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ABSTRACT

NONLINEAR OBSERVER DESIGN VIA REDUCED-ORDER DYNAMIC
OBSERVER ERROR LINEARIZATION AND EXTENDED NONLINEAR

OBSERVER CANONICAL FORM

BY

HansuNnGg CHO

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

August 2014

This dissertation contributes to the observer design problem for some classes
of nonlinear systems. The observer design problem is to construct a dynamic
system (called observer) that can estimate the state of a given dynamic system
by using available signals which are commonly the input and the output of the
given system. While a standard solution (called Luenberger observer) to the
problem was solved for linear systems, there has not been a unified solution for
general nonlinear systems. However, there have been significant research efforts
on the problem of designing observers for special classes of nonlinear systems.
Observer error linearization (OEL) is one of the well-known methods, and it is
the problem of transforming a nonlinear system into a nonlinear observer canonical
form (NOCF) that is an observable linear system modulo output injection. If a

nonlinear system can be transformed into the NOCF, then all the nonlinearities



of the system are restricted to the output injection term which is a vector-valued
function of the system input and the system output. As a result, we can design
a Luenberger-type observer that cancels out the output injection and thus has a
linear observer error dynamics in the transformed coordinates. In order to extend
the class of systems to which the OEL approach is applicable, a lot of attempts
have been made in the past three decades. One of them is to transform a nonlinear
system into a higher-dimensional NOCF': system immersion and dynamic observer
error linearization (DOEL). In particular, the main idea of DOEL is twofold:
the first is to introduce an auxiliary dynamics whose input is system output,
and the second is to transform the extended system into a generalized nonlinear
observer canonical form (GNOCF) that is an observable linear system modulo
generalized output injection depending not only on the system output but also
on the state of auxiliary dynamics. By introducing such an auxiliary dynamics,
the DOEL problem can be solved for a larger class of systems compared with the
(conventional) OEL problem. However, it has a drawback on the dimension of
observer. That is, the dimension of observer designed by the DOEL approach is
larger than that of the given system, because the dimension of GNOCF equals to
the sum of dimensions of the given system and the auxiliary dynamics. Recently,
inspired by this fact, a new approach called reduced-order dynamic observer error
linearization (RDOEL) was proposed for single output nonlinear systems. In the
framework of RDOEL, we also introduce an auxiliary dynamics and transform the
extended system into GNOCF in a similar fashion to DOEL, but the coordinate
transformation preserves the coordinates corresponding to the state of auxiliary
dynamics so that the dimension of GNOCF equals to that of the given system.
Although RDOEL is a special case of DOEL (that is, the class of systems to which
the RDOEL approach can be applied is a subset of that of DOEL), the RDOEL
approach offers a lower-dimensional observer compared to the DOEL approach,
and it is also applicable to a larger class of systems compared to the (conventional)
OEL approach. In addition, since the framework of RDOEL is coterminous with
that of OEL (in fact, the OEL problem is identical to the RDOEL problem with
no auxiliary dynamics), most of results for the RDOEL problem can be also used

to analyze the OEL problem by slight modification.
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In this respect, one of the topics of this dissertation is to deal with the RDOEL
problem for multi-output systems. We first formulate the framework of RDOEL
for multi-output nonlinear systems and provide three necessary conditions. And
then, by means of the necessary conditions, we derive a geometric necessary and
sufficient condition in terms of Lie algebras of vector fields. Since the proposed
RDOEL problem is a natural extension of the (conventional) OEL problem, the
result can be easily translated into a geometric necessary and sufficient condition
for the OEL problem, which has not yet been completely established in the case
where an output transformation of general form is considered.

The other topic of the dissertation is to introduce an extended nonlinear ob-
server canonical form (ENOCF) whose linear part also depends on the system
output and the state of auxiliary dynamics, and to deal with the problem of
transforming a single output nonlinear system with an auxiliary dynamics into
the ENOCF as an extension of the RDOEL problem. Since the proposed ENOCF
admits a kind of high-gain observer, the solvability of the problem allows us to de-
sign observers for a class of single output nonlinear systems. We also first present
two necessary conditions, and then derive a geometric necessary and sufficient
condition for the problem. Furthermore, as a case study, we apply the results to
the Rossler system in order to show that the proposed method enlarges the class

of applicable systems compared with the RDOEL approach.

Keywords: nonlinear observer design, nonlinear observer canonical form, ob-
server error linearization, system immersion, dynamic observer error lineariza-
tion, reduced-order dynamic observer error linearization

Student Number: 200521511
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Notation and Acronyms

Notation

Rn

RmXTL

Aan
AT
diag(aq, ..., apn)

diag(Al, ey An)

(%)
rank(V)
card(S)

span(.S)

field of real numbers

real Euclidean space of dimension n
space of m X n matrices with real entries
n X n identity matrix

zero matrix of suitable dimension

m X n matrix A

transpose of A

diagonal matrix with the i-th entry «; € R

block diagonal matrix with the i-th block A; € R™i*™

defined as
Kronecker delta
binomial coefficient
rank of V'
cardinality of S

span of .S

end of proof, definition, theorem, remark, and so on
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Acronyms

OEL
DOEL

RDOEL

NOCF
GNOCF

ENOCF

observer error linearization (or linearizable)

dynamic observer error linearization (or linearizable)

reduced-order dynamic observer error linearization (or lin-

earizable)

nonlinear observer canonical form
generalized nonlinear observer canonical form

extended nonlinear observer canonical form

xii



Chapter 1

Introduction

1.1 Research Background

In control theory, a state observer (also called a state estimator) is a dynamic
system that provides an estimate of the internal state of a given dynamic system
by using available signals which are commonly the input and the output of the
given system. Knowing the system state is necessary to solve many problems in
control theory, for example, state feedback controller design, fault detection and
diagnosis, and so on. For this reason, the observer design problem for linear /non-
linear systems has been an important issue in control theory, and has been ap-
plied to various fields of application: robot manipulators, aerial and ground ve-
hicles, electric motors, biological systems, chemical systems, image processing,
secure communication, and so on. In the case of linear systems, a standard so-
lution called Luenberger observer was developed in [Lue64]. On the other hand,
there has been no unified approach to the case of nonlinear systems, although
significant research efforts have been devoted to the problem since its advent
[Tha73|. However, there have been varied methodologies for special classes of
nonlinear systems, such as observer error linearization [BZ83|, [KI83l [KR&5], ap-
proximate observer error linearization [BLI5, [BS97, [LB97, [LBO1, Nam97], high-
gain observers [BH91, [CMG93, DBGR92, IGHO92 IGK94l [HBB10, [SSS01], slid-
ing observers [CS91l, [SHMS86l XS0I], observers for Lipschitz nonlinear systems
IKEO3, Raj98 RCI8, [ZH02], and so on (surveys of various nonlinear observer
design approaches can be found in [MHS89, INF99]).



2 Chap. 1. Introduction

In particular, the concept of observer error linearization (OEL) is to trans-
form a nonlinear system into a nonlinear observer canonical form (NOCF) which
is an observable linear system modulo output injection. If a nonlinear system is
transformed into the NOCF, then all nonlinearities of the system are restricted
to the output injection that is a function of the system input and the system
output which are available information. As a result, on the transformed coordi-
nates, we can design a Luenberger-type observer which has linear error dynam-
ics because the nonlinearities can be cancelled out by the output injection. Fur-
thermore, we can arbitrarily assign the eigenvalues of the system matrix of the
linear observer error dynamics because the linear part of NOCF is observable.
This approach was first introduced in [KI83] and [BZ83| for time-invariant and
time-varying single output systems respectively, and has been extended to multi-
output systems [BBHB09, HP99, [KR&5, [Phe9ll, XG&I| and discrete-time sys-
tems [LAMOS, [LB95, [LN9T]. Meanwhile, the author of [Kel87| developed a char-
acteristic equation approach which is a different characterization of OEL com-
pared with the original work [KI83]. In addition, since the result of [KI83| is
based on coordinate transformation that is a diffeomorphism, in order to re-
lax the condition, the authors of [XZ97| investigated the possibility of taking
coordinate transformation as a smooth map with continuous inverse (which is
called a semi-diffeomorphism). Besides the above works, many studies have
been conducted on the OEL problem, such as introducing generalized output
injections depending on time derivatives of system input and/or system out-
put [DGMS94, [GMP96, Kel87, [LPG99, [PGI7|, employing output transforma-
tions [BBHB09, (GMP96, [KR85| and/or output-dependent time-scale transfor-
mations [Gua0ll [Gua02, [Gua05, RPNO1, RPN04, WTL10|, developing construc-
tive algorithms not only to check the possibility of transforming a given system
into NOCF but also to design the transformation via a straightforward proce-
dure [BBHBO09, BL95L BS97, (GMP96, [Gua02, [Gua05l, [PG97|, designing nonlinear
adaptive observers based on NOCF [Mar90l, MT92al [MT92b|, and so on.

In order to extend the class of systems to which the OEL method can be
applied, there have been attempts to immerse a nonlinear system into a higher-

dimensional NOCF. Since the first contribution to the system immersion technique
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was made in [LMS86], the concept has been refined in [BS02, [Jou03] and some con-
structive algorithms to solve the problem have been developed in [BS04, BS06].
Furthermore, inspired by system immersion and dynamic feedback linearization
[CLM89, [CLM91], the concept of dynamic observer error linearization (DOEL)
was first proposed in [NJS04] and generalized in [BYS06]. The main idea of DOEL

is twofold:

e The one is to introduce an auxiliary dynamics of which input is the output

of a given system.

e The other is to transform the extended system, consisting of the given sys-
tem and the auxiliary dynamics, into a generalized nonlinear observer canon-
ical form (GNOCF), which is an observable linear system modulo general-
ized output injection depending not only on the system output but also on
the state of auxiliary dynamics, via a coordinate transformation that is a

diffeomorphism on the state of the extended system.

In a similar fashion to the (conventional) OEL approach, if there exists an aux-
iliary dynamics for a given system such that the extended system can be trans-
formed into the GNOCF (i.e. if the given system is dynamic observer error lin-
earizable (DOEL)), then it is also possible to construct a Luenberger-type ob-
server which has linear error dynamics. Moreover, by introducing such an aux-
iliary dynamics, DOEL is applicable to a class of systems not covered by OEL.
Furthermore, in the case of single output systems, one of the results in [BYS06]
showed that the concept of DOEL strictly covers that of system immersion. That
is to say, if an n-dimensional system is immersible into an (n + d)-dimensional
NOCF, then it is also DOEL via a d-dimensional auxiliary dynamics, however,
the converse is not true. As regards the DOEL problem, the works [BB09, [Y'JS06]
made some contributions to multi-output case and there also have been researches
on developing constructive algorithms to solve the problem [BB09, [YBS07].

As mentioned above, DOEL has an advantage over OEL such that it can be
applied to a larger class of systems. However, it also has a drawback such that the
dimension of observer is larger than that of a given system because the dimension
of GNOCEF is equal to that of the extended system composed of the given system

.__:Ix_c L, '|'|i
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4 Chap. 1. Introduction

and its auxiliary dynamics. In fact, this implies that the observer estimates not
only the state of the given system, which is what we want to estimate, but also
the state of auxiliary dynamics, which is already known. Recently, motivated by
this fact, the authors of [BB11l, [YBSS10] proposed a new observer design scheme
called reduced-order dynamic observer error linearization (RDOEL) for single out-
put systems, which is a modification of DOEL as well as a natural extension of
OEL. Compared with DOEL, RDOEL shares the same idea of introducing such
an auxiliary dynamics to a given system and transforming the extended system
into GNOCEF. In the framework of RDOEL, however, the coordinate transforma-
tion preserves a part of coordinates, which corresponds to the state of auxiliary
dynamics, so that the extended system is transformed into the system composed
of the auxiliary dynamics intact and GNOCF of which dimension is equal to that
of the given system. As a result, RDOEL offers a lower-dimensional observer than
DOEL, though RDOEL is a special case of DOEL (that is, the class of applicable
systems of RDOEL is included in that of DOEL). Moreover, RDOEL also can
be applied to a class of systems not covered by OEL due to employing auxiliary
dynamics, and most of results for the RDOEL problem can be used to analyze the
OEL problem by slight modification because the framework of RDOEL is quite
coterminous with that of OEL (they are identical when auxiliary dynamics is not
considered; NOCF by OEL and GNOCF by RDOEL have the same dimensions
and similar structures, even if auxiliary dynamics is considered). For the RDOEL
problem, a complete solution to a special case was derived in [YBS11] and the con-
cept has been extended to discrete-time single output systems [YYS12, [YYS13].
However, there has so far been no work dealing with the problem for multi-output
systems.

This dissertation deals with two topics in regard to RDOEL. One is to extend
the concept of RDOEL to multi-output systems. The other is to propose a new
extended NOCF (ENOCF), of which not only output injection but also linear
part depend on system output and state of auxiliary dynamics, and then to study
the problem of transforming a single output nonlinear system with its auxiliary
dynamics into the proposed ENOCF, which is a natural extension of the RDOEL

problem for single output systems.
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1.2 Organization and Contributions of the Dissertation

The following outlines this dissertation and summarizes the contributions of each

individual chapter.

Chapter Mathematical Preliminaries

As a preliminary of the dissertation, we recall some notions in differential ge-
ometry and important mathematical tools on them, such as manifolds, vector
fields, differential 1-forms, Lie derivatives, Lie brackets, Inverse Function Theo-

rem, Frobenius Theorem, Simultaneous Rectification Theorem, and so on.

Chapter |3 Review of Related Previous Works

In this chapter, we review some established results on observer error lineariza-
tion [BBHBO09, [Kel87, [KI83| [KR85 XG89| and its extensions: system immersion
IBS04], dynamic observer error linearization [BYS06l INJS04], and reduced-order
dynamic observer error linearization [Yanll] for single output systems, which are

closely related to the research in this dissertation.

Chapter Reduced-Order Dynamic Observer Error Linearization
(RDOEL) for Multi-output Systems

This chapter defines and deals with the RDOEL problem for multi-output sys-
tems. Most of the chapter is based on [CYS12, [CYS14b] and the contributions of

the chapter are summarized as follows.

e The concept of RDOEL is first extended to multi-output systems. We pro-
vide three necessary conditions for the RDOEL problem. Two of them par-
tially identify the class of applicable systems, and the other one presents a
condition on output transformation needed to solve the problem. Further-
more, we fully characterize the problem by deriving a geometric necessary

and sufficient condition from the necessary conditions.

e From the necessary and sufficient condition for the RDOEL problem, we
first establish a geometric necessary and sufficient condition for the OEL
problem in the case where output transformation of general form is con-
sidered. Moreover, we show by an example that the general output trans-

formation allows us to solve the OEL problem for a class of systems not
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covered by previous results considering output transformations with some

restrictions.

e Based on the necessary and sufficient conditions for the OEL and RDOEL
problems, we develop a procedure to check the solvability and to construct

explicit change of coordinates for the problems.

Chapter Extension of RDOEL: System into Extended Nonlinear
Observer Canonical Form (ENOCF)

In this chapter, we propose a new NOCF called extended nonlinear observer
canonical form (ENOCF) of which not only output injection but also linear part
depend on system output and state of auxiliary dynamics. As a natural extension
of the RDOEL problem, we address and deal with the problem (called ENOCF
problem) of transforming a single output nonlinear system into the ENOCF via
an auxiliary dynamics. Since the ENOCF admits a kind of high-gain observer,
the solvability of the problem allows us to design observers for a class of nonlinear
systems. This chapter is based on [CYS14a] and the contributions of the chapter

are listed as follows.

e For the ENOCF problem, we also give two necessary conditions that can
partially identify the class of systems for which the problem is solvable, and

then establish a geometric necessary and sufficient condition.

e As a case study, we transform the Rossler system into the proposed ENOCF
via an auxiliary dynamics, and design an observer for the system by us-
ing a high-gain observer design method. This example illustrates that the
ENOCF problem can be solved for a larger class of systems compared to

the RDOEL problem.

Chapter [6l Conclusions
This chapter concludes this dissertation with some concluding remarks and further

issues for future research.



Chapter 2

Mathematical Preliminaries

This chapter provides some brief mathematical background on differential geom-
etry. For a full understanding of the chapter, the reader is referred to the books

[BooT75, Mun00, [Spi99, [War71].

2.1 Manifolds and Differentiable Structures

First, we introduce the notion of manifold and differentiable structures on mani-

folds. To do this, we need the concepts of topology and topological space.

Definition 2.1.1 (Topology and Topological space). A topology on a set M is a
collection T of subsets of M, which are called open sets satisfying the following

three axioms:
(a) The empty set and M itself are open.
(b) The union of any number of open sets is open.
(¢) The intersection of any finite number of open sets is open.
A set M together with a topology T on M is called a topological space. U

A basis of a topology T on M is a subcollection B C 7T such that every open
subset of M can be represented as a union of elements of B. A topological space is
said to be second countable if its topology has a countable basis. A neighborhood
of a point p € M is an open subset of M containing p. A Hausdorff space is a

topological space in which any two distinct points have disjoint neighborhoods.
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Let M; and M, be topological spaces. A map @ : M; — M> is said to be
continuous if the inverse image of any open subset of My under @ is also an open
subset of My. The map ® is called a homeomorphism, if it is bijective and both
® and ®! are continuous. If there exists a homeomorphism from M; onto M,
then M; is said to be homeomorphic to Ms. Furthermore, if M; is homeomorphic
to Mo, then My is homeomorphic to M; also because @1 : My — M is clearly

a homeomorphism when ® : M7 — Ms is a homeomorphism.

Definition 2.1.2 (Topological manifold). A second countable Hausdorff space
M is called a (topological) manifold of dimension n if every point in M has a

neighborhood homeomorphic to an open subset of R"™. O

Definition 2.1.3 (Coordinate chart (Local coordinate system)). For a topologi-
cal manifold M of dimension n, a coordinate chart (also called a local coordinate
system) of M is a pair (U, x), where U is an open subset of M and x is a homeo-
morphism from U onto an open subset of R"™. The homeomorphism z is called a
coordinate map on U. Let x = (x1,...,x,) with z; : U — R for 1 <i <n. Then,
the function z; is called the i-th coordinate function of the coordinate map x, and
the n-tuple of real numbers (z1(p),...,z,(p)) for a point p € U is called the local

coordinates of p in the local coordinate system (U, z). O

Let (U,z) and (V, z) be coordinate charts of M with U NV # @. Then, the
homeomorphism z o ™! : (U NV) — 2(U NV) is called a coordinate transfor-
mation from x to z on UNV. Two coordinate charts (U, x) and (V, z) are said to
be C*®-related or C*°-compatible if both the maps zox™ : x(UNV) — 2(UNV)
and zoz7l : 2(UNV) = 2(UNV) are C* (that is to say, each component
function of the maps has continuous partial derivatives of all orders; sometimes
we will use the words ‘smooth’ or ‘differentiable’ to mean ‘C*’). A collection
A = {(U,z%) : i € I} (I is an index set) of mutually C*-related coordinate

charts of M with |JU® = M is called an atlas for M.
i€l

Lemma 2.1.1. If A is an atlas for M, then A is contained in a unique maximal

atlas for M. O

From the above lemma, we can define the notion of smooth manifold.

2] &-t]] 8
i ] 1



2.1. Manifolds and Differentiable Structures 9

Definition 2.1.4 (Smooth manifold). A topological manifold M together with a

maximal atlas for M is called a smooth manifold. O

Now, let us consider the differentiability of a map between smooth manifolds.
Let My and M5 be smooth manifolds. A map & : M; — M, is said to be smooth
if, for each p € My, there exist two coordinate charts (U, z) and (V, z) on M; and
M, respectively, such that p € U, ®(p) € V, and the representation of ® in the

local coordinate systems is smooth.

Definition 2.1.5 (Diffeomorphism). Let M; and My be smooth manifolds of the
same dimension. A map ® : M1 — M, is called a diffeomorphism, if it is bijective

and both ® and ®~! are smooth. If there exits a diffeomorphism from M; onto

My, then M is said to be diffeomorphic to M. O

Remark 2.1.1. In a similar fashion to the case of homeomorphisms, if M is

diffeomorphic to My, then Ms is trivially diffeomorphic to M; also. O

Let M7 and Ms be smooth manifolds of dimensions n; and ne, respectively.
For a smooth map ® : My — M, the rank of ® at a point p € M; is defined
as the rank of the Jacobian matrix ‘g—i(p) € R™*™ and denoted by rank(®(p)),
where x is a coordinate map on a neighborhood of p. The rank of ® does not
depend on the choice of coordinate map. By using the notion of rank of a smooth
map, the following theorem gives a useful method to check whether a given map

is a diffeomorphism or not.

Theorem 2.1.2. Let M; and M5 be smooth manifolds of the same dimension n.
A map & : My, — M, is a diffeomorphism if and only if ® is a smooth bijective
map and rank(®(p)) = n for all p € M;. O

The next theorem (known as the ‘Inverse Function Theorem’) is also a con-
venient tool to determine whether a map (defined on an open subset of R") is a

diffeomorphism or not in a local sense.

Theorem 2.1.3 (Inverse Function). Let U be an open subset of R” and ® : U —
R™ be a smooth map. If g—i(p) is nonsingular for a point p € U (i.e. rank(®(p)) =
n), then there exists a neighborhood V' C U of p such that ®|y : V — ®(V) is a

diffeomorphism, where ®|y denotes the restriction of ® to V. O
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Lastly, we end this section by introducing the notion of submanifold.

Definition 2.1.6 (Submanifold). Let M be a topological manifold of dimension
n and P be a subset of M. For each p € P and a positive integer £k < n, if
there exists a coordinate chart (U,z) = (U, (z1,...,%,)) of M, where U is a

neighborhood of p, such that
PNU={qeU:xi(q) =xi(p), i=k+1,...,n}, (2.1.1)
then P is called a k-dimensional submanifold of M. O

For the manifold M and its k-dimensional submanifold P, let 7 be a topology
on M and Tp := {PNU :U € T}. Then, Tp becomes a topology on P, and thus
P together with Tp is a topological space. Furthermore, if (U, z) is a coordinate
chart of M satisfying the condition (2.1.1), then (PNU, z|pny) is also a coordinate

chart of P. Therefore, the submanifold P itself is a manifold of dimension k.

2.2 Vector Fields and Covector Fields

Throughout the rest of this chapter, M is a smooth manifold of dimension n
unless otherwise noted and, for a point p € M, C°°(p) denotes the set of all

smooth real-valued functions that can be defined on a neighborhood of p.

Definition 2.2.1 (Tangent vector and Tangent space). A tangent vector v, to
M at a point p € M is a linear derivation from C*(p) into R. In other words,

for all ¢,¢ € C*(p) and a, f € R, it holds that
(a) vp(ag + Brb) = avp(¢) + Bup(¥).

(b) vp(9 - ) = d(p)vp(v) + ¥ (p)vp(9).

The tangent space to M at p € M is the set of all tangent vectors to M at p and
denoted by T, M. O
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Remark 2.2.1. We can observe that the tangent space T),M is a vector space

over the field R with the vector addition and the scalar multiplication defined by

(vp + wp)(@) := vp(d) + wp(d),
(avp)(9) = avy(9),

where vy, w, € T,M, ¢ € C*°(p), and a € R. Moreover, the dimension of T}, M is
equal to that of M. O

Based on the concept of tangent space, a vector field on a smooth manifold is

defined as follows.

Definition 2.2.2 (Vector field). A wvector field f on M is a map assigning an
element of T, M to each p € M. The vector field f is said to be smooth if, for
each p € M, there exist a coordinate chart (U, (z1,...,2,)) of M and n smooth

real-valued functions fy,..., f, on U such that
fla) = ifi(@(a) for all ¢ € U,
i=1 Oxi/q

where U is a neighborhood of p and (%)q’s are the tangent vectors to M at ¢
such that (a%i)Q(xj) =4 fori,j=1,...,n. O

By the above definition, on a fixed coordinate chart (U, (z1,...,xy)) of M,
the representation of a smooth vector field f on M in the local coordinate system

is usually written as

F@) =Y file) 2:2.)
i=1 !

or as the column vector

f@) =[filz) - fal@)]", (2.2.2)

with some smooth real-valued functions f;’s determined by the choice of coordi-
nate chart. It is worth pointing out that the notion of vector field defined above

makes it possible to introduce the concept of differential equation on a smooth

] 2- 1_l|
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manifold. More precisely, we can associate a vector field f with a differential
equation # = f(x) on a smooth manifold, which is called a dynamic system in
control theory.

Since a tangent space is a vector space over the field R as mentioned in Remark
2.2.1] we can define the dual objectives to a tangent space and a vector field, which

are called a cotangent space and a covector field, respectively.

Definition 2.2.3 (Cotangent space and Tangent covector (Differential 1-form)).
The cotangent space to M at a point p € M is the dual space of T, M and denoted
by T,y M. An element of the cotangent space Ty M is called a tangent covector to
M at p or a differential 1-form. O

Definition 2.2.4 (Covector field (Differential 1-form)). A covector field (also
called a differential 1-form) w on M is a map assigning an element of T, M to
each p € M. The covector field w is said to be smooth if, for each p € M, there
exist a coordinate chart (U, (x1,...,2,)) of M and n smooth real-valued functions

Wi, - .., Wp on U such that
Zwl )(dzi)q forall g € U,

where U is a neighborhood of p and (dx;), is the tangent covector to M at g that
1sdua1to( Jgfor1<i<mnandqeU. O

In a similar fashion to the equations (2.2.1]) and (2.2.2)), the representation of

a smooth covector field w in a local coordinate system can be expressed as

sz )dz;
or as the row vector
w(x) = [wi(z) - wn(z)],

with some smooth real-valued functions w;’s that are also dependent on the choice

of local coordinate system. Furthermore, for any smooth function ¢ : M — R,

.__;rxﬁ-! _'-.‘I_':I_ -l_-ll -__.:.I'!
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we can associate ¢ with a covector field d¢ on M by taking the cotangent vector
(d¢)p for each p € M. In fact, the representation of d¢ in a local coordinate

system is given by
dp=>_ %dmi, (2.2.3)

which is often called the exterior differentiation of ¢. In general, however, the
converse does not hold. That is to say, for a covector field w on M, it is not
true that there always exists a smooth function ¢ : M — R satisfying w = d¢.
A covector field w on M is said to be exact if there exists a smooth function

¢ : M — R such that w = d¢.

2.3 Lie Derivatives and Lie Brackets

In this section, we recall several operators on vector fields and/or covector fields,
and then present their basic properties that will be frequently used throughout

the dissertation.

Definition 2.3.1. For a smooth covector field w on M and a smooth vector field

f on M, we define a smooth function (w, f) : M — R as

{w, F)(p) == w(f(P))
for each p € M. O

Let w(z) = [wi(z) -+ wp(z)] and f(z) = [fi(z) --- fu(2)]T be the represen-
tations of w and f in a local coordinate system, respectively. Then, in the local

coordinate system, (w, f) is written as
(w, @) =Y wilz)filz). (2.3.1)
i=1

As we can see, the operator (-,-) acts like the inner product in linear algebra,

when we regard w and f as a row vector and a column vector, respectively.

2] &-t]] 8
i ] 1
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Definition 2.3.2 (Lie derivative). For a smooth vector field f on M and a smooth
real-valued function ¢ on M, the Lie derivative of ¢ along f is a smooth real-

valued function on M defined and denoted by
(Lo)(p) := (f(p))(¢)
for each p € M. O

Another equivalent way to define the Lie derivative L;¢ is to use the differ-

ential 1-form d¢ as follows:

Lro(p) :=do(f(p)) = (d¢, f)(p)  for cach p € M. (2.3.2)

Therefore, by the equations (2.2.2)), (2.2.3)), (2.3.1]), and (2.3.2)), the representation

of L@ in a local coordinate system can be expressed as

~ 9%

o0x;
i=1 v

Lio(x) = fi).

Moreover, since L¢ is a smooth real-valued function on M, the Lie derivative of

order k (k is a nonnegative integer) can be defined recursively as follows:
L= ¢, Ly¢ = Lo, che = zf(c’;—1¢) for k > 2.

In a similar way, L,L¢¢ := L4(Ly¢) when g is another smooth vector field on M.

We can also define the notion of Lie derivative of a smooth covector field w
on M along a smooth vector field f on M. We introduce it briefly as a matrix

form in a local coordinate system. Let w(z) = [wi(z) - - wp(z)] and f(x) =
[fi(z) -+ fa(z)]T. Then, £ w is defined by

8wT)T

L) = (@) (G

A more general definition of £ ;w can be found in the books [Boo75, [Spi99, War71].

Definition 2.3.3 (Lie bracket). For two smooth vector fields f and g on M, the

A 2t} &
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Lie bracket [f, g] is the vector field on M defined by

[£:91p(¢) == (f(P))(L40) = (9(p)) (L),

where p € M, ¢ € C*(p), and [f, g, denotes the tangent vector to M at p which
is assigned to p by the vector field [f, g]. O

If the representations of f and ¢ in a local coordinate system are given by
@) =3 5@ = [h) - Sl
i=1 ¢
o) = 32 @) = [g1(@) -+ gal@)],
i=1 !

then, in the local coordinate system, the Lie bracket [f,g] is written as

=3 (32 (3250~ (5 )oso))

=1 ~j=1

or as the vector form

0l = 92 @)~ L gla)

Since [f, g] is also a vector field on M, we may repeat bracketing of g with f. The

following notation is used to simplify this process:
adjg:=g(x),  adrg:=1[fgl, adjg:=fadi g fork>2
The Lie bracket operator [-, -] has some fundamental properties stated in the

next proposition.

Proposition 2.3.1. Let f, g, and h be smooth vector fields on M and «, 8 € R.

Then, we have

(a) Bilinearity over R: [af + Bg, h| = a|f, h| + B[g, h],
[f,ag + Bh] = alf, g] + B[S, h].

(b) Anticommutativity: [f,g] = —l[g, f]-
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(c) Jacobi identity: [[f,g],h] + [lg, hl, f] + [[h, f], 9] = 0. -

Remark 2.3.1. In fact, a vector space L over the field R together with a operator
[-, -] satisfying the above three properties is called a Lie algebra L over R. O

From the definitions of Lie derivative and Lie bracket, we can easily deduce

the following facts.

Proposition 2.3.2. Let ¢ and ¢ be smooth real-valued functions on M, f and
g be smooth vector fields on M, and w be a smooth covector field on M. Then,

it holds that
(a) Lp(¢y) = (Lyd) + OLs.
(b) Ly{w,g) = (Lsw,g) + (w,[f, g])-
(c) Ly(de) =dLso.
(d) Liypo =vLso.
() Lijgd=LsLyd — LoLsd.
(£) Ligp)(ow) =PLp(d)w + d(YLyw + (w, f)de).
(8) [0f,vg] = ¢YLf, 9] + 9L (V)g — YLy (d)f- O

2.4 Distributions and Codistributions

In this section, we introduce the notions of distribution and codistribution, and
review several results to construct a new local coordinate system or a part of it
from a set of given vector fields. The results play an important role in solving our

problems that will be addressed in Section [£.1] and Section [5.1]

Definition 2.4.1 (Distribution). A distribution D on M is a map that assigns
a subspace of the tangent space T),M to each p € M. The distribution D is said
to be smooth if, for each p € M, there exist a neighborhood U of p and a set
{Xi:iel} (Iisan index set) of smooth vector fields on U such that

D(q) = span{X;(q) :i € I} forall g € U.
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For a distribution D on M, the dimension (or rank) of D at a point p € M
is the dimension of D(p). Moreover, the distribution D is said to be constant

dimensional if the dimension of D(p) is constant on M. O

A vector field f on M is said to lie in or belong to a distribution D on M if
f(p) € D(p) for all p € M. In this case, we denote it by f € D. For a constant
dimensional distribution, the following lemma provides a concept similar to the

notion of basis for a vector space in linear algebra.

Lemma 2.4.1. Let D be a constant k-dimensional distribution on M. Then, for
each p € M, there exist a neighborhood U of p and k vector fields X1,..., X} on
U such that D(q) = span{Xi(q),..., Xi(¢)} for all ¢ € U. d

Remark 2.4.1. The above k vector fields X1, ..., X are called local generators
on U of the distribution D in the following sense: any vector field f € D can be
expressed on U as a linear combination of X;’s such that f = Zle ¢; X; with

some real-valued functions ¢;’s on U. U
Next, we introduce two kinds of special classes of distributions.

Definition 2.4.2 (Involutive distribution). A distribution D is said to be invo-
lutive if [f, g] € D whenever f,g € D. O

Definition 2.4.3 (Integral manifold and Integrable distribution). A submanifold
N of M is an integral manifold of a distribution D on M if

TyN = D(q) for all g € V.

A distribution D on M is said to be integrable if, for any p € M, there exists an

integral manifold of D containing p. O

If a distribution D is integrable, then it is involutive. In general, however,
the converse is not true. The following celebrated theorem of Frobenius gives an
additional condition which an involutive distribution should satisfy in order for

the distribution to be integrable.

Theorem 2.4.2 (Frobenius). A constant dimensional distribution D on M is

integrable if and only if it is involutive. O
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The next theorem is another version of the Frobenius Theorem.

Theorem 2.4.3. For a distribution D on M, the following statements are equiv-

alent:
(a) The distribution D is involutive.

(b) For a fixed nonnegative integer k¥ < n and each p € M, there exists a
coordinate chart (U, (z1,...,x,)) with a neighborhood U of p such that

0 0
D(q) —span{a—xl,...,a—%} for all ¢ € U.

(c) For a fixed nonnegative integer k& < n and each p € M, there exists a

coordinate chart (U, (z1,...,x,)) with a neighborhood U of p such that

(dzi, £)(q) = 0

forallge U, feD,and k+1<i<n. O

For a set of given vector fields, the involutivity of the distribution obtained
by spanning it is a necessary condition to construct an entire local coordinate
system or a part of it by using those vector fields. However, we need some stronger
conditions than the involutivity for a sufficient condition. The following theorems

and corollary state about them.

Theorem 2.4.4 (Flow-box). Let X be a smooth vector field on M such that
X (p) # 0 for apoint p € M. Then, there exists a coordinate chart (U, (z1,...,zy))
with a neighborhood U of p such that X = 8%1 onU. O

Theorem 2.4.5 (Theorem 2.36 in [NvdS90|, Simultaneous Rectification). Let
X1,..., X, be smooth vector fields on R™, which are linearly independent at
a point p € R™. Then, there exists a coordinate chart (U, (z1,...,2,)) with a

neighborhood U of p such that

X, onU forl<i<n,

0
_81‘1’

if and only if [X;, X;]=0on U fori,j =1,...,n. O
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Corollary 2.4.6 ([JS02]). Let X3,..., X with & < n be smooth vector fields
on R™ such that they are linearly independent at a point p € R" and, on a
neighborhood U of p,

[XZ,XJ]:O forz',jzl,...,k‘.

Then, there exist (n — k) smooth vector fields Xy.1,..., X, such that X;(p),...,
X, (p) are linearly independent and [X;, X;] =0on U fori,j =1,...,n. O

Finally, we introduce the notion of codistribution that is a dual objective to

distribution.

Definition 2.4.4 (Codistribution). A codistribution €2 on M is a map that assigns
a subspace of the cotangent space T;M to each p € M. The codistribution 2 is
said to be smooth if, for each p € M, there exist a neighborhood U of p and a set
{6; :i € I} (I is an index set) of smooth covector fields on U such that

Q(q) = span{b;(q) : i € I} forall g e U.

The dimension (or rank) of ) at a point p € M is the dimension of {2(p), and
the codistribution  is said to be constant dimensional if the dimension of Q(p)
is constant on M. A covector field w on M is said to lie in or belong to  if

w(p) € Q(p) for all p € M. In this case, we denote it by w € €. O

Lemma 2.4.7. Let 2 be a constant k-dimensional codistribution on M. Then,
for each p € M, there exist a neighborhood U of p and k covector fields 64, .. ., 0%
on U such that Q(q) = span{01(q),...,0(q)} for all ¢ € U. O

Similarly to the local generators of a constant dimensional distribution, the
above k covector fields 61, ..., 8y are called local generators of the codistribution
Q on U. That is to say, any covector field w € €2 can be expressed on U as a linear
combination of ;s such that w = Zle 1;0; with some real-valued functions 1;’s
on U.
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Chapter 3

Review of Related Previous Works

In this chapter, we review some established results on observer error linearization
(OEL) and its extensions: system immersion, dynamic observer error lineariza-
tion (DOEL), and reduced-order dynamic observer error linearization (RDOEL)
(particularly for single output systems), which are closely related to the topics

that will be studied in this dissertation.

3.1 Observability of Multi-Output Nonlinear Systems

Before we review the previous results, let us recall the notion of observability of

multi-output nonlinear systems. Consider a dynamic system given by

§:f(5)7 £€Rn7
y=nh(), yeR™,

(3.1.1)

where ¢ is the state, y = [y1 -+ ym]? is the output, f(¢) is a smooth vector field,
and h(€) = [h1(€) --- hp(€)]T is a smooth map. For the multi-output system,

observability indices and local observability are defined sequentially as follows.

Definition 3.1.1 ([Isi95, IMT95], Observability indices). A set of observability
indices at & € R™ of the system (3.1.1]) is an m-tuple of nonnegative integers
(r1(&), .., rm(&o)) such that

ri(&o) == card{k : 1 <k <n, sp(&) > i} for 1 <i<m,

21 A 21l
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with

s1(€o) = rank(D1(&)),
sk(&o) := rank(Dy(§o)) — rank(Dy—1(&p))  for 2 <k < n,

where card{-} denotes the cardinality of a set and Dy(&) := span{dﬁ‘j@_lhi(&)) :
1<i<m, 1<j<k}forl<k<n. O

Remark 3.1.1. Let (r1(&),...,rm(&)) be the observability indices at &y of the
system . Then, it holds that n > r1(&y) > r2(&) > -+ > (&) > 0 for
all £y € R™. This property is often called the lexographic ordering of observability
indices (JKR85]). O

Definition 3.1.2 (|Isi95, MT95|, Local observability). The system (3.1.1)) is said
to be locally observable at & € R™ if there exists a neighborhood Vy C R™ of &
such that

rank (span{dC} 'hi(§) s 1<i<m, 1<j<m(Q}) =D ri(§)=n (3.1.2)
i=1

for all & € Vp after a suitable reordering of h;’s, where (ri(§),...,mn(&)) is the

observability indices at £ of the system (3.1.1). The above equation is called the

observability rank condition. O

Remark 3.1.2. The local observability at & of the system (defined by
the observability rank condition ) implies that the distribution, span of
1-forms from each output component y; = h;(£) and its time derivatives up to
order r;(¢) — 1, has rank n around &, (after a suitable reordering h;’s). This is a
nonlinear version of that a linear system is observable if its observability matrix
has full rank [Che99]. Furthermore, if the observability rank condition is satisfied,
then it follows from Theorem [2.1.3] (Inverse Function Theorem) that ¥(¢) :=
[h1(€) - L7 T hy(€) - hn(€) -+ L7 Ry (€))7 s a diffeomorphism on
a neighborhood of &. g

If the system ([3.1.1)) is locally observable at { € R™ and its observability

indices at &y are given by (r1(&),...,mm(&)) = (n1,...,ny) with some positive

2] -] 8} 3
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integers n;’s such that ny > no > --- > ny, and Z:ll n; = n, then there exists a
coordinate transformation ¥ from £ to x on a neighborhood V' C R"™ of &y, which
is the diffeomorphism given in Remark such that the system (3.1.1)) can be

expressed on V as the following form (called observable form):

T11 = T2, Tl = T2,
xnl(”l*l) = Tlny, T jzm(nmfl) = Tmny,» (313)
jzlnl :fl(‘r)’ :I.:mnm :fm(.ﬁ?),
Y1 = T11, Ym = Tml,

where z;; = [,zflhi(g) forl1<i<mand1l<j<mng fi : W — R is a smooth
function for 1 < i < m, z = [T11 -+ iy, *** Tml ** Tom,,). € W, and
W C R™ is a neighborhood of z¢ (= ¥(&)). Therefore, under the assumption, we
can regard the system around &y as its observable form , without

loss of generality.

3.2 Observer Error Linearization (OEL)

As mentioned in Chapter |1} observer error linearization (OEL) is one of the well-
known techniques to design observers for a class of nonlinear systems. The OEL
problem is a dual concept to feedback linearization [HS81, [JR80] and a formal

definition of it can be stated as follows.

Definition 3.2.1 (Observer error linearization (OEL)). The system (3.1.1)) is
said to be observer error linearizable (OFEL), if there exist two maps ® : V' — R",
¢ — z as a coordinate transformation and ¢ : h(V) — R™, y — y,. as an output
transformation, which are diffeomorphisms onto their images, such that z = ®(¢)
and y. = ¢(y) transform the system into a nonlinear observer canonical
form (NOCF),

2= Az +a(y), z € R,
) (3.2.1)

ve=q(y) =Cz,  y.€R™,
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where V' C R" is a neighborhood of an initial state £(0), Yo = [Ye1 - Yem]® is a
new output, a(y) = [a1(y) --- an(y)]? is a smooth vector-valued function called

output injection,

) In,-—l

A= diag(Al, . ,Am) with Az =
O O

€ R"*™  for1<i<m,

C = diag(Cy,...,Cyp) with C;=[10 --- 0] € RI*™ for 1 <i <m,

and n;’s are some positive integers such that n; > ng > --- > n,, and 2211 n; =

n. O

If the system (3.1.1) is OEL, then we can construct an observer such that

which has the following linear error dynamics:
é, = (A—LC)e,, (3.2.2)

where e, := Z — z. Since the pair (4,C) in the NOCF (3.2.1) is observable, we
can arbitrarily assign the eigenvalues of the matrix (A — LC') so that the observer
error dynamics is exponentially stable [Che99].

The first contribution to the OEL problem was made in [KI83| and [BZ83] for

time-invariant and time-varying single output systems, respectively. We review

the result of [KI83].

Theorem 3.2.1 (JKI83|). When m =1 and ¢(y) = y, the system (3.1.1)) is OEL

if and only if both the following conditions are satisfied:

(a) rank(span{dh(§),dLsh(§),... ,dﬁ;}*lh(f)}) =nonV,

k—1 -1
(b) [ad(_f)X, ad(_f)X] =0onV for k,l=1,...,n,
where V' C R” is a neighborhood of £(0), [-,-] denotes the Lie bracket between
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vector fields, and X is a vector field that is a solution of the differential equations,

0 ifl<k<n-—1,

LxLE () =
xhp ) {1ifk:n,

for 1 <k <n. O

Remark 3.2.1. The statement (a) in the above theorem just means the local
observability at £(0) of the given single output system (i.e. the system (3.1.1))
when m = 1). The statement (b) presents a geometric condition equivalent for

the system to be OEL when ¢(y) = y. O

Theorem [3.2.1] gives a geometric characterization of the OEL problem for
single output systems in the case where output transformation is not considered
(i.e. ye = y). The following theorem provides an algebraic characterization of the

same problem.

Theorem 3.2.2 ([Kel87]). When m = 1 and ¢(y) = y, the system (3.1.1]) is OEL
if and only if there exist n real-valued functions a1(y),...,a,(y) that constitute

a set of solutions of the differential equation,
0=L} ar(y) + L) %az(y) + - + an(y), (3.2.3)

which is called the characteristic equation. O

In the rest of this section, we will review the results of [BBHB09, [KR85,
XG89|, which deal with the OEL problem for multi-output systems by using
geometric approaches. At first, we introduce a necessary condition for the problem
given in [KR&5].

Theorem 3.2.3 (JKR85]). The system (3.1.1) is OEL, only if it is locally observ-

able at £(0) and has a constant observability indices (n1,...,ny,) on Vp, where Vj

is a neighborhood of £(0) and n; is the dimension of each block A; in the NOCF
(3.2.1) into which the system ({3.1.1)) can be transformed. O

From the above theorem, without loss of generality, we can impose the follow-
ing assumption on the system (3.1.1)). The assumption will be valid throughout

the rest of this section unless otherwise noted.

2] -] 8} 3
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Assumption 3.2.1. The system (3.1.1]) is locally observable at £(0) with constant
observability indices (ni,...,ny,) on a neighborhood Vj of £(0), where n;’s are

some positive integers such that ny > ng > --- > n,, and Z:il n; =mn. O

By the above assumption, the system (3.1.1)) can be expressed on a neighbor-
hood of £(0) as the observable form (3.1.3). For the observable form (3.1.3]), we

introduce some notation.

Definition 3.2.2 (JKR85]). We denote by P(x) the ring of polynomials in z;;’s,
where 1 < ¢ < m and 2 < j < n;, with coefficients that are smooth real-valued
functions of y. The weighted degree of a monomial c(y)(zi ;)" -« (zi,5,)"" is
defined as >"._,(js — 1)ls where 1, ..., [, are nonnegative integers. The weighted
degree of a polynomial in P(z) is the highest weighted degree of any term in the
polynomial. P*(z) is the set of all the polynomials in P(x) of which weighted

degree is less than or equal to k. O

As regards the notation, the following theorem provides another necessary
condition for the OEL problem, which is related to the system dynamics as the
observable form ([3.1.3)).

Theorem 3.2.4 ([KR85]). If the system (3.1.3) is OEL, then f;(z) belongs to
Pri(x) for 1 <i<m. O

Now, we review the main result of [KR85|, which is a sufficient condition for

the solvability of the OEL problem for multi-output systems.

Theorem 3.2.5 ([KRS83]). Let q(y) = [¢1(y) - gm(y)]T be an output transfor-

mation and X7, ..., X;, be vector fields that are solutions of the equations,
[,Xiﬁl;_l(]j(y) = (52']' : 5knj for i,j = 1, e, and 1 < k < ;. (3.2.4)
Then, the system (3.1.1) is OEL if it holds that

[adk_

(ChXi ad %\ X;] =0 on V (3.2.5)

(1)

fori,j=1,...,m,1 <k <mn;,and 1 <1 <mnj, where V C R" is a neighborhood
of £(0). O
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In the case of single output systems (i.e. when m = 1), the sufficient condition
given in the above theorem becomes a necessary and sufficient condition. That is

to say, the OEL problem is solvable if and only if [adl(“:})Xl, adl(:;)Xl] =0onV

for k,l =1,...,n, where X; is a solution of EXlﬁl}_lql(y) =0, for 1 <k <n.
However, the authors of [XG89] showed by a counter example that the necessary
part does not hold for multi-output systems. The following theorems (given in
IXG89| and [BBHBO9], respectively) provide geometric necessary and sufficient
conditions of the OEL problem for multi-output systems, in the cases when output

transformation is not considered or has a structural restriction, respectively.

Theorem 3.2.6 (|JXG89]). When ¢(y) = y, the system (3.1.1) is OEL if and only
if both the following conditions hold:

(a) if we denote (with a possible reordering of h;’s)

D(€) :={dL} hi(¢) : 1 < i <m, 1< < my},
Dy(&) = {dL}  hi(€) s 1< i <my 1< 5 < gy — {dLP hi()}

for 1 < k < m, then it should be satisfied that

span(Dg(&)) = span(D(&) N Dg(&)) for 1 <k <m and each €V,

(b) there exist m vector fields X7, ..., X, which are solutions of the equations,
Lx, LY (&) = bij - Opn;,  forid,j=1,...,m and 1<k <n; (3.2.)
and satisfy that

[ad’gj})xi, adl(:})xj] =0 onV

fori,j=1,...,m,1 <k <n;,and 1 <1 <nj,
where V' C R” is a neighborhood of £(0). O

Theorem 3.2.7 ([BBAB0J]). Suppose that ¢(y) = [¢1(y) -+ gm(y)]* is of the
form such as ¢;(y) = ¢;(y1,...,y;) for 1 <i < m. Then, the system (3.1.1)) is OEL

] 2- 1_l|



28 Chap. 3. Review of Related Previous Works
if and only if there exist m real-valued functions ¢1(y),. .., ¢m(y) of the form,

$1(y) = ¢1(y1),
| o

b2(y2) if n1 = na,

for 3 <i <m,

bily) = { @‘Eyhu-,yi) if ny—1 > ny,

(Y1, Yim2,yi) i nim1 = ny,

and m vector fields Xi,...,X,,, which are a set of solutions to the equation

(3.2.6), such that
[adf:})(d)iXi)’ adl(:;)(@Xl)] =0 onV

fori,j=1,...,m, 1 <k <n;,and 1 <1 < nj;, where V. C R" is a neighborhood
of £(0). O

To our best knowledge, there has so far been no literature providing a geo-
metric necessary and sufficient condition of the OEL problem for multi-output
systems, in the case where the general output transformation y. = ¢(y) is con-
sidered. In Subsection we will derive it from a direct consequence of one of

our results.

3.3 System Immersion

There exists a class of nonlinear systems that cannot be transformed into observ-
able linear systems but can be immersed into higher-dimensional observable linear
systems [LMS86]. The definition of immersion in differential geometry is a smooth
injective map from a smooth manifold into a higher-dimensional smooth mani-
fold. Immersion of a single output nonlinear system into a higher-dimensional
observable linear system was defined similarly in [LMS86] and it was refined in
IBS02, [Jou03l BS04| as immersion of a single output nonlinear system into a

higher-dimensional NOCF (consisting of an observable linear system and an out-

2] &-t]] 8
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put injection a(y)). For a single output nonlinear system given by

ng(€)7 geR”,
y="nh(), yeR,

(3.3.1)

where f(£) is a smooth vector field and h(€) is a smooth real-valued function, im-

mersion of the system into a higher-dimensional NOCF can be defined as follows.

Definition 3.3.1 (System immersion). The system is said to be im-
mersible into an (n+d)-dimensional NOCF if there exist two maps ® : V' — R*+¢
as an immersion and ¢ : h(V) — R as an output transformation such that
z = ®(§) and y. = ¢q(y) immerse the system (3.3.1)) into an (n + d)-dimensional
NOCEF,

2= Az+aly), z € R
) (3.3.2)

Ye = q(y) = Cxz, Ye €R,

and ®(&) = [@1(&) -+ Pppq(€)]7T satisfies the following condition:
rank(span{d®;(¢),...,d®,(§)}) =n forall £ € V,

where d is a positive integer, V' C R™ is a neighborhood of an initial state £(0),

Ao O Ilgyn € R+ x(n+d). C=[10---0]¢ R1%(ntd)
@) O
and a(y) = [a1(y) ... anya(y)]’ is output injection. O

In a similar fashion to the (conventional) OEL approach, if the system (3.3.1))
is immersible into the (n + d)-dimensional NOCF ([3.3.2)), then we can also design

an observer such that

Z=A%+a(y) + Lly. — C2) e R"*,
Ye = q(y), = (o @) 1(T(2)),
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with the linear observer error dynamics,
é, = (A— LC)e,,

where IT : R — R™, (21,...,2p4q) = (21,...,2,) is a projection and e, := £—2z.
Since the pair (A, C) is observable, we can choose L € R("+®*! such that (A—LC)
is Hurwitz.

It was shown that the class of systems which are immersible into higher-
dimensional NOCF includes the class of systems which are OEL [BS04]. It was
also proved in [BS04] that, if the system is immersible into the (n + d)-
dimensional NOCF (3.3.2), then it is also immersible into (n+ d + k)-dimensional
NOCF for any nonnegative integer k. The class of systems that are immersible
into the NOCF (3.3.2]) can be identified in terms of the characteristic equation

given by the following theorem.

Theorem 3.3.1 (|[BS04]). The system (3.3.1]) is immersible into the NOCF (3.3.2))
if and only if there exists a set of solutions ¢(y), a1(y), ..., antq(y) of the differ-

ential equation,
LT q(y) = L3 ar(y) + L3 %aa(y) + - + angaly),

subject to the condition W # 0 on a neighborhood of £(0). O

The above theorem provides a necessary and sufficient condition for the system
immersion problem. Based on the result, some constructive algorithms to design
immersion ®, which immerses the system into the NOCF , have
been developed [Jou03, [BS04].

3.4 Dynamic Observer Error Linearization (DOEL)

As mentioned in Section OEL is a dual concept of feedback linearization
[HS81, [JR8O]. Similarly, as a dual problem to dynamic feedback linearization
[CLM89, [CLM91], a new notion of dynamic observer error linearization (DOEL)

was first proposed in [NJS04] and, in the case of single output systems, the frame-

] 2- 1_l|
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work of DOEL was generalized by [BYS06|. The next definition modifies it to fit

multi-output systems.

Definition 3.4.1 (Dynamic observer error linearization (DOEL)). The system
(3.1.1) is said to be dynamic observer error linearizable (DOEL) if there exist a

dynamic system (called auziliary dynamics),

n=pmny), neRY
(3.4.1)

Ye = q(1,Y), ye € R™,

and a coordinate transformation ® : U x V. — R™ (,€) + 2, which is a
diffeomorphism onto its image, such that z = ®(n,£) transforms the extended

system (composed of the given system (3.1.1)) and the auxiliary dynamics (3.4.1))),

¥

into a (d+n)-dimensional generalized nonlinear observer canonical form (GNOCF),

(3.4.2)

CFin6) = [ p(1, h(€)) ] |

f(€)

i=Az+a(ny), zeRM
) (3.4.3)

Ye = q(n,y) = Cz, ye € R™,

where U x V' C RY x R is a neighborhood of an initial state (7(0),£(0)),

O In,
O O

C =diag(Ct,...,Cp) with C;=[10 ... 0] € R>™,

A= diag(Al, e Am) with A; = c RﬁiXﬁi’

a(n,y) = [a1(n,y) -+ agen(n,y)]? is a smooth vector-valued function called
generalized output injection, and n;’s are some positive integers such that n; >

Ng > >0y and Y ;0 7 =d+n. O

Since the generalized output injection a(n,y) depends only on available infor-
mation (n,y), if the system (3.1.1)) is DOEL via an auxiliary dynamics such as
(3.4.1), then we can design a Luenberger-type observer (including the auxiliary
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dynamics) such that

i =p(ny) € RY
£=Az+a(n,y) + L(ye — C2) € RM™, (3.4.4)

Ye = Q(n,y)7 g: (Hl o (1)_1)(77’ 2)7

with the exponentially stable linear error dynamics,
é, = (A—LC)e,,

where Iy : R&™ — R™ (21,..., 241n) > (Zd41,-- -, 2din) is & projection, e, :=
2 — 2, and L € RE+7M)X7 ig chosen so that (A — LC) is Hurwitz.

As mentioned at the beginning of this section, the first contribution to the
DOEL problem was established by [NJS04]. Since it is not easy to deal with aux-
iliary dynamics of the general form , the authors of [NJS04] took account
of the cases where an auxiliary dynamics is given as a collection of chains of inte-
grators from each system output or a specific linear system, like early researches
on dynamic feedback linearization have usually done [AMP95] [GMBI7, [LK.J00].
More precisely, they assumed that the auxiliary dynamics is of the follow-

ing form: for 1 <4 <m,

i1 = —QNi1 + Yi ifd; > 1,
Nij = —inij +nij—1) for 2 <j <d;if d; > 2, (3.4.5)

Mg, if di > 1,

Yei = Gi(n,y) = {

where «;’s are some nonnegative real numbers and d;’s are some nonnegative
integers such that >.", d; = d, and then they derived sufficient conditions for
the system to be DOEL via the auxiliary dynamics in some special
cases. We will review the results. To this end, we need the notion of extended
observability indices of the system corresponding to (dj,...,d,), which
denotes the observability indices of the extended system composed of the given

system (3.1.1)) and the auxiliary dynamics (3.4.5)).
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Definition 3.4.2 (|N.JS04]). For an m-tuple of nonnegative integers (dy, ..., dp,)
such that > 7", d; = d, a set of extended observability indices at § € R™ of the
system corresponding to (dy, ..., dy,) is an m-tuple of integers (71(&o), - . .,
Tm(&0)) that are uniquely associated to the system as follows:

7i(&o) == card{k : 1 <k <d+mn, 5,(&) > i} for1 <¢<m,
with

51(&o) :=card{i : 1 <i <m, d; > 1} +rank{dh;(§) : 1 <i <m, d; =0},

5k(&) :=card{i: 1 <i<m, d; >k}

for 2<k<d+n. O
At first, we consider the auxiliary dynamics (3.4.5) when «; = 0 for all 4.

Theorem 3.4.1 ([NJS04]). The system (3.1.1)) is DOEL via an auxiliary dynam-
ics of the form (3.4.5)) with a; = 0 for all 1 < i < m, if there exists an m-tuple of
nonnegative integers (di, ..., dy) such that Y ", d; = d and the following state-

ments hold (after suitable reordering of h;’s):

(a) for all £ € V, it holds that (71(§),...,7m(§)) = (1, ..., 7m) and
rank{dh;(),...,dLYF % hi(€) s 1 < i <m} =n,

where (71(£),...,7m(§)) is the extended observability indices at £ of the
system (3.1.1)) corresponding to (d,...,d,,) and n;’s are some positive in-
tegers such that ny > no > --- > n,, and 2?;1 n; =d+ n.

(b) for all ¢ € V and 1 < j < m, it holds that

rank({dC5hi(€) 1 1 <i<m, i #j, di <nj, 0<k<n;—d; — 1}
U{dLhh;(€) : 0 <k <nj —d; —2})
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= rank({dﬁlfchi(f):l <i<m,i# G, d; < nj, 0<k< min(ﬁi,ﬁj)—di—l}
U{dchh;(€) 10 <k <mj—d; —2}),

(c) there exist m vector fields Xi,...,X,, on R™ which constitute a set of

solutions of the differential equations,
Lx, L5 hi(€) = 05 - Op(ry—a;y  fori,j=1,...,m and 1<k <n;—dj,
and satisfy that

[Rf, Rﬂ =0 on V

fori,j=1,...,m, 0 <k <n;—1, and 0 <1 < n; — 1, where Rf’s are
vector fields on R4t defined by

k._
R = | (adiX))" ¢k oo Ry o B ()
with
0 if k=0,
k— .
¢ = LpClyt — Liggi-ixyhy ik #0and =1,
J k—1 k—1 .
Esz‘jl — Cij(lil) ifk#0and 2 <[ <k,
0 if k <1<dj,
fori,j=1,...,m,0<k<n; —1,and 1 <[ < dj,
where V' C R™ is a neighborhood of £(0). O

If a; = 0 for all 1 < i < m, then the auxiliary dynamics consists of
chains of integrators from each system output. Hence, the above theorem gives
a sufficient condition for the DOEL problem using such an auxiliary dynamics.
The authors of [Y.JS06] discussed about the number of integrators needed for the
same problem. Their conclusion is that the number cannot be bounded by a
function depending on dimensions of system state and system output, in contrast

to the result of dynamic feedback linearization using integrators [LKJ00|, although

A L)) &
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DOEL is dual to dynamic feedback linearization.
The following is a similar result to Theorem [3.4.1] in the case when «;’s are

positive constants so that the auxiliary dynamics (3.4.5)) is a stable linear system.

Corollary 3.4.2 (|[NJS04]). The system (3.1.1) is DOEL via an auxiliary dy-
namics of the form (3.4.5) if there exist positive constants a;’s for 1 < ¢ < m and
an m-tuple of nonnegative integers (di,...,dy) such that > ", d; = d and the

following statements hold (after suitable reordering of h;’s):

(a) both the conditions (a) and (b) in Theorem are satisfied,

(b) there exist m vector fields Xi,...,X,, on R™, which constitute a set of

solutions of the differential equations,
E;wa(f) = 0ij  On(n;—d;) fori,j=1,...,m and 1<k <n;—d;
and satisfy that
[Rf, Rﬂ =0 on V

fori,j=1,...,m, 0<k<n;—1,and 0 <[ < n; — 1, where

Ly~ hy(€) if d; = 0,
k
() = ktdi—2—1
% (6) f;ol(_aj)k—l—l ( J ) »lehj(f) i d] > 1’
d; — 1
R = (adbX)T E, ... G GGk }T
7 e 711 ildy ml imdm, 1x (d+n)
with
0 if k=0,
- LrCit + oyl = Ligixyhy ik #0and1=1,
il = 1 k1 k-1 .
Ly gl T Oéjcijl - Cij(l_l) ifk#0and 2 <1<k,
0 if k< 1<dj

fori,j=1,....m, 0<k<n;—1,and 1 <1 < dj, where V C R" is a
neighborhood of £(0).
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In the case of single output systems, a necessary and sufficient condition for the
DOEL problem using auxiliary dynamics of the general form (3.4.1)) was derived

in terms of the following characteristic equation.

Theorem 3.4.3 (|[BYS06]). The single output nonlinear system (3.3.1]) is DOEL
via the auxiliary dynamics (3.4.1]) (with m = 1) if and only if it holds that

(a) there exist (d+n) real-valued functions a1 (n,y), a2(n,y), ..., agrn(n,y) that

constitute a set of solutions to the differential equation,

L4 q(n,y) = LEay(n,y) + LS 2az(n,y) + - + agin(n, y),
(b) the map ®(n,&) = [®1(1,£) P2(n,&) -+ Payn(n,€)]" defined by
i—1
®i(n,€) == L g, h(€)) =Y Ly aj(n,h(E))  for 1<i<n+d
j=1

is a diffeomorphism on a neighborhood of (1(0),£(0)). O

Moreover, in the same case, it was revealed by the following theorem that the

concept of DOEL covers that of system immersion.

Theorem 3.4.4 ([BYS06]). If the single output system (3.3.1)) is immersible into

an (n+ d)-dimensional NOCF, then it is also DOEL via a d-dimensional auxiliary

dynamics such as (3.4.1)). O

Lastly, there also have been several attempts to develop a constructive algo-
rithm to solve the DOEL problem using an auxiliary dynamics that is a chain
of integrators from system output [Bou07, YBS0T7| (single output case) or has a

lower-triangular structure [BB09| (multi-output case).

3.5 Reduced-Order Dynamic Observer Error Lineariza-

tion (RDOEL) for Single Output Systems

In the observer (3.4.4) designed by the DOEL approach, the Luenberger-type
observer is of dimension d 4 n, while the given system (3.1.1)) is of dimension n.

.-':lx—i = 1_' . i i
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This means that the observer estimates not only the state of the system
but also the state of the auxiliary dynamics , even though the latter is
already known. Inspired by the fact, the authors of [BB11l, [YBSS10| proposed a
modified version of DOEL for single output systems, which is often called reduced-
order dynamic observer error linearization (RDOEL). The following is a formal

definition of it.

Definition 3.5.1 (Reduced-order dynamic observer error linearization (RDOEL)
for single output systems). The single output nonlinear system (3.3.1)) is said to
be reduced-order dynamic observer error linearizable (RDOEL) if there exist an

auxiliary dynamics of the form,

n=p(my), neRY
(3.5.1)

Ye = q(1,9), Ye € R,

and a coordinate transformation ® : U x V — R (n,€) — (w, z) with w = n,
which is a diffeomorphism onto its image, such that z = (II; o ®)(n, £) transforms

the extended system (consisting of the given system (3.3.1) and the auxiliary
dynamics @G51)),

(Joron[0) o

into an n-dimensional generalized nonlinear observer canonical form (GNOCF),

Z2=Az+a(n,y), z e R",
m.9) (3.5.3)

Ye = q(n,y) = Cxz, Ye € R,

where U x V C R? x R is a neighborhood of an initial state (7(0),£(0)),

O In—l
O

A= e R, C=[10---0]ecRM>"

a(n,y) = la1(n,y) - an(n,y)]|T is generalized output injection, and Tl is a pro-
jection such that IT; : R4T™ = R™ (n, 2) + 2. O

#;rﬁ'! _CIJI_ 1—l| -_.fJ]_ T_III-
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Remark 3.5.1. Compared with DOEL, RDOEL shares the same idea of adding
an auxiliary dynamics such as on a given system and transforming the
augmented system into GNOCF'. A significant difference is that, in the framework
of RDOEL, the coordinate transformaion (w,z) = ®(n,{) preserves a part of
coordinates corresponding to the state of the auxiliary dynamics (i.e. w =n) so
that the extended system is transformed into the system composed of the
auxiliary dynamics intact and the n-dimensional GNOCF (3.5.3)). U

RDOEL has the following advantages over OEL and DOEL. With the aid of
auxiliary dynamics, the RDOEL problem can be solved for a class of systems for
which the OEL problem is not solvable. Furthermore, RDOEL offers a lower-
dimensional observer than DOEL. In actual fact, if the system is RDOEL
via an auxiliary dynamics such as , then we can construct an entire observer

including the auxiliary dynamics such that

i =p(n,y) € RY,
2= A% +a(n,y) + L(y. — C%) € R", (3.5.4)

ye =q(n,y), &=L od ) (n,2),

which has the exponentially stable linear error dynamics,
é, = (A— LC)e,,

where e, := 2 — z and L € R™! is chosen so that (A — LC) is Hurwitz. As one
can see, the dimension of the entire observer is d + n, while that of the
observer designed by the DOEL approach is 2d + n.

The RDOEL problem for single output systems was fully characterized by the
following theorems that provide a geometric necessary and sufficient condition

and its algebraic counterpart, respectively.

Theorem 3.5.1 ([Yanll]). The system (3.3.1) is RDOEL via the auxiliary dy-
namics (3.5.1)) if and only if both the following conditions are satisfied:

(a) %zzvy);é()onUxh(V),

(b) [adl(c:;)(ng), adl(j,)(qSX)] =0onUxVforkl=1,...,n,
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where U x V € R? x R™ is a neighborhood of (1(0),£(0)), X is a vector field on
R ™ defined by the equations

o 0 if1<k<n-—1,
LxL7h(€) = for 1 <k<n,
1 if k=n,
and ¢ is a real-valued function of n and y such that ¢(n,y) := 1/ %Z’y). O

Theorem 3.5.2 ([Yanll]). The system (3.3.1) is RDOEL via the auxiliary dy-
namics (3.5.1)) if and only if there exist n real-valued functions a;i(n,y), ..., an(n,y)

satisfying the differential equation,

Liq(n,y) = L5 a1(n,y) + L5 2ax(0,y) + -+ + an(n, y),
and it holds that % # 0 on a neighborhood of (1(0),£(0)). O

Based on the above results, constructive algorithms to solve the RDOEL
problem have been developed for some special cases [BB11, Yanll, [YBSI1I].
Moreover, the concept of RDOEL has been extended to discrete-time systems
[YYS12, YYS13]. However, all the results are limited to the case of single output
systems. In this respect, we will formulate the RDOEL problem for multi-output
nonlinear systems, and derive several necessary conditions and a geometric nec-

essary and sufficient condition in the next chapter.

3.6 Inclusion Relation among OEL, System Immersion,
DOEL, and RDOEL

We end this chapter with the verification of the inclusion relation among OEL,
system immersion, DOEL, and RDOEL. Since the results of system immersion
and RDOEL introduced so far are for the case of single output systems, we only
consider the case. Trivially, system immersion, DOEL, and RDOEL are extensions
of OEL, and Theorem [3.:4.4] shows that system immersion is included in DOEL.
In [Yanll], some examples are given to illustrate that system immersion cannot
include RDOEL and vice versa. Lastly, in order to show that RDOEL is a special
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case of DOEL, we derive a corollary from Theorem [3.4.3] and Theorem [3.5.2]

Corollary 3.6.1. If the system (3.3.1) is RDOEL via the auxiliary dynamics
(3.5.1]), then it is also DOEL via the same auxiliary dynamics with a new output,

n2 + a1 (n,y)

n=pn,y) = B ;
Na + aq—1(n,y) (3.6.1)

q(n,y) + aa(n,y) |

oY) =i, y) - pan )T, @i(n,y) = pi(n,y) —misa
for 1 <i<d—1, and aq(n,y) := pa(n,y) — a0, y).

Proof. If the system (3.3.1]) is RDOEL via the auxiliary dynamics (3.5.1)), then,
by Theorem [3.5.2] there exist n functions ai(n,y),...,a,(n,y) such that

Fa(n,y) ZEF a;(n,y)- (3.6.2)
Let a;(n,y) := a;_q(n,y) for d+1 < i < d+ n. Meanwhile, by (3.6.1)), we have
‘CdF(j(’rb = q my + ZE az 77, (363)

Hence, it follows from (3.6.2)) and (3.6.3|) that

d d+n
LEGn,y) = Lra(n,y) + > LEa5(n,y) =Y LEai(n, y).
i=1 =1

Therefore, the condition (a) in Theorem is satisfied.
In addition, for the map <I>(7] €) = [®1(n, §) (I>d+n(77 €))7 defined by the

condition (b) in Theorem we obtain from and (3.6.3) that

1—1

®i(n,) = L5 a(n, h(€)) = D L a;(n, h(€))

7j=1
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Figure 3.1: Inclusion relation among OEL, system immersion, DOEL, and
RDOEL

_{77i for 1 <14 <d,

L ha(nn©) = 55 £ ag(n,h(€)) ford+1< i <dtn,

By Definition it is not difficult to see that ®(n, &) is identical to the coordi-
nate transformation for RDOEL via the auxiliary dynamics . Thus, ®(n,£)
is a diffeomorphism on a neighborhood of (7(0),£(0)).

Since both the conditions in Theorem hold, the system is DOEL
via the same auxiliary dynamics with a new output . O

In summary, Figure [3.1] illustrates the inclusion relation among OEL, system

immersion, DOEL, and RDOEL in the case of single output systems.
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Chapter 4

Reduced-Order Dynamic Observer

Error Linearization (RDOEL) for
Multi-Output Systems

In this chapter, we formulate and study the RDOEL problem for multi-output
systems. We present three necessary conditions and then provide a geometric
equivalent condition for the solvability of the RDOEL problem. Furthermore,
from the equivalent condition, we derive a geometric necessary and sufficient con-
dition of the (conventional) OEL problem for multi-output systems in the case
under consideration of output transformation of the general form y. = ¢(y), which
has not been established yet despite several attempts in the past. In addition,
by means of the results, we develop a procedure to check the solvability and to
construct explicit change of coordinates for OEL and RDOEL. Lastly, some ex-
amples are given to illustrate the theoretical results. Most of the chapter is based

on [CYS12| [CYS14b].

4.1 Problem Statement

In this section, we define the RDOEL problem for the system (3.1.1) by the
following definition that is a generalization of Definition (RDOEL for single

output systems) to fit multi-output systems.

Definition 4.1.1 (Reduced-order dynamic observer error linearization (RDOEL)).
The system (3.1.1)) is said to be reduced-order dynamic observer error linearizable

43 .':l'\._! "';:' 1!:
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(RDOEL) if there exist a dynamic system (called auziliary dynamics),

n=pmny), neRY (4.1.1)

and two maps ® : U x V. — R (n,€) — (w,z) = (n,2) as a coordinate
transformation and Q : U x h(V) — RH™ (. y) = (w,y.) = (n,q(n,y)) as an
output transformation, which are diffeomorphisms onto their images, such that

II; 0 ® and Il o @ transform the extended system composed of the given system

(3.1.1) and the auxiliary dynamics (4.1.1),

M| Z ppye) m [p(m/)]’
[ § ] e) f(&) (4.1.2)

y = h(§),

into an n-dimensional generalized nonlinear observer canonical form (GNOCF),

2= Az+a(n,y), z € R,
(1:9) (4.1.3)

Ye = q(n,y) = Cz,  y. € R™,

where U x V' C R? x R is a neighborhood of an initial state (7(0),£(0)),

n=[m - na’ p(n,y) = [p1(n,y) - paln v)]",
Ye = [We1 ~+* Yem], a(ny) =[a(ny) - gmn)]",
z=[211 ** Zing ** Zml - Zmnm]T’
I : R 5 R™, (n,2) — z,
I : R S R™ (0, 9e) = e,
A =diag(Ay,...,Ay) with A; = (O) Iné_l e R™ ™  for1<i<m,

C = diag(Cy,...,Cp) with C;=[10 --- 0] € R*™ for 1 <i<m,

a(n,y) = lani(n,y) -+ awm,(0,y) - am1(0.y) -+ Gmn,, (0, 9)]7 is generalized

output ingection, and n;’s (for 1 < i < m) are some positive integers such that

ny>mng >0 >y, and Yoot n; =n. O
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Remark 4.1.1. In actual fact, the output transformation Q is a part of the

coordinate transformation @ in the following sense: Q(n,y) = (IlI30®)(n, &) where

II3 is a projection such that Iz : R™™ — R¥H™ (. 2) — (1, 211, 221, - - -, Zm1)- In
other words, it holds that ye; = qi(n,y) = qi(n, h(§)) = 21 for 1 < i < m. This is
due to the fact that y. = ¢(n,y) = Cz in the GNOCF (4.1.3)). 0

Remark 4.1.2. In the OEL problem, it is usually required that the output trans-
formation ¢(y) is a diffeomorphism onto its image (see Definition [3.2.1)). In Def-
inition , if the auxiliary dynamics is not employed, then Q(n,y) be-
comes ¢(y). In this sense, the condition that Q(n,y) is a diffecomorphism onto its
image is a natural extension of the above condition on ¢(y) in the OEL problem.
Moreover, the RDOEL problem is identical to the OEL problem if we do not
consider the auxiliary dynamics (cf. Definition and Definition , and
the framework of RDOEL is quite similar to that of OEL even if the auxiliary
dynamics is considered (e.g. the same dimension and structure of the pair (4, C)
in the NOCF and the GNOCF (4.1.3])). Therefore, we can say that the
RDOEL problem is not only a modified version of the DOEL problem but also a
natural extension of the OEL problem. O

In the case of single output systems, we proved by Corollary that RDOEL
is a special case of DOEL. The following theorem shows that it also holds for the

case of multi-output systems.

Theorem 4.1.1. If the system (3.1.1)) is RDOEL via the auxiliary dynamics
(4.1.1)), then it is also DOEL via the same auxiliary dynamics with a new output.

Proof. 1f the system is RDOEL via the auxiliary dynamics , then,
by Definition there exists a diffeomorphism [n? 27]7 = ®(n, £) on a neigh-
borhood of (7(0),£(0)) such that the extended system is transformed into
the system composed of the auxiliary dynamics and the n-dimensional
GNOCF (¢.1.3) on the (7, z)-coordinates. In a similar fashion to the proof of
Corollary we show that ®(n, ) can also transform the extended system into
a (d 4+ n)-dimensional GNOCF with a new output.

We set Z = [Z11 - - Z1(d4ny) T Zml e Zmn, )T € R¥T™ as a new coordinate
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and e = [Ye1 - TYem|' € R™ as a new output as follows:
_ Nk for 1 <k <d, -
Ak = Yer = 11,
Zi(k—q) ford+1<k<d+mny,
Zij = Zijs Yei = Yei = ¢i(1,Y), for2<i<m and 1<j<n,.

Then, we have z = ®(n,&) and it follows from (4.1.1)), , and the above
equation that the extended system (4.1.2)) is represented as a (d + n)-dimensional

GNOCF on the z-coordinates such that

Zigp = Zi(k+1) T a1k(n, y) for1<k<d+nm -1,

él(d—f—nl) = C_ll(d+n1)(777 y)a Yel = 211
Zij = Zi(j+1) + @ij(n,y) for2<i<m and 1<j5<n;—1,
éin,- == amz (77; y) gEi - Zila

where a11,(1,y) := p(n,y) —mky1 for 1 <k < d—1, a1a(n, y) := pa(n,y) —a1(n,y),
a1k(n,y) = ayg—ay(n,y) for d+1 < k < d+ n1, and a;5(n,y) = ai;(n,y) for
2<i<mand]1<j<n; Consequently, the system is also DOEL via
the auxiliary dynamics with the new output ye. O

Although RDOEL is a special class of DOEL, it has an advantage over DOEL
such that RDOEL offers a lower-dimensional observer than DOEL as mentioned in
Section Furthermore, since RDOEL is a natural extension of OEL (for more
details, see Remark , research for the RDOEL problem can also contribute
to the study of the conventional OEL problem. That is, most of the results for the
RDOEL problem can be naturally converted into the ones for the OEL problem by
slight modification of eliminating effects from auxiliary dynamics (i.e. changing F,
(n,€), and (n,y) into f, £, and y, respectively). Indeed, we will provide a geometric
necessary and sufficient condition for the RDOEL problem under considertation
of the general auxiliary dynamics and the general output transformation
Ye = q(n,y), and then derive from the result the first geometric necessary and
sufficient condition for the OEL problem in the case when the general output

transformation y. = ¢(y) is considered.

2] -] 8} 3
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4.2 Necessary Conditions

In this section, we provide three necessary conditions for the RDOEL problem.
The first one is the observability of the system (3.1.1)), the second one is about

the inverse output transformation Q~!(n, %), and the last one is concerned with

the observable form (3.1.3) of the system (3.1.1]).

4.2.1 Observability

First, we show that the observability of the original system is a necessary
condition for the RDOEL problem. Furthermore, its observability indices are
constant on V and equal to (ni,...,ny), where V".C R™ is a neighborhood of
€(0) and n; (for 1 < i < m) is the dimension of the i-th block of the matrix A
in the GNOCF (4.1.3) into which the system can be transformed with the
aid of an auxiliary dynamics of the form .

Suppose that the system (3.1.1) is RDOEL with the auxiliary dynamics (4.1.1)).
Then, there exist a coordinate transformation ® : U x V' — R4, (n,€) — (1, 2)

and an output transformation Q : U x h(V) — R (n,y) — (n,y.) =
(n,q(n,y)), where U x V C R? x R" is a neighborhood of (1(0),£(0)). Since Q is
a diffeomorphism onto its image, its inverse map Q~(n,ve) = 07 d(n, ye)T]|T =

(7" y"]" also exists, where q(n, ye) = [q1(n,Ye) -~ Gm(n,ye)]". As a result, the
extended system (4.1.2)) is transformed into the following system:

§

where p(n, ye) := p(n,4(n, ve)) = p(n,y) and a(n, ye) == a(n, 4(n,ye)) = a(n,y).

=F.(n,z) =

(1, ye) ]

Az +a(n, ye) (4.2.1)

ye = q(n,y) = Cz,

Theorem 4.2.1. The system is RDOEL with the auxiliary dynamics
, only if it is locally observable at £(0) and has the constant observability
indices (n1,...,n,) on V., where V' C R™ is a neighborhood of £(0) and n; (for
1 <4 < m) is the dimension of the i-th block of the matrix A in the GNOCF

(4.1.3) into which the extended system (4.1.2)) can be transformed.
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Proof. Henceforth, when a = [ag - -+ ay]T and T' = [ij]mxn, We use the following
notation: da := [day --- day)?, @ mod B := [a; mod 8 --- «a, mod B]T, and
Lpl = [EF%]-]an, where ‘mod’ denotes the modulo operation.

If the system (3 is RDOEL with the auxiliary dynamlcs , then the
extended system 1) can be transformed into the system (4.2.1] by ® and Q
on U x V. For the system (4.2.1)), let

ri(n,z) :=card{k : 1 <k <n, S(n,z) >1i} for 1 <i<m,
with

Sk(n, z) := rank(E(n, 2)) — rank(Ex_1(n, 2)) for 1 <k <n,
where

Eo(n, z) :=span{dmn,...,dns} = &,
Er(n, z) == span({dn1,...,dng} U{dLy "yer at (n,2) : 1 <i<m, 1< }
n.

1<k
= span(Ex—1(n, 2) U{dLy 'yei at (n,2): 1 <i<m}) for1<k<

We will complete the proof of Theorem [1.2.1] after showing that the following

three claims are true.

Claim 1: For 1 <i<dand 0 < j <k <mn, it holds that
d['{wﬂi at (n,z) =0 mod E(n, 2).

Proof of Claim 1. By the definition of &(n,z) for 0 < k < n, it is true that
Eo(n,z) C &1(n,z) C -+ C Ex(n, z). Therefore, we only need to prove that dﬁ'f,wzm
at (n,z) =0 mod &E(n,2) for 1 <i < dand 0 <k < n. The proof is by induction
on k starting from k = 0. The claim is trivial when k£ = 0. If £ = 1, then it follows
from the equation that

Opi op;
dcC . Mi at (1, z yYe)dn + ——(1, Ye)dye
.1 at (n,2) = on —— (1, ye)dn o “(n,e)

=0 mod & (n,2) for 1 <i<d.
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Hence, the claim is true when &k = 1. Suppose that 2 < k < n and the claim
is true for £ — 1, i.e., dﬁ%zm at (n,z) =0 mod &_1(n,2) for 1 < i < d and
0 < j <k —1. Then, from the induction hypothesis, we obtain that

on OYe

_;< i1 l<8pz)d£l +c';;1—l(gi)d£lzye) at (1, 2)
_ Opi
~ Iy

=0 mod &(n,z) for 1 <4 <d.

op . Op;
AL mi at (n,z) = L5 (L) at (n,2) = £§Zl< Didn + 22 dye) at (n, 2)

ALy e at (n,2) mod E_1(n, 2)

Consequently, the claim is also true for k and thus the proof of Claim 1 is done.

Claim 2: For 1 < k < n and each (,&) = ®~1(n, z) € U x V, it holds that

Ek(n, 2) = span(& U Di(§)),

where Dy (§) = span{dﬁgflhi(f) 1 <i<m,1<j <k} which is already
defined in Definition B.1.11

Proof of Claim 2. The proof is by induction on k starting from k = 1. By the
existence of @71 such that Q7 1(n,y.) = [T q(n,v.)T]" = [nT »T]7, it holds that

dn __dn S dn
[dh(&)]__dy]_‘]Q‘(”’ye)[dye]

B I Odxm ] [ dn ]
- [oli] leli] ’
L an(mye) FE(mye) | [ dye
where Jg-1 represents the Jacobian of Q. Since Q! is also a diffeomorphism

on Q(U x h(V)), Jg-1 is nonsingular on Q(U x h(V')). Therefore, we have that

(4.2.2)

E1(n, z) = span{dny, ..., dng, dyet, - . ., dYem }
= span{dn,...,dng, dh1(§),...,dhn(§)}
= span(& U D1(§)),
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and thus the claim is true when k = 1.

Since f and h do not depend on 7, it holds that E’}_lh(f) = /Jl;flh(f) for any
k > 1, where F is the vector field of the extended system (4.1.2)) and thus it is the

representation of F in the (7, )-coordinates. Hence, it follows from the equation

(4.2.2) and Claim 1 that

_ _ 1/ 0q o0q
ALk h() = L5 (dh()) = L5 (agdn + O dye) at (n,2)

N

-1 ~
70 . .70 .
k—1—j (94 4 Aj k—1—j ( 94 J
<LFZ ( an)dcpzmﬁg ( aye>d£F2ye> at (, 2)

I
Q,M

ng

By dﬁlglye at (n,z) mod &_1(n, 2) for 1 <k <n.

In addition, 88—?1 is nonsingular on Q(U x h(V')) because Jg-1 is nonsingular on
QU x h(V)) in the equation (4.2.2). Suppose that 2 < k < n and the claim
is true for k — 1, i.e., E_1(n,z) = span(& U Di_1(§)). Then, by the induction
hypothesis and the above equation, it holds that

Ek(n, z) = span(gk_l(n,z) U {dﬁlfilyei at (n,z):1<i< m})
= span (€ U Dg_1(€) U{dLy " hy(€) : 1 < i <m})
= span(&y U D (€)).
Therefore, Claim 2 is true.
Claim 3: It holds that (71(n, 2),...,Tm(n,2)) = (n1,...,ny) on (U x V).
Proof of Claim 3. By the equation (4.2.1)) and Claim 1, it is easy to see that
dﬁ];‘:lyei at (777 Z)
dzin ifk=1
k=l oo
d(zik + > Ly jéij(n,ye)> at (n,z) ifk>2andn; >k
j=1

d( ZZ:I El;:lfjdij(n,ye» at (1, z) if k>2andn;, <k
]:

mod E,_1(n, )

dzy, ifn; >k
0 ifn; <k
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for 1 <i<m,1<k<n,and all (n,z) € (U x V). Therefore, we have

Sk(n, 2) = rank (& (n, 2)) — rank(Ex_1(n, 2))
= rank(span{dzik 1<i<m, n; > k:})

=card{l <i<m:n; >k} on®UxV) for1 <k <n.

It implies that each 5(n, z) is constant on ®(U x V') and indicates the number of
n;’s greater than or equal to k. Therefore, it is not difficult to see that 7(n, z) :=
card{ k : 1 < k < n, §(n,2z) > i} is equal to the i-th observability index of
the system without the generalized output injection a(n,y.). That is,
7i(n,z) =n; on ®(U x V) for 1 < i < m, and thus Claim 3 is true.

Now, let us go back to the proof of Theorem[4.2.1] Since f and h do not depend
on 7, dﬁfe_lh,-({) does not depend on dny, . .., dng in the (n, §)-coordinates for any
k>1and 1 <i<m. Hence, it follows from Claim 2 that

The above equations mean that r;(§) = 7;(n, z) for 1 < i < m. Thus, by Claim 3,
we have (r1(§),...,m™m(§)) = (n1,...,nm) on V. As a result, the system (3.1.1])

satisfies the observability rank condition as follows:

m
rank(span{dﬁiflhi(f) 1<i<m, 1<j< nz}) = an =n foralleV,
i=1
after a suitable reordering of h;’s. That is to say, the system (3.1.1]) is locally
observable at £(0). O

Remark 4.2.1. Actually, observability of a given system in the sense defined
by Definition [3:1.2] is a necessary condition not only for RDOEL but also for
many other nonlinear observer design schemes including OEL, system immersion,

DOEL, high-gain observers, and so on. However, it is worth pointing out that

2] 2] &
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dimensions of each block in both the NOCF by OEL and the GNOCF
by RDOEL are determined by the observability indices of the given system
(see Theorem and Theorem, while it cannot hold in the cases of system
immersion and DOEL. In fact, this property is one of the factors that make it
possible to convert most of results on the RDOEL problem into the ones for the

OEL problem naturally. O

From now on, by Theorem we assume that the system is lo-
cally observable at £(0) with the constant observability indices (nq,...,n,,) on
V. Then, the system can be expressed as the observable form and,
without loss of generality, we can regard the system as its observable form
(3.1.3). For convenience, we write & = f(x) and y = h(x). Thereby, we can also

regard the extended system (4.1.2)) as the system

I [p(n,y)]’
L’] ) f(z) (4.2.3)

y=nh(z)=lrn - zm]”

Remark 4.2.2. The reason why we regard the system as the observable
form is to provide a more explicit analysis. Although most of the results
and the analysis on them, which will be presented throughout the rest of this
chapter, are described in the z-coordinates on which the system is rep-
resented as its observable form , they can be converted into the ones de-

scribed in the general £-coordinates. (|

4.2.2 Inverse Output Transformation

This subsection is devoted to present the second necessary condition for the
RDOEL problem, which is related to the inverse output transformation Q1 (n, y.).
Before providing it, we introduce some notation that will be used frequently in

the rest of the chapter.

Definition 4.2.1. For the observability indices (n1, ..., n,,) of the system (3.1.3),
let x(j) :=card{1 <i<m:n; > j} for 1 <j < nj, which indicates the number

of n;’s greater than or equal to j. O
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Remark 4.2.3. Since it holds that n;y > ny > --- > n,, by the lexographic
ordering of observability indices mentioned in Remark we have x(j) :=
card{l <i<m:n; > j} =max{l <i <m:n; > j}. Therefore, the following
two inequalities are equivalent: n; > j and 1 < i < x(j). In addition, it is easy

to see that m = x(1) > x(2) > --- > x(m) > 1. m

Definition 4.2.2. For the system (4.2.3), we denote by P.(z) (respectively,
P(x)) the ring of polynomials in x;;’s, where 1 < i < x(2) and 2 < j < ny,
with coefficients that are smooth real-valued functions of n and y (respectively, y
only). The weighted degree of a monomial ¢(1,y) (2, j,)* - - (z;,5,)" is defined
as ».._4(js—1)ks where k1, ..., k. are nonnegative integers. The weighted degree
of a polynomial in P.(z) or P(z) is the highest weighted degree of any term in
the polynomial. We denote by P¥(z) (respectively, P¥(x)) the set of all the poly-
nomials in P.(z) (respectively, P(z)) whose weighted degree is less than or equal
to k. P2(x) (respectively, PY(z)) represents the set of all smooth real-valued
functions of 1 and y (respectively, y only). When k > 1, Pk (x) (respectively,
PX(z)) denotes the set of polynomials in P¥(x) (respectively, P*(z)), which do
not depend on any x;; such that j > k+ 1. For the system (£2:1)), P¥(z), P*(z),
Pk (2), and P¥(z) are defined in a similar fashion by replacing = and y with z

and y., respectively. O

Remark 4.2.4. It is easy to see that Pl (z) = P(x) and P}(z) = P°(x). When
k> 2, ¢(n,z) € P (x) (respectively, ¢(z) € P¥(x)) implies that not only its
weighted degree is less than or equal to k, but also it is a polynomial of x;;’s,
where 1 < i < x(2) and 2 < j < min{k,n;}, with coefficients that are elements
of PY(z) (respectively, P°(z)). Additionally, since there does not exist any z;;
such that j > ny + 1, it holds that P¥(z) = P% (z) for all k > n;. The same

interpretations are also valid when x is replaced by z. O

Remark 4.2.5. The concept of the weighted degree was introduced in [KR85].
Definition is a natural extension of Definition 3.2 in [KR85| (Definition
in Section to fit the case when the auxiliary dynamics (4.1.1]) is employed. O

As regards P(z), we present a proposition, a lemma, and its corollary, which

will be used frequently in the rest of the chapter.

2] -] 8} 3
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Proposition 4.2.2. If 9(n, 2) € P¥(z) for any k > 0, then it holds that

o k

— e P;(z),

o (2)

oy [0 if 5> k41,
0zij «€PFIT ) i <k+1,

for 1 <1<d,1<i<m,and 1< j<n; The same analysis is also valid when z
is replaced by x.

Proof. Since the proof is apparent from Definition [4.2.2] we omit it. O

Lemma 4.2.3. If ¢)(n, z) € P¥(2) for any k > 0, then Lg 1 € PF+1(2).

Proof. For 1 <i < x(2) and 2 < j < n;, it follows from the equation (4.2.1]) that

ZiG+1) T aij(n,ye) if § < ny,

) o (4.2.4a)
in; (1, Ye) if j =n;.

Lr.2ij = Zij = {

One can observe that Lr. z; € PJ(z) while z;; € PJ7'(2). In addition, for any
c(n,ye) € PY(z), it holds that

4 e ™ dc
Lp.c(n,ye) = Z ok + Z A%l
=1 Ony; i—1 OYei
Y " de Oc
= o Pkt T it + Do 2 (4.2.4Db)
k=1 7'Mk i=1 9Yei ni>2 9Yel
x(2)
= 60(777 ye) + Z Ci(na ye)ZiZ € ,Pe} (Z)a
i=1
where
L e " de
0(1Ye) =Y Gy (M Ye)P(n.ye) + > Fye, (1)@ (1,9e) € P2(2),
k=1 i=1

e .
il ye) = 5 —(n.ye) € Pz)  for1<i<x(2).
el

Therefore, it is not difficult to see that L£r v € P T1(2) by Definition the
equations (4.2.4), and the Leibniz rule. O
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Corollary 4.2.4. If ¢(n, 2) € PE (2) for any k > 1, then L ¢ € PEFL(2).

Proof. Since Pk (2) C P¥(z), we have Lt € P¥1(z) by Lemma More-
over, ¥(n,z) € Pk (z) implies that ¢ does not depend on any z;; such that
j > k + 1. Hence, it follows from that Lr 1) does not contain any z;;
such that j > k + 2. Therefore, it is concluded that Lr 1 € PEFL(z). O

Suppose that there exist a neighborhood U x W C R4 x R™ of (1(0), (0)) and
two maps ® : UxW — R (n, 2) +— (n,2) and Q : U x h(W) — RF™ (1, y)
(1, Ye), which are diffeomorphisms onto their images, such that the system
is transformed into the system by ® and ). Then, the inverse output
transformation Q1 (n,ve) = 07 G(n,y.)T]T = [nT yT]T also exists and we have

Tij = L'gf_lyi = E%:lrji(n,ye) for1<i<mand1<j<n,. (4.2.5)

Trivially, ;1 = vi = Gi(n,9.) € P2(z) for 1 < i < m. The next lemma shows
that the representation of z;; in the (7, z)-coordinates also belongs to PI71(z2) for

1<i<x(2)and 2 <j <mn,.

Lemma 4.2.5. If the system (4.2.3)) can be transformed into the system (4.2.1)
by ® and @, then it holds that

04
a1, Y1 +Zk 1 G %k
: = for 2 < j < ny, (4.2.6)

x(7) 9dx()
Tx(5)i x@)i t Z 1 a;e,i Zkj
where 1);; € e Pl ().

Proof. The proof is by induction on j starting from j = 2. When j = 2, it follows
from (4.2.1)) and (4.2.5) that

d .-
zi2 = Lp.Gi(1, Ye) Z 8i Z akl + Z
= [

ng >2
x(2) ~
—%2-#28 22 for 1 <i < x(2),
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where

akl € PL(2) = Py(2).

m_z%~z

k=

Thus, the equation (4.2.6) holds for ;7 = 2. Suppose that 3 < j < ny and the
equation (4.2.6)) holds for j — 1, i.e., it holds that

x(G=1) 4~

9q; ) )
Li(j—1) = 7vbi(j—l) + %Zk(]’—l) for 1 <1< X(] — 1),
k=1 €

where ;;_1) € Pl 2(z). Then, it also follows from (4.2.1)), (4.2.5) and the
induction hypothesis that

x(j—1) 96
=Lpxij_1) = EFz(wlj 1)+ Z a k(- 1))

0G; 0q; .
=Lp Y1) + Z <<£anyek>zk(j—1) + » k'zk(j—l))

n>j—1 Ove
—tetign+ 5 ((Cn g Yagon + i) + i
FQ/)(J 1) nkgj:l ( F 8yek) k(G—1) el k(j—1) r;j OYek &

x(5) G
:wij_'_z szrj for 1 <14 < x(4),
1 8yek

where
x(3—1) - -
— 9qi qi
Yij = LpYi-1) + ; ((ﬁpz 8yek>zk(]—1) + Der ak(]—1)>-
Since ;1) € Pl 2(2) and aql € P2(z), we have L, ;j_1) € Pi 1 (2) and

(Lr, (%ek)zk(j,l) e Pt (2) by Lemma 4.2.3[ and Corollary 4.2.4] Therefore, one
can observe that 1;; € P2y 1 (2) and the equation (£.2.6) also holds for j. O

Now, we give a condition on (7, y.) as the second necessary condition for the
RDOEL problem. The proof of the following theorem shows that the condition
on G(n,ye) is equivalent for the Jacobian of ®~! to be nonsingular on ®(U x W).
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Theorem 4.2.6. If the system (4 can be transformed into the system (4
by ® and Q, then Q~1(n, y.) = [77 q(n,ye) |7 satisfies that

ny
[ det Jyy #0 on QU x h(W)), (4.2.7)
Ji1 Ji
where J; := e for i = x(1),...,x(n1) and J/w = g;“ for p,v =
j@'l ju

Proof. Consider the inverse coordinate transformation ®~!(n, z) = [nT 27]7. The

exterior differentiation of ®~! gives

d I O d
Tl _gpt=| ™ T (4.2.8)
dx Raxn  Snxn dz
where
9 Tll Tlm
X
S =" = : . : 4.2.9
82 . . . ) ( )
Tml e Tmm

and T}, is an n, x n, matrix of which (x, A)-th entry is ‘“‘ for wr=1...,m,
1<k<ny and 1 <X <ny. Since - lisa dlffeomorphlsm on (U x W), the
matrix S should be nonsingular on ®(U x W). We will show that the equation
is equivalent to the non-singularity of S on ®(U x W).

By Lemma[{.2.5] the representation of z in the (1, z)-coordinates is as follows:
for1<pu<mand1< k< ny,

7 o CZU«(na ye) = (zu(nazlla .. Zml) € Pg(z) if Kk = 17
" ¢#R+z§<’?§§~zmem 1(z) it 2 < K <y,

where 1, € P51(2). Since ¢, € PE1(2), it is a function of n and z,)’s such

that 1 < v < mand 1 < A < min{sx — 1,n,}. It means that x,, does not

A2 &k
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depend on z,) such that A > k. Furthermore, the coefficient of 2, in x,, is

g?i‘; . Therefore, gﬁ‘y‘;‘ =0if kK < A, and gi:“; = (%q;ﬂu if Kk = \. In addition,
by Proposition |4.2.2 %f“; € P57 M(2) when k > A. Hence, each block T}, of

the matrix S has the following form (called a lower triangular-like form): for

wv=1,...,m 1<k <ny and 1 <\ <n,,

0 if K <A,
qu J c P2 T
(TMV),‘{)\ = g%i; M:_)\ e( ) . ) (4.2.10)
oy € PET(2) if k> \# 1,
S g g2 (X)) Bz ) € PENz) i R>A=1,

For the matrix S, the Leibniz formula for determinants gives

det S = > sgn(o) [ [(S)owmr (4.2.11)

0ESH k=1

where S, is the permutation group on {1,...,n} and sgn(-) is the sign function
of a permutation. Let ng := 0 and r;; := Zij) ng+ 4 for 1 < ¢ < m and
1 < j < n;. Then, the j-th rows of T;,’s for 1 < v < m (respectively, columns
of T;’s for 1 < p < m) belong to the 7;;-th row (respectively, column) of S.
Let Z; .= {ri; : 1 < i < x(j)} for 1 < j < ny. Clearly, Z;’s are disjoint and
UiL, 25 = {1,...,n}. Thus, for any (¢,¢) € {1,...,n} x {1,...,n}, there exists
a unique 4-tuple (p, k, v, A) € {1,...,m} x{1,...,n,} x{1,...,m} x{1,...,ny}
such that « = 7, € Z;, ( = 1,0 € Z), and

(S)Z] = (S)T’;mrw\ = (Tul/)n/\- (4212)

Let Rj :={0c €S, :0() =1ifl ¢ Z;} for 1 < j < ny, which is a subgroup
of &, consisting of all the permutations only on Z;. In the equation , if
o # o010---00, wWhere 0; € R; for 1 < j < ngq, then there exists at least one
[ € {1,...,n} such that o(l) € Z,, | € Z,, and k < \. For such [, there exist
1 <p<x(k)and 1 <v < x(A) such that o(l) =71y € 2, and Il =1,) € 2). As
a result, by the lower triangular-like form (4.2.10) of 7},,, it holds that (), =
(Tyw)ra = 0 and thus sgn(o) [T, (S)o@k)r = 0. Consequently, we can observe

2] -] 8} 3

'Iu
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from (4.2.10)) that the equation (4.2.11)) can be rewritten as

det S = Z sgn(o ﬁ

0'20'10"'00'77,1

- ¥ (It k)( IT sentu) (S,

0=010::00n; ~k€Z; k€Zn,
(X seaten) H<s>m<k>k)---( > o) IT Smy )
01€ER1 keZ, Un1€'Rn1 kEan
= H < > sen(oy) ] (S)Uj(k)k) (4.2.13)
: O'JER kGZj
In the above equation, o; € R; means that 0;(2;) = Z;. Thus, {(S)s,x) : k €

Ziy ={(S)rrr 1 < v < x(4)} and it follows from (4.2.10) and (]4.2.12|) that

(S)le'f’lj T (S)TUTX(J')J' (Tll)jj e (Tlx(j))jj
(s rmein (o) o M)
[T T
= : ' : = %)
L Jxon Ty (G)xG)

Therefore, for 1 < j < ngq, it holds that

x(9)
> sen(oy) [ o= D seu(o) [[ o =det Jy().  (4.2.14)
O']'GRJ' kEZ( O’GSX(J-> k=1

Finally, we can obtain from (4.2.13)) and (4.2.14)) that

ni
det § = [ [ det Jy (.- (4.2.15)
j=1

It should be noted that, although S is defined on ®(U x W), jx(j) is defined on
Q(U x h(W)) for 1 < j < mnj. Hence, S is nonsingular on ®(U x W) if and only
if the condition (4.2.7) is satisfied. O
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The following example is given for a better understanding of the proof of
Theorem m Trough the example, we will verify that the equation (4.2.15))
holds for the matrix S defined by (4.2.9)) and (4.2.10)).

Example 4.2.1. Consider the case where n = 7, m = 3 and (ni1,ng,n3) =
(3,3,1). The matrix S defined by (4.2.9) and (4.2.10) can be written as

(i 0 0 |J 0 0 |.Ji ]
* jn 0 * j12 0 *
* * jn * * j12 *
S=1Jy 0 0 |Jo 0 0 |Jos
x Jor 0 | % Jn 0| x
* * j21 * * j22 *

| Jsi 0 0 | J2 0 0 | Js |

By the Leibniz formula for determinants, we have

7
det S = Z sgn(o H o (k)k-
oEST k=1
The sets Z;’s are defined as Z; := {1,4,7}, Z» := {2,5}, and Z3 := {3,6}. If
o(l) € Z1U 2 for some | € Z3, then (5)(); = 0 by the lower triangular-like
form of each block of the matrix S. Similarly, if o(l) € Z; for some | € Zo,
then (S),(y; = 0. This implies that [[{_;(S)yx = 0 if o # o1 0 03 0 03, Where

o €ERj:={0€Sr:0()=1ifl ¢ Z;} for 1 < j < 3. Hence, it holds that

detS= > sgn(o1)sgn(o2)sgn(os) [ (Deywr [ (Deamn J] (5

0=01002003 kezZy keZo keZ3

H ( Z sgn(o;) H (S)Oj(k)k>-

j=1 No;ER; kEZ;

03 (k)k

Since the entries of S construct the following structures:

S Ju J . y
(S)36 | I e Jo = Fym = Jye,
(S)e6 Jo1 Jao
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(i1 (S)a (97 Ju Jiz Jis
()1 (S)aa (S)az | = | Jor oo oz | = I3 = Jy),
(S (S)ra ()77 Ja1 Jza Js3

it holds that

3
Z sgn(oy) H (S)Ul(k)k = Z sgn(o) H Jg(k)k = det J3 = det Jx(1)7

oc1€ER1 kezZ, o€Ss3 k=1
2
Z sgn(o2) H (S)ag(k)k = Z sgn(o) H Jg(k)k = det Jo = det JX(Q)’
09E€R2 keZy g€Ss k=1
2
Z sgn(os) H (o (k) = Z sgn(o) H oy = det Jo = det J,(3).
03€ER3 keZs gES2 k=1

Consequently, we obtain

3
det S = [ ] det J (5,
j=1

which satisfies the equation (4.2.15]). O

Remark 4.2.6. When we do not consider the auxiliary dynamics (4.1.1), the
condition (4.2.7) becomes J[7%, det jx(j) # 0 on Q(h(W)), and it is also a neces-
sary condition for the OEL problem. However, to our best knowledge, there has

so far been no literature providing such a necessary condition. O

4.2.3 System Dynamics

In this subsection, we derive the third necessary condition. It is related to the
system dynamics (3.1.3)), especially, f;(x) for 1 < i < m. The following theorem

states it and plays a key role in deriving a necessary and sufficient condition for

the RDOEL problem, which will be given in the next chapter.

Theorem 4.2.7. If the system (3.1.3)) is RDOEL, then it holds that f;(z) €
Pri(x) for 1 <i<m. O

In order to prove the theorem comfortably, we need the following lemma.

] 2- 1_l|
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Lemma 4.2.8. Suppose that the system (4.2.3) is transformed into the system

[@2.1) and ¥ (n,z) € PF1(z) (respectively, Pk (2)) for any 1 < k < ny. Then,
the representation of 9 in the (1, x)-coordinates belongs to P¥~1(x) (respectively,

Peo())-

Proof. The proof is by induction on k starting from k = 1. Let ¢(n, 2) € P(z) =
PL (). Then, ¢ depends only on 7 and y.. Therefore, it holds that (7, ye)
(¥ o QY (n,y) € Poz) = PL(x), and thus the lemma is true when k =
Suppose that 2 < k < ny and the lemma is true for 1 < j < k — 1. By Definition
, Y(n,z) € PF1(2) (respectively, P% (z)) implies that its weighted degree
is less than or equal to k — 1 (respectively, k) and it is a polynomial of z;;’s,
where 1 < < x(2) and 2 < j < k, with coefficients that belong to P%(z). Since
the lemma is true when k = 1, all the coefficients also belong to P%(x) in the
(n, z)-coordinates. Hence, if the representation of z;; in the (7, z)-coordinates
belongs to Pg_l(x) for 1 < i < x(2) and 2 < j < k, then the lemma is also
true for k. By the induction hypothesis and the fact that z; € PI1(2), the
representation of z;; in the (1, z)-coordinates belongs to PL(x) for 1 <i < x(2)
and 2 < j < k — 1. Thus, in order to complete the proof, we have only to prove
that the representation of z;, in the (1, x)-coordinates is an element of P*~!(x)
for 1 <i < x(k). By Lemma[4.2.5] it holds that

k) ag
Tk ¢1k+2f(1 B Zik Y1 21k

= = f + Iy : :

k) 0q
Ty (k)k k+ZX( 3;“” ik Vo (o)k Zy(k)k

where ¢y, € P! (2) for 1 < i < x(k). Let ¢ir(n, ) := (Yiro®)(n, ) = Yir(n, 2),
which denotes the representation of 1 in the (1, x)-coordinates. Then, ¢ €

Pk=1(z) by the induction hypothesis, and we have

21k 1k — O11(n, x)

Zx(k)k Ty(kyk — Px(h)k (1, T)

because jx(k) is nonsingular for 2 < k < n; by Theorem . Since all the entries

A2 &k
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of jx(k) are elements of PY(z), their representations in the (7, x)-coordinates also
belong to PY(z). Therefore, one can observe that all the entries in the right-hand
side of the above equation belong to 735_1(93), i.e., the representation of z;; in the

(n, r)-coordinates is an element of P*~1(z) for 1 <i < x (k). O

Now, let us prove Theorem |4.2.7

Proof of Theorem , If the system (3.1.3]) is RDOEL, then there exist an aux-
iliary dynamics such as (4.1.1]) and two maps ® and @ transforming the extended

system (4.2.3) into the system (4.2.1). Therefore, by Lemma we have

x(ni) i
1 .
Tin, = Yin, g Zkn, for 1 <i<m,
ing @ZJ'Lnl + o 8yek kn; > >

where 1;,, € P%~1(z). Thus, it follows from the above equation and (4.2.1) that

x(m;
fi(x) = Tim, = LF, (lbml Z ka)

k— 6

= Lr,Yin, + Xﬁ%) ((EFZ 9Gi >zkni + %zkm>
b—1 ay ayek

ek

=L .—i—xﬁlf)((ﬁp %)Zk +%(~lk >—|— Z %z
P & Oyer/ T Oy Byep, it

np>ni+1 0 7¢

x(nitd) if n; <
{¢Z+Z 8yk (ni+1) TS T for 1 <i<m,

Q;Z)Z if n; = ni
where
x(ni)

9q;
i =L, + > (Lr.
w E w —1 (( E ayek

G
)2kn; + @akm)

Since ¥y, € PL1(z) and aq’ € PY(z), it holds that Lp_ i, € P (z) and

LF, 86;1 € Pl(z) by Corollary 4.2.4 and Lemma [4.2.3] respectively. As a result,

1; € Pli(z), and thus the representation of f;(x) in the (7, z)-coordinates belongs
to Pli(z) (respectively, Pli(z)) if n; < ny (respectively, if n; = np) for 1 <i < m.
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Hence, by Lemma we have f;j(z) € Pli(z) for 1 < i < m. (Note that
Pli(x) = Pli(x) if n; = ny.) Since f;(x) is a function of x only, it is concluded

that f;(z) belongs to P"i(x) for 1 <i < m. O

Remark 4.2.7. Actually, Theorem [£.2.7] is motivated by Proposition 3.3 in
IKR85| (Theorem in Section [3.2)), which gives a necessary condition for
the OEL problem. In this dissertation, we could complete the proof with the aid
of Theorem O

Remark 4.2.8. Although the condition f;(x) € P"(x) for 1 <i < m is a neces-
sary condition of both the OEL and RDOEL problems, it is literally a necessary
condition. That is, in the class of systems satisfying the condition, there exists a
class of systems that are not OEL but RDOEL (e.g. Example . Meanwhile,
the condition is not a necessary condition for the DOEL problem. An example,
which does not satisfy the condition but is DOEL, was given in [NohOI]. By the
fact and Theorem we can see that DOEL strictly includes RDOEL. U

This section ends with providing the following lemma, which is dual to Lemma

423 in some sense.

Lemma 4.2.9. Suppose that f;(x) € P"(z) for 1 <i < m and ¢(n,x) € P¥(z)
(respectively, ¢(x) € P¥(x)) for any k > 0. Then, Lr¢ € P¥+1(z) (respectively,
Lro = Ly¢ € P (x)).

Proof. Tt follows from (3.1.3) and (4.2.3|) that

d dc dc dc
Lpc(n,y) = o D + ffi + Z Ty 2 € Pl(x),
= 9 ni=1 Yi ng>2 Yi
iGie1) € P if 7 < n;
Lrti; = Li(j+1) .(fc) 1 J n
file) €ePl(z) ifj=mn,;

= Ly for 1 <i<x(2)and 1 <j<n,,
where c(n,y) € P2(x). If ¢(n, y) does not depend on 7, i.e., ¢(n, y) = c(y) € P°(x),

then Lpc = Lyc € Pl(x). Thus, it is easy to see that the lemma is true, by a
similarly way to the proof of Lemma O
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4.3 Necessary and Sufficient Conditions

In this section, by means of the necessary conditions given in the previous section,
we derive a geometric necessary and sufficient condition for the RDOEL problem,
i.e., a geometric equivalent condition for the existence of ® and () transforming
the extended system into the system . Since the RDOEL problem
is a natural extension of the OEL problem, a geometric necessary and sufficient
condition for the OEL problem under consideration of the general output trans-
formation y. = ¢(y) also can be deduced from the result. Because the equivalent
conditions fully characterize the problems, we can check the solvability for a given
system, and it is also possible to construct an explicit change of coordinates for

OEL or RDOEL by using the results. We will explain how to do that.

4.3.1 Necessary and Sufficient Condition for RDOEL

In order to derive a geometric necessary and sufficient condition for the RDOEL
problem, we need the following consecutive technical lemmas. The first one is a

kind of “Leibniz’s rule”.

Lemma 4.3.1. If X and Y are smooth vector fields and + is a smooth real-valued

function, then, for any nonnegative integer k, it holds that
k k
o0 =30 (B @t g x
v=0
where ( 5 ) represents the binomial coefficient.

Proof. The proof is by induction on k starting from k = 0. The equation (4.3.1])
trivially holds when k£ = 0. If £ = 1, then it follows from Proposition that

ad(—y)(7X) = [vX, Y] =vad(y)X — (Ly7)X

1
=3y ( ' ) (Ly7)ad! 0 X.

(Y

Suppose that £ > 2 and the the equation (4.3.1)) is satisfied for k — 1, i.e., the

.__:Ix_c L, '|'|i

-
=]
1

L



66 Chap. 4. RDOEL for Multi-Output Systems

following equation holds:

v

ad L (93 = 31y ( el )( Yad L X,
(=Y) (=Y)

By the above induction hypothesis and straightforward calculation, we have that

(-Y)

k—1

k—1

= <—1>”< ) (Ly7)adf )7 X, V]

v=0 v

k—1 E—1

[ k—v v k v

— _0(_1) < ) ) <( Vad{ "X — (LY y)ad( )y X>

k-1 B B
+;(—1)U<<kv1>+<i_1>)( )d](“;j)X
k-1 B
=) (=1)" ( ol ) ( ”ny)adl(“:;,)_”X.

0

We can observe that the equation (4 also holds for k, and thus the lemma is
true. O

The second lemma is based on the above “Leibniz’s rule” and a property of

the vector field F' of the extended system (4.2.3).

Lemma 4.3.2. Suppose that f;(x) € P"(x) for 1 <i <m. Then, for 1 <i <m,
1<j<n; and 0<k<j—1,it holds that

9 k x(k—s+1) 9
adf_ - Cpe 4.3.2
(-F) Dy 8% k) g ; kij axr (e k+s) ( )

where F' is the vector field of the extended system (4.2.3)),

- 0 ifs=0orn, <j—s,

A 2-tj] &
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for0<s<kand1<r<yk-—s+1).

Proof. Since the both inequalities 1 < ¢ < m and 1 < j < n; are equivalent to
that 1 < j <nj and 1 <i < x(j), the proof can be carried out by induction on
k for each fixed j. The induction begins with £ = 0. The equations and
trivially hold for 1 < j <mnj, 1 <14 < x(j), and k = 0. Hence, the lemma
is true when j = 1. If 2 < j < mnj and k = 1, then it holds that

0
ad(-F) O0x;j [3%3 z::pli i Z Z T ) (s—1) i rz:l b axmj

ne>2 s=2
0 = af, 0
Oxy(j1) £ Owij Orn,
1 x(2—s)
+ CT? for 1 <i < x(j),
81‘2(] 1) g ; " 02y () —145) 8xr (nr—1+s)
where
C’hj =0 for 1 <r < x(2),
of:
crlo.= for 1 <r <vy(l)=m.
135 al‘ij orl=7rx X( ) m
Since we assume that f, € P (x), it follows from Proposition that C{}J =
% = 0if n, < j— 1. Otherwise, C}}; = gjr e pritli(y ). Therefore, the

equations (4.3.2)) and (4.3.3)) hold for £ = 1. In addition to this, since we already

showed the equations are also valid for k = 0, the lemma is true when j = 2.

Suppose that 3 < j <mnj, 2 <k < j—1, and the equations (4.3.2)) and (4.3.3)
are satisfied for k — 1, i.e., it holds that

k—1 x(k—s)

0 0
adf~1 = + Clo iz for 1 <i < x(y),
(=) aﬂfij axz(g k+1) Z_: ; (k=1)is axr(nr—k—l—l—l—s) ( )
where
0 ifs=0orn, <j—s
Cle-1yij = 4 ne ot s (4.3.4)
x € PrIts(z) ifs#0andn, >j—s



68 Chap. 4. RDOEL for Multi-Output Systems

for0 < s <k—1land1l <r < x(k—s). Then, from the above induction hypothesis

and straightforward calculation, we can obtain that

0
k k—1
ad(—F) Oz [ d( )330” F]
k—1x(k—s) P
+ crs F]
[(% i—k+1) g 721 =05 0, e 119)
- L—I— < ofi 0
Oij-1) 5 agci(j—kH) OZin,
k—1
8pl afl 0
! s=0n,=k—s k R ( ale anl Z amrl 8.’L‘lm
+ki o ..<3+§: o ) )
s=0np>k—s+1 b=y OTr(n, —ts) =1 Oy (n,—kt1+5) Oin,
k—1 5
- LrCl- for 1 < i < x(j).

k—1)ij
)i 8$r(nrfk+1+s)

In the third term of the right-hand side of the above equation, the second sum-
mation index n, = k — s implies that n, < j — s because k < j — 1. Therefore,

C(Ij 1)ij = = 0 for n,, = k— s by the induction hypothesis (4 , and thus the third

term vanishes. As a result, the above equation can be rewritten as

9 0 = ofi 0

i
“ (=F) 6$ al‘i(j_k) *

— 0%i(j—pt1) O,

_ rs 0 S oh -
+ Z > Cing <8f”<n—k+> : ’; %%t )

s=0n,.>k—s+1 r(nr—k+1+s) 8.’1317”

0

Y

s=0n,>k—s a$( r—k+1+s)

9 T of, )
=+ o +Z > Ci- DU D e

axZ(J—k) r=1 i(j—k+1) 6-Trnr s=0n,>k—s+1

of, 0
Y Yar,

v=0 ny>k—v+1r=1 Oy (ny—kt1+v) OTrn,
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- (s—1) 0
- LpC N (s:=s+1)
;nr>kzs+l (k=0 701 (ny —kts)
+ Y oy 9
k—1)i
J=K) >kl =049 9y, -1y
k—1 o 5
+ <cr,§_ = LpC" _)
;nek_s“ (k—1)ij (k—1)ij 0Ty (ny—ts)
Ofr r(k—l)) o
+ + o e/ () | I
7%1< —k+1) §nu>kzv+l = 1)jax u(nu—k+1+v) (k=1)iy 8xrnr
k x(k—s+1) 9
+ Cri for 1 <14 < x(j),
22 g s ()
where C,’;fj’s are defined by
Ciy = Cli-yi- (4.3.52)
Chij = Cflf—lm LrCR)y forl<s<k—1, (4.3.5b)
k—1 x(k—v+1) of e
iy = g+ Cli-yi : —LpC Y (4.3.5¢
kg k1) UZO UZI (k=1)ij 5, (et 140) (k—1)ij ( )

for 1 <r < x(k—s+1). Since it holds that x(k—s+1) < x(k—s) as mentioned in
Remark all the above C’,ij’s are well defined from the induction hypothesis
(4.3.4). Thus, one can observe that the equation (4 also holds for k.

Finally, let us check whether C};f] ’s defined by (4.3.5)) satisfy the condition
(4.3.3) or not. If s = 0, then it follows from the induction hypothesis (4 and

m that C’g?] =0forl <r < x(k+1). If 1 <s < k-1, then, by the
induction hypothesis (4 and Lemma it holds that

0 ifn, <j—s,
C(k D)ij — ;
x € PrrItS(x) ifn, > 5 — s,

e 0 ifs=1lorn,<j—s+1,
F .
(k 1)2.] *Epnr_-j""s(aj) 1f$;é]_ and anj_S"_]-,
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for 1 <r < x(k — s+ 1). Therefore, we obtain from (4.3.5b) that

ors 0 if n, <j—s,
ki .
i x € PrrIts(z) ifn, > j — s,

forl<s<k—-1land1l<r<yx(k—s+1). Lastly, in the equation (4.3.5c), it
holds that

if n, <j—k,
= (4.3.6a)
i(Gj— k+1) x € PrrTith(g) ifn, >j5—k,
0 fv=0o0rn, <j—wv
(k )ij — . J ) (436b)
* if v and ny, > j—v
€ Pritv(z) fv#0andn, >j—v,
if n, <ny, —k+o,
- Sl ! (4.3.6¢)
85% (nu—k+1+4v) x € Prr—(mu=kt0) (1) if p, > n, —k + v,
i, <j—k+1,
LrCR ) = o _ , (4.3.6d)
* € Prith(g) ifn,>j—k+1.

Combining the equations (4.3.6b)) and (4.3.6¢), we have

Cle-1)is

(nu—Fk+14v)
_{ x € PTith(z) ifu#£0,n,>j—v,and n, > n, —k + v,

0 otherwise.

Since n, > j —v and n, > n, — k4 v implies that n,, > j — k, the above equation

can be rewritten as

af, % € Ptk if 0 and n, > j — k,
C(k 1)ij f = nY # e e = (4366)
a5lUu(nu—l~ch1+v) 0 otherwise.

Therefore, it follows from (4.3.5¢), (4.3.6al), (4.3.6d)), and (4.3.6¢|) that

0 ifn, <j—k,
Ckzy ny—i+k . .
* € PrrTITE(x) ifn, >4 —k,
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for 1 < r < x(1). Consequently, the condition (4.3.3)) is satisfied and it is con-
cluded that the lemma is also true for 3 < j < n;. L]

In fact, the above lemma is needed to derive the following lemma which plays
a key role in proving a necessary and sufficient condition for the RDOEL problem.
Lemma 4.3.3. Suppose that fj(z) € P™(z) for 1 <i < m and ¢(n,x) € PS(x)

for any ¢ > 0. Then, for 1 <i<m, 1<j<n;,and 0 <k <j—1, it holds that

k Xx(k—o+1)

0 0 0
adt (¢> _ ((0 LA © >P;’-),
CON 0y 2. (@ e ,)2—:1 O O (k40

o=0 i(j—k+o)

1y ( " ) 76 € P (a),
ag

(Colezy =) _(=1)" < ’ ) (LEO)COT
0

where

—~
S
S~—
>

I
—~

0 ifo=0o0rn,<j—o,
*€P§+np_j+a(x) if o #0and n, > j — o,

for0<o<kand1<p<x(k—o+1).

Proof. Let ¢(n,x) € PS(x) for some nonnegative integer c. Then, for 1 <i < m,
1<j<mn,and 0<k<j—1, it follows from Lemma and Lemma
that

k 9 _ - v k k—v 9
“i-r) <¢8%) - 2}(—1) ( v ) (Croady ) 9y

V=l

k k k—v x(k—v—s+1) o
B eI S N >< " OR-psgr——)
Z F —k+v) ; ; (k= )]83}(7

v=0 v —k+v+s)
k
k 0
=) (=17 (LF0)
ch:O g Ox; i(j—k+o)

+ (-1)° (LE)Ch_vyijr——
1;0 s=0 r=1 ( v > (b=0)is axr( r—k+v+s)

A2 &k
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By changing the summation indices s and r into ¢ := v+s and p := r respectively,

the above equation can be rewritten as

k 0 _ . o k o 0
ad(_F) (gb@xw) = Z(—l) ( ” ) ( F¢)7a$i('—k+a)

E o x(k— 0+1 ( 9
p(o—v)
+ Z — ( ) ( ¢)C k—v)ij Ox p(ny—kto)
x(k— cr+1)

0
+ Z kz] or p(ny—kt+0) >7

81’1(3 k+0o)

where

(Co)f = (~1)° ( " ) (£39),

g

Z k g— 7)

(C¢>)kz] : Z(_l)v ( v ) ( (b)cpk( v)ij’
v=0

for0 <o <kand1l<p<yx(k—s+1). Since ¢ € PS(x), it follows from Lemma

that L3¢ € PST7(x) for any o > 0. Hence, (Cy)] € PST7(x) for 0 < o < k.

By Lemma, it holds that

CP(U v) _

0 ifo=vorn,<j—o+wv,
(k—v)ij —

* € PrTiTsTU(g) if o #£Avandn, > j— o+,

for0 <o <k, 0<v<ocand1l <p<x(k—o+1). Since 0 < v < o, the
condition that o # v and n, > j — 0 + v is equivalent to that 0 <v <o — 1 and

0 <v <n,—j+o. Hence, the above equation can be rewritten as

p(o—v) { % € PritsTu(x) if 0 < v < min{o — 1, np—j+o},
(k—v)ij —

0 otherwise.

If o =0orn, <j—o,then min{c — 1, n, —j + o} < 0. Therefore, it follows
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from the above equation that

o= (B ) @i o

v=0 v

If 0 #0 and n, > j — o, then min{o — 1, n, — j + o} > 0. Thus, we have

min{o—1, n,—j+o} k
v o—v) ctnp—j+o
(Co )iy = > (=1) < ) (Lh)CH oy € PET T (@),

v=0 v

because L%¢ € PTY(x) and C’&(Uv;;)] Pre=ito=v(x) for 0 < v < min{o —

1, n,—j+o} O

Now, we provide a geometric necessary and sufficient condition for the RDOEL
problem, and prove it by means of the necessary conditions presented in the

previous section and Lemma [4.3.3

Theorem 4.3.4. The system (3.1.3)) is RDOEL via the auxiliary dynamics (4.1.1)
if and only if fi(x) € P"(z) for 1 < ¢ < m and there exist m vector fields
X1,...,X,, satisfying the following conditions:

(R1) X;’s should be of the following form:

n —Ng
T T a
X; = o:%(n, x) for 1 <i<m,
; 2) R

where ¢° € Pi(z).

(R2) The n vector fields ad?i;%Xi’s are linearly independent on U x W, where
1<i<m,1<j<n; and U x W is a neighborhood of (n(0), z(0)).

(R3) On U x W, it holds that

[ad{” oy Xy ad( 53 X,] =0

for p,v=1,...,m, 1 <k <ny,and 1 <A< n,.
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Proof. Throughout the proof, we use the following notation: when o = [y -+ )T
: o) o) o)
we write da:= [day -+ day)? and £ = l3ar " 7acl):

(Proof of Necessity): If the system is RDOEL via the auxiliary dynam-
ics ({1.1), then there exist a neighborhood U x W € R% x R™ of (n(0),z(0)) and
two maps @ : UxW — R (n,2) — (w,2) = (n,2) and Q : U x h(W) — RI*T™,
(n,y) — (w,ye) = (n,9(n,y)), which are diffeomorphisms onto their images and
transform the extended system into the system . Since dn = dw, it

follows from (4.2.8]) that
dw
dz |’

where S is the matrix defined by the equations (4.2.9)) and (4.2.10). By the duality

between 1-forms and vector fields, it holds that

Iy O

e sl (4.3.7)

09 9 | =| 0 0
ow 0z on Oz

Therefore, it follows from (4.2.9) and (4.3.7) that

m Ny
9 = Z Z(T;w)fmui for1<v<m.
azyn” pn=1r=1 axl'“i

In the above equation, by the lower triangular-like form (4.2.10) of each T},

(Tyw)kn, = 0 if & < n,,. Hence, the above equation becomes

0 - 0
821/71,, B Z Z (T,ul/)nnl,aTm

pn=1K>n,

= Z i: (Tw)muaf for 1 <v <m,
UK

ny>ny K=Ny

0du
8?}61/

where (Tj)wn, € PF~™(2) and, in particular, (Tju)kn, = when k = n,.
Let the representation of (7)., )wn, in the (1, z)-coordinates be gbﬁ(ﬁ_n”). Then,
qbﬁ(ﬁfn”) € Pi~™(x) by Lemma m Finally, change the indices v, u, and s

toi=v,r =u, and s = K — ny, respectively. Then, the above equation can be
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rewritten as

) np—n;

02 ZZ 181‘ for 1 <i <m,

r=1 s=0 r(ni+s)

where ¢[* € PZ(z) and, in particular, d)’"o qu because s = 0 implies k = n,,.

We define

) np—n;

X, = 82 Z > ¢ o  forl<i<m, (4.3.8)

r=1 s=0 xT (ni+s)

such that the condition (R1) is satisfied.

Since we assume that the system (3 is RDOEL via the auxiliary dynamics
, the vector field F of the extended system (4 can be expressed in the

(w, z)-coordinates as follows:

d 9
F= Zﬁk(wa ye)T

k=1 Wk
n; 9
T Z Z <Zij +ai-1) (w0, Ye) >8z T Zaml W, Ye) Y
ng>2 j=2 iG-1) ;3 ing

where ﬁk(wvye) = pk(qu(w,ye)) = pk(nay) for 1 < k < d and Elij(w,ye) =
aij(w, §(w,ye)) = aij(n,y) for 1 <i <m and 1 < j < n;. By straightforward
calculation, it holds that

0 0 0
(ld(,F) 82” = |:822j’ F:| = 8Zi(j_1)’ (439)

for 1 <i < x(2) and 2 < j < n;. Therefore, from and ([£.3.9), we have

n;—j o) — < < < <
d( F)X Z—— az] for 1 <¢<mand 1< j <mn; Thisimplies that
{ad?iFJ)XlzlgiSm, 1§]§ni}:{8Zij 1 <1 <m, 1§]§ni}. Hence, it

is easy to see that the conditions (R2) and (R3) are satisfied.

(Proof of Sufficiency): Suppose that there exist m vector fields Xi,..., X,
satisfying the conditions (R1), (R2), and (R3). Then, by (R2), (R3), Theorem
(Simultaneous Rectification Theorem), and Corollary there exists a
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coordinate chart (U x W, (w, z)), where U x W C R? x R" is a neighborhood of
(n(0),2(0)) and (w, z) = (W1, ..., W4, 211, - - -  Zmn,, ), Such that
0 ny—A
azw\ d( P X, forl<v<mandl<\<mn,. (4.3.10)

Moreover, by (R1) and Lemma each vector field % can be expressed as

Tbu) Nyr—"n
8 N a0 T v
ad(” 1) Xy = ad( 4.3.11
azl’)‘ =5 - ( Tzl g awr(ny+s)) ( )
X(nv) np—ny ny, — X(nv—X—oc+1)
0 0
C v ” + C v (n r(n+s) 9.
3 S (g e G )
forl1<v<mand1l<A\<n,. Since all the %’s do not depend on aim, e aind

and they are linear combinations of 8%’3, we have
HKE

0 0
— = —1L 4.3.12
0z Oz’ ( )
where
Hyq Hyp,
L:= : : , (4.3.13)
Hml Hmm

and H,, is an n, x n, matrix whose (x, A)-th entry is the coefficient of % in
nK
the representation (4.3.11) o v=1..,m,1<k<mn, and 1l <

A < n,,. In addition to this, since (n,z) is also a coordinate map on U x W, the

remained vector fields %, ey aiwd can be expressed as linear combinations of
0 0 0 0 .
Tm,...,%,%,...,m as follows:
O T s o Mixq 4314
96 = | o o . (4.3.14)
Nnxd
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As a consequence of (4.3.12)) and (4.3.14)), we have

% #1-[% #]] % |

Trivially, both M and L are nonsingular on U x W. Therefore, by the duality
between vector fields and 1-forms, it holds that

dw | M1 10) dn
dz —L-INM-U L1 dz |

Let w = 7. Then, dw = dn and thus it follows from the above equation that

dw . Id O
dz —L7'NM-Y Lt

Since L~ is nonsingular at (1(0), z(0)), the 1-forms dwy, . . ., dwg, dz11, . . . , dZmn,,

dx

dn ] . (4.3.15)

are linearly independent at (7(0), z(0)). This implies that (w, z) can be also a co-
ordinate map on a neighborhood U x W of (n(0), z(0)), and thus there exists a co-
ordinate transformation ® such that ® : U x W — R™" (n, 2) — (w, 2) = (1, 2),
which is a diffeomorphism onto its image.

Next, we verify the existence of an output transformation Q(n,y) = [w” yI]"
such that w = n and y. = q(n,y) = Cz. To this end, we first show that each
block H,,, for 1 < p,v < m of the matrix L, defined by the equation , has
a lower triangular-like form similar to in the proof of Theorem As
mentioned above, (H,, ). is the coefficient of ﬁ in the representation
of % for p,v =1,...,m, 1 < K < ny, and 1 < XA < n,. For the vector field
m in the right-hand side of the equation , let Kk := s+ A+ 0.

Then, kK > A because s > 0 and ¢ > 0. Moreover, by Lemma [4.3.3] its coefficient

(Cyr);,,—» satisfies the following condition:

70 € PY(x) if k=X (s=0ando=0),

(4.3.16)
* € PSTo(z) = P ANx) if k> A

(Cops)my—r = {
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Similarly, for the vector field %) in the right-hand side of (4.3.11)), let

p(np—ny+i+o

k:=mn, —mn, + A+ 0. Then, it holds that

k<A & mn,<ny,—oc<n,+s—oc forall0<s<n.—n,,
k=X & mn,=n,—0c<n,+s—o0 forall0<s<n,—n,,

(equality holds only for s = 0.)

E>N & ny,>n,+s—o for some 0 < s < n, —n,.
Therefore, by Lemma |4.3.3) its coefficient Z:,‘g”) ZZ;B””(C%S)?Z A)r(mts) SAE

isfies that

X(nu) Nr—nNy

Z (0‘1555 )(pgy—k)r(ny—i-s)

r=1 s=0
0 ifo=0o0r k<A, (4.3.17)
= ffg”)(C%o)fgy_)\)mu € Px) ifc#0and k= A,

« € PIr T (1) = PR a) if o #0 and k > \.

Consequently, from (4.3.16)) and (4.3.17), we can observe that each H,, has the

following lower triangular-like form:

0 if k< A\
(Huw)ix =4 *€Pz) ifws=)\ (4.3.18)
x € PENx) if k> A

for pv=1,...,m,1 <k <ny, and 1 <X < n,. Since each block of the matrix
L has the above lower triangular-like form, it follows from (4.3.13) and (4.3.15)
that

fap | [ oo - 0o ] dw ]
dn dz1y *  (Hin - (Him)u dz11
| (] |
| dZm1 | |+ (Hm)u - (Hpm)1n | | dzmr |

dw
dye |

_.[ I 0
Dm><d Eme

A Lt &
I i I $
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with the matrix F,,«, of which all the entries are functions of 1, 11, 21, .. ., Tm1
only. Moreover, by a similar way to the proof of Theorem [£.2.6] it is not difficult
to see that E,,xm is also nonsingular on U x h(W), because the matrix L is
nonsingular on U x W and each block of the matrix L has the lower triangular-like
form (4.3.18). Therefore, there exists an output transformation @ : U x h(W) —
RA™ (n,y) — (w,ye) = (1,9(n,y)), which is a diffeomorphism onto its image,

such that @) forms a part of the coordinate transformation ® as follows:

yei:qi(nvy) :ql'('l’],ﬂj'll,...,l'ml) = Zil for 1 SZSm,

where q(n,9) = [q1(n,y) -+ am(n,y)]". Conversely, there also exists the inverse
output transformation Q! (w,y.) = [w” G(w,y.)T])T = [’ yT]T.

Finally, we determine the vector field F' of the extended system in
the (w, z)-coordinates. Let F, := Ek | Fors2- Fur T 2ore1 Do ma - denote the
representation of F' in the (w, z)-coordinates. Since w = 7, F[)k =W =N =

pr(n,y) for 1 < k < d. In addition, it follows from the equation (4.3.10|) that

9 _ ad I X, = [ad?i}()j“)Xi,F} _ [ 0 ’ F}
)

0z (=F) 9zi(j+1
)L EE ()
k=1 azz(]-‘rl wg r=1s=1 azz(J+1 Ozrs’
for 1 <i<mand1l<j<n;—1. The above equation implies that % =
i(j
Oip - 0js for i,rm =1,...,m, 1 < j <n; =1, and 1 < s < n,. Therefore, F;; =
Zi(j+1) Faig (W, 2115 - -5 Zm1) = Zi(j41)+aij(w, ye) for 1 <i <mand 1 < j < ni—1,
and Fiy, = Gin, (W, 211, - - -, Zm1) = Gin, (W, Ye) for 1 <4 < m. Therefore, we have
d 9 m n;—1 0 0
k=1 =1\ j=1 1

where ai;(n,y) = aij(n,¢(n,y)) = @ij(w,ye) for 1 <i <mand 1< j < n;. We
can see that F}, is equal to the vector field of the system (4.2.1)). O

Remark 4.3.1. By the equations (4.3.10]) and (4.3.12)), the condition (R2) holds

if and only if the matrix L is nonsingular on U x W. In the proof of Theorem

A & 8!

‘.l ] T_III
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, it is shown that each block of L has the lower triangular-like form
similar to that of S defined by (4.2.9) and (4.2.10)) in the proof of Theorem .
Therefore, by a similar way to the equation , det L can be easily calculated
and thus we obtain from det L # 0 the condition for (R2) to be satisfied. We will

illustrate it by examples in the next section. (|

4.3.2 Necessary and Sufficient Condition for OEL

As mentioned before, if the auxiliary dynamics (4.1.1)) is not employed, then the
RDOEL problem becomes the OEL problem. Therefore, we can derive a geometric
necessary and sufficient condition for the OEL problem, from a direct consequence

of Theorem [£.3:4] The following corollary is that.

Corollary 4.3.5. The system (3.1.3) is OEL if and only if f;(z) € P"(x) for
1 <4 < m and there exist m vector fields X1, ..., X,, satisfying the following

conditions:

(O1) X;’s should be of the following form:

x(n3) np—n;
X; = Z Z (bfs(m)% for 1 <i<m,
r=1 s=0 xr(nﬁ-s)

where ¢]° € P%(x).

(O2) The n vector fields ad?i;g X;’s are linearly independent on W, where 1 <

i <m,1<j<n; and W is a neighborhood of z(0).

(0O3) On W, it holds that

[adn“

—K My —A _
U X ad? )X, ] =0

)
for p,v=1,...,m, 1 <k <ny,and 1 <A< n,. O

Remark 4.3.2. Actually, (R1) and (O1), which determine the structure of the
vector fields X;’s, are inspired by the works [BBHB09, BB11] that deal with the
OEL and RDOEL problem, respectively. The advantage of Theorem [£.3.4] over

the result in [BB11] is that we derive a necessary and sufficient condition of the

2] -] 8} 3

'Iu
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RDOEL problem for multi-output systems while a sufficient condition for the case
of single output systems was provided in [BB11]. The advantage of Corollary
over the work of [BBHBO09] is that we consider the general output transformation

Ye = q(y) while an output transformation with a structural restriction was con-
sidered in [BBHB09| (for more details, see Theorem [3.2.7)). O

To our best knowledge, Corollary provides the first geometric equivalent
condition to the solvability of the OEL problem for multi-output systems, in the
case under consideration of a diffeomorphism on system output of the general
form y. = g¢(y). The condition (O3) was originated from [KI83, [KR85| and
has been commonly witnessed in [XG89, BBHBO09|. Significant differences are
found in (O1). Although the authors of [XG89| and [BBHBO09| derived geometric
necessary and sufficient conditions for the OEL problem, they did not consider
output transformation (i.e. y. = y) or assumed that output transformation has
a structural restriction such as ye; = ¢i(y1,...,y;) for 1 < i < m, respectively.
As shown in the proof of Theorem each ¢%(x), which constitutes X; by
(0O1), coincides with g G

Yev
transformation of ye = ¢(y). Therefore, if y = y, then ¢/ = §;,. Similarly, if

where G(ye) = [G1(ye) -+ qm(ye)]T is the inverse output

; 0 0 when r > i,
Yei = ¢i(y1,...,y;) for 1 <i < m, then ¢°(x) = . ‘
&y, .- -, yi) when r <.

This fact means that our result has more freedom on designing ¢[*(x)’s than
theirs, and the property makes it possible that the OEL problem can be solved
for a class of systems not covered by the previous results. We illustrate it by the

first example in Section [£.4]

4.3.3 Procedure to Solve OEL and RDOEL

In this subsection, we explain how to check the solvability of the OEL and RDOEL
problems for a given system by means of Corollary and Theorem [4.3.4]
Furthermore, we also describe a procedure to construct an explicit change of
coordinates for OEL or RDOEL from the vector fields given by Corollary or
Theorem respectively.

There exists a class of systems that can be transformed into NOCF without

the aid of any auxiliary dynamics (the case where the OEL problem is solvable).

] 2- 1_l|
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Since the OEL problem is fully characterized by Corollary [£.3.5] we can check
the solvability for a given system. If the problem is solvable, then we need not to
use the RDOEL approach, in order not to waste hardware or software resources
that are needed to implement an auxiliary dynamics. However, there also exists
a class of systems to which OEL is not applicable but the RDOEL problem can

be solved. For this reason, the process of applying our results to the given system
(3.1.1)) is split into the two stages: OEL procedure by Corollary and RDOEL

procedure by Theorem

As an initial stage, according to Theorem [£.2.T]and Theorem [£.2.7 which state
necessary conditions not only for RDOEL but also for OEL, let us first check
the observability of the system and the condition that f;(z) € P}*(z) for
1 <4 < m in its observable form . If the system satisfies the conditions,
then we move to the first stage - OEL procedure.

The first stage - OEL procedure

Step 1: According to (O1) in Corollary set

X(nl Nyr—"ng

ZZ 1(9:1: for 1 <i<m,

r=1 s=0 r(nits)

with ¢/ € P*(x), and then calculate ad?i}gXi for1 <i<mand1l<j<n,;

Thereby, we can define an n X n matrix L such that

0
niy— 1 . N — 1 —
[a d( f) Xy d( " X - Xl —axL,
where 3% = [aa?“ . ax? e axa - ama |. Since f is known, all the entries
ny m mnm

of L are expressed as functions of x and ¢}*’s. The objective is to find ¢;*’s such

that both (O2) and (O3) in Corollary are satisfied.
Step 2: The condition (O2) holds if and only if the matrix L is nonsingular.

Therefore, we can obtain some constraint conditions on ¢.®’s, which guarantee
(02), from det L # 0. Furthermore, since each block of L has a lower triangular-
like form (similar as the equations (4.3.10)-(4.3.13)) and (4.3.18)), the method used
to calculate det S in the proof of Theorem [£.2.6] would be helpful in computing
det L.
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Step 3: Direct calculation of the Lie brackets given in (O3) provides some partial
differential equations of ¢;°’s. If there exists a set of solutions of the equations
subject to the constraint conditions obtained in Step 2, then the vector fields
X,’s with the solutions satisfy (01)-(03) in Corollary [1.3.5] That is to say, the
OEL problem is solvable. In addition, from the solutions, all the entries of L
are determined as functions of x. Since it holds that % = L' by , we
can construct an explicit coordinate transformation by solving it. If the partial
differential equations subject to the constraint conditions have no solution, then
it means that the OEL problem is not solvable. In this case, we move to the
second stage - RDOEL procedure.

The second stage - RDOEL procedure
Step 4: Choose an auxiliary dynamics such as 17 = p(n,y).
Step 5: According to (R1) in Theorem , reset X;’s by replacing ¢}*(x) €
P (x) with ¢[°(n,x) € Pi(x). After that, compute ad?i;%Xi’s with F(x) =
[p(n,y)T f(z)T]" and redefine the matrix L such as

)
nl_l DY DY nm_l o e [
lad2 ) X1 -+ Xy o ad{mp Xy e X = o L

Step 6: In a similar way to Step 2, we can obtain some constraint conditions on
¢r*’s from det L # 0, which guarantee (R2) in Theorem [£.3.4]

Step 7: The Lie brackets in (R3) of Theorem also give partial differential
equations of ¢;®’s. If there is a set of solutions of the equations subject to the
constraints from the preceding step, then the RDOEL problem is solved and we

can also design explicit z-coordinates by solving g—; =L

Remark 4.3.3. Actually, in the second stage - RDOEL procedure, the auxiliary
dynamics plays an important role for the solvability of the RDOEL problem.
If there exists an auxiliary dynamics for a given system such that the RDOEL
problem can be solved, then it is theoretically possible to design it by the following
manner. If the auxiliary dynamics 1 = p(n,y) is not fixed in Step 4 (equivalently,
it is to be designed), then the entries of L defined in Step 5 depend not only on
(n,z) and ¢[*(n,x)’s but also on p(n,y). Hence, the constraint conditions from

(R2) and the partial differential equations by (R3) also depend on ¢*(n, x)’s and

] 2- 1_l|
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p(n,y). If there exists a set of solutions of the equations subject to the constraints,
then, from the solution p(n,y), we can also design an auxiliary dynamics that
enables the RDOEL problem to be solvable. In general, however, it is very hard
to find such a solution because unknown p(7,y) makes the constraints and the
equations too complicated. This is the reason why we ‘choose’ a fixed auxiliary

dynamics in Step 4 instead of ‘designing’ it. O

Remark 4.3.4. By Theorem if a given system is RDOEL via an auxiliary
dynamics, then it is also DOEL via the same auxiliary dynamics with a new
output. Moreover, the coordinate transformation for RDOEL and the new output
Ue = [M Ye2 -+ Yem)? transform the extended system into a (d + n)-dimensional
GNOCF. In this sense, the second procedure also offers an algorithm to design a

coordinate transformation for DOEL. O

In Step 2 and Step 6, since each block of the matrix L has a lower triangular-
like form, it is not difficult to obtain constraint conditions on ¢;*’s from det L # 0,
by using the method in the proof of Theorem [£.2.6] However, in Step 3 and Step
7, it would be a tedious work to calculate Lie brackets among the vector fields.

The following lemma and its corollary could help us to reduce the efforts.

Lemma 4.3.6. In the condition (R3) of Theorem [4.3.4} if Kk + A > ng + 1, then

it always holds that [ad?f}_,;{ X, ad?j}i‘Xy] =0.

Proof. From the equations (| m m, one can observe that ad

the k-th column of the u-th column matrices in L. In addition, by the lower

triangular-like form (4.3.18]) of each block of L, ad?f;,; X, can be written as

()uis

nul‘i
“d H—E:E:wm i

n;>K j=K

with (Ti,)jx € € PJ7"(z). Similarly, we have

dn” /\XV— ZZ rv s)\

nep>XA s=A

with (T,,)sn € P57 (z). Hence, direct calculation of Lie bracket between the

A & 8!

‘.l ] T_III
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above two vector fields yields that

Ny —kK My —A
[ad(“F)X , adl” F)X]

TV )s 0 9 E L 9
=2 Z 2 Z( w)in axj) Aax,«s ~ Tl (axl:«z] )893]

N >K J=K np>X\ S=\

a(Tru)sA

fr+X>n +1, thenwehaveT* =0 because j > Kk >ny —A+1>
s—A+1and (T},)sx € P5~*(z). Similarly, it holds that a(T”‘) = 0. As aresult,
[ad(fF) Xy, ad’(l;ji‘X,,] =0ifk+A>n;+ 1. O

Corollary 4.3.7. In the condition (O3) of Theorem [4.3.5] if K+ > nq + 1, then
v=A —
it always holds that [ad?f f)'i 1 ad?_ N X,]=0. O

Lastly, we give a useful tip on the order of computation of the Lie brackets.

As mentioned in the proof of Theorem [4.3.4] we take X; from 8 -for1 <i <m,

which is the last column of the é-th column blocks of the rnatrlx S (see the
equations (£.3.7) and (4.3.8)). In the equation (4.2.9), the (,j)-th block of S is
an n; X n; matrix and the observability indices (n1,...,n,,) satisfy ny > ng >

- > ny,. In addition, each block of S has the lower triangular-like form .

For these reasons, in general, the following statement holds: the smaller i, the

smaller number of ¢I*’s X; depends on (indeed, if ny > ng, then X; = ¢{° 8x1n1>
Therefore, we calculate Lie brackets among ad?i;f)Xl’s for 1 < i < nq at first
and find ¢}*’s such that the Lie brackets are zero (if there exist). And then,
compute Lie brackets among ad( ! Z)X 1’s with the solutions ¢7°’s and ad?f}%Xg’s,
in order to get ¢5°’s. After that, we extend the targets of Lie bracket operation
to ad(i F’;Xg S, ..., ad? F)le s successively. This iterative process could reduce

the efforts on calculation of the Lie brackets given in not only (R3) but also (03).

4.4 Illustrative Examples

In this section, we present two examples in order to demonstrate the results of
Theorem [£.3.4] and Corollary [4:375] The first example illustrates that the OEL
problem can be solved for a larger class of systems when an output transformation

of the general form y. = ¢(y) is considered.

A2 &k
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Example 4.4.1. Consider a multi-output nonlinear system given by

T11 = T12, Gy = e~ (@ntT)g,,
d1g = 2(e~(@He21) 4 152 (4.4.1)
Y1 = T11, Y2 = T21-

The above system is already expressed as an observable form and its observability

indices are given by (n1,n2) = (2,1). Moreover, the system satisfies the condition,

fi(w) i= dp = 2(e”"1F) 4 1)af,y € PP(x),

fola) = @y = e~ @t € Pl(g).

According to the procedure in Subsection [£.3.3] we show that the system is OEL
and construct a change of coordinates which transforms the system into NOCF.

Step 1: We set X; and X2 by (O1) in Corollary as follows:

Xl - d)%()ia
0712 (4.4.2a)
(z)lO 9 (z)ll 20 9 o
2 2 8.’1:2]_ Y

where ¢10 ¢30 ¢2° € PO(x) and @3t € Pl(z). Since the vector field f of the

system is represented as

+ E gy —

0
= — +2(E™ 1
f Z12 + ( + )x128 T19 83321

0z

where E = e®117221 gtraightforward calculation yields
ad_pX1=¢ 0i+cp1 — (4.4.2b)
(=) 1 0z11 1 ) .

with

.__;rxﬁ-! _'-.‘I.'ZI_ -|_-.l| 2
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From (4.4.2)), the matrix L is defined as

T

T
o) 10 10
(ld(_f)Xl (93311 1 0 2 a
X = | v pi oy | = gL
9 _
X, o2 | LB 0 [ e

Step 2: Since each block of L has a lower triangular-like form, by the way used
in the proof of Theorem [£.2.6] it holds that

10 10
G D-detq 1) = (61268 — E1}0).

det L = det
E71¢%0 (b%O

Therefore, (02) in Corollary is satisfied if and only if
020 and ¢ —E19°+£0 on W, (4.4.3)

where W is a neighborhood of z(0).
Step 3: Let us first compute [X1, ad(_s X1]. Then, we have

1 10 10
[Xlu ad(ff)Xl} = %0 <8801 _ aqbl _Eil 3¢1 ) 0

8$12 axll 85511 8$12
B a¢10 3 a¢10 o
-9 10 2E 1 1 10 1 E 1 1 .
¢1 < ( * ) 1 81‘11 81‘21 (91’12

Since ¢1? # 0 by the condition ([#.4.3)), [X1, ad(_)X1] = 0 if and only if

10 10
2(6*(x11+9621) +1)¢1° — gxl — 6<x11+x21)?§1 =0. (4.4.4)
11 21

Similarly as shown in the proof of Theorem [£.3.4] if the OEL problem is solved,
then it holds that ¢} = 8- = JU where G(ye) = [G1(ve) Ga(ye)]T = v is
the inverse function of the output transformation y. = ¢(y). Hence, if ¢(y) = y
(IXG89]) or g(y) has a structural restriction such that ¢;(y) = ¢1(y1) (JBBHB09)),
then 1% = 1 or ¢1 = ¢p10(y;1) = 1%(x11), respectively. However, it is easy to see
that the equation does not hold when ¢1° = 1, and it has no solution ¢1°

depending only on x11. This implies that the OEL problem is not solvable for the

2] -] 8} 3

'Iu
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system (|4.4.1)) when ¢(y) has such restrictions.

However, if there is no restriction on ¢(y), then we can find a solution of
the equation such that ¢i® = E? = e2(r1ta21) which also satisfies the
condition (4.4.3). Let ¢i" = E? and ¢3! = y1212 + 1o where 91,99 € PO(z) (¢3!
can be written as ¢3! = 11212 + 1y because ¢3t € PL(x)). Then, ¢ is rewritten

as pi = 2E(FE + 1)712 and we have

0
(X1, Xo (Y1 — 2¢5 ¢2)6a:12’
8¢10 a 8¢10 o
X X :E2 2 E 1 2 —9 10_2 20
ad-p X o] = B(G2 4 B 0% ol 20 ) 0

8.7}11 8%21 8%11 a(ligl

+ E{ (E% + o0 (2E — 1)¢1>$12 + <E% + Do _ 2(E - 1)%)

+2(E + 1) (¢ — 2¢3° — 2¢§0)}a + E(E

9¢3” n d¢3° B0 — ¢%0) 9

O0x12 Ox11 Oz dzr11’

From the above equations, (O3) is satisfied if and only if there exist ¢i°, ¢2°, 1)1, 1y €

PO (x) which constitute a set of solutions to the following equations:

1 — 2050 — 2¢3° = 0, (4.4.5a)
dg5° 1095 10 20
E — 2010 — 2920 = 44.
o 0Py
L 4 2 0B+ 1)y = 44.
ey T gy~ REF D=0, (4.4.5¢)
p2%0 L 9% oty =0, (4.4.5d)

8$11 81’21

dp3° " 03"
Ox11 Oz

E — 0 — 30 = 0. (4.4.5¢)

Let 30 = E%2 41 = 2@ut22) 4 1 and ¢3° = E — 1 = ¢®1 421 — 1 which are
solutions of and and also satisfy the condition . Then, it
follows from that 11 = 2(¢30+¢20) = 2(E%4+E) = 2(e2(@11+e21) 4 etritaan)
which is a solution of . Finally, let ¥9 = 0. Then, the last equation
holds. Consequently, we find four functions ¢10 = e2(@11+221) /0 — 2(z11+221) L]
QS%O = P12 _ 1 and qb%l = Y1219 + Yo = 2(62(1’11"””21) + e®11F221) 115 such that

the conditions (O2) and (O3) in Corollary are satisfied. From the four
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solutions, we can determine the matrix L as follows:

E? 0 E?+1
L= 2(E2 + E)xlg E? 2(E2 + E).le
E 0 FE-1

Since it holds that % = L~ by ([#.3.15)), a coordinate transformation z = ®(z)

for OEL is a solution of the partial differential equation,

E-1-1 0 E+E~!
0P E+1 E+1
% =L '= —QE_ziL'lQ E~2 —2E_2{L‘12
1 —F
pors 0 &

By solving the above equation, we can design a coordinate transformation and an

output transformation such that

11 2In(e1te 1) — e (Pt — 9y — gy,
212 | = ®(x) = e 2oty ;
221 | —In(e*11H%21 1) 4 94
Yel ] 2In(e¥1t¥2 £ 1) — e~ W1t2) 9y — g
[ Ye2 | )= [ —In(e"*¥2 +1) +

As aresult, the system (4.4.1)) is transformed into NOCF (in fact, a linear system),

212
Z = 0 = Az,
i 0
Ye = i = Cz,
| 221
by z = ®(z) and ye = q(y). O

The second example is given to illustrate that the RDOEL problem can be
solved for a class of systems for which the OEL problem is not solvable and the

RDOEL approach offers a lower dimensional GNOCF than the DOEL approach.

2] -] 8} 3
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Example 4.4.2. Consider the following multi-output nonlinear system:

11 = T12, To1 = T22,
T12 = T13, Tog = T21T12,

(4.4.6)
13 = T11%13,

Y1 = 211, Y2 = T21.

The above system is represented as an observable form and satisfies the condition,

f1 (ZL') = T11713 € 732(12) C 733(1)),

fo(z) = 21712 € PH(z) C P*(2).

Actually, the system is DOEL via the auxiliary dynamics 7 = y;, namely, the
extended system can be transformed into a six-dimensional GNOCF ([BB09)).
We show that the system cannot be transformed into NOCF without the aid of
auxiliary dynamics (i.e. it is not OEL), but it is also RDOEL via a new auxiliary
dynamics such as n = —n+y; and thus can be transformed into a five-dimensional
GNOCF.

Steps 1-3: According to (O1) in Corollary let

13
4.4.7
X2:¢108 _|_¢11a +203 ( )
2 dx12 2 Ox13 2 D9y’

with 19 90 #3°0 € PO(x) and ¢3! € P(x). Then, from Step 2, we obtain the
following condition guaranteeing (O2) in Corollary [4.3.5}

P10 #0 and 2040 on W, (4.4.8)

where W is a neighborhood of 2(0). In Step 3, it holds that [ad(_ ) X1, ad%_f)Xl] =

0 if and only if

01" _

0
0 and 10271 400 =0. 4.4.9
Ox11 ! o ( )



4.4. Ilustrative Examples 91

In the above equation, ¢10 = 0 when z91 = 0, which violates the condition .
This implies that there is no solution satisfying both (02) and (O3) in Corollary
when z9; = 0. That is, the OEL problem is not solvable for the system
on the region where x9; = 0. Therefore, we move to the second stage -
RDOEL procedure in Subsection [£.3-3]

Step 4: As mentioned before, we choose an auxiliary dynamics such that

n=-n+uy, (4.4.10)

which is an input-to-state stable system in the sense given by [SW95| when we
regard the system output g; as the input of the auxiliary dynamics.

Step 5: In the equation , we adjust ¢19, @10, 30 € PY(z) and @il € PL(x)
so that they depend also on 7 (i.e. X; and X, satisfy (R1) in Theorem [1.3.4)).

Since the vector field F' of the extended system, which is composed of the system

(4.4.6) and the auxiliary dynamics (4.4.10), is given by

F=(z11 — )g—i—x + 9 +rT13 55—+ 0 + zo12
=(T11 — 7 an 125 — EToH 135 — 91s 11 1381'1 Too Dot 2112 7 970’
the other three vector fields are calculated as
0 0
ad(_p) X1 = ¢%°a7 PG
0
ad%_F)Xl ¢1 — + (2(,01 %Oxn)a + 9028713 + 1 lea , (4.4.11)
0 0 0 0
d X 1 2 20 1
F)yA2 = (b + ¥3 8:17]_2 + P4 axl + ¢2 aCCQ]_ 5 8$C2
where
8¢10 8¢1O 6¢10
1 10 o9 _ 1 o9
¥1 1 an (1‘11 77) D211 072 22,
8(,01 8(,01 8(,01 8901 1
2 o9 _ 1 _ 1 _ 1 oY1
P = <P1$11 an (11 —1n) Oa11 D21o 2o 9 T21T12,
o 10 a¢10 8¢10
1._ 11 _ 992 oy 99 0Py
3 = 03 an (11 —n) 9z Z12 Do) T2,
o 11 o 11 o 11 o 11 o 11
01 = ¢yt — Ts(ml -n) — aiilﬂflz - ai);ﬂﬁls - 6219322 - ai;xmfﬂlz,
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8({)20 8(]320 8({)20
o = iy — 8; (11 —n) — axflx 9 — 895;1 T2

As a consequence of the equations (4.4.7) and (4.4.11]), we define the matrix L

such that
) 17 17 o 177 10 10 17
azd(iF)Xl 6$11 1 0 0 2 0
ad(*F)Xl 8312 290%1 - %Oxll (b%o 0 SO%) %0
X1 = | 7% 3 el 1% vi ¢
ad(_p) X, T 0 0 0 |¢3 o0
L X2 | L 89?22 | L %Ole 0 0 90% %0 |
0
=: —PL. 4.4.12
5 ( )

Step 6: One can observe that each block of the matrix L defined above has a
lower triangular-like form. Hence, by the method used in the proof of Theorem
[4:2.6] it holds that

%0 %0 : 10 10 ,20\2 ;10
deth(det[ ; d>%°]> ~det [¢1°] = (61793°) "¢1°

Therefore, (R2) in Theorem is satisfied if and only if
1040 and 040 on UxW, (4.4.13)

where U x W is a neighborhood of (1(0),z(0)).
Step 7: Since the observability indices of the system (4.4.2)) are given by (n1,n2) =
(3,2), it follows from Lemma [4.3.6] that

[Xh ad(—F)Xl] = 07
[X1, Xa] =0.

Among the other eight Lie brackets, let us first consider [X7, ad%ﬁ F)Xl] and

[ad(_ X1, ad%ﬁ F)X 1] which will give some partial differential equations of ¢1°.
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The computation results of them are as follows.

- )2
lad(_py X1, ad}_pX1] = ¢1° (2 g;i - gfj) 8512 + (¢%Ogﬁ + d%
- ¢%ngi — (21 — %Oﬂfll)g;i - %090215532) 3513
10 2 1 10 10 10
=l gt e (o (B G o+ o) e iy

Since ¢1? # 0 by the condition (4.4.13)), it follows from the second equation that
lad () X1, ad%_F)Xl] =0 if and only if

91"
Ory1

0p3 1, 991"
Ox12  Ox11  Ozop

0, (4.4.14)

21 =0. (4.4.15)

The equation (#.4.14) implies that ¢1° does not depend on z11, in other words,

10 = ¢10(n, x91) € PY(x). By this fact, p1 and (3 can be rewritten as

a¢10 3¢10
1 10 1 1 1
= x - 11 — - x = y L11, 221, L ’
©7 LT (x11 —1n) Bgy *2 ©1(n, 11, T21, T22)
8901 a¢10 8901 6¢10
2 _ 1 . 1 N 10 1 . 1 1
P2 = P11 7877 (11 —n) < 1 an T12 Dot ) T2 + 7o T21212

By the above equations, the equation (4.4.15)) becomes

8$12 61’11 (9%'21

e on O0xa1 2

2 1 10 10 10
8802 a(pl + 8¢1 To1 = —2< 10 a¢1 8¢1 x 1) = 0.

As a result, we obtain a partial differential equation for ¢1°(n, z21) such that

000 ool
! on Oxa1

=0. (4.4.16)

Let ¢1? = €” which is a solution of the equation (4.4.16]) and satisfies the condition
(4.4.13). Then, [ad_p X1, ad(iF)Xl] = 0. Moreover, since ¢} = ne and ¢3 =
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(n* +n — z11)e", we have

0
X =¢"
1 € 8.’1313’

di_m X1 =¢€" m_—

d-nt1 = O0x12 e dx13’
ad?> X, =¢" 9 + (2n — z11)€" 9 —1—(772—1—77—3611)6’7 9 + 291" )
(=F) Ox11 O0x12 O0x13 O0xa2

For simple calculations, we temporarily assume that ¢i° = 0 and ¢3! = 0, which

do not violate the condition (4.4.13). Then, X5 and ad(_p)X2 become

20 0

2 8%22

=¢
0 0
ad(_p)Xo = ¢5° Er. +o ‘}’87
where

a¢20 an)QO a¢
1 _ 2 o _ 2
SOS - an (xll 7]) 855]_1 12 — 8562]_

Z22.

With the above new representation of ad?i}%Xi for1<i<2and 1<j<mny, let

us continue to check the Lie brackets for (R3) as follows:

(X1, ad(p)Xs] =0,
0,

lad(-p X1, X2] =

lad(_p) X1, ad_p)Xs] = engc;)fiafm - gill 8:?22
[ad_p) X1, Xa] = ngiu (9:?‘22

[X2, ad(_p)X] = %O(ggiz N gf?) 3522 =4 gi?l 8522

Since 3" # 0 by the condition (4.4.13), in order for both (R2) and (R3) to be
satisfied, it should hold that

8¢%0 ¢20

Ory1  Oxo1
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The equation implies that $3° depends only on 7 because ¢3° € P2(x). As aresult,

20
we have go% = —8572] (11 — 1) and thus the last Lie bracket between ad(z_ F)X1

and ad(_p) X2 is calculated as

1 20
2 _ . ¥ _ 2 9 — . 995 20)_9
ad{_p) X1, ad(-p Xa] = e <5m %2 >8x22 ‘ < on T ) e

From the above equation, [ad%ﬁF)Xl, ad(_F)XQ] = 0 if and only if

o 20
g; +¢3° =0.

Let ¢2° = =" which is a solution of the above equation and also satisfies the
condition . Then, the four functions ¢1® = €7, ¢p1? = 0, 3! = 0, and ¢p3° =
™" guarantee that both (R2) and (R3) in Theorem [4.3.4/hold. Consequently, the
RDOEL problem is solvable.

Now, by using the solutions, we design an explicit change of coordinates for
RDOEL. From the solutions, we can determine all the entries of L as functions

of x and n as follows:

i & 0 0 0 0 ]
(2 — z11)e" e” 0 0 0
L=1| (" +n—=zn)e" ne’ e 0 0
0 0 O e " 0
xo1€” 0 0 (zn1—m)e™ ™ e

Since it holds that % = L~! by ({#.315)), a solution of the partial differential

equation,

e " 0 0 0

. —(2n —x11)e " e " 0 0
= -V -e)e e o 0 |=r,

0 0 0 e'l 0

—xz91€e" 0 0 (n—x)e” e
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can be a new coordinate for RDOEL. By solving the equation, we can design a

coordinate transformation and an output transformation such that

211 Ty
212 _(277$H — %x%l — .%'12)6777
zi3 | = | (0= D — 32%,) — nziz +213)e™ |,
221 To1€"
| 222 | I ((n — 11)z21 + 222) " |
Yel yie
=q(n,y) = :
Ye2 | yoe”

As a result, the extended system can be transformed into the following five-
dimensional GNOCF:

212 3yi(n — sy1)e™"
213 =3y1(n(n—y1 — 1) + gy1(y1 +5))e"
=0 [+ | —y) (- 5m —3) +y+1)e | = Az +a(n.y),

292 —2y2(n —y1)e"

0] ] —y2(n = y1)(n —y1 +1)e” ]
z

Ye = H = CZ,
| 221
on the z-coordinates. O



Chapter 5

Extension of RDOEL: System into
Extended Nonlinear Observer
Canonical Form (ENOCF)

As reviewed in Chapter (3| the (conventional) OEL problem is to transform a
nonlinear system into NOCF that is an observable linear system modulo output
injection depending on the system output. In order to enlarge the class of systems
to which we can apply similar approaches, several ideas have been proposed. For
instance, system immersion technique is to immerse a given system into a higher-
dimensional NOCF, and the concepts of DOEL and RDOEL are first to append
an auxiliary dynamics of which input is the output of a given system and then to
transform the extended system into GNOCF which is an observable linear system
modulo generalized output injection depending on the system output and the
state of auxiliary dynamics.

Another idea is to introduce a new NOCF of which not only output injection
part but also linear part depends on the system output (i.e. A = A(y) in the
NOCF ) For single output nonlinear systems, such an idea was first ad-
dressed in [Gua0Ol, RPNOI, [Gua02, RPN04] by using an output-dependent time-

scaling transformation such that

at

3 = oly) with a(y) > 0. (5.0.1)

More precisely, their works have studied the problem of transforming the single

97 -':I'-\._i = ::' 1..5
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output nonlinear system (3.3.1)) into an output-dependent NOCF,

i=A(y) +aly), z€R?

(5.0.2)
y=0Cz, y € R,
where
O Ay) o
A(y) - o 0 nxnv A(y) - O‘(y)In—la
C=1[10 " 0ixn, a(y) = lar(y) -~ an(y)]”,

via a change of coordinates with the output-dependent time-scaling transforma-
tion a(y) defined by . In particular, a complete algorithm to solve the
problem together with an output transformation (y. = ¢(y) = Cz) was developed
[Gua05], and the problem was extended to multi-output nonlinear systems by us-
ing a multiple output-dependent time-scaling transformation [WL10]. As regards
the output-dependent NOCF , another attempt was made in [ZBB07|. The
authors of [ZBB07| proposed a modified output-dependent NOCF such that, in

the equation ([5.0.2]),

A(y) = diag(aa(y), - .., an(y)),

with a;(y) # 0 for 2 < i < n, and addressed the problem of transforming the
single output system into the output-dependent NOCF via just a coordi-
nate transformation without the output-dependent time-scaling transformation.
They developed a complete algorithm to design «;(y)’s and a coordinate trans-
formation z = ®(z) for the problem. Recently, by combining the concepts of
output-dependent NOCF and RDOEL, the authors of [TBZ13| introduced an
output-dependent GNOCF (i.e. A = A(y) in the GNOCF (3.5.3))) and provided
a sufficient condition for the problem of transforming the single output system
(3.3.1)) into the proposed output-dependent GNOCF with the aid of an auxiliary
dynamics such as .

In this chapter, inspired by the above previous works, we introduce a new

2] 2] &
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NOCEF called extended nonlinear observer canonical form (ENOCF), of which
both linear and output injection parts depend on the system output and the state
of auxiliary state, and then investigate the problem of transforming a class of
single output nonlinear systems into the proposed ENOCF with the aid of auxil-
iary dynamics. In actual fact, the problem is a natural extension of the RDOEL
problem for single output systems and the work [TBZ13]. Most of this chapter is
based on [CYS14al.

5.1 Problem Statement
Consider a single output nonlinear system given by

‘Szf(g)a gERny
y = h(§), y €R,

(5.1.1)

where ¢ is the system state, y is the system output, f(§) is a smooth vector field,
and h(&) is a smooth real-valued function. For the above system, we append an

auxiliary dynamics such that

p1(n,y)
i =p(n,y) = : ,  meRY (5.1.2)

pd(nv y)

where n = [ ---ng]7 is the auxiliary state and p(n,y) is a smooth vector field.
After that, on a neighborhood U x V' C R? x R™ of an initial state (1(0),£(0)), we
consider a coordinate transformation ® : U x V' — R% x R", (n,£) = (w, 2) with
w = 7, which is a diffeomorphism onto its image, and an output transformation

Ye = q(n,y) such that z = (Il o ®)(n, &) and y. = q(n,y) transform the extended
system consisting of the given system ({5.1.1)) and the auxiliary dynamics ([5.1.2)),

¥

(7,9) ]
G

:F(ny):[p (513)

y = h(¢),
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into a system of the following form (called extended nonlinear observer canonical

form (ENOCF)):

2= A, y)z+a(n,y), zeR"

(5.1.4)
Ye = q(n,y) = Cz, Ye € R,
where z = [21 --- z,|T, I1: R x R® — R" is a projection such that II(w, z) = z,
O A(n,y)
A(n,y) = :
O O nxn

A(n,y) = diag(az(n,y), ..., an(n,y)),
C=[10 - Oixn,

a(n,y) = lar(n,y) - an(ny)]",

with a;(n,y) # 0 for 2 <i <nand all (n,y) € U x h(V).

If (n,y) is bounded and there exist such transformations ® and ¢, then we
can design a high-gain observer (including the auxiliary dynamics ((5.1.2])) by the
method in [BFHI8] as follows:

n=pny),
2=AMn,y)z+aln,y) — A (n,y)S, ' CT(C2 - ye),

(5.1.5)
Ye = q(1,Y),

where A(n,y) = diag(1l,a2(n,y),...,[[i=s @i(n,y)), and Sp is a solution of the

algebraic Lyapunov equation,
0Sy + AL Sy + SyA, — CTC =0,

with

O In—l
0O O

A, =

nxn
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By the result of [BFH9§|, a well-chosen 6 governs the exponential stability of the

observer error dynamics,
éz = (A(777 y) - A(n’ y)S;10T0)627

where e, := Z — z. In this respect, we deal with the problem of transforming
the extended system ([5.1.3)) into the system composed of the auxiliary dynamics
(5.1.3) intact and the ENOCF (5.1.4)), as a new method to design observers for a

class of single output nonlinear systems.

Definition 5.1.1. We say that the ENOCF problem is solved for the system
(5.1.1) via the auxiliary dynamics (5.1.2)) if there exist a coordinate transforma-
tion ®(n, ) and an output transformation ¢(n,y) transforming the extended sys-
tem into the system composed of the auxiliary dynamics and the
ENOCF (5.1.4). O

Remark 5.1.1. Since z; = y,, the output transformation ¢(n,y) is a part of the
coordinate transformation ®(n,£). That is to say, it holds that y. = ¢q(n,y) =

q(n, h(§)) = 1. O

Remark 5.1.2. The ENOCF problem is a natural extension of the RDOEL
problem for single output systems in the sense that they are identical when
az(n,y) = -+ = an(n,y) = 1. The difference is that the (n — 1) number of
functions a;’s can be designed in the ENOCF problem. In actual fact, the dif-
ference makes it possible to solve the ENOCF problem for a class of systems to

which the RDOEL problem is not solvable. We will illustrate it by an example in
Section 5.4 O

Remark 5.1.3. In the case when A(n,y) = A(y) and d = 1 (dimension of the
auxiliary dynamics (5.1.2))), a sufficient condition for the ENOCF problem to
be solved was already given in [TBZ13|. Actually, our research is motivated by
the work. However, an equivalent condition has not been found even for the
case. Furthermore, a lot of works dealing with dynamic extension of OEL (such
as DOEL or RDOEL) have considered high-order auxiliary dynamics even for
the case of single output systems (e.g. [BB11 BYS06, YBS07, YBS11l [YBSS10,

2] -] 8} 3

'Iu
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YYS12]) because it may allow us to solve the problems for a larger class of systems.
In these regards, our objective is to derive a necessary and sufficient condition for

the ENOCF problem in the case where A(n,y) and the general auxiliary dynamics

(5.1.2)) are considered. O

5.2 Necessary Conditions

In this section, we provide two necessary conditions. One is a condition on the
output transformation ¢(n,y) and the observability of the given system .
The other is concerned with the observable form of the system , similarly
to the RDOEL problem.

5.2.1 Output Transformation and Observability

The following theorem gives the first necessary condition for the ENOCF problem

to be solved.

Theorem 5.2.1. If the ENOCF problem is solved for the system (5.1.1]) via the
auxiliary dynamics ([5.1.2)), then both the following conditions are satisfied:

(a) the output transformation y. = q(n, h()) satisfies that

dq(n, h(§))

oh #0 for all (n,&) e U x V, (5.2.1)

(b) the system (5.1.1)) is locally observable at £(0), i.e., it satisfies the observ-

ability rank condition,

rank(span{d[lfﬁlh(ﬁ) :1<k<n})=n forall £ € V, (5.2.2)

where U x V C R% x R™ is a neighborhood of (1(0), £(0)).

Proof. When x = [ --- z,]7, we denote dz := [dz; --- dx,]” for convenience.
Suppose that the ENOCF problem is solved for the system (5.1.1)) via the auxiliary

dynamics (5.1.2). Then, there exist a coordinate transformation [w? 27]T =

2] -] 8} 3

'Iu
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®(n, &) = [P1(n, &) --- <I>d+n(77,§)]T and an output transformation y. = ¢(n,y)
such that

w; = ‘1)1(7775) =,
21 = Pgy1(n,€) = a(n, h(&)) = e, (5.2.3a)

zj = ®ayj(n,§) = M (»CF‘I)d—i-j—l(naf) —a;j-1(n, h(é))>, (5.2.3b)

for 1 <i<dand 2 < j<n. By the above equations, it holds that

dw; = dmn;, (5.2.4a)
d

dq 9q dq

dz; = —d —dh = —=dh d (dn,...,d 5.2.4b

21 I; e Mk + oh oh mod (dny, ..., dna), ( )
1 1

de = (['Fzzj—l — aj_l)d— + f(dﬁFsz_l — daj_l), (5.2.4C)
7 7

for 1 <i <dand 2 < j <n. For the dz;’s (2 < j < n) in the last equation, we

claim that

dq i
dsz<H )(%dcf 'h mod (dny,... dng,dh,...,dC5%h).  (5.2.5)

The proof of the claim is by induction on j starting from j = 2. If j = 2, then it

follows from ((5.2.4b|) and (5.2.4¢|) that

1 1
dzg = —a)d———— + —(d — day(n, h
29 (,szzl (11) Ozg(’f],h) +a2( »CFzzl al("?’ ))
19
= = %M4reh mod (dip,...,dng,dh).
s Oh

Therefore, the equation (5.2.5) holds when j = 2. Suppose that 3 < j < n and
the equation ([5.2.5)) holds for j — 1, i.e.,

7j—1

ok} i
dzj_1 = (H )%dﬁ b mod (dn, ... dng,dh,...,dCE5R).  (5.2.6)
k=2

Then, by the equation (5.2.4c]) and the induction hypothesis (5.2.6)), it is easy to
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see that
dzj = (Lp zj—1 —aj—1)d ! —i—i(dﬁ zj—1 —daj—1(n, h))
j = \kF55-1 Jj—1 a;(mh) " a F.<j-1 =111,
_ 1 = 9q | i1 -2
:%(U%)ahch h mod (dny, ..., dyg dh, ... AL 2h).

Consequently, the equation ([5.2.5)) also holds for j, and thus it is concluded that

the claim is true.

Since h does not depend on 7, it holds that £%h(¢) = £feh(§) for any non-
negative integer k. Moreover, the 1-forms dh, ... ,dﬁ?_lh can be represented as

linear combinations of d¢i,...,d¢&,. Therefore, we obtain from ([5.2.4a)), (5.2.4bj)
and ((5.2.5)) that

_ an -
dw . Id 0 dh
dz * Rnxn .
5.2.7
I dﬁ}“lh | ( )
[ o l[L o dn
*  Rpxn L O Spxn dé ’
where
" -
8—Z 0 0
« Qa1 -
R = Oh az , (5.2.8)
* * 0
dq n 1
R 11

which is a lower-triangular matrix of which diagonal entries are 99 g1
Oh’ Oh az’ ’

and % [Tis aik in sequence. Since @ is a diffeomorphism from a neighborhood
U x V of (n(0),£(0)) onto its image, both the matrices R and M are nonsingular
on U x V. Therefore, W # 0 for all (n,§) € U x V and the 1-forms
dh,... ,dﬁ?_lh are linearly independent on V. Hence, the given system

satisfies the observability rank condition ([5.2.2]). O
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By Theorem we assume the observability rank condition (5.2.2)) of the
system (5.1.1). Then, as mentioned before, the system can be expressed on a
neighborhood of £(0) as the following observable form:

T = x2,
Bl = T, (5.2.9)
En = fo(2),
Yy =,
where z; = £§F1h(§) forl1<i<n o=z - 2]l €W, f: W > Risa

smooth function, and W C R™ is a neighborhood of x(0). For convenience, we

write & = f(z) and y = h(z) = x1. Then, the extended system ([5.1.3) is also

written as
g o ::[p(n,wl)r
[ z ] ) f(@) (5.2.10)

y = h(x) = 1.

Henceforth, without loss of generality, we regard the original system (5.1.1]) and
the extended system (/5.1.3)) as the observable form (5.2.9)) and the system (5.2.10)),

respectively.

5.2.2 System Dynamics

By Theorem [3.2.4] and Theorem [£.2.7] a necessary condition of both OEL and
RDOEL for single output systems is that f,(z) in the observable form
should be a certain polynomial of weighted degree n, which is defined in Definition
[3:2.2] In this subsection, we show that the condition is also a necessary condition
for the ENOCF problem. Since we deal with the problem for the single output
system , in order to prevent confusion, we modify Definition to fit it

to the case of single output systems.

Definition 5.2.1. For the extended system ([5.2.10)), we denote by Pse(z) (re-
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spectively, Ps(z)) the ring of polynomials in xg, ..., z, with coefficients that are
smooth real-valued functions of n and z; (respectively, z1 only). The weighted
degree of a monomial ¢(n, z1)x52 - - - ¥ is defined as Yo o(i—1)k;. The weighted
degree of a polynomial in Ps.(x) or Ps(x) is the highest weighted degree of any
term in the polynomial. We denote by P~ (z) (respectively, P¥(z)) the set of all
the polynomials in Ps.(x) (respectively, Ps(z)) of which weighted degree is less
than or equal to k. P2 (z) (respectively, P?(x)) represents the set of all smooth
real-valued functions of n and z1 (respectively, 1 only). In fact, the subscript ‘s’

means ‘single output case’. O

In a similar fashion to Proposition and Lemma we give a propo-
sition, a lemma, and its corollary as regards the partial derivatives and the Lie

derivatives of elements in P~ ().

Proposition 5.2.2. If ¢(n,2) € PL(z) for any nonnegative integer k, then it
holds that

0 i

T € Ph)

dp ] 0 ifj>k+1,

O « e PRIt gy i <k+1,
forl1<i<dand1<j<n. O

Lemma 5.2.3. For any 0 < k < n — 2 and ¢(n, z) € PE (), it holds that

£F¢(77’ l’) € P§e+1(m)’

where F' is the vector field of the extended system ([5.2.10)).

Proof. Let ¢ € P2,(x). Then, ¢ is a function of  and z1 only. Thus, it holds that

d

0= 2 g
i

=1

T2 € 7Dsle( )
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Therefore, the lemma is true when & = 0. Let ¢ € PE(2) and 1 < k < n — 2.
Then, ¢ is a polynomial of x;’s, where 2 < i < k+1 < n — 1, with coefficients
that are elements of PY,(x). For any c(n,z1) € P(x), we have Lpc = PL(x)
because the lemma is true when k = 0. Moreover, while z; € Pi~!(z), it holds
that Lrz; = 2441 € P;(x) for 2 < i <n — 1. By these facts and the Leibniz rule,
it is easy to see that Lr¢ € PEF(z). O

Corollary 5.2.4. For any 0 < k <n — 2 and ¢(n,r1) € P% (), it holds that
Ly € Puc(w),

where F' is the vector field of the extended system ([5.2.10]).
Proof. This corollary is a direct consequence from Lemma [5.2.3 O

The following theorem shows that the condition f,(z) € PI(z) is also a
necessary condition for the ENOCF problem.

Theorem 5.2.5. The ENOCF problem is solved for the system (5.2.9)) only if
fn(z) belongs to P (z).

Proof. Suppose that the ENOCF problem is solved for the system (5.2.9). Then,
there exist an auxiliary dynamics such as (5.1.2]) so that the extended system

(5.2.10)) can be transformed into the system composed of the auxiliary dynamics
(5.1.2)) intact and the ENOCF (5.1.4)). Let y. = ¢q(7n,y) be the output transforma-

tion. Then, z; = y. = q(n, z1). For 2 <1i < n, we claim that z; can be represented

as follows:

i—2

2= (Clei a4 i), (5.2.11)
§=0
where Cg, Dlj € Plo(z) for 0 < j <i— 2 and, in particular, CY = HZ:Q ole The

proof of the claim is by induction on ¢ starting from ¢ = 2. If 4 = 2, then it follows

from the equation (5.2.3bf) in the proof of Theorem that

1

— (L cx1) —ai(n,z)) = CYLrq+ DY,
i o (Lratnn) —an(ne1) ) = C8Lgq + D8

z9 =
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where

Thus, the equation (5.2.11f) is satisfied. Suppose that 3 < ¢ < n and ([5.2.11))
holds for 7 — 1, i.e.,

where Cij_l, Dg_l € Pge(x) for 0 <j <i—3and C’ZO_1 = HZ;E o%k Then, we also
obtain from the equation (|5.2.3b|) that

i—3
1 i pi—2—j j ,
A <£F<Z (C L g+ Di—l)) — Gi-1
7=0
i—3
_ 1 i . pim2-j i pi-1-j j
= LrCiy-Lp” q+Ci_Lp "q+LpD;_ ;) —ai
(673 =0
i—2 o ] ]
=Y (ciei"a+ D),
=0

where

‘ k=2
. 1 . .
)= —(LpCI | +C7 ) for1<j<i-3,
(&%)
: 1
Ci% = —LpCT,
%
D’(L) - Gl ’
a;

. 1 .
D)= —LpDI7|  for1<j<i-2
(67

By Lemma and the induction hypothesis, it is easy to see that C’ij ,Dg €
Pg(x) for 0 < j < i — 2. Therefore, the equation ([5.2.11)) also holds for i, and

thus the claim is true.
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Let us go back to the proof of Theorem By the ENOCF (j5.1.4)) and the
claim (5.2.11)), it holds that

n—2

an(n, 1) = 2, = EF(Z (C’%ﬁ’}*lqu + D%))
=0

n—2 n—2
= LpCY- L%+ C0Lhg + Lp(Z C’%E%_l_]q + Z D%)

j=1 =0
dq
0 —1
=C, L (87301”%2) + LK,
where
d n—2 ' ' n—2 '
B=chei (Y 8—’1 ¢) + LeCS - L3+ Lo (Y Chey Fa+ > Dj).
k=1 j=1 =0

By Lemma and Corollary we can observer that E € Pl (z). Since
= [li—s aik # 0 and 8%?1 # 0 by Theorem it follows from the above

equation that
fnlz) = 57}71»”52

1 oni2 n—1 n1-k( 94
CO 9q <a”_0”kzo k L <8x) Loy - >

naiﬂl

Since it holds that £% 1~ k<ax1) € PiF(2) and LAy = w94y € PLF(2) for
0 < k < n — 2, the right-hand side of the above equation belongs to P (z).
Therefore, f,(x) € P (z) because it does not depend on 7. O

NB: Henceforth, by Theorem we assume that the system (b.1.1)) satisfies
the condition f,(z) € PI(z) in its observable form ([5.2.9)).

5.3 Necessary and Sufficient Condition

In the RDOEL problem studied in the previous chapter, the condition, f;(x) €
Pri(x) for 1 < i < m, plays an important role in proving Theorem which

states a geometric necessary and sufficient condition. In this section, by means of
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the condition f,(z) € P (z), we also derive a geometric necessary and sufficient

condition for the ENOCF problem.

Theorem 5.3.1. The ENOCF problem is solved for the system ([5.2.9)) via the
auxiliary dynamics ((5.1.2)) if and only if there exist n functions ¢(n, x1), aa(n, 1),
<oy an(n, 1) € P2 (x) such that both the following conditions are satisfied:

(E1) é(n,z1) #0, as(n,x1) #0, ..., an(n,x1) # 0 for all (n,z1) € U x h(W).
(E2) [X;, Xj]=00onUxW fori,j=1,...,n,

where X1, ..., X,, are vector fields defined by

0
Xn i=¢p—o,
¢8a¢n
1
Xi = [Xi+17 F] fOI‘lSiSn—l,
Qi1
and U x W C R? x R™ is a neighborhood of (1(0), z(0)). O

Proof. When ¢ = [¢1 --- )7, d¢:=[d¢y --- d¢u])” and 6% = [3%1 %]
(Proof of Necessity): Suppose that the ENOCF problem is solved for the

system ((5.2.9)) via the auxiliary dynamics (5.1.2)). Then, there exist the (n — 1)
functions aa(n,x1), ..., an(n,z1) satisfying the condition (E1) by the ENOCF

(5.1.4). Furthermore, it follows from ({5.2.7)) in the proof of Theorem that

-

where the matrix R is given by the equation (/5.2.8)). Due to the lower-triangularity

I; O
x R!

dw
N, ] , (5.3.1)

of R, dzy can be represented as a linear combination of dwyq, ..., dwy, and dz;
only. Thus, there exists a function §(w,z1) such that y = z1 = ¢(w, z1). As a
result, the vector field F' of the extended system ([5.2.10f) can be expressed in the

(w, z)-coordinates as follows:

d n—1
. N _ o 0
F = Zpk(w, Zl)% + Z (aiﬂ(w, Zl)zi—i-l + ai(w, Zl)> a + an(w, Zl)iazn,

k=1 i=1 v
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where

ﬁk(w,zl) = pk‘(w7q(w7zl)) = pk(n7y) fOI’ 1 S k S d7
Qi1 (w, 21) = aipr(w, §(w, 21)) = a1 (n,y)  for 1 <i<n-—1,

ai(w, z1) = a;(w, ¢(w, 21)) = a;(n,y) for 1 <i<n.

Therefore, a straightforward calculation gives

1 0 0
F|=— for1<i:<n-—1. 3.2
- [3Zi+1’ ] o7, or1<i<n (5.3.2)

By the equation ([5.3.1)) and the duality between 1-forms and vector fields, it holds
that

(5.3.3)

Let ¢ := (1 /8351) [Tr_, cx which is the n-th diagonal entry of R™!. Since %’fl) #*
0 for all (n,z1) € U x h(W) by Theorem the function ¢ is well defined on
U x h(W) and satisfies the condition (E1). Moreover, by the lower-triangularity
of R and the equations ([5.3.2)) and (5.3.3)), it is easy to see that

Nlsd 0
ox, Oz,
1 0 )
X = [(Xi, F| = — for1<i<mn-1
Qg1 0z;

Therefore, the condition (E2) is clearly satisfied.
(Proof of Sufficiency): Suppose that there exist n functions ¢(n, x1), as(n, 1),
., an(n, 1) € PL(x) satisfying the conditions (E1) and (E2). For 1 <i <n—1,

we claim that X; can be represented as

X; = Z ¢l — &U (5.3.4)

where qﬁg e Pl (z) and, in particular, ¢! = ¢ [, i1 an . The proof of the claim
is by induction on 7 starting from n — 1. The vector field F' of the system ([5.2.10))

1||

1Ry
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can be written as

0

d n—1
0 0
F= g_lpk(mxl)aﬂk + 1;_1 $k+173$k + fn(l‘)iax

n

Thus, it holds that

Xn-1 = an[X"’ Fl= : [‘bain F}
o  9fn 0 ~ 06 09
- ozln<¢(8xn_1 + 8£n 8xn) <z; 87 8m1> 8xn>
n—1 9 9

n—1 axn—l + ¢n 1aCCn

where

1
On1 = O € Pee(@),

(5 S ) <P

Therefore, the equation (5.3.4]) holds when i = n — 1. Suppose that 1 <i <n—2
and (5.3.4]) holds for i + 1, i.e.,

H—l Z (bz—l-l 8.I

Jj=i+1

where gij € Pi""}(x) and, in particular, gbiii = o [lhiso ar- Then, it follows

from the above induction hypothesis that

X = —[Xiy1, F] = ‘ Z < g‘1'1(3;1;]-1—’_8:1:] 3:En>

Q41 Qi1 .

j=i+1
] ] 01\ 0
(ZP +1+Z k1 aH fn 8x:1)amj>'
a¢?

Since ¢J+1 € P !(x) by the induction hypothesis, it holds that ot =0 and

A L) ¢
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004,

D = 0 for k > j — i. Therefore, the above equation can be rewritten as

R 0 Ofn
Xi B O41 ':zz;l < g+1<8xj_1 t o, 89:] 81‘n>

d a¢z j—i 8¢i 9
(Zp +1+Z Th+1 837:1)%)

— 1 < H—l 0
a1\ O j=i+2 ZHG% 1
- j afn 0 d z = 8¢z
3 (g g (X +Z )
Jj=i+1 k=1
_ 1 % 0 +1 z 1 s 8¢z 1
B ai+1< ’ﬂax +g;1 <¢i+1 _; : Z S ) oz
n - 3 d Z ' 9
"‘(Z ¢?+18£j—z i Z k+1 H)axn)
j=i+1 k=1

Qi k=i+1
J . J+1 . 8<;5Z+1 — 8¢J+1 j—i )
qﬁi.:aZH(Hl Z Pp—— Z Tht1 )GPse () for2<j<mn-—1,
d n—i
0 8¢’L+1 a¢?+1 n—i
¢i T i1 (];Fl(bz—l-l ax ; k= 87] ;karl ory, ) e,Pse (:C)

Hence, the equation (|5 also holds for 4, and the claim is true. As a result, it
follows from X, := gbm and the claim ) that

[ x Xn]:[a% 2L (5.3.5)
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where
D -
o 11 ar 0 0
k=2
S
. 0
* * @

Since the matrix L is a lower-triangular matrix and the condition (E'1) is satisfied,
L is nonsingular at (7(0),z(0)). Therefore, the n vector fields Xy, ..
linearly independent at (1(0),z(0)). By this fact, (E2), Theorem (Simulta-
neous Rectification Theorem), and Corollary there exists a coordinate chart
(U x W, (w,2)), where U x W C R? x R" is a neighborhood of (1(0), z(0)), such
that

., X, are

In addition, since both (n,z) and (w, z) are coordinate maps on U x W, the rest
d vector fields %, e 8%5‘1 can be represented as
M

9 _ [2 2] ™. (5.3.7)

Ow on Ox Nyxd
Therefore, it follows from the equations (5.3.5))-(5.3.7]) that

M O
[8% a@}:[{% aﬂ[NL]_ (5.3.8)

Trivially, both the M and L are nonsingular on U x W. Thus, by the duality
between vector fields and 1-forms, it holds that

do | M1

dz —L'NM™! '

O
L—l

dn
dzx
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Let w = 7. Then, dw = dn and thus we obtain from the above equation that

dw B 1 O
dz —L'NM- oL

Since L' is nonsingular at (n(0),z(0)), the (d + n) differential forms dwy, ...,

dx

dr ] . (5.3.9)

dwyg, dz1, ..., dz, are linearly independent at (1(0),z(0)). This implies that (w, z)
with w = 7 is also a coordinate map on a neighborhood U, x W, C R% x R™ of
(n(0),2(0)), and thus there exists a coordinate transformation ® : U, x W, —
RA*™ (n,z) = (w,z) = (n,2). In particular, due to the lower-triangularity of
L', dz is a linear combination of d7, ..., dng, and dz; only. Therefore, there
exists an output transformation such that y. = z1 = q(n,z1) = q(n, y). Similarly,

there also exists a function such that y = z1 = §(w, 21).

Finally, let us identify the vector field F' of the extended system
in the (w,z)-coordinates. Let F, = Zk leaw + 2 1Fd+ja denote the
representation of F' in the (w, z)-coordinates. Trivially, F = wy = pk(n y) for
1 <k < dbecause w =1n. For 1 <i¢ < n—1, by the equation and the
definition X; := Xi+1, F], it holds that

o |

0 1{8

0z; Qi1

3Zi+1
B OFy, 0Fy.
N 11 (Z 0211 ka Z 8zz+1j 8,2]>

Hence, for 1 <i<n—1and 1 < j <n, we have

OFyy;
—— = @41 - 0.
82i+1 1+1 iJ
When 1 < j < n — 1, the above equation implies that 8zd+J = aj1(n,y) =

ajy1(w,¢(w,z1)) and Fyi; depends only on w, 21, and zj11. Therefore, Fy ; =
ajr1(n,y)zje1 + aj(w,z1) for 1 < j < n — 1. Similarly, Fyi,, = an(w,21). Let
a;j(n,y) == a;(n,q(n,y)) = aj(w,z1) for 1 < j < n. Then, one can observe that

F, is equal to the vector field of the system composed of the auxiliary dynamics

(5.1.2) and the ENOCF (5.1.4). 0
A = T

‘.l ] T_III
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Remark 5.3.1. As mentioned in Remark[5.1.2] the ENOCF problem is a natural
extension of the RDOEL problem for single output systems, in the sense that they
are identical when ag(n,z1) = -+ = ap(n, 1) = 1. Therefore, the existence of
¢(n, z1), which satisfies (E1) and (E2) in Theorem [5.3.1] when as(n,z1) = -+ =
an(n,x1) = 1, is a necessary and sufficient condition of the RDOEL problem for
single output systems. As shown in the proof of Theorem if there exits such
a function ¢, then it holds that ¢ = (1/86—;1) [y ar = 1/88—;1. Therefore, one can
observe that the statement of Theorem [5.3.1| with aa(n, z1) =+ = an(n,z1) =1
is exactly same to Theorem [3.5.1] which states a necessary and sufficient condition

of the RDOEL problem for single output systems. O

Finally, we explain how to check the solvability of the ENOCF problem and
to design an explicit coordinate transformation by using the results presented in
this chapter. It is quite similar to the procedure described in Subsection [£.3.3]
First of all, by Theorem and Theorem check the observability rank
condition of the given system and the condition f,(x) € PI(zx)
in its observable form (5.2.9)). If they are satisfied, then we choose an auxiliary
dynamics such as . After that, according to Theoremm set X, := qb%
with ¢ € P2 (x) and calculate X; =

from i =n —1 toi = 1. Since F is known, (E2) gives some partial differential

m[Xier F) with a1 € P () successively
equations of ¢ and a;11’s for 1 < i < n — 1. If there exists a set of solutions of
the equations subject to the conditions given in (E1), then the ENOCF problem
is solvable by Theorem . In addition, from the solutions, we can determine
all the entries of L (defined by (5.3.5)) as functions of n and z. Since (E1) implies
that L is nonsingular, L ™! exists. Finally, it follows from that % =Lt

and thus we can construct an explicit z-coordinates by solving the equation.

Remark 5.3.2. For a given system, if there exists an auxiliary dynamics with
which the ENOCF problem is solvable, then it is theoretically possible to design
such an auxiliary dynamics by the same manner explained in Remark [£.3.3] but
in practice it is very hard due to the same reason. Although we have not yet
developed an algorithm to design it, we present a basic principle of selecting it:
it should be input-to-state stable (ISS) in the sense that 1 is bounded for every
bounded vy, in order to use the high-gain observer design method [BFH9S]. U

2] -] 8} 3
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5.4 Case Study: Rossler System into ENOCF

As an application of our theoretical results, we transform the Rdssler system
[R6s76] into the proposed ENOCF via a stable linear auxiliary dynamics, and
then design an observer by using the high-gain observer design approach [BEH9S].

The Rossler system is a chaotic oscillator whose dynamics is given by

& =—(&+&),
& =& +aly, (5.4.1)
€3 = ca + &(& — c3),

where ¢, c2, and cg are positive constant parameters (the original values selected
in [R6s76] are 0.2, 0.2, and 5.7, respectively). Figures illustrate varied
behaviors over changing the parameters, sensitivity to initial states, and density
of periodic orbits of the Rossler system, which are typical properties of chaotic
dynamics. Owing to the chaotic properties, the Rossler system has been widely

used in secure communication (e.g. see [LH99, [NM97| and references therein).

For the Rossler system (5.4.1), we define the system output y = h(§) := &
where & = [¢1 & &]7. Then, it holds that

dh(§) = d&,
dﬁfh(f) = d& + c1dé,
dL3A(E) = crdéy + (cf — 1)d&e — dés,

where f denotes the vector field of the system ([5.4.1)). Therefore, the system
(5.4.1) with the system output y = & satisfies the observability rank condition,

and thus it can be expressed as the following observable form:

.ji'l = T2,
j:2 = I3,

, (5.4.2)
i3 = f3(z) = g1(x1) + g2(z1)22 — 125 + (93(71) + 72)73,

Yy =,
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@ (b)

Figure 5.1: Variation in behaviors resulting from change of ¢;: state trajec-
tories starting from (0,0,0) over ¢ € [0,150] of the Rossler sys-
tem with (a) ¢; = 0.1, (b) c1 = 0.2, (¢) ¢ = 0.3, (d) ¢1 = 0.4,
respectively, co = 0.2, and ¢z = 5.7
@ (b)

Figure 5.2: Sensitivity to initial states: state trajectories starting from (a)
(0,0,0) and (b) (-0.001,0,0) over ¢ € [0, 150] of the Rossler system
with (c1,c2,c3) = (0.2, 0.2, 5.7)
@ (b)

Figure 5.3: Density of periodic orbits: state trajectories starting from (0, 0,0
over t € [0,1500] of the Rossler system with (a) (c1,c2,c3) =
(0.2,0.2,5.7) and (b) (c1,c2,c3) = (0.3,0.2,5.7)
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where x; = £jeh(§) fori=1,2,3, x = [x1 x2 x3]7, and g;(x1)’s are defined by

g1(x1) = —clx% — c371 — C3,
g2(x1) = (c% + 1)zy + (cre3 — 1),

g3(z1) == —c1x1 + (1 — ¢3).

One can observe that f3(x) € P3(x). To the system (5.4.2), we append the

following auxiliary dynamics:

n=-n+uy, (5.4.3)

which is a stable linear system and also is an input-to-state stable (ISS) system
when we regard the system output y as the input of the auxiliary dynamics. Then,

the vector field F of the extended system, which consists of the observable form

(5.4.2)) and the auxiliary dynamics (5.4.3)), is represented as

0 0 0

By Theorem [5.3.1] we set

0
X =o¢p—
3 8$3 )

where ¢(n, 1) € P (x). For simple calculation, we denote S3;(n,x1) := m
for ¢ = 2,3. Then, we can obtain Xs and X; from straightforward computation

such that

1

X2 = 0[3[X3’ F]
_ 9 L 0fs 9N 9 99\ 9
—53(¢(ax2 +8x3 6x3) (( 77"1'?5’1)817 +x28x1>8x3>
0 0 0 0
= 53@58702 + 53(93¢+ (n— 361)8(:; + (¢ — 892):62)63;3
0 0
:¢%8TC2+¢§8TC3,
X1 = —[Xy, F]
a2
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) o o o of;
/82 <¢2 (8$1 8562 8953) + ¢2 <8$2 * s 81‘3 a$3>
062 & 0¢d 0 063 0 09} 0 g3 0
Ho=an) (2 oy 0zs | on ax3> 72 (8561 Drs | Om) 6:33) 8 B O3

0 0 0
= g+ (68 + - e 5ot = 0000, 0

op3  0d3 0 0
+ B2 (¢%(92 —2c122 +a3) + ¢3(g3 +x2) + (1 —931);;72 - 52%2 aii >87933

_ 10 2
_¢187$1+¢18 (blal’g
where
95 = P39,

0 0
0= Ba(mo+ (1= 00 + (0 50 o)
¢1 = a3,

dp3  O0d3
0= a(04+ (=2 52— T2,

3 003 0

¢} = o (¢%(92 — 2012 + 3) + G5 (g3 + 22) + (1 — ml)a;:f — ;zj@ — 52;;53)

One can observe that gbf € ngi(x) fori=1,2andi<j <3.

The objective is to find ¢(n, z1), aa(n, 1), and as(n, x1) satisfying both (E1)
and (E2) in Theorem [5.3.1} Then, we can construct a change of coordinates that
transforms the extended system into ENOCF. By straightforward calculation, it
holds that

[X37 XQ] = O

B 8¢3 o) 9 3(;53 0¢
(X3, Xi] = <¢ Ep — ¢ 0x1>6m3 ¢(b2¢2 52072 - b3b28

_2(001 0 01 0\ 5040 O
(X2, Xa] = ¢2 (83:2 Ory  Oxa 8x3> 2013 O3
— ! (8¢2 d¢3 9 > 28¢3 9
! 8%1 8%2 8%1 8:63 83:2 8x3

_ 2 8¢% 1 a¢2 2 a¢3 3 8¢3 1 8¢2 2 8¢3

>6x3 =0,

A L) ¢
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From the last equation, [X3, X;] = 0 if and only if both the following partial

differential equations hold:

23¢2 1003 _
23¢3 53¢3 1003 5003 _
B + o5 - ol G - ot = (5:4.5)

If ag(n, z1) = ag(n,z1) = 1, then the first equation (5.4.4) is rewritten as

1093

3¢2
2
¢ 1. 817

=0.

4 )

—6(o-3
Since it should be satisfied that ¢ # 0 by (E1), we have

dp 1
oz, 3%

Then, the second equation (|5.4.5) becomes

326 | g0 100t _ 00
Bk oyt - gl SR — 0
w 2 1
= ¢(*¢ -5 209+ §¢932) + (v + §¢$2)§¢
0
- ¢(i +50m3) — (20— 936+ 3032) 30

= ¢<(3¢ - 261551 + (§93 - 201)¢) + ;qﬁwz) =0,

where

9
1= gsd + (n — xl)af; € PO (a).

Hence, the equation ({5.4.5)) holds if and only if

Qb( 1/1— i+(393—201)¢):0 and §(¢)2:0.

However, the latter is a contradiction to (E1). Therefore, there does not exist
any ¢ € PY (x) such that ¢ # 0 and the partial differential equations (5.4.4]) and
(5.4.5)) are satisfied when aa(n, x1) = a3(n,z1) = 1. This implies that the RDOEL

A 2- 1_'_“ r
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problem is not solvable for the system ([5.4.2)) via the auxiliary dynamics (5.4.3]).

However, we can find a set of non-vanishing solutions of the partial differential

equations (5.4.4) and (5.4.5)) such that

(n—=7)

o(n,z1) =1, as(n, 1) = 1, asg(n,z1)=e 2 . (5.4.6)

From the above solutions, we can determine all the entries of the matrix L (defined

by (5.3.5])) as functions of n and z, and it follows from (/5.3.9) that
0z

ey St
ox
n—xj
e 2 0 0
= (63—01—1—3—}—(01—%)961—%)en_;l ez 0
1—cics3 — (2 + 1)1 + 120 c3—c1+ecixry—xo 1

By solving the above equation, we can construct z-coordinates and an output

transformation such that

2 _2677—211
zy | = (20 —c1 —e3) —n+ (1 —2c1)z1 + 332)6%901 =: ®.(n, ),
2 2
23 (1 —cre3)xy — 1—561 22 + (c3 —c1 + c1w1) T2 — % + x3
n—y

Ye = q(n,y) := —2e 2 = 2.

As a result, on the (7, z)-coordinates, the extended system is represented as

0 1 O (11(77,?/)
=100 &2 |z+ | ax(ny) | =AM y)z+a(n,2), (5.4.7)
00 0 az(n,y)

Ye=q(n,y)=[100] z=Cx,

where

ar(n,y) :2(01+C3_1+77+(C3_1)y>€ 7,
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-8 I I I I I I I I I
0 0.5 1 15 2 25 3 35 4 4.5 5
t

Figure 5.4: Simulation result: observer error ej(t) := & (t) — &1(2)

az(n,y) = <(01 +c3+ g)ﬁ —(1+c+e3—ciez)y

2
C —
-+ D - (1—emy)e’™,

ag(n,y) = —C2 —C3Yy — Clyz'

Let (17 27]7 = B(5,€) := [T . (n, ®o(€)T]T, where ®,(€) = [h(€) Lsh(€)
E?h(f )]T that is the transformation from the Rossler system into its ob-
servable form . Then, ®(n,§) transforms the extended system, composed
of the Rossler system and the auxiliary dynamics , into the system
. In addition, since the Rossler system is an oscillator and the auxiliary
dynamics is an ISS system, (7, y) is bounded. Therefore, by using the high-gain
observer design method [BFH9S|, we can design an observer such as in
Section Actually, in the observer , it is not easy to obtain the inverse
coordinate transformation ®~!. However, by using the Jacobian of ® (=: Jg), we

can design a dynamic system, which is equivalent to the observer, such that

L p(ny)
;| = Ua) 5 -1 —L AT (15 ’
13 A, y)z2+a(m,y) — A (n,9)S, C*(C2 —ye)

Ye = Q(Uv y)a Z= ((I)Z o (I)w)<777£)
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0.8

0.6

0.4

0.2

I I I I I I I I
0.5 1 15 2 25 3 35 4 4.5 5

Figure 5.5: Simulation result: observer error es(t) := &2(t) — &2(t)

-10 I I I I I I I I I
0 0.5 1 15 2 25 3 3.5 4 4.5 5
t

Figure 5.6: Simulation result: observer error es(t) := &3(t) — &3(t)

In order to verify the performance of the observer, we carry out a simulation

using MATLAB, in the case when we set (¢1,c2,c3) = (0.2,0.2,5.7), § = 10,
£(0) = (4,—1,3), n(0) = 0, and £(0) = (0,0,0). Figures show that the

observer errors ej := él — &1, 60 1= 52 — &, and ez 1= é’g — &3 converge to zero.



Chapter 6

Conclusions

This chapter summarizes the results of this dissertation that have been addressed
so far, and presents some future directions for the research related to this work. In
the dissertation, we have dealt with two kinds of problems of designing observers

for nonlinear systems as listed below.

e The RDOEL problem for multi-output nonlinear systems
We have introduced the framework of reduced-order dynamic observer error
linearization (RDOEL) for multi-output nonlinear systems. The proposed
RDOEL problem is a modified version of the dynamic observer error lin-
earization (DOEL) problem, in the sense that it shares the same idea (of in-
troducing an auxiliary dynamics and a generalized output injection term in
a generalized nonlinear observer canonical form (GNOCF)) with the DOEL
problem. Although RDOEL is a special case of DOEL, RDOEL has an
advantage over DOEL such that it offers a lower-dimensional observer com-
pared with DOEL. Furthermore, the RDOEL problem is a natural extension
of the (conventional) observer error linearization (OEL) problem, because
RDOEL with no auxiliary dynamics is identical to OEL. For the RDOEL
problem, we have given three necessary conditions. Two of them can par-
tially identify the class of systems to which the problem is solvable, and the
other one presents a condition on output transformation in order for the
problem to be solved. Based on the necessary conditions, we have found a

geometric necessary and sufficient condition for the RDOEL problem with

125 A 2-th v
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the general auxiliary dynamics (17 = p(n,y)) and the general output trans-
formation (y. = q(n,y)). Furthermore, from the result, we also have de-
rived a necessary and sufficient condition for the OEL problem, which is,
for our best knowledge, the first geometric necessary and sufficient condition
for the OEL problem in the case under consideration of the general output
transformation (y. = q(y)). At last, by using the results, we have developed
a procedure to check the solvability and to design explicit coordinate and

output transformations for OEL and RDOEL.

e The ENOCF problem for single output nonlinear systems
The dissertation has introduced an extended nonlinear observer canonical
form (ENOCF) of which linear part also depends on the system output and
the state of auxiliary dynamics, and we have dealt with the problem (called
the ENOCF problem) of transforming a single output nonlinear system into
the ENOCEF via an auxiliary dynamics, as an extension of the RDOEL prob-
lem. We also provide two necessary conditions, and a geometric necessary
and sufficient condition for the ENOCF problem. And the results is applied
to the Rossler system to illustrate that the ENOCF problem can be solved

for a class of systems which are not covered by the RDOEL framework.

Some further issues for future research related to the topics of this dissertation

are listed as follows.

e The ENOCEF problem can be extended to multi-output systems, like we have
extended the concept of RDOEL to multi-output systems in the dissertation.

e In order to solve the OEL, RDOEL, and ENOCF problems completely, we
have to find an explicit coordinate transformation for them. Although the
procedure in Subsection explains how to do that, it is not a complete
algorithm yet. So, it may be a good topic of future research to investigate
a complete algorithm to design a coordinate transformation for the OEL,

RDOEL, and ENOCF problems by a straightforward manner.

e As similar as the above topic, although our results have been made under

consideration of auxiliary dynamics of general form, we have no idea yet

.__:Ix_c _'q.l.-._ 1_.-Ii "‘.ll_ T._III
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how we can design it for a given system. Therefore, it would be also a
further topic to construct an auxiliary dynamics in order for the problems

to be solvable for the given system.
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