. The other is to propose a new

extended NOCF (ENOCF), of which not only output injection but also linear

part depend on system output and state of auxiliary dynamics, and then to study

the problem of transforming a single output nonlinear system with its auxiliary

dynamics into the proposed ENOCF, which is a natural extension of the RDOEL

problem for single output systems.
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1.2 Organization and Contributions of the Dissertation

The following outlines this dissertation and summarizes the contributions of each

individual chapter.

Chapter 2. Mathematical Preliminaries

As a preliminary of the dissertation, we recall some notions in differential ge-

ometry and important mathematical tools on them, such as manifolds, vector

fields, differential 1-forms, Lie derivatives, Lie brackets, Inverse Function Theo-

rem, Frobenius Theorem, Simultaneous Rectification Theorem, and so on.

Chapter 3. Review of Related Previous Works

In this chapter, we review some established results on observer error lineariza-

tion [BBHB09, Kel87, KI83, KR85, XG89] and its extensions: system immersion

[BS04], dynamic observer error linearization [BYS06, NJS04], and reduced-order

dynamic observer error linearization [Yan11] for single output systems, which are

closely related to the research in this dissertation.

Chapter 4. Reduced-Order Dynamic Observer Error Linearization

(RDOEL) for Multi-output Systems

This chapter defines and deals with the RDOEL problem for multi-output sys-

tems. Most of the chapter is based on [CYS12, CYS14b] and the contributions of

the chapter are summarized as follows.

• The concept of RDOEL is first extended to multi-output systems. We pro-

vide three necessary conditions for the RDOEL problem. Two of them par-

tially identify the class of applicable systems, and the other one presents a

condition on output transformation needed to solve the problem. Further-

more, we fully characterize the problem by deriving a geometric necessary

and sufficient condition from the necessary conditions.

• From the necessary and sufficient condition for the RDOEL problem, we

first establish a geometric necessary and sufficient condition for the OEL

problem in the case where output transformation of general form is con-

sidered. Moreover, we show by an example that the general output trans-

formation allows us to solve the OEL problem for a class of systems not
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covered by previous results considering output transformations with some

restrictions.

• Based on the necessary and sufficient conditions for the OEL and RDOEL

problems, we develop a procedure to check the solvability and to construct

explicit change of coordinates for the problems.

Chapter 5. Extension of RDOEL: System into Extended Nonlinear

Observer Canonical Form (ENOCF)

In this chapter, we propose a new NOCF called extended nonlinear observer

canonical form (ENOCF) of which not only output injection but also linear part

depend on system output and state of auxiliary dynamics. As a natural extension

of the RDOEL problem, we address and deal with the problem (called ENOCF

problem) of transforming a single output nonlinear system into the ENOCF via

an auxiliary dynamics. Since the ENOCF admits a kind of high-gain observer,

the solvability of the problem allows us to design observers for a class of nonlinear

systems. This chapter is based on [CYS14a] and the contributions of the chapter

are listed as follows.

• For the ENOCF problem, we also give two necessary conditions that can

partially identify the class of systems for which the problem is solvable, and

then establish a geometric necessary and sufficient condition.

• As a case study, we transform the Rössler system into the proposed ENOCF

via an auxiliary dynamics, and design an observer for the system by us-

ing a high-gain observer design method. This example illustrates that the

ENOCF problem can be solved for a larger class of systems compared to

the RDOEL problem.

Chapter 6. Conclusions

This chapter concludes this dissertation with some concluding remarks and further

issues for future research.



Chapter 2

Mathematical Preliminaries

This chapter provides some brief mathematical background on differential geom-

etry. For a full understanding of the chapter, the reader is referred to the books

[Boo75, Mun00, Spi99, War71].

2.1 Manifolds and Differentiable Structures

First, we introduce the notion of manifold and differentiable structures on mani-

folds. To do this, we need the concepts of topology and topological space.

Definition 2.1.1 (Topology and Topological space). A topology on a set M is a

collection T of subsets of M , which are called open sets satisfying the following

three axioms:

(a) The empty set and M itself are open.

(b) The union of any number of open sets is open.

(c) The intersection of any finite number of open sets is open.

A set M together with a topology T on M is called a topological space. �

A basis of a topology T on M is a subcollection B ⊂ T such that every open

subset of M can be represented as a union of elements of B. A topological space is

said to be second countable if its topology has a countable basis. A neighborhood

of a point p ∈ M is an open subset of M containing p. A Hausdorff space is a

topological space in which any two distinct points have disjoint neighborhoods.

7



8 Chap. 2. Mathematical Preliminaries

Let M1 and M2 be topological spaces. A map Φ : M1 → M2 is said to be

continuous if the inverse image of any open subset of M2 under Φ is also an open

subset of M1. The map Φ is called a homeomorphism, if it is bijective and both

Φ and Φ−1 are continuous. If there exists a homeomorphism from M1 onto M2,

then M1 is said to be homeomorphic to M2. Furthermore, if M1 is homeomorphic

to M2, then M2 is homeomorphic to M1 also because Φ−1 : M2 → M1 is clearly

a homeomorphism when Φ :M1 →M2 is a homeomorphism.

Definition 2.1.2 (Topological manifold). A second countable Hausdorff space

M is called a (topological) manifold of dimension n if every point in M has a

neighborhood homeomorphic to an open subset of Rn. �

Definition 2.1.3 (Coordinate chart (Local coordinate system)). For a topologi-

cal manifold M of dimension n, a coordinate chart (also called a local coordinate

system) of M is a pair (U, x), where U is an open subset of M and x is a homeo-

morphism from U onto an open subset of Rn. The homeomorphism x is called a

coordinate map on U . Let x = (x1, . . . , xn) with xi : U → R for 1 ≤ i ≤ n. Then,

the function xi is called the i-th coordinate function of the coordinate map x, and

the n-tuple of real numbers (x1(p), . . . , xn(p)) for a point p ∈ U is called the local

coordinates of p in the local coordinate system (U, x). �

Let (U, x) and (V, z) be coordinate charts of M with U ∩ V ̸= ∅. Then, the

homeomorphism z ◦ x−1 : x(U ∩ V ) → z(U ∩ V ) is called a coordinate transfor-

mation from x to z on U ∩V . Two coordinate charts (U, x) and (V, z) are said to

be C∞-related or C∞-compatible if both the maps z ◦x−1 : x(U ∩V ) → z(U ∩V )

and x ◦ z−1 : z(U ∩ V ) → x(U ∩ V ) are C∞ (that is to say, each component

function of the maps has continuous partial derivatives of all orders; sometimes

we will use the words ‘smooth’ or ‘differentiable’ to mean ‘C∞’). A collection

A = {(U i, xi) : i ∈ I} (I is an index set) of mutually C∞-related coordinate

charts of M with
⋃
i∈I
U i =M is called an atlas for M .

Lemma 2.1.1. If A is an atlas for M , then A is contained in a unique maximal

atlas for M . �

From the above lemma, we can define the notion of smooth manifold.
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Definition 2.1.4 (Smooth manifold). A topological manifold M together with a

maximal atlas for M is called a smooth manifold. �

Now, let us consider the differentiability of a map between smooth manifolds.

Let M1 and M2 be smooth manifolds. A map Φ :M1 →M2 is said to be smooth

if, for each p ∈M1, there exist two coordinate charts (U, x) and (V, z) on M1 and

M2, respectively, such that p ∈ U , Φ(p) ∈ V , and the representation of Φ in the

local coordinate systems is smooth.

Definition 2.1.5 (Diffeomorphism). Let M1 and M2 be smooth manifolds of the

same dimension. A map Φ :M1 →M2 is called a diffeomorphism, if it is bijective

and both Φ and Φ−1 are smooth. If there exits a diffeomorphism from M1 onto

M2, then M1 is said to be diffeomorphic to M2. �

Remark 2.1.1. In a similar fashion to the case of homeomorphisms, if M1 is

diffeomorphic to M2, then M2 is trivially diffeomorphic to M1 also. �

Let M1 and M2 be smooth manifolds of dimensions n1 and n2, respectively.

For a smooth map Φ : M1 → M2, the rank of Φ at a point p ∈ M1 is defined

as the rank of the Jacobian matrix ∂Φ
∂x (p) ∈ Rn2×n1 and denoted by rank(Φ(p)),

where x is a coordinate map on a neighborhood of p. The rank of Φ does not

depend on the choice of coordinate map. By using the notion of rank of a smooth

map, the following theorem gives a useful method to check whether a given map

is a diffeomorphism or not.

Theorem 2.1.2. Let M1 and M2 be smooth manifolds of the same dimension n.

A map Φ : M1 → M2 is a diffeomorphism if and only if Φ is a smooth bijective

map and rank(Φ(p)) = n for all p ∈M1. �

The next theorem (known as the ‘Inverse Function Theorem’) is also a con-

venient tool to determine whether a map (defined on an open subset of Rn) is a

diffeomorphism or not in a local sense.

Theorem 2.1.3 (Inverse Function). Let U be an open subset of Rn and Φ : U →
Rn be a smooth map. If ∂Φ∂x (p) is nonsingular for a point p ∈ U (i.e. rank(Φ(p)) =

n), then there exists a neighborhood V ⊂ U of p such that Φ|V : V → Φ(V ) is a

diffeomorphism, where Φ|V denotes the restriction of Φ to V . �
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Lastly, we end this section by introducing the notion of submanifold.

Definition 2.1.6 (Submanifold). Let M be a topological manifold of dimension

n and P be a subset of M . For each p ∈ P and a positive integer k ≤ n, if

there exists a coordinate chart (U, x) = (U, (x1, . . . , xn)) of M , where U is a

neighborhood of p, such that

P ∩ U = {q ∈ U : xi(q) = xi(p), i = k + 1, . . . , n}, (2.1.1)

then P is called a k-dimensional submanifold of M . �

For the manifold M and its k-dimensional submanifold P , let T be a topology

on M and TP := {P ∩U : U ∈ T }. Then, TP becomes a topology on P , and thus

P together with TP is a topological space. Furthermore, if (U, x) is a coordinate

chart of M satisfying the condition (2.1.1), then (P∩U, x|P∩U ) is also a coordinate

chart of P . Therefore, the submanifold P itself is a manifold of dimension k.

2.2 Vector Fields and Covector Fields

Throughout the rest of this chapter, M is a smooth manifold of dimension n

unless otherwise noted and, for a point p ∈ M , C∞(p) denotes the set of all

smooth real-valued functions that can be defined on a neighborhood of p.

Definition 2.2.1 (Tangent vector and Tangent space). A tangent vector vp to

M at a point p ∈ M is a linear derivation from C∞(p) into R. In other words,

for all φ, ψ ∈ C∞(p) and α, β ∈ R, it holds that

(a) vp(αφ+ βψ) = αvp(φ) + βvp(ψ).

(b) vp(φ · ψ) = φ(p)vp(ψ) + ψ(p)vp(φ).

The tangent space to M at p ∈M is the set of all tangent vectors to M at p and

denoted by TpM . �



2.2. Vector Fields and Covector Fields 11

Remark 2.2.1. We can observe that the tangent space TpM is a vector space

over the field R with the vector addition and the scalar multiplication defined by

(vp + wp)(φ) := vp(φ) + wp(φ),

(αvp)(φ) := αvp(φ),

where vp, wp ∈ TpM , φ ∈ C∞(p), and α ∈ R. Moreover, the dimension of TpM is

equal to that of M . �

Based on the concept of tangent space, a vector field on a smooth manifold is

defined as follows.

Definition 2.2.2 (Vector field). A vector field f on M is a map assigning an

element of TpM to each p ∈ M . The vector field f is said to be smooth if, for

each p ∈ M , there exist a coordinate chart (U, (x1, . . . , xn)) of M and n smooth

real-valued functions f1, . . ., fn on U such that

f(q) =
n∑
i=1

fi(q)
( ∂

∂xi

)
q

for all q ∈ U ,

where U is a neighborhood of p and ( ∂
∂xi

)q’s are the tangent vectors to M at q

such that ( ∂
∂xi

)q(xj) = δij for i, j = 1, . . . , n. �

By the above definition, on a fixed coordinate chart (U, (x1, . . . , xn)) of M ,

the representation of a smooth vector field f on M in the local coordinate system

is usually written as

f(x) =
n∑
i=1

fi(x)
∂

∂xi
(2.2.1)

or as the column vector

f(x) = [f1(x) · · · fn(x)]T , (2.2.2)

with some smooth real-valued functions fi’s determined by the choice of coordi-

nate chart. It is worth pointing out that the notion of vector field defined above

makes it possible to introduce the concept of differential equation on a smooth
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manifold. More precisely, we can associate a vector field f with a differential

equation ẋ = f(x) on a smooth manifold, which is called a dynamic system in

control theory.

Since a tangent space is a vector space over the field R as mentioned in Remark

2.2.1, we can define the dual objectives to a tangent space and a vector field, which

are called a cotangent space and a covector field, respectively.

Definition 2.2.3 (Cotangent space and Tangent covector (Differential 1-form)).

The cotangent space to M at a point p ∈M is the dual space of TpM and denoted

by T ∗
pM . An element of the cotangent space T ∗

pM is called a tangent covector to

M at p or a differential 1-form. �

Definition 2.2.4 (Covector field (Differential 1-form)). A covector field (also

called a differential 1-form) ω on M is a map assigning an element of T ∗
pM to

each p ∈ M . The covector field ω is said to be smooth if, for each p ∈ M , there

exist a coordinate chart (U, (x1, . . . , xn)) of M and n smooth real-valued functions

ω1, . . ., ωn on U such that

ω(q) =
n∑
i=1

ωi(q)(dxi)q for all q ∈ U ,

where U is a neighborhood of p and (dxi)q is the tangent covector to M at q that

is dual to ( ∂
∂xi

)q for 1 ≤ i ≤ n and q ∈ U . �

In a similar fashion to the equations (2.2.1) and (2.2.2), the representation of

a smooth covector field ω in a local coordinate system can be expressed as

ω(x) =
n∑
i=1

ωi(x)dxi

or as the row vector

ω(x) = [ω1(x) · · · ωn(x)],

with some smooth real-valued functions ωi’s that are also dependent on the choice

of local coordinate system. Furthermore, for any smooth function φ : M → R,
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we can associate φ with a covector field dφ on M by taking the cotangent vector

(dφ)p for each p ∈ M . In fact, the representation of dφ in a local coordinate

system is given by

dφ =

n∑
i=1

∂φ

∂xi
dxi, (2.2.3)

which is often called the exterior differentiation of φ. In general, however, the

converse does not hold. That is to say, for a covector field ω on M , it is not

true that there always exists a smooth function φ : M → R satisfying ω = dφ.

A covector field ω on M is said to be exact if there exists a smooth function

φ :M → R such that ω = dφ.

2.3 Lie Derivatives and Lie Brackets

In this section, we recall several operators on vector fields and/or covector fields,

and then present their basic properties that will be frequently used throughout

the dissertation.

Definition 2.3.1. For a smooth covector field ω on M and a smooth vector field

f on M , we define a smooth function ⟨ω, f⟩ :M → R as

⟨ω, f⟩(p) := ω(f(p))

for each p ∈M . �

Let ω(x) = [ω1(x) · · · ωn(x)] and f(x) = [f1(x) · · · fn(x)]T be the represen-

tations of ω and f in a local coordinate system, respectively. Then, in the local

coordinate system, ⟨ω, f⟩ is written as

⟨ω, f⟩(x) =
n∑
i=1

ωi(x)fi(x). (2.3.1)

As we can see, the operator ⟨·, ·⟩ acts like the inner product in linear algebra,

when we regard ω and f as a row vector and a column vector, respectively.
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Definition 2.3.2 (Lie derivative). For a smooth vector field f onM and a smooth

real-valued function φ on M , the Lie derivative of φ along f is a smooth real-

valued function on M defined and denoted by

(Lfφ)(p) := (f(p))(φ)

for each p ∈M . �

Another equivalent way to define the Lie derivative Lfφ is to use the differ-

ential 1-form dφ as follows:

Lfφ(p) := dφ(f(p)) = ⟨dφ, f⟩(p) for each p ∈M . (2.3.2)

Therefore, by the equations (2.2.2), (2.2.3), (2.3.1), and (2.3.2), the representation

of Lfφ in a local coordinate system can be expressed as

Lfφ(x) =
n∑
i=1

∂φ

∂xi
fi(x).

Moreover, since Lfφ is a smooth real-valued function on M , the Lie derivative of

order k (k is a nonnegative integer) can be defined recursively as follows:

L0
fφ := φ, L1

fφ := Lfφ, Lkfφ := Lf (Lk−1
f φ) for k ≥ 2.

In a similar way, LgLfφ := Lg(Lfφ) when g is another smooth vector field on M .

We can also define the notion of Lie derivative of a smooth covector field ω

on M along a smooth vector field f on M . We introduce it briefly as a matrix

form in a local coordinate system. Let ω(x) = [ω1(x) · · · ωn(x)] and f(x) =

[f1(x) · · · fn(x)]T . Then, Lfω is defined by

Lfω(x) := fT (x)
(∂ωT
∂x

)T
+ w(x)

∂f

∂x
.

A more general definition of Lfω can be found in the books [Boo75, Spi99, War71].

Definition 2.3.3 (Lie bracket). For two smooth vector fields f and g on M , the
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Lie bracket [f, g] is the vector field on M defined by

[f, g]p(φ) := (f(p))(Lgφ)− (g(p))(Lfφ),

where p ∈M , φ ∈ C∞(p), and [f, g]p denotes the tangent vector to M at p which

is assigned to p by the vector field [f, g]. �

If the representations of f and g in a local coordinate system are given by

f(x) =

n∑
i=1

fi(x)
∂

∂xi
= [f1(x) · · · fn(x)]T ,

g(x) =

n∑
i=1

gi(x)
∂

∂xi
= [g1(x) · · · gn(x)]T ,

then, in the local coordinate system, the Lie bracket [f, g] is written as

[f, g]x =

n∑
i=1

( n∑
j=1

( ∂gi
∂xj

)
fj(x)−

( ∂fi
∂xj

)
gj(x)

)
∂

∂xi

or as the vector form

[f, g]x =
∂g

∂x
f(x)− ∂f

∂x
g(x).

Since [f, g] is also a vector field on M , we may repeat bracketing of g with f. The

following notation is used to simplify this process:

ad0fg := g(x), adfg := [f, g], adkfg := [f, adk−1
f g] for k ≥ 2.

The Lie bracket operator [·, ·] has some fundamental properties stated in the

next proposition.

Proposition 2.3.1. Let f , g, and h be smooth vector fields on M and α, β ∈ R.

Then, we have

(a) Bilinearity over R: [αf + βg, h] = α[f, h] + β[g, h],

[f, αg + βh] = α[f, g] + β[f, h].

(b) Anticommutativity: [f, g] = −[g, f ].
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(c) Jacobi identity: [[f, g], h] + [[g, h], f ] + [[h, f ], g] = 0. �

Remark 2.3.1. In fact, a vector space L over the field R together with a operator

[·, ·] satisfying the above three properties is called a Lie algebra L over R. �

From the definitions of Lie derivative and Lie bracket, we can easily deduce

the following facts.

Proposition 2.3.2. Let φ and ψ be smooth real-valued functions on M , f and

g be smooth vector fields on M , and ω be a smooth covector field on M . Then,

it holds that

(a) Lf (φψ) = (Lfφ)ψ + φLfψ.

(b) Lf ⟨ω, g⟩ = ⟨Lfω, g⟩+ ⟨ω, [f, g]⟩.

(c) Lf (dφ) = dLfφ.

(d) L(ψf)φ = ψLfφ.

(e) L[f,g]φ = LfLgφ− LgLfφ.

(f) L(ψf)(φω) = ψLf (φ)ω + φ(ψLfω + ⟨ω, f⟩dψ).

(g) [φf, ψg] = φψ[f, g] + φLf (ψ)g − ψLg(φ)f . �

2.4 Distributions and Codistributions

In this section, we introduce the notions of distribution and codistribution, and

review several results to construct a new local coordinate system or a part of it

from a set of given vector fields. The results play an important role in solving our

problems that will be addressed in Section 4.1 and Section 5.1.

Definition 2.4.1 (Distribution). A distribution D on M is a map that assigns

a subspace of the tangent space TpM to each p ∈ M . The distribution D is said

to be smooth if, for each p ∈ M , there exist a neighborhood U of p and a set

{Xi : i ∈ I} (I is an index set) of smooth vector fields on U such that

D(q) = span{Xi(q) : i ∈ I} for all q ∈ U.
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For a distribution D on M , the dimension (or rank) of D at a point p ∈ M

is the dimension of D(p). Moreover, the distribution D is said to be constant

dimensional if the dimension of D(p) is constant on M . �

A vector field f on M is said to lie in or belong to a distribution D on M if

f(p) ∈ D(p) for all p ∈ M . In this case, we denote it by f ∈ D. For a constant

dimensional distribution, the following lemma provides a concept similar to the

notion of basis for a vector space in linear algebra.

Lemma 2.4.1. Let D be a constant k-dimensional distribution on M . Then, for

each p ∈M , there exist a neighborhood U of p and k vector fields X1, . . ., Xk on

U such that D(q) = span{X1(q), . . . , Xk(q)} for all q ∈ U . �

Remark 2.4.1. The above k vector fields X1, . . ., Xk are called local generators

on U of the distribution D in the following sense: any vector field f ∈ D can be

expressed on U as a linear combination of Xi’s such that f =
∑k

i=1 φiXi with

some real-valued functions φi’s on U . �

Next, we introduce two kinds of special classes of distributions.

Definition 2.4.2 (Involutive distribution). A distribution D is said to be invo-

lutive if [f, g] ∈ D whenever f, g ∈ D. �

Definition 2.4.3 (Integral manifold and Integrable distribution). A submanifold

N of M is an integral manifold of a distribution D on M if

TqN = D(q) for all q ∈ N.

A distribution D on M is said to be integrable if, for any p ∈ M , there exists an

integral manifold of D containing p. �

If a distribution D is integrable, then it is involutive. In general, however,

the converse is not true. The following celebrated theorem of Frobenius gives an

additional condition which an involutive distribution should satisfy in order for

the distribution to be integrable.

Theorem 2.4.2 (Frobenius). A constant dimensional distribution D on M is

integrable if and only if it is involutive. �
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The next theorem is another version of the Frobenius Theorem.

Theorem 2.4.3. For a distribution D on M , the following statements are equiv-

alent:

(a) The distribution D is involutive.

(b) For a fixed nonnegative integer k ≤ n and each p ∈ M , there exists a

coordinate chart (U, (x1, . . . , xn)) with a neighborhood U of p such that

D(q) = span{ ∂

∂x1
, . . . ,

∂

∂xk
} for all q ∈ U.

(c) For a fixed nonnegative integer k ≤ n and each p ∈ M , there exists a

coordinate chart (U, (x1, . . . , xn)) with a neighborhood U of p such that

⟨dxi, f⟩(q) = 0

for all q ∈ U , f ∈ D, and k + 1 ≤ i ≤ n. �

For a set of given vector fields, the involutivity of the distribution obtained

by spanning it is a necessary condition to construct an entire local coordinate

system or a part of it by using those vector fields. However, we need some stronger

conditions than the involutivity for a sufficient condition. The following theorems

and corollary state about them.

Theorem 2.4.4 (Flow-box). Let X be a smooth vector field on M such that

X(p) ̸= 0 for a point p ∈M . Then, there exists a coordinate chart (U, (x1, . . . , xn))

with a neighborhood U of p such that X = ∂
∂x1

on U . �

Theorem 2.4.5 (Theorem 2.36 in [NvdS90], Simultaneous Rectification). Let

X1, . . ., Xn be smooth vector fields on Rn, which are linearly independent at

a point p ∈ Rn. Then, there exists a coordinate chart (U, (x1, . . . , xn)) with a

neighborhood U of p such that

Xi =
∂

∂xi
on U for 1 ≤ i ≤ n,

if and only if [Xi, Xj ] = 0 on U for i, j = 1, . . . , n. �
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Corollary 2.4.6 ([JS02]). Let X1, . . ., Xk with k ≤ n be smooth vector fields

on Rn such that they are linearly independent at a point p ∈ Rn and, on a

neighborhood U of p,

[Xi, Xj ] = 0 for i, j = 1, . . . , k.

Then, there exist (n− k) smooth vector fields Xk+1, . . ., Xn such that X1(p), . . .,

Xn(p) are linearly independent and [Xi, Xj ] = 0 on U for i, j = 1, . . . , n. �

Finally, we introduce the notion of codistribution that is a dual objective to

distribution.

Definition 2.4.4 (Codistribution). A codistribution Ω onM is a map that assigns

a subspace of the cotangent space T ∗
pM to each p ∈ M . The codistribution Ω is

said to be smooth if, for each p ∈M , there exist a neighborhood U of p and a set

{θi : i ∈ I} (I is an index set) of smooth covector fields on U such that

Ω(q) = span{θi(q) : i ∈ I} for all q ∈ U.

The dimension (or rank) of Ω at a point p ∈ M is the dimension of Ω(p), and

the codistribution Ω is said to be constant dimensional if the dimension of Ω(p)

is constant on M . A covector field ω on M is said to lie in or belong to Ω if

ω(p) ∈ Ω(p) for all p ∈M . In this case, we denote it by ω ∈ Ω. �

Lemma 2.4.7. Let Ω be a constant k-dimensional codistribution on M . Then,

for each p ∈M , there exist a neighborhood U of p and k covector fields θ1, . . ., θk
on U such that Ω(q) = span{θ1(q), . . . , θk(q)} for all q ∈ U . �

Similarly to the local generators of a constant dimensional distribution, the

above k covector fields θ1, . . ., θk are called local generators of the codistribution

Ω on U . That is to say, any covector field ω ∈ Ω can be expressed on U as a linear

combination of θi’s such that ω =
∑k

i=1 ψiθi with some real-valued functions ψi’s

on U .





Chapter 3

Review of Related Previous Works

In this chapter, we review some established results on observer error linearization

(OEL) and its extensions: system immersion, dynamic observer error lineariza-

tion (DOEL), and reduced-order dynamic observer error linearization (RDOEL)

(particularly for single output systems), which are closely related to the topics

that will be studied in this dissertation.

3.1 Observability of Multi-Output Nonlinear Systems

Before we review the previous results, let us recall the notion of observability of

multi-output nonlinear systems. Consider a dynamic system given by

ξ̇ = f(ξ), ξ ∈ Rn,

y = h(ξ), y ∈ Rm,
(3.1.1)

where ξ is the state, y = [y1 · · · ym]T is the output, f(ξ) is a smooth vector field,

and h(ξ) = [h1(ξ) · · · hm(ξ)]T is a smooth map. For the multi-output system,

observability indices and local observability are defined sequentially as follows.

Definition 3.1.1 ([Isi95, MT95], Observability indices). A set of observability

indices at ξ0 ∈ Rn of the system (3.1.1) is an m-tuple of nonnegative integers

(r1(ξ0), . . . , rm(ξ0)) such that

ri(ξ0) := card{k : 1 ≤ k ≤ n, sk(ξ0) ≥ i} for 1 ≤ i ≤ m,

21
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with

s1(ξ0) := rank(D1(ξ0)),

sk(ξ0) := rank(Dk(ξ0))− rank(Dk−1(ξ0)) for 2 ≤ k ≤ n,

where card{·} denotes the cardinality of a set and Dk(ξ0) := span{dLj−1
f hi(ξ0) :

1 ≤ i ≤ m, 1 ≤ j ≤ k} for 1 ≤ k ≤ n. �

Remark 3.1.1. Let (r1(ξ0), . . . , rm(ξ0)) be the observability indices at ξ0 of the

system (3.1.1). Then, it holds that n ≥ r1(ξ0) ≥ r2(ξ0) ≥ · · · ≥ rm(ξ0) ≥ 0 for

all ξ0 ∈ Rn. This property is often called the lexographic ordering of observability

indices ([KR85]). �

Definition 3.1.2 ([Isi95, MT95], Local observability). The system (3.1.1) is said

to be locally observable at ξ0 ∈ Rn if there exists a neighborhood V0 ⊂ Rn of ξ0
such that

rank
(
span{dLj−1

f hi(ξ) : 1 ≤ i ≤ m, 1 ≤ j ≤ ri(ξ)}
)
=

m∑
i=1

ri(ξ) = n (3.1.2)

for all ξ ∈ V0 after a suitable reordering of hi’s, where (r1(ξ), . . . , rm(ξ)) is the

observability indices at ξ of the system (3.1.1). The above equation is called the

observability rank condition. �

Remark 3.1.2. The local observability at ξ0 of the system (3.1.1) (defined by

the observability rank condition (3.1.2)) implies that the distribution, span of

1-forms from each output component yi = hi(ξ) and its time derivatives up to

order ri(ξ)− 1, has rank n around ξ0 (after a suitable reordering hi’s). This is a

nonlinear version of that a linear system is observable if its observability matrix

has full rank [Che99]. Furthermore, if the observability rank condition is satisfied,

then it follows from Theorem 2.1.3 (Inverse Function Theorem) that Ψ(ξ) :=

[h1(ξ) · · · Lr1(ξ0)−1
f h1(ξ) · · · hm(ξ) · · · Lrm(ξ0)−1

f hm(ξ)]
T is a diffeomorphism on

a neighborhood of ξ0. �

If the system (3.1.1) is locally observable at ξ0 ∈ Rn and its observability

indices at ξ0 are given by (r1(ξ0), . . . , rm(ξ0)) = (n1, . . . , nm) with some positive
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integers ni’s such that n1 ≥ n2 ≥ · · · ≥ nm and
∑m

i=1 ni = n, then there exists a

coordinate transformation Ψ from ξ to x on a neighborhood V ⊂ Rn of ξ0, which

is the diffeomorphism given in Remark 3.1.2, such that the system (3.1.1) can be

expressed on V as the following form (called observable form):

ẋ11 = x12, · · · ẋm1 = xm2,
...

...

ẋ1(n1−1) = x1n1 , · · · ẋm(nm−1) = xmnm ,

ẋ1n1 = f1(x), · · · ẋmnm = fm(x),

y1 = x11, · · · ym = xm1,

(3.1.3)

where xij = Lj−1
f hi(ξ) for 1 ≤ i ≤ m and 1 ≤ j ≤ ni, fi : W → R is a smooth

function for 1 ≤ i ≤ m, x = [x11 · · · x1n1 · · · xm1 · · · xmnm ]
T ∈ W , and

W ⊂ Rn is a neighborhood of x0 (= Ψ(ξ0)). Therefore, under the assumption, we

can regard the system (3.1.1) around ξ0 as its observable form (3.1.3), without

loss of generality.

3.2 Observer Error Linearization (OEL)

As mentioned in Chapter 1, observer error linearization (OEL) is one of the well-

known techniques to design observers for a class of nonlinear systems. The OEL

problem is a dual concept to feedback linearization [HS81, JR80] and a formal

definition of it can be stated as follows.

Definition 3.2.1 (Observer error linearization (OEL)). The system (3.1.1) is

said to be observer error linearizable (OEL), if there exist two maps Φ : V → Rn,
ξ 7→ z as a coordinate transformation and q : h(V ) → Rm, y 7→ ye as an output

transformation, which are diffeomorphisms onto their images, such that z = Φ(ξ)

and ye = q(y) transform the system (3.1.1) into a nonlinear observer canonical

form (NOCF),

ż = Az + a(y), z ∈ Rn,

ye = q(y) = Cz, ye ∈ Rm,
(3.2.1)
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where V ⊂ Rn is a neighborhood of an initial state ξ(0), ye = [ye1 · · · yem]T is a

new output, a(y) = [a1(y) · · · an(y)]T is a smooth vector-valued function called

output injection,

A = diag(A1, . . . , Am) with Ai =

[
O Ini−1

O O

]
∈ Rni×ni for 1 ≤ i ≤ m,

C = diag(C1, . . . , Cm) with Ci = [ 1 0 · · · 0 ] ∈ R1×ni for 1 ≤ i ≤ m,

and ni’s are some positive integers such that n1 ≥ n2 ≥ · · · ≥ nm and
∑m

i=1 ni =

n. �

If the system (3.1.1) is OEL, then we can construct an observer such that

˙̂z = Aẑ + a(y) + L(ye − Cẑ),

ye = q(y), ξ̂ = Φ−1(ẑ),

which has the following linear error dynamics:

ėz = (A− LC)ez, (3.2.2)

where ez := ẑ − z. Since the pair (A,C) in the NOCF (3.2.1) is observable, we

can arbitrarily assign the eigenvalues of the matrix (A−LC) so that the observer

error dynamics (3.2.2) is exponentially stable [Che99].

The first contribution to the OEL problem was made in [KI83] and [BZ83] for

time-invariant and time-varying single output systems, respectively. We review

the result of [KI83].

Theorem 3.2.1 ([KI83]). When m = 1 and q(y) = y, the system (3.1.1) is OEL

if and only if both the following conditions are satisfied:

(a) rank(span{dh(ξ),dLfh(ξ), . . . ,dLn−1
f h(ξ)}) = n on V ,

(b)
[
adk−1

(−f)X, ad
l−1
(−f)X

]
= 0 on V for k, l = 1, . . . , n,

where V ⊂ Rn is a neighborhood of ξ(0), [ ·, · ] denotes the Lie bracket between
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vector fields, and X is a vector field that is a solution of the differential equations,

LXLk−1
f h(ξ) =

{
0 if 1 ≤ k ≤ n− 1,

1 if k = n,

for 1 ≤ k ≤ n. �

Remark 3.2.1. The statement (a) in the above theorem just means the local

observability at ξ(0) of the given single output system (i.e. the system (3.1.1)

when m = 1). The statement (b) presents a geometric condition equivalent for

the system to be OEL when q(y) = y. �

Theorem 3.2.1 gives a geometric characterization of the OEL problem for

single output systems in the case where output transformation is not considered

(i.e. ye = y). The following theorem provides an algebraic characterization of the

same problem.

Theorem 3.2.2 ([Kel87]). When m = 1 and q(y) = y, the system (3.1.1) is OEL

if and only if there exist n real-valued functions a1(y), . . . , an(y) that constitute

a set of solutions of the differential equation,

0 = Ln−1
f a1(y) + Ln−2

f a2(y) + · · ·+ an(y), (3.2.3)

which is called the characteristic equation. �

In the rest of this section, we will review the results of [BBHB09, KR85,

XG89], which deal with the OEL problem for multi-output systems by using

geometric approaches. At first, we introduce a necessary condition for the problem

given in [KR85].

Theorem 3.2.3 ([KR85]). The system (3.1.1) is OEL, only if it is locally observ-

able at ξ(0) and has a constant observability indices (n1, . . . , nm) on V0, where V0
is a neighborhood of ξ(0) and ni is the dimension of each block Ai in the NOCF

(3.2.1) into which the system (3.1.1) can be transformed. �

From the above theorem, without loss of generality, we can impose the follow-

ing assumption on the system (3.1.1). The assumption will be valid throughout

the rest of this section unless otherwise noted.
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Assumption 3.2.1. The system (3.1.1) is locally observable at ξ(0) with constant

observability indices (n1, . . . , nm) on a neighborhood V0 of ξ(0), where ni’s are

some positive integers such that n1 ≥ n2 ≥ · · · ≥ nm and
∑m

i=1 ni = n. �

By the above assumption, the system (3.1.1) can be expressed on a neighbor-

hood of ξ(0) as the observable form (3.1.3). For the observable form (3.1.3), we

introduce some notation.

Definition 3.2.2 ([KR85]). We denote by P(x) the ring of polynomials in xij ’s,

where 1 ≤ i ≤ m and 2 ≤ j ≤ ni, with coefficients that are smooth real-valued

functions of y. The weighted degree of a monomial c(y)(xi1j1)l1 · · · (xirjr)lr is

defined as
∑r

s=1(js− 1)ls where l1, . . ., lr are nonnegative integers. The weighted

degree of a polynomial in P(x) is the highest weighted degree of any term in the

polynomial. Pk(x) is the set of all the polynomials in P(x) of which weighted

degree is less than or equal to k. �

As regards the notation, the following theorem provides another necessary

condition for the OEL problem, which is related to the system dynamics as the

observable form (3.1.3).

Theorem 3.2.4 ([KR85]). If the system (3.1.3) is OEL, then fi(x) belongs to

Pni(x) for 1 ≤ i ≤ m. �

Now, we review the main result of [KR85], which is a sufficient condition for

the solvability of the OEL problem for multi-output systems.

Theorem 3.2.5 ([KR85]). Let q(y) = [q1(y) · · · qm(y)]T be an output transfor-

mation and X1, . . . , Xm be vector fields that are solutions of the equations,

LXiL
k−1
f qj(y) = δij · δknj

for i, j = 1, . . . ,m and 1 ≤ k ≤ nj . (3.2.4)

Then, the system (3.1.1) is OEL if it holds that

[
adk−1

(−f)Xi, ad
l−1
(−f)Xj

]
= 0 on V (3.2.5)

for i, j = 1, . . . ,m, 1 ≤ k ≤ ni, and 1 ≤ l ≤ nj , where V ⊂ Rn is a neighborhood

of ξ(0). �
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In the case of single output systems (i.e. when m = 1), the sufficient condition

given in the above theorem becomes a necessary and sufficient condition. That is

to say, the OEL problem is solvable if and only if [adk−1
(−f)X1, ad

l−1
(−f)X1] = 0 on V

for k, l = 1, . . . , n, where X1 is a solution of LX1Lk−1
f q1(y) = δkn for 1 ≤ k ≤ n.

However, the authors of [XG89] showed by a counter example that the necessary

part does not hold for multi-output systems. The following theorems (given in

[XG89] and [BBHB09], respectively) provide geometric necessary and sufficient

conditions of the OEL problem for multi-output systems, in the cases when output

transformation is not considered or has a structural restriction, respectively.

Theorem 3.2.6 ([XG89]). When q(y) = y, the system (3.1.1) is OEL if and only

if both the following conditions hold:

(a) if we denote (with a possible reordering of hi’s)

D(ξ) := {dLj−1
f hi(ξ) : 1 ≤ i ≤ m, 1 ≤ j ≤ ni},

Dk(ξ) := {dLj−1
f hi(ξ) : 1 ≤ i ≤ m, 1 ≤ j ≤ nk} − {dLnk−1

f hk(ξ)}

for 1 ≤ k ≤ m, then it should be satisfied that

span(Dk(ξ)) = span(D(ξ) ∩Dk(ξ)) for 1 ≤ k ≤ m and each ξ ∈ V ,

(b) there exist m vector fields X1, . . . , Xm which are solutions of the equations,

LXiL
k−1
f hj(ξ) = δij · δknj

for i, j = 1, . . . ,m and 1 ≤ k ≤ ni, (3.2.6)

and satisfy that

[
adk−1

(−f)Xi, ad
l−1
(−f)Xj

]
= 0 on V

for i, j = 1, . . . ,m, 1 ≤ k ≤ ni, and 1 ≤ l ≤ nj ,

where V ⊂ Rn is a neighborhood of ξ(0). �

Theorem 3.2.7 ([BBHB09]). Suppose that q(y) = [q1(y) · · · qm(y)]T is of the

form such as qi(y) = qi(y1, . . . , yi) for 1 ≤ i ≤ m. Then, the system (3.1.1) is OEL
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if and only if there exist m real-valued functions φ1(y), . . . , φm(y) of the form,

φ1(y) = φ1(y1),

φ2(y) =

{
φ2(y1, y2) if n1 > n2,

φ2(y2) if n1 = n2,

φi(y) =

{
φi(y1, . . . , yi) if ni−1 > ni,

φi(y1, . . . , yi−2, yi) if ni−1 = ni,
for 3 ≤ i ≤ m,

and m vector fields X1, . . . , Xm, which are a set of solutions to the equation

(3.2.6), such that

[
adk−1

(−f)(φiXi), ad
l−1
(−f)(φlXl)

]
= 0 on V

for i, j = 1, . . . ,m, 1 ≤ k ≤ ni, and 1 ≤ l ≤ nj , where V ⊂ Rn is a neighborhood

of ξ(0). �

To our best knowledge, there has so far been no literature providing a geo-

metric necessary and sufficient condition of the OEL problem for multi-output

systems, in the case where the general output transformation ye = q(y) is con-

sidered. In Subsection 4.3.2, we will derive it from a direct consequence of one of

our results.

3.3 System Immersion

There exists a class of nonlinear systems that cannot be transformed into observ-

able linear systems but can be immersed into higher-dimensional observable linear

systems [LM86]. The definition of immersion in differential geometry is a smooth

injective map from a smooth manifold into a higher-dimensional smooth mani-

fold. Immersion of a single output nonlinear system into a higher-dimensional

observable linear system was defined similarly in [LM86] and it was refined in

[BS02, Jou03, BS04] as immersion of a single output nonlinear system into a

higher-dimensional NOCF (consisting of an observable linear system and an out-
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put injection a(y)). For a single output nonlinear system given by

ξ̇ = f(ξ), ξ ∈ Rn,

y = h(ξ), y ∈ R,
(3.3.1)

where f(ξ) is a smooth vector field and h(ξ) is a smooth real-valued function, im-

mersion of the system into a higher-dimensional NOCF can be defined as follows.

Definition 3.3.1 (System immersion). The system (3.3.1) is said to be im-

mersible into an (n+d)-dimensional NOCF if there exist two maps Φ : V → Rn+d

as an immersion and q : h(V ) → R as an output transformation such that

z = Φ(ξ) and ye = q(y) immerse the system (3.3.1) into an (n + d)-dimensional

NOCF,

ż = Az + a(y), z ∈ Rn+d

ye = q(y) = Cz, ye ∈ R,
(3.3.2)

and Φ(ξ) = [Φ1(ξ) · · · Φn+d(ξ)]
T satisfies the following condition:

rank(span{dΦ1(ξ), . . . ,dΦn(ξ)}) = n for all ξ ∈ V ,

where d is a positive integer, V ⊂ Rn is a neighborhood of an initial state ξ(0),

A =

[
O Id+n−1

O O

]
∈ R(n+d)×(n+d), C = [ 1 0 · · · 0 ] ∈ R1×(n+d),

and a(y) = [a1(y) . . . an+d(y)]
T is output injection. �

In a similar fashion to the (conventional) OEL approach, if the system (3.3.1)

is immersible into the (n+d)-dimensional NOCF (3.3.2), then we can also design

an observer such that

˙̂z = Aẑ + a(y) + L(ye − Cẑ) ∈ Rn+d,

ye = q(y), ξ̂ = (Π ◦ Φ)−1(Π(ẑ)),
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with the linear observer error dynamics,

ėz = (A− LC)ez,

where Π : Rn+d → Rn, (z1, . . . , zn+d) 7→ (z1, . . . , zn) is a projection and ez := ẑ−z.
Since the pair (A,C) is observable, we can choose L ∈ R(n+d)×1 such that (A−LC)
is Hurwitz.

It was shown that the class of systems which are immersible into higher-

dimensional NOCF includes the class of systems which are OEL [BS04]. It was

also proved in [BS04] that, if the system (3.3.1) is immersible into the (n + d)-

dimensional NOCF (3.3.2), then it is also immersible into (n+d+k)-dimensional

NOCF for any nonnegative integer k. The class of systems that are immersible

into the NOCF (3.3.2) can be identified in terms of the characteristic equation

given by the following theorem.

Theorem 3.3.1 ([BS04]). The system (3.3.1) is immersible into the NOCF (3.3.2)

if and only if there exists a set of solutions q(y), a1(y), . . . , an+d(y) of the differ-

ential equation,

Ln+df q(y) = Ln+d−1
f a1(y) + Ln+d−2

f a2(y) + · · ·+ an+d(y),

subject to the condition ∂q(h(ξ))
∂h ̸= 0 on a neighborhood of ξ(0). �

The above theorem provides a necessary and sufficient condition for the system

immersion problem. Based on the result, some constructive algorithms to design

immersion Φ, which immerses the system (3.3.1) into the NOCF (3.3.2), have

been developed [Jou03, BS04].

3.4 Dynamic Observer Error Linearization (DOEL)

As mentioned in Section 3.2, OEL is a dual concept of feedback linearization

[HS81, JR80]. Similarly, as a dual problem to dynamic feedback linearization

[CLM89, CLM91], a new notion of dynamic observer error linearization (DOEL)

was first proposed in [NJS04] and, in the case of single output systems, the frame-
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work of DOEL was generalized by [BYS06]. The next definition modifies it to fit

multi-output systems.

Definition 3.4.1 (Dynamic observer error linearization (DOEL)). The system

(3.1.1) is said to be dynamic observer error linearizable (DOEL) if there exist a

dynamic system (called auxiliary dynamics),

η̇ = p(η, y), η ∈ Rd,

ye = q(η, y), ye ∈ Rm,
(3.4.1)

and a coordinate transformation Φ : U × V → Rd+n, (η, ξ) 7→ z, which is a

diffeomorphism onto its image, such that z = Φ(η, ξ) transforms the extended

system (composed of the given system (3.1.1) and the auxiliary dynamics (3.4.1)),

[
η̇

ξ̇

]
= F (η, ξ) :=

[
p(η, h(ξ))

f(ξ)

]
, (3.4.2)

into a (d+n)-dimensional generalized nonlinear observer canonical form (GNOCF),

ż = Az + a(η, y), z ∈ Rd+n,

ye = q(η, y) = Cz, ye ∈ Rm,
(3.4.3)

where U × V ⊂ Rd × Rn is a neighborhood of an initial state (η(0), ξ(0)),

A = diag(A1, . . . , Am) with Ai =

[
O In̄i−1

O O

]
∈ Rn̄i×n̄i ,

C = diag(C1, . . . , Cm) with Ci = [ 1 0 . . . 0 ] ∈ R1×n̄i ,

a(η, y) = [a1(η, y) · · · ad+n(η, y)]
T is a smooth vector-valued function called

generalized output injection, and n̄i’s are some positive integers such that n̄1 ≥
n̄2 ≥ · · · ≥ n̄m and

∑m
i=1 n̄i = d+ n. �

Since the generalized output injection a(η, y) depends only on available infor-

mation (η, y), if the system (3.1.1) is DOEL via an auxiliary dynamics such as

(3.4.1), then we can design a Luenberger-type observer (including the auxiliary
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dynamics) such that

η̇ = p(η, y) ∈ Rd,
˙̂z = Aẑ + a(η, y) + L(ye − Cẑ) ∈ Rd+n,

ye = q(η, y), ξ̂ = (Π1 ◦ Φ−1)(η, ẑ),

(3.4.4)

with the exponentially stable linear error dynamics,

ėz = (A− LC)ez,

where Π1 : Rd+n → Rn, (z1, . . . , zd+n) 7→ (zd+1, . . . , zd+n) is a projection, ez :=

ẑ − z, and L ∈ R(d+n)×m is chosen so that (A− LC) is Hurwitz.

As mentioned at the beginning of this section, the first contribution to the

DOEL problem was established by [NJS04]. Since it is not easy to deal with aux-

iliary dynamics of the general form (3.4.1), the authors of [NJS04] took account

of the cases where an auxiliary dynamics is given as a collection of chains of inte-

grators from each system output or a specific linear system, like early researches

on dynamic feedback linearization have usually done [AMP95, GMB97, LKJ00].

More precisely, they assumed that the auxiliary dynamics (3.4.1) is of the follow-

ing form: for 1 ≤ i ≤ m,

η̇i1 = −αiηi1 + yi if di ≥ 1,

η̇ij = −αiηij + ηi(j−1) for 2 ≤ j ≤ di if di ≥ 2,

yei = qi(η, y) =

{
yi if di = 0,

ηidi if di ≥ 1,

(3.4.5)

where αi’s are some nonnegative real numbers and di’s are some nonnegative

integers such that
∑m

i=1 di = d, and then they derived sufficient conditions for

the system (3.1.1) to be DOEL via the auxiliary dynamics (3.4.5) in some special

cases. We will review the results. To this end, we need the notion of extended

observability indices of the system (3.1.1) corresponding to (d1, . . . , dm), which

denotes the observability indices of the extended system composed of the given

system (3.1.1) and the auxiliary dynamics (3.4.5).
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Definition 3.4.2 ([NJS04]). For an m-tuple of nonnegative integers (d1, . . . , dm)

such that
∑m

i=1 di = d, a set of extended observability indices at ξ0 ∈ Rn of the

system (3.1.1) corresponding to (d1, . . . , dm) is an m-tuple of integers (r̄1(ξ0), . . . ,

r̄m(ξ0)) that are uniquely associated to the system (3.1.1) as follows:

r̄i(ξ0) := card{k : 1 ≤ k ≤ d+ n, s̄k(ξ0) ≥ i} for 1 ≤ i ≤ m,

with

s̄1(ξ0) := card{i : 1 ≤ i ≤ m, di ≥ 1}+ rank{dhi(ξ0) : 1 ≤ i ≤ m, di = 0},

s̄k(ξ0) := card{i : 1 ≤ i ≤ m, di ≥ k}

+ rank{dhi(ξ0), . . . ,dLk−di−1
f hi(ξ0) : 1 ≤ i ≤ m, di ≤ k − 1}

− rank{dhi(ξ0), . . . ,dLk−di−2
f hi(ξ0) : 1 ≤ i ≤ m, di ≤ k − 2}

for 2 ≤ k ≤ d+ n. �

At first, we consider the auxiliary dynamics (3.4.5) when αi = 0 for all i.

Theorem 3.4.1 ([NJS04]). The system (3.1.1) is DOEL via an auxiliary dynam-

ics of the form (3.4.5) with αi = 0 for all 1 ≤ i ≤ m, if there exists an m-tuple of

nonnegative integers (d1, . . . , dm) such that
∑m

i=1 di = d and the following state-

ments hold (after suitable reordering of hi’s):

(a) for all ξ ∈ V , it holds that (r̄1(ξ), . . . , r̄m(ξ)) = (n̄1, . . . , n̄m) and

rank{dhi(ξ), . . . ,dLn̄i−di−1
f hi(ξ) : 1 ≤ i ≤ m} = n,

where (r̄1(ξ), . . . , r̄m(ξ)) is the extended observability indices at ξ of the

system (3.1.1) corresponding to (d1, . . . , dm) and n̄i’s are some positive in-

tegers such that n̄1 ≥ n̄2 ≥ · · · ≥ nm and
∑m

i=1 n̄i = d+ n.

(b) for all ξ ∈ V and 1 ≤ j ≤ m, it holds that

rank({dLkfhi(ξ) : 1 ≤ i ≤ m, i ̸= j, di < n̄j , 0 ≤ k ≤ n̄j − di − 1}

∪ {dLkfhj(ξ) : 0 ≤ k ≤ n̄j − dj − 2})
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= rank({dLkfhi(ξ) :1 ≤ i ≤ m, i ̸= j, di < n̄j , 0 ≤ k ≤ min(n̄i, n̄j)−di−1}

∪ {dLkfhj(ξ) : 0 ≤ k ≤ n̄j − dj − 2}),

(c) there exist m vector fields X1, . . . , Xm on Rn, which constitute a set of

solutions of the differential equations,

LXiL
k−1
f hj(ξ) = δij · δk(n̄j−dj) for i, j = 1, . . . ,m and 1 ≤ k ≤ n̄i − dj ,

and satisfy that

[
Rki , R

l
j

]
= 0 on V

for i, j = 1, . . . ,m, 0 ≤ k ≤ n̄i − 1, and 0 ≤ l ≤ n̄j − 1, where Rki ’s are

vector fields on Rd+n defined by

Rki :=
[
(adkfXi)

T ζki11 . . . ζki1d1 . . . ζkim1 . . . ζkimdm

]T
1×(d+n)

with

ζkijl =



0 if k = 0,

Lfζk−1
ij1 − L(adk−1

f Xi)
hj if k ̸= 0 and l = 1,

Lfζk−1
ijl − ζk−1

ij(l−1) if k ̸= 0 and 2 ≤ l ≤ k,

0 if k < l ≤ dj ,

for i, j = 1, . . . ,m, 0 ≤ k ≤ n̄i − 1, and 1 ≤ l ≤ dj ,

where V ⊂ Rn is a neighborhood of ξ(0). �

If αi = 0 for all 1 ≤ i ≤ m, then the auxiliary dynamics (3.4.5) consists of

chains of integrators from each system output. Hence, the above theorem gives

a sufficient condition for the DOEL problem using such an auxiliary dynamics.

The authors of [YJS06] discussed about the number of integrators needed for the

same problem. Their conclusion is that the number cannot be bounded by a

function depending on dimensions of system state and system output, in contrast

to the result of dynamic feedback linearization using integrators [LKJ00], although
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DOEL is dual to dynamic feedback linearization.

The following is a similar result to Theorem 3.4.1, in the case when αi’s are

positive constants so that the auxiliary dynamics (3.4.5) is a stable linear system.

Corollary 3.4.2 ([NJS04]). The system (3.1.1) is DOEL via an auxiliary dy-

namics of the form (3.4.5) if there exist positive constants αi’s for 1 ≤ i ≤ m and

an m-tuple of nonnegative integers (d1, . . . , dm) such that
∑m

i=1 di = d and the

following statements hold (after suitable reordering of hi’s):

(a) both the conditions (a) and (b) in Theorem 3.4.1 are satisfied,

(b) there exist m vector fields X̄1, . . . , X̄m on Rn, which constitute a set of

solutions of the differential equations,

LX̄i
ψkj (ξ) = δij · δk(n̄j−dj) for i, j = 1, . . . ,m and 1 ≤ k ≤ n̄i − dj

and satisfy that

[
R̄ki , R̄

l
j

]
= 0 on V

for i, j = 1, . . . ,m, 0 ≤ k ≤ n̄i − 1, and 0 ≤ l ≤ n̄j − 1, where

ψkj (ξ) :=


Lk−1
f hj(ξ) if dj = 0,∑k−1
l=0 (−αj)k−l−1

(
k + dj − 2− l

dj − 1

)
Llfhj(ξ) if dj ≥ 1,

R̄ki :=
[
(adkf X̄i)

T ζ̄ki11 · · · ζ̄ki1d1 · · · ζ̄kim1 · · · ζ̄kimdm

]T
1×(d+n)

with

ζ̄kijl =



0 if k = 0,

Lf ζ̄k−1
ij1 + αj ζ̄

k−1
ij1 − L(adk−1

f Xi)
hj if k ̸= 0 and l = 1,

Lf ζ̄k−1
ijl + αj ζ̄

k−1
ijl − ζ̄k−1

ij(l−1) if k ̸= 0 and 2 ≤ l ≤ k,

0 if k < l ≤ dj ,

for i, j = 1, . . . ,m, 0 ≤ k ≤ n̄i − 1, and 1 ≤ l ≤ dj , where V ⊂ Rn is a

neighborhood of ξ(0). �
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In the case of single output systems, a necessary and sufficient condition for the

DOEL problem using auxiliary dynamics of the general form (3.4.1) was derived

in terms of the following characteristic equation.

Theorem 3.4.3 ([BYS06]). The single output nonlinear system (3.3.1) is DOEL

via the auxiliary dynamics (3.4.1) (with m = 1) if and only if it holds that

(a) there exist (d+n) real-valued functions a1(η, y), a2(η, y), . . . , ad+n(η, y) that

constitute a set of solutions to the differential equation,

Ld+nF q(η, y) = Ld+n−1
F a1(η, y) + Ld+n−2

F a2(η, y) + · · ·+ ad+n(η, y),

(b) the map Φ(η, ξ) = [Φ1(η, ξ) Φ2(η, ξ) · · · Φd+n(η, ξ)]
T defined by

Φi(η, ξ) := Li−1
F q(η, h(ξ))−

i−1∑
j=1

Li−1−j
F aj(η, h(ξ)) for 1 ≤ i ≤ n+ d

is a diffeomorphism on a neighborhood of (η(0), ξ(0)). �

Moreover, in the same case, it was revealed by the following theorem that the

concept of DOEL covers that of system immersion.

Theorem 3.4.4 ([BYS06]). If the single output system (3.3.1) is immersible into

an (n+d)-dimensional NOCF, then it is also DOEL via a d-dimensional auxiliary

dynamics such as (3.4.1). �

Lastly, there also have been several attempts to develop a constructive algo-

rithm to solve the DOEL problem using an auxiliary dynamics that is a chain

of integrators from system output [Bou07, YBS07] (single output case) or has a

lower-triangular structure [BB09] (multi-output case).

3.5 Reduced-Order Dynamic Observer Error Lineariza-

tion (RDOEL) for Single Output Systems

In the observer (3.4.4) designed by the DOEL approach, the Luenberger-type

observer is of dimension d + n, while the given system (3.1.1) is of dimension n.
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This means that the observer estimates not only the state of the system (3.1.1)

but also the state of the auxiliary dynamics (3.4.1), even though the latter is

already known. Inspired by the fact, the authors of [BB11, YBSS10] proposed a

modified version of DOEL for single output systems, which is often called reduced-

order dynamic observer error linearization (RDOEL). The following is a formal

definition of it.

Definition 3.5.1 (Reduced-order dynamic observer error linearization (RDOEL)

for single output systems). The single output nonlinear system (3.3.1) is said to

be reduced-order dynamic observer error linearizable (RDOEL) if there exist an

auxiliary dynamics of the form,

η̇ = p(η, y), η ∈ Rd,

ye = q(η, y), ye ∈ R,
(3.5.1)

and a coordinate transformation Φ : U × V → Rd+n, (η, ξ) 7→ (w, z) with w = η,

which is a diffeomorphism onto its image, such that z = (Π1 ◦Φ)(η, ξ) transforms

the extended system (consisting of the given system (3.3.1) and the auxiliary

dynamics (3.5.1)),

[
η̇

ξ̇

]
= F (η, ξ) :=

[
p(η, h(ξ))

f(ξ)

]
, (3.5.2)

into an n-dimensional generalized nonlinear observer canonical form (GNOCF),

ż = Az + a(η, y), z ∈ Rn,

ye = q(η, y) = Cz, ye ∈ R,
(3.5.3)

where U × V ⊂ Rd × Rn is a neighborhood of an initial state (η(0), ξ(0)),

A =

[
O In−1

O O

]
∈ Rn×n, C = [ 1 0 · · · 0 ] ∈ R1×n,

a(η, y) = [a1(η, y) · · · an(η, y)]T is generalized output injection, and Π1 is a pro-

jection such that Π1 : Rd+n → Rn, (η, z) 7→ z. �
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Remark 3.5.1. Compared with DOEL, RDOEL shares the same idea of adding

an auxiliary dynamics such as (3.5.1) on a given system and transforming the

augmented system into GNOCF. A significant difference is that, in the framework

of RDOEL, the coordinate transformaion (w, z) = Φ(η, ξ) preserves a part of

coordinates corresponding to the state of the auxiliary dynamics (i.e. w = η) so

that the extended system (3.5.2) is transformed into the system composed of the

auxiliary dynamics (3.5.1) intact and the n-dimensional GNOCF (3.5.3). �

RDOEL has the following advantages over OEL and DOEL. With the aid of

auxiliary dynamics, the RDOEL problem can be solved for a class of systems for

which the OEL problem is not solvable. Furthermore, RDOEL offers a lower-

dimensional observer than DOEL. In actual fact, if the system (3.3.1) is RDOEL

via an auxiliary dynamics such as (3.5.2), then we can construct an entire observer

including the auxiliary dynamics such that

η̇ = p(η, y) ∈ Rd,
˙̂z = Aẑ + a(η, y) + L(ye − Cẑ) ∈ Rn,

ye = q(η, y), ξ̂ = (Π1 ◦ Φ−1)(η, ẑ),

(3.5.4)

which has the exponentially stable linear error dynamics,

ėz = (A− LC)ez,

where ez := ẑ − z and L ∈ Rn×1 is chosen so that (A − LC) is Hurwitz. As one

can see, the dimension of the entire observer (3.5.4) is d + n, while that of the

observer (3.4.4) designed by the DOEL approach is 2d+ n.

The RDOEL problem for single output systems was fully characterized by the

following theorems that provide a geometric necessary and sufficient condition

and its algebraic counterpart, respectively.

Theorem 3.5.1 ([Yan11]). The system (3.3.1) is RDOEL via the auxiliary dy-

namics (3.5.1) if and only if both the following conditions are satisfied:

(a) ∂q(η,y)
∂y ̸= 0 on U × h(V ),

(b)
[
adk−1

(−F )(φX), adl−1
(−F )(φX)

]
= 0 on U × V for k, l = 1, . . . , n,
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where U × V ∈ Rd × Rn is a neighborhood of (η(0), ξ(0)), X is a vector field on

Rd+n defined by the equations

LXLk−1
F h(ξ) =

{
0 if 1 ≤ k ≤ n− 1,

1 if k = n,
for 1 ≤ k ≤ n,

and φ is a real-valued function of η and y such that φ(η, y) := 1/∂q(η,y)∂y . �

Theorem 3.5.2 ([Yan11]). The system (3.3.1) is RDOEL via the auxiliary dy-

namics (3.5.1) if and only if there exist n real-valued functions a1(η, y), . . . , an(η, y)

satisfying the differential equation,

LnF q(η, y) = Ln−1
F a1(η, y) + Ln−2

F a2(η, y) + · · ·+ an(η, y),

and it holds that ∂q(η,h(ξ))
∂h ̸= 0 on a neighborhood of (η(0), ξ(0)). �

Based on the above results, constructive algorithms to solve the RDOEL

problem have been developed for some special cases [BB11, Yan11, YBS11].

Moreover, the concept of RDOEL has been extended to discrete-time systems

[YYS12, YYS13]. However, all the results are limited to the case of single output

systems. In this respect, we will formulate the RDOEL problem for multi-output

nonlinear systems, and derive several necessary conditions and a geometric nec-

essary and sufficient condition in the next chapter.

3.6 Inclusion Relation among OEL, System Immersion,

DOEL, and RDOEL

We end this chapter with the verification of the inclusion relation among OEL,

system immersion, DOEL, and RDOEL. Since the results of system immersion

and RDOEL introduced so far are for the case of single output systems, we only

consider the case. Trivially, system immersion, DOEL, and RDOEL are extensions

of OEL, and Theorem 3.4.4 shows that system immersion is included in DOEL.

In [Yan11], some examples are given to illustrate that system immersion cannot

include RDOEL and vice versa. Lastly, in order to show that RDOEL is a special
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case of DOEL, we derive a corollary from Theorem 3.4.3 and Theorem 3.5.2.

Corollary 3.6.1. If the system (3.3.1) is RDOEL via the auxiliary dynamics

(3.5.1), then it is also DOEL via the same auxiliary dynamics with a new output,

η̇ = p(η, y) =


η2 + ā1(η, y)

...

ηd + ād−1(η, y)

q(η, y) + ād(η, y)

 ,

ȳe = q̄(η, y) = η1,

(3.6.1)

where η = [η1 · · · ηd]T , p(η, y) = [p1(η, y) · · · pd(η, y)]T , āi(η, y) := pi(η, y)−ηi+1

for 1 ≤ i ≤ d− 1, and ād(η, y) := pd(η, y)− q(η, y).

Proof. If the system (3.3.1) is RDOEL via the auxiliary dynamics (3.5.1), then,

by Theorem 3.5.2, there exist n functions a1(η, y), . . . , an(η, y) such that

LnF q(η, y) =
n∑
j=1

Ln−jF aj(η, y). (3.6.2)

Let āi(η, y) := ai−d(η, y) for d+ 1 ≤ i ≤ d+ n. Meanwhile, by (3.6.1), we have

LdF q̄(η, y) = q(η, y) +
d∑
i=1

Ld−iF āi(η, y). (3.6.3)

Hence, it follows from (3.6.2) and (3.6.3) that

Ld+nF q̄(η, y) = LnF q(η, y) +
d∑
i=1

Ld+n−iF āi(η, y) =

d+n∑
i=1

Ld+n−iF āi(η, y).

Therefore, the condition (a) in Theorem 3.4.3 is satisfied.

In addition, for the map Φ(η, ξ) = [Φ1(η, ξ) · · · Φd+n(η, ξ)]
T defined by the

condition (b) in Theorem 3.4.3, we obtain from (3.6.1) and (3.6.3) that

Φi(η, ξ) := Li−1
F q̄(η, h(ξ))−

i−1∑
j=1

Li−1−j
F āj(η, h(ξ))
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DOEL 

OEL 
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Immersion 
RDOEL 

Figure 3.1: Inclusion relation among OEL, system immersion, DOEL, and
RDOEL

=

{
ηi for 1 ≤ i ≤ d,

Li−d−1
F q(η, h(ξ))−

∑i−d−1
j=1 Li−d−1−j

F aj(η, h(ξ)) for d+ 1 ≤ i ≤ d+ n.

By Definition 3.5.1, it is not difficult to see that Φ(η, ξ) is identical to the coordi-

nate transformation for RDOEL via the auxiliary dynamics (3.5.1). Thus, Φ(η, ξ)

is a diffeomorphism on a neighborhood of (η(0), ξ(0)).

Since both the conditions in Theorem 3.4.3 hold, the system (3.3.1) is DOEL

via the same auxiliary dynamics with a new output (3.6.1).

In summary, Figure 3.1 illustrates the inclusion relation among OEL, system

immersion, DOEL, and RDOEL in the case of single output systems.





Chapter 4

Reduced-Order Dynamic Observer
Error Linearization (RDOEL) for
Multi-Output Systems

In this chapter, we formulate and study the RDOEL problem for multi-output

systems. We present three necessary conditions and then provide a geometric

equivalent condition for the solvability of the RDOEL problem. Furthermore,

from the equivalent condition, we derive a geometric necessary and sufficient con-

dition of the (conventional) OEL problem for multi-output systems in the case

under consideration of output transformation of the general form ye = q(y), which

has not been established yet despite several attempts in the past. In addition,

by means of the results, we develop a procedure to check the solvability and to

construct explicit change of coordinates for OEL and RDOEL. Lastly, some ex-

amples are given to illustrate the theoretical results. Most of the chapter is based

on [CYS12, CYS14b].

4.1 Problem Statement

In this section, we define the RDOEL problem for the system (3.1.1) by the

following definition that is a generalization of Definition 3.5.1 (RDOEL for single

output systems) to fit multi-output systems.

Definition 4.1.1 (Reduced-order dynamic observer error linearization (RDOEL)).

The system (3.1.1) is said to be reduced-order dynamic observer error linearizable

43
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(RDOEL) if there exist a dynamic system (called auxiliary dynamics),

η̇ = p(η, y), η ∈ Rd, (4.1.1)

and two maps Φ : U × V → Rd+n, (η, ξ) 7→ (w, z) = (η, z) as a coordinate

transformation and Q : U × h(V ) → Rd+m, (η, y) 7→ (w, ye) = (η, q(η, y)) as an

output transformation, which are diffeomorphisms onto their images, such that

Π1 ◦ Φ and Π2 ◦Q transform the extended system composed of the given system

(3.1.1) and the auxiliary dynamics (4.1.1),

[
η̇

ξ̇

]
= F (η, ξ) :=

[
p(η, y)

f(ξ)

]
,

y = h(ξ),

(4.1.2)

into an n-dimensional generalized nonlinear observer canonical form (GNOCF),

ż = Az + a(η, y), z ∈ Rn,

ye = q(η, y) = Cz, ye ∈ Rm,
(4.1.3)

where U × V ⊂ Rd × Rn is a neighborhood of an initial state (η(0), ξ(0)),

η = [η1 · · · ηd]T , p(η, y) = [p1(η, y) · · · pd(η, y)]T ,

ye = [ye1 · · · yem]T , q(η, y) = [q1(η, y) · · · qm(η, y)]T ,

z = [z11 · · · z1n1 · · · zm1 · · · zmnm ]
T ,

Π1 : Rd+n → Rn, (η, z) 7→ z,

Π2 : Rd+m → Rm, (η, ye) 7→ ye,

A = diag(A1, . . . , Am) with Ai =

[
O Ini−1

O O

]
∈ Rni×ni for 1 ≤ i ≤ m,

C = diag(C1, . . . , Cm) with Ci = [ 1 0 · · · 0 ] ∈ R1×ni for 1 ≤ i ≤ m,

a(η, y) = [a11(η, y) · · · a1n1(η, y) · · · am1(η, y) · · · amnm(η, y)]
T is generalized

output injection, and ni’s (for 1 ≤ i ≤ m) are some positive integers such that

n1 ≥ n2 ≥ · · · ≥ nm and
∑m

i=1 ni = n. �
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Remark 4.1.1. In actual fact, the output transformation Q is a part of the

coordinate transformation Φ in the following sense: Q(η, y) = (Π3◦Φ)(η, ξ) where

Π3 is a projection such that Π3 : Rd+n → Rd+m, (η, z) 7→ (η, z11, z21, . . . , zm1). In

other words, it holds that yei = qi(η, y) = qi(η, h(ξ)) = zi1 for 1 ≤ i ≤ m. This is

due to the fact that ye = q(η, y) = Cz in the GNOCF (4.1.3). �

Remark 4.1.2. In the OEL problem, it is usually required that the output trans-

formation q(y) is a diffeomorphism onto its image (see Definition 3.2.1). In Def-

inition 4.1.1, if the auxiliary dynamics (4.1.1) is not employed, then Q(η, y) be-

comes q(y). In this sense, the condition that Q(η, y) is a diffeomorphism onto its

image is a natural extension of the above condition on q(y) in the OEL problem.

Moreover, the RDOEL problem is identical to the OEL problem if we do not

consider the auxiliary dynamics (cf. Definition 3.2.1 and Definition 4.1.1), and

the framework of RDOEL is quite similar to that of OEL even if the auxiliary

dynamics is considered (e.g. the same dimension and structure of the pair (A,C)

in the NOCF (3.2.1) and the GNOCF (4.1.3)). Therefore, we can say that the

RDOEL problem is not only a modified version of the DOEL problem but also a

natural extension of the OEL problem. �

In the case of single output systems, we proved by Corollary 3.6.1 that RDOEL

is a special case of DOEL. The following theorem shows that it also holds for the

case of multi-output systems.

Theorem 4.1.1. If the system (3.1.1) is RDOEL via the auxiliary dynamics

(4.1.1), then it is also DOEL via the same auxiliary dynamics with a new output.

Proof. If the system (3.1.1) is RDOEL via the auxiliary dynamics (4.1.1), then,

by Definition 4.1.1, there exists a diffeomorphism [ηT zT ]T = Φ(η, ξ) on a neigh-

borhood of (η(0), ξ(0)) such that the extended system (4.1.2) is transformed into

the system composed of the auxiliary dynamics (4.1.1) and the n-dimensional

GNOCF (4.1.3) on the (η, z)-coordinates. In a similar fashion to the proof of

Corollary 3.6.1, we show that Φ(η, ξ) can also transform the extended system into

a (d+ n)-dimensional GNOCF with a new output.

We set z̄ = [z̄11 · · · z̄1(d+n1) · · · z̄m1 · · · z̄mnm ]
T ∈ Rd+n as a new coordinate
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and ȳe = [ȳe1 · · · ȳem]T ∈ Rm as a new output as follows:

z̄1k =

{
ηk for 1 ≤ k ≤ d,

zi(k−d) for d+ 1 ≤ k ≤ d+ n1,
ȳe1 = η1,

z̄ij = zij , ȳei = yei = qi(η, y), for 2 ≤ i ≤ m and 1 ≤ j ≤ ni.

Then, we have z̄ = Φ(η, ξ) and it follows from (4.1.1), (4.1.3), and the above

equation that the extended system (4.1.2) is represented as a (d+n)-dimensional

GNOCF on the z̄-coordinates such that

˙̄z1k = z̄1(k+1) + ā1k(η, y) for 1 ≤ k ≤ d+ n1 − 1,

˙̄z1(d+n1) = ā1(d+n1)(η, y), ȳe1 = z̄11

˙̄zij = z̄i(j+1) + āij(η, y) for 2 ≤ i ≤ m and 1 ≤ j ≤ ni − 1,

˙̄zini = āini(η, y) ȳei = z̄i1,

where ā1k(η, y) := pk(η, y)−ηk+1 for 1 ≤ k ≤ d−1, ā1d(η, y) := pd(η, y)−q1(η, y),
ā1k(η, y) := a1(k−d)(η, y) for d + 1 ≤ k ≤ d + n1, and āij(η, y) := aij(η, y) for

2 ≤ i ≤ m and 1 ≤ j ≤ ni. Consequently, the system (3.1.1) is also DOEL via

the auxiliary dynamics (4.1.1) with the new output ȳe.

Although RDOEL is a special class of DOEL, it has an advantage over DOEL

such that RDOEL offers a lower-dimensional observer than DOEL as mentioned in

Section 3.5. Furthermore, since RDOEL is a natural extension of OEL (for more

details, see Remark 4.1.2), research for the RDOEL problem can also contribute

to the study of the conventional OEL problem. That is, most of the results for the

RDOEL problem can be naturally converted into the ones for the OEL problem by

slight modification of eliminating effects from auxiliary dynamics (i.e. changing F ,

(η, ξ), and (η, y) into f , ξ, and y, respectively). Indeed, we will provide a geometric

necessary and sufficient condition for the RDOEL problem under considertation

of the general auxiliary dynamics (4.1.1) and the general output transformation

ye = q(η, y), and then derive from the result the first geometric necessary and

sufficient condition for the OEL problem in the case when the general output

transformation ye = q(y) is considered.
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4.2 Necessary Conditions

In this section, we provide three necessary conditions for the RDOEL problem.

The first one is the observability of the system (3.1.1), the second one is about

the inverse output transformation Q−1(η, ye), and the last one is concerned with

the observable form (3.1.3) of the system (3.1.1).

4.2.1 Observability

First, we show that the observability of the original system (3.1.1) is a necessary

condition for the RDOEL problem. Furthermore, its observability indices are

constant on V and equal to (n1, . . . , nm), where V ⊂ Rn is a neighborhood of

ξ(0) and ni (for 1 ≤ i ≤ m) is the dimension of the i-th block of the matrix A

in the GNOCF (4.1.3) into which the system (3.1.1) can be transformed with the

aid of an auxiliary dynamics of the form (4.1.1).

Suppose that the system (3.1.1) is RDOEL with the auxiliary dynamics (4.1.1).

Then, there exist a coordinate transformation Φ : U × V → Rd+n, (η, ξ) 7→ (η, z)

and an output transformation Q : U × h(V ) → Rd+m, (η, y) 7→ (η, ye) =

(η, q(η, y)), where U × V ⊂ Rd ×Rn is a neighborhood of (η(0), ξ(0)). Since Q is

a diffeomorphism onto its image, its inverse map Q−1(η, ye) = [ηT q̃(η, ye)
T ]T =

[ηT yT ]T also exists, where q̃(η, ye) = [q̃1(η, ye) · · · q̃m(η, ye)]T . As a result, the

extended system (4.1.2) is transformed into the following system:

[
η̇

ż

]
= Fz(η, z) :=

[
p̃(η, ye)

Az + ã(η, ye)

]
,

ye = q(η, y) = Cz,

(4.2.1)

where p̃(η, ye) := p(η, q̃(η, ye)) = p(η, y) and ã(η, ye) := a(η, q̃(η, ye)) = a(η, y).

Theorem 4.2.1. The system (3.1.1) is RDOEL with the auxiliary dynamics

(4.1.1), only if it is locally observable at ξ(0) and has the constant observability

indices (n1, . . . , nm) on V , where V ⊂ Rn is a neighborhood of ξ(0) and ni (for

1 ≤ i ≤ m) is the dimension of the i-th block of the matrix A in the GNOCF

(4.1.3) into which the extended system (4.1.2) can be transformed.
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Proof. Henceforth, when α = [α1 · · · αn]T and Γ = [γij ]m×n, we use the following

notation: dα := [dα1 · · · dαn]
T , α mod β := [α1 mod β · · · αn mod β]T , and

LFΓ := [LFγij ]m×n, where ‘mod’ denotes the modulo operation.

If the system (3.1.1) is RDOEL with the auxiliary dynamics (4.1.1), then the

extended system (4.1.2) can be transformed into the system (4.2.1) by Φ and Q

on U × V . For the system (4.2.1), let

r̃i(η, z) := card{k : 1 ≤ k ≤ n, s̃k(η, z) ≥ i} for 1 ≤ i ≤ m,

with

s̃k(η, z) := rank(Ek(η, z))− rank(Ek−1(η, z)) for 1 ≤ k ≤ n,

where

E0(η, z) := span{dη1, . . . ,dηd} = E0,

Ek(η, z) := span
(
{dη1, . . . ,dηd} ∪ {dLj−1

Fz
yei at (η, z) : 1 ≤ i ≤ m, 1 ≤ j ≤ k}

)
= span

(
Ek−1(η, z) ∪ {dLk−1

Fz
yei at (η, z) : 1 ≤ i ≤ m}

)
for 1 ≤ k ≤ n.

We will complete the proof of Theorem 4.2.1 after showing that the following

three claims are true.

Claim 1: For 1 ≤ i ≤ d and 0 ≤ j ≤ k ≤ n, it holds that

dLjFz
ηi at (η, z) ≡ 0 mod Ek(η, z).

Proof of Claim 1. By the definition of Ek(η, z) for 0 ≤ k ≤ n, it is true that

E0(η, z) ⊂ E1(η, z) ⊂ · · · ⊂ En(η, z). Therefore, we only need to prove that dLkFz
ηi

at (η, z) ≡ 0 mod Ek(η, z) for 1 ≤ i ≤ d and 0 ≤ k ≤ n. The proof is by induction

on k starting from k = 0. The claim is trivial when k = 0. If k = 1, then it follows

from the equation (4.2.1) that

dLFzηi at (η, z) =
∂p̃i
∂η

(η, ye)dη +
∂p̃i
∂ye

(η, ye)dye

≡ 0 mod E1(η, z) for 1 ≤ i ≤ d.
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Hence, the claim is true when k = 1. Suppose that 2 ≤ k ≤ n and the claim

is true for k − 1, i.e., dLjFz
ηi at (η, z) ≡ 0 mod Ek−1(η, z) for 1 ≤ i ≤ d and

0 ≤ j ≤ k − 1. Then, from the induction hypothesis, we obtain that

dLkFz
ηi at (η, z) = Lk−1

Fz
(dLFzηi) at (η, z) = Lk−1

Fz

(
∂p̃i
∂η

dη +
∂p̃i
∂ye

dye

)
at (η, z)

=

k−1∑
l=0

(
Lk−1−l
Fz

(∂p̃i
∂η

)
dLlFz

η + Lk−1−l
Fz

(∂p̃i
∂ye

)
dLlFz

ye

)
at (η, z)

≡ ∂p̃i
∂ye

dLk−1
Fz

ye at (η, z) mod Ek−1(η, z)

≡ 0 mod Ek(η, z) for 1 ≤ i ≤ d.

Consequently, the claim is also true for k and thus the proof of Claim 1 is done.

Claim 2: For 1 ≤ k ≤ n and each (η, ξ) = Φ−1(η, z) ∈ U × V , it holds that

Ek(η, z) = span(E0 ∪ Dk(ξ)),

where Dk(ξ) := span{dLj−1
f hi(ξ) : 1 ≤ i ≤ m, 1 ≤ j ≤ k} which is already

defined in Definition 3.1.1.

Proof of Claim 2. The proof is by induction on k starting from k = 1. By the

existence of Q−1 such that Q−1(η, ye) = [ηT q(η, ye)
T ]T = [ηT yT ]T , it holds that

[
dη

dh(ξ)

]
=

[
dη

dy

]
= JQ−1(η, ye)

[
dη

dye

]

=

[
Id Od×m

∂q̃
∂η (η, ye)

∂q̃
∂ye

(η, ye)

][
dη

dye

]
,

(4.2.2)

where JQ−1 represents the Jacobian of Q−1. Since Q−1 is also a diffeomorphism

on Q(U × h(V )), JQ−1 is nonsingular on Q(U × h(V )). Therefore, we have that

E1(η, z) = span{dη1, . . . ,dηd,dye1, . . . ,dyem}

= span{dη1, . . . ,dηd,dh1(ξ), . . . ,dhm(ξ)}

= span(E0 ∪ D1(ξ)),
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and thus the claim is true when k = 1.

Since f and h do not depend on η, it holds that Lk−1
f h(ξ) = Lk−1

F h(ξ) for any

k ≥ 1, where F is the vector field of the extended system (4.1.2) and thus it is the

representation of Fz in the (η, ξ)-coordinates. Hence, it follows from the equation

(4.2.2) and Claim 1 that

dLk−1
f h(ξ) = Lk−1

F

(
dh(ξ)

)
= Lk−1

Fz

(
∂q̃

∂η
dη +

∂q̃

∂ye
dye

)
at (η, z)

=

k−1∑
j=0

(
Lk−1−j
Fz

(∂q̃
∂η

)
dLjFz

η + Lk−1−j
Fz

( ∂q̃
∂ye

)
dLjFz

ye

)
at (η, z)

≡ ∂q̃

∂ye
dLk−1

Fz
ye at (η, z) mod Ek−1(η, z) for 1 ≤ k ≤ n.

In addition, ∂q̃
∂ye

is nonsingular on Q(U × h(V )) because JQ−1 is nonsingular on

Q(U × h(V )) in the equation (4.2.2). Suppose that 2 ≤ k ≤ n and the claim

is true for k − 1, i.e., Ek−1(η, z) = span(E0 ∪ Dk−1(ξ)). Then, by the induction

hypothesis and the above equation, it holds that

Ek(η, z) = span
(
Ek−1(η, z) ∪ {dLk−1

Fz
yei at (η, z) : 1 ≤ i ≤ m}

)
= span

(
E0 ∪ Dk−1(ξ) ∪ {dLk−1

f hi(ξ) : 1 ≤ i ≤ m}
)

= span(E0 ∪ Dk(ξ)).

Therefore, Claim 2 is true.

Claim 3: It holds that (r̃1(η, z), . . . , r̃m(η, z)) = (n1, . . . , nm) on Φ(U × V ).

Proof of Claim 3. By the equation (4.2.1) and Claim 1, it is easy to see that

dLk−1
Fz

yei at (η, z)

=



dzi1 if k = 1

d
(
zik +

k−1∑
j=1

Lk−1−j
Fz

ãij(η, ye)
)

at (η, z) if k ≥ 2 and ni ≥ k

d
( ni∑
j=1

Lk−1−j
Fz

ãij(η, ye)
)

at (η, z) if k ≥ 2 and ni < k

≡

{
dzik if ni ≥ k

0 if ni < k
mod Ek−1(η, z)
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for 1 ≤ i ≤ m, 1 ≤ k ≤ n, and all (η, z) ∈ Φ(U × V ). Therefore, we have

s̃k(η, z) = rank
(
Ek(η, z)

)
− rank

(
Ek−1(η, z)

)
= rank

(
span{dzik : 1 ≤ i ≤ m, ni ≥ k}

)
= card{1 ≤ i ≤ m : ni ≥ k} on Φ(U × V ) for 1 ≤ k ≤ n.

It implies that each s̃k(η, z) is constant on Φ(U ×V ) and indicates the number of

ni’s greater than or equal to k. Therefore, it is not difficult to see that r̃i(η, z) :=

card{ k : 1 ≤ k ≤ n, s̃k(η, z) ≥ i} is equal to the i-th observability index of

the system (4.2.1) without the generalized output injection ã(η, ye). That is,

r̃i(η, z) = ni on Φ(U × V ) for 1 ≤ i ≤ m, and thus Claim 3 is true.

Now, let us go back to the proof of Theorem 4.2.1. Since f and h do not depend

on η, dLk−1
f hi(ξ) does not depend on dη1, . . . ,dηd in the (η, ξ)-coordinates for any

k ≥ 1 and 1 ≤ i ≤ m. Hence, it follows from Claim 2 that

s̃1(η, z) = rank
(
span(E0 ∪ D1(ξ)

)
− rank(E0)

= rank
(
D1(ξ)

)
= s1(ξ),

s̃k(η, z) = rank
(
span(E0 ∪ Dk(ξ)

)
− rank

(
span(E0 ∪ Dk−1(ξ)

)
= rank

(
Dk(ξ)

)
− rank

(
Dk−1(ξ)

)
= sk(ξ) for 2 ≤ k ≤ n.

The above equations mean that ri(ξ) = r̃i(η, z) for 1 ≤ i ≤ m. Thus, by Claim 3,

we have (r1(ξ), . . . , rm(ξ)) = (n1, . . . , nm) on V . As a result, the system (3.1.1)

satisfies the observability rank condition as follows:

rank
(
span{dLj−1

f hi(ξ) : 1 ≤ i ≤ m, 1 ≤ j ≤ ni}
)
=

m∑
i=1

ni = n for all ξ ∈ V ,

after a suitable reordering of hi’s. That is to say, the system (3.1.1) is locally

observable at ξ(0).

Remark 4.2.1. Actually, observability of a given system in the sense defined

by Definition 3.1.2 is a necessary condition not only for RDOEL but also for

many other nonlinear observer design schemes including OEL, system immersion,

DOEL, high-gain observers, and so on. However, it is worth pointing out that
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dimensions of each block in both the NOCF (3.2.1) by OEL and the GNOCF

(4.1.3) by RDOEL are determined by the observability indices of the given system

(see Theorem 3.2.3 and Theorem 4.2.1), while it cannot hold in the cases of system

immersion and DOEL. In fact, this property is one of the factors that make it

possible to convert most of results on the RDOEL problem into the ones for the

OEL problem naturally. �

From now on, by Theorem 4.2.1, we assume that the system (3.1.1) is lo-

cally observable at ξ(0) with the constant observability indices (n1, . . . , nm) on

V . Then, the system (3.1.1) can be expressed as the observable form (3.1.3) and,

without loss of generality, we can regard the system (3.1.1) as its observable form

(3.1.3). For convenience, we write ẋ = f(x) and y = h(x). Thereby, we can also

regard the extended system (4.1.2) as the system

[
η̇

ẋ

]
= F (η, x) :=

[
p(η, y)

f(x)

]
,

y = h(x) = [x11 · · · xm1]
T .

(4.2.3)

Remark 4.2.2. The reason why we regard the system (3.1.1) as the observable

form (3.1.3) is to provide a more explicit analysis. Although most of the results

and the analysis on them, which will be presented throughout the rest of this

chapter, are described in the x-coordinates on which the system (3.1.1) is rep-

resented as its observable form (3.1.3), they can be converted into the ones de-

scribed in the general ξ-coordinates. �

4.2.2 Inverse Output Transformation

This subsection is devoted to present the second necessary condition for the

RDOEL problem, which is related to the inverse output transformationQ−1(η, ye).

Before providing it, we introduce some notation that will be used frequently in

the rest of the chapter.

Definition 4.2.1. For the observability indices (n1, . . . , nm) of the system (3.1.3),

let χ(j) := card{1 ≤ i ≤ m : ni ≥ j} for 1 ≤ j ≤ n1, which indicates the number

of ni’s greater than or equal to j. �
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Remark 4.2.3. Since it holds that n1 ≥ n2 ≥ · · · ≥ nm by the lexographic

ordering of observability indices mentioned in Remark 3.1.1, we have χ(j) :=

card{1 ≤ i ≤ m : ni ≥ j} = max{1 ≤ i ≤ m : ni ≥ j}. Therefore, the following

two inequalities are equivalent: ni ≥ j and 1 ≤ i ≤ χ(j). In addition, it is easy

to see that m = χ(1) ≥ χ(2) ≥ · · · ≥ χ(n1) ≥ 1. �

Definition 4.2.2. For the system (4.2.3), we denote by Pe(x) (respectively,

P(x)) the ring of polynomials in xij ’s, where 1 ≤ i ≤ χ(2) and 2 ≤ j ≤ ni,

with coefficients that are smooth real-valued functions of η and y (respectively, y

only). The weighted degree of a monomial c(η, y)(xi1j1)k1 · · · (xirjr)kr is defined

as
∑r

s=1(js−1)ks where k1, . . . , kr are nonnegative integers. The weighted degree

of a polynomial in Pe(x) or P(x) is the highest weighted degree of any term in

the polynomial. We denote by Pk
e (x) (respectively, Pk(x)) the set of all the poly-

nomials in Pe(x) (respectively, P(x)) whose weighted degree is less than or equal

to k. P0
e (x) (respectively, P0(x)) represents the set of all smooth real-valued

functions of η and y (respectively, y only). When k ≥ 1, Pk
eo(x) (respectively,

Pk
o (x)) denotes the set of polynomials in Pk

e (x) (respectively, Pk(x)), which do

not depend on any xij such that j ≥ k+1. For the system (4.2.1), Pk
e (z), Pk(z),

Pk
eo(z), and Pk

o (z) are defined in a similar fashion by replacing x and y with z

and ye, respectively. �

Remark 4.2.4. It is easy to see that P1
eo(x) = P0

e (x) and P1
o (x) = P0(x). When

k ≥ 2, φ(η, x) ∈ Pk
eo(x) (respectively, φ(x) ∈ Pk

o (x)) implies that not only its

weighted degree is less than or equal to k, but also it is a polynomial of xij ’s,

where 1 ≤ i ≤ χ(2) and 2 ≤ j ≤ min{k, ni}, with coefficients that are elements

of P0
e (x) (respectively, P0(x)). Additionally, since there does not exist any xij

such that j ≥ n1 + 1, it holds that Pk
e (x) = Pk

eo(x) for all k ≥ n1. The same

interpretations are also valid when x is replaced by z. �

Remark 4.2.5. The concept of the weighted degree was introduced in [KR85].

Definition 4.2.2 is a natural extension of Definition 3.2 in [KR85] (Definition 3.2.2

in Section 3.2) to fit the case when the auxiliary dynamics (4.1.1) is employed. �

As regards P(z), we present a proposition, a lemma, and its corollary, which

will be used frequently in the rest of the chapter.
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Proposition 4.2.2. If ψ(η, z) ∈ Pk
e (z) for any k ≥ 0, then it holds that

∂ψ

∂ηl
∈ Pk

e (z),

∂ψ

∂zij
=

{
0 if j > k + 1,

∗ ∈ Pk−j+1
e (z) if j ≤ k + 1,

for 1 ≤ l ≤ d, 1 ≤ i ≤ m, and 1 ≤ j ≤ ni. The same analysis is also valid when z

is replaced by x.

Proof. Since the proof is apparent from Definition 4.2.2, we omit it.

Lemma 4.2.3. If ψ(η, z) ∈ Pk
e (z) for any k ≥ 0, then LFzψ ∈ Pk+1

e (z).

Proof. For 1 ≤ i ≤ χ(2) and 2 ≤ j ≤ ni, it follows from the equation (4.2.1) that

LFzzij = żij =

{
zi(j+1) + ãij(η, ye) if j < ni,

ãini(η, ye) if j = ni.
(4.2.4a)

One can observe that LFzzij ∈ Pj
e (z) while zij ∈ Pj−1

e (z). In addition, for any

c(η, ye) ∈ P0
e (z), it holds that

LFzc(η, ye) =

d∑
k=1

∂c

∂ηk
η̇k +

m∑
i=1

∂c

∂yei
żi1

=

d∑
k=1

∂c

∂ηk
p̃k +

m∑
i=1

∂c

∂yei
ãi1 +

∑
ni≥2

∂c

∂yei
zi2

= c0(η, ye) +

χ(2)∑
i=1

ci(η, ye)zi2 ∈ P1
e (z),

(4.2.4b)

where

c0(η, ye) :=
d∑

k=1

∂c

∂ηk
(η, ye)p̃k(η, ye) +

m∑
i=1

∂c

∂yei
(η, ye)ãi1(η, ye) ∈ P0

e (z),

ci(η, ye) :=
∂c

∂yei
(η, ye) ∈ P0

e (z) for 1 ≤ i ≤ χ(2).

Therefore, it is not difficult to see that LFzψ ∈ Pk+1
e (z) by Definition 4.2.2, the

equations (4.2.4), and the Leibniz rule.
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Corollary 4.2.4. If ψ(η, z) ∈ Pk
eo(z) for any k ≥ 1, then LFzψ ∈ Pk+1

eo (z).

Proof. Since Pk
eo(z) ⊂ Pk

e (z), we have LFzψ ∈ Pk+1
e (z) by Lemma 4.2.3. More-

over, ψ(η, z) ∈ Pk
eo(z) implies that ψ does not depend on any zij such that

j ≥ k + 1. Hence, it follows from (4.2.4) that LFzψ does not contain any zij

such that j ≥ k + 2. Therefore, it is concluded that LFzψ ∈ Pk+1
eo (z).

Suppose that there exist a neighborhood U×W ⊂ Rd×Rn of (η(0), x(0)) and

two maps Φ : U×W → Rd+n, (η, x) 7→ (η, z) and Q : U×h(W ) → Rd+m, (η, y) 7→
(η, ye), which are diffeomorphisms onto their images, such that the system (4.2.3)

is transformed into the system (4.2.1) by Φ and Q. Then, the inverse output

transformation Q−1(η, ye) = [ηT q̃(η, ye)
T ]T = [ηT yT ]T also exists and we have

xij = Lj−1
f yi = Lj−1

Fz
q̃i(η, ye) for 1 ≤ i ≤ m and 1 ≤ j ≤ ni. (4.2.5)

Trivially, xi1 = yi = q̃i(η, ye) ∈ P0
e (z) for 1 ≤ i ≤ m. The next lemma shows

that the representation of xij in the (η, z)-coordinates also belongs to Pj−1
e (z) for

1 ≤ i ≤ χ(2) and 2 ≤ j ≤ ni.

Lemma 4.2.5. If the system (4.2.3) can be transformed into the system (4.2.1)

by Φ and Q, then it holds that
x1j
...

xχ(j)j

 =


ψ1j +

∑χ(j)
k=1

∂q̃1
∂yek

zkj
...

ψχ(j)j +
∑χ(j)

k=1

∂q̃χ(j)

∂yek
zkj

 for 2 ≤ j ≤ n1, (4.2.6)

where ψij ∈ Pj−1
eo (z).

Proof. The proof is by induction on j starting from j = 2. When j = 2, it follows

from (4.2.1) and (4.2.5) that

xi2 = LFz q̃i(η, ye) =

d∑
l=1

∂q̃i
∂ηl

p̃l +

m∑
k=1

∂q̃i
∂yek

ãk1 +
∑
nk≥2

∂q̃i
∂yek

zk2

= ψi2 +

χ(2)∑
k=1

∂q̃i
∂yek

zk2 for 1 ≤ i ≤ χ(2),
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where

ψi2 :=
d∑
l=1

∂q̃i
∂ηl

p̃l +
m∑
k=1

∂q̃i
∂yek

ãk1 ∈ P0
e (z) = P1

eo(z).

Thus, the equation (4.2.6) holds for j = 2. Suppose that 3 ≤ j ≤ n1 and the

equation (4.2.6) holds for j − 1, i.e., it holds that

xi(j−1) = ψi(j−1) +

χ(j−1)∑
k=1

∂q̃i
∂yek

zk(j−1) for 1 ≤ i ≤ χ(j − 1),

where ψi(j−1) ∈ Pj−2
eo (z). Then, it also follows from (4.2.1), (4.2.5) and the

induction hypothesis that

xij = LFzxi(j−1) = LFz

(
ψi(j−1) +

χ(j−1)∑
k=1

∂q̃i
∂yek

zk(j−1)

)
= LFzψi(j−1) +

∑
nk≥j−1

((
LFz

∂q̃i
∂yek

)
zk(j−1) +

∂q̃i
∂yek

żk(j−1)

)

= LFzψi(j−1) +
∑

nk≥j−1

((
LFz

∂q̃i
∂yek

)
zk(j−1) +

∂q̃i
∂yek

ãk(j−1)

)
+
∑
nk≥j

∂q̃i
∂yek

zkj

= ψij +

χ(j)∑
k=1

∂q̃i
∂yek

zkj for 1 ≤ i ≤ χ(j),

where

ψij := LFzψi(j−1) +

χ(j−1)∑
k=1

((
LFz

∂q̃i
∂yek

)
zk(j−1) +

∂q̃i
∂yek

ãk(j−1)

)
.

Since ψi(j−1) ∈ Pj−2
eo (z) and ∂q̃i

∂yek
∈ P0

e (z), we have LFzψi(j−1) ∈ Pj−1
eo (z) and(

LFz

∂q̃i
∂yek

)
zk(j−1) ∈ Pj−1

eo (z) by Lemma 4.2.3 and Corollary 4.2.4. Therefore, one

can observe that ψij ∈ Pj−1
eo (z) and the equation (4.2.6) also holds for j.

Now, we give a condition on q̃(η, ye) as the second necessary condition for the

RDOEL problem. The proof of the following theorem shows that the condition

on q̃(η, ye) is equivalent for the Jacobian of Φ−1 to be nonsingular on Φ(U ×W ).
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Theorem 4.2.6. If the system (4.2.3) can be transformed into the system (4.2.1)

by Φ and Q, then Q−1(η, ye) = [ηT q̃(η, ye)
T ]T satisfies that

n1∏
j=1

det J̃χ(j) ̸= 0 on Q(U × h(W )), (4.2.7)

where J̃i :=


J̃11 · · · J̃1i
...

. . .
...

J̃i1 · · · J̃ii

 for i = χ(1), . . . , χ(n1) and J̃µν :=
∂q̃µ
∂yeν

for µ, ν =

1, . . . ,m.

Proof. Consider the inverse coordinate transformation Φ−1(η, z) = [ηT xT ]T . The

exterior differentiation of Φ−1 gives[
dη

dx

]
= dΦ−1 =

[
Id O

Rd×n Sn×n

][
dη

dz

]
, (4.2.8)

where

S =
∂x

∂z
=


T11 · · · T1m
...

. . .
...

Tm1 · · · Tmm

 , (4.2.9)

and Tµν is an nµ × nν matrix of which (κ, λ)-th entry is ∂xµκ
∂zνλ

for µ, ν = 1, . . . ,m,

1 ≤ κ ≤ nµ, and 1 ≤ λ ≤ nν . Since Φ−1 is a diffeomorphism on Φ(U ×W ), the

matrix S should be nonsingular on Φ(U ×W ). We will show that the equation

(4.2.7) is equivalent to the non-singularity of S on Φ(U ×W ).

By Lemma 4.2.5, the representation of x in the (η, z)-coordinates is as follows:

for 1 ≤ µ ≤ m and 1 ≤ κ ≤ nµ,

xµκ =

{
q̃µ(η, ye) = q̃µ(η, z11, . . . , zm1) ∈ P0

e (z) if κ = 1,

ψµκ +
∑χ(κ)

i=1
∂q̃µ
∂yei

ziκ ∈ Pκ−1
e (z) if 2 ≤ κ ≤ nµ,

where ψµκ ∈ Pκ−1
eo (z). Since ψµκ ∈ Pκ−1

eo (z), it is a function of η and zνλ’s such

that 1 ≤ ν ≤ m and 1 ≤ λ ≤ min{κ − 1, nν}. It means that xµκ does not
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depend on zνλ such that λ > κ. Furthermore, the coefficient of zνκ in xµκ is
∂q̃µ
∂yeν

. Therefore, ∂xµκ
∂zνλ

= 0 if κ < λ, and ∂xµκ

∂zνλ
=

∂q̃µ
∂yeν

if κ = λ. In addition,

by Proposition 4.2.2, ∂ψµκ

∂zνλ
∈ Pκ−λ

e (z) when κ > λ. Hence, each block Tµν of

the matrix S has the following form (called a lower triangular-like form): for

µ, ν = 1, . . . ,m, 1 ≤ κ ≤ nµ, and 1 ≤ λ ≤ nν ,

(Tµν)κλ =


0 if κ < λ,
∂q̃µ
∂yeν

= J̃µν ∈ P0
e (z) if κ = λ,

∂ψµκ

∂zνλ
∈ Pκ−λ

e (z) if κ > λ ̸= 1,
∂ψµκ

∂yeν
+ ∂

∂yeν

(∑χ(κ)
i=1

∂q̃µ
∂yei

ziκ

)
∈ Pκ−1

e (z) if κ > λ = 1.

(4.2.10)

For the matrix S, the Leibniz formula for determinants gives

detS =
∑
σ∈Sn

sgn(σ)
n∏
k=1

(S)σ(k)k, (4.2.11)

where Sn is the permutation group on {1, . . . , n} and sgn(·) is the sign function

of a permutation. Let n0 := 0 and rij :=
∑i−1

s=0 ns + j for 1 ≤ i ≤ m and

1 ≤ j ≤ ni. Then, the j-th rows of Tiν ’s for 1 ≤ ν ≤ m (respectively, columns

of Tµi’s for 1 ≤ µ ≤ m) belong to the rij-th row (respectively, column) of S.

Let Zj := {rij : 1 ≤ i ≤ χ(j)} for 1 ≤ j ≤ n1. Clearly, Zj ’s are disjoint and⋃n1
j=1Zj = {1, . . . , n}. Thus, for any (ι, ζ) ∈ {1, . . . , n} × {1, . . . , n}, there exists

a unique 4-tuple (µ, κ, ν, λ) ∈ {1, . . . ,m}×{1, . . . , nµ}×{1, . . . ,m}×{1, . . . , nλ}
such that ι = rµκ ∈ Zκ, ζ = rνλ ∈ Zλ, and

(S)ij = (S)rµκrνλ = (Tµν)κλ. (4.2.12)

Let Rj := {σ ∈ Sn : σ(l) = l if l /∈ Zj} for 1 ≤ j ≤ n1, which is a subgroup

of Sn consisting of all the permutations only on Zj . In the equation (4.2.11), if

σ ̸= σ1 ◦ · · · ◦ σn1 where σj ∈ Rj for 1 ≤ j ≤ n1, then there exists at least one

l ∈ {1, . . . , n} such that σ(l) ∈ Zκ, l ∈ Zλ, and κ < λ. For such l, there exist

1 ≤ µ ≤ χ(κ) and 1 ≤ ν ≤ χ(λ) such that σ(l) = rµκ ∈ Zκ and l = rνλ ∈ Zλ. As

a result, by the lower triangular-like form (4.2.10) of Tµν , it holds that (S)σ(l)l =

(Tµν)κλ = 0 and thus sgn(σ)
∏n
k=1(S)σ(k)k = 0. Consequently, we can observe
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from (4.2.10) that the equation (4.2.11) can be rewritten as

detS =
∑

σ=σ1◦···◦σn1

sgn(σ)

n∏
k=1

(S)σ(k)k

=
∑

σ=σ1◦···◦σn1

( ∏
k∈Z1

sgn(σ1)(S)σ1(k)k

)
· · ·
( ∏
k∈Zn1

sgn(σn1)(S)σn1 (k)k

)

=

( ∑
σ1∈R1

sgn(σ1)
∏
k∈Z1

(S)σ1(k)k

)
· · ·
( ∑
σn1∈Rn1

sgn(σn1)
∏

k∈Zn1

(S)σn1 (k)k

)

=

n1∏
j=1

( ∑
σj∈Rj

sgn(σj)
∏
k∈Zj

(S)σj(k)k

)
. (4.2.13)

In the above equation, σj ∈ Rj means that σj(Zj) = Zj . Thus, {(S)σj(k)k : k ∈
Zj} = {(S)rµkrνk : 1 ≤ µ, ν ≤ χ(j)} and it follows from (4.2.10) and (4.2.12) that


(S)r1jr1j · · · (S)r1jrχ(j)j

...
. . .

...

(S)rχ(j)jr1j · · · (S)rχ(j)jrχ(j)j

 =


(T11)jj · · ·

(
T1χ(j)

)
jj

...
. . .

...(
Tχ(j)1

)
jj

· · ·
(
Tχ(j)χ(j)

)
jj



=


J̃11 · · · J̃1χ(j)
...

. . .
...

J̃χ(j)1 · · · J̃χ(j)χ(j)

 = J̃χ(j).

Therefore, for 1 ≤ j ≤ n1, it holds that

∑
σj∈Rj

sgn(σj)
∏
k∈Zζ

(S)σj(k)k =
∑

σ∈Sχ(j)

sgn(σ)

χ(j)∏
k=1

Jσ(k)k = det J̃χ(j). (4.2.14)

Finally, we can obtain from (4.2.13) and (4.2.14) that

detS =

n1∏
j=1

det J̃χ(j). (4.2.15)

It should be noted that, although S is defined on Φ(U ×W ), J̃χ(j) is defined on

Q(U × h(W )) for 1 ≤ j ≤ n1. Hence, S is nonsingular on Φ(U ×W ) if and only

if the condition (4.2.7) is satisfied.
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The following example is given for a better understanding of the proof of

Theorem 4.2.6. Trough the example, we will verify that the equation (4.2.15)

holds for the matrix S defined by (4.2.9) and (4.2.10).

Example 4.2.1. Consider the case where n = 7, m = 3 and (n1, n2, n3) =

(3, 3, 1). The matrix S defined by (4.2.9) and (4.2.10) can be written as

S =



J̃11 0 0 J̃12 0 0 J̃13

∗ J̃11 0 ∗ J̃12 0 ∗
∗ ∗ J̃11 ∗ ∗ J̃12 ∗
J̃21 0 0 J̃22 0 0 J̃23

∗ J̃21 0 ∗ J̃22 0 ∗
∗ ∗ J̃21 ∗ ∗ J̃22 ∗
J̃31 0 0 J̃32 0 0 J̃33


.

By the Leibniz formula for determinants, we have

detS =
∑
σ∈S7

sgn(σ)
7∏

k=1

(S)σ(k)k.

The sets Zj ’s are defined as Z1 := {1, 4, 7}, Z2 := {2, 5}, and Z3 := {3, 6}. If

σ(l) ∈ Z1 ∪ Z2 for some l ∈ Z3, then (S)σ(l)l = 0 by the lower triangular-like

form of each block of the matrix S. Similarly, if σ(l) ∈ Z1 for some l ∈ Z2,

then (S)σ(l)l = 0. This implies that
∏7
k=1(S)σ(k)k = 0 if σ ̸= σ1 ◦ σ2 ◦ σ3, where

σj ∈ Rj := {σ ∈ S7 : σ(l) = l if l /∈ Zj} for 1 ≤ j ≤ 3. Hence, it holds that

detS =
∑

σ=σ1◦σ2◦σ3

sgn(σ1)sgn(σ2)sgn(σ3)
∏
k∈Z1

(S)σ1(k)k
∏
k∈Z2

(S)σ2(k)k
∏
k∈Z3

(S)σ3(k)k

=
3∏
j=1

( ∑
σj∈Rj

sgn(σj)
∏
k∈Zj

(S)σj(k)k

)
.

Since the entries of S construct the following structures:[
(S)22 (S)25

(S)52 (S)55

]
=

[
(S)33 (S)36

(S)63 (S)66

]
=

[
J̃11 J̃12

J̃21 J̃22

]
= J̃2 = J̃χ(2) = J̃χ(3),
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
(S)11 (S)14 (S)17

(S)41 (S)44 (S)47

(S)71 (S)74 (S)77

 =


J̃11 J̃12 J̃13

J̃21 J̃22 J̃23

J̃31 J̃32 J̃33

 = J̃3 = J̃χ(1),

it holds that

∑
σ1∈R1

sgn(σ1)
∏
k∈Z1

(S)σ1(k)k =
∑
σ∈S3

sgn(σ)

3∏
k=1

J̃σ(k)k = det J̃3 = det J̃χ(1),

∑
σ2∈R2

sgn(σ2)
∏
k∈Z2

(S)σ2(k)k =
∑
σ∈S2

sgn(σ)
2∏

k=1

J̃σ(k)k = det J̃2 = det J̃χ(2),

∑
σ3∈R3

sgn(σ3)
∏
k∈Z3

(S)σ3(k)k =
∑
σ∈S2

sgn(σ)

2∏
k=1

J̃σ(k)k = det J̃2 = det J̃χ(3).

Consequently, we obtain

detS =
3∏
j=1

det J̃χ(j),

which satisfies the equation (4.2.15). �

Remark 4.2.6. When we do not consider the auxiliary dynamics (4.1.1), the

condition (4.2.7) becomes
∏n1
j=1 det J̃χ(j) ̸= 0 on Q(h(W )), and it is also a neces-

sary condition for the OEL problem. However, to our best knowledge, there has

so far been no literature providing such a necessary condition. �

4.2.3 System Dynamics

In this subsection, we derive the third necessary condition. It is related to the

system dynamics (3.1.3), especially, fi(x) for 1 ≤ i ≤ m. The following theorem

states it and plays a key role in deriving a necessary and sufficient condition for

the RDOEL problem, which will be given in the next chapter.

Theorem 4.2.7. If the system (3.1.3) is RDOEL, then it holds that fi(x) ∈
Pni(x) for 1 ≤ i ≤ m. �

In order to prove the theorem comfortably, we need the following lemma.
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Lemma 4.2.8. Suppose that the system (4.2.3) is transformed into the system

(4.2.1) and ψ(η, z) ∈ Pk−1
e (z) (respectively, Pk

eo(z)) for any 1 ≤ k ≤ n1. Then,

the representation of ψ in the (η, x)-coordinates belongs to Pk−1
e (x) (respectively,

Pk
eo(x)).

Proof. The proof is by induction on k starting from k = 1. Let ψ(η, z) ∈ P0
e (z) =

P1
eo(z). Then, ψ depends only on η and ye. Therefore, it holds that ψ(η, ye) =

(ψ ◦ Q−1)(η, y) ∈ P0
e (x) = P1

eo(x), and thus the lemma is true when k = 1.

Suppose that 2 ≤ k ≤ n1 and the lemma is true for 1 ≤ j ≤ k − 1. By Definition

4.2.2, ψ(η, z) ∈ Pk−1
e (z) (respectively, Pk

eo(z)) implies that its weighted degree

is less than or equal to k − 1 (respectively, k) and it is a polynomial of zij ’s,

where 1 ≤ i ≤ χ(2) and 2 ≤ j ≤ k, with coefficients that belong to P0
e (z). Since

the lemma is true when k = 1, all the coefficients also belong to P0
e (x) in the

(η, x)-coordinates. Hence, if the representation of zij in the (η, x)-coordinates

belongs to Pj−1
e (x) for 1 ≤ i ≤ χ(2) and 2 ≤ j ≤ k, then the lemma is also

true for k. By the induction hypothesis and the fact that zij ∈ Pj−1
e (z), the

representation of zij in the (η, x)-coordinates belongs to Pj−1
e (x) for 1 ≤ i ≤ χ(2)

and 2 ≤ j ≤ k − 1. Thus, in order to complete the proof, we have only to prove

that the representation of zik in the (η, x)-coordinates is an element of Pk−1
e (x)

for 1 ≤ i ≤ χ(k). By Lemma 4.2.5, it holds that


x1k
...

xχ(k)k

 =


ψ1k +

∑χ(k)
i=1

∂q̃1
∂yei

zik
...

ψχ(k)k +
∑χ(k)

i=1
∂q̃χ(k)

∂yei
zik

 =


ψ1k

...

ψχ(k)k

+ J̃χ(k)


z1k
...

zχ(k)k

 ,
where ψik ∈ Pk−1

eo (z) for 1 ≤ i ≤ χ(k). Let φik(η, x) := (ψik ◦Φ)(η, x) = ψik(η, z),

which denotes the representation of ψik in the (η, x)-coordinates. Then, φik ∈
Pk−1
eo (x) by the induction hypothesis, and we have


z1k
...

zχ(k)k

 =
(
J̃χ(k)

)−1


x1k − φ1k(η, x)

...

xχ(k)k − φχ(k)k(η, x)

 ,

because J̃χ(k) is nonsingular for 2 ≤ k ≤ n1 by Theorem 4.2.6. Since all the entries
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of J̃χ(k) are elements of P0
e (z), their representations in the (η, x)-coordinates also

belong to P0
e (x). Therefore, one can observe that all the entries in the right-hand

side of the above equation belong to Pk−1
e (x), i.e., the representation of zik in the

(η, x)-coordinates is an element of Pk−1
e (x) for 1 ≤ i ≤ χ(k).

Now, let us prove Theorem 4.2.7.

Proof of Theorem 4.2.7. If the system (3.1.3) is RDOEL, then there exist an aux-

iliary dynamics such as (4.1.1) and two maps Φ and Q transforming the extended

system (4.2.3) into the system (4.2.1). Therefore, by Lemma 4.2.5, we have

xini = ψini +

χ(ni)∑
k=1

∂q̃i
∂yek

zkni
for 1 ≤ i ≤ m,

where ψini ∈ Pni−1
eo (z). Thus, it follows from the above equation and (4.2.1) that

fi(x) = ẋini = LFz

(
ψini +

χ(ni)∑
k=1

∂q̃i
∂yek

zkni

)

= LFzψini +

χ(ni)∑
k=1

((
LFz

∂q̃i
∂yek

)
zkni

+
∂q̃i
∂yek

żkni

)

= LFzψini +

χ(ni)∑
k=1

((
LFz

∂q̃i
∂yek

)
zkni

+
∂q̃i
∂yek

ãkni

)
+

∑
nk≥ni+1

∂q̃i
∂yek

zk(ni+1)

=

{
ψi +

∑χ(ni+1)
k=1

∂q̃i
∂yek

zk(ni+1) if ni < n1

ψi if ni = n1
for 1 ≤ i ≤ m,

where

ψi := LFzψini +

χ(ni)∑
k=1

(
(LFz

∂q̃i
∂yek

)zkni
+

∂q̃i
∂yek

ãkni

)
.

Since ψini ∈ Pni−1
eo (z) and ∂q̃i

∂yek
∈ P0

e (z), it holds that LFzψini ∈ Pni
eo (z) and

LFz

∂q̃i
∂yek

∈ P1
e (z) by Corollary 4.2.4 and Lemma 4.2.3, respectively. As a result,

ψi ∈ Pni
eo (z), and thus the representation of fi(x) in the (η, z)-coordinates belongs

to Pni
e (z) (respectively, Pni

eo (z)) if ni < n1 (respectively, if ni = n1) for 1 ≤ i ≤ m.
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Hence, by Lemma 4.2.8, we have fi(x) ∈ Pni
e (x) for 1 ≤ i ≤ m. (Note that

Pni
eo (x) = Pni

e (x) if ni = n1.) Since fi(x) is a function of x only, it is concluded

that fi(x) belongs to Pni(x) for 1 ≤ i ≤ m. �

Remark 4.2.7. Actually, Theorem 4.2.7 is motivated by Proposition 3.3 in

[KR85] (Theorem 3.2.4 in Section 3.2), which gives a necessary condition for

the OEL problem. In this dissertation, we could complete the proof with the aid

of Theorem 4.2.6. �

Remark 4.2.8. Although the condition fi(x) ∈ Pni(x) for 1 ≤ i ≤ m is a neces-

sary condition of both the OEL and RDOEL problems, it is literally a necessary

condition. That is, in the class of systems satisfying the condition, there exists a

class of systems that are not OEL but RDOEL (e.g. Example 4.4.2). Meanwhile,

the condition is not a necessary condition for the DOEL problem. An example,

which does not satisfy the condition but is DOEL, was given in [Noh01]. By the

fact and Theorem 4.1.1, we can see that DOEL strictly includes RDOEL. �

This section ends with providing the following lemma, which is dual to Lemma

4.2.3 in some sense.

Lemma 4.2.9. Suppose that fi(x) ∈ Pni(x) for 1 ≤ i ≤ m and φ(η, x) ∈ Pk
e (x)

(respectively, φ(x) ∈ Pk(x)) for any k ≥ 0. Then, LFφ ∈ Pk+1
e (x) (respectively,

LFφ = Lfφ ∈ Pk+1(x)).

Proof. It follows from (3.1.3) and (4.2.3) that

LF c(η, y) =
d∑
i=1

∂c

∂ηi
pi +

∑
ni=1

∂c

∂yi
fi +

∑
ni≥2

∂c

∂yi
xi2 ∈ P1

e (x),

LFxij =

{
xi(j+1) ∈ Pj(x) if j < ni

fi(x) ∈ Pj(x) if j = ni

= Lfxij for 1 ≤ i ≤ χ(2) and 1 ≤ j ≤ ni,

where c(η, y) ∈ P0
e (x). If c(η, y) does not depend on η, i.e., c(η, y) = c(y) ∈ P0(x),

then LF c = Lfc ∈ P1(x). Thus, it is easy to see that the lemma is true, by a

similarly way to the proof of Lemma 4.2.3
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4.3 Necessary and Sufficient Conditions

In this section, by means of the necessary conditions given in the previous section,

we derive a geometric necessary and sufficient condition for the RDOEL problem,

i.e., a geometric equivalent condition for the existence of Φ and Q transforming

the extended system (4.2.3) into the system (4.2.1). Since the RDOEL problem

is a natural extension of the OEL problem, a geometric necessary and sufficient

condition for the OEL problem under consideration of the general output trans-

formation ye = q(y) also can be deduced from the result. Because the equivalent

conditions fully characterize the problems, we can check the solvability for a given

system, and it is also possible to construct an explicit change of coordinates for

OEL or RDOEL by using the results. We will explain how to do that.

4.3.1 Necessary and Sufficient Condition for RDOEL

In order to derive a geometric necessary and sufficient condition for the RDOEL

problem, we need the following consecutive technical lemmas. The first one is a

kind of “Leibniz’s rule”.

Lemma 4.3.1. If X and Y are smooth vector fields and γ is a smooth real-valued

function, then, for any nonnegative integer k, it holds that

adk(−Y )(γX) =
k∑
v=0

(−1)v

(
k

v

)
(LvY γ)adk−v(−Y )X, (4.3.1)

where
(
k
v

)
represents the binomial coefficient.

Proof. The proof is by induction on k starting from k = 0. The equation (4.3.1)

trivially holds when k = 0. If k = 1, then it follows from Proposition 2.3.2 that

ad(−Y )(γX) = [γX, Y ] = γad(−Y )X − (LY γ)X

=
1∑
v=0

(−1)v

(
1

v

)
(LvY γ)ad1−v(−Y )X.

Suppose that k ≥ 2 and the the equation (4.3.1) is satisfied for k − 1, i.e., the
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following equation holds:

adk−1
(−Y )(γX) =

k−1∑
v=0

(−1)v

(
k − 1

v

)
(LvY γ)adk−1−v

(−Y ) X.

By the above induction hypothesis and straightforward calculation, we have that

adk(−Y )(γX) =
[
adk−1

(−Y )(γX), Y
]

=

k−1∑
v=0

(−1)v

(
k − 1

v

)[
(LvY γ)adk−1−v

(−Y ) X, Y
]

=

k−1∑
v=0

(−1)v

(
k − 1

v

)(
(LvY γ)adk−v(−Y )X − (Lv+1

Y γ)adk−1−v
(−Y ) X

)
= γadk(−Y )X + (−1)k(LkY γ)X

+

k−1∑
v=1

(−1)v

((
k − 1

v

)
+

(
k − 1

v − 1

))
(LvY γ)adk−v(−Y )X

=

k−1∑
v=0

(−1)v

(
k − 1

v

)
(LvY γ)adk−1−v

(−Y ) X.

We can observe that the equation (4.3.1) also holds for k, and thus the lemma is

true.

The second lemma is based on the above “Leibniz’s rule” and a property of

the vector field F of the extended system (4.2.3).

Lemma 4.3.2. Suppose that fi(x) ∈ Pni(x) for 1 ≤ i ≤ m. Then, for 1 ≤ i ≤ m,

1 ≤ j ≤ ni, and 0 ≤ k ≤ j − 1, it holds that

adk(−F )

∂

∂xij
=

∂

∂xi(j−k)
+

k∑
s=0

χ(k−s+1)∑
r=1

Crskij
∂

∂xr(nr−k+s)
, (4.3.2)

where F is the vector field of the extended system (4.2.3),

Crskij =

{
0 if s = 0 or nr < j − s,

∗ ∈ Pnr−j+s(x) if s ̸= 0 and nr ≥ j − s,
(4.3.3)
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for 0 ≤ s ≤ k and 1 ≤ r ≤ χ(k − s+ 1).

Proof. Since the both inequalities 1 ≤ i ≤ m and 1 ≤ j ≤ ni are equivalent to

that 1 ≤ j ≤ n1 and 1 ≤ i ≤ χ(j), the proof can be carried out by induction on

k for each fixed j. The induction begins with k = 0. The equations (4.3.2) and

(4.3.3) trivially hold for 1 ≤ j ≤ n1, 1 ≤ i ≤ χ(j), and k = 0. Hence, the lemma

is true when j = 1. If 2 ≤ j ≤ n1 and k = 1, then it holds that

ad(−F )
∂

∂xij
=

[
∂

∂xij
,

d∑
l=1

pl
∂

∂ηl
+
∑
nr≥2

nr∑
s=2

xrs
∂

∂xr(s−1)
+

m∑
r=1

fr
∂

∂xrnr

]

=
∂

∂xi(j−1)
+

m∑
r=1

∂fr
∂xij

∂

∂xrnr

=
∂

∂xi(j−1)
+

1∑
s=0

χ(2−s)∑
r=1

Crs1ij
∂

∂xr(nr−1+s)
for 1 ≤ i ≤ χ(j),

where

Cr01ij := 0 for 1 ≤ r ≤ χ(2),

Cr11ij :=
∂fr
∂xij

for 1 ≤ r ≤ χ(1) = m.

Since we assume that fr ∈ Pnr(x), it follows from Proposition 4.2.2 that Cr11ij =
∂fr
∂xij

= 0 if nr < j − 1. Otherwise, Cr11ij = ∂fr
∂xij

∈ Pnr−j+1(x). Therefore, the

equations (4.3.2) and (4.3.3) hold for k = 1. In addition to this, since we already

showed the equations are also valid for k = 0, the lemma is true when j = 2.

Suppose that 3 ≤ j ≤ n1, 2 ≤ k ≤ j− 1, and the equations (4.3.2) and (4.3.3)

are satisfied for k − 1, i.e., it holds that

adk−1
(−F )

∂

∂xij
=

∂

∂xi(j−k+1)
+

k−1∑
s=0

χ(k−s)∑
r=1

Crs(k−1)ij

∂

∂xr(nr−k+1+s)
for 1 ≤ i ≤ χ(j),

where

Crs(k−1)ij =

{
0 if s = 0 or nr < j − s,

∗ ∈ Pnr−j+s(x) if s ̸= 0 and nr ≥ j − s,
(4.3.4)
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for 0 ≤ s ≤ k−1 and 1 ≤ r ≤ χ(k−s). Then, from the above induction hypothesis

and straightforward calculation, we can obtain that

adk(−F )

∂

∂xij
=

[
adk−1

(−F )

∂

∂xij
, F

]

=

[
∂

∂xi(j−k+1)
+

k−1∑
s=0

χ(k−s)∑
r=1

Crs(k−1)ij

∂

∂xr(nr−k+1+s)
, F

]

=
∂

∂xi(j−k)
+

m∑
l=1

∂fl
∂xi(j−k+1)

∂

∂xlnl

+
k−1∑
s=0

∑
nr=k−s

Crs(k−1)ij

( d∑
l=1

∂pl
∂xr1

∂

∂ηl
+

m∑
l=1

∂fl
∂xr1

∂

∂xlnl

)

+

k−1∑
s=0

∑
nr≥k−s+1

Crs(k−1)ij

(
∂

∂xr(nr−k+s)
+

m∑
l=1

∂fl
∂xr(nr−k+1+s)

∂

∂xlnl

)

−
k−1∑
s=0

∑
nr≥k−s

LFCrs(k−1)ij

∂

∂xr(nr−k+1+s)
for 1 ≤ i ≤ χ(j).

In the third term of the right-hand side of the above equation, the second sum-

mation index nr = k − s implies that nr < j − s because k ≤ j − 1. Therefore,

Crs(k−1)ij = 0 for nr = k−s by the induction hypothesis (4.3.4), and thus the third

term vanishes. As a result, the above equation can be rewritten as

adk(−F )

∂

∂xij
=

∂

∂xi(j−k)
+

m∑
l=1

∂fl
∂xi(j−k+1)

∂

∂xlnl

+

k−1∑
s=0

∑
nr≥k−s+1

Crs(k−1)ij

(
∂

∂xr(nr−k+s)
+

m∑
l=1

∂fl
∂xr(nr−k+1+s)

∂

∂xlnl

)

−
k−1∑
s=0

∑
nr≥k−s

LFCrs(k−1)ij

∂

∂xr(nr−k+1+s)

=
∂

∂xi(j−k)
+

m∑
r=1

∂fr
∂xi(j−k+1)

∂

∂xrnr

+
k−1∑
s=0

∑
nr≥k−s+1

Crs(k−1)ij

∂

∂xr(nr−k+s)

+
k−1∑
v=0

∑
nu≥k−v+1

m∑
r=1

Cuv(k−1)ij

∂fr
∂xu(nu−k+1+v)

∂

∂xrnr

(v := s, u := r, r := u)
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−
k∑
s=1

∑
nr≥k−s+1

LFCr(s−1)
(k−1)ij

∂

∂xr(nr−k+s)
(s := s+ 1)

=
∂

∂xi(j−k)
+

∑
nr≥k+1

Cr0(k−1)ij

∂

∂xr(nr−k)

+

k−1∑
s=1

∑
nr≥k−s+1

(
Crs(k−1)ij − LFCr(s−1)

(k−1)ij

)
∂

∂xr(nr−k+s)

+
∑
nr≥1

(
∂fr

∂xi(j−k+1)
+

k−1∑
v=0

∑
nu≥k−v+1

Cuv(k−1)ij

∂fr
∂xu(nu−k+1+v)

− LFCr(k−1)
(k−1)ij

)
∂

∂xrnr

=
∂

∂xi(j−k)
+

k∑
s=0

χ(k−s+1)∑
r=1

Crskij
∂

∂xr(nr−k+s)
for 1 ≤ i ≤ χ(j),

where Crskij ’s are defined by

Cr0kij := Cr0(k−1)ij , (4.3.5a)

Crskij := Crs(k−1)ij − LFCr(s−1)
(k−1)ij for 1 ≤ s ≤ k − 1, (4.3.5b)

Crkkij :=
∂fr

∂xi(j−k+1)
+

k−1∑
v=0

χ(k−v+1)∑
u=1

Cuv(k−1)ij

∂fr
∂xu(nu−k+1+v)

− LFCr(k−1)
(k−1)ij , (4.3.5c)

for 1 ≤ r ≤ χ(k−s+1). Since it holds that χ(k−s+1) ≤ χ(k−s) as mentioned in

Remark 4.2.3, all the above Crskij ’s are well defined from the induction hypothesis

(4.3.4). Thus, one can observe that the equation (4.3.2) also holds for k.

Finally, let us check whether Crskij ’s defined by (4.3.5) satisfy the condition

(4.3.3) or not. If s = 0, then it follows from the induction hypothesis (4.3.4) and

(4.3.5a) that Cr0kij = 0 for 1 ≤ r ≤ χ(k + 1). If 1 ≤ s ≤ k − 1, then, by the

induction hypothesis (4.3.4) and Lemma 4.2.9, it holds that

Crs(k−1)ij =

{
0 if nr < j − s,

∗ ∈ Pnr−j+s(x) if nr ≥ j − s,

LFCr(s−1)
(k−1)ij =

{
0 if s = 1 or nr < j − s+ 1,

∗ ∈ Pnr−j+s(x) if s ̸= 1 and nr ≥ j − s+ 1,
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for 1 ≤ r ≤ χ(k − s+ 1). Therefore, we obtain from (4.3.5b) that

Crskij =

{
0 if nr < j − s,

∗ ∈ Pnr−j+s(x) if nr ≥ j − s,

for 1 ≤ s ≤ k − 1 and 1 ≤ r ≤ χ(k − s + 1). Lastly, in the equation (4.3.5c), it

holds that

∂fr
∂xi(j−k+1)

=

{
0 if nr < j − k,

∗ ∈ Pnr−j+k(x) if nr ≥ j − k,
(4.3.6a)

Cuv(k−1)ij =

{
0 if v = 0 or nu < j − v,

∗ ∈ Pnu−j+v(x) if v ̸= 0 and nu ≥ j − v,
(4.3.6b)

∂fr
∂xu(nu−k+1+v)

=

{
0 if nr < nu − k + v,

∗ ∈ Pnr−(nu−k+v)(x) if nr ≥ nu − k + v,
(4.3.6c)

LFCr(k−1)
(k−1)ij =

{
0 if nr < j − k + 1,

∗ ∈ Pnr−j+k(x) if nr ≥ j − k + 1.
(4.3.6d)

Combining the equations (4.3.6b) and (4.3.6c), we have

Cuv(k−1)ij

∂fr
∂xu(nu−k+1+v)

=

{
∗ ∈ Pnr−j+k(x) if v ̸= 0 , nu ≥ j − v ,and nr ≥ nu − k + v,

0 otherwise.

Since nu ≥ j− v and nr ≥ nu− k+ v implies that nr ≥ j− k, the above equation

can be rewritten as

Cuv(k−1)ij

∂fr
∂xu(nu−k+1+v)

=

{
∗ ∈ Pnr−j+k if v ̸= 0 and nr ≥ j − k,

0 otherwise.
(4.3.6e)

Therefore, it follows from (4.3.5c), (4.3.6a), (4.3.6d), and (4.3.6e) that

Crkkij =

{
0 if nr < j − k,

∗ ∈ Pnr−j+k(x) if nr ≥ j − k,
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for 1 ≤ r ≤ χ(1). Consequently, the condition (4.3.3) is satisfied and it is con-

cluded that the lemma is also true for 3 ≤ j ≤ n1.

In fact, the above lemma is needed to derive the following lemma which plays

a key role in proving a necessary and sufficient condition for the RDOEL problem.

Lemma 4.3.3. Suppose that fi(x) ∈ Pni(x) for 1 ≤ i ≤ m and φ(η, x) ∈ Pc
e(x)

for any c ≥ 0. Then, for 1 ≤ i ≤ m, 1 ≤ j ≤ ni, and 0 ≤ k ≤ j − 1, it holds that

adk(−F )

(
φ

∂

∂xij

)
=

k∑
σ=0

(
(Cφ)

σ
k

∂

∂xi(j−k+σ)
+

χ(k−σ+1)∑
ρ=1

(Cφ)
ρσ
kij

∂

∂xρ(nρ−k+σ)

)
,

where

(Cφ)
σ
k := (−1)σ

(
k

σ

)
LσFφ ∈ Pc+σ

e (x),

(Cφ)
ρσ
kij :=

σ∑
v=0

(−1)v

(
k

v

)
(LvFφ)C

ρ(σ−v)
(k−v)ij

=

{
0 if σ = 0 or nρ < j − σ,

∗ ∈ Pc+nρ−j+σ
e (x) if σ ̸= 0 and nρ ≥ j − σ,

for 0 ≤ σ ≤ k and 1 ≤ ρ ≤ χ(k − σ + 1).

Proof. Let φ(η, x) ∈ Pc
e(x) for some nonnegative integer c. Then, for 1 ≤ i ≤ m,

1 ≤ j ≤ ni, and 0 ≤ k ≤ j − 1, it follows from Lemma 4.3.1 and Lemma 4.3.2

that

adk(−F )

(
φ

∂

∂xij

)
=

k∑
v=0

(−1)v

(
k

v

)
(LvFφ)adk−v(−F )

∂

∂xij

=
k∑
v=0

(−1)v

(
k

v

)
(LvFφ)

(
∂

∂xi(j−k+v)
+
k−v∑
s=0

χ(k−v−s+1)∑
r=1

Crs(k−v)ij
∂

∂xr(nr−k+v+s)

)

=
k∑

σ=0

(−1)σ

(
k

σ

)
(LσFφ)

∂

∂xi(j−k+σ)

+

k∑
v=0

k−v∑
s=0

χ(k−v−s+1)∑
r=1

(−1)v

(
k

v

)
(LvFφ)Crs(k−v)ij

∂

∂xr(nr−k+v+s)
.
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By changing the summation indices s and r into σ := v+s and ρ := r respectively,

the above equation can be rewritten as

adk(−F )

(
φ

∂

∂xij

)
=

k∑
σ=0

(−1)σ

(
k

σ

)
(LσFφ)

∂

∂xi(j−k+σ)

+
k∑

σ=0

σ∑
v=0

χ(k−σ+1)∑
ρ=1

(−1)v

(
k

v

)
(LvFφ)C

ρ(σ−v)
(k−v)ij

∂

∂xρ(nρ−k+σ)

=

k∑
σ=0

(
(Cφ)

σ
k

∂

∂xi(j−k+σ)
+

χ(k−σ+1)∑
ρ=1

(Cφ)
ρσ
kij

∂

∂xρ(nρ−k+σ)

)
,

where

(Cφ)
σ
k := (−1)σ

(
k

σ

)
(LσFφ),

(Cφ)
ρσ
kij :=

σ∑
v=0

(−1)v

(
k

v

)
(LvFφ)C

ρ(σ−v)
(k−v)ij ,

for 0 ≤ σ ≤ k and 1 ≤ ρ ≤ χ(k − s+ 1). Since φ ∈ Pc
e(x), it follows from Lemma

4.2.9 that LσFφ ∈ Pc+σ
e (x) for any σ ≥ 0. Hence, (Cφ)σk ∈ Pc+σ

e (x) for 0 ≤ σ ≤ k.

By Lemma 4.3.2, it holds that

C
ρ(σ−v)
(k−v)ij =

{
0 if σ = v or nρ < j − σ + v,

∗ ∈ Pnr−j+s−u(x) if σ ̸= v and nρ ≥ j − σ + v,

for 0 ≤ σ ≤ k, 0 ≤ v ≤ σ and 1 ≤ ρ ≤ χ(k − σ + 1). Since 0 ≤ v ≤ σ, the

condition that σ ̸= v and nρ ≥ j − σ + v is equivalent to that 0 ≤ v ≤ σ − 1 and

0 ≤ v ≤ nρ − j + σ. Hence, the above equation can be rewritten as

C
ρ(σ−v)
(k−v)ij =

{
∗ ∈ Pnr−j+s−u(x) if 0 ≤ v ≤ min{σ − 1, nρ − j + σ},
0 otherwise.

If σ = 0 or nρ < j − σ, then min{σ − 1, nρ − j + σ} < 0. Therefore, it follows
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from the above equation that

(Cφ)
ρσ
kij =

σ∑
v=0

(−1)v

(
k

v

)
(LvFφ)C

ρ(σ−v)
(k−v)ij = 0.

If σ ̸= 0 and nρ ≥ j − σ, then min{σ − 1, nρ − j + σ} ≥ 0. Thus, we have

(Cφ)
ρσ
kij =

min{σ−1, nρ−j+σ}∑
v=0

(−1)v

(
k

v

)
(LvFφ)C

ρ(σ−v)
(k−v)ij ∈ Pc+nρ−j+σ

e (x),

because LvFφ ∈ Pc+v
e (x) and C

ρ(σ−v)
(k−v)ij ∈ Pnρ−j+σ−v(x) for 0 ≤ v ≤ min{σ −

1, nρ − j + σ}.

Now, we provide a geometric necessary and sufficient condition for the RDOEL

problem, and prove it by means of the necessary conditions presented in the

previous section and Lemma 4.3.3.

Theorem 4.3.4. The system (3.1.3) is RDOEL via the auxiliary dynamics (4.1.1)

if and only if fi(x) ∈ Pni(x) for 1 ≤ i ≤ m and there exist m vector fields

X1, . . . , Xm satisfying the following conditions:

(R1) Xi’s should be of the following form:

Xi =

χ(ni)∑
r=1

nr−ni∑
s=0

φrsi (η, x)
∂

∂xr(ni+s)
for 1 ≤ i ≤ m,

where φrsi ∈ Ps
e (x).

(R2) The n vector fields adni−j
(−F )Xi’s are linearly independent on U ×W , where

1 ≤ i ≤ m, 1 ≤ j ≤ ni, and U ×W is a neighborhood of (η(0), x(0)).

(R3) On U ×W , it holds that

[
ad

nµ−κ
(−F )Xµ, ad

nν−λ
(−F )Xν

]
= 0

for µ, ν = 1, . . . ,m, 1 ≤ κ ≤ nµ, and 1 ≤ λ ≤ nν .
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Proof. Throughout the proof, we use the following notation: when α = [α1 · · · αn]T ,

we write dα := [dα1 · · · dαn]
T and ∂

∂α := [ ∂
∂α1

· · · ∂
∂αn

].

(Proof of Necessity): If the system (3.1.3) is RDOEL via the auxiliary dynam-

ics (4.1.1), then there exist a neighborhood U ×W ∈ Rd ×Rn of (η(0), x(0)) and

two maps Φ : U×W → Rd+n, (η, x) 7→ (w, z) = (η, z) and Q : U×h(W ) → Rd+m,

(η, y) 7→ (w, ye) = (η, q(η, y)), which are diffeomorphisms onto their images and

transform the extended system (4.2.3) into the system (4.2.1). Since dη = dw, it

follows from (4.2.8) that

[
dη

dx

]
= dΦ−1 =

[
Id O

R S

][
dw

dz

]
,

where S is the matrix defined by the equations (4.2.9) and (4.2.10). By the duality

between 1-forms and vector fields, it holds that

[
∂
∂w

∂
∂z

]
=
[

∂
∂η

∂
∂x

] [ Id O

R S

]
. (4.3.7)

Therefore, it follows from (4.2.9) and (4.3.7) that

∂

∂zνnν

=
m∑
µ=1

nµ∑
κ=1

(Tµν)κnν

∂

∂xµκ
for 1 ≤ ν ≤ m.

In the above equation, by the lower triangular-like form (4.2.10) of each Tµν ,

(Tµν)κnν = 0 if κ < nν . Hence, the above equation becomes

∂

∂zνnν

=
m∑
µ=1

∑
κ≥nν

(Tµν)κnν

∂

∂xµκ

=
∑
nµ≥nν

nµ∑
κ=nν

(Tµν)κnν

∂

∂xµκ
for 1 ≤ ν ≤ m,

where (Tµν)κnν ∈ Pκ−nν
e (z) and, in particular, (Tµν)κnν =

∂q̃µ
∂yeν

when κ = nν .

Let the representation of (Tµν)κnν in the (η, x)-coordinates be φµ(κ−nν)
ν . Then,

φ
µ(κ−nν)
ν ∈ Pκ−nν

e (x) by Lemma 4.2.8. Finally, change the indices ν, µ, and κ

to i = ν, r = µ, and s = κ − nν , respectively. Then, the above equation can be
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rewritten as

∂

∂zini

=

χ(ni)∑
r=1

nr−ni∑
s=0

φrsi
∂

∂xr(ni+s)
for 1 ≤ i ≤ m,

where φrsi ∈ Ps
e (x) and, in particular, φr0i = ∂q̃r

∂yei
because s = 0 implies k = nν .

We define

Xi :=
∂

∂zini

=

χ(ni)∑
r=1

nr−ni∑
s=0

φrsi
∂

∂xr(ni+s)
for 1 ≤ i ≤ m, (4.3.8)

such that the condition (R1) is satisfied.

Since we assume that the system (3.1.3) is RDOEL via the auxiliary dynamics

(4.1.1), the vector field F of the extended system (4.2.3) can be expressed in the

(w, z)-coordinates as follows:

F =
d∑

k=1

p̃k(w, ye)
∂

∂wk

+
∑
ni≥2

ni∑
j=2

(
zij + ãi(j−1)(w, ye)

) ∂

∂zi(j−1)
+

m∑
i=1

ãini(w, ye)
∂

∂zini

,

where p̃k(w, ye) := pk(w, q̃(w, ye)) = pk(η, y) for 1 ≤ k ≤ d and ãij(w, ye) :=

aij(w, q̃(w, ye)) = aij(η, y) for 1 ≤ i ≤ m and 1 ≤ j ≤ ni. By straightforward

calculation, it holds that

ad(−F )
∂

∂zij
=

[
∂

∂zij
, F

]
=

∂

∂zi(j−1)
, (4.3.9)

for 1 ≤ i ≤ χ(2) and 2 ≤ j ≤ ni. Therefore, from (4.3.8) and (4.3.9), we have

adni−j
(−F )Xi =

∂
∂zi(ni−(ni−j))

= ∂
∂zij

for 1 ≤ i ≤ m and 1 ≤ j ≤ ni. This implies that{
adni−j

(−F )Xi : 1 ≤ i ≤ m, 1 ≤ j ≤ ni
}
=
{

∂
∂zij

: 1 ≤ i ≤ m, 1 ≤ j ≤ ni
}
. Hence, it

is easy to see that the conditions (R2) and (R3) are satisfied.

(Proof of Sufficiency): Suppose that there exist m vector fields X1, . . . , Xm

satisfying the conditions (R1), (R2), and (R3). Then, by (R2), (R3), Theorem

2.4.5 (Simultaneous Rectification Theorem), and Corollary 2.4.6, there exists a



76 Chap. 4. RDOEL for Multi-Output Systems

coordinate chart (Ū × W̄ , (w̄, z)), where Ū × W̄ ⊂ Rd × Rn is a neighborhood of

(η(0), x(0)) and (w̄, z) = (w̄1, . . . , w̄d, z11, . . . , zmnm), such that

∂

∂zνλ
= adnν−λ

(−F )Xν for 1 ≤ ν ≤ m and 1 ≤ λ ≤ nν . (4.3.10)

Moreover, by (R1) and Lemma 4.3.3, each vector field ∂
∂zνλ

can be expressed as

∂

∂zνλ
= adnν−λ

(−F )Xν = adnν−λ
(−F )

( χ(nν)∑
r=1

nr−nν∑
s=0

φrsν
∂

∂xr(nν+s)

)
(4.3.11)

=

χ(nν)∑
r=1

nr−nν∑
s=0

nν−λ∑
σ=0

(
(Cφrsν )σnν−λ

∂

∂xr(s+λ+σ)
+

χ(nν−λ−σ+1)∑
ρ=1

(Cφrsν )ρσ(nν−λ)r(nν+s)

∂

∂xρ(nρ−nν+λ+σ)

)

for 1 ≤ ν ≤ m and 1 ≤ λ ≤ nν . Since all the ∂
∂zνλ

’s do not depend on ∂
∂η1

, . . . , ∂
∂ηd

and they are linear combinations of ∂
∂xµκ

’s, we have

∂

∂z
=

∂

∂x
L, (4.3.12)

where

L :=


H11 · · · H1m

...
. . .

...

Hm1 · · · Hmm


n×n

, (4.3.13)

and Hµν is an nµ × nν matrix whose (κ, λ)-th entry is the coefficient of ∂
∂xµκ

in

the representation (4.3.11) of ∂
∂zνλ

for µ, ν = 1 . . . ,m, 1 ≤ κ ≤ nµ, and 1 ≤
λ ≤ nν . In addition to this, since (η, x) is also a coordinate map on Ū × W̄ , the

remained vector fields ∂
∂w̄1

, . . . , ∂
∂w̄d

can be expressed as linear combinations of
∂
∂η1

, . . . , ∂
∂ηd

, ∂
∂x11

, . . . , ∂
∂xmnm

as follows:

∂

∂w̄
=
[

∂
∂η

∂
∂x

] [ Md×d

Nn×d

]
. (4.3.14)
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As a consequence of (4.3.12) and (4.3.14), we have

[
∂
∂w̄

∂
∂z

]
=
[

∂
∂η

∂
∂x

] [ M O

N L

]
.

Trivially, both M and L are nonsingular on Ū × W̄ . Therefore, by the duality

between vector fields and 1-forms, it holds that[
dw̄

dz

]
=

[
M−1 O

−L−1NM−1 L−1

][
dη

dx

]
.

Let w = η. Then, dw = dη and thus it follows from the above equation that[
dw

dz

]
=

[
Id O

−L−1NM−1 L−1

][
dη

dx

]
. (4.3.15)

Since L−1 is nonsingular at (η(0), x(0)), the 1-forms dw1, . . . ,dwd,dz11, . . . ,dzmnm

are linearly independent at (η(0), x(0)). This implies that (w, z) can be also a co-

ordinate map on a neighborhood U×W of (η(0), x(0)), and thus there exists a co-

ordinate transformation Φ such that Φ : U ×W → Rd+n, (η, x) 7→ (w, z) = (η, z),

which is a diffeomorphism onto its image.

Next, we verify the existence of an output transformation Q(η, y) = [wT yTe ]
T

such that w = η and ye = q(η, y) = Cz. To this end, we first show that each

block Hµν for 1 ≤ µ, ν ≤ m of the matrix L, defined by the equation (4.3.13), has

a lower triangular-like form similar to (4.2.10) in the proof of Theorem 4.2.6. As

mentioned above, (Hµν)κλ is the coefficient of ∂
∂xµκ

in the representation (4.3.11)

of ∂
zνλ

for µ, ν = 1, . . . ,m, 1 ≤ κ ≤ nµ, and 1 ≤ λ ≤ nν . For the vector field
∂

∂xk(s+λ+σ)
in the right-hand side of the equation (4.3.11), let κ := s + λ + σ.

Then, κ ≥ λ because s ≥ 0 and σ ≥ 0. Moreover, by Lemma 4.3.3, its coefficient

(Cφklν )
s
nν−λ satisfies the following condition:

(Cφrsν )σnν−λ =

{
φr0ν ∈ P0

e (x) if κ = λ (s = 0 and σ = 0),

∗ ∈ Ps+σ
e (x) = Pκ−λ

e (x) if κ > λ.
(4.3.16)
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Similarly, for the vector field ∂
∂xρ(nρ−nν+λ+σ)

in the right-hand side of (4.3.11), let

κ := nρ − nν + λ+ σ. Then, it holds that
κ < λ ⇔ nρ < nν − σ ≤ nν + s− σ for all 0 ≤ s ≤ nr − nν ,

κ = λ ⇔ nρ = nν − σ ≤ nν + s− σ for all 0 ≤ s ≤ nr − nν ,

(equality holds only for s = 0.)

κ > λ ⇔ nρ ≥ nν + s− σ for some 0 ≤ s ≤ nr − nν .

Therefore, by Lemma 4.3.3, its coefficient
∑χ(nν)

r=1

∑nr−nν
s=0 (Cφrsν )ρσ(nν−λ)r(nν+s)

sat-

isfies that

χ(nν)∑
r=1

nr−nν∑
s=0

(Cφrsν )ρσ(nν−λ)r(nν+s)

=


0 if σ = 0 or κ < λ,∑χ(nν)

r=1 (Cφr0ν )ρσ(nν−λ)rnν
∈ P0

e (x) if σ ̸= 0 and κ = λ,

∗ ∈ Pnρ−nν+σ
e (x) = Pκ−λ

e (x) if σ ̸= 0 and κ > λ.

(4.3.17)

Consequently, from (4.3.16) and (4.3.17), we can observe that each Hµν has the

following lower triangular-like form:

(Hµν)κλ =


0 if κ < λ,

∗ ∈ P0
e (x) if κ = λ,

∗ ∈ Pκ−λ
e (x) if κ > λ.

(4.3.18)

for µ, ν = 1, . . . ,m, 1 ≤ κ ≤ nµ, and 1 ≤ λ ≤ nν . Since each block of the matrix

L has the above lower triangular-like form, it follows from (4.3.13) and (4.3.15)

that

[
dη

dy

]
=


dη

dx11
...

dxm1

 =


Id O · · · O

∗ (H11)11 · · · (H1m)11
...

...
. . .

...

∗ (Hm1)11 · · · (Hmm)11




dw

dz11
...

dzm1


=:

[
Id O

Dm×d Em×m

][
dw

dye

]
,
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with the matrix Em×m of which all the entries are functions of η, x11, x21, . . . , xm1

only. Moreover, by a similar way to the proof of Theorem 4.2.6, it is not difficult

to see that Em×m is also nonsingular on U × h(W ), because the matrix L is

nonsingular on U×W and each block of the matrix L has the lower triangular-like

form (4.3.18). Therefore, there exists an output transformation Q : U × h(W ) →
Rd+m, (η, y) 7→ (w, ye) = (η, q(η, y)), which is a diffeomorphism onto its image,

such that Q forms a part of the coordinate transformation Φ as follows:

yei = qi(η, y) = qi(η, x11, . . . , xm1) = zi1 for 1 ≤ i ≤ m,

where q(η, y) = [q1(η, y) · · · qm(η, y)]T . Conversely, there also exists the inverse

output transformation Q−1(w, ye) = [wT q̃(w, ye)
T ]T = [ηT yT ]T .

Finally, we determine the vector field F of the extended system (4.2.3) in

the (w, z)-coordinates. Let Fz :=
∑d

k=1 F0k
∂
∂wk

+
∑m

r=1

∑nr
s=1 Frs

∂
∂zrs

denote the

representation of F in the (w, z)-coordinates. Since w = η, F0k = ẇk = η̇k =

pk(η, y) for 1 ≤ k ≤ d. In addition, it follows from the equation (4.3.10) that

∂

∂zij
= adni−j

(−F )Xi =

[
ad

ni−(j+1)
(−F ) Xi, F

]
=

[
∂

∂zi(j+1)
, F

]

=

d∑
k=1

(
∂F0k

∂zi(j+1)

)
∂

∂wk
+

m∑
r=1

nr∑
s=1

(
∂Frs

∂zi(j+1)

)
∂

∂zrs
,

for 1 ≤ i ≤ m and 1 ≤ j ≤ ni − 1. The above equation implies that ∂Frs
∂zi(j+1)

=

δir · δjs for i, r = 1, . . . ,m, 1 ≤ j ≤ ni − 1, and 1 ≤ s ≤ nr. Therefore, Fij =

zi(j+1)+ãij(w, z11, . . . , zm1) = zi(j+1)+ãij(w, ye) for 1 ≤ i ≤ m and 1 ≤ j ≤ ni−1,

and Fini = ãini(w, z11, . . . , zm1) = ãini(w, ye) for 1 ≤ i ≤ m. Therefore, we have

Fz =

d∑
k=1

pk(η, y)
∂

∂wk
+

m∑
i=1

(
ni−1∑
j=1

(
zi(j+1) + aij(η, y)

) ∂

∂zij
+ aini(η, y)

∂

∂zini

)
,

where aij(η, y) := ãij(η, q(η, y)) = ãij(w, ye) for 1 ≤ i ≤ m and 1 ≤ j ≤ ni. We

can see that Fz is equal to the vector field of the system (4.2.1).

Remark 4.3.1. By the equations (4.3.10) and (4.3.12), the condition (R2) holds

if and only if the matrix L is nonsingular on U ×W . In the proof of Theorem
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4.3.4, it is shown that each block of L has the lower triangular-like form (4.3.18)

similar to that of S defined by (4.2.9) and (4.2.10) in the proof of Theorem 4.2.6.

Therefore, by a similar way to the equation (4.2.7), detL can be easily calculated

and thus we obtain from detL ̸= 0 the condition for (R2) to be satisfied. We will

illustrate it by examples in the next section. �

4.3.2 Necessary and Sufficient Condition for OEL

As mentioned before, if the auxiliary dynamics (4.1.1) is not employed, then the

RDOEL problem becomes the OEL problem. Therefore, we can derive a geometric

necessary and sufficient condition for the OEL problem, from a direct consequence

of Theorem 4.3.4. The following corollary is that.

Corollary 4.3.5. The system (3.1.3) is OEL if and only if fi(x) ∈ Pni(x) for

1 ≤ i ≤ m and there exist m vector fields X1, . . . , Xm satisfying the following

conditions:

(O1) Xi’s should be of the following form:

Xi =

χ(ni)∑
r=1

nr−ni∑
s=0

φrsi (x)
∂

∂xr(ni+s)
for 1 ≤ i ≤ m,

where φrsi ∈ Ps(x).

(O2) The n vector fields adni−j
(−f)Xi’s are linearly independent on W , where 1 ≤

i ≤ m, 1 ≤ j ≤ ni, and W is a neighborhood of x(0).

(O3) On W , it holds that

[
ad

nµ−κ
(−f) Xµ, ad

nν−λ
(−F )Xν

]
= 0

for µ, ν = 1, . . . ,m, 1 ≤ κ ≤ nµ, and 1 ≤ λ ≤ nν . �

Remark 4.3.2. Actually, (R1) and (O1), which determine the structure of the

vector fields Xi’s, are inspired by the works [BBHB09, BB11] that deal with the

OEL and RDOEL problem, respectively. The advantage of Theorem 4.3.4 over

the result in [BB11] is that we derive a necessary and sufficient condition of the



4.3. Necessary and Sufficient Conditions 81

RDOEL problem for multi-output systems while a sufficient condition for the case

of single output systems was provided in [BB11]. The advantage of Corollary 4.3.5

over the work of [BBHB09] is that we consider the general output transformation

ye = q(y) while an output transformation with a structural restriction was con-

sidered in [BBHB09] (for more details, see Theorem 3.2.7). �

To our best knowledge, Corollary 4.3.5 provides the first geometric equivalent

condition to the solvability of the OEL problem for multi-output systems, in the

case under consideration of a diffeomorphism on system output of the general

form ye = g(y). The condition (O3) was originated from [KI83, KR85] and

has been commonly witnessed in [XG89, BBHB09]. Significant differences are

found in (O1). Although the authors of [XG89] and [BBHB09] derived geometric

necessary and sufficient conditions for the OEL problem, they did not consider

output transformation (i.e. ye = y) or assumed that output transformation has

a structural restriction such as yei = qi(y1, . . . , yi) for 1 ≤ i ≤ m, respectively.

As shown in the proof of Theorem 4.3.4, each φr0i (x), which constitutes Xi by

(O1), coincides with ∂q̃µ
∂yeν

where q̃(ye) = [q̃1(ye) · · · qm(ye)]T is the inverse output

transformation of ye = q(y). Therefore, if ye = y, then φr0i = δir. Similarly, if

yei = qi(y1, . . . , yi) for 1 ≤ i ≤ m, then φr0i (x) =

{
0 when r > i,

φr0i (y1, . . . , yi) when r ≤ i.

This fact means that our result has more freedom on designing φrsi (x)’s than

theirs, and the property makes it possible that the OEL problem can be solved

for a class of systems not covered by the previous results. We illustrate it by the

first example in Section 4.4.

4.3.3 Procedure to Solve OEL and RDOEL

In this subsection, we explain how to check the solvability of the OEL and RDOEL

problems for a given system by means of Corollary 4.3.5 and Theorem 4.3.4.

Furthermore, we also describe a procedure to construct an explicit change of

coordinates for OEL or RDOEL from the vector fields given by Corollary 4.3.5 or

Theorem 4.3.4, respectively.

There exists a class of systems that can be transformed into NOCF without

the aid of any auxiliary dynamics (the case where the OEL problem is solvable).
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Since the OEL problem is fully characterized by Corollary 4.3.5, we can check

the solvability for a given system. If the problem is solvable, then we need not to

use the RDOEL approach, in order not to waste hardware or software resources

that are needed to implement an auxiliary dynamics. However, there also exists

a class of systems to which OEL is not applicable but the RDOEL problem can

be solved. For this reason, the process of applying our results to the given system

(3.1.1) is split into the two stages: OEL procedure by Corollary 4.3.5 and RDOEL

procedure by Theorem 4.3.4.

As an initial stage, according to Theorem 4.2.1 and Theorem 4.2.7 which state

necessary conditions not only for RDOEL but also for OEL, let us first check

the observability of the system (3.1.1) and the condition that fi(x) ∈ Pn
i (x) for

1 ≤ i ≤ m in its observable form (3.1.3). If the system satisfies the conditions,

then we move to the first stage - OEL procedure.

The first stage - OEL procedure

Step 1: According to (O1) in Corollary 4.3.5, set

Xi =

χ(ni)∑
r=1

nr−ni∑
s=0

φrsi
∂

∂xr(ni+s)
for 1 ≤ i ≤ m,

with φrsi ∈ Ps(x), and then calculate adni−j
(−f)Xi for 1 ≤ i ≤ m and 1 ≤ j ≤ ni.

Thereby, we can define an n× n matrix L such that

[adn1−1
(−f)X1 · · · X1 · · · adnm−1

(−f) Xm · · · Xm] =
∂

∂x
L,

where ∂
∂x = [ ∂

∂x11
· · · ∂

∂x1n1
· · · ∂

∂xm1
· · · ∂

∂xmnm
]. Since f is known, all the entries

of L are expressed as functions of x and φrsi ’s. The objective is to find φrsi ’s such

that both (O2) and (O3) in Corollary 4.3.5 are satisfied.

Step 2: The condition (O2) holds if and only if the matrix L is nonsingular.

Therefore, we can obtain some constraint conditions on φrsi ’s, which guarantee

(O2), from detL ̸= 0. Furthermore, since each block of L has a lower triangular-

like form (similar as the equations (4.3.10)-(4.3.13) and (4.3.18)), the method used

to calculate detS in the proof of Theorem 4.2.6 would be helpful in computing

detL.
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Step 3: Direct calculation of the Lie brackets given in (O3) provides some partial

differential equations of φrsi ’s. If there exists a set of solutions of the equations

subject to the constraint conditions obtained in Step 2, then the vector fields

Xi’s with the solutions satisfy (O1)-(O3) in Corollary 4.3.5. That is to say, the

OEL problem is solvable. In addition, from the solutions, all the entries of L

are determined as functions of x. Since it holds that ∂z
∂x = L−1 by (4.3.15), we

can construct an explicit coordinate transformation by solving it. If the partial

differential equations subject to the constraint conditions have no solution, then

it means that the OEL problem is not solvable. In this case, we move to the

second stage - RDOEL procedure.

The second stage - RDOEL procedure

Step 4: Choose an auxiliary dynamics such as η̇ = p(η, y).

Step 5: According to (R1) in Theorem 4.3.4, reset Xi’s by replacing φrsi (x) ∈
Ps(x) with φrsi (η, x) ∈ Ps

e (x). After that, compute adni−j
(−F )Xi’s with F (x) =

[p(η, y)T f(x)T ]T and redefine the matrix L such as

[adn1−1
(−F )X1 · · · X1 · · · adnm−1

(−F ) Xm · · · Xm] =
∂

∂x
L.

Step 6: In a similar way to Step 2, we can obtain some constraint conditions on

φrsi ’s from detL ̸= 0, which guarantee (R2) in Theorem 4.3.4.

Step 7: The Lie brackets in (R3) of Theorem 4.3.4 also give partial differential

equations of φrsi ’s. If there is a set of solutions of the equations subject to the

constraints from the preceding step, then the RDOEL problem is solved and we

can also design explicit z-coordinates by solving ∂z
∂x = L−1.

Remark 4.3.3. Actually, in the second stage - RDOEL procedure, the auxiliary

dynamics plays an important role for the solvability of the RDOEL problem.

If there exists an auxiliary dynamics for a given system such that the RDOEL

problem can be solved, then it is theoretically possible to design it by the following

manner. If the auxiliary dynamics η̇ = p(η, y) is not fixed in Step 4 (equivalently,

it is to be designed), then the entries of L defined in Step 5 depend not only on

(η, x) and φrsi (η, x)’s but also on p(η, y). Hence, the constraint conditions from

(R2) and the partial differential equations by (R3) also depend on φrsi (η, x)’s and
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p(η, y). If there exists a set of solutions of the equations subject to the constraints,

then, from the solution p(η, y), we can also design an auxiliary dynamics that

enables the RDOEL problem to be solvable. In general, however, it is very hard

to find such a solution because unknown p(η, y) makes the constraints and the

equations too complicated. This is the reason why we ‘choose’ a fixed auxiliary

dynamics in Step 4 instead of ‘designing’ it. �

Remark 4.3.4. By Theorem 4.1.1, if a given system is RDOEL via an auxiliary

dynamics, then it is also DOEL via the same auxiliary dynamics with a new

output. Moreover, the coordinate transformation for RDOEL and the new output

ȳe = [η1 ye2 · · · yem]T transform the extended system into a (d+ n)-dimensional

GNOCF. In this sense, the second procedure also offers an algorithm to design a

coordinate transformation for DOEL. �

In Step 2 and Step 6, since each block of the matrix L has a lower triangular-

like form, it is not difficult to obtain constraint conditions on φrsi ’s from detL ̸= 0,

by using the method in the proof of Theorem 4.2.6. However, in Step 3 and Step

7, it would be a tedious work to calculate Lie brackets among the vector fields.

The following lemma and its corollary could help us to reduce the efforts.

Lemma 4.3.6. In the condition (R3) of Theorem 4.3.4, if κ + λ > n1 + 1, then

it always holds that [ad
nµ−κ
(−F )Xµ, ad

nν−λ
(−F )Xν ] = 0.

Proof. From the equations (4.3.10)-(4.3.13), one can observe that adnµ−κ
(−F )Xµ is

the κ-th column of the µ-th column matrices in L. In addition, by the lower

triangular-like form (4.3.18) of each block of L, adnµ−κ
(−F )Xµ can be written as

ad
nµ−κ
(−F )Xµ =

∑
ni≥κ

ni∑
j=κ

(Tiµ)jκ
∂

∂xij
,

with (Tiµ)jκ ∈ Pj−κ
e (x). Similarly, we have

adnν−λ
(−F )Xν =

∑
nr≥λ

nr∑
s=λ

(Trν)sλ
∂

∂xrs
,

with (Trν)sλ ∈ Ps−λ
e (x). Hence, direct calculation of Lie bracket between the
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above two vector fields yields that

[ad
nµ−κ
(−F )Xµ, ad

nν−λ
(−F )Xν ]

=
∑
ni≥κ

ni∑
j=κ

∑
nr≥λ

nr∑
s=λ

(
(Tiµ)jκ

∂(Trν)sλ
∂xij

∂

∂xrs
− (Trν)sλ

∂(Tiµ)jκ
∂xrs

)
∂

∂xij
.

If κ + λ > n1 + 1, then we have ∂(Trν)sλ
∂xij

= 0 because j ≥ κ > n1 − λ + 1 ≥
s−λ+1 and (Trν)sλ ∈ Ps−λ

e (x). Similarly, it holds that ∂(Tiµ)jκ
∂xrs

= 0. As a result,

[ad
nµ−κ
(−F )Xµ, ad

nν−λ
(−F )Xν ] = 0 if κ+ λ > n1 + 1.

Corollary 4.3.7. In the condition (O3) of Theorem 4.3.5, if κ+λ > n1+1, then

it always holds that [ad
nµ−κ
(−f) Xµ, ad

nν−λ
(−f) Xν ] = 0. �

Lastly, we give a useful tip on the order of computation of the Lie brackets.

As mentioned in the proof of Theorem 4.3.4, we take Xi from ∂
∂zini

for 1 ≤ i ≤ m,

which is the last column of the i-th column blocks of the matrix S (see the

equations (4.3.7) and (4.3.8)). In the equation (4.2.9), the (i, j)-th block of S is

an ni × nj matrix and the observability indices (n1, . . . , nm) satisfy n1 ≥ n2 ≥
· · · ≥ nm. In addition, each block of S has the lower triangular-like form (4.2.10).

For these reasons, in general, the following statement holds: the smaller i, the

smaller number of φrsi ’s Xi depends on (indeed, if n1 > n2, then X1 = φ101
∂

∂x1n1
).

Therefore, we calculate Lie brackets among adn1−i
(−F )X1’s for 1 ≤ i ≤ n1 at first

and find φrs1 ’s such that the Lie brackets are zero (if there exist). And then,

compute Lie brackets among adn1−i
(−F )X1’s with the solutions φrs1 ’s and adn2−j

(−F )X2’s,

in order to get φrs2 ’s. After that, we extend the targets of Lie bracket operation

to adn1−k
(−F )X3’s, . . ., adnm−l

(−F )Xm’s successively. This iterative process could reduce

the efforts on calculation of the Lie brackets given in not only (R3) but also (O3).

4.4 Illustrative Examples

In this section, we present two examples in order to demonstrate the results of

Theorem 4.3.4 and Corollary 4.3.5. The first example illustrates that the OEL

problem can be solved for a larger class of systems when an output transformation

of the general form ye = q(y) is considered.
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Example 4.4.1. Consider a multi-output nonlinear system given by

ẋ11 = x12, ẋ21 = e−(x11+x21)x12,

ẋ12 = 2(e−(x11+x21) + 1)x212,

y1 = x11, y2 = x21.

(4.4.1)

The above system is already expressed as an observable form and its observability

indices are given by (n1, n2) = (2, 1). Moreover, the system satisfies the condition,

f1(x) := ẋ12 = 2(e−(x11+x21) + 1)x212 ∈ P2(x),

f2(x) := ẋ21 = e−(x11+x21)x12 ∈ P1(x).

According to the procedure in Subsection 4.3.3, we show that the system is OEL

and construct a change of coordinates which transforms the system into NOCF.

Step 1: We set X1 and X2 by (O1) in Corollary 4.3.5 as follows:

X1 = φ101
∂

∂x12
,

X2 = φ102
∂

∂x11
+ φ112

∂

∂x12
+ φ202

∂

∂x21
,

(4.4.2a)

where φ101 , φ102 , φ202 ∈ P0(x) and φ112 ∈ P1(x). Since the vector field f of the

system is represented as

f = x12
∂

∂x11
+ 2(E−1 + 1)x212

∂

∂x12
+ E−1x12

∂

∂x21
,

where E = ex11+x21 , straightforward calculation yields

ad(−f)X1 = φ101
∂

∂x11
+ ϕ1

1

∂

∂x12
+ E−1φ101

∂

∂x21
, (4.4.2b)

with

ϕ1
1 :=

(
4φ101 (E−1 + 1)− ∂φ101

∂x11
− E−1∂φ

10
1

∂x21

)
x12 ∈ P1(x).
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From (4.4.2), the matrix L is defined as


ad(−f)X1

X1

X2


T

=


∂

∂x11
∂

∂x12
∂

∂x21


T 

φ101 0 φ102

ϕ1
1 φ101 φ112

E−1φ101 0 φ202

 =:
∂

∂x
L.

Step 2: Since each block of L has a lower triangular-like form, by the way used

in the proof of Theorem 4.2.6, it holds that

detL = det

([
φ101 φ102

E−1φ101 φ202

])
· det([φ101 ]) = (φ101 )2(φ202 − E−1φ102 ).

Therefore, (O2) in Corollary 4.3.5 is satisfied if and only if

φ101 ̸= 0 and φ202 − E−1φ102 ̸= 0 on W, (4.4.3)

where W is a neighborhood of x(0).

Step 3: Let us first compute [X1, ad(−f)X1]. Then, we have

[
X1, ad(−f)X1

]
= φ101

(
∂ϕ1

1

∂x12
− ∂φ101
∂x11

− E−1∂φ
10
1

∂x11

)
∂

∂x12

= 2φ101

(
2(E−1 + 1)φ101 − ∂φ101

∂x11
− E−1∂φ

10
1

∂x21

)
∂

∂x12
.

Since φ101 ̸= 0 by the condition (4.4.3), [X1, ad(−f)X1] = 0 if and only if

2(e−(x11+x21) + 1)φ101 − ∂φ101
∂x11

− e−(x11+x21)∂φ
10
1

∂x21
= 0. (4.4.4)

Similarly as shown in the proof of Theorem 4.3.4, if the OEL problem is solved,

then it holds that φ101 = ∂q̃1
∂ye1

= ∂y1
∂ye1

where q̃(ye) = [q̃1(ye) q̃2(ye)]
T = y is

the inverse function of the output transformation ye = q(y). Hence, if q(y) = y

([XG89]) or q(y) has a structural restriction such that q1(y) = q1(y1) ([BBHB09]),

then φ101 = 1 or φ101 = φ101 (y1) = φ101 (x11), respectively. However, it is easy to see

that the equation (4.4.4) does not hold when φ101 = 1, and it has no solution φ101
depending only on x11. This implies that the OEL problem is not solvable for the
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system (4.4.1) when q(y) has such restrictions.

However, if there is no restriction on q(y), then we can find a solution of

the equation (4.4.4) such that φ101 = E2 = e2(x11+x21) which also satisfies the

condition (4.4.3). Let φ101 = E2 and φ112 = ψ1x12 + ψ0 where ψ1, ψ0 ∈ P0(x) (φ112
can be written as φ112 = ψ1x12 + ψ0 because φ112 ∈ P1(x)). Then, ϕ1

1 is rewritten

as ϕ1
1 = 2E(E + 1)x12 and we have

[
X1, X2

]
= E2(ψ1 − 2φ102 − 2φ202 )

∂

∂x12
,

[
ad(−f)X1, X2

]
= E2

(
∂φ102
∂x11

+ E−1∂φ
10
2

∂x21
− 2φ102 − 2φ202

)
∂

∂x11

+ E

{(
E
∂ψ1

∂x11
+
∂ψ1

∂x21
− (2E − 1)ψ1

)
x12 +

(
E
∂ψ0

∂x11
+
∂ψ0

∂x21
− 2(E − 1)ψ0

)
+ 2(E + 1)(ψ1 − 2φ102 − 2φ202 )

}
∂

∂x12
+ E

(
E
∂φ202
∂x11

+
∂φ202
∂x21

− φ102 − φ202

)
∂

∂x11
.

From the above equations, (O3) is satisfied if and only if there exist φ102 , φ202 , ψ1, ψ0 ∈
P0(x) which constitute a set of solutions to the following equations:

ψ1 − 2φ102 − 2φ202 = 0, (4.4.5a)

∂φ102
∂x11

+ E−1∂φ
10
2

∂x21
− 2φ102 − 2φ202 = 0, (4.4.5b)

E
∂ψ1

∂x11
+
∂ψ1

∂x21
− (2E + 1)ψ1 = 0, (4.4.5c)

E
∂ψ0

∂x11
+
∂ψ0

∂x21
− 2(E + 1)ψ0 = 0, (4.4.5d)

E
∂φ202
∂x11

+
∂φ202
∂x21

− φ102 − φ202 = 0. (4.4.5e)

Let φ102 = E2 + 1 = e2(x11+x21) + 1 and φ202 = E − 1 = ex11+x21 − 1, which are

solutions of (4.4.5b) and (4.4.5e) and also satisfy the condition (4.4.3). Then, it

follows from (4.4.5a) that ψ1 = 2(φ102 +φ202 ) = 2(E2+E) = 2(e2(x11+x21)+ex11+x21)

which is a solution of (4.4.5c). Finally, let ψ0 = 0. Then, the last equation (4.4.5d)

holds. Consequently, we find four functions φ101 = e2(x11+x21), φ102 = e2(x11+x21)+1,

φ202 = ex11+x21 − 1, and φ112 = ψ1x12 +ψ0 = 2(e2(x11+x21) + ex11+x21)x12 such that

the conditions (O2) and (O3) in Corollary 4.3.5 are satisfied. From the four
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solutions, we can determine the matrix L as follows:

L =


E2 0 E2 + 1

2(E2 + E)x12 E2 2(E2 + E)x12

E 0 E − 1

 .
Since it holds that ∂z

∂x = L−1 by (4.3.15), a coordinate transformation z = Φ(x)

for OEL is a solution of the partial differential equation,

∂Φ

∂x
= L−1 =


E−1−1
E+1 0 E+E−1

E+1

−2E−2x12 E−2 −2E−2x12
1

E+1 0 −E
E+1

 .
By solving the above equation, we can design a coordinate transformation and an

output transformation such that
z11

z12

z21

 = Φ(x) =


2 ln(ex11+x21 + 1)− e−(x11+x21) − 2x11 − x21

e−2(x11+x21)x12

− ln(ex11+x21 + 1) + x11

 ,
[
ye1

ye2

]
= q(y) =

[
2 ln(ey1+y2 + 1)− e−(y1+y2) − 2y1 − y2

− ln(ey1+y2 + 1) + y1

]
.

As a result, the system (4.4.1) is transformed into NOCF (in fact, a linear system),

ż =


z12

0

0

 = Az,

ye =

[
z11

z21

]
= Cz,

by z = Φ(x) and ye = q(y). �

The second example is given to illustrate that the RDOEL problem can be

solved for a class of systems for which the OEL problem is not solvable and the

RDOEL approach offers a lower dimensional GNOCF than the DOEL approach.
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Example 4.4.2. Consider the following multi-output nonlinear system:

ẋ11 = x12, ẋ21 = x22,

ẋ12 = x13, ẋ22 = x21x12,

ẋ13 = x11x13,

y1 = x11, y2 = x21.

(4.4.6)

The above system is represented as an observable form and satisfies the condition,

f1(x) = x11x13 ∈ P2(x) ⊂ P3(x),

f2(x) = x21x12 ∈ P1(x) ⊂ P2(x).

Actually, the system is DOEL via the auxiliary dynamics η̇ = y1, namely, the

extended system can be transformed into a six-dimensional GNOCF ([BB09]).

We show that the system cannot be transformed into NOCF without the aid of

auxiliary dynamics (i.e. it is not OEL), but it is also RDOEL via a new auxiliary

dynamics such as η̇ = −η+y1 and thus can be transformed into a five-dimensional

GNOCF.

Steps 1-3: According to (O1) in Corollary 4.3.5, let

X1 = φ101
∂

∂x13
,

X2 = φ102
∂

∂x12
+ φ112

∂

∂x13
+ φ202

∂

∂x22
,

(4.4.7)

with φ101 , φ
10
2 , φ

20
2 ∈ P0(x) and φ112 ∈ P1(x). Then, from Step 2, we obtain the

following condition guaranteeing (O2) in Corollary 4.3.5:

φ101 ̸= 0 and φ202 ̸= 0 on W, (4.4.8)

whereW is a neighborhood of x(0). In Step 3, it holds that [ad(−f)X1, ad
2
(−f)X1] =

0 if and only if

∂φ101
∂x11

= 0 and φ101 − ∂φ101
∂x21

x21 = 0. (4.4.9)
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In the above equation, φ101 = 0 when x21 = 0, which violates the condition (4.4.8).

This implies that there is no solution satisfying both (O2) and (O3) in Corollary

4.3.5 when x21 = 0. That is, the OEL problem is not solvable for the system

(4.4.6) on the region where x21 = 0. Therefore, we move to the second stage -

RDOEL procedure in Subsection 4.3.3.

Step 4: As mentioned before, we choose an auxiliary dynamics such that

η̇ = −η + y1, (4.4.10)

which is an input-to-state stable system in the sense given by [SW95] when we

regard the system output y1 as the input of the auxiliary dynamics.

Step 5: In the equation (4.4.7), we adjust φ101 , φ102 , φ202 ∈ P0
e (x) and φ112 ∈ P1

e (x)

so that they depend also on η (i.e. X1 and X2 satisfy (R1) in Theorem 4.3.4).

Since the vector field F of the extended system, which is composed of the system

(4.4.6) and the auxiliary dynamics (4.4.10), is given by

F = (x11 − η)
∂

∂η
+ x12

∂

∂x11
+ x13

∂

∂x12
+ x11x13

∂

∂x13
+ x22

∂

∂x21
+ x21x12

∂

∂x22
,

the other three vector fields are calculated as

ad(−F )X1 = φ101
∂

∂x12
+ ϕ1

1

∂

∂x13
,

ad2(−F )X1 = φ101
∂

∂x11
+ (2ϕ1

1 − φ101 x11)
∂

∂x12
+ ϕ2

2

∂

∂x13
+ φ101 x21

∂

∂x22
,

ad(−F )X2 = φ102
∂

∂x11
+ ϕ1

3

∂

∂x12
+ ϕ2

4

∂

∂x13
+ φ202

∂

∂x21
+ ϕ1

5

∂

∂x22
,

(4.4.11)

where

ϕ1
1 := φ101 x11 −

∂φ101
∂η

(x11 − η)− ∂φ101
∂x11

x12 −
∂φ101
∂x21

x22,

ϕ2
2 := ϕ1

1x11 −
∂ϕ1

1

∂η
(x11 − η)− ∂ϕ1

1

∂x11
x12 −

∂ϕ1
1

∂x12
x13 −

∂ϕ1
1

∂x21
x22 −

∂ϕ1
1

∂x22
x21x12,

ϕ1
3 := φ112 − ∂φ102

∂η
(x11 − η)− ∂φ102

∂x11
x12 −

∂φ102
∂x21

x22,

ϕ2
4 := φ112 x11 −

∂φ112
∂η

(x11 − η)− ∂φ112
∂x11

x12 −
∂φ112
∂x12

x13 −
∂φ112
∂x21

x22 −
∂φ112
∂x22

x21x12,
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ϕ1
5 := φ102 x21 −

∂φ202
∂η

(x11 − η)− ∂φ202
∂x11

x12 −
∂φ202
∂x21

x22.

As a consequence of the equations (4.4.7) and (4.4.11), we define the matrix L

such that

ad2(−F )X1

ad(−F )X1

X1

ad(−F )X2

X2



T

=



∂
∂x11
∂

∂x12
∂

∂x13
∂

∂x21
∂

∂x22



T 

φ101 0 0 φ102 0

2ϕ11
1 − φ101 x11 φ101 0 ϕ1

3 φ102

ϕ2
2 ϕ1

1 φ101 ϕ2
4 φ112

0 0 0 φ202 0

φ101 x21 0 0 ϕ1
5 φ202



T

=:
∂

∂x
L. (4.4.12)

Step 6: One can observe that each block of the matrix L defined above has a

lower triangular-like form. Hence, by the method used in the proof of Theorem

4.2.6, it holds that

detL =

(
det

[
φ101 φ102

0 φ202

])2

· det
[
φ101
]
=
(
φ101 φ

20
2

)2
φ101 .

Therefore, (R2) in Theorem 4.3.4 is satisfied if and only if

φ101 ̸= 0 and φ202 ̸= 0 on U ×W , (4.4.13)

where U ×W is a neighborhood of (η(0), x(0)).

Step 7: Since the observability indices of the system (4.4.2) are given by (n1, n2) =

(3, 2), it follows from Lemma 4.3.6 that

[
X1, ad(−F )X1

]
= 0,[

X1, X2

]
= 0.

Among the other eight Lie brackets, let us first consider [X1, ad
2
(−F )X1] and

[ad(−F )X1, ad
2
(−F )X1] which will give some partial differential equations of φ101 .
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The computation results of them are as follows.

[
X1, ad

2
(−F )X1

]
=

(
φ101

∂ϕ2
2

∂x13
− φ101

∂φ101
∂x11

)
∂

∂x13
= 0,

[
ad(−F )X1, ad

2
(−F )X1

]
= φ101

(
2
∂ϕ1

1

∂x12
− ∂φ101
∂x11

)
∂

∂x12
+

(
φ101

∂ϕ2
2

∂x12
+ ϕ1

1

∂ϕ2
2

∂x13

− φ101
∂ϕ1

1

∂x11
− (2ϕ1

1 − φ101 x11)
∂ϕ1

1

∂x12
− φ101 x21

∂ϕ1
1

∂x22

)
∂

∂x13

= −3φ101
∂φ101
∂x11

∂

∂x12
+

(
φ101

( ∂ϕ2
2

∂x12
− ∂ϕ1

1

∂x11
− ∂φ101
∂x11

x11+
∂φ101
∂x21

x21

)
+3ϕ1

1

∂φ101
∂x11

)
∂

∂x13
.

Since φ101 ̸= 0 by the condition (4.4.13), it follows from the second equation that

[ad(−F )X1, ad
2
(−F )X1] = 0 if and only if

∂φ101
∂x11

= 0, (4.4.14)

∂ϕ2
2

∂x12
− ∂ϕ1

1

∂x11
+
∂φ101
∂x21

x21 = 0. (4.4.15)

The equation (4.4.14) implies that φ101 does not depend on x11, in other words,

φ101 = φ101 (η, x21) ∈ P0
e (x). By this fact, ϕ1

1 and ϕ2
2 can be rewritten as

ϕ1
1 = φ101 x11 −

∂φ101
∂η

(x11 − η)− ∂φ101
∂x21

x22 = ϕ1
1(η, x11, x21, x22),

ϕ2
2 = ϕ1

1x11 −
∂ϕ1

1

∂η
(x11 − η)−

(
φ101 − ∂φ101

∂η

)
x12 −

∂ϕ1
1

∂x21
x22 +

∂φ101
∂x21

x21x12.

By the above equations, the equation (4.4.15) becomes

∂ϕ2
2

∂x12
− ∂ϕ1

1

∂x11
+
∂φ101
∂x21

x21 = −2

(
φ101 − ∂φ101

∂η
− ∂φ101
∂x21

x21

)
= 0.

As a result, we obtain a partial differential equation for φ101 (η, x21) such that

φ101 − ∂φ101
∂η

− ∂φ101
∂x21

x21 = 0. (4.4.16)

Let φ101 = eη which is a solution of the equation (4.4.16) and satisfies the condition

(4.4.13). Then, [ad(−F )X1, ad
2
(−F )X1] = 0. Moreover, since ϕ1

1 = ηeη and ϕ2
2 =
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(η2 + η − x11)e
η, we have

X1 = eη
∂

∂x13
,

ad(−F )X1 = eη
∂

∂x12
+ ηeη

∂

∂x13
,

ad2(−F )X1 = eη
∂

∂x11
+ (2η − x11)e

η ∂

∂x12
+ (η2 + η − x11)e

η ∂

∂x13
+ x21e

η ∂

∂x22
.

For simple calculations, we temporarily assume that φ102 = 0 and φ112 = 0, which

do not violate the condition (4.4.13). Then, X2 and ad(−F )X2 become

X2 = φ202
∂

∂x22
,

ad(−F )X2 = φ202
∂

∂x21
+ ϕ1

5

∂

∂x22
,

where

ϕ1
5 = −∂φ

20
2

∂η
(x11 − η)− ∂φ202

∂x11
x12 −

∂φ202
∂x21

x22.

With the above new representation of adni−j
(−F )Xi for 1 ≤ i ≤ 2 and 1 ≤ j ≤ ni, let

us continue to check the Lie brackets for (R3) as follows:

[
X1, ad(−F )X2

]
= 0,[

ad(−F )X1, X2

]
= 0,[

ad(−F )X1, ad(−F )X2

]
= eη

∂ϕ1
5

∂x12

∂

∂x22
= −eη ∂φ

20
2

∂x11

∂

∂x22
,

[
ad2(−F )X1, X2

]
= eη

∂φ202
∂x11

∂

∂x22
,

[
X2, ad(−F )X2

]
= φ202

(
∂ϕ1

5

∂x22
− ∂φ202
∂x21

)
∂

∂x22
= −φ202

∂φ202
∂x21

∂

∂x22
.

Since φ202 ̸= 0 by the condition (4.4.13), in order for both (R2) and (R3) to be

satisfied, it should hold that

∂φ202
∂x11

=
∂φ202
∂x21

= 0.
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The equation implies that φ202 depends only on η because φ202 ∈ P0
e (x). As a result,

we have ϕ1
5 = −∂φ202

∂η (x11 − η) and thus the last Lie bracket between ad2(−F )X1

and ad(−F )X2 is calculated as

[
ad2(−F )X1, ad(−F )X2

]
= eη

(
ϕ1
5

∂x11
− φ202

)
∂

∂x22
= −eη

(
∂φ202
∂η

+ φ202

)
∂

∂x22
.

From the above equation, [ad2(−F )X1, ad(−F )X2] = 0 if and only if

∂φ202
∂η

+ φ202 = 0.

Let φ202 = e−η which is a solution of the above equation and also satisfies the

condition (4.4.13). Then, the four functions φ101 = eη, φ102 = 0, φ112 = 0, and φ202 =

e−η guarantee that both (R2) and (R3) in Theorem 4.3.4 hold. Consequently, the

RDOEL problem is solvable.

Now, by using the solutions, we design an explicit change of coordinates for

RDOEL. From the solutions, we can determine all the entries of L as functions

of x and η as follows:

L =



eη 0 0 0 0

(2η − x11)e
η eη 0 0 0

(η2 + η − x11)e
η ηeη eη 0 0

0 0 0 e−η 0

x21e
η 0 0 (x11 − η)e−η e−η


.

Since it holds that ∂z
∂x = L−1 by (4.3.15), a solution of the partial differential

equation,

∂z

∂x
=



e−η 0 0 0 0

−(2η − x11)e
−η e−η 0 0 0

(η − 1)(η − x11)e
−η −ηe−η e−η 0 0

0 0 0 eη 0

−x21eη 0 0 (η − x11)e
η eη


= L−1,
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can be a new coordinate for RDOEL. By solving the equation, we can design a

coordinate transformation and an output transformation such that

z11

z12

z13

z21

z22


=



x11e
−η

−(2ηx11 − 1
2x

2
11 − x12)e

−η(
(η − 1)(ηx11 − 1

2x
2
11)− ηx12 + x13

)
e−η

x21e
η(

(η − x11)x21 + x22
)
eη


,

[
ye1

ye2

]
= q(η, y) =

[
y1e

−η

y2e
η

]
.

As a result, the extended system can be transformed into the following five-

dimensional GNOCF:

ż =



z12

z13

0

z22

0


+



3y1(η − 1
2y1)e

−η

−3y1
(
η(η − y1 − 1) + 1

6y1(y1 + 5)
)
e−η

y1(η − y1)
(
η(η − 1

2y1 − 3) + y1 + 1
)
e−η

−2y2(η − y1)e
η

−y2(η − y1)(η − y1 + 1)eη


= Az + a(η, y),

ye =

[
z11

z21

]
= Cz,

on the z-coordinates. �



Chapter 5

Extension of RDOEL: System into
Extended Nonlinear Observer
Canonical Form (ENOCF)

As reviewed in Chapter 3, the (conventional) OEL problem is to transform a

nonlinear system into NOCF that is an observable linear system modulo output

injection depending on the system output. In order to enlarge the class of systems

to which we can apply similar approaches, several ideas have been proposed. For

instance, system immersion technique is to immerse a given system into a higher-

dimensional NOCF, and the concepts of DOEL and RDOEL are first to append

an auxiliary dynamics of which input is the output of a given system and then to

transform the extended system into GNOCF which is an observable linear system

modulo generalized output injection depending on the system output and the

state of auxiliary dynamics.

Another idea is to introduce a new NOCF of which not only output injection

part but also linear part depends on the system output (i.e. A = A(y) in the

NOCF (3.2.1)). For single output nonlinear systems, such an idea was first ad-

dressed in [Gua01, RPN01, Gua02, RPN04] by using an output-dependent time-

scaling transformation such that

dt

dτ
= α(y) with α(y) > 0. (5.0.1)

More precisely, their works have studied the problem of transforming the single

97
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output nonlinear system (3.3.1) into an output-dependent NOCF,

ż = A(y) + a(y), z ∈ Rn,

y = Cz, y ∈ R,
(5.0.2)

where

A(y) =

[
O Ā(y)

O O

]
n×n

, Ā(y) = α(y)In−1,

C = [1 0 · · · 0]1×n, a(y) = [a1(y) · · · an(y)]T ,

via a change of coordinates with the output-dependent time-scaling transforma-

tion α(y) defined by (5.0.1). In particular, a complete algorithm to solve the

problem together with an output transformation (ye = q(y) = Cz) was developed

[Gua05], and the problem was extended to multi-output nonlinear systems by us-

ing a multiple output-dependent time-scaling transformation [WL10]. As regards

the output-dependent NOCF (5.0.2), another attempt was made in [ZBB07]. The

authors of [ZBB07] proposed a modified output-dependent NOCF such that, in

the equation (5.0.2),

Ā(y) = diag(α2(y), . . . , αn(y)),

with αi(y) ̸= 0 for 2 ≤ i ≤ n, and addressed the problem of transforming the

single output system (3.3.1) into the output-dependent NOCF via just a coordi-

nate transformation without the output-dependent time-scaling transformation.

They developed a complete algorithm to design αi(y)’s and a coordinate trans-

formation z = Φ(x) for the problem. Recently, by combining the concepts of

output-dependent NOCF and RDOEL, the authors of [TBZ13] introduced an

output-dependent GNOCF (i.e. A = A(y) in the GNOCF (3.5.3)) and provided

a sufficient condition for the problem of transforming the single output system

(3.3.1) into the proposed output-dependent GNOCF with the aid of an auxiliary

dynamics such as (3.5.1).

In this chapter, inspired by the above previous works, we introduce a new
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NOCF called extended nonlinear observer canonical form (ENOCF), of which

both linear and output injection parts depend on the system output and the state

of auxiliary state, and then investigate the problem of transforming a class of

single output nonlinear systems into the proposed ENOCF with the aid of auxil-

iary dynamics. In actual fact, the problem is a natural extension of the RDOEL

problem for single output systems and the work [TBZ13]. Most of this chapter is

based on [CYS14a].

5.1 Problem Statement

Consider a single output nonlinear system given by

ξ̇ = f(ξ), ξ ∈ Rn,

y = h(ξ), y ∈ R,
(5.1.1)

where ξ is the system state, y is the system output, f(ξ) is a smooth vector field,

and h(ξ) is a smooth real-valued function. For the above system, we append an

auxiliary dynamics such that

η̇ = p(η, y) =


p1(η, y)

...

pd(η, y)

 , η ∈ Rd, (5.1.2)

where η = [η1 · · · ηd]T is the auxiliary state and p(η, y) is a smooth vector field.

After that, on a neighborhood U ×V ⊂ Rd×Rn of an initial state (η(0), ξ(0)), we

consider a coordinate transformation Φ : U × V → Rd × Rn, (η, ξ) 7→ (w, z) with

w = η, which is a diffeomorphism onto its image, and an output transformation

ye = q(η, y) such that z = (Π ◦ Φ)(η, ξ) and ye = q(η, y) transform the extended

system consisting of the given system (5.1.1) and the auxiliary dynamics (5.1.2),

[
η̇

ξ̇

]
= F (η, ξ) :=

[
p(η, y)

f(ξ)

]
,

y = h(ξ),

(5.1.3)
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into a system of the following form (called extended nonlinear observer canonical

form (ENOCF)):

ż = A(η, y)z + a(η, y), z ∈ Rn

ye = q(η, y) = Cz, ye ∈ R,
(5.1.4)

where z = [z1 · · · zn]T , Π : Rd ×Rn → Rn is a projection such that Π(w, z) = z,

A(η, y) =

[
O Ā(η, y)

O O

]
n×n

,

Ā(η, y) = diag
(
α2(η, y), . . . , αn(η, y)

)
,

C = [1 0 · · · 0]1×n,

a(η, y) = [a1(η, y) · · · an(η, y)]T ,

with αi(η, y) ̸= 0 for 2 ≤ i ≤ n and all (η, y) ∈ U × h(V ).

If (η, y) is bounded and there exist such transformations Φ and q, then we

can design a high-gain observer (including the auxiliary dynamics (5.1.2)) by the

method in [BFH98] as follows:

η̇ = p(η, y),

˙̂z = A(η, y)ẑ + a(η, y)− Λ−1(η, y)S−1
θ CT (Cẑ − ye),

ye = q(η, y),

ξ̂ = Π ◦ Φ−1(η, ẑ),

(5.1.5)

where Λ(η, y) = diag(1, α2(η, y), . . . ,
∏n
i=2 αi(η, y)), and Sθ is a solution of the

algebraic Lyapunov equation,

θSθ +ATnSθ + SθAn − CTC = 0,

with

An =

[
O In−1

O O

]
n×n

.
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By the result of [BFH98], a well-chosen θ governs the exponential stability of the

observer error dynamics,

ėz = (A(η, y)− Λ(η, y)S−1
θ CTC)ez,

where ez := ẑ − z. In this respect, we deal with the problem of transforming

the extended system (5.1.3) into the system composed of the auxiliary dynamics

(5.1.3) intact and the ENOCF (5.1.4), as a new method to design observers for a

class of single output nonlinear systems.

Definition 5.1.1. We say that the ENOCF problem is solved for the system

(5.1.1) via the auxiliary dynamics (5.1.2) if there exist a coordinate transforma-

tion Φ(η, ξ) and an output transformation q(η, y) transforming the extended sys-

tem (5.1.3) into the system composed of the auxiliary dynamics (5.1.3) and the

ENOCF (5.1.4). �

Remark 5.1.1. Since z1 = ye, the output transformation q(η, y) is a part of the

coordinate transformation Φ(η, ξ). That is to say, it holds that ye = q(η, y) =

q(η, h(ξ)) = z1. �

Remark 5.1.2. The ENOCF problem is a natural extension of the RDOEL

problem for single output systems in the sense that they are identical when

α2(η, y) = · · · = αn(η, y) = 1. The difference is that the (n − 1) number of

functions αi’s can be designed in the ENOCF problem. In actual fact, the dif-

ference makes it possible to solve the ENOCF problem for a class of systems to

which the RDOEL problem is not solvable. We will illustrate it by an example in

Section 5.4. �

Remark 5.1.3. In the case when A(η, y) = A(y) and d = 1 (dimension of the

auxiliary dynamics (5.1.2)), a sufficient condition for the ENOCF problem to

be solved was already given in [TBZ13]. Actually, our research is motivated by

the work. However, an equivalent condition has not been found even for the

case. Furthermore, a lot of works dealing with dynamic extension of OEL (such

as DOEL or RDOEL) have considered high-order auxiliary dynamics even for

the case of single output systems (e.g. [BB11, BYS06, YBS07, YBS11, YBSS10,
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YYS12]) because it may allow us to solve the problems for a larger class of systems.

In these regards, our objective is to derive a necessary and sufficient condition for

the ENOCF problem in the case where A(η, y) and the general auxiliary dynamics

(5.1.2) are considered. �

5.2 Necessary Conditions

In this section, we provide two necessary conditions. One is a condition on the

output transformation q(η, y) and the observability of the given system (5.1.1).

The other is concerned with the observable form of the system (5.1.1), similarly

to the RDOEL problem.

5.2.1 Output Transformation and Observability

The following theorem gives the first necessary condition for the ENOCF problem

to be solved.

Theorem 5.2.1. If the ENOCF problem is solved for the system (5.1.1) via the

auxiliary dynamics (5.1.2), then both the following conditions are satisfied:

(a) the output transformation ye = q(η, h(ξ)) satisfies that

∂q(η, h(ξ))

∂h
̸= 0 for all (η, ξ) ∈ U × V , (5.2.1)

(b) the system (5.1.1) is locally observable at ξ(0), i.e., it satisfies the observ-

ability rank condition,

rank
(
span{dLk−1

f h(ξ) : 1 ≤ k ≤ n}
)
= n for all ξ ∈ V , (5.2.2)

where U × V ⊂ Rd × Rn is a neighborhood of (η(0), ξ(0)).

Proof. When x = [x1 · · · xn]T , we denote dx := [dx1 · · · dxn]
T for convenience.

Suppose that the ENOCF problem is solved for the system (5.1.1) via the auxiliary

dynamics (5.1.2). Then, there exist a coordinate transformation [wT zT ]T =
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Φ(η, ξ) = [Φ1(η, ξ) · · · Φd+n(η, ξ)]
T and an output transformation ye = q(η, y)

such that

wi = Φi(η, ξ) = ηi,

z1 = Φd+1(η, ξ) = q(η, h(ξ)) = ye, (5.2.3a)

zj = Φd+j(η, ξ) =
1

αj(η, h(ξ))

(
LFΦd+j−1(η, ξ)− aj−1(η, h(ξ))

)
, (5.2.3b)

for 1 ≤ i ≤ d and 2 ≤ j ≤ n. By the above equations, it holds that

dwi = dηi, (5.2.4a)

dz1 =
d∑

k=1

∂q

∂ηk
dηk +

∂q

∂h
dh ≡ ∂q

∂h
dh mod (dη1, . . . ,dηd), (5.2.4b)

dzj = (LFzzj−1 − aj−1)d
1

αj
+

1

αj
(dLFzzj−1 − daj−1), (5.2.4c)

for 1 ≤ i ≤ d and 2 ≤ j ≤ n. For the dzj ’s (2 ≤ j ≤ n) in the last equation, we

claim that

dzj ≡
( j∏
k=2

1

αk

)∂q
∂h

dLj−1
F h mod (dη1, . . . ,dηd, dh, . . . ,dLj−2

F h). (5.2.5)

The proof of the claim is by induction on j starting from j = 2. If j = 2, then it

follows from (5.2.4b) and (5.2.4c) that

dz2 = (LFzz1 − a1)d
1

α2(η, h)
+

1

α2

(
dLFzz1 − da1(η, h)

)
≡ 1

α2

∂q

∂h
dLFh mod (dη1, . . . ,dηd, dh).

Therefore, the equation (5.2.5) holds when j = 2. Suppose that 3 ≤ j ≤ n and

the equation (5.2.5) holds for j − 1, i.e.,

dzj−1 ≡
( j−1∏
k=2

1

αk

)∂q
∂h

dLj−2
F h mod (dη1, . . . ,dηd,dh, . . . , dLj−3

F h). (5.2.6)

Then, by the equation (5.2.4c) and the induction hypothesis (5.2.6), it is easy to
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see that

dzj = (LFzzj−1 − aj−1)d
1

αj(η, h)
+

1

αj

(
dLFzzj−1 − daj−1(η, h)

)
≡ 1

αj

( j−1∏
k=2

1

αk

)∂q
∂h

dLj−1
F h mod (dη1, . . . ,dηd, dh, . . . , dLj−2

F h).

Consequently, the equation (5.2.5) also holds for j, and thus it is concluded that

the claim is true.

Since h does not depend on η, it holds that LkFh(ξ) = Lkfh(ξ) for any non-

negative integer k. Moreover, the 1-forms dh, . . . , dLn−1
f h can be represented as

linear combinations of dξ1, . . . ,dξn. Therefore, we obtain from (5.2.4a), (5.2.4b)

and (5.2.5) that

[
dw

dz

]
=

[
Id O

∗ Rn×n

]
dη

dh
...

dLn−1
f h


=

[
Id O

∗ Rn×n

][
Id O

O Sn×n

][
dη

dξ

]
,

(5.2.7)

where

R =


∂q
∂h 0 · · · 0

∗ ∂q
∂h

1
α2

. . .
...

∗ ∗ . . . 0

∗ ∗ ∗ ∂q
∂h

∏n
k=2

1
αk

 , (5.2.8)

which is a lower-triangular matrix of which diagonal entries are ∂q
∂h , ∂q

∂h
1
α2
, . . .,

and ∂q
∂h

∏n
k=2

1
αk

in sequence. Since Φ is a diffeomorphism from a neighborhood

U × V of (η(0), ξ(0)) onto its image, both the matrices R and M are nonsingular

on U × V . Therefore, ∂q(η,h(ξ))
∂h ̸= 0 for all (η, ξ) ∈ U × V and the 1-forms

dh, . . . ,dLn−1
f h are linearly independent on V . Hence, the given system (5.1.1)

satisfies the observability rank condition (5.2.2).
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By Theorem 5.2.1, we assume the observability rank condition (5.2.2) of the

system (5.1.1). Then, as mentioned before, the system can be expressed on a

neighborhood of ξ(0) as the following observable form:

ẋ1 = x2,

...

ẋn−1 = xn,

ẋn = fn(x),

y = x1,

(5.2.9)

where xi = Li−1
f h(ξ) for 1 ≤ i ≤ n, x = [x1 · · · xn]T ∈ W , fn : W → R is a

smooth function, and W ⊂ Rn is a neighborhood of x(0). For convenience, we

write ẋ = f(x) and y = h(x) = x1. Then, the extended system (5.1.3) is also

written as [
η̇

ẋ

]
= F (η, x) :=

[
p(η, x1)

f(x)

]
,

y = h(x) = x1.

(5.2.10)

Henceforth, without loss of generality, we regard the original system (5.1.1) and

the extended system (5.1.3) as the observable form (5.2.9) and the system (5.2.10),

respectively.

5.2.2 System Dynamics

By Theorem 3.2.4 and Theorem 4.2.7, a necessary condition of both OEL and

RDOEL for single output systems is that fn(x) in the observable form (5.2.9)

should be a certain polynomial of weighted degree n, which is defined in Definition

3.2.2. In this subsection, we show that the condition is also a necessary condition

for the ENOCF problem. Since we deal with the problem for the single output

system (5.1.1), in order to prevent confusion, we modify Definition 4.2.2 to fit it

to the case of single output systems.

Definition 5.2.1. For the extended system (5.2.10), we denote by Pse(x) (re-
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spectively, Ps(x)) the ring of polynomials in x2, . . . , xn with coefficients that are

smooth real-valued functions of η and x1 (respectively, x1 only). The weighted

degree of a monomial c(η, x1)xk22 · · ·xknn is defined as
∑n

i=2(i−1)ki. The weighted

degree of a polynomial in Pse(x) or Ps(x) is the highest weighted degree of any

term in the polynomial. We denote by Pk
se(x) (respectively, Pk

s (x)) the set of all

the polynomials in Pse(x) (respectively, Ps(x)) of which weighted degree is less

than or equal to k. P0
se(x) (respectively, P0

s (x)) represents the set of all smooth

real-valued functions of η and x1 (respectively, x1 only). In fact, the subscript ‘s’

means ‘single output case’. �

In a similar fashion to Proposition 4.2.2 and Lemma 4.2.3, we give a propo-

sition, a lemma, and its corollary as regards the partial derivatives and the Lie

derivatives of elements in Pk
se(x).

Proposition 5.2.2. If φ(η, x) ∈ Pk
se(x) for any nonnegative integer k, then it

holds that

∂φ

∂ηi
∈ Pk

se(x),

∂φ

∂xj
=

{
0 if j > k + 1,

∗ ∈ Pk−j+1
se (x) if j ≤ k + 1,

for 1 ≤ i ≤ d and 1 ≤ j ≤ n. �

Lemma 5.2.3. For any 0 ≤ k ≤ n− 2 and φ(η, x) ∈ Pk
se(x), it holds that

LFφ(η, x) ∈ Pk+1
se (x),

where F is the vector field of the extended system (5.2.10).

Proof. Let φ ∈ P0
se(x). Then, φ is a function of η and x1 only. Thus, it holds that

LFφ =
d∑
i=1

∂φ

∂ηi
η̇i +

∂φ

∂x1
ẋ1

=

d∑
i=1

∂φ

∂ηi
pi +

∂φ

∂x1
x2 ∈ P1

se(x).
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Therefore, the lemma is true when k = 0. Let φ ∈ Pk
se(x) and 1 ≤ k ≤ n − 2.

Then, φ is a polynomial of xi’s, where 2 ≤ i ≤ k + 1 ≤ n − 1, with coefficients

that are elements of P0
se(x). For any c(η, x1) ∈ P0

se(x), we have LF c = P1
se(x)

because the lemma is true when k = 0. Moreover, while xi ∈ P i−1
s (x), it holds

that LFxi = xi+1 ∈ P i
s(x) for 2 ≤ i ≤ n− 1. By these facts and the Leibniz rule,

it is easy to see that LFφ ∈ Pk+1
se (x).

Corollary 5.2.4. For any 0 ≤ k ≤ n− 2 and φ(η, x1) ∈ P0
se(x), it holds that

LkFφ ∈ Pk
se(x),

where F is the vector field of the extended system (5.2.10).

Proof. This corollary is a direct consequence from Lemma 5.2.3.

The following theorem shows that the condition fn(x) ∈ Pn
s (x) is also a

necessary condition for the ENOCF problem.

Theorem 5.2.5. The ENOCF problem is solved for the system (5.2.9) only if

fn(x) belongs to Pn
s (x).

Proof. Suppose that the ENOCF problem is solved for the system (5.2.9). Then,

there exist an auxiliary dynamics such as (5.1.2) so that the extended system

(5.2.10) can be transformed into the system composed of the auxiliary dynamics

(5.1.2) intact and the ENOCF (5.1.4). Let ye = q(η, y) be the output transforma-

tion. Then, z1 = ye = q(η, x1). For 2 ≤ i ≤ n, we claim that zi can be represented

as follows:

zi =
i−2∑
j=0

(
Cji L

i−1−j
F q +Dj

i

)
, (5.2.11)

where Cji , D
j
i ∈ Pj

se(x) for 0 ≤ j ≤ i − 2 and, in particular, C0
i =

∏i
k=2

1
αk

. The

proof of the claim is by induction on i starting from i = 2. If i = 2, then it follows

from the equation (5.2.3b) in the proof of Theorem 5.2.1 that

z2 =
1

α2(η, x1)

(
LF q(η, x1)− a1(η, x1)

)
= C0

2Lfq +D0
2,
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where

C0
2 :=

1

α2
∈ P0

se(x), D0
2 := − a1

α2
∈ P0

se(x).

Thus, the equation (5.2.11) is satisfied. Suppose that 3 ≤ i ≤ n and (5.2.11)

holds for i− 1, i.e.,

zi−1 =
i−3∑
j=0

(
Cji−1L

i−2−j
F q +Dj

i−1

)
,

where Cji−1, D
j
i−1 ∈ Pj

se(x) for 0 ≤ j ≤ i− 3 and C0
i−1 =

∏i−1
k=2

1
αk

. Then, we also

obtain from the equation (5.2.3b) that

zi =
1

αi

(
LF
( i−3∑
j=0

(
Cji−1L

i−2−j
F q +Dj

i−1

))
− ai−1

}

=
1

αi

( i−3∑
j=0

(
LFCji−1 · L

i−2−j
F q + Cji−1L

i−1−j
F q + LFDj

i−1

)
− ai−1

)

=
i−2∑
j=0

(
Cji L

i−1−j
F q +Dj

i

)
,

where

C0
i :=

1

αi
C0
i−1 =

i∏
k=2

1

αk
,

Cji :=
1

αi
(LFCj−1

i−1 + Cji−1) for 1 ≤ j ≤ i− 3,

Ci−2
i :=

1

αi
LFCi−3

i−1 ,

D0
i := −ai−1

αi
,

Dj
i :=

1

αi
LFDj−1

i−1 for 1 ≤ j ≤ i− 2.

By Lemma 5.2.3 and the induction hypothesis, it is easy to see that Cji , D
j
i ∈

Pj
e (x) for 0 ≤ j ≤ i − 2. Therefore, the equation (5.2.11) also holds for i, and

thus the claim is true.
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Let us go back to the proof of Theorem 5.2.5. By the ENOCF (5.1.4) and the

claim (5.2.11), it holds that

an(η, x1) = żn = LF
( n−2∑
j=0

(
CjnL

n−1−j
F q +Dj

n

))

= LFC
0
n · Ln−1

F q + C0
nLnF q + LF

( n−2∑
j=1

CjnL
n−1−j
F q +

n−2∑
j=0

Dj
n

)
= C0

nLn−1
F

( ∂q
∂x1

x2

)
+ E,

where

E := C0
nLn−1

F

( d∑
k=1

∂q

∂ηk
pk

)
+ LFC

0
n · Ln−1

F q + LF

( n−2∑
j=1

CjnL
n−1−j
F q +

n−2∑
j=0

Dj
n

)
.

By Lemma 5.2.3 and Corollary 5.2.4, we can observer that E ∈ Pn
se(x). Since

C0
n =

∏n
k=2

1
αk

̸= 0 and ∂q
∂x1

̸= 0 by Theorem 5.2.1, it follows from the above

equation that

fn(x) = Ln−1
F x2

=
1

C0
n
∂q
∂x1

(
an − C0

n

n−2∑
k=0

(
n− 1

k

)
Ln−1−k
F

( ∂q
∂x1

)
· LkFx2 − E

)
.

Since it holds that Ln−1−k
F

(
∂q
∂x1

)
∈ Pn−1−k

se (x) and LkFx2 = x2+k ∈ P1+k
se (x) for

0 ≤ k ≤ n − 2, the right-hand side of the above equation belongs to Pn
se(x).

Therefore, fn(x) ∈ Pn
s (x) because it does not depend on η.

NB: Henceforth, by Theorem 5.2.5, we assume that the system (5.1.1) satisfies

the condition fn(x) ∈ Pn
s (x) in its observable form (5.2.9).

5.3 Necessary and Sufficient Condition

In the RDOEL problem studied in the previous chapter, the condition, fi(x) ∈
Pni(x) for 1 ≤ i ≤ m, plays an important role in proving Theorem 4.3.4 which

states a geometric necessary and sufficient condition. In this section, by means of
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the condition fn(x) ∈ Pn
s (x), we also derive a geometric necessary and sufficient

condition for the ENOCF problem.

Theorem 5.3.1. The ENOCF problem is solved for the system (5.2.9) via the

auxiliary dynamics (5.1.2) if and only if there exist n functions φ(η, x1), α2(η, x1),

. . ., αn(η, x1) ∈ P0
se(x) such that both the following conditions are satisfied:

(E1) φ(η, x1) ̸= 0, α2(η, x1) ̸= 0, . . ., αn(η, x1) ̸= 0 for all (η, x1) ∈ U × h(W ).

(E2) [Xi, Xj ] = 0 on U ×W for i, j = 1, . . . , n,

where X1, . . ., Xn are vector fields defined by

Xn := φ
∂

∂xn
,

Xi :=
1

αi+1
[Xi+1, F ] for 1 ≤ i ≤ n− 1,

and U ×W ⊂ Rd × Rn is a neighborhood of (η(0), x(0)). �

Proof. When ζ = [ζ1 · · · ζn]T , dζ := [dζ1 · · · dζn]
T and ∂

∂ζ := [ ∂∂ζ1 · · · ∂
∂ζn

].

(Proof of Necessity): Suppose that the ENOCF problem is solved for the

system (5.2.9) via the auxiliary dynamics (5.1.2). Then, there exist the (n − 1)

functions α2(η, x1), . . ., αn(η, x1) satisfying the condition (E1) by the ENOCF

(5.1.4). Furthermore, it follows from (5.2.7) in the proof of Theorem 5.2.1 that

[
dη

dx

]
=

[
Id O

∗ R−1

][
dw

dz

]
, (5.3.1)

where the matrix R is given by the equation (5.2.8). Due to the lower-triangularity

of R, dx1 can be represented as a linear combination of dw1, . . ., dwd, and dz1

only. Thus, there exists a function q̃(w, z1) such that y = x1 = q̃(w, z1). As a

result, the vector field F of the extended system (5.2.10) can be expressed in the

(w, z)-coordinates as follows:

F =
d∑

k=1

p̃k(w, z1)
∂

∂wk
+

n−1∑
i=1

(
α̃i+1(w, z1)zi+1 + ãi(w, z1)

) ∂

∂zi
+ ãn(w, z1)

∂

∂zn
,
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where

p̃k(w, z1) := pk(w, q̃(w, z1)) = pk(η, y) for 1 ≤ k ≤ d,

α̃i+1(w, z1) := αi+1(w, q̃(w, z1)) = αi+1(η, y) for 1 ≤ i ≤ n− 1,

ãi(w, z1) := ai(w, q̃(w, z1)) = ai(η, y) for 1 ≤ i ≤ n.

Therefore, a straightforward calculation gives

1

αi+1

[
∂

∂zi+1
, F

]
=

∂

∂zi
for 1 ≤ i ≤ n− 1. (5.3.2)

By the equation (5.3.1) and the duality between 1-forms and vector fields, it holds

that

[
∂
∂w

∂
∂z

]
=
[

∂
∂η

∂
∂x

] [ Id O

∗ R−1

]
. (5.3.3)

Let φ := (1/ ∂q
∂x1

)
∏n
k=2 αk which is the n-th diagonal entry ofR−1. Since ∂q(η,x1)

∂x1
̸=

0 for all (η, x1) ∈ U × h(W ) by Theorem 5.2.1, the function φ is well defined on

U × h(W ) and satisfies the condition (E1). Moreover, by the lower-triangularity

(5.2.8) of R and the equations (5.3.2) and (5.3.3), it is easy to see that

Xn := φ
∂

∂xn
=

∂

∂zn
,

Xi :=
1

αi+1
[Xi, F ] =

∂

∂zi
for 1 ≤ i ≤ n− 1.

Therefore, the condition (E2) is clearly satisfied.

(Proof of Sufficiency): Suppose that there exist n functions φ(η, x1), α2(η, x1),

. . ., αn(η, x1) ∈ P0
se(x) satisfying the conditions (E1) and (E2). For 1 ≤ i ≤ n−1,

we claim that Xi can be represented as

Xi =

n∑
j=i

φji
∂

∂xj
, (5.3.4)

where φji ∈ Pj−i
se (x) and, in particular, φii = φ

∏n
k=i+1

1
αk

. The proof of the claim

is by induction on i starting from n− 1. The vector field F of the system (5.2.10)
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can be written as

F =
d∑

k=1

pk(η, x1)
∂

∂ηk
+
n−1∑
k=1

xk+1
∂

∂xk
+ fn(x)

∂

∂xn
.

Thus, it holds that

Xn−1 :=
1

αn
[Xn, F ] =

1

αn

[
φ
∂

∂xn
, F
]

=
1

αn

(
φ
( ∂

∂xn−1
+
∂fn
∂xn

∂

∂xn

)
−
( d∑
k=1

pk
∂φ

∂ηk
+ x2

∂φ

∂x1

) ∂

∂xn

)
= φn−1

n−1

∂

∂xn−1
+ φnn−1

∂

∂xn
,

where

φn−1
n−1 := φ

1

αn
∈ P0

se(x),

φnn−1 :=
1

αn

(∂fn
∂xn

−
d∑

k=1

pk
∂φ

∂ηk
+ x2

∂φ

∂x1

)
∈ P1

se(x).

Therefore, the equation (5.3.4) holds when i = n− 1. Suppose that 1 ≤ i ≤ n− 2

and (5.3.4) holds for i+ 1, i.e.,

Xi+1 =

n∑
j=i+1

φji+1

∂

∂xj
,

where φji+1 ∈ Pj−i−1
se (x) and, in particular, φi+1

i+1 = φ
∏n
k=i+2

1
αk

. Then, it follows

from the above induction hypothesis that

Xi :=
1

αi+1
[Xi+1, F ] =

1

αi+1

n∑
j=i+1

(
φji+1

( ∂

∂xj−1
+
∂fn
∂xj

∂

∂xn

)

−
( d∑
k=1

pk
∂φji+1

∂ηk
+
n−1∑
k=1

xk+1

∂φji+1

∂xk
+ fn

∂φji+1

∂xn

) ∂

∂xj

)
.

Since φji+1 ∈ Pj−i−1
se (x) by the induction hypothesis, it holds that ∂φji+1

∂xn
= 0 and
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∂φji+1

∂xk
= 0 for k > j − i. Therefore, the above equation can be rewritten as

Xi =
1

αi+1

n∑
j=i+1

(
φji+1

( ∂

∂xj−1
+
∂fn
∂xj

∂

∂xn

)

−
( d∑
k=1

pk
∂φji+1

∂ηk
+

j−i∑
k=1

xk+1

∂φji+1

∂xk

) ∂

∂xj

)

=
1

αi+1

(
φi+1
i+1

∂

∂xi
+

n∑
j=i+2

φji+1

∂

∂xj−1

+

n∑
j=i+1

(
φji+1

∂fn
∂xj

∂

∂xn
−
( d∑
k=1

pk
∂φji+1

∂ηk
+

j−i∑
k=1

xk+1

∂φji+1

∂xk

) ∂

∂xj

))

=
1

αi+1

(
φi+1
i+1

∂

∂xi
+

n−1∑
j=i+1

(
φj+1
i+1 −

d∑
k=1

pk
∂φji+1

∂ηk
−

j−i∑
k=1

xk+1

∂φji+1

∂xk

) ∂

∂xj

+
( n∑
j=i+1

φji+1

∂fn
∂xj

−
d∑

k=1

pk
∂φni+1

∂ηk
−

n−i∑
k=1

xk+1
∂φni+1

∂xk

) ∂

∂xn

)

=

n∑
j=i

φji
∂

∂xj
,

where

φii :=
1

αi+1
φi+1
i+1 = φ

n∏
k=i+1

1

αk
∈ P0

se(x),

φji :=
1

αi+1

(
φj+1
i+1 −

d∑
k=1

pk
∂φji+1

∂ηk
−

j−i∑
k=1

xk+1

∂φji+1

∂xk

)
∈ Pj−i

se (x) for 2 ≤ j ≤ n− 1,

φni :=
1

αi+1

( n∑
j=i+1

φji+1

∂fn
∂xj

−
d∑

k=1

pk
∂φni+1

∂ηk
−

n−i∑
k=1

xk+1
∂φni+1

∂xk

)
∈ Pn−i

se (x).

Hence, the equation (5.3.4) also holds for i, and the claim is true. As a result, it

follows from Xn := φ ∂
∂xn

and the claim (5.3.4) that

[
X1 · · · Xn

]
=
[

∂
∂x1

· · · ∂
∂xn

]
L, (5.3.5)
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where

L :=



φ
n∏
k=2

1
αk

0 · · · 0

∗ φ
n∏
k=3

1
αk

. . .
...

...
. . . . . . 0

∗ · · · ∗ φ


.

Since the matrix L is a lower-triangular matrix and the condition (E1) is satisfied,

L is nonsingular at (η(0), x(0)). Therefore, the n vector fields X1, . . ., Xn are

linearly independent at (η(0), x(0)). By this fact, (E2), Theorem 2.4.5 (Simulta-

neous Rectification Theorem), and Corollary 2.4.5, there exists a coordinate chart

(Ū × W̄ , (w̄, z)), where Ū × W̄ ⊂ Rd ×Rn is a neighborhood of (η(0), x(0)), such

that

∂

∂zi
= Xi for 1 ≤ i ≤ n. (5.3.6)

In addition, since both (η, x) and (w̄, z) are coordinate maps on Ū × W̄ , the rest

d vector fields ∂
∂w̄1

, . . ., ∂
∂w̄d

can be represented as

∂

∂w̄
=
[

∂
∂η

∂
∂x

] [ Md×d

Nn×d

]
. (5.3.7)

Therefore, it follows from the equations (5.3.5)-(5.3.7) that

[
∂
∂w̄

∂
∂z

]
=
[

∂
∂η

∂
∂x

] [ M O

N L

]
. (5.3.8)

Trivially, both the M and L are nonsingular on Ū × W̄ . Thus, by the duality

between vector fields and 1-forms, it holds that[
dw̄

dz

]
=

[
M−1 O

−L−1NM−1 L−1

][
dη

dx

]
.
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Let w = η. Then, dw = dη and thus we obtain from the above equation that[
dw

dz

]
=

[
Id O

−L−1NM−1 L−1

][
dη

dx

]
. (5.3.9)

Since L−1 is nonsingular at (η(0), x(0)), the (d + n) differential forms dw1, . . .,

dwd, dz1, . . ., dzn are linearly independent at (η(0), x(0)). This implies that (w, z)

with w = η is also a coordinate map on a neighborhood Uo ×Wo ⊂ Rd × Rn of

(η(0), x(0)), and thus there exists a coordinate transformation Φ : Uo ×Wo →
Rd+n, (η, x) 7→ (w, z) = (η, z). In particular, due to the lower-triangularity of

L−1, dz1 is a linear combination of dη1, . . ., dηd, and dx1 only. Therefore, there

exists an output transformation such that ye = z1 = q(η, x1) = q(η, y). Similarly,

there also exists a function such that y = x1 = q̃(w, z1).

Finally, let us identify the vector field F of the extended system (5.2.10)

in the (w, z)-coordinates. Let Fz =
∑d

k=1 Fk
∂
∂wk

+
∑n

j=1 Fd+j
∂
∂zj

denote the

representation of F in the (w, z)-coordinates. Trivially, Fk = ẇk = pk(η, y) for

1 ≤ k ≤ d because w = η. For 1 ≤ i ≤ n − 1, by the equation (5.3.6) and the

definition Xi :=
1

αi+1
[Xi+1, F ], it holds that

∂

∂zi
=

1

αi+1

[ ∂

∂zi+1
, F
]

=
1

αi+1

( d∑
k=1

∂Fk
∂zi+1

∂

∂wk
+

n∑
j=1

∂Fd+j
∂zi+1

∂

∂zj

)
.

Hence, for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n, we have

∂Fd+j
∂zi+1

= αi+1 · δij .

When 1 ≤ j ≤ n − 1, the above equation implies that ∂Fd+j

∂zj+1
= αj+1(η, y) =

αj+1(w, q̃(w, z1)) and Fd+j depends only on w, z1, and zj+1. Therefore, Fd+j =

αj+1(η, y)zj+1 + ãj(w, z1) for 1 ≤ j ≤ n − 1. Similarly, Fd+n = ãn(w, z1). Let

aj(η, y) := ãj(η, q(η, y)) = ãj(w, z1) for 1 ≤ j ≤ n. Then, one can observe that

Fz is equal to the vector field of the system composed of the auxiliary dynamics

(5.1.2) and the ENOCF (5.1.4).
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Remark 5.3.1. As mentioned in Remark 5.1.2, the ENOCF problem is a natural

extension of the RDOEL problem for single output systems, in the sense that they

are identical when α2(η, x1) = · · · = αn(η, x1) = 1. Therefore, the existence of

φ(η, x1), which satisfies (E1) and (E2) in Theorem 5.3.1 when a2(η, x1) = · · · =
an(η, x1) = 1, is a necessary and sufficient condition of the RDOEL problem for

single output systems. As shown in the proof of Theorem 5.3.1, if there exits such

a function φ, then it holds that φ = (1/ ∂q
∂x1

)
∏n
k=2 αk = 1/ ∂q

∂x1
. Therefore, one can

observe that the statement of Theorem 5.3.1 with α2(η, x1) = · · · = αn(η, x1) = 1

is exactly same to Theorem 3.5.1 which states a necessary and sufficient condition

of the RDOEL problem for single output systems. �

Finally, we explain how to check the solvability of the ENOCF problem and

to design an explicit coordinate transformation by using the results presented in

this chapter. It is quite similar to the procedure described in Subsection 4.3.3.

First of all, by Theorem 5.2.1 and Theorem 5.2.5, check the observability rank

condition (5.2.2) of the given system (5.1.1) and the condition fn(x) ∈ Pn
s (x)

in its observable form (5.2.9). If they are satisfied, then we choose an auxiliary

dynamics such as (5.1.2). After that, according to Theorem 5.3.1, set Xn := φ ∂
∂xn

with φ ∈ P0
se(x) and calculate Xi =

1
αi+1

[Xi+1, F ] with αi+1 ∈ P0
se(x) successively

from i = n − 1 to i = 1. Since F is known, (E2) gives some partial differential

equations of φ and αi+1’s for 1 ≤ i ≤ n − 1. If there exists a set of solutions of

the equations subject to the conditions given in (E1), then the ENOCF problem

is solvable by Theorem (5.3.1). In addition, from the solutions, we can determine

all the entries of L (defined by (5.3.5)) as functions of η and x. Since (E1) implies

that L is nonsingular, L−1 exists. Finally, it follows from (5.3.9) that ∂z
∂x = L−1,

and thus we can construct an explicit z-coordinates by solving the equation.

Remark 5.3.2. For a given system, if there exists an auxiliary dynamics with

which the ENOCF problem is solvable, then it is theoretically possible to design

such an auxiliary dynamics by the same manner explained in Remark 4.3.3, but

in practice it is very hard due to the same reason. Although we have not yet

developed an algorithm to design it, we present a basic principle of selecting it:

it should be input-to-state stable (ISS) in the sense that η is bounded for every

bounded y, in order to use the high-gain observer design method [BFH98]. �
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5.4 Case Study: Rössler System into ENOCF

As an application of our theoretical results, we transform the Rössler system

[Rös76] into the proposed ENOCF via a stable linear auxiliary dynamics, and

then design an observer by using the high-gain observer design approach [BFH98].

The Rössler system is a chaotic oscillator whose dynamics is given by

ξ̇1 = −(ξ2 + ξ3),

ξ̇2 = ξ1 + c1ξ2,

ξ̇3 = c2 + ξ3(ξ1 − c3),

(5.4.1)

where c1, c2, and c3 are positive constant parameters (the original values selected

in [Rös76] are 0.2, 0.2, and 5.7, respectively). Figures 5.1-5.3 illustrate varied

behaviors over changing the parameters, sensitivity to initial states, and density

of periodic orbits of the Rössler system, which are typical properties of chaotic

dynamics. Owing to the chaotic properties, the Rössler system has been widely

used in secure communication (e.g. see [LH99, NM97] and references therein).

For the Rössler system (5.4.1), we define the system output y = h(ξ) := ξ2

where ξ = [ξ1 ξ2 ξ3]
T . Then, it holds that

dh(ξ) = dξ2,

dLfh(ξ) = dξ1 + c1dξ2,

dL2
fh(ξ) = c1dξ1 + (c21 − 1)dξ2 − dξ3,

where f denotes the vector field of the system (5.4.1). Therefore, the system

(5.4.1) with the system output y = ξ2 satisfies the observability rank condition,

and thus it can be expressed as the following observable form:

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = f3(x) := g1(x1) + g2(x1)x2 − c1x
2
2 + (g3(x1) + x2)x3,

y = x1,

(5.4.2)
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Figure 5.1: Variation in behaviors resulting from change of c1: state trajec-
tories starting from (0, 0, 0) over t ∈ [0, 150] of the Rössler sys-
tem with (a) c1 = 0.1, (b) c1 = 0.2, (c) c1 = 0.3, (d) c1 = 0.4,
respectively, c2 = 0.2, and c3 = 5.7
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Figure 5.2: Sensitivity to initial states: state trajectories starting from (a)
(0, 0, 0) and (b) (-0.001,0,0) over t ∈ [0, 150] of the Rössler system
with (c1, c2, c3) = (0.2, 0.2, 5.7)
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Figure 5.3: Density of periodic orbits: state trajectories starting from (0, 0, 0)
over t ∈ [0, 1500] of the Rössler system with (a) (c1, c2, c3) =
(0.2, 0.2, 5.7) and (b) (c1, c2, c3) = (0.3, 0.2, 5.7)
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where xi = Lifh(ξ) for i = 1, 2, 3, x = [x1 x2 x3]
T , and gi(x1)’s are defined by

g1(x1) := −c1x21 − c3x1 − c2,

g2(x1) := (c21 + 1)x1 + (c1c3 − 1),

g3(x1) := −c1x1 + (c1 − c3).

One can observe that f3(x) ∈ P3
s (x). To the system (5.4.2), we append the

following auxiliary dynamics:

η̇ = −η + y, (5.4.3)

which is a stable linear system and also is an input-to-state stable (ISS) system

when we regard the system output y as the input of the auxiliary dynamics. Then,

the vector field F of the extended system, which consists of the observable form

(5.4.2) and the auxiliary dynamics (5.4.3), is represented as

F = (−η + x1)
∂

∂η
+ x2

∂

∂x1
+ x3

∂

∂x2
+ f3(x)

∂

∂x3
.

By Theorem 5.3.1, we set

X3 = φ
∂

∂x3
,

where φ(η, x1) ∈ P0
se(x). For simple calculation, we denote βi(η, x1) := 1

αi(η,x1)

for i = 2, 3. Then, we can obtain X2 and X1 from straightforward computation

such that

X2 =
1

α3
[X3, F ]

= β3

(
φ
( ∂

∂x2
+
∂f3
∂x3

∂

∂x3

)
−
(
(−η + x1)

∂φ

∂η
+ x2

∂φ

∂x1

) ∂

∂x3

)
= β3φ

∂

∂x2
+ β3

(
g3φ+ (η − x1)

∂φ

∂η
+ (φ− ∂φ

∂x1
)x2

) ∂

∂x3

= φ22
∂

∂x2
+ φ32

∂

∂x3
,

X1 =
1

α2
[X2, F ]
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= β2

(
φ22

( ∂

∂x1
+
∂f3
∂x2

∂

∂x3

)
+ φ32

( ∂

∂x2
+
∂f3
∂x3

∂

∂x3

)
+ (η − x1)

(∂φ22
∂η

∂

∂x2
+
∂φ32
∂η

∂

∂x3

)
− x2

(∂φ22
∂x1

∂

∂x2
+
∂φ32
∂x1

∂

∂x3

)
− x3

∂φ32
∂x2

∂

∂x3

)
= β2φ

2
2

∂

∂x1
+ β2

(
φ32 + (η − x1)

∂φ22
∂η

− ∂φ22
∂x1

x2

) ∂

∂x2

+ β2

(
φ22(g2 −2c1x2 +x3) + φ32(g3 +x2) + (η −x1)

∂φ32
∂η

− ∂φ32
∂x1

x2 −
∂φ32
∂x2

x3

) ∂

∂x3

= φ11
∂

∂x1
+ φ21

∂

∂x2
+ φ31

∂

∂x3
,

where

φ22 := β3φ,

φ32 := β3

(
g3φ+ (η − x1)

∂φ

∂η
+ (φ− ∂φ

∂x1
)x2

)
,

φ11 := β2φ
2
2,

φ21 := β2

(
φ32 + (η − x1)

∂φ22
∂η

− ∂φ22
∂x1

x2

)
,

φ31 := β2

(
φ22(g2 − 2c1x2 + x3) + φ32(g3 + x2) + (η − x1)

∂φ32
∂η

− ∂φ32
∂x1

x2 −
∂φ32
∂x2

x3

)
.

One can observe that φji ∈ Pj−i
se (x) for i = 1, 2 and i ≤ j ≤ 3.

The objective is to find φ(η, x1), α2(η, x1), and α3(η, x1) satisfying both (E1)

and (E2) in Theorem 5.3.1. Then, we can construct a change of coordinates that

transforms the extended system into ENOCF. By straightforward calculation, it

holds that

[X3, X2] = 0,

[X3, X1] =
(
φ
∂φ31
∂x3

− φ11
∂φ

∂x1

) ∂

∂x3
= φ

(
b2φ

2
2 − b2

∂φ32
∂x2

− b3b2
∂φ

∂x1

)
∂x3 = 0,

[X2, X1] = φ22

(∂φ21
∂x2

∂

∂x2
+
∂φ31
∂x2

∂

∂x3

)
+ φ32

∂φ31
∂x3

∂

∂x3

− φ11

(∂φ22
∂x1

∂

∂x2
+
∂φ32
∂x1

∂

∂x3

)
− φ21

∂φ32
∂x2

∂

∂x3

=
(
φ22
∂φ21
∂x2

− φ11
∂φ22
∂x1

) ∂

∂x2
+
(
φ22
∂φ31
∂x2

+ φ32
∂φ31
∂x3

− φ11
∂φ32
∂x1

− φ21
∂φ32
∂x2

) ∂

∂x3
.
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From the last equation, [X2, X1] = 0 if and only if both the following partial

differential equations hold:

φ22
∂φ21
∂x2

− φ11
∂φ22
∂x1

= 0, (5.4.4)

φ22
∂φ31
∂x2

+ φ32
∂φ31
∂x3

− φ11
∂φ32
∂x1

− φ21
∂φ32
∂x2

= 0. (5.4.5)

If α2(η, x1) = α3(η, x1) = 1, then the first equation (5.4.4) is rewritten as

φ22
∂φ21
∂x2

− φ11
∂φ22
∂x1

= φ
(
φ− 3

∂φ

∂x1

)
= 0.

Since it should be satisfied that φ ̸= 0 by (E1), we have

∂φ

∂x1
=

1

3
φ.

Then, the second equation (5.4.5) becomes

φ22
∂φ31
∂x2

+ φ32
∂φ31
∂x3

− φ11
∂φ32
∂x1

− φ21
∂φ32
∂x2

= φ
(5
3
ψ − ∂ψ

∂x1
− 2c1φ+

8

9
φx2

)
+
(
ψ +

2

3
φx2

)1
3
φ

− φ
( ∂ψ
∂x1

+
2

9
φx2

)
−
(
2ψ − g3φ+

1

3
φx2

)2
3
φ

= φ

((2
3
ψ − 2

ψ

∂x1
+ (

2

3
g3 − 2c1)φ

)
+

2

3
φx2

)
= 0,

where

ψ := g3φ+ (η − x1)
∂φ

∂η
∈ P0

se(x).

Hence, the equation (5.4.5) holds if and only if

φ
(2
3
ψ − 2

ψ

∂x1
+ (

2

3
g3 − 2c1)φ

)
= 0 and

2

3
(φ)2 = 0.

However, the latter is a contradiction to (E1). Therefore, there does not exist

any φ ∈ P0
se(x) such that φ ̸= 0 and the partial differential equations (5.4.4) and

(5.4.5) are satisfied when α2(η, x1) = α3(η, x1) = 1. This implies that the RDOEL
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problem is not solvable for the system (5.4.2) via the auxiliary dynamics (5.4.3).

However, we can find a set of non-vanishing solutions of the partial differential

equations (5.4.4) and (5.4.5) such that

φ(η, x1) = 1, α2(η, x1) = 1, α3(η, x1) = e
(η−x1)

2 . (5.4.6)

From the above solutions, we can determine all the entries of the matrix L (defined

by (5.3.5)) as functions of η and x, and it follows from (5.3.9) that

∂z

∂x
= L−1

=


e

η−x1
2 0 0(

c3 − c1 +
η
2 + (c1 − 1

2)x1 −
x2
2

)
e

η−x1
2 e

η−x1
2 0

1− c1c3 − (c21 + 1)x1 + c1x2 c3 − c1 + c1x1 − x2 1

 .
By solving the above equation, we can construct z-coordinates and an output

transformation such that
z1

z2

z3

 =


−2e

η−x1
2(

2(1− c1 − c3)− η + (1− 2c1)x1 + x2
)
e

η−x1
2

(1− c1c3)x1 −
1+c21
2 x21 + (c3 − c1 + c1x1)x2 −

x22
2 + x3

=: Φz(η, x),

ye = q(η, y) := −2e
η−y
2 = z1.

As a result, on the (η, z)-coordinates, the extended system is represented as

η̇ = −η + y,

ż =


0 1 0

0 0 e
η−y
2

0 0 0

 z +

a1(η, y)

a2(η, y)

a3(η, y)

 = A(η, y)z + a(η, z),

ye = q(η, y) = [ 1 0 0 ] z = Cz,

(5.4.7)

where

a1(η, y) = 2
(
c1 + c3 − 1 + η + (c3 − 1)y

)
e

η−y
2 ,
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Figure 5.4: Simulation result: observer error e1(t) := ξ̂1(t)− ξ1(t)

a2(η, y) =
(
(c1 + c3 +

η

2
)η − (1 + c1 + c3 − c1c3)y

+ (1− c1 +
c21
2
)y2 − (1− c1)ηy

)
e

η−y
2 ,

a3(η, y) = −c2 − c3y − c1y
2.

Let [ηT zT ]T = Φ(η, ξ) := [ηT Φz(η,Φx(ξ))
T ]T , where Φx(ξ) := [h(ξ) Lfh(ξ)

L2
fh(ξ)]

T that is the transformation from the Rössler system (5.4.1) into its ob-

servable form (5.4.2). Then, Φ(η, ξ) transforms the extended system, composed

of the Rössler system (5.4.1) and the auxiliary dynamics (5.4.3), into the system

(5.4.7). In addition, since the Rössler system is an oscillator and the auxiliary

dynamics is an ISS system, (η, y) is bounded. Therefore, by using the high-gain

observer design method [BFH98], we can design an observer such as (5.1.5) in

Section 5.1. Actually, in the observer (5.1.5), it is not easy to obtain the inverse

coordinate transformation Φ−1. However, by using the Jacobian of Φ (=: JΦ), we

can design a dynamic system, which is equivalent to the observer, such that η̇
˙̂
ξ

 = (JΦ)
−1

[
p(η, y)

A(η, y)ẑ + a(η, y)− Λ−1(η, y)S−1
θ CT (Cẑ − ye)

]
,

ye = q(η, y), ẑ = (Φz ◦ Φx)(η, ξ̂).
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Figure 5.5: Simulation result: observer error e2(t) := ξ̂2(t)− ξ2(t)
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Figure 5.6: Simulation result: observer error e3(t) := ξ̂3(t)− ξ3(t)

In order to verify the performance of the observer, we carry out a simulation

using MATLAB, in the case when we set (c1, c2, c3) = (0.2, 0.2, 5.7), θ = 10,

ξ(0) = (4,−1, 3), η(0) = 0, and ξ̂(0) = (0, 0, 0). Figures 5.4-5.6 show that the

observer errors e1 := ξ̂1 − ξ1, e2 := ξ̂2 − ξ2, and e3 := ξ̂3 − ξ3 converge to zero.



Chapter 6

Conclusions

This chapter summarizes the results of this dissertation that have been addressed

so far, and presents some future directions for the research related to this work. In

the dissertation, we have dealt with two kinds of problems of designing observers

for nonlinear systems as listed below.

• The RDOEL problem for multi-output nonlinear systems

We have introduced the framework of reduced-order dynamic observer error

linearization (RDOEL) for multi-output nonlinear systems. The proposed

RDOEL problem is a modified version of the dynamic observer error lin-

earization (DOEL) problem, in the sense that it shares the same idea (of in-

troducing an auxiliary dynamics and a generalized output injection term in

a generalized nonlinear observer canonical form (GNOCF)) with the DOEL

problem. Although RDOEL is a special case of DOEL, RDOEL has an

advantage over DOEL such that it offers a lower-dimensional observer com-

pared with DOEL. Furthermore, the RDOEL problem is a natural extension

of the (conventional) observer error linearization (OEL) problem, because

RDOEL with no auxiliary dynamics is identical to OEL. For the RDOEL

problem, we have given three necessary conditions. Two of them can par-

tially identify the class of systems to which the problem is solvable, and the

other one presents a condition on output transformation in order for the

problem to be solved. Based on the necessary conditions, we have found a

geometric necessary and sufficient condition for the RDOEL problem with

125
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the general auxiliary dynamics (η̇ = p(η, y)) and the general output trans-

formation (ye = q(η, y)). Furthermore, from the result, we also have de-

rived a necessary and sufficient condition for the OEL problem, which is,

for our best knowledge, the first geometric necessary and sufficient condition

for the OEL problem in the case under consideration of the general output

transformation (ye = q(y)). At last, by using the results, we have developed

a procedure to check the solvability and to design explicit coordinate and

output transformations for OEL and RDOEL.

• The ENOCF problem for single output nonlinear systems

The dissertation has introduced an extended nonlinear observer canonical

form (ENOCF) of which linear part also depends on the system output and

the state of auxiliary dynamics, and we have dealt with the problem (called

the ENOCF problem) of transforming a single output nonlinear system into

the ENOCF via an auxiliary dynamics, as an extension of the RDOEL prob-

lem. We also provide two necessary conditions, and a geometric necessary

and sufficient condition for the ENOCF problem. And the results is applied

to the Rössler system to illustrate that the ENOCF problem can be solved

for a class of systems which are not covered by the RDOEL framework.

Some further issues for future research related to the topics of this dissertation

are listed as follows.

• The ENOCF problem can be extended to multi-output systems, like we have

extended the concept of RDOEL to multi-output systems in the dissertation.

• In order to solve the OEL, RDOEL, and ENOCF problems completely, we

have to find an explicit coordinate transformation for them. Although the

procedure in Subsection 4.3.3 explains how to do that, it is not a complete

algorithm yet. So, it may be a good topic of future research to investigate

a complete algorithm to design a coordinate transformation for the OEL,

RDOEL, and ENOCF problems by a straightforward manner.

• As similar as the above topic, although our results have been made under

consideration of auxiliary dynamics of general form, we have no idea yet
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how we can design it for a given system. Therefore, it would be also a

further topic to construct an auxiliary dynamics in order for the problems

to be solvable for the given system.
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국문초록

Nonlinear Observer Design via Reduced-Order Dynamic
Observer Error Linearization and Extended Nonlinear

Observer Canonical Form

축소 차원 동적 관측기 오차 선형화와 확장된 비선형 관측기 정준형을 통한

비선형 관측기 설계

본논문은비선형시스템에대한관측기설계문제를다루고있다. 관측기설계

문제란 주어진 시스템의 입력과 출력 정보만을 활용하여 대상 시스템의 상태 변수

를 추정할 수 있는 시스템을 설계하는 것이다. 선형 시스템의 경우에는 루엔버거

관측기 (Luenberger observer)로 알려진 일반적인 해법이 존재하는 반면, 일반적인

비선형 시스템에 대해 관측기를 설계하는 방법에 대한 연구 결과는 현재까지 보

고된 바가 없다. 다만, 특정한 형태의 비선형 시스템에 대해 관측기를 설계하는

문제에 대한 연구는 활발하게 진행되어 오고 있다. 관측기 오차 선형화 (observer

error linearization) 기법은 이 문제에 대한 가장 잘 알려진 방법론 중의 하나로

서, 주어진 비선형 시스템을 좌표 변환을 통해 관측 가능한 선형 시스템과 출력

주입 (output injection)부분들로구성된비선형관측기정준형 (nonlinear observer

canonical form)으로 변환시키는 문제이다. 비선형 관측기 정준형으로 변환 가능

한 좌표계에서는 시스템의 모든 비선형성이 시스템의 입력과 출력의 함수로 이루

어진 출력 주입 부분에 제한되므로, 이를 상쇄시킴으로써 선형 시스템의 경우와

비슷한 형태의 루엔버거형의 관측기 (Luenberger-type observer)를 설계하는 것이

가능하고, 이에 따라 선형화된 관측기 오차 동역학 (observer error dynamics)을

얻을 수 있다. 관측기 오차 선형화 기법의 출현 이래로, 이를 적용할 수 있는 시

스템의 범위를 확장시키기 위한 여러 연구가 진행되어 왔다. 그 중 하나는 주어진

시스템을 보다 높은 차수의 비선형 관측기 정준형으로 변환시키는 방법이다. 이

러한 방식에는 시스템 이머젼 기법과 동적 관측기 오차 선형화 (dynamic observer

error linearization) 기법이 있는데, 그 중에서도 동적 관측기 오차 선형화 기법의

특징은 다음과 같이 크게 두 가지로 요약될 수 있다. 첫째는 대상 시스템의 출력을

입력으로 하는 보조 동역학 (auxiliary dynamics)을 설계하는 것이고, 둘째는 보조

동역학을 포함하는 확장된 시스템을 대상 시스템보다 높은 차수의 일반화된 비선

형 관측기 정준형 (generalized nonlinear observer canonical form)으로 변환하는

139



140

것이다. 동적 관측기 오차 선형화 기법에서 제안된 일반화된 비선형 관측기 정준

형은관측가능한선형시스템과일반화된출력주입 (generalized output injection)

으로 구성되어 있고, 일반화된 출력 주입은 대상 시스템의 출력 뿐만 아니라 보조

동역학의 상태 변수에 대한 함수로 이루어져 있다는 차이점이 있다. 하지만, 이

방법론은 관측기의 차수가 대상 시스템의 차수보다 크다는 단점을 가지고 있다.

이러한 문제를 해결하기 위해, 최근에는 동적 관측기 오차 선형화의 변형된 기법

으로서 축소 차원 동적 관측기 오차 선형화 (reduced-order dynamic observer error

linearization)란 기법이 단일 출력 시스템에 대해 새롭게 제안되었다. 축소 차원

동적 관측기 오차 선형화 기법 역시 보조 동역학을 설계하여 확장된 시스템을 일

반화된 비선형 관측기 정준형으로 변환시킨다는 점에서 동적 관측기 오차 선형화

기법과 공통점을 갖지만, 변환된 일반화된 비선형 관측기 정준형의 차수가 대상

시스템의 차수와 같다는 차이점이 있다. 비록 축소 차원 동적 관측기 오차 선형

화 기법이 적용 가능한 시스템의 범주는 동적 관측기 선형화 기법이 적용 가능한

시스템 범주를 벗어날 수는 없지만, 축소 차원 동적 관측기 오차 선형화 기법은

동적 관측기 선형화 기법에 비해 더 작은 차수의 관측기를 설계할 수 있다는 이

점이 있고, 보조 동역학의 개념을 도입함으로써 관측기 오차 선형화 기법에 비해

더 넓은 범주의 시스템에 적용 가능하다는 장점을 지닌다. 뿐만 아니라, 축소 차원

동적 관측기 오차 선형화 기법의 개념 자체가 관측기 오차 선형화 기법의 개념과

매우 흡사하기 때문에 (보조 동역학을 고려하지 않은 축소 차원 동적 관측기 오차

선형화문제는관측기오차선형화문제와일치한다.) 축소차원동적관측기오차

선형화 기법에 대한 연구를 통해 기존의 관측기 오차 선형화 기법을 해석할 수도

있다.

이에따라,본논문에서는축소차원동적관측기오차선형화기법을다중출력

시스템에 대해 확장시키고, 이에 대한 연구를 수행하여 궁극적으로는 주어진 다중

출력시스템이이기법에의해일반화된비선형관측기정준형으로변환될수있는

필요충분 조건을 제시한다. 이 결과는 현재까지 확립되지 않았던 일반적인 형태의

출력 변환까지 고려하였을 경우의 다중 출력 시스템에 대한 관측기 오차 선형화

문제의 필요충분 조건을 내포하고 있다.

또한, 본 논문에서는 비선형 관측기 정준형의 선형 부분 또한 시스템의 출력과

보조동역학의상태변수에의해결정되는확장된비선형관측기정준형 (extended

nonlinear observer canonical form)을 제안하고, 축소 차원 동적 관측기 오차 선

형화의 확장된 기법으로서 주어진 단일 출력 시스템을 보조 동역학을 설계하여
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확장된 비선형 관측기 정준형으로 변환하는 문제를 제안하고 이에 대한 필요충분

조건을 제시한다. 또한 이 결과를 뢰슬러 시스템 (Rössler system)에 적용시켜봄으

로써 새롭게 제안된 방법론이 축소 차원 동적 관측기 오차 선형화에 비해 더 넓은

범주의 시스템에 적용될 수 있음을 예증한다.

주요어 : 비선형 관측기 설계, 비선형 관측기 정준형, 관측기 오차 선형화, 시스템

이머전, 동적 관측기 오차 선형화, 축소 차원 동적 관측기 오차 선형화

학 번 : 2005–21511
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