

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사 학위논문

Execution Offloading Techniques to

Optimize Mobile Cloud Computing

모바일 클라우드 컴퓨팅 최적화를 위한

실행 오프로딩 기법

BY

양 승 준

2015 년 2 월

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

공학박사 학위논문

Execution Offloading Techniques to

Optimize Mobile Cloud Computing

모바일 클라우드 컴퓨팅 최적화를 위한

실행 오프로딩 기법

BY

양 승 준

2015 년 2 월

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Execution Offloading Techniques to

Optimize Mobile Cloud Computing

모바일 클라우드 컴퓨팅 최적화를 위한

실행 오프로딩 기법

지도교수 백 윤 흥

이 논문을 공학박사 학위논문으로 제출함

2014 년 11 월

서울대학교 대학원

전기 컴퓨터 공학부

양 승 준

양 승 준의 공학박사 학위논문을 인준함

2014 년 12 월

위 원 장 문수묵

부위원장 백윤흥

위 원 윤성로

위 원 정수환

위 원 김장우

Abstract

Smartphones and tablets are rapidly becoming the computing device of prefer-

ence in the global internet connected device market. Following the trend of the

time, the users spend more time on these smart mobile devices (SMDs) using

highly sophisticated applications, such as vision, graphics and augmented real-

ity. It is still challenging to deliver such complex applications on SMDs, however,

due to the key resource constraint like limited battery and low network band-

width. In order to tackle this problem, recent studies suggested mobile cloud

computing techniques that attempt to connect resource-constrained SMDs to

nearby resource-rich powerful clouds. These techniques often imply execution

offloading (or computation offloading), which is a promising technique to ef-

fectively deliver mobile cloud computing into the real-world mobile computing

environments.

The main purpose of execution offloading is to throw the computational

burden of SMD to the powerful servers by migrating a process or executing a

method remotely. To achieve this goal, the current application state is captured

and transferred to the servers over the network at runtime in execution offload-

ing. Expectedly, the state transfer cost for the application state is a deciding

factor for the success of execution offloading; because the size of the applica-

tion state may reach up to multi-megabytes at a time, reducing the transferred

state size is very important to maximize the benefit of execution offloading. In

this dissertation, I propose novel techniques based on compiler code analysis

that effectively reduce the state transfer cost by transferring only the essential

application state actually referenced in the servers.

i

Another observation for execution offloading is that the early offloading

studies depend on many idle assumptions. For example, they assume that the

performance of a target server is always idle and constant. In the real-world

commercial cloud environments, however, the cloud provider tries to maximize

the server throughput by running as many applications as possible on a single

server (i.e., oversubscription) and it makes such assumptions unrealistic. To

design more realistic offloading scheme for the real-world cloud environments,

therefore, it is necessary to consider the cost-effective behavior of the cloud plat-

form. In this dissertation, I introduce a new cost-effective execution offloading

scheme, called CMcloud, which not only maximizes the server throughput but

also satisfies the post-offload performance of all target applications.

One challenge in execution offloading is to design the application-specific

offloading techniques. Many mobile applications have their own, unique charac-

teristics and some of them may make the strategy of the existing studies fail. It

is important to adopt target-specific optimizations into offloading framework,

therefore, to improve further the performance of target applications via exe-

cution offloading. To show the opportunity to achieve this goal, I suggest a

streaming-based execution offloading framework that successfully guarantees

quality of service (QoS) of 3D video games. I further propose live offloading,

which allows transferring the current application state before the remote ex-

ecution of the offloaded application actually begins, to make the suggested

framework even more effective for better user experience.

Keywords: mobile cloud computing, execution offloading, code analysis, cloud

environment, application-specific optimization, 3D video game

Student Number: 2008-20913

ii

Contents

Abstract i

Chapter 1 Introduction 1

1.1 Execution Offloading for Mobile Cloud Computing 1

1.2 Techniques to Minimize State Transfer Costs 3

1.3 Cloud Platform for Cost-Effective Execution Offloading 4

1.4 Application-Specific Execution Offloading 6

Chapter 2 Techniques to Minimize State Transfer Costs for Ex-

ecution Offloading 8

2.1 Background: Reachable State Transfer 9

2.1.1 Overview of CloneCloud 9

2.1.2 Impact of State Package Size on Performance 11

2.2 Essential State Transfer . 16

2.2.1 Essential Heap Objects 17

2.2.2 Liveness of Essential Heap Objects 18

2.2.3 Dirty/Clean Essential Heap Objects 21

2.3 Partial Stack Transfer . 24

2.3.1 Motivation . 24

iii

2.3.2 Analysis for Partial Stack Transfer 28

2.4 Evaluation . 33

2.4.1 CPU and IO Benchmark 33

2.4.2 User Interactive Chess Game 36

2.4.3 Impact of Partial Stack Transfer 39

2.5 Discussion . 42

2.6 Related Work . 43

Chapter 3 Cloud Platform for Cost-Effective Execution Offload-

ing 46

3.1 Backgrounds and Limitations . 49

3.1.1 Basic Offload Mechanisms 49

3.1.2 Limitations of Existing Schemes 49

3.2 CMcloud Offloading . 52

3.2.1 Design Goals . 52

3.2.2 Operation Model . 52

3.2.3 Architecture Model . 55

3.3 CMcloud Mechanism . 57

3.3.1 Reference-model Server Profiling 57

3.3.2 Performance Estimation 58

3.3.3 Performance Monitoring 64

3.3.4 Migration . 65

3.3.5 Cost-aware Application Scheduling in Cloud 66

3.4 Evaluation . 67

3.4.1 Estimating Target CPU Performance 69

3.4.2 Cost Effectiveness with QoS Requirements 70

3.4.3 Offloading/migration Overhead 73

iv

3.5 Related Work . 74

Chapter 4 Application-Specific Execution Offloading for 3D Video

Games 76

4.1 Background and Motivation . 77

4.1.1 Background . 77

4.1.2 Motivation . 78

4.2 Application-Specific Execution Offloading 80

4.2.1 Offloading Framework for Reducing Data Transfer Cost . 80

4.2.2 Live Offloading to Guarantee QoS 83

4.3 Evaluation . 86

4.4 Related work . 89

Chapter 5 Conclusions 93

초록 102

감사의 글 104

v

List of Tables

Table 2.1 Ratio of RHO to total state package 13

Table 2.2 Execution time of each method in the execution scenarios 14

Table 2.3 Size comparison of RHO to EHO 16

Table 2.4 Comparison referenced frames to total frames 25

Table 2.5 Methods of the modified FBReader 34

Table 2.6 Evaluation result for another input size 36

Table 2.7 Energy consumption of the chess engine on two plays. . . 39

Table 2.8 Offloading scenarios for FBReader 40

Table 3.1 CPUs used for tests. 67

Table 3.2 Workloads (in i7-2600.) 68

Table 3.3 Offloading overheads. 73

vi

List of Figures

Figure 2.1 Migration overview of CloneCloud 10

Figure 2.2 An example of Reachable Heap Objects 12

Figure 2.3 Impact of state transfer costs on the decision of partitions 15

Figure 2.4 State transfer optimizer for execution offloading 18

Figure 2.5 Java code for an REM goo 19

Figure 2.6 Essential heap objects for the Java code 20

Figure 2.7 State restoration via state copy and on-site duplication . 23

Figure 2.8 An example of semantic inconsistency 26

Figure 2.9 Static call graph with ERSs 29

Figure 2.10 Static call graph with ERSs and IRSs 29

Figure 2.11 Partial stack transfer example 32

Figure 2.12 Average phone execution times and energy consump-

tions for FBReader, FIBONACCI sequence generator

and face detector with the largest input size 35

Figure 2.13 Average execution times of getNextMove for each dis-

tinct number of pieces left on the board. 37

Figure 2.14 Average phone execution times of the chess engine on

two plays. Time unit is second. 39

vii

Figure 2.15 Impact of partial stack transfer on the size of the trans-

ferred state. 41

Figure 3.1 Limitation of the existing mobile-cloud offloading schemes 50

Figure 3.2 CMcloud’s example operation model 53

Figure 3.3 CMcloud’s basic architecture model. 56

Figure 3.4 CMcloud’s performance estimation process using archi-

tecture performance modeling 59

Figure 3.5 An example reuse distance of four for A. 61

Figure 3.6 Performance monitoring. 65

Figure 3.7 Accuracy of the performance prediction. 69

Figure 3.8 Datacenter throughput (out of 500 requests.) 70

Figure 3.9 Datacenter utilization (out of 16 sockets.) 71

Figure 3.10 Per-socket cost effectiveness. 72

Figure 4.1 An example of the runtime offloading process. 78

Figure 4.2 A streaming-based offloading framework. 80

Figure 4.3 Code example for application developer. 82

Figure 4.4 An execution phase cycle of live offloading. 84

Figure 4.5 The performance result of two game plays with and with-

out execution offloading. 87

Figure 4.6 The energy consumption of the smartphone with execu-

tion offloading. 87

viii

Chapter 1

Introduction

1.1 Execution Offloading for Mobile Cloud Comput-

ing

Mobile applications are a steadily growing segment of the global software mar-

ket, whose revenue is expected to reach more than 25 billion dollars by 2015 [1].

As their processing capabilities increase, smartphones and tablets are rapidly

becoming the computing device of preference that can accommodate most up-

to-date mobile applications. Even so, it is still challenging to deliver highly

sophisticated applications these smart mobile devices (SMDs) due to the key

resource constraints like limited battery, poor processing power and low network

bandwidth.

To alleviate this problem, latest studies suggested various mobile cloud com-

puting techniques that attempt to connect resource-constrained mobile devices

to nearby resource-rich powerful clouds [2, 3, 4, 5]. The basic idea is to let

devices leverage computation and energy on cloud servers to execute (part of)

1

mobile code that requires heavy use of computing or network resources. People

believe that mobile cloud computing opens a new world where SMDs armed

with various network connections and rich sensors will extend dramatically its

functionalities with help of computational power of clouds. First of all, it seems

obvious that mobile cloud computing can accommodate a much wider range of

complex applications which have been impractical to run solely on SMDs, such

as perception applications, vision, graphics, healthcare, augmented reality and

m-learning [5, 6]. As another advantage, mobile cloud computing may relax the

design constraints of smartphone hardware which, due to the considerations

of size, costs and battery capacity, have been strictly imposed on hardware

features like CPU, storage and network [7].

To execute mobile code on the remote server such as the cloud or wall-

powered PCs, previous work has often employed a technique, called execution

offloading, which is the act of transferring execution (or process) between two

machines during its run time. By relieving computational loads, the technique

labors to bring SMDs benefits in terms of battery and execution time from

the servers in their proximity. In execution offloading, there are two key tasks

involved before remote execution: code partitioning and state migration. In re-

cent years, there has been a great deal of research conducted to find or sup-

port optimal partitioning of distributed systems with mobile devices. Some

researchers [8] proposed static partitioning approaches where the job assigned

to each machine in the system is fixed at compile time. Static partitioning ought

to be more doable if the computational resource configurations such as proces-

sor speed, memory capacity, energy consumption and network characteristics,

remain fairly constant once the process is launched. In mobile computing, how-

ever, the configurations can be changed due to user mobility even in the middle

of process execution. Therefore, mostly other works [2, 3, 6, 9] have been on the

2

development of dynamic or semi-dynamic partitioning approaches for execution

offloading.

1.2 Techniques to Minimize State Transfer Costs

In dynamic execution offloading approach, which code regions (e.g., methods or

functions) actually run on the server is decided at run time when the resource

configurations for execution become known. Once a certain region is finally

selected at run time, the current application state for execution needs to be

captured and migrated to the server along with the control command that

directs the resumption of the execution. In one approach [3], the entire state

including the existing stack and all reachable heap objects is migrated to offload

the full process. In the other one [2], the stack is not to be migrated as the

functions set to run remotely will be newly invoked in the server. Clearly, there

are trade-offs between these two approaches. Above all, the usual amount of

state transferred, which is a major decisive factor for the efficacy of execution

offloading over mobile networks, is smaller in the latter. In contrast, the former

approach relies little on users for code alteration, and supports more versatile

code execution because, with the full process in its hand, the server would be

able to control the execution more adaptively.

In ideal cases where the costs for transferring the application state can be

neglected, any code regions except for those using the device-only resources

like GPS and screens would benefit from remote execution. This is obvious

because the server processor speed is much faster, and virtually no energy of

the SMD would be consumed while they run on the server. In reality, however,

the state transfer costs may not be neglected but even be a dominant factor

that inhibits the regions from executing remotely. Expectedly, the state transfer

3

costs are roughly proportional to the size of the application state; because the

size of the application state may reach up to multi-megabytes at a time in

some approaches [3], reducing the transferred state size is very important to

maximize the benefit of execution offloading.

In this dissertation, I propose novel techniques based on compiler code anal-

ysis that effectively reduce the state transfer cost, and so help us offload more

code regions for lowering the total execution time or energy consumption. This

has been achieved by only transferring the essential heap objects, which are

defined to be the reachable objects that will be possibly accessed within the

remotely executing code regions. Moreover, I introduce partial stack transfer,

which is a technique for reducing the costs even more by transmitting only

the frames actually referenced in the cloud, rather than transferring the entire

stack. The experimental results seem promising; the state transfer costs are

reduced on average by a factor of ten. As a result, our mobile code was able

to be offloaded more aggressively at run time, attaining an overall speedup of

process execution up to seven.

1.3 Cloud Platform for Cost-Effective Execution Of-

floading

In order to focus on building the basic concepts of execution offloading, the

early offloading studies depend on many idle assumptions. For example, they

assume that a target server is always available for free of charge, the server’s

load is always idle or stable, the application has been previously profiled for

the target server, and the post-offload performance matches the user-expected

performance.

However, such assumptions are unrealistic for real-world commercial cloud

4

environments, where the cloud provider charges the users based on their cloud

resource usage and each server aims to run as many applications as possible

to maximize the server throughput or minimize the server costs (i.e., oversub-

scription). If a target server is running multiple applications, the pre-profiled

performance of the offloaded application will not match the actual post-offload

performance, which leads to a critical Quality-of-Service (QoS) failure. On the

other hand, if the cloud provider forces to maintain the initial profiling state of

servers (e.g., idle or static load) it fails to increase the server throughput, which

leads to the increased server costs and the user service fee.

The execution offloading approaches for the real-world commercial cloud,

therefore, have to maximize the server throughput and satisfy the post-offload

performance of all target applications at the same time. To achieve this goal,

I introduce CMcloud, a novel cost-effective execution offloading platform. The

key idea of CMcloud is to exploit a novel performance modeling methodology

for accurately estimating the post-offload performance of the target application

on any target server, regardless of its current utilization. Simultaneously, CM-

cloud allows to offload as many applications to each server as possible without

violating the target applications’ pre-profiled performance. If the target perfor-

mance cannot be achieved using the currently allocated server due to inaccurate

performance estimations, CMcloud performs fast inter-server live migrations to

achieve the target performance. In this way, CMcloud can offer to users its

QoS-guaranteed offload service at a very low price, while minimizing the cloud

operation costs.

5

1.4 Application-Specific Execution Offloading

The existing studies have shown that execution offloading can accommodate a

much wider range of complex applications, by improving the runtime perfor-

mance of these applications on SMDs with the powerful cloud or servers. There

are still many challenges in execution offloading, however, to improve further the

performance of mobile applications. One of those challenges is the application-

specific execution offloading. Because many mobile applications usually have

their own, unique characteristics which are closely related to their runtime per-

formance, it is important to adopt those characteristics into offloading scheme

to fully exploit the benefit of execution offloading.

To show the opportunity to achieve this goal, I propose a streaming-based

execution offloading framework that successfully guarantees quality of service

(QoS) of 3D video games. There are two reasons why I chose 3D video games as

the target application. First, 3D video games are one of the popular applications

extended to SMDs; mobile games are the fastest-growing segment of the video

game market, with revenue set to nearly double between 2013 and 2015 from

$13.2 billion to $22 billion dollars [10]. Second, 3D video games have a noticeable

characteristic which distinguishes them from other applications. Their major

and time-consuming functions, called rendering, continue to generate a lot of

images while the game is running and as a result, the state transfer cost of them

is quite huge. Such a high cost may make the existing offloading schemes avoid

to offloading those rendering functions, even though they take the majority of

the overall execution time of 3D video games and also requires powerful graphics

processing unit unit (GPU).

Based on streaming techniques, the offloading framework I propose enables

execution offloading for 3D video games by reducing the state transfer cost of

6

rendering functions. When the rendering functions are being offloaded continu-

ously, the generated images are streamed to the SMD and only the newly-update

application states like the user inputs are transferred to the server. As a result,

the proposed framework effectively offloads rendering functions and success-

fully guarantees QoS of 3D video games in terms of execution time. I further

introduce live offloading, which allows transferring the current application state

before the remote execution actually begins, to make the proposed framework

even more effective for better user experience. The manipulated application

state during the remote execution is also returned before the remote execution

is finished. With live offloading, the large data transfer cost at the beginning

and end of remote execution can be hidden; it prevents that such a large data

cost degrades user experience by enlarging response time.

7

Chapter 2

Techniques to Minimize State
Transfer Costs for Execution
Offloading

As mentioned in the previous chapter, the current application state should be

transferred for remote execution and the cost for transferring the state is closely

related to the efficiency of execution offloading. Therefore, it is important to

reduce the state transfer cost for more effective execution offloading. The key

idea to achieve this goal is transferring only the essential objects (e.g., heap

objects or stack frames), which I define to be the objects that will be possibly

accessed within the remotely executing code regions.

The rest of this chapter is organized as follow: first, I explain the baseline of-

floading approach, CloneCloud [3], and how adversely the size of the application

state affects the performance of execution offloading. In the following subsec-

tion, I propose novel techniques that reduce the amount of transferred state by

identifying essential objects from the mobile code based on compiler code anal-

8

ysis. I also introduce a technique called partial stack transfer, and explain how

this technique reduces the state transfer cost even more by transmitting only

the frames actually referenced in the cloud, rather than transferring the entire

stack. The experimental results, discussions, and related work is also presented.

2.1 Background: Reachable State Transfer

In this section, we discuss how adversely the size of migrated state affects the

performance of execution offloading.

2.1.1 Overview of CloneCloud

In CloneCloud, a process is an Android phone application running on the Dalvik

virtual machine (VM). The process may comprise multiple threads, and some of

them, which we call migratable threads, contain the remotely executable meth-

ods (REMs) in their code. If a thread has no REM, it will be herein called a

resident thread. As a rule, CloneCloud declares a method to be an REM if it

does not need to access local resources in the phone such as GPS, cameras and

screen. However, the decision on what methods actually will run remotely on

the cloud sever is deferred until the process starts execution when its compu-

tational resources are all revealed. For this decision, CloneCloud implemented

two components: profiler and solver.

The profiler measures expected execution times and energy usages of all

REMs on the mobile device as well as on the server. It also calculates the aver-

age cost required to offload a migratable thread; this cost is not only changed

depending on the REM but also influenced by network characteristics, such as

loss rate, latency and bandwidth. The solver accepts all the performance num-

bers obtained during profiling, and outputs optimal partitions for each thread.

9

Migrator
App-VM

Node
Manager

Scenario DB

Node
Manager

Smartphone Cloud

Migrator
Clone

Figure 2.1 Migration overview of CloneCloud

A partition is an execution scenario consisting of a sequence of decisions made

at every REM on whether the REM should be offloaded or not. Among many

candidate partitions, the solver chooses the best one that minimizes the overall

run time and/or energy consumption of the mobile device. Certainly, the best

partitions for the same thread may vary according to the network interfaces

which the mobile devices are connected. Therefore, the solver generates a col-

lection of partitions each optimized for a unique network condition, like 3G or

Wi-Fi.

The resulting optimal partitions are stored into the scenario database (DB)

shown in Figure 2.1. When a process is launched, CloneCloud detects the cur-

rent network status and retrieves the DB to fetch the optimal partition for this

process execution. During the execution, if a thread is to be migrated accord-

ing to the scenario extracted from the DB, the migrator suspends the migrating

thread and captures its state by visiting every stack frame in the existing stack.

The state is serialized to generate a state package that is then given to the

node manager whose mission is to transfer the state package over the network

10

between machines. The state arriving at the cloud is de-serialized and restored

into the memory by the migrator on the server. Associated with the transferred

state, a new thread is cloned on the cloud and takes over the execution control

from the original thread until it must return the control back to the mobile

device according to the scenario. More details about execution offloading in

CloneCloud are referred in their literature [3].

2.1.2 Impact of State Package Size on Performance

The state being transferred when a thread is migrated back and forth between

machines includes stack, registers, and reachable heap objects (RHOs). Heap

objects are composed of class and data objects. A class object is a template

describing the behaviors and states that are shared by the objects of its type,

and a data object is an instance of a class that contains its local states and

methods. RHOs are any heap objects that are accessible or visible in any po-

tential continuing computation. Figure 2.2 presents an example of heap objects

along with two stacks for a face detection process that has two threads: UI

and Worker. When the migrator captures the state of a migrating thread, it

identifies RHOs by recursively chasing the reference links starting from local

data objects in every stack frame of the thread. This procedure is similar to

garbage collection. But the migrator looks for live (or reachable) objects, while

the garbage collector finds dead ones that have no references to themselves.

In the example, Worker currently has two frames, each of which stores local

data objects used by one method in the thread at run time. For instance, the

frames for two methods FdView.run and FaceDetector.FaceDetection point

to the FdView data object and the FaceDetector class object, respectively.

Each heap object has reference links to its relevant objects. For example, the

FdActivity data object points to its class object and the widget/Button class

11

Surface
View$4

Data Object
Class Object
Link to relevant object

(a)Stack Frames (b) Reachable heap objects

UI thread

Worker thread

Reference to object
Reachable heap
objects

FdView

Face
Detector

FdActivity FdActivity

widget
/Button

Ljava/lang
/Class

FdView

Runnable

FaceDetector
.FaceDetection()

FdView
.run()

FdResMgr.
AlreadyPoped()

FdActivity
.onClick()

widget
/Button

FdResMgr

Figure 2.2 An example of Reachable Heap Objects

12

Table 2.1 Ratio of RHO to total state package

Benchmark RHOs (KB) Total state package (KB) Ratio(%)

Fibonacci 10,545 10,871 97.00

Face detector 10,546 10,870 97.01

Chess engine 10,541 10,855 97.10

FBReader 17,445 17,960 97.13

object. With this data structure, RHOs of each method are determined by

checking accessibility of heap objects from its stack frame. Note that almost

all heap objects in this example are RHOs because the Fdview data object has

multiple links to other class objects as well as the FdActivity data object,

which lead to virtually all the other objects in the figure. In Figure 2.2, the

RHOs are denoted by shaded boxes. Rectangles stand for class objects while

rounded ones for data objects. These RHOs will be captured by the migrator

for state transfer if Worker is decided to be migrated.

We have discovered that RHOs generally occupy the largest fraction of the

state captured by the migrator for transfer. This implies that the node manager

would spend most of its time transferring RHOs across the network. Table 2.1

shows the average size of RHOs compared to the entire state package. It con-

firms our expectation that RHOs take the majority of the state package. Note

that such a huge size and high occupancy of RHO is not surprising; an An-

droid application uses at least a few megabytes of heap objects, even though

the application is a simple ”Hello World” activity [11]. This result suggests that

minimizing the size of RHOs should reduce the total state transfer time sub-

stantially, thereby contributing the reduction of overall execution time of the

migratable thread as well.

13

Table 2.2 Execution time of each method in the execution scenarios

Methods Phone Cloud

foo() 500 ms 50 ms

gps() 50 ms N/A

goo() 100 ms 10 ms

To explain in more detail the impact of RHO size reduction on the execu-

tion time, see the execution scenarios in Figure 2.3, demonstrating that different

state transfer times can affect the solver’s decision on optimal partitions. We

assume here that two methods foo and goo are REMs while gps cannot as it

relies on the GPS service on the phone. In Table 2.2, we list the expected execu-

tion time of each method estimated by the profiler. In Figure 2.3(a), we list the

different optimal partitions that might be produced by the solver depending on

the amount of state transfer overhead. If the transfer time is 100 ms, the sce-

nario will be chosen as the optimal partition that minimizes the total execution

time. Suppose that the time is cut to merely 20 ms by minimizing the total

size of RHOs. Even under the same scenario as in Figure 2.3(a), we can reduce

the execution time as depicted in Figure 2.3(b). In reality, however, the solver

would choose the one in Figure 2.3(c) as the optimal partition since it further

accelerates the performance by dispatching the REM goo into the cloud. From

this example, we can see that the reduced RHO size will help the solver to find

a better partition that exploits more aggressively the computing resources in

the cloud, which ultimately can result in dramatic performance improvement

in mobile cloud computing.

14

(a)	Migration	overhead
100ms

(b)	Migration	overhead
20ms

(c)	Modified	scenario	for
Migration	overhead	20ms

Figure 2.3 Impact of state transfer costs on the decision of partitions

15

Table 2.3 Size comparison of RHO to EHO

Benchmark RHOs (KB) EHOs(KB)

Fibonacci (n=42) 10,545 90

Face detector (99 images) 10,546 91

Chess engine (25 pieces) 10,544 12

FBReader (150,700 words) 17,445 2,130

2.2 Essential State Transfer

In this section, we discuss our novel techniques that help us to drastically reduce

the size of state transferred at migration points. The central idea behind them

is gleaned from the fact that although RHOs are accessible to a thread, not

all of them are actually used at run time, and thus that from the transferred

state package any object can be removed which has no chance of being accessed

during remote execution on the cloud. For this we define a heap object for a

thread, called an essential heap object (EHO), to be a RHO that has explicit

references in the thread code. Table 2.3 compares the size of a RHO set and that

of an EHO set for the same thread. From the results in the table, we gleaned the

fact that EHOs can be much less in number than RHOs in some applications,

as will be exhibited in our experiments where we significantly reduce the state

transfer time by not transferring all RHOs, but instead transferring only EHOs.

In the subsections below, we first describe a code analysis technique that is

used to extract EHOs from RHOs, and then other techniques that enable us to

additionally minimize the time to transfer EHOs.

16

2.2.1 Essential Heap Objects

Among RHOs, many class objects come from super classes because Java class

objects usually inherit various states and behaviors from their super classes.

But in most cases, all the objects defined in the super classes are not required

to execute a process; that is, there are some variables or methods never accessed

throughout the whole execution. Hence, the cloned thread will safely run on the

cloud even if we do not transfer any RHO that will not be referenced by the

thread. However, it is almost impossible for us to statically identify which RHO

is to be actually referenced at run time. Therefore in our work, we only remove

from the transferred state package every super class object (and its related

data objects) that has no reference in any method of a migrating thread. By

definition above, all the RHOs remaining in the package automatically become

the EHOs. According to our experiments, even this conservative approach to

isolate EHOs has reduced the state package size to a large extent.

In our work, the unreferenced objects are simply determined by code anal-

ysis, where the names of class objects referenced in every method are all stored

into a table. When the migrator captures the state, it searches for RHOs by

chasing down the relation links in their class hierarchy. When it comes across

a class object, it looks up the object in the table. If the object is not found, it

is classified as unreferenced. To identify EHOs by finding unreferenced objects,

we propose in this work a new component, called the state transfer optimizer,

that can be added to the original CloneCloud. Figure 2.4 shows a new system

augmented with the optimizer.

In Figure 2.2, we showed an example of RHOs for the Worker thread. Here,

we also represent the EHOs selected from them with the rectangles or rounded

rectangles enclosed by thick lines. Notice that the FdActivity data object and

17

Application
binary

Profiling
inputs

Static
Analyzer

Profiler

Migration
constraints

State
Transfer

Optimizer

location-
constrained
methods

Solver
cost-annotated
executions

Optimized
transferring costs

Scenario
database

Figure 2.4 State transfer optimizer for execution offloading

its relevant class objects are not chosen as EHOs. This is because the state

transfer optimizer reveals through code analysis that a method Fdview.run

never references them during its execution.

2.2.2 Liveness of Essential Heap Objects

Basically EHOs must be all serialized into a state package because they are

literally essential to computation. But a data flow analysis advises us the pos-

sibility of further optimization of state transfer by excluding some EHOs from

the package. To explain this, we introduce a notion of liveness for heap objects.

Variables declared local to a method are the local data objects that get stored

in a stack frame when the method is invoked. As the case of Fdview in Fig-

ure 2.2, we have collected RHOs by following the relation links starting from

these local data objects. A local data object (or variable) is here said to be live

18

class A {
B x;
A() { x = new B(); }
update() { x = … ; }
read() { return x; }

}

(a) Class definition of A

foo() {
A v0 = new A();
A v1 = new A();
A v2 = new A();
goo(); …(1)
v0.read();
v1.update();
goo(); …(2)
… = v1.read() + v2.read();

}

(b) Method declaration of foo

Live range of
v1, v2

Live range of
v0

Figure 2.5 Java code for an REM goo

at a point if there are uses of that object after the point in the code. Otherwise

it will be considered dead. When we assemble a state package with EHOs, we

only include the live ones obviously because the dead objects will never be used

during the rest of execution of a migrated thread even if they are transferred

to the cloud.

Depending on migration points in a method, a data object might be live or

dead. For instance in Figure 4.3(b), three data objects local to a method foo

are listed, and the ranges of their liveness are also pictured. If goo is an REM,

two invocations to goo inside foo would be the migration points. Suppose that

their thread is to migrate at the first invocation site following the execution

scenario. Then, they are packaged as EHOs and sent to the cloud since they

are all live. However, if migration occurs at the next invocation site, only v1

and v2 are live then (see Figure 2.6(a)). As a result, the dead object v0 is

removed from the original state package as shown in Figure 2.6(b) and (c). To

compute the live range of a data object, we have applied conventional compiler

techniques based on def-use analysis [12].

19

x

stack frame - goo

Local variables

stack frame - foo

Heap Area

(a) Migration example

v1

Class object

Data object

xv2

x

A

v0

B

… x x A Bxv0foogoo …… …v1 v2

Live object

stack frames heap objects

… x x A Bv1foogoo …… …v2

(b) Original state package

(c) Reduced state package

stack frames heap objects

Phone

Figure 2.6 Essential heap objects for the Java code

20

When a local data object is found dead at a migration point, all EHOs

related to this object must be examined to determine their liveness (or eligibility

of being in the state package). If any of them is also found dead, it will be

excluded from the package. As an example, see a data object x of class type B

declared inside class A in Figure 4.3(a). If v0 is not needed in the code, neither

is x because x is exclusively accessed within v0. This means that if v0 is dead,

so is x. Consequently, as shown in Figure 2.6, x was deleted from the package

along with v0.

2.2.3 Dirty/Clean Essential Heap Objects

Once dead EHOs are all filtered out of the state package, the remaining live

ones are finally ready to ship. In this last step of state transfer, we have found a

way to save the time and energy of transmitting the package over the network.

In order to take a glimpse of this idea, see the code in Figure 4.3(b). Again, let

us assume that the thread is about to migrate just before the second invocation

of goo. In the code, we can see that v1 has been modified before the migration

point while v2 is still intact. The idea here is that it is not necessary to copy

and deliver v2 from the phone to the cloud because the exactly same content

of v2 can be duplicated simply by creating v2 on the remote site. We call this

unmodified object clean and the modified one dirty. In our work, we have used a

well-known compiler side-effect analysis technique [12] to identify which objects

have been modified before reaching each migration point.

The analyzer accepts application bytecode as its input to identify dirty

and clean objects. First, the analyzer seeks every method call (or, a migration

point) in a method when it explores its input code. For each local data object

in a method, it labels the object and its relevant objects as dirty is there is

any instruction which assigns any value to the object before corresponding

21

migration point. After every dirty object in a method is identified, the analyzer

stores the ID of each dirty object into a table with the address of corresponding

migration point. For instance in Figure 4.3(b), the ID of the dirty object v2

and the address of the second invocation of goo are stored to the table. Notice

that relevant heap objects to v2 are not stored.

As stated in Section 2.2.2, live EHOs are only included to the state package

in our work. When the migrator chases every stack frame and packs each live

EHO in a frame to the package, it also confirms whether the object is dirty or

not by searching for the object in the table. If the ID of the object is not in

the table, then the object is clean. In this case, the migrator creates a stub for

the clean EHO and adds it to the state package, instead of adding the EHO

itself and its relevant objects. A stub contains information of an object such

as ID, class name, and the address of an object necessary for the migrator on

the cloud to create new instance of clean EHO. Comparing to the size of clean

EHO and its relevant objects, the size of a stub is much smaller, being only a

few bytes. For the reason, the state package size can be reduced by substituting

the stubs for clean EHOs and their relevant objects. From stubs in the reduced

state package, the migrator on the cloud side creates new instances of the clean

EHOs and links them to the transferred dirty EHOs. We named this on-the-fly

instantiation of the clean EHOs on-site-duplication.

22

… x A Bv1foogoo …… …

stack frames heap objects

Migrator

On-site
Duplicator

Cloud

Clone

x

v1

x
v2

A

B

object ID

class name of
object

address of
object

(1) Copied from the
phone

(2) newly created

(a) Reduced state package
from the phone

(b) On-site duplication
on the clone

… …

stubs

stub for v2

Figure 2.7 State restoration via state copy and on-site duplication

Figure 2.7 shows state restoration via state copy and our on-site duplication,

after the migration occurs at the second invocation of goo in Figure 4.3(b).

Because v2 is clean in this case, the reduced state package in Figure 2.7(a) does

not include v2 and its relevant object x: instead, the stub for v2 is included in

the package. The on-site duplicator in Figure 2.7(b) uses this stub to call the

constructor method of v2. After this on-site duplication, new instances of v2

and x are created. Then, the migrator restores the complete state for remote

execution by assembling them together with the dirty objects v1 and its relevant

objects which are just copied from the phone through the state package.

23

2.3 Partial Stack Transfer

In the previous section, we explained the definition of EHO and how we reduce

the size of transferred state by applying it to execution offloading. We also

described the compiler techniques to exclude dead or clean EHOs from the

state package to offload more efficiently. In this section, we propose our novel

techniques that enable us to partially transfer the existing stack to reduce the

state package even more, instead of transmitting the full stack.

2.3.1 Motivation

Although the techniques we mentioned earlier are quite effective in reducing

the size of the state package, we still have a chance to make our offloading

model more effective. Such a chance is gleaned from the fact that our baseline

offloading model, CloneCloud, transfers every stack frame in the existing stack

when the migration occurs.

In practice, transferring the entire stack to the cloud is not necessary, be-

cause it is rare that every stack frame is referenced in remote execution. The

stack frames in the existing stack have the information of the methods which

are already invoked but not finished yet. We will call these pre-invoked methods

as method before migration (MBM). Each frame is transferred to the cloud in

case its relevant MBM is finished in remote execution. In most cases, however,

only a few MBMs are actually finished in remote site. This is because most

mobile applications have a time limit to answer the user’s input, so the offload-

ing scenarios for them usually offload only a part of the execution. For this

reason, only a part of MBMs is finished and only the relevant stack frames are

referenced in remote execution.

24

Table 2.4 Comparison referenced frames to total frames

Benchmark The total frames(#) The referenced frames(#)

SciMark2.FFT 4 1

SciMark2.LU 3 1

SciMark2.SOR 3 1

Table 2.4 compares the number of the captured frames to that of the frames

actually referenced in remote execution, according to the optimal offloading

scenarios of three benchmarks. As you see, only 25% to 33% of frames are

referenced in remote execution. In other words, only 25% to 33% of MBMs are

finished in remote. In short, it is usually not necessary to transfer the entire

existing stack, because there is little possibility that every MBM is finished

in remote execution. If these unnecessary frames are excluded from the state

package, their relevant heap objects are consequently removed1.

Then the question arises, if it is not necessary, why does our baseline of-

floading model transfer the entire existing stack? It is because that if we remove

any stack frame from the state package carelessly, we may cause semantic in-

consistency ; we define semantic inconsistency as the case when the result of

remote execution is different to the result of mobile-only execution. To explain

this, see Figure 2.8. In the figure, there are three functions: foo, goo, and hoo.

The stack frames and relevant heap objects of each method are represented.

Assume that the offloading scenario decides to start the remote execution from

the entry of hoo to the exit of goo. Then, foo and goo are MBMs, and hoo

is a method which will be called method after migration (MAM). Because the

1Note that our migrator is very similar to a garbage collector; if the migrator does not
capture any stack frames, then all heap objects relevant to the frame are automatically not
captured.

25

goo

foo

Heap	Area
Class	object

Data	object

D

Shared	objectlocal	variable

A

B

local	variable

local	variable

hoo

local	variable
local	variable

C

Stack	Frame

Phone

Object	not	
generated	yet

Figure 2.8 An example of semantic inconsistency

26

remote execution ends at the exit of goo, foo is never executed and its stack

frame is never referenced in cloud as well. At first glance, it seems that simply

removing this redundant frame and its relevant objects from the state package

does not make any problems in usual cases. In Figure 2.8, however, such a care-

less optimization may cause semantic inconsistency because hoo references one

of the relevant class objects of foo, B, which is denoted in gray. If we exclude B

from the state package even though foo updated the value of it, then hoo may

get unexpected results due to the out-of-date value of B.

In practice, semantic inconsistency can occur when MAMs share static fields

of the class objects of MBMs. Unlike a normal field, a static field is not related

to a particular instance at all. In other words, a static field has a unique value in

a single execution, and the value is shared by all methods referencing the static

field. If any method updates the value of a static field, then all other methods

are affected. Therefore, if an MBM and an MAM share the same static field and

the MBM updates the value of that field, then the field should be included in

the state package to let the MAM generate a proper result based on the latest

value of the field.

To transfer the existing stack partially, as you see, it is necessary to avoid

semantic inconsistency. In the following subsection, we describe our techniques

to tackle this semantic inconsistency and how we integrate the techniques into

our offloading model so it could support partial stack transfer.

27

2.3.2 Analysis for Partial Stack Transfer

To avoid semantic inconsistency for partial stack transfer, we must be able to

address the following questions:

• Which methods are MAMs?

• Which class objects are referenced by the MAMs?

• How can we effectively adopt the information from these questions to our

offloading model?

For the first question, we build a static call graph [12], which is a call graph

intended to represent every possible execution flow of the application. It is im-

possible to exactly predict which methods will be invoked in remote execution,

because the behavior of an application can be different in each individual exe-

cution. Therefore, we use the static call graph to conservatively figure out every

method that can be possibly called in remote execution. If the migration occurs

at the entry of a method, then we regard the method and all of its child meth-

ods in the static call graph as MAM. Such an approach may not be efficient

but is reliable because it guarantees to cover every possible execution flow in

the cloud.

The next goal is finding the class objects which are referenced by MAMs.

To achieve this goal, we first gather the name of class objects referenced in

every method by using the same code analysis described in Section 2.2.1. After

that, we build exclusive reference sets (ERSs); these sets contain the names

of class objects we gather for each method. We also match each ERS to the

corresponding nodes in the static call graph. Figure 2.9 shows the static call

graph and its ERSs, which are generated for the example in Figure 2.8.

28

54

foo()

goo()

hoo()

ioo()

IRS:		{		}
ERS:	{B,	D}

IRS:		{		}
ERS:	{C}

IRS:		{		}
ERS:	{E}

IRS:		{		}
ERS:	{A,	B}

Figure 2.9 Static call graph with ERSs

foo()

goo()

hoo()

ioo()

IRS:		{B,	D}
ERS:	{B,	D}

IRS:		{B,	C,	D}
ERS:	{C}

IRS:		{E}
ERS:	{E}

IRS:		{A,	B,	C,	D,	E}
ERS:	{A,	B}

Figure 2.10 Static call graph with ERSs and IRSs

29

After matching ERSs to their corresponding node is finished, we do depth-

first-search (DFS) in post order on the graph to generate inclusive reference sets

(IRSs) for each node. We define an IRS of a method (or node) as a set of the

names of class objects referenced by the method inclusively. In other words, the

IRS of a method contains the names of every class object which may be possibly

referenced after the method is called in remote execution. In Figure 2.10, for

example, the IRS of goo includes B, C, and D, which are referenced by goo itself

(C) and its child method hoo (B, D). So, for the node we visit during the DFS,

we sum up every ERS of its child nodes to generate the IRS of it. Notice that

we generate the IRSs statically; it is because to hasten the run time prediction

of which class objects will be referenced by MAMs. If we compute the IRS by

gathering the ERSs at run time, the performance of execution offloading may

be degraded. The final static call graph and its ERSs and IRSs are represented

in Figure 2.10.

Now, we move on to the last problem which is how we adopt the static

call graph and its ERSs and IRSs to our offloading model. First, the migrator

goes through the existing stack to figure out which MBMs were already called

when the migration occurs. Notice that we do not capture any heap objects

here; we just capture the names of MBMs in chronological order. After that,

we search the static call graph to find the path that matches the order of the

MBMs we got. For example, we have the path from foo to hoo in Figure 2.10

for the stack in Figure 2.8. Through these steps, we can pick the IRS of the first

MAM, which is the first executed method in remote execution. So, the IRS we

pick represents all of the class objects that could be possibly referenced in that

particular remote execution. In Figure 2.8, hoo is the first MAM.

After finding the path and the IRS of the first MAM, the migrator traverses

the existing stack once more from top to bottom, to capture the state. For each

30

frame it meets during the capture process, the migrator identifies whether the

MBM of the frame will be finished in the cloud or in the mobile, based on the

offloading scenario. For the former, the migrator captures the frames and their

EHOs in the same way mentioned in Section 2.2.1. For the latter, the migrator

packs up their relevant class objects if and only if the class objects are the

elements of the IRS of the first MAM.

Figure 2.11 shows the result of partial stack transfer applied to the exam-

ple in Figure 2.8. In the figure, the migrator starts its state capture process

from hoo. For hoo, the migrator keeps the IRS of hoo because hoo is the first

MAM. For goo, the migrator captures its frame and relevant objects including

C, because goo is finished in the cloud. Finally, the migrator meets foo, which

is finished in the mobile, so it chases down the class objects of foo and checks

the class objects included in the IRS. As a result, the frame of foo and all of

its objects except B are removed from the state package.

Based on the techniques proposed in this section, we successfully avoid se-

mantic inconsistency and transfer the existing stack partially. In the following

section, we discuss the impact of the partial stack transfer on the size of the

state package.

31

(a)	Patial	stack	transfer	example

… B CAv0hoofoo …… …v1 v2

stack	frames heap	objects

… B Choogoo …… …v2

(b)		The	original	state	package	of	full	stack	transfer

(c)		The	reduced	state	package	of	partial	stack	transfer

stack	frames heap	objects

goo

foo

Heap	Area
Class	object

Data	object

D

Captured	objectlocal	variable

A

B

local	variable

local	variable

hoo

local	variable
local	variable

C

Stack	Frame

Phone

v0

goo

v1

v2 Excluded	object

Figure 2.11 Partial stack transfer example

32

2.4 Evaluation

We implemented our execution offloading model including the state transfer

optimizer and the modified migrator on the Android 4.0.3 branch, and tested

it on the smartphone and the server, respectively. The smartphone is a Galaxy

Nexus with dual-core 1.2 Ghz CPU and 1 GB of RAM. For the server, we used

a quad-core desktop with a 3.1 GHz CPU and 8 GB of RAM running Ubuntu

11.10. To execute Android on a regular Intel x86 desktop, we built a target

of Android for VirtualBox 4.1.8. We also used an off-board equipment [13] to

profile energy consumption of the smartphone.

To evaluate the effectiveness our offloading model, we implemented three

benchmark applications in different categories: CPU, IO, and user interactive.

We also tested scientific and real applications to evaluate our partial stack

transfer. In the following subsections, we describe our applications and its ex-

perimental results in detail.

2.4.1 CPU and IO Benchmark

As our CPU tasks, we chose a FIBONACCI sequence generator. The FIBONACCI

sequence generator recursively calls its member method to generate a FIBONACCI

sequence for a given size of a sequence. Because the performance of this appli-

cation depends mainly on the CPU power of the device, we classified it as a

CPU task. In Section 2.3.1, we also used three scientific kernels, Fast Fourier

Transform (FFT), LU factorization (LU), and Successive over-relaxation (SOR)

of SciMark 2.0 benchmark suite [14] to show the number of frames actually cap-

tured in their optimal offloading scenario2.

As one of our IO tasks, we implemented the face detector, which recognizes

all faces in a given image. After all faces are found, the detector draws green

2The experimental results for these kernels were already presented in Table 2.4.

33

Table 2.5 Methods of the modified FBReader

Name Description

selectBlocks Selects blocks for a given book

searchWords Searches 15 words for given blocks

searchBlockList Searches one word for given blocks

searchBlock Searches one word for a given block

find Searches one word for a given paragraph

rectangles on the each face. We used OpenCV 2.3.1 library for Android to imple-

ment our detector. The detector downloads its input images from an external

on-line server at run time. We chose it as a IO task, since the computation

heavily relies on IOs involving network operations and file accesses.

Another IO task we chose is FBReader [15], which is a state of the art open

source e-book reader application. To hasten its computation, FBReader loads

an entire e-book into its memory space. This is the reason why we chose it as

our IO task. Among the many functions of FBReader, we chose the word search

to offload; for a given book and a word, it returns every position of the words in

the book which has the same character pattern as the given word. We adjusted

the code to automatically search 15 pre-given words in a part of the book at a

time, instead of searching the entire book with a user-given word. The modified

code searches the words through five steps which are shown in Table 2.5.

For the evaluation, we vary the size of the sequence between 25 and 42 for

the generator, the number of images from 1 to 99 for the detector. We also

vary the size of books from 6,420 words to 150,700 words for the FBReader.

To profile our applications, we used a set of randomly generated inputs; for

the FBReader, we randomly chose 15 words from a pre-built list [16]. By using

the profiling result, we solved the partitioning problem in a similar way to

CloneCloud [3], and built the partitioning scenario for each application. We

34

Execution	time	(s)

0

50

100

150

200

250

300

Phone RHO
.3G

RHO
.Wi‐Fi

EHO
.3G

EHO
.Wi‐Fi

Execution	Time
Overhead

(a) FIBONACCI (n=42)

Execution	time	(s)

0
20
40
60
80
100
120
140
160

Phone
.3G

RHO
.3G

EHO
.3G

Phone
.Wi‐Fi

RHO
.Wi‐Fi

EHO
.Wi‐Fi

Execution	Time
Overhead

(b) Face Detector (99 images)

Execution	time	(s)

0

1

2

3

4

5

Phone RHO
.3G

RHO
.Wi‐Fi

EHO
.3G

EHO
.Wi‐fi

Execution	Time
Overhead

(c) FBReader (150,700 words)

Energy	consumption (A∙h)

0
5
10
15
20
25
30
35
40

Phone RHO
.3G

RHO
.Wi‐Fi

EHO
.3G

EHO
.Wi‐Fi

Energy

(d) FIBONACCI (n=42)

Energy	consumption (A∙h)

0

5

10

15

20

25

Phone
.3G

RHO
.3G

EHO
.3G

Phone
.Wi‐Fi

RHO
.Wi‐Fi

EHO
.Wi‐Fi

Energy

(e) Face Detector (99 images)

Energy	consumption (A∙h)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Phone RHO
.3G

RHO
.Wi‐Fi

EHO
.3G

EHO
.Wi‐fi

Energy

(f) FBReader (150,700 words)

Figure 2.12 Average phone execution times and energy consumptions for
FBReader, FIBONACCI sequence generator and face detector with the largest
input size

also applied our static analysis based on the compiler technique to reduce the

state transfer costs, which is mentioned in Section 2.2.

Figure 2.12 shows execution times and energy consumption of the smart-

phone for three applications on the largest input size. In Figure 2.12(b) and

Figure 2.12(e), the measurement for phone-alone execution is divided to differ-

ent bars (”Phone.3G” and ”Phone.Wi-Fi”) because our detector downloads its

input images from an external on-line server at run time, therefore the network

latency affects its execution.

For the largest input size of the face detector, we obtained a speedup of 6.6

on the smartphone over 3G, and 5.7 over Wi-Fi. Our approach achieved much

higher improvement than the RHO approach, whose speedup is 2.1 over 3G

and 3.7 over Wi-Fi. It is induced by reducing the state transfer time from 47

second to 3.7 second over 3G, and from 9.4 second to 0.6 second over Wi-Fi.

We also improved the performance of the RHO approach by about 65% over 3G

35

Table 2.6 Evaluation result for another input size
Benchmark RHO.3G(s) RHO.Wi-Fi(s) EHO.3G(s) EHO.Wi-Fi(s)

FBReader (28,030 words) N/A N/A N/A 1.564

FIBONACCI (n = 34) N/A N/A 3.215 2.023

Face Detector (30 images) N/A 12.547 8.271 4.433

and 11% over Wi-Fi. Notice that our approach is more effective over 3G than

Wi-Fi. We believe that such a result is caused by different network latency;

due to the greater latency and lower bandwidth, the migration cost over 3G

network is much higher than Wi-Fi. Similar to CloneCloud’s result [3], energy

consumption generally follows execution time. We also achieved similar results

for the FIBONACCI sequence generator.

For the FBReader, our approach achieved a speedup of 1.7 over Wi-Fi,

although the RHO approach failed to offload it. Similar results are shown in

Table 2.6; the RHO approach failed to offload every application except the

face detector over Wi-Fi. In contrast, our approach succeeded in offloading all

except the FBReader over 3G. This result demonstrates that the reduction of

the state transfer costs really has great impacts on the performance of execution

offloading, as predicted earlier.

2.4.2 User Interactive Chess Game

Another benchmark that we tested is a chess engine which is a central part

of a user interactive chess program. The engine accepts the user’s move as the

input, and returns a ’counter move’ given the position of each chess piece on the

board. To find the optimal counter move, it uses a simple minimax algorithm:

it considers all possible next move and scores them by traversing a game tree,

which is a directed graph whose nodes are positions of each chess piece and

whose edges are moves. After that, it returns the highest scored move. If there

are more than one moves whose scores are equal, the engine chooses one of them

36

0

5

10

15

20

25

3231302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2

Phone
Server
Server	+	3G	overhead

Ex
ec
ut
io
n	
tim

e	
(s
)

Figure 2.13 Average execution times of getNextMove for each distinct number
of pieces left on the board.

randomly.

To obtain the optimal counter move, our chess engine invokes a key REM,

getNextMove. As stated in Section 2.1.1, the solver makes an offloading decision

for the REM based on the profiling result which is, in the original implementa-

tion [3], the average of execution time and energy consumption of an application

on a set of randomly generated inputs. Such a strategy might be acceptable for

some applications whose execution times are relatively consistent regardless of

the sequence of their input. According to our analysis, however, this simple

strategy is not workable for others like our chess engine whose execution time

drastically varies on its input values. To explain this, see from Figure 2.14 the

execution times of our engine on the phone which are measured and plotted

every time a user input is given. One noticeable thing here is the similarity

between two curves of these time plots: the execution times rapidly hike as the

matches start, but after reaching the top at the early stages, they both gradu-

ally drop as the matches come close to an end. Among various factors resulting

in this execution pattern, a major one we found is the number of pieces left

on the board. To show this, we display in Figure 2.13 the average run times of

37

getNextMove for each distinct number of live pieces. The figure evinces the sim-

ilarity between the run time curve drawn in a decreasing order of the number

of pieces and those in Figure 2.14.

This observation had led us to conclude that when using the profiled per-

formance data to make offloading decisions for the REMs of our chess engine,

the solver must consider the number of pieces currently alive for better perfor-

mance. For instance, the execution times of getNextMove are on average 10.9

sec on the phone and 4.3 sec on the server (including the 3G communication

overhead added for state transfer) respectively. Therefore in the original design,

the solver may decide that offloading the REM over 3G is always profitable.

This naive decision, however, will result in the performance loss for some cases

like those with less than 10 remaining pieces where running the REM on the

phone is clearly more profitable as shown in the Figure 2.13. Consequently in

our new design, the profiler estimates the execution times of the chess engine

REMs for each different number of pieces on the board, and the solver makes

variable offloading decisions for the same REM depending on the number of

pieces. In this experiment, we have 31 decision points for getNextMove over 3G

and Wi-Fi, respectively. For each point, the migrator either offloads the REM

or not at run time, following the decision produced by the solver.

In Figure 2.14, the performance results of our execution offloading strategy

for the chess engine are presented. We played each game until 2 pieces were

left. Each play consists of 68 and 142 moves, respectively. For the play with 68

moves, we obtained a speedup of 2.7 over 3G and 5.4 over Wi-Fi and for the

play with 142 moves, 2.2 over 3G and 4.5 over Wi-Fi. Even if our variable deci-

sion strategy was sometimes incorrect, thereby causing occasional performance

loss as in the cases of the 41st move in Figure 2.14(a) and the 45th move in

Figure 2.14(b), it was proven to be correct for most cases, achieving overall sig-

38

0

10

20

30

40

50

60

1 3 5 7 9 1113151719212325272931333537394143454749515355575961636567

Phone
EHO.3G
EHO.Wi‐Fi

Execution	time	(s)

(a) 68 moves

0

5

10

15

20

25

30

35

40

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

Phone
EHO.3G
EHO.Wi‐Fi

Execution	time	(s)

(b) 142 moves

Figure 2.14 Average phone execution times of the chess engine on two plays.
Time unit is second.

Table 2.7 Energy consumption of the chess engine on two plays.
Play Phone(A*h) EHO.3G(A*h) EHO.Wi-Fi(A*h)

68 moves 122.39 107.98 28.44

142 moves 165.05 169.29 71.72

nificant performance gains from execution offloading. The energy consumption

of the chess engine on two plays is also shown in Table 2.7, demonstrating the

effectiveness of our strategy in terms of energy saving3.

2.4.3 Impact of Partial Stack Transfer

Including the optimal scenario used in Figure 2.12, we tested four offloading

scenarios for FBReader to evaluate the impact of the partial stack transfer. We

fixed the migration point of these scenarios to the entry of find and varied the

return point of each scenario as shown in Table 2.8. We also built and evaluated

two scenarios in a similar way for each benchmarks, fibonacci, chess engine and

face detector; while the first scenario includes every MBM4, the second one

3Note that the energy consumption of offloading is slightly higher than the local execution
for the play with 142 moves over 3G; It is due to the network latency occasionally fluctuating
at run time, which led to the communication module of the phone spending more energy to
connect itself to the network.

4So, it is exactly same with full stack transfer.

39

Table 2.8 Offloading scenarios for FBReader
Name Migration point Return point

selectBlocks entry of find exit of selectBlocks

searchWords entry of find exit of searchWords

searchBlockList entry of find exit of searchBlockList

searchBlock entry of find exit of searchBlock

finished only a part of them in remote execution.

Figure 2.15 shows the impact of partial stack transfer on the size of the

transferred state for each scenario. For searchWords, the optimal scenario of

FBReader in Figure 2.15(a), the partial stack transfer drastically reduced the

size of the state; 52% on the largest sized book and 39% of on the middle sized

book. For the other scenario searchBlock, the size of the state is reduced even

more; 94% on the largest sized book and 70% on the middle sized book5. We

believe that such a result is caused by the nature of FBReader; because each

method in Table 2.5 accesses a different range of its input book in memory

space, the range of memory space accessed by each scenario is also different

in respect to the methods making up the scenario. For example, the method

searchWords accepts ”blocks”, which is a part of a book, while the method

selectBlocks accepts the entire book as its input. Therefore, instead the entire

book, the scenario searchWords needs only some blocks in remote execution.

This is why the partial stack transfer dramatically reduced the size of the state

for selectWords and searchBlock. We also reduced 24.3% to 27% of the state

for the chess engine; similar to FBReader, stack frames excluded by scenario1

in Figure 2.15(b) possessed lots of heap objects, which were not necessary in

remote execution any more.

5Nevertheless, searchWords is still the optimal scenario for FBReader. Because the execu-
tion time of searchBlock in remote execution is too short, so choosing searchBlock is not
profitable even though the partial stack transfer dramatically reduced the state of it.

40

0

500

1000

1500

2000

2500

150,700	words 28,030	words 6,420	words

Full	stack	transfer
selectBlocks
searchWords
searchBlockList
searchBlock

Si
ze
	o
f	s
ta
te
	(K
B)

(a) FBReader

43

Si
ze
	o
f	s
ta
te
	(K
B)

0

5

10

15

20

25

25	pieces 18	pieces 10	pieces

Full	stack	transfer
scenario0
scenario1

(b) Chess engine

125.8

125.85

125.9

125.95

126

126.05

99	images 30	images 1	image

Full	stack	transfer scenario0 scenario1

Si
ze
	o
f	s
ta
te
	(K
B)

(c) Face detector

42 123
123.5
124

124.5
125

125.5
126

126.5
127

127.5
128

n	=	42 n	=	34 n	=	25

Full	stack	transfer
scenario0
scenario1
Si
ze
	o
f	s
ta
te
	(K
B)

(d) Fibonacci

Figure 2.15 Impact of partial stack transfer on the size of the transferred state.

Contrary to the impressive results for FBReader and chess engine, the ef-

fectiveness of the partial stack transfer is ignorable for the face detector in Fig-

ure 2.15(c). This is because most heap objects are used by its core REM, which

downloads an image and searches faces, and the caller method of the REM only

used a few bytes of local variables. Similarly, only 1.2% to 1.8% of the state

are reduced for the fibonacci generator. For scenario1 in Figure 2.15(d), the

partial stack transfer excluded half of the stack frames which are recursively

pushed into the call stack; because each method equally used small amounts of

local variables, however, such a optimization was not quite effective.

41

2.5 Discussion

Our proposed techniques in this paper are tailored to CloneCloud, which cap-

tures the existing call stack with heap objects. Indeed, liveness analysis and

partial stack transfer are closely related to stack transfer; these techniques are

not necessary where the stack is not transferred. However, we believe that the

key concept of EHO can be widely adopted by other offloading approaches,

where the state of an application is captured and transferred. To serialize only

the essential state for its ”remoteable” method, for example, MAUI [2] can

adopt the concept of EHO even though it does not transfer any stack frames.

In such cases, the information generated by our analysis and the mechanism

which uses the information should be adjusted appropriately to the approach.

We also designed our techniques to work on Dalvik VM, which has its own

memory layer. It enables us to interpret and settle the transferred state on

remote sites; for this reason, we believe that our techniques can be easily applied

to .NET runtime, which has its own memory management layer, or any other

framework whose nature is similar to .NET or Dalvik VM.

As we mentioned in earlier sections, we used conservative approaches for

our techniques. To cover every possible flow in remote execution, for example,

we used static call graphs instead of dynamic call graphs. We believe that such

conservative approaches help us avoid misprediction entirely. However, if the

execution flow or memory usages in remote execution are predicted6 for more

aggressive optimizations, other techniques should be required to prevent or

correct misprediction.

6For example, dynamic call graphs can be used instead of static call graphs.

42

2.6 Related Work

One of the earliest studies that aim to empower portable devices with surround-

ing servers was done by Satyanarayanan et al. [7], who have developed versions

of ISR systems for the past decade. To offload a process running on the device,

they migrated the full VM or OS image along with the process. Not surprisingly,

the amount of transferred data for VM migration tends to be huge (around in

the order of gigabytes). To lighten the load, they proposed the dynamic VM

synthesis approach [5] where a small VM overlay is sent by a mobile device to

the cloudlet (nearby small cloud) that is already installed with the base VM

which the overlay was derived from. The overlay size was reported about one

order of magnitude smaller than the full VM size, so they claimed that the

approach might be feasible for mobile computing using fast wireless LANs like

Wi-Fi. However, even that figure would be still too high for lower bandwidth

WAN interfaces like 3G.

In order to make mobile cloud computing more viable over the wireless

WANs, many recent studies listed below have proposed process-level migration

approaches that normally require only a few megabytes [2] for each state mi-

gration. These approaches can be divided largely into two groups: those using

static partitioning schemes and those using dynamic ones. A noticeable work

in the first group might be Wishbone [8], which gives a solution for optimal

partitioning of sensor network application code across sensors and servers. It

statically partitions the application code based on profile data that include the

computational and network load by using an integer linear program to find the

minimum use of CPU and network bandwidth. Wishbone guarantees that the

optimal partitioning can be predetermined regardless of the target hardware

platform because it targets a confined area of applications where a division of

43

subtasks is fairly clear.

In static partitioning schemes, using the programming models provided by

the middleware or APIs, the users must manually specify at compile time how

to partition their code, what state to migrate, and how to adjust the offloading

strategy to the varying network status. For example, Cuckoo [17] offers their

programming model to help users make their applications offloadable. To relive

users from such burdens, a majority of studies have been interested in dynamic

or semi-dynamic partitioning schemes. One of the first ones is OLIE [18], which

collects the current status of the memory utilization and available network

bandwidth to decide whether offloading should be triggered at run time. But

the main goal of OLIE is to overcome only the memory resource constraints

of mobile devices. This is deemed relatively simple as compared to optimizing

energy consumption and execution times, which is our goal like others [2, 3].

As another example, Odessa [6] dynamically partitions applications using a

greedy algorithm, and adaptively makes offloading decisions. However, the de-

veloper who tries to apply their approach must use the specific development

framework. Giurgiu et al. [9] propose an elaborate system that dynamically

distributes several components of an application between a server and a smart-

phone. The system is realized on top of their middleware that can support the

actual distributed deployment of an application between machines. However,

the application must be coded in a special language in order to be worked with

this approach, while we support ordinary Java.

CloneCloud [3] suggests dynamic execution offloading approach by modi-

fying the mobile execution environment, Dalvik VM, to capture the current

execution state. CloneCloud can reduce the run time overhead, because they

do not need to modify the application code while some approaches have to

do. Some approach appends new statements to the application’s code to do

44

that, because they do not want to modify the execution environment to keep

the flexibility. Due to the new appended code, a significant overhead may be

incurred on applications performance [4]. There are some approaches such as

MAUI [2] that labor to reduce the runtime overhead. MAUI is a RPC based

offloading architecture which decides at run-time which methods should be re-

motely executed based on the best energy savings possible under the mobile

device’s current connectivity constrains. MAUI requests user annotation on the

application code to mark migratable methods. Ma et al. [4] suggest a Java byte-

code transformation technique to migrate computation from a mobile device to

a server based on Java exception handling mechanism without imposing sig-

nificant overhead on normal execution. But it still has much overhead when

migration is taken place.

More recently, several approaches have been proposed to improve the perfor-

mance of execution offloading. ThinkAir [19] suggests a dynamic resource allo-

cation scheme, which allocates more than one clone VM for the offloaded appli-

cation to exploit parallelism and relieve the lack of memory space. By adopting

distributed shared memory into its offloading framework, COMET [20] expands

the range of offloadable code and consequently, allows multiple threads to be

offloaded simultaneously. Inspired by MAUI, Kovachev et al. [21] present their

middleware which serves more sophisticated profiling, monitoring and partition-

ing decision. Although these work have their own contributions, none of them

explicity discusses how to use compiler static analysis to reduce the amount of

migrated state.

45

Chapter 3

Cloud Platform for Cost-Effective
Execution Offloading

In this chapter, We introduce CMcloud, a novel cost-effective mobile cloud plat-

form, which works nicely under the real-world cloud environments. The key idea

of CMcloud is to exploit a novel performance modeling methodology for estimat-

ing the target application’s post-offload performance accurately on any target

server, regardless of its current utilization. At the same time, CMcloud allows

to offload as many applications to each server as possible without violating the

applications’ user-expected performance. If the target performance cannot be

achieved using the currently allocated server due to inaccurate performance

estimations, CMcloud performs fast inter-server live migrations to achieve the

target performance. In this way, CMcloud can offer to users its QoS-guaranteed

offload service at a very low price, while minimizing the cloud operation costs.

CMcloud operation assumes the following working environments. First, CM-

cloud is given the target application’s performance profiled on both the user

device and a reference-model cloud server. Such static profiling assumption of

46

CMcloud is similar to that of existing offload schemes [2, 3], and thus it does

not incur any extra profiling overheads compared to the existing schemes. Sec-

ond, CMcloud allows to run as many applications on each server as possible to

minimize the cloud operation costs.

Based on the environments, CMcloud works as follows. First, on receiving

an offload request, CMcloud applies a sophisticated architecture performance

modeling to find the most cost-effective target server whose remaining resources

are just large enough to achieve the target performance. CMcloud finds the

most cost-effective target server by accurately predicting the application’s per-

formance by estimating how the performance profiled on the reference server

would change on the target server, regardless of its current utilization. Next,

CMcloud performs offloading and starts to monitor the application’s progress.

If CMcloud detects any failure in achieving the target performance due to ei-

ther inaccurate estimations or unexpected performance contentions, it performs

inter-server live migrations to achieve the target offload performance. In this

way, CMcloud provides the most cost-effective offloading service to users with-

out violating the QoS of the offloaded applications.

To the best of our knowledge, CMcloud is the first mobile cloud platform

to provide the cost-effective offloading service by taking into account the costs

of cloud operation and the quality of offload services. Our example implemen-

tation on top of a 8-node (16 sockets) Android-x86 / KVM [22] with QEMU

1.4.0 / Ubuntu 12.04 64bit platform shows that CMcloud can improve the

server throughput by 84% over a conventional static light-load scheme (or a

2.7x per-socket throughput.) Alternatively, CMcloud reduces the number of

service failures by 83% over a static high-load scheme, while even improving

the throughput by 31%.

47

Our work makes the following contributions:

• Novel design. We propose CMcloud, a novel cost-effective mobile cloud

which exploits a performance modeling theory and inter-server migration

capability.

• High performance. CMcloud significantly improves the server through-

put over the conventional static load schemes (e.g., 2.7x per-socket through-

put.)

• Low costs. CMcloud maximizes the server throughput or minimizes the

server costs, while guaranteeing the user-expected offload performance.

• Easy applicability. CMcloud requires only a single reference-machine

profiling to find the most cost-effective server, regardless of its current

utilization.

• Strong results. Our results show that CMcloud can achieve 31% higher

throughput over a heavy-load scheme, while reducing 83% of service fail-

ures.

48

3.1 Backgrounds and Limitations

To motivate our CMcloud platform, this section introduces conventional offload

schemes and their key limitations.

3.1.1 Basic Offload Mechanisms

The recent seminal works on the mobile-to-cloud offloading [2, 3] propose to

run mobile applications on high-performance servers. Even though their de-

tailed implementations can differ based on the code modification scope (e.g.,

user application, kernel,) and the offload granularity (e.g., functions, threads,)

they are generally implemented as follows. First, the cloud provider must have

profiled the target application’s performance and power consumption on both

the mobile device and the target server. Next, on receiving an offload request,

the cloud provider compares the application’s profiled performance on the mo-

bile device and the target server. If any performance improvement is expected,

which is likely to be the case unless the communication latency becomes an ob-

vious bottleneck, the cloud provider offloads the application to the target server,

and moves it back to the mobile device after the user-specified execution region

is completed.

3.1.2 Limitations of Existing Schemes

However, as the existing schemes do not consider the user’s service purchasing

costs nor the cloud provider’s server operation costs, they cannot be applied to

the real-world cloud environments, where the cloud provider aims to maximize

the server throughput or to minimize the server costs and charges the users

based on their cloud resource usage.

Costs of offload services. The existing schemes completely ignore the

costs of offload service by assuming that servers are provided for free and they

49

Chess

FaceDetect

VirusScan

Mobile device Server

FeatureDetect

Bellmanford

Chess

Offloading Utilization

CPU Cache

25% 0.1%

25% 43%

25% 3%

25% 42%

25% 100%

25% 0.1%

(a) Offloading to multiple idle
servers

Utilization

CPU Cache

100% 100%

Mobile device Server

(b) Offloading to a busy
server

0

0.2

0.4

0.6

0.8

1

N
o
rm

al
iz
e
d
 P
e
rf
o
rm

an
ce

User‐expected deadlines

(c) QoS failure due to incorrect
profiling

Figure 3.1 Limitation of the existing mobile-cloud offloading schemes

run only one mobile application or maintain a same static load per server.

Therefore, they always perform offloading as long as any amount of performance

improvement is expected, which is likely to be the case because a lightly loaded

server is available and runs faster than a mobile device. Figure 3.1(a) shows

a typical scenario in which each four-core server accepts only a single offload

request to achieve the highest performance and guarantee the user-expected

performance.

However, the real-world clouds are designed to run as many applications

as possible on each server to maximize the server’s throughput or to minimize

the number of active servers [23]. Therefore, if the existing schemes run only

a small static load per server, the costs of operating the server and thus the

user service fee will be significantly increased, which makes the mobile cloud

computing business infeasible. Figure 3.1(b) shows a scenario in which multiple

offload requests are serviced on a single server with a tradeoff between the server

utilization and the offload performance.

Costs of service failures. To reduce the costs of operating the cloud

and the user service fee, the cloud provider must allow to offload as many

50

mobile applications to each server as possible. However, offloading too many

applications to each server incurs a new challenge in guaranteeing the user-

expected offload performance because multiple applications come to contend

for the sharing server resources such as cores and caches.

We define the number of offloaded applications completing within the user-

expected deadline over the number of all offloaded applications as the offload

service’s quality of service (QoS). It should be noted that even a small QoS

violation is unacceptable in the cloud business, as the users only pay the fee as

long as the expected performance is achieved. Figure 3.1(c) shows a scenario in

which five applications in Figure 3.1(a) are now offloaded to a single four-core

server and all applications fail to complete within the user-expected deadlines.

In this case, five applications contend for four cores and the last-level cache

(LLC) available on the server.

Costs of profiling. The existing schemes assume that performance has

been previously profiled for the target server and the offloading always achieves

the profiled performance. However, this assumption is broken when an appli-

cation is now offloaded to a target server which is running other applications

to reduce the server costs. To enable an accurate performance estimation, the

existing schemes must have profiled for all possible load states of each server.

However, it is unrealistic for the cloud provider to statically profile every ap-

plication for all possible server load states.

51

3.2 CMcloud Offloading

In this section, we first describe CMcloud’s key design goals. Next, we present

its basic operation model and architecture model consisting of three key com-

ponents.

3.2.1 Design Goals

CMcloud must satisfy the following design goals to enable a cost-effective offload

service. First, CMcloud must target a real-world commercial cloud environment,

where servers are highly utilized by running multiple applications per server,

Second, the cloud provider must be able to find the most cost-effective target

server whose remaining resource is just large enough to achieve the target per-

formance, regardless of its utilization. Finally, once an application is offloaded to

the cloud, CMcloud must deliver the user-expected performance by considering

the QoS success as a primary requirement.

3.2.2 Operation Model

Figure 3.2 illustrates how CMcloud performs an offloading once a user agrees

to purchase the offload service. Therefore, the cloud provider now has a target

deadline for each application to be completed by also considering a variation

in the mobile-to-cloud transfer latency. The cloud provider must satisfy the

deadline using the minimum server resources.

(1) Profiling on a reference server. CMcloud chooses a reference-model

server in the cloud which is used to profile all offload-enabled mobile appli-

cations. Any server can be chosen as a reference-model server as long as it is

equipped with a basic set of performance counters. CMcloud profiles the ap-

plication’s execution when the reference-model server is idle, and stores the

information in the profiling DB. It should be noted that the same applications

52

Mobile
device

CMcloud

App state
with deadline

Result delivery
in time

Compute
server

Master
server

Server‐
to‐server
migration

Compute
server

Migration
request

Server
selection

Manager Manager

➑

➏

➍➋

➎

Server
selection

Overview

Profiling DB

Unexpected
contention

➌

Profiling➊

➐QoS & Price
negotiation

➒

Figure 3.2 CMcloud’s example operation model

with different inputs are considered as independent applications, as also pro-

posed by [2, 3]. Section 3.3.1 describes the profiling mechanism in more detail.

(2)–(3) Offloading the application. The user requests an offload service,

agrees on the service fee, and transfers the application with the termination

point and the target deadline. Section 3.2.3 describes CMcloud’s mobile-to-

cloud offload mechanism in more detail.

(4) Selecting a target server. The cloud provider finds the most cost-

effective server to complete the application within the target deadline using the

minimum amount of resources. At this step, CMcloud applies a performance

modeling methodology to estimate the application’s performance on the tar-

get server by differences in server specifications (e.g., clock frequency, cache

size) and load states between the reference-model server and the target sever.

Section 3.3.2 describes the modeling mechanism in detail.

(5) Detecting a QoS failure. While running the application, the target

server monitors the application’s progress to detect a potential failure of com-

pleting the application within the target deadline, due to either an unexpected

53

performance contention or inaccurate performance estimation. Section 3.3.3 de-

scribes the monitoring mechanism in detail.

(6) Migrating to another server. On detecting a potential QoS fail-

ure, CMcloud accelerates the application by migrating it to a faster server.

Section 3.3.3 describes the performance monitoring mechanism in detail. Sec-

tion 3.3.4 describes the server-to-server migration mechanism in detail.

(7)–(8) Migration server selection. Similar to the step (2)–(4), the

cloud provider selects the best target server based on the cost effectiveness and

migrates the application to a new server. The cloud provider can repeat the

steps from (5) to (8) to maximize the server throughput, while satisfying the

QoS requirement.

(9) Completion. On reaching the offload termination point, the applica-

tion is migrated back to the mobile device.

As a result, the user always achieves the expected performance for the paid

service fee, while preserving the mobile device’s battery. At the same time, the

cloud provider can increase the server utilization to reduce both the datacenter

operation costs and the offload service fee.

54

3.2.3 Architecture Model

In this section, we describe our CMcloud architecture, which consists of a single

master server and the rest of servers as compute servers, as shown in Figure 3.3.

Master server. The master server consists of three components: profiling

DB, performance estimator, and target selector. First, the profiling DB contains

the profiled execution information on all offload-enable mobile applications on

the reference-model server. Next, the performance estimator predicts the appli-

cation’s performance on a current candidate target server analyzing the profiled

information on the reference-model server, and differences in server specifica-

tions and utilizations between the reference-model server and the candidate

target server. Finally, the target selector finds the most cost-effective target

server which will deliver the user-expected performance at the minimum costs.

Compute server. The compute server consists of three components: man-

ager, performance monitor, and migrator. First, the manager communicates

with other components and servers by handling requests and replies. Next, the

performance monitor measures the application’s on-going performance to de-

tect a potential QoS failure (i.e., failing to meet the user-requested deadline)

by exploiting the current server’s performance counters and the execution pro-

file stored in the profiling DB. Finally, on detecting a potential QoS failure,

the migrator embedded in the application virtual machine (VM) suspends the

application’s execution, migrates its execution state, and continues to execute

on a new target server.

Offload-ready mobile device The user’s mobile device and operating sys-

tem must be able to offload a mobile application to the cloud. In this work, we

implemented a MAUI-like model as proposed in [2]. For example, the offload

handler predetermines offload-enabled regions as remote-executable methods

55

Target
selector

Performance
estimator

M
an

ager

Application

Performance monitor

App.
VM

Migrator

HW

Hypervisor

Virtual HW
OS

Performance counter

Master server

Compute server –
migration source

Profiling DB

M
an

ager

Application

Performance monitor

App.
VM

Migrator

HW

Hypervisor

Virtual HW
OS

Performance counter

.

Mobile device

Performance estimate
Performance monitoring
Allocation
Migration

Compute server –
migration destination

Figure 3.3 CMcloud’s basic architecture model.

56

(RM). Therefore, the master server must profile the RM methods and store

the profiled information in the profiling DB. Even though we used a MAUI-like

model for this work as it does not require to modify the operating system, CM-

cloud implementation is orthogonal to the mobile-to-cloud offload implementa-

tion. CMcloud focuses on providing the cost-effective cloud platform. Therefore,

CMcloud can be implemented with other mobile-to-cloud offload models.

Network modeling We modeled 3G and Wi-Fi networks between mobile

devices and the cloud using normal distributions of the bandwidth with empir-

ically observed average and deviations. The detailed information is described

in Section 3.4.

3.3 CMcloud Mechanism

In this section, we describe CMcloud operation mechanisms in detail: reference-

server profiling, performance estimation and monitoring, and migration tech-

niques.

3.3.1 Reference-model Server Profiling

The existing offload schemes assume that the offloaded application’s perfor-

mance has been previously profiled for the target server so that they can esti-

mate the application’s post-offload performance before making an offload de-

cision. However, if the target server runs different sets of applications from

the profiling time, which is the basic operation model of CMcloud, the existing

schemes must perform an unbounded number of profiling processes for all kinds

of different utilization status even for a single server.

On the other hand, CMcloud still performs a static profiling on a single

reference-model server, which can be later translated to the performance for

a different target server running any combination of applications. To enable

57

such performance estimation, CMcloud collects the following statistics on the

reference-model server using HW performance counters and a memory access

tracer.

• CPI stack. Execution time breakdown to each performance bottleneck

component (Section 3.3.2.)

• Temporal locality information.Memory access patterns affecting cache

hit and miss rates (Section 3.3.2.)

• Runtime progress. Performance progress information collected per sec-

ond (Section 3.3.3.)

CMcloud can choose any machine equipped with basic performance counters

as a reference-model server. However, as our performance modeling assumes

that the server’s pipeline microarchitecture (e.g., branch predictor, issue or-

der) is maintained, CMcloud must profile an application on all reference-model

servers representing unique pipeline microarchitecture families (e.g, one refer-

ence machine for all Sandy Bridge family processors.) Other than the pipeline

structure, CMcloud does not require extra profiling due to different clock speeds

or different sizes of last-level caches (LLC). More importantly, CMcloud does

not require extra profiling due to different server utilization status. Therefore,

CMcloud’s static profiling overhead is much smaller than that of existing offload

schemes [2, 3] required to estimating the post-offload performance when severs

are highly utilized.

3.3.2 Performance Estimation

In this section, we explain how CMcloud estimates the performance for a dif-

ferent server with different utilization, based on the profiled information using

the reference-model server.

58

Reference'Machine'
(Sta/c'Profiling)'

Target'Machine'
(Es/ma/on)'

Performance'
modeling'

MEM'

LLC'

BASE'

MEM'

LLC'

BASE'

LLC'misses'↑'

'LLC'hits''↓'

Cy
cl
es
'P
er
'In
st
ru
c/
on

'(C
PI
)'

(a) Performance estimation using CPI
stack

Profiling DB
Reference

Model Profiling

Performance
Estimator

HW Spec
(Freq, Cache, …)

Server Status
(# of apps, progress, …)

Mobile
Application

MEM

LLC

BASE

MEM

LLC

BASE

Estimated
CPI stack

<Profiling for the reference node>

<Estimation for the target node>

(b) Performance estimation process

Figure 3.4 CMcloud’s performance estimation process using architecture per-
formance modeling

Performance Analysis using CPI Stack

CPI stack [24, 25] is a performance analysis tool widely used to understand how

much each performance losing events (e.g., cache miss, branch misprediction)

contributes to the overall performance. As cycle-per-instruction (CPI) explains

how many cycles are spent to execute a single instruction on average, it is

possible to separate the different impacts from different bottlenecks. If the CPU

experiences performance losing events such as a cache miss, the final CPI can

be obtained by adding the ideal CPI and the extra CPI caused by the cache

miss. Therefore, if we are aware of how each event’s CPI impact would change

on a target architecture, it is possible to construct a target CPI, as shown in

Figure 3.4(a).

Estimation for different idle servers

CMcloud applies the CPI stack method to predict the target application’s post-

offload performance on a target server, using the profiled performance on the

reference-model server. CMcloud first takes the CPI stack collected on the

reference-model server, analyzes how key performance losing events will change

59

on a target server, and constructs a new CPI stack to measure the post-offload

performance, as shown in Figure 3.4(b).

In this work, CMcloud focuses mainly on four performance impact factors,

CPU frequency, LLC hit, LLC miss, and store buffer full, because the number

of memory instructions and LLC miss rates affect the overall performance most

significantly. Even though we consider only four major performance factors

in this work, CMcloud can apply more fine-grain bottleneck components as

proposed in [25, 26, 27, 28].

Once such CPI stack becomes available, CMcloud can estimate the per-

formance on a target server by adjusting the impact of each CPI stall event

as follows. First, CMcloud breaks the overall CPI down to a combination of

four sub-CPI events (i.e., ideal latency (base), last-level cache hit (llc), memory

access (mem), store buffer full (sfull)) as follows.

CPI = CPIbase + CPIllc + CPImem + CPIsfull (3.1)

Next, CMcloud measures CPI adjusting factors, CPIratio,mem, CPIratio,llc, and

CPIratio,sfull. The factors are used for adjusting the corresponding CPI event

for the target server.

If the CPU clock frequency of the target machine is different from that of

the reference server, both CPIllc and CPImem are scaled for the target CPU. If

the target server’s memory access latency is different from that of the reference

server, the ratio is applied to CPImem as well.

Freqratio = Freqtarget/Freqref

CPIratio,llc = LLC Hitratio × Freqratio

CPIratio,mem = LLC Missratio × Freqratio × Latratio

(3.2)

where Freq is a CPU clock frequency, Lat is a memory access latency, and

LLC Hit and LLC Miss are the number of LLC hits and misses, respectively.

60

A!set i!
time!

reuse distance of A: 4!

B! D! C! B! A!

Figure 3.5 An example reuse distance of four for A.

However, it is difficult to estimate the number of LLC hits and misses,

when cache architectures differ between the reference server and the target

server. To address the issue, we assume that the size of an LLC differs by the

degree of associativity and its cache block replacement policy is based on a LRU

policy. In fact, as modern LLCs exploit variations of index hashing mechanisms

to effectively increase the degree of associativity, even caches scaled by the

number of sets show similar hit and miss patterns as the caches scaled by the

associativity.

To discover the application’s temporal locality, we leverage the reuse dis-

tance (RD) analysis[29], in which RD is the number of distinct and different

memory accesses between two consecutive references. Figure 3.5 shows an ex-

ample reuse distance of four between two consecutive memory accesses to A.

To collect the reuse distances, we use our memory tracing scheme implemented

in the QEMU emulator.

With the LLC scaling and the reuse distances available, LLC hit and miss

rates can be estimated for differently sized LLCs. For example, when the LLC’s

associativity increases from x to y, the number of LLC misses decreases by∑y
n=x+1CRD=n where CRD=n is the number of accesses with the reuse distance

61

of n. Therefore, LLC Missratio can be calculated as follows:

LLC Missratio = 1±
y∑

n=x+1

CRD=n/LLC Missref (3.3)

Finally, the penalty caused by the store buffer full depends on some factors

including the issue width (W), in-flight store instructions, memory latency and

clock frequency. Frequent LLC misses of store instructions can incur a high

penalty by filling up the store buffer, which stalls the entire piepline. We es-

timate such store buffer full cycles using the measured CPIsfull and average

store instructions per cycle. We approximately calculate the changed penalty

of store buffer full event as follows.

CPIratio,sfull = 1 +
Freqratio × Latratio − 1

W ×%stores
(3.4)

By combining equations for each CPI event, we obtain the final target CPI

estimation model for different, but idle target servers:

CPItarget = CPIbase +
∑

(CPIratio,event × CPIevent) (3.5)

62

Estimation for Different Utilization

In highly utilized cloud environments, each server is highly utilized to achieve

the maximum throughput, and thus it will be difficult to find an idle target

server for offloading. If an application is offloaded to a target server currently

running other applications, the available CPU clock cycles and LLC capacity

will be smaller due to the resource sharing among applications. To calculate

the available clock cycles with a core contention, we simply scale the baseline

frequency down by the number of applications. We assume that all applica-

tions are evenly scheduled with same priorities. If the operating system applies

different priorities, this method can be easily adjusted to consider the relative

weights as cycles available.

In addition, to estimate the miss rates of the LLCs experiencing a con-

tention, we exploit the miss rate estimation model as proposed in [30]:

LLC Misses = CRD>A +
A∑

x=1

Pmiss(x)× CRD=x (3.6)

where A is the LLC’s associativity, CRD=x is the number of accesses with the

reuse distance of x, and Pmiss(x) is the possibility of miss for the access with

the reuse distance of x.

Pmiss depends on which applications are co-located in the same server. This

estimation requires the histogram information such as per-application reuse

distances. In our work, as the phase of each application varies over time, we

collect the information periodically (e.g, one billion instructions.) Then, we

adjust the LLC miss estimation model by considering progresses of background

applications in the server where a new application is offloaded.

Once such information becomes available, we apply the modified frequency

and miss information to the formulas developed in the Section 3.3.2.

63

3.3.3 Performance Monitoring

In this section, we describe CMcloud’s performance monitoring mechanism. The

monitoring mechanism detects the applications’ potential QoS failure caused

by either an incorrectly estimated post-offload performance or a resource con-

tention in the servers.

Performance Evaluation

The performance monitor shown in Figure 3.3 exploits hardware performance

counters to check the progress of the target application. Our implementation

collects the million instructions per second (MIPS) of each application using a

modified version of perf [31]. Based on the performance estimation model de-

scribed in Section 3.3.2, the performance is periodically measured and compared

as the number of retired instructions for the given period (e.g., one second.)

QoS Violation Detection

The performance monitor detects a QoS violation as follows. First, as CM-

cloud profiles applications only on a single idle reference-model server, the per-

formance monitor estimates the expected performance on the current target

server using the model described in Section 3.3.2. Next, the performance moni-

tor periodically compares the application’s target MIPS and the profiled MIPS.

Figure 3.6 describes the QoS violation detection method as follows:

(1) Determine a comparison period. The performance monitor deter-

mines a small period of region (e.g., three past seconds) to compare the MIPS.

We use few-second comparison periods to tolerate sudden fine-grain perfor-

mance variations.

(2) Find the same period for the expected progress. The performance

monitor finds the corresponding period from the expected progress, and then

64

Determine a comparison period➊

Obtain remaining timeFind the corresponding
period

➌➋

➍ Estimate the
completion time

Time
Deadline

Detect a potential QoS failure
if deadline < completion time

➎

Instruction i Instruction i+k

Estimated performance

Monitored performance

Figure 3.6 Performance monitoring.

measures the relative performance difference during the period.

(3) Obtain the original completion time. The performance monitor

computes the time spent to complete the application based on the originally

estimated post-offload performance.

(4) Compute the newly expected completion time. By applying the

relative performance difference between the expected post-offload performance

and the currently monitored performance, the performance monitor can esti-

mates the application’s expected completion time.

(5) Detect a QoS failure. The performance monitor can now detect a

potential QoS failure by comparing the newly expected completion time against

the target deadline agreed between the user and the cloud provider.

3.3.4 Migration

On detecting a potential QoS failure, CMcloud guarantees the application’s QoS

requirements by migrating the corresponding applications to a faster server. The

migrator shown in Figure 3.3 performs a low-cost live VM migration.

Destination selection. On detecting a QoS failure, the migrator must find

a right destination server. When a migration request is forwarded to the target

selector, the target selector finds a right destination node using the performance

65

estimator, as described in Section 3.3.2. The performance estimator exploits not

only the status of each server (e.g., the number of active cores, current server

utilizations,) but also the application-specific information (e.g., the number of

retired instructions, the elapsed run time.)

Performance overhead.Migration can incur non-trivial performance over-

head when the large amount of data is transferred over the network. Therefore,

CMcloud performs fast inter-server live migrations to minimize a downtime. We

assume that servers already contain key application binaries to avoid migrating

binaries.

3.3.5 Cost-aware Application Scheduling in Cloud

To minimize the datacenter operation costs, CMcloud targets to improve server

utilizations, while maintaining only a smallest number of active servers in the

cloud. To achieve the goal, CMcloud first starts with a small number of nodes

and populates the small pool with offloaded applications. Next, on receiving

a mobile-to-cloud offload request, the performance estimator collects the esti-

mated performance from the servers. Using this information, the target selector

finds the most cost-effective server whose remaining resources are just enough

to satisfy the agreed post-offload performance. If the target selector cannot find

such server, a new server is activated and added to the current pool of active

servers.

66

Table 3.1 CPUs used for tests.
Processor Frequency Cache Size

Reference Intel Core i7-930¶ 2.80 GHz 8 MB
Intel Core i7-2600‡ 3.40 GHz 8 MB

Target Intel Xeon X5650¶ 2.66 GHz 12 MB
Intel Xeon E5-2630‡ 2.30 GHz 15 MB
Intel Xeon E5-2670‡ 2.60 GHz 20 MB

¶Nehalem (Westmere) processor
‡Sandy Bridge processor

3.4 Evaluation

In this section, we first explain our evaluation platform and workloads, and

next evaluate CMcloud’s accurate performance modeling and its overall cost

effectiveness.

Server platform. Our datacenter consists of eight server nodes connected

with 10Gbps network, where each server has two CPU sockets. All servers

run Ubuntu 12.04 64-bit with Linux Kernel 3.5.0 and KVM [22] with qemu

1.4.0. The KVM release supports both hypervisor and users to access low-level

performance counters. To support offloading between mobile phones and x86

severs, we use Android-x86 [32] VMs to run an Android application on a server.

Table 3.1 lists CPU architectures used as reference-model and target servers.

We use reference models for different pipeline micro-architecture CPU fami-

lies (e.g., Nehalem, Sandy Bridge) to avoid inaccurate performance estimation

across different micro-architectures. As a result, we use two unique reference

CPU models in this work because the target servers use one of the pipeline

architectures, but differ in the clock frequency and the cache size.

Network. We modeled a Wi-Fi network using a normal distribution of

the bandwidth with empirically obtained 18.5Mbps average and a 3.5 standard

deviation. Each offload request obtains a unique bandwidth following the distri-

67

Table 3.2 Workloads (in i7-2600.)
Execution Total LLC LLC

time insts refs/sec misses/sec
Chess 26.0 s 126 B 1.2 M 0.1 M
FaceDetect 38.0 s 203 B 17.9 M 5.3 M
VirusScan 74.5 s 503 B 1.0 M 0.6 M
FeatureDetect 41.7 s 222 B 13.9 M 4.8 M
Bellmanford 147.7 s 508 B 24.1 M 6.0 M

bution. We modeled both 3G and Wi-Fi networks, but used Wi-Fi environments

to focus more on the sever-side performance for evaluation. CMcloud can be

equally applied to 3G network as well.

Workloads. We implemented five real-world mobile applications listed in

Table 3.2. We carefully selected these workloads for the reasonable execution la-

tency, while they contend for the shared resources (e.g., last-level cache.) Chess

calculates the latency for a computer to find the next move, FaceDetect and

FeatureDetect identify human faces and various features from a given image,

VirusScan compares 1K virus signatures with 1GB of cloud data, and Bellman-

ford finds a shortest path based on a NY-city map. To support offloading, we

modified these workloads as proposed in [2]. We also applied Native Interface

(JNI) to evaluate memory-intensive workloads.

Clients. We modeled clients as an inflow of offloading requests based on

Poisson distribution with 30 requests per minute for the 16-socket cloud. To

finish 30 applications per minute, we configured the application ratio as Chess

(19.2%), VirusScan (9.7%), FaceDetect (32.3%), FeatureDetect (32.3%), and

Bellmanford (6.5%.)

68

0

0.3

0.6

0.9

1.2

E5
‐2
63

0

E5
‐2
67

0

X5
65

0

E5
‐2
63

0

E5
‐2
67

0

X5
65

0

E5
‐2
63

0

E5
‐2
67

0

X5
65

0

E5
‐2
63

0

E5
‐2
67

0

X5
65

0

E5
‐2
63

0

E5
‐2
67

0

X5
65

0

Chess FaceDetect VirusScan FeatureDetect Bellmanford

N
or
m
al
ize

d
pe

rf
or
m
an

ce

Real CMcloud Freq

(a) Idle server

0

0.3

0.6

0.9

1.2

E5
‐2
63

0

E5
‐2
67

0

X5
65

0

E5
‐2
63

0

E5
‐2
67

0

X5
65

0

E5
‐2
63

0

E5
‐2
67

0

X5
65

0

E5
‐2
63

0

E5
‐2
67

0

X5
65

0

E5
‐2
63

0

E5
‐2
67

0

X5
65

0

Chess FaceDetect VirusScan FeatureDetect Bellmanford

N
or
m
al
ize

d
pe

rf
or
m
an

ce

(b) Busy server running the five background
jobs

Figure 3.7 Accuracy of the performance prediction.

3.4.1 Estimating Target CPU Performance

We first evaluate the accuracy of the proposed performance estimation method

using idle target servers by with the reference-model profiling described in Sec-

tion 3.3.2. Figure 3.7(a) compares the estimation accuracy between the real per-

formance obtained on the target server and the estimated performance of CM-

cloud. The x-axis indicates three target-server runs for six workloads, whereas

the y-axis shows the performance normalized to the reference machine as shown

in Table 3.1. Real bar indicates the actual post-offload performance, while CM-

cloud bar indicates the predicted performance. The results indicate that CM-

cloud predicts the performance of idle target servers with the average error of

only 2.9%. Freq bar indicates the performance only when the CPU frequency

is considered for the estimation, which leads to the average error of 10.3%.

Next, we repeat the same experiments when each target server runs a group

of five baseline applications in background. Figure 3.7(b) indicates that CM-

cloud’s performance estimation is also accurate even for the highly utilized

target servers. The results indicate that CMcloud predicts the performance of

busy target servers with the average error of only 5.3%, compared to the 13.4%

error of the frequency-only estimation.

69

0
100
200
300
400
500
600

1 core/socket
(17% load)

3 cores/socket
(50% load)

5 cores/socket
(83% load)

Freq. scaling
(no migration)

Freq. scaling CMcloud
(no migration)

CMcloud

Static allocation Dynamic allocation

of
 Q
oS

‐g
ua

ra
nt
ee
d
ap

ps

in
 1
6‐
so
ck
et
 c
lo
ud

QoS‐success QoS‐failure Service Denial

Figure 3.8 Datacenter throughput (out of 500 requests.)

3.4.2 Cost Effectiveness with QoS Requirements

This section evaluates the cost effectiveness of CMcloud by analyzing the im-

proved server throughput and reduced server costs.

Improved server throughput. Figure 3.8 compares the performance and

costs of CMcloud against conventional static server allocation schemes. The X-

axis lists seven target server allocation schemes: three static allocation schemes

and four dynamic allocation schemes including CMcloud. For static allocation

schemes, we configured the cloud provider to assign only one application to each

socket (17% load,) three applications to each socket (50% load), and five applica-

tions to each socket (83% load.) For dynamic allocations schemes, we evaluated

a frequency-only estimation model and CMcloud with/without intra-server mi-

gration capability. The Y-axis shows, among 500 offload requests, the number of

requests successfully completed within the user-agreed deadline (QoS-success)

for the entire cloud, the number of requests violating the deadline (QoS-failure,)

and the number of requests turned down by the cloud due to insufficient servers.

Among the static allocation schemes, the 17% load scheme shows the lowest

per-socket throughput by utilizing only one core per 6-core socket. The 17%

load rejects almost half of the requests due to insufficient servers. On the other

70

0

4

8

12

16

0 250 500 750 1000

o
f
u
se
d
 s
o
ck
et
s

Time (s)

1 core/socket

3 cores/socket

5 cores/socket

CMcloud

Figure 3.9 Datacenter utilization (out of 16 sockets.)

hand, the 83% load scheme achieves 75% server throughput, while 25% of work-

loads fail to complete within the deadline. Even though the 50% load shows the

maximum throughput in return of 50% server efficiency, this sweet spot will

change for different workloads. Therefore, considering the server underutiliza-

tion and the QoS failure are unacceptable for the cloud business, the static

allocations cannot be applied as a cost-effective offload scheme.

Among dynamic allocations, CMcloud achieves almost the ideal throughput

and even CMcloud without migration capability outperforms two frequency-

only estimation models. The result shows that CMcloud improves the server

throughput by 84% over the 17% load scheme. Compared to the 83% load

scheme, CMcloud reduces the number of service failures by 83%, while even

improving the throughput by 31%. The results also show that both the per-

formance modeling and inter-server migration of CMcloud contributed to the

improved server throughput separately.

Reduced server costs. Figure 3.9 shows the number of sockets running

applications for the first 1000 seconds. In this experiment, we evaluate the server

costs of CMcloud against three static load schemes. As expected, the higher-

load allocation policies utilize a smaller number of sockets than lighter-load

71

0
10
20
30
40
50
60

1 core/socket
(17% load)

3 cores/socket
(50% load)

5 cores/socket
(83% load)

Freq. scaling
(no migration)

Freq. scaling CMcloud
(no migration)

CMcloud

Static allocation Dynamic allocation

of
 Q
oS

‐g
ua

ra
nt
ee
d
ap

ps

pe
r s
oc
ke
t

QoS‐guaranteed apps / socket

Figure 3.10 Per-socket cost effectiveness.

allocation policies. However, CMcloud only activates the minimum number of

sockets by maximizing the throughput, as long as the QoS of applications is

not violated. Considering the CMcloud’s high throughput shown in Figure 3.8,

it is clearly shown that CMcloud consistently operates at lower costs than the

13% and 50% static allocation schemes.

Cost effectiveness. Considering the improved throughput and reduced

server costs of CMcloud, Figure 3.10 compares the cost effectiveness of CM-

cloud against the static allocation schemes. In this figure, we measure the cost

effectiveness of the number of applications successfully completed within the

deadline per socket, which indicates each socket’s cost effectiveness. The results

show that CMcloud outperforms all schemes significantly. CMcloud provides

a 2.7x higher per-socket throughput over a static light-load scheme (i.e., 17%

load.) It should be noted that the relatively high cost-effectiveness of high-load

static allocation policy (i.e., 83% load) comes with many QoS failures. On the

other hand, CMcloud does not incur unacceptable QoS failures as shown in

Figure 3.8.

72

Table 3.3 Offloading overheads.
Monitoring Migration Profling
overhead downtime overhead

Chess 1.58% 45 ms x150
FaceDetect 0.14% 21 ms x127
VirusScan 4.15% 14 ms x180
FeatureDetect 0.71% 12 ms x124
Bellmanford 3.66% 50 ms x136

3.4.3 Offloading/migration Overhead

Table 3.3 shows the overhead of performance monitoring, inter-server migration,

and reference-model profiling. Both monitoring and profiling overheads are nor-

malized to the execution latency without profiling. The monitoring overhead is

small and thus shown in percentage.

Once applications are offloaded to servers, CMcloud must monitor all ap-

plications to detect the potential QoS violations and trigger server-to-server

migrations to improve the performance. We use KVM’s native live migration

method, which can migrate an application paying only the minimum perfor-

mance loss. By modifying the KVM’s live-migration source code, we measure

the latency from when the VM stops at the source node to when it restarts

at the destination node. Table 3.3 shows that both monitoring and migration

overheads are minimal.

The static profiling can take a long time as it includes the reuse distance

analysis obtained by QEMU emulator. However, it is only a one-time overhead

paid by the cloud provider and the overhead is not exposed to users. Moreover,

CMcloud requires only a single reference-machine profiling, regardless of its

current utilization. It should be noted that a similar kind of static profiling is

also required by the existing seminal works[2, 3]. Many proposals to reduce the

profiling overhead has been proposed, which is orthogonal to our work.

73

3.5 Related Work

In this section, we discuss previous work related to CMcloud in the areas of

dynamic offloading, performance prediction, performance monitoring, and mi-

gration.

Dynamic offloading. MAUI [2] and CloneCloud [3] allow users to exe-

cute a mobile application on a cloud. However, these schemes are not suitable

for the real-world cloud environment due to the lack of the QoS guarantee of

applications and a cost model [33, 34]. ThinkAir [19] proposes an on-demand

resource allocation for user-side cost and parallel method execution of a mobile

application for the QoS guarantee, but focuses on one automatically paralleliz-

able application instead of simultaneous execution of several applications. In

the previous chapter, I focus on reduction in migration overhead by transfer-

ring only essential heap objects. In this chapter, Instead, our scheme targets to

mobile cloud computing for simultaneous execution of several applications, the

QoS guarantee of applications, and minimization of server cost.

Performance prediction. In heterogeneous multi-core systems, PIE [35]

and Regression analysis [36] estimate the performance of other cores and as-

sign an appropriate application to an optimal core. These schemes assume that

caches have the same size and there is no resource contention. Bubble-Up [37]

and Bubble-Flux [38] guarantee QoS of a latency sensitive application. How-

ever, the former performs many sensitivity tests with various memory pressures

in advance, and the latter does not allow co-location of multiple latency sensi-

tive applications. Mantis [39] can automatically estimate the application per-

formance on various inputs by extracting features related to the performance

from an application. For an application with different inputs, we can apply this

technique to reduce inaccuracy of profiling.

74

Performance monitoring. Many researches [40, 41] widely use resource

monitoring to detect performance interference. Perf [31] and Oprofile [42] mon-

itor the system resource usage of each application through hardware perfor-

mance counters. Pin [43] and Valgrind [44] measure what kinds and how many

instructions are executed through dynamic instrumentation.

Migrations. Cloud systems migrate VMs to another server for guaranteeing

QoS and improve cost effectiveness of clouds. To reduce the downtime of VMs,

we adopt Pre-copy [45] as a live migration scheme. We can adopt other live

migration schemes [46, 47].

75

Chapter 4

Application-Specific Execution
Offloading for 3D Video Games

In this chapter, we propose our novel offloading approach to enable execution

offloading for 3D video games. First, we adopt streaming based techniques into

our offloading framework to reduce the data transfer cost of rendering functions.

When the rendering functions are being offloaded continuously, the resulting

images are streamed to the mobile and only the newly-update application states

like the user inputs are transferred to the server. As a result, our framework

effectively offloads rendering functions and successfully guarantees quality of

service (QoS) of 3D video games in terms of execution time. We also introduce

live offloading, which allows transferring the current application state before the

remote execution actually begins, to make our offloading framework even more

effective for better user experience. The manipulated application state during

the remote execution is also returned before the remote execution is finished.

With live offloading, we can hide the large data transfer cost at the beginning

and end of remote execution; it prevents that such a large data cost enlarges

76

response time and degrades user experience.

4.1 Background and Motivation

4.1.1 Background

The goal of execution offloading is to overcome the lack of computational re-

sources of SMDs by “offloading” the computations of mobile application from

SMDs to nearby resource-rich powerful server or cloud. In order to achieve this

goal, it dynamically predicts two performance metrics, offloading profit and

offloading cost, for each remotely executable method (REM) of a target ap-

plication. The offloading profit of a method means an expected gain obtained

by offloading the method to the remote server, in terms of execution time and

energy consumption. The offloading cost of a method is roughly divided by two

factors, data transfer cost and runtime cost.

To actually execute a certain method remotely, the current application state

should be transferred to the server and the result of the method should be also

returned to the SMD as explained in Chapter 1. The data transfer cost is an

required cost to transfer the state and result over mobile network. The runtime

cost is caused by the offloading process, which is an execution sequence to actu-

ally run the method on the server. The offloading process occurs if and only if

the method is profitable; which means that the offloading profit of the method

is larger than the offloading cost, so the act of offloading the method guaran-

tees the performance enhancement. Based on this strategy, execution offloading

effectively improves the performance of mobile applications by making use of

resource-rich servers in their proximity.

Figure 4.1 shows an example of the whole offloading process at run time.

When a REM of the target application is just called (1), the offloading frame-

work checks the decision for the REM (2). Then the current application state is

77

Target
Application

Clone
Application

Solver

(2)(*)

(4)

Mobile Device
VM0

Remote Server or Cloud

...

VMN
Profiler

(3)

(6)
(5)

(1)

(7)

Figure 4.1 An example of the runtime offloading process.

captured and transferred to the remote server (3)(4). After the remote execu-

tion is finished, the modified state is also captured and returned to the mobile

device (5)(6). Finally, the offloading framework merges the returned state and

resumes the target application(7). Separately to this process, the solver period-

ically generates the decisions for each REM based on the runtime performance

factors (*).

4.1.2 Motivation

In execution offloading, the overall performance enhancement depends on how

many REM is actually offloaded to the remote server. In other words, the num-

ber of profitable REM affects the performance of execution offloading. It is also

important that how much gap exists between the offloading profit and cost of

each profitable REM. As the offloading profit exceeds the offloading cost much

more, execution offloading can also improve the performance of mobile appli-

cation even more. For maximizing the performance enhancement via execution

78

offloading, therefore, it is necessary to make each REM profitable as many as

possible by reducing their offloading cost. In Chapter 2, I already explained how

this goal could be achieved by reduced the data transfer cost of REM based on

compiler code analysis.

As shown in prior works [2, 3, 48], the offloading strategy and optimizations

about the offloading profit and cost are very effective for usual applications in

most cases. For 3D video game1, unfortunately, we have observed that they do

not apply all the time. It is because of rendering functions, which are one of the

time-consuming key functions of 3D video game. Because rendering functions

generate a stream of images continuously at run time, their offloading cost is

quite large. For example, almost 70 megabytes of images are generated in a

second where the video game runs at 30 frame rates, 10 bits color depth on

1280 * 720 resolution. In this case, the offloading framework should pay the

large data transfer cost to return back the image stream from the server to the

mobile, until the remote execution is over. Such a large cost make rendering

functions unprofitable, even though those functions could benefit from powerful

GPU and other computational resources equipped in the remote server. To fully

maximize the performance enhancement by execution offloading on 3D video

games, therefore, it is needed to make rendering functions profitable by reducing

their large data transfer cost.

1The reason why we chose 3D video games as our target application is already explained
in Chapter 1.

79

Renderer resizerdecoderoffloader

data

profilesolver
decision

Offloading Framework
Game

Application

Mobile Device

Figure 4.2 A streaming-based offloading framework.

4.2 Application-Specific Execution Offloading

In this section, we explain our offloading framework and optimization techniques

that enable execution offloading for 3D video game.

4.2.1 Offloading Framework for Reducing Data Transfer Cost

In execution offloading for 3D video games, the most important design goal is

to make rendering functions be profitable. To achieve this goal, we designed

a streaming-based offloading framework which successfully reduces the data

transfer cost of rendering functions. Figure 4.2 shows our offloading frame and

how it works.

Our framework consists of not only basic offloading modules for typical

methods but also dedicated modules, such as a decoder and resizer, for rendering

related methods. We define rendering related method (RRM) as a method whose

output is a complete image. In offloading process, the dedicated modules focus

on reducing the data transfer cost of each remotely executable RRM. When the

framework decides to offload any RRM based on runtime performance factors,

80

the application state needed for the RRM is captured and transferred to the

server through a communication specific module called offloader. The server

returns its output image to the mobile device after the remote execution of the

offloaded RRM is finished. At this moment, the output image is compressed

to lighten the data transfer cost; the decoder in the mobile device decompress

the returned image and pass it to the resizer. The resizer resizes the passed

image to fit it into the display resolution of the device. Finally, the renderer in

the target application shows the resized image to the user instead of rendering

its own image. During the whole offloading process, each module periodically

reports its execution time as a performance factor to the solver. The solver

uses the factors to make offloading decisions, together with another runtime

performance factors like the network latency.

The modules in Figure 4.2 including the dedicated modules for RRMs are

implemented as an independent thread, to simultaneously deal with multiple

images if the remote execution of RRM is being maintained continuously. Our

framework also transmits the newly updated application state only in the case

of such a continuous remote execution. When the offloading process capture the

application state for RRMs, it compares the state to the latest one and transfers

the difference only. Usually, the user input is the difference in 3D video games.

By transmitting the user input only, our framework decreases the data transfer

cost of RRMs even more as the remote execution continues further2.

Note that our dedicated modules works only for RRMs. Similar to MAUI

approach, typical offloading process is launched for typical methods which does

not produce any images. The application developer can distinguish between

RRMs and normal methods by wrapping their RRMs with pre-defined method

2This strategy has been introduced by MAUI first. Streaming gaming also transmits the
user input only at run time.

81

class Framework {
Offloader offloader();
Decoder decoder();
Resizer resizer();
Solver solver();

Framework() {
offloader.start();
decoder.start();
resizer.start();
solver.start();

}

render’() {
switch(status) {

case standalone:
render_local();

case offload:
render_remote();

}
}

}

class Interface {
/* user defined methods */
render_local()
gameData_serialization();
gameData_deserialization();
gameInput_serialization();

}

class GameLoop extends Screen {
Framework framework;
GameLoop() {

…
framework = new Framework();

}

render() {
/* original code */
framework.render();

}
}

Figure 4.3 Code example for application developer.

signature. Besides, the developer can optimize the offloading process by writing

their own serialization and de-serialization method for the application state.

Figure 4.3 shows a simple code example to use our framework. Inside the game

class GameLoop in Figure 4.3, the original rendering method render is replaced

by the method render’, which is a wrapper method of render. By calling

render’ instead of render and importing the framework class Framework, our

offloading framework can be easily adopted into the target application. The

developer can also implement Interface class to optimize the offloading process

even more, by writing their own serialization and de-serialization method.

82

4.2.2 Live Offloading to Guarantee QoS

In the previous subsection, we describe how our offloading framework reduces

the data transfer cost of RRMs with streaming-based remote execution. Al-

though these techniques successfully reduces the data transfer cost in the mid-

dle of remote execution, unfortunately, large amount of application state is still

transferred at the beginning and end of remote execution. In execution offload-

ing, all of application state (or data) resides in the mobile device basically while

the data is hosted on the server in streaming gaming. Therefore, the application

state needed to run any method should be inevitably transferred to the server

before the remote execution starts, as we explained in Section 4.1.1. If the size

of such application state is large enough for any remote execution, the runtime

overhead to transfer the state fugitively degrades QoS of the remote execution

even though the overall offloading cost exceeds the offloading cost.

To tackle this problem, we propose live offloading that allows transmit-

ting the application state needed for remote execution in advance. Instead of

transmitting the application state after the local execution is suspended, we

simultaneously transfer the state while the local execution is still running. To

implement live offloading, we add new execution phases called warm up and cool

down to our execution model. Figure 4.4 represents a diagram of the execution

phase cycle for target application with live offloading.

When the performance of a target application is near to the ‘boundary per-

formance’, which is a performance border between local and remote execution,

the new execution model changes its execution phase from the stand-alone (or

mobile-only) phase to the warm up phase first, instead of starting the remote

execution directly. In the warm up phase, the application state is transferred

to the server in parallel with the local execution. The actual remote execution

83

Offloading

Stand
alone

Warm
Up

Cool
Down

isOffload == true

isOffload
== false

isOffload
== false

serverReady == false &&
isOffload == true

serverReady == true &&
isOffload == true

isOffload == true

isOffload
== false

deviceReady
== false

deviceReady
== true

Figure 4.4 An execution phase cycle of live offloading.

84

can be started only after the transmission of the application state is completed

so the remote execution is available. The runtime procedure of the cool down

phase is almost similar to the warm up phase; the updated application state

is transmitted to the mobile device before the remote execution is finished yet.

Finally, the target application runs locally again after the cool down phase is

over. One of the concerns of applying live offloading is that the application state

updated in the warm up and cool down phase could be missed. To explain this,

let assume that the application state at the beginning of the warm up phase

is S1 and the state at the end of the phase is S2. The latest state S2 could be

differ from the captured state S1, which is also transferred to the server, ac-

cording to whether the local execution updates its state in the warm up phase

or not. If the offloading framework does not adjust the difference between S1

and S2 appropriately, the remote execution may cause semantic inconsistency,

which is the case when the result of remote execution is different to mobile-only

execution’s [48], due to the out-of-date state S1. In 3D video games, especially,

such a semantic inconsistency problem leads to a serious degradation of user

experience; the users may immediately notice that their inputs are not reflected

to the game play, and that may also make them very uncomfortable even if the

warm up or cool down phase continues for a just few seconds.

To prevent the semantic inconsistency problems caused inadvertently by

live offloading, we store the accepted user inputs into a dedicated queue, called

‘input queue’, in the warm up phase. After transmitting the captured applica-

tion state, our offloading framework starts to dequeue an input from the input

queue and transfers it to the server, until the the queue is empty. The warm

up phase is also over at this moment. Since only a few milliseconds are needed

to transfer a single input and the number of the input accepted in a second is

limited, fortunately, the duration of the warm up phase is just a few seconds

85

in most cases. Similarly, the user inputs transferred in the cool down phase

are simultaneously stored into the input queue, and updated to the returned

application state right after the state is arrived to the mobile device. Based on

these techniques and live offloading, we successfully prevent that the large data

transfer cost and the unexpected semantic inconsistency problems degrade user

experience on our offloading framework.

4.3 Evaluation

We built our framework and optimization techniques based on libGDX [49],

a open source multi-platform Java game development framework. Most of our

framework is written in traditional Java language and only some computation

intensive parts are implemented by using Java Native Interface (JNI). As our

benchmark application, we chose one of the 3D demo games provided by libGDX

and built two different versions of the benchmark for both Android and Intel

x86 architecture. For the smartphone and server, we chose a Galaxy Nexus with

dual-core 1.2 Ghz CPU and 1 GB of RAM and a quad-core desktop with a 3.1

GHz CPU and 8 GB of RAM running Ubuntu 11.10.

Figure 4.5 compares the performance result of two game plays of our bench-

mark with and without execution offloading, in terms of frames per second

(FPS). From 100 objects initially, we increased the number of the objects in

each play by 100 objects for every five second to drop the performance of the

benchmark artificially in this evaluation. As a result, the FPS of the mobile-

only play, represented as a dashed blue curve, dropped under 10 FPS in the

end. For the play with execution offloading, by contrast, the remote execution

was started around 17 second so the FPS of the play was stabilized above 20

FPS as depicted in a red curve. It was possible to achieve such an impressive

enhancement by not only simply offloading the RRMs to the server, but also

86

The remote
execution starts

0

10

20

30

40

50

60

70

1 6 11 16 21 26 31 36 41 46

Fr
am

es
 p

er
 s

ec
o
n
d
 (

FP
S)

Time (second)

Mobile-Only

With Execution Offloading

Figure 4.5 The performance result of two game plays with and without execution
offloading.

0

500

1000

1500

2000

2500

3000

1 6 11 16 21 26 31 36 41 46

En
er

g
y

C
o
n
su

m
p
ti
o
n
 (

m
W

)

Time (second)

The remote
execution starts

Figure 4.6 The energy consumption of the smartphone with execution offload-
ing.

87

reducing the data transfer costs of the RRMs successfully as we described in

Section 4.2.

In Figure 4.6, the energy consumption of the smartphone for the play with

execution offloading in Figure 4.5 are presented. We used an off-board moni-

tor [13] to evaluate the energy consumption. The average energy consumption

was increased by 4.5% from 2215.56 mW to 2315.74 mW, after the remote

execution was started at 17 second. It seems that the major reason of the addi-

tional consumption was the energy overhead to run the dedicated modules and

the network equipment for the image streaming. It is also due to the policy of

our offloading solver, which concentrates to guarantee the minimum FPS even

if more energy is spent; if we gave priority to energy efficiency, our offloading

framework should try to save energy first rather than guarantee the minimum

FPS. We expect that the video game user may accept the remarkable perfor-

mance benefit of execution offloading shown in Figure 4.5, regardless of slightly

increased energy consumption.

We also measured the impact of live offloading on the response time, which

is the time required to get the first image since the remote execution begins. The

average response time was almost 1000 ms without live offloading, which means

that the user should wait for one second until the remote execution is actually

started. However, such a delay was successfully improved by live offloading; the

average response time was reduced to near 300 ms, and almost 700 ms of the

runtime overhead to transfer the application state was hidden in the warm up

phase. This example demonstrates that our live offloading technique can be

quite useful to improve user experience on execution offloading.

88

4.4 Related work

Many researches have been proposed that aim to empower modern mobile de-

vices with surrounding powerful servers. One of the earliest studies was done by

Satyanarayanan et al. [7], who have developed versions of ISR systems for the

past decade. To offload a process running on the device, they migrates the full

virtual machine (VM) or OS image along with the process. Not surprisingly, the

amount of transferred data for VM migration tends to be huge (around in the

order of gigabytes). To lighten the load, they proposed the dynamic VM syn-

thesis approach [5] where a small VM overlay is sent by a mobile device to the

cloudlet (nearby small cloud) that is already installed with the base VM which

the overlay was derived from. The overlay size was reported about one order

of magnitude smaller than the full VM size, so they claimed that the approach

might be feasible for mobile computing using fast wireless LANs like Wi-Fi.

However, even that figure would be still too high for 3D video games which

require extremely high performance and short delay time. Wishbone gives a so-

lution for optimal partitioning of sensor network application code across sensors

and servers. It statically partitions the application code based on profile data

that include the computational and network load by using an integer linear pro-

gram to find the minimum use of CPU and network bandwidth. Wishbone [8]

guarantees that the optimal partitioning can be predetermined regardless of the

target hardware platform because it only targets a confined area of applications

where a division of subtasks is fairly clear. OLIE [18] collects the current status

of the memory utilization and available network bandwidth to decide whether

offloading should be triggered at run time. But the main goal of OLIE is to over-

come only the memory resource constraints of mobile devices. This is deemed

relatively simple as compared to optimizing energy consumption and execution

89

times, which is one of the our goals. Because of their limitations, these studies

are not suitable neither for boosting modern 3D video games.

In order to make mobile cloud computing more feasible and adaptable for the

mobile device environment, recent execution offloading researches dynamically

offload their computation to the remote server, based on various runtime perfor-

mance factors such as execution time, energy consumption, and network latency.

CloneCloud [3] suggests dynamic execution offloading approach by modifying

the mobile execution environment, Dalvik VM, to capture the current applica-

tion state. Because of their approach, CloneCloud do not need to modify the

application code. MAUI [2] is a RPC based offloading architecture which de-

cides at runtime which methods should be offloaded based on the best energy

savings possible under the current runtime performance factors. MAUI requests

special user annotations on the application code to mark REMs. Although the

basic architecture of our offloading framework is inspired by MAUI, these stud-

ies target general mobile applications while our work focuses on accelerating

3D video games with execution offloading.

More recently, several approaches have been proposed to improve the per-

formance of execution offloading. ThinkAir [19] suggests a dynamic resource

allocation scheme, which allocates more than one clone VM for the offloaded

application to exploit parallelism and to relieve the lack of memory space.

By adopting distributed shared memory (DSM) into its offloading framework,

COMET [20] expands the range of remotely executable code and consequently

allows multiple threads to be simultaneously offloaded. Kovachev et al. [21]

present their middleware which serves more sophisticated profiling, monitoring

and offloading decision. Unfortunately, none of them explicitly proposes how to

reduce the huge data transfer cost caused by the offloaded RRMs in 3D video

games.

90

Unlike the studies mentioned above, Odessa [6] suggests an execution of-

floading approach tailored to interactive perception applications such as face,

object, pose, and gesture recognition. Odessa identified the performance factors

of perception applications based on their elaborate analysis, and the factors

make their profiler and offloading solver be lightweight and simple. As a result,

Odessa successfully improves the performance of perception application by ex-

ploiting parallelism of those applications. However, there are several hurdles to

apply Odessa to 3D video games; first of all, the developer who tries to apply

Odessa must use the specific development framework. Another hurdle is that the

characteristic of parallelism may differ between perception applications and 3D

video games. Regardless of such hurdles, however, the methodology proposed

by Odessa gives many inspirations to our future research.

Streaming gaming is another well-developed solution for boosting 3D video

games with powerful servers. In streaming gaming, most of the core functions of

a game application are executed on the gaming server and all of the necessary

data to run those functions also resides in the server; the client device only

runs user interface (UI), which passes the user input to the server and shows

the streamed video to the user. One of the weaknesses of streaming gaming is

that its runtime performance heavily depends on the network condition, be-

cause the generated game video by the server should be continuously streamed

over network until the game is over. In order to enable streaming gaming for

mobile devices by getting over the weakness, Wang et al. [50, 51, 52, 53] present

an analysis on the performance factors that affect the performance and user ex-

perience [50], and a streaming gaming framework which adaptively adjusts the

streaming quality based on those factors [51]. In respect that both approach try

to empower the resource-constrained mobile device with powerful servers, exe-

cution streaming is similar to streaming gaming. It is also true that our work has

91

been greatly inspired by streaming gaming, especially for our dedicated mod-

ules to reduce the data transfer cost of RRMs as we explained in Section 4.2. In

spite of that, there is the biggest difference between our execution offloading ap-

proach and streaming gaming; in execution offloading, the execution transition

from local to remote execution and vice versa is relatively flexible compared to

streaming gaming where the task partition between the server and the client is

fixed. When the network latency is too low so that the network connection of

the mobile device is going to be disconnected, for example, execution offloading

can handle this situation by finishing the remote execution and running every

REMs locally. Because of its flexible execution model, we expect that execu-

tion offloading has its own application area especially in the mobile computing

market.

92

Chapter 5

Conclusions

In this dissertation, we proposed various optimization techniques on execution

offloading for more efficient mobile cloud computing. First of all, we proposed

the optimization techniques of assisting execution offloading by reducing the

size of transferred application state. While the existing work based on the full

execution offloading has focused on finding optimal partitions for given compu-

tational resources and network conditions, they did not make active effort to

reduce the state size which, as we proved, has been a crucial element for the

success of execution offloading. We have also demonstrated that careful com-

piler analysis greatly helped our optimization techniques to effectively achieve

our research goal, thereby enhancing the efficiency of mobile computing with

the computational support of clouds. The experiments exhibit that the reduced

size positively influences not only the transfer time itself but also the overall ef-

fectiveness of execution offloading, and ultimately, improves the performance of

our mobile cloud computing significantly in terms of execution time and energy

consumption.

93

It is a major challenge to design cost-effective execution offloading scheme

which satisfies the runtime condition of the real-world commercial cloud envi-

ronments. To achieve this goal, we introduced CMcloud, a novel cost-effective

mobile cloud platform, which works nicely under the real-world cloud environ-

ments. CMcloud reduced the cost of offloading by improving the server utiliza-

tion significantly, while achieving the user-expected offload performance. Our

implementation shows that CMcloud can improve the datacenter throughput

by 84% over a conventional static light-load scheme (or a 2.7x higher per-socket

throughput.) Alternatively, CMcloud reduces the number of service failures by

83% over a static high-load scheme, while even improving the throughput by

31%. To the best of our knowledge, CMcloud is the first cost-effective mobile

cloud platform which allows an oversubscribed offloading without affecting the

QoS of mobile applications.

Lastly, we suggested a streaming-based execution offloading framework which

enables execution offloading for 3D video games by reducing the large data

transfer cost of the rendering related methods. We also introduced live offload-

ing technique which allows transferring the needed application state before the

beginning and end of the remote execution, to prevent that the data transfer

cost of the state affects the user experience. The experimental results demon-

strated that our offloading framework effectively enhances the performance of

3D video game, and live offloading technique successfully reduces the delay time

caused by the data transfer cost at the beginning of the remote execution.

94

Bibliography

[1] Markets and Markets, “World Mobile Applications Market - Advanced

Technologies, Global Forecast(2010 - 2015),” 2010. [Online]. Available:

http://www.marketsandmarkets.com/

[2] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,

R. Chandra, and P. Bahl, “MAUI: making smartphones last longer with

code offload,” in Proc. ACM MobiSys, 2010.

[3] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud: elas-

tic execution between mobile device and cloud,” in Proc. ACM EuroSys,

2011.

[4] R. Ma and C.-L. Wang, “Lightweight application-level task migration for

mobile cloud computing,” in Proc. IEEE AINA, 2012.

[5] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for

VM-based Cloudlets in mobile computing,” IEEE Pervasive Computing,

vol. 8, no. 4, pp. 14 –23, 2009.

[6] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govindan,

“Odessa: enabling interactive perception applications on mobile devices,”

in Proc. ACM MobiSys, 2011.

95

[7] M. Satyanarayanan, B. Gilbert, M. Toups, N. Tolia, A. Surie, D. R.

O’Hallaron, A. Wolbach, J. Harkes, A. Perrig, D. J. Farber, M. A. Kozuch,

C. J. Helfrich, P. Nath, and H. A. Lagar-Cavilla, “Pervasive Personal Com-

puting in an Internet Suspend/Resume System,” IEEE Internet Comput-

ing, vol. 11, no. 2.

[8] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S. Madden,

“Wishbone: profile-based partitioning for sensornet applications,” in Proc.

USENIX NSDI, 2009.

[9] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling the

cloud: enabling mobile phones as interfaces to cloud applications,” in Proc.

ACM/IFIP/USENIX Middleware, 2009.

[10] Gartner, “Gartner Says Worldwide Video Game Market

to Total $93 billion in 2013,” 2013. [Online]. Available:

http://www.gartner.com/newsroom/id/2614915

[11] Android Developers. Managing your app’s memory. [Online]. Available:

http://developer.android.com/training/articles/memory.html

[12] S. S. Muchnick, Advanced compiler design and implementation. Morgan

Kaufmann, 1997.

[13] Monsoon Solutions Inc. Monsoon power monitor. [Online]. Available:

http://www.msoon.com

[14] SciMark 2.0. [Online]. Available: http://math.nist.gov/scimark2

[15] FBReader. [Online]. Available: http://www.fbreader.org

[16] Word frequency data. [Online]. Available: http://www.wordfrequency.info

96

[17] R. Kemp, N. Palmer, T. Kielmann, and H. E. Bal, “Cuckoo: A computation

offloading framework for smartphones,” in Proc. MobiCASE, 2010.

[18] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic, “Adap-

tive offloading inference for delivering applications in pervasive computing

environments,” in Proc. IEEE PerCom, 2003.

[19] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir: Dy-

namic resource allocation and parallel execution in the cloud for mobile

code offloading,” in Proc. IEEE INFOCOM, 2012.

[20] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,

“COMET: Code offload by migrating execution transparently,” in Proc.

ACM OSDI, 2012.

[21] D. Kovachev, T. Yu, and R. Klamma, “Adaptive computation offloading

from mobile devices into the cloud,” in Proc. IEEE ISPA, 2012.

[22] A. Kivity, Y. Kama, D. Laor, U. Lublin, and A. Liguori, “kvm: the Linux

Virtual Machine Monitor,” in Proceedings of the Linux Symposium, 2007,

pp. 225–230.

[23] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Waldspurger, and

X. Zhu, “VMware Distributed Resource Management: Design, Implemen-

tation, and Lessons Learned,” VMware Technical Journal, pp. 45–64, 2012.

[24] P. G. Emma., “Understanding some simple processor-performance limits,”

in IBM journal of Research and Development, May 1997.

[25] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A performance

counter architecture for computing accurate cpi components,” in ASPLOS

’06.

97

[26] B. A. Fields, R. Bodik, M. D. Hill, and C. J. Newburn, “Interaction cost

and shotgun profiling,” ACM Transactions on Architecture and Code Op-

timization (TACO), vol. 1, no. 3, pp. 272–304, Sep. 2004.

[27] “Intel 64 and ia-32 architectures optimization reference manual,” no.

248966-026, April 2012.

[28] Q. Liang, “Performance monitor counter data analysis using counter ana-

lyzer,” in IBM developerWorks, Feb 2009.

[29] C. Ding and Y. Zhong, “Predicting whole-program locality through reuse

distance analysis,” in PLDI ’03.

[30] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread cache

contention on a chip multi-processor architecture,” in Proceedings of the

11th International Symposium on High-Performance Computer Architec-

ture, ser. HPCA ’05, 2005.

[31] A. C. de Melo, “The new linux ‘perf’ tools,” Slides from Linux Kongress,

http://www.linux-kongress.org/2010/slides/lk2010-perf-acme.pdf, 2005.

[32] “Android-x86,” http://www.android-x86.org.

[33] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud

computing: architecture, applications, and approaches,” Wireless Commu-

nications and Mobile Computing, 2011.

[34] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A

survey,” Future Generation Computer Systems, vol. 29, no. 1, pp. 84–106,

Jan. 2013.

98

[35] K. V. Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,

“Scheduling Heterogeneous Multi-Cores through Performance Impact Es-

timation (PIE),” in ISCA ’12.

[36] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski, T. F.

Wenisch, and S. Mahlke, “Composite Cores: Pushing Heterogeneity into a

Core,” in MICRO ’12.

[37] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-Up:

Increasing Utilization in Modern Warehouse Scale Computers via Sensible

Co-locations Categories and Subject Descriptors,” in MICRO ’11.

[38] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise online

qos management for increased utilization in warehouse scale computers,”

in ISCA ’13.

[39] Y. Kwon, S. Lee, H. Yi, D. Kwon, S. Yang, B.-G. Chun, L. Huang, P. Ma-

niatis, M. Naik, and Y. Paek, “Mantis: Automatic Performance Prediction

for Smartphone Applications,” in ATC’ 13.

[40] J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “Contention aware

execution: online contention detection and response,” in CGO ’10.

[41] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An

Analysis of Performance Interference Effects in Virtual Environments,” in

ISPASS ’07.

[42] J. Levon and P. Elie, “Oprofile: A system profiler for linux,”

http://oprofile.sf.net, 2004.

99

[43] C.-k. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, S. Wallace, V. Janapa,

and G. Lowney, “Pin: Building Customized Program Analysis Tools,” in

PLDI ’05.

[44] N. Nethercote and J. Seward, “Valgrind: A Framework for Heavyweight

Dynamic Binary Instrumentation,” in PLDI ’07.

[45] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,

and A. Warfield, “Live Migration of Virtual Machines,” in NSDI ’05.

[46] M. R. Hines and K. Gopalan, “Post-copy based live virtual machine mi-

gration using adaptive pre-paging and dynamic self-ballooning,” in VEE

’09.

[47] J. Kim, D. Chae, J. Kim, and J. Kim, “Guide-copy: Fast and silent migra-

tion of virtual machine for datacenters,” in SC ’13.

[48] S. Yang, D. Kwon, H. Yi, Y. Cho, Y. Kwon, and Y. Paek, “Techniques

to minimize state transfer costs for dynamic execution offloading in mo-

bile cloud computing,” Mobile Computing, IEEE Transactions on, vol. 13,

no. 11, pp. 2648–2660, Nov 2014.

[49] libGDX, http://libgdx.badlogicgames.com/, 2005, product page.

[50] S. Wang and S. Dey, “Modeling and characterizing user experience in a

cloud server based mobile gaming approach,” in Global Telecommunica-

tions Conference, 2009. GLOBECOM 2009. IEEE, Nov 2009, pp. 1–7.

[51] ——, “Rendering adaptation to address communication and computation

constraints in cloud mobile gaming,” in Global Telecommunications Con-

ference (GLOBECOM 2010), 2010 IEEE, Dec 2010, pp. 1–6.

100

[52] ——, “Cloud mobile gaming: Modeling and measuring user experience

in mobile wireless networks,” SIGMOBILE Mob. Comput. Commun.

Rev., vol. 16, no. 1, pp. 10–21, Jul. 2012. [Online]. Available:

http://doi.acm.org/10.1145/2331675.2331679

[53] ——, “Adaptive mobile cloud computing to enable rich mobile multimedia

applications,” Multimedia, IEEE Transactions on, vol. 15, no. 4, pp. 870–

883, June 2013.

101

초록

스마트폰및타블렛과같은지능형모바일기기(SMD)는전체컴퓨팅기기시장에

서사용자들이가장선호하는기기로빠르게성장하고있다.이러한시대의흐름에

따라 사용자들은 모바일 기기에서 비전, 그래픽, 증강 현실과 같이 고도로 복잡한

응용들을 이용하는 데에 보다 더 많은 시간을 할애하고 있다. 그럼에도 불구하고,

제한된배터리용량과느린네트워크속도와같은주요자원의제약으로인해모바

일기기에서이러한복잡한응용들을구동하는데에는여전히한계가있다.최근의

연구들은 보다 더 많은 자원을 가진 강력한 클라우드에 모바일 기기를 연결하는

모바일 클라우드 컴퓨팅 기술을 제안하여 이 문제를 해결하고자 하였다. 이러한

시도들은 모바일 클라우드 컴퓨팅을 실제 모바일 컴퓨팅 환경에 효과적으로 적용

하기 위한 기술인 실행 오프로딩(혹은 연산 오프로딩) 기술로 이어졌다.

실행 오프로딩의 주요 목적은 프로세스 혹은 메서드를 원격으로 실행함으로

써, 모바일 기기의 연산 부담을 강력한 서버 혹은 클라우드로 전가하는 것이다.

이를 위해서는 실행 중의 어플리케이션 상태 정보를 저장하여 네트워크를 통해

서버로 전송하는 과정이 필요하다. 쉽게 예상할 수 있듯이, 이러한 상태 정보를

전송하기 위한 상태 전송 비용은 실행 오프로딩의 성공을 가름하는 핵심 요소이

다. 어플리케이션 상태 정보의 크기는 때에 따라 수 메가바이트에 달할 수 있기

때문에,전송되는상태정보의크기를줄이는것은오프로딩으로인한성능향상을

극대화 하는 데에 있어 매우 중요하다. 본 논문에서는 컴파일러 코드 분석에 기

반하여 서버에서 실제로 참조되는 상태 정보만을 전송함으로써 상태 전송 비용을

효과적으로 줄일 수 있는 기술을 제안한다.

실행 오프로딩에 관한 초기 연구들은 여러가지 이상적인 실행 조건들을 가정

하였다. 예를 들어, 이들 연구들은 오프로딩의 대상이 되는 서버의 성능이 항상

안정적이며 일정할 것이라고 가정하였다. 하지만 이러한 가정들은 실제 상용화

102

된 클라우드 환경에서 성립하지 않는다. 이는 클라우드를 구성하는 각각의 단일

서버에 최대한 많은 수의 응용을 실행하는 등의, 수익을 최대화하기 위한 상용 클

라우드 환경에서의 실행 특성에 기인한다. 따라서 실제 상용화된 클라우드 환경에

적용하기위한보다더현실적인오프로딩기술을설계하기위해서는,이러한비용

특화적인클라우드플랫폼의실행특성을고려해야할필요가있다.본논문에서는

클라우드의처리량을최대로늘릴뿐만아니라오프로딩된대상응용의성능요구

조건 또한 만족시킬 수 있는 비용 특화적인 실행 오프로딩 프레임워크를 제안하여

이 문제를 해결하고자 하였다.

실행 오프로딩에 있어서의 또 다른 도전 중의 하나는 응용에 특화된 오프로딩

기술을 설계하는 것이다. 많은 모바일 응용들은 그들 각자의 고유한 특성들을 가

지고 있으며, 이러한 특성들 중 일부는 기존 오프로딩 연구들이 세워왔던 전략을

무너뜨릴 수도 있다. 이 때문에 실행 오프로딩을 통해 대상 응용의 성능을 더욱 향

상시키기 위해서는 응용의 고유한 특성에 특화된 최적화 기법들을 적용하는 것이

필요하다. 이러한 목표를 달성하기 위한 가능성을 보여주기 위해 본 논문에서는

3D 비디오 게임의 서비스 만족도(QoS)를 효과적으로 보장할 수 있는 스트리망

기반 실행 오프로딩 프레임워크를 제안한다. 또한 대상 응용에 대한 원격 실행히

실제로 시작되기 이전부터 필요한 응용 상태 정보를 미리 서버로 전송함으로써,

보다 나은 사용자 경험을 제공할 수 있는 실시간 오프로딩 기법 또안 제시한다.

주요어: 모바일 클라우드 컴퓨팅, 실행 오프로딩, 코드 분석, 클라우드 환경, 응용

특화 최적화, 3D 비디오 게임

학번: 2008-20913

103

	1 Introduction
	1.1 Execution Offloading for Mobile Cloud Computing
	1.2 Techniques to Minimize State Transfer Costs
	1.3 Cloud Platform for Cost-Effective Execution Offloading
	1.4 Application-Specific Execution Offloading

	2 Techniques to Minimize State Transfer Costs for Execution Offloading
	2.1 Background: Reachable State Transfer
	2.1.1 Overview of CloneCloud
	2.1.2 Impact of State Package Size on Performance

	2.2 Essential State Transfer
	2.2.1 Essential Heap Objects
	2.2.2 Liveness of Essential Heap Objects
	2.2.3 Dirty/Clean Essential Heap Objects

	2.3 Partial Stack Transfer
	2.3.1 Motivation
	2.3.2 Analysis for Partial Stack Transfer

	2.4 Evaluation
	2.4.1 CPU and IO Benchmark
	2.4.2 User Interactive Chess Game
	2.4.3 Impact of Partial Stack Transfer

	2.5 Discussion
	2.6 Related Work

	3 Cloud Platform for Cost-Effective Execution Offloading
	3.1 Backgrounds and Limitations
	3.1.1 Basic Offload Mechanisms
	3.1.2 Limitations of Existing Schemes

	3.2 CMcloud Offloading
	3.2.1 Design Goals
	3.2.2 Operation Model
	3.2.3 Architecture Model

	3.3 CMcloud Mechanism
	3.3.1 Reference-model Server Profiling
	3.3.2 Performance Estimation
	3.3.3 Performance Monitoring
	3.3.4 Migration
	3.3.5 Cost-aware Application Scheduling in Cloud

	3.4 Evaluation
	3.4.1 Estimating Target CPU Performance
	3.4.2 Cost Effectiveness with QoS Requirements
	3.4.3 Offloading/migration Overhead

	3.5 Related Work

	4 Application-Specific Execution Offloading for 3D Video Games
	4.1 Background and Motivation
	4.1.1 Background
	4.1.2 Motivation

	4.2 Application-Specific Execution Offloading
	4.2.1 Offloading Framework for Reducing Data Transfer Cost
	4.2.2 Live Offloading to Guarantee QoS

	4.3 Evaluation
	4.4 Related work

	5 Conclusions
	초록

<startpage>13
1 Introduction 1
 1.1 Execution Offloading for Mobile Cloud Computing 1
 1.2 Techniques to Minimize State Transfer Costs 3
 1.3 Cloud Platform for Cost-Effective Execution Offloading 4
 1.4 Application-Specific Execution Offloading 6
2 Techniques to Minimize State Transfer Costs for Execution Offloading 8
 2.1 Background: Reachable State Transfer 9
 2.1.1 Overview of CloneCloud 9
 2.1.2 Impact of State Package Size on Performance 11
 2.2 Essential State Transfer 16
 2.2.1 Essential Heap Objects 17
 2.2.2 Liveness of Essential Heap Objects 18
 2.2.3 Dirty/Clean Essential Heap Objects 21
 2.3 Partial Stack Transfer 24
 2.3.1 Motivation 24
 2.3.2 Analysis for Partial Stack Transfer 28
 2.4 Evaluation 33
 2.4.1 CPU and IO Benchmark 33
 2.4.2 User Interactive Chess Game 36
 2.4.3 Impact of Partial Stack Transfer 39
 2.5 Discussion 42
 2.6 Related Work 43
3 Cloud Platform for Cost-Effective Execution Offloading 46
 3.1 Backgrounds and Limitations 49
 3.1.1 Basic Offload Mechanisms 49
 3.1.2 Limitations of Existing Schemes 49
 3.2 CMcloud Offloading 52
 3.2.1 Design Goals 52
 3.2.2 Operation Model 52
 3.2.3 Architecture Model 55
 3.3 CMcloud Mechanism 57
 3.3.1 Reference-model Server Profiling 57
 3.3.2 Performance Estimation 58
 3.3.3 Performance Monitoring 64
 3.3.4 Migration 65
 3.3.5 Cost-aware Application Scheduling in Cloud 66
 3.4 Evaluation 67
 3.4.1 Estimating Target CPU Performance 69
 3.4.2 Cost Effectiveness with QoS Requirements 70
 3.4.3 Offloading/migration Overhead 73
 3.5 Related Work 74
4 Application-Specific Execution Offloading for 3D Video Games 76
 4.1 Background and Motivation 77
 4.1.1 Background 77
 4.1.2 Motivation 78
 4.2 Application-Specific Execution Offloading 80
 4.2.1 Offloading Framework for Reducing Data Transfer Cost 80
 4.2.2 Live Offloading to Guarantee QoS 83
 4.3 Evaluation 86
 4.4 Related work 89
5 Conclusions 93
ÃÊ·Ï 102
</body>

