creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

CPU/GPU ol Wd ZHES 93

i

GPU—in—the—loop Al&Ed ol 7|4
GPU-in-the-loop Simulation for CPU/GPU Heterogeneous

Platform

2016 24€

Abstract

A mobile GPU has been widely adopted in most embedded systems to handle the
complex graphics computations required in modern 3D games and highly
interactive Ul (User Interface). Moreover, as mobile GPUs are gaining more
computation power and becoming increasingly programmable, they are also used to
accelerate general-purpose computations in various fields such as physics and math,
and so on. Unlike server GPUs, mobile GPUs usually have fewer cores since a
limited amount of power is available in a battery. Thus, it is important to efficiently
utilize both CPUs and GPUs in mobile platforms to satisfy the performance and
power constraints.

For design space exploration of such a CPU-GPU heterogeneous architecture or
debugging the SW in the early design stage, a full system simulator is typically used,
in which simulation models of all HW components in the target system is included.
Unfortunately, building a full system simulator with GPU simulator is not always
possible because there is no available GPU simulator, or if any, it is prohibitively
slow since they are mainly developed for architecture exploration varying the
internal micro-architecture of GPUs.

To solve these problems, this thesis proposes a GPU-in-the-loop (GIL) simulation
technique that integrates a real GPU with a full system simulator for CPU/GPU
heterogeneous platforms.

In the first part of this thesis, we propose a system call-level simulation technique

in which a full system simulator interacts with a GPU board at system call level.

i

Since the shared on-chip memory in the target system is modeled by two separate
memories in the simulator and the board, memory synchronization is the most
challenging problem in the proposed technique. To handle this problem in the
system call-level technique, address translation tables are maintained for the shared
memory regions and these memory regions are synchronized whenever the system
calls which trigger the GPU execution are invoked in the board. To model the GPU
execution in the simulator, interrupt-based modeling technique is proposed, in
which the GPU interrupt is generated in consideration of the GPU execution time
obtained from the real board.

In the second part of this thesis, we propose an API-level simulation technique in
which a simulator and a board interact with each other at API level. Since the device
driver in the original software stack makes it difficult to support various GPUs, a
synthetic library is defined and it replaces the GPU library in the original software
stack in order to ensure that the device driver is not used. To model timing of the
API execution in the simulator, the sleep function is called in the synthetic driver so
that the measured API time in the board elapses in the simulated time.

From the existing GPU APIs, we propose API-level simulation techniques for
three commonly used APIs which are OpenCL, CUDA and OpenGL ES. And
several challenging problems such as asynchronous behavior, multi-process support
and memory synchronization for complex data structures are properly handled by
several methods for correct simulation.

From the experimental results, we can confirm that the proposed technique can

il 1
1

provide fast simulation speed with a reasonable timing accuracy. Therefore, it can
be used not only for SW development but also for system level performance
estimation. Moreover, the proposed technique makes the full system simulation for
CPU/GPU heterogenecous platforms feasible even if a GPU simulator is not

available.

Keywords : CPU/GPU heterogeneous platform, GPU Simulation, Virtual
prototyping system, GPU-in-the-loop simulation, System call, API

Student Number : 2009-20750

1ii 2

Contents

ADSITACE ...ttt ettt sttt et i
L003111S) 1L RUSUPRPROPR v
LSt OF FIGUIES ..ottt ettt et vii
List OF TabIes....coiuiieiieie e X
Chapter 1 INtrOdUCHION ... e 1
L1 MOLIVATION .ttt ettt ettt eaeeas 1

1.2 CONtriDULION.eiitieiieiieiieieeie et 4

1.3 Thesis Organization.........c..ceceveereriieneeneesienieneeeeeeesre e seeesneeenes 6
Chapter 2 Related WOTKS......ccccviveiiiiiiieeeeceeee e 7
2.1 Acceleration techniques for GPU simulation...........c..ccoceeeveeiennne 7
2.1.1 Parallel SImulationcccceeviieiiiniiiiienieiee e 8

2.1.2 Sampled SIMUulationcccceceveeneriinieniniineeeeeeeeen 9

2.1.3 Statistical SIMulation...........ccceeviieenieniiienieeeeee e 11

2.1.4 HWe-accelerated Simulation..........ccccceeeeevieriiienienncenieeen. 11

2.2 CPU/GPU Simulation frameworkccccceeviirviinicniienieneenn 12

2.3 SUIMIMATY ..eeiiiiiieniiieeniieerieeeriee et e et e e et e e st e e saeeesbeeesabeeenaneeeanes 15
Chapter 3 GPU-in-the-loop Simulation...........cccccveeviveeiieeniieeeieens 18
3.1 Basic Idea ..c..eoieriiiiiiiiiieeceee e 18

3.2 Different levels of CPU/GPU Interaction...........ccceeceerieenienienne. 20

3.3 Detection MechaniSm..........ccccvverueeviirieneenenieneeieeieseese e 21

v 2] 2]

3.4

3.5

Chapter 4

4.1

4.2

43

4.4

4.5

Chapter 5

5.1

52

Memory Coherency Problemccccooovieeiiiieciieeieecee e, 23

Overall GIL simulation fIowccccecevieninieniienieicneenecienene 23

System call- level GIL Simulationc.cccccveevvieennnenns 26
Target SYSTEIM ..eeuviieiiieeiiie ettt e e 26
4.1.1 Typical Execution Scenario of the Systemsc........ 27
Memory Synchronizationc.cceeeeeiereenensieneenensieneeneeieneens 29
4.2.1 Address Translation Table..........cccoocueeiiiniiiiiiniiiieeeee, 30
Timing ModelINg.........cooieiiiiiiiieiieieeie e 32
4.3.1 Interrupt Modelingc.ccccveviieiienieeiieeieeieeeie e 33
4.3.2 Regression based timing correction for GPU time.............. 34
4.3.3 An Example of System-level GIL Simulation Scenario 35
EXPEITMENtS......coviriiiiiiiiiiieieetere et 37
4.4.1 Parallelization for diff operationccccceceeveevcriencenennne. 37
4.4.2 Simulation Time ANalysisccccevveerervienienennenieneeieenne. 39
4.4.3 Contention overhead in Pixel Processors (PP).................... 40
4.4.4 Internal System Behavior Profiling.........cc.ccoceeveninnnnnee. 41
4.4.5 Accuracy Evaluationccceeeevienieninicnicneeicncncceeeen 42
SUMMATY ..o s 43

API-Level GIL SImulationccoceeverienennienienenienens 44
Differences between API-level and System call-level techniques 45

5.1.1 Synthetic Library........cccccveeriiiieniieeiieeeieeeeeeee e 47

TImIng MOdEIING.....cccueeiiiiiiiiienieieceeeeeeeee e 49

5.2.1 Regression-based compensation for timing error................ 51
'] 2]

5.3 Memory Synchronizationccccceeeeveeeiieesiieeeieeeeeeeevee e 52

5.4 GPGPU API (CUDA & OpenCL) Implementation Case.............. 55
5.4.1 Asynchronous Behavior Modeling..............ccceevevviiiieennnnnn. 55

5.4.2 Implementation ISSUES.........ccceevieeiiierieiiiienie e 58

5.4.3 EXPEITMENTS.....ceviuieriiieiieniieeiieniieeieeneeeieesieeeneesenesseeseneens 61

5.4.4 Simulation Overhead..........ccccoooeviininiinieniieeeeee 68

5.5 OpenGL ES Implementation Caseccceceeevieeeeenieniieenieeieene 69
5.5.1 Backgroundcocceeiiiiiiiiiiie e 69

5.5.2 Additional modification for SW stackcccceviiiinnnins 71

5.5.3 Memory Synchronization............ceecueereerieeenieeeiieesiesieenieeans 72

5.5.4 Multi-Process Support........cccceeveeeieenieeiieenieeeesie e 77

5.5.5 High-level Timing Modeling for other GPUs...................... 79

5.5.6 Porting To a New GPU Board.........ccccoviiviniininninicnne 81

5.5.7 EXPEITMENLS...cueriiriiiiiriiiniieieniieniteieeiteere et 83

5.6 SUMMATY .eooiviiiiiieeiieeeiie ettt e e sae e e taeeetaeesseeesseeennsee s 92
Chapter 6 Conclusion and Future Workcccccoieiininiinincnnnn 94
Bibliographyoeeeiieeieeeeeee e 98

; 2] 2]

List of Figures

Figure 1-1. Simulation performance comparison results from [22] and [26] 3
Figure 3-1. The overall GIL simulation framework............ccoccevoiiiiiniininnnne 19
Figure 3-2. Typical GPU execution SCEeNariocccoveerueruereenieneeieneeeceieneeeenees 20

Figure 3-3. Extension for CPU simulator and detection code in the host interface. 22
Figure 3-4. Simulation flow between host/board interfacesccceecvevverrenennnn. 24

Figure 4-1. CPU/GPU heterogeneous system that integrates an ARM CPU and a Mali
400 GPU: a GPU core represented as PP stands for Pixel Processor, and as GP

fOr GEOMELIY PrOCESSOTvvicevieiiieiiiciiesite et ere ettt ae e e e sbe e eees 27

Figure 4-2. Typical execution scenarios on a CPU/GPU system with the Linux kernel

... 29
Figure 4-3. Address translation table to match the same memory region................ 31
Figure 4-4. Typical execution scenario on the target platform...............ccccoeveenenne. 33

Figure 4-5. An example of the HIL simulation sequence with the scenario shown in

FIGUIE 4-2 ...ttt ettt 36

Figure 4-6. The execution time for diff operation for sequential and parallel

TMPLEMENLALIONS ...ttt 38
Figure 4-7. Simulation time (sec) for two benchmarks............ccccceevvieviinieniennennn 39
Figure 4-8. Execution time distribution for PPsccccoooiiiiiiniiiiieeee, 40
Figure 5-1. Modified SW stack in API-level GIL simulation............cc.cceceevenennenee. 46

vil 2] e

file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722993
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722994
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722995
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722996
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722997
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722998
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722998
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722998
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722999
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722999
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723000
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723001
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723002
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723002
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723003
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723003
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723004
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723005
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723006

Figure 5-2. An example code of the synthetic library for cudaMemcpy API........... 47
Figure 5-3. Synthetic driver code used in GIL simulation...........c.cccceevverivenrenennnn, 50

Figure 5-4. Two ways to share data between CPU and GPU in GPU applications . 52

Figure 5-5. Synthetic Library code for gpuMap APIcccoooeiviiiiiiiiii 54
Figure 5-6. Real execution scenario for the synchronization APIL............................ 55
Figure 5-7. Simulation scenario for Figure 5-0.........cccoiiiviiniiniiiiieneeienieeee 57
Figure 5-8. Original (a) and modified (b) CUDA code........cceccvvrrrrrierreenieenerenerennns 60
Figure 5-9. The execution times of the two applications (CUDA, OpenCL) 63
Figure 5-10. Simulated time for GPGPU API (267X189)ccccvvvrveiiereeiieriieeenenn 64

Figure 5-11. The execution time of kernel executed for the face detection application

(207X ettt 65
Figure 5-12. Communication overhead for memory APIs (267x189)cccccceeueee. 66

Figure 5-13. The execution time for the matrix multiplication varying the number 67

Figure 5-14. Simulation time composition in the GIL simulationc.cc.cce.c..... 68
Figure 5-15. Overview for Android Graphics..........ccoeeeveririesienieieneeeee e 69
Figure 5-16. Modification for Software stack in OpenGL ES API...................... 71
Figure 5-17. Code extension for the native window in synthetic library................. 73
Figure 5-18. Modified code for gralloc moduleccoocovoiiiininiiniieieee, 76

Figure 5-19. Multi-thread structure for Board Interface in OpenGL ES API GIL

viii 2

file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723007
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723008
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723009
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723010
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723011
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723012
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723013
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723014
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723015
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723016
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723016
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723017
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723018
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723019
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723020
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723021
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723022
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723023
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723024

STMULATION . .o 77

Figure 5-20. Rendering times for three benchmarks with three boards................... 85
Figure 5-21. Accuracy results for three benchmarks with three boards................... 86
Figure 5-22. Linear regression analysis result for two benchmarks 87
Figure 5-23. The error ratio before and after the correction factor is applied.......... 88
Figure 5-24. The total execution time and the call count for each APIL.................... 89

Figure 5-25. The error ratio for Lessonl6 benchmark with 4 combinations of

CPU/GPU frequencies on the Odroid-XU3 board..........ccccccevevveriecieenreereeennen. 90

Figure 5-26. The rendering time for Lessonl6 benchmark on the odroid-xu3 board
varying CPU/GPU freqUeNCIesccuerieeiieiiieieeiierte sttt 91

iX -+

file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723024
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723025
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723026
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723027
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723028
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723029
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723030
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723030
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723031
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723031

List of Tables

Table 2-1. Comparison of the acceleration techniques for GPU simulation............ 16
Table 2-2. Comparison of CPU/GPU simulation frameworks..............ccceeeevvreennens 17
Table 4-1. GPU response time for CubiC appcccvevveecieerieerieereeniesreeieeeeesieeneees 42
Table 4-2. GPU execution time and utilization for Cubic appc.ccceeceeveeriennnnne 42
Table 4-3. Accuracy evaluation for the Android apps......cccceevvverveecieecriecieerieerieeeen, 42
Table 5-1. Common StruCture (COMMON_S) ...ccuuerueereiaeieieieniienieeeeie e eeieesieesiee e 48
Table 5-2. API-specific structure for cudaMemcpy API (cuda_memcpy s) 48
x 2] 2 1]

file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723032
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723033
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723034
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723035
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723036
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723037
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723038

Chapter 1 Introduction

1.1 Motivation

With ever increasing demand for computation in the embedded systems, a mobile
GPU has become an essential component in most embedded systems. We can easily
find many SoCs that integrate both a CPU and a GPU: Tegra from NVIDIA,
Snapdragon from Qualcomm, and Exynos from Samsung, to name a few. These
chips are widely used on many platforms ranging from automobiles to
high-performance smart phones and tablet PCs. Since low power consumption is the
major design constraint in most computer systems these days, the trend towards
CPU/GPU heterogeneous platforms will continue, also with the increasing number
of cores in CPUs and GPUs.

To design such a CPU/GPU heterogeneous platform efficiently, it is crucial to
profile the target applications and utilize both a CPU and GPU better by identifying
the performance bottleneck and capturing the dynamic system behaviors between

1

CPU and GPU. There exist many profiling tools [1][2][3], where a predefined set of
hardware performance counters is collected and displayed to the designer to provide
an overview of performance. However, this approach is only applicable to the
exiting target platforms.

For the target platform under design, a virtual prototype is commonly used for
performance estimation. Especially, full system simulation is performed in virtual
prototypes since complete software stacks can run without modification by
modeling all components of the target system including processors (CPUs, GPUs),
memory, interconnections as well as peripherals. Generally, full system simulation
is used for early software development or system-level DSE (Design Space
Exploration) in early design stage. In these purposes, since SW implementation is
modified frequently and lots of design candidates are verified, a large number of
simulations are performed repetitively and fast simulation is really important.
Moreover, as the complexity of the embedded system is increased greatly, much
more HW components are integrated in a single system and the importance of the
fast simulation is even more highlighted.

Upon the current move toward CPU/GPU heterogeneous platforms, many
researches have been performed to simulate these platforms by integrating a CPU
simulator with a GPU simulator. However, in this approach, there are some
problems due to the existing GPU simulators. Since most of the existing GPU
simulators [4][5][6][7][10][11] are mainly developed for architecture exploration

varying the internal micro-architecture of GPUs, GPUs are modeled accurately in

cycle-level, but the simulation speed is prohibitively slow. In previous researches
[22][26], they present some experimental results for the simulation speed of some

GPU simulators [6][11].

Application [| Native GPU execution time (ms) Simulation time (ms) Slowdown

matrixmul 0.128 30578 177784
Mersenne Twister 11 7511800 682891
scan 0.337 253300 751632
QuasirandomGenerator 1.33 2766411 2080009
MonteCarlo 2.59 4213485 1646536
clock 0.037 6491 175432
scalarProd 0.177 94022 531201
BlackScholes 0.749 1574676 2102372
[Time | NB | SP | SSSP | PTA | TSP | DMR | MM |
GPU 28557 | 18779 7067 | 4485 | 4456 | 3391 381
(msec)

Simulation | 378 | 248 | 654 | 415 | 413 | 3.14 | 1958
weeks | weeks| days | days | days | days | hours

Figure 1-1. Simulation performance comparison results from [22] and [26]

From the results shown in Figure 1-1, the slowdown is around 170,000x ~
2,000,000x for GPGPU-Sim [6] and 80,000x for MacSim [11] compared with
native execution, which means that it takes more than a day to simulate a GPU for 1
second. However, this is not acceptable speed for early SW development or
system-level DSE (Design Space Exploration) since a large number of simulations
are repeated for these objectives. Moreover, for some mobile GPUs such as Mali

and PowerVR, there is no publicly available simulator. Thus, it is impossible to

3 A 2ol & i

build a full system simulator for the target platforms consisting of these GPUs.

To deal with these problems, we propose GPU-in-the-loop simulation technique
that integrates a real GPU and a CPU simulator for fast simulation. The full system
simulator and a GPU board can interact with each other at three different levels; API
(Application Programming Interface), system call, and register/memory access.
From them, two interactions at the system call and the API is covered in this thesis.

There are two major challenges in the proposed technique. First, since the
on-chip shared memory in the target system is modeled with the two separate
memories in the simulator and the board, we must synchronize the duplicated
shared memory models to maintain the coherence. Second, since the detailed
behavior of the GPU cannot be observed in the board, it is not easy to model the
timing of the GPU in the proposed technique. To handle these problems, several
methods for memory synchronization and timing modeling are proposed for each

interfacing mechanism.

1.2 Contribution

The contribution of this thesis can be summarized as follows.

1) We propose a GPU-in-the-loop (GIL) simulation technique that integrates

an existent GPU hardware with a full system simulator.

A. Unlike previous works, since real GPU HW is used instead of slow

GPU simulators, the full system simulation becomes fast enough for
early software development in the early stage with sacrificing some

timing accuracy.

B. Moreover, it make the full system simulation feasible for CPU/GPU
heterogeneous platforms even if a GPU simulator is not available for

the target platforms.

2) As well as the simulation speed is increased in the proposed technique,

approximate timing of GPU can be modeled by novel modeling techniques

A. The proposed technique can be used to estimate the performance for
system level design space exploration such as task partitioning

problem between CPUs and GPUs

3) The proposed interfacing mechanisms can also be applied in integrating a

HW other than GPU with a full system simulator

1.3 Thesis Organization

This thesis is organized as follows. In Chapter 2, the representative previous
researches on acceleration technique for GPU simulation and CPU/GPU simulation
frameworks are reviewed. Chapter 3 explains the basic idea of the
“GPU-in-the-loop” simulation technique and overall simulation flow will be briefly
explained in this chapter. In Chapter 4 and Chapter 5, two simulation interface
mechanisms, system call-level and API-level, are explained. Finally, we draw the

conclusion and address future work in Chapter 6.

Chapter 2 Related Works

2.1 Acceleration techniques for GPU

simulation

Since GPUs have become an important component in many platforms ranging
from mobile devices to desktop PCs, the research interest in the GPU architecture is
increasing and several GPU simulators are developed for the research purpose. For
the architecture research, since micro-architecture of GPUs should be modeled
accurately, current GPU simulators are really slow as mentioned in Chapter 1. To
accelerate the slow GPU simulators, various techniques are proposed and they can
be categorized into four approaches: parallel simulation, sampled simulation,
statistical simulation and HW-accelerated simulation. In this chapter, we review the

some exiting acceleration techniques for GPU simulations in these approaches.

2.1.1 Parallel Simulation

To accelerate the simulation for the many-core architectures, several parallel
simulation frameworks have been proposed such as HSim [20] and Graphite [21], in
which the simulation work for each processor is partitioned into multiple threads
and performed in parallel on multi-core CPUs or multi-host machines. Since there
are a large number of cores in a GPU, parallel simulation technique might be a
viable solutions to accelerate the GPU simulation and several researches are
proposed recently [22][23].

In [22], they proposed the work-group parallel simulation technique. Among the
internal components in a GPU, the simulation for Computing Units (CU) are
parallelized by multiple simulation threads; A CU corresponds to a Stream
Multiprocessor (SM) in Nvidia GPU and a Data Parallel Processor (DPP) array in
AMD GPU where several cores are executed in a SIMD manner. And, the other
components such as a work control unit, interconnection networks and memory sub
systems are simulated by two separate threads: Work distribution and control (WDC)
and Interconnect-memory subsystem (IMS) threads. Since the lock-step
synchronization method suffers from the synchronization overhead, they proposed
the work-group based synchronization method in which synchronization is
performed at the end of work-group execution on a CU to keep the same
work-group distribution in the single-threaded simulation as much as possible. To

improve the accuracy of the simulation for interconnection networks and memory

sub systems, two additional synchronization mechanisms are applied to maintain the
memory request order and model the contention in the interconnection network and
the memory system more accurately.

Since the CU threads and the IMS thread are simulated independently in [22], the
global memory request sequence can be different with that in the single-threaded
simulation and this incurs the simulation error. To address this problem, error
predictive synchronization (EPS) is proposed in [23] as an extended work for [22].
In this synchronization method, the instruction history is recorded within a specific
cycle range to count the number of memory instructions executed in a CU. And, if
the total memory instruction count for all CUs is larger than a given threshold, the
parallel simulation is disabled and the simulation is performed sequentially until the
total memory instruction count is below the threshold to reduce the memory latency

€ITOT.

2.1.2 Sampled Simulation

Sampling is a well-known technique to speed up architecture simulation of
long-running workloads by simulating only a small but representative portion of the
application in detail while maintaining the accuracy. Several sampling techniques
for single-threaded and multi-threaded CPU applications are proposed so far

[24][25], they cannot be directly applied to GPU simulation, since it may lead to

large sampling sizes and need to re-profile the target platform when the simulated
configuration is changed.

In TBPoint [26], they proposed a new profile-based sampling technique for GPU
simulation. For the hardware independency, it uses GPUOcelot [29] profile tool to
collect the information about each thread block. Using the profiled information, it
designs feature vectors for each kernel and thread blocks, then they are used for
inter-launch sampling and intra-launch sampling technique to reduce simulation
time. In inter-launch sampling, the kernels are clustered based on the kernel feature
vectors and only the kernel selected as a simulation point is simulated by a detailed
simulator such as MacSim [11] and other kernels in the same cluster re-use the IPC
of the simulated kernel without the simulation. In intra-launch sampling, the thread
blocks are clustered based on stall probability and region ID is assigned to each
cluster. During the simulation, the homogeneous regions are identified when the
region IDs for all concurrently running thread blocks are same. Then, the simulation
is skipped just using the sampled IPC until the one of the region ID for concurrent
thread blocks differs from others. Since the proposed technique leverages the
regular execution behaviors in GPGPU kernels, GPGPU kernels with irregular
execution pattern can incur high sampling size and the slow simulation is still a

problem.

10

2.1.3 Statistical Simulation

In a statistical simulation, it measures a well-chosen set of program
characteristics during GPGPU execution and generates a small synthetic benchmark
with those characteristics. Then, the architecture simulation is performed using the
small benchmarks. In [27], to keep the original characteristic, it first profiles the
original GPGPU workloads through a fast functional simulator and the
characteristics such as thread hierarchy, instruction mix, control flow and memory
access pattern are collected. Then, loop patterns of the GPGPU kernel are analyzed
based on the Divergence Flow Statistics Graph (DFSG) and the synthetic
benchmark is generated by reducing the iteration counts of loops while maintaining
the original characteristics. Since it requires some loops to increase the simulation
speed, speed-up is limited for GPGPU kernels with small loop counts and a large

number of thread blocks.

2.1.4 HW-accelerated Simulation

In software-based parallel simulation, due to the synchronization overhead, only
coarse-grained parallelism can be exploited and the speed-up is limited. However, in
a FPGA, since the cycle-level synchronization is much faster than SW

implementation, fine-grained parallelism can be exploited. Thus, the simulation

11

work performed sequentially in software-based parallel simulation can be done in
parallel on the FPGA to further reduce the simulation speed.

In FastLanes [28], since modern GPUs are too complex to fit into even the largest
single-chip FPGA, only a smaller number of multi-processors in the target GPU is
implemented on the FPGA and they are re-used to simulate all multi-processors in a
time-division multiplexing manner. Since only small number of threads are
simulated on FPGA at a given moment, the contexts of the threads which are
swapped out from the FPGA should be reserved in off-chip- memory. Since this
incurs non-negligible performance overhead, the duration of a time slice is
determined by an analytical performance model to balance the simulation speed and
accuracy. The FPGA-based acceleration technique can provide fast simulation speed
enough for full system simulation. However, it requires significant effort to develop
since the simulator should written in a hardware description language (HDL) such

as Verilog or VHDL.

2.2 CPU/GPU Simulation framework

To simulate the CPU/GPU heterogeneous platforms, a common practice is to
integrate a GPU simulator with a CPU simulator. In [10][11][12], application-only
simulators are implemented to simulate the GPGPU applications, in which only

applications are simulated and OS services such as system calls are emulated by the

12 4

simulation host. In FusionSim [12], several existing simulators (PTLSim [35],
GPGPU-Sim [6] and MARSSx86 [36]) are integrated and two kinds of CPU/GPU
systems (fused and discrete system) are modeled. In Multi2Sim [10], the functional
simulator and the architecture simulator (timing model) are decoupled and the
instruction traces obtained from the functional simulator are feed to the architecture
simulator to accurately model the latencies of the instructions. In MacSim [11], only
the trace-driven architecture simulator is implemented and the trace generators such
as (Pin [34] and GPUOcelot [29]) are used to generate the CPU and GPU traces for
the architecture simulator. And the OS is modeled in the process manager
considering process and thread scheduling.

Since the significant errors can be introduced if the OS effect is not modeled [37],
several researches are conducted based on the full system simulator such as gem5
[8], QEMU [9] and MARSSx86 [36]. In [13][14], they integrate the gem5 simulator
with GPGPU-Sim by providing a common memory interface for both simulators. In
SCHP [13], each process is created for gem5 and GPGPU-Sim respectively and the
overall simulation is performed in lockstep. In order to ensure that both simulators
are running in lock-step, the shared memory region is defined for
inter-process-communication (IPC) and gem5 triggers the simulation of
GPGPU-SIM by setting a flag in the shared memory and blocks until GPGPU-Sim
completes the execution of a GPU cycle and the flags is reset. Also, since the
memory system is modeled in the gem5, the memory requests from the

GPGPU-SIM are stored in the shared memory to be handled in the gem5 simulator.

13

Unlike SCHP, gem5-gpu [14] combines two simulator as one process by integrating
GPGPU-Sim’s CU model into gems5.

Since the exiting CPU/GPU simulation frameworks only consider GPGPU
applications written with CUDA or OpenCL, several full system simulation
frameworks are developed to simulate the graphics applications [15][16][17][18]. In
[15], it integrates the gem5 with ATTILA simulator [4] and can support Multi-CPU
and Multi-GPU heterogeneous architecture.

In other CPU/GPU simulation frameworks [16][17][18], since fast simulation is
really important and their concern is not in the CPU, QEMU full system simulator is
used since it can achieve fast simulation based on dynamic binary translation. In
[16], to verify the software and hardware architecture for multi-view GPU in the
early design stage, QEMU simulator is integrated with multi-view GPU model
implemented in SystemC or RTL codes. Since the unimportant HW components are
simulated quickly with the QEMU simulator and only the important part is
simulated in detail with SystemC model, the co-design for hardware and software
can be performed efficiently. In [18], it develops cycle-accurate GPU simulators
which can models two types of micro-architectures in modern GPUs such as
Tile-Based Renderer (TBDR) and Immediate-Mode Rendering (IMR). Also, it
provides a power model for a GPU using McPAT [19] to analyze energy
consumption in GPUs. In [17], the full system simulator for many-core
heterogeneous SoCs is developed using GPU and QEMU semi-hosting [46].

Though this work targets the many-core accelerator not a typical GPU, the

14

semi-hosting interface mechanism proposed in this work can be used to integrate

the QEMU simulator with a GPU simulator such as GPGPU-Sim.

2.3 Summary

Table 2-1 shows the comparison result of the acceleration techniques for GPU
simulation. From the result, they shows remarkable speed-up results in comparison
with original GPU simulators with some reasonable errors. However, there some
limitations for each approach and these approaches are only applicable when GPU
simulators are available. But, the proposed technique can perform the full system
simulation even if GPU simulators are not available.

Table 2-2 shows the comparison result of existing CPU/GPU simulation
frameworks. They are classified based on three criteria: GPU functionality,
simulation scope, and simulation detail. Since the accurate but slow GPU simulators
are used in exiting CPU/GPU simulation frameworks, they will suffers from slow
simulation speed and they are not suitable for SW development or System-level

DSE purposes.

15

Table 2-1. Comparison of the acceleration techniques for GPU

10n

lat

simu

Baseline Timing
Acceleration Functional
GPU Speed-up Accuracy Limitations
Technique Correctness
Simulator (%)
0.05 ~ The speed-up is limited by the
Parallel Simulation Up to 4.15x Functionally
GPGPU-Sim 26.61 % # of CPU cores in the
[22] on quad-core Correct
(Total Cycle) simulation host
The sample size can be up to
Profile based Sampled
No Upto 14.0% | 50% of total instructions for
Simulation Mac-Sim 2x ~ 50x
Functionality | (Total IPC) kernels with irregular
[26]
execution patterns
Statistical Simulation No Upto 16 % | Speed-up is limited for kernels
GPGPU-Sim Ix ~ 589x
[27] Functionality | (Total IPC) with short loop counts
FPGA-based Simulation about 100x Hard to implement the
Functionally No
[28] GPGPU-Sim (2 orders simulator
Correct Information
magnitude)
Up to 20%
Functionally (Total Only model the CPU/GPU
Proposed Technique No simulator
Correct Execution | platforms with existing GPUs
Time)

16

Table 2-2. Comparison of CPU/GPU simulation frameworks

Existing GPU Func. | Full System/ | Functional Timing Accuracy
Researches App. Only | Correctness
CPU GPU
MacSim GPGPU Application No Cycle-Acc. Cycle-Acc.
[11] Only Functionality (Own) (Own)
Multi2Sim GPGPU Application | Functionally Cycle-Acc.| Cycle-Acc.
[10] Only Correct (Own) (Own)
FusionSim GPGPU Application | Functionally | Cycle-Acc. Cycle-Acc.
[12] Only Correct (PTLSim) | (GPGPU-sim)
SCHP [14] GPGPU Full System | Functionally | Cycle-Acc. Cycle-Acc.
gem5-gpu [13] Correct (gem5) (GPGPU-sim)
MCMG Graphics Full System | Functionally | Cycle-Acc. Cycle-Acc.
[15] Correct (gem5) (ATTILA)
QEMU Graphics Full System | Functionally | No timing Cycle-Acc.
+SystemC Correct (QEMU) (SystemC)
[16]
TEAPOT Graphics Full System | Functionally | No timing Cycle-Acc.
[18] Correct (QEMU) (Own)
Proposed GPGPU Full System | Functionally | Cycle-Acc. | Cycle-Approx.
Technique Graphics Correct (gem5) (Real HW)

17

Chapter 3 GPU-in-the-loop
Simulation

3.1 Basic Idea

The basic idea for the GIL simulation technique is to integrate a real GPU with a
CPU simulator in full system simulation framework instead of a GPU simulator.
Since the proposed technique is not designed to be applicable for a specific
simulator, any full system simulators can be used. In this thesis, as an example, the
proposed technique is implemented based on gem5 simulator [8].

Figure 3-1 illustrates an overview of GPU-in-the-loop (GIL) simulation technique.
In the simulation framework, a full system simulator is configured for the target
CPU/GPU heterogeneous system using the gem5 simulator, which includes the
simulation model of a multi-core CPU and other HW components except for the

GPU, and actually runs the Android full software stack with Full system (FS) mode.

18

To connect the full system simulator with the GPU board, the host interface is added
in the simulation host and it interacts with the CPU model to detect GPU requests
and obtain the additional information for the requests (D). In the GPU board, the
board interface is implemented in Android application in which GPU requests are
received from the host interface through the network interface (@) and they are
processed using real GPU in the board (). After the requests are completed, the
output results are sent to the host interface (@) and they are reflected to the

simulator for both functional and timing correctness.

Simulation Framework

Host Interface ¢
1t 0 Multi-core
Mulfi-core L
CPU Board
i Interface

MEM
< Communication Architecture > @ I
: : : """"" < Contmmmicrtorarehtectye >

MEM |[Dev0 | ... |Devn || GPU | i i
brremeees ‘ ¥
Full System Simulator =2 NIC | ' |Devm | | GPU
@
Simulation Host Development Board

Figure 3-1. The overall GIL simulation framework

19

3.2 Different levels of CPU/GPU
Interaction
User Space
GPU Application
I API call
OpenGL OpenCL CUDA
Kernel Space (OS) I System Call
Device Driver

Hardware

I Register/Memory access

GPU

Figure 3-2. Typical GPU execution scenario

Figure 3-2 illustrates the typical GPU SW stacks in most CPU/GPU platforms in

which three different levels of GPU requests are used to deliver some tasks on the

GPU. In the GPU application, it invokes the API functions in the GPU libraries

which are provided to enable the application developers to utilize the graphics

(OpenGL ES) or GPGPU (OpenCL and CUDA) functionalities of the GPU. In the

GPU libraries, each API request is translated into several low-level GPU commands

and they are passed to the GPU device driver using system calls such as ioct/ and

mmap. In the GPU device driver, the shared memory and the GPU registers are

20

accessed to directly pass the requested commands to the GPU.

Since the board interface is implemented as a user-level application in the
proposed technique, from the three types of GPU requests, only the API and system
call requests can be used in the board interface to pass the requests to the GPU.
Thus, the API-level and system call-level GIL simulation techniques will be covered

in this paper.

3.3 Detection Mechanism

The first process that happens in the proposed technique is to detect GPU
requests from the CPU model. In the proposed technique, since a GPU request is
defined as a function call (system call or API), it can be detected by comparing the
current instruction address (PC) of the CPU model with the start address of the
target function. For this, first we should obtain the address information for the target
functions. Since the target functions are included in OS kernel, the target address
can be obtained from the OS kernel image used in the simulation by disassembling
the image using objdump utility. Using this address information, the detection
mechanism is implemented in the host interface as shown in Figure 3-3 (c). And
since the PC value is only available in CPU model, the original CPU model (Figure

3-3 (a)) is extended to pass the PC value to the host interface (Figure 3-3 (b)).

21 4

—| Original CPU simulation code |— | Extended CPU simulation code | —

Tick() Tick()
{
CheckForlinterrupt(); CheckForlinterrupt();
InstructionFetch(PC); HostInterface(PC);
Execute(): InstructionFetch(PC):
} }
@ W)

— Host Interface Code —
HostInterface(PC)

if(PC == target_addr)
GILSimulation();
}

}

©

Figure 3-3. Extension for CPU simulator and detection code in the host

interface

Instead of comparing the address, it is possible to detect GPU requests by using
special instructions such as pseudo instructions available in the simulator or SW
interrupt instruction (svc) used in ARM semi-hosting [46]. In this approach, unlike
the address-based detection mechanism mentioned above, the original source code
of the GPU library or the device driver should be provided to insert the special
instructions to the detection point in the code and the binaries are re-built from the
modified source code. However, it is possible to detect the functions in both user
space and kernel space in this approach. Whereas, only the functions in the kernel
address can be detected in the address-based detection mechanism since the address
of the user space is determined by the dynamic linker during the simulation. For this

22

:
5

" T e Mt

reason, the synthetic driver is added should be added in the API-level technique.
However, if we apply the instruction-base detection mechanism, the synthetic driver

is not required.

3.4 Memory Coherency Problem

In most mobile platforms, on-chip memory is shared by a CPU and a GPU.
However, in the proposed technique, the shared memory is modeled by two separate
memories in the simulator and the board, and the CPU model and the real GPU
accesses the different memory in each side. Thus, the modification in one memory
is not reflected to the other memory and in-correct simulation result can be obtained.
To solve this problem, memory synchronization should be performed between two
memories. Details of the memory synchronization mechanisms will be explained in

later sections.

3.5 Overall GIL simulation flow

Figure 3-4 shows the simulation flow between host/board interfaces after a GPU
request is detected by the detection mechanism in the host interface. First, the

arguments for the GPU request are obtained using readintReg() and readMem()

23

Host Interface

A : Get arguments Board Interface
request ¥V
Is detected Send a GPU request M Wait fora GPU Request [+~
v v
Memory Synchronization | Memory Synchronization
(Input) " (Input)
v

» Invoke system call or API

v

Receive result < Send result
v ¥
. CPU. Memory Synchronization |, Memory Synchronization
simulation (Output) N (Output)
routine v |
L — Reflect the result

| ———» Data Flow

LT oo Becution How

Figure 3-4. Simulation flow between host/board interfaces

functions. These gemS5 functions read the value of registers (e.g. r0-r3 that are used
for arguments by ARM call conventions) and memory. After that, the GPU request
and arguments are sent to the board interface and memory synchronization is
performed for input data in the arguments. In the board interface, the GPU request is
processed by invoking system call or API with the received arguments. Once it is
returned, which means that the GPU execution is completed, the result for the GPU

request is sent to back to the host interface and memory synchronization is

24

performed for output data in the arguments. After that, in the host interface, it
reflects the result of the GPU request to the related simulation components and the

original CPU simulation routine is executed as usual.

25

Chapter 4 System call- level GIL
Simulation

Depending on the GPU, types of system calls and parameters for system calls are
varied. Thus, the implementation issues to be considered in the system call-level
GIL simulation technique may be slightly different depending on the GPU. For this
reason, we assumes the target platform with Mali 400 GPU [38] as shown in Figure
4-1 and the system call level GIL simulation technique will be described with

respect to this platform.

4.1 Target System

As low power and energy consumption being the crucial design constraints, GPU

has become an inevitable component in the recent embedded systems. Figure 4-1

26

shows a typical CPU/GPU heterogeneous system: multi-core CPU and multi-core
GPU are connected to the on-chip bus where the shared memory and other
peripherals are connected to. The GPU usually has its own MMU so that it can
directly access the memory on the bus with its own virtual address.

In this platform, GPU requests are processed using several system calls such as
gpu_ioctl() and gpu mmap(). Thus, whenever these calls are detected inside the
host interface, it delivers the corresponding request to the board interface that runs

on the real CPU on the board, which in turn requests to the real GPU on the board

,,\\\
P
P
1

as explain in Figure 3-1.

Ve N

‘ - ‘ //
ARM Mali-400
Cortex-A9 MP =)
Quad-core Quad-core
g 2 4
1 1 ‘ MMU
< AXI > |
g 1 L2 |

| RAM | DMAC | - ——

N T
WTVT

Figure 4-1. CPU/GPU heterogeneous system that integrates an ARM CPU
and a Mali 400 GPU: a GPU core represented as PP stands for Pixel

Processor, and as GP for Geometry Processor

4.1.1 Typical Execution Scenario of the Systems

The typical software stack in the target platform includes the Linux kernel and

27

the Android: An Android app runs on top of the Android, which in turn requests
services to the Linux kernels. Suppose we have an Android app that utilizes the
GPU by calling OpenGL ES APIs. In the APIs, each request for graphics
computation is translated into a set of gpu ioctl() calls that have different
commands and arguments. There are many use cases of gpu_ioctl() with different
commands.

Figure 4-2 shows typical scenarios for job enqueue and wait commands in Mali
GPU as an example. mali core session_add job() in the Linux driver is called first
in enqueue command. It enqueues the target job to the GPU job queue, and calls
mali_core_subsystem_schedule(). In this scheduling function, it checks
idle_render unit list to find any idle render unit in the GPU. If there is no idle
render unit, it returns without performing any operation. But if there is any, it
dequeues a job from the GPU job queue and calls susbsystem_(gp/pp)_start_job()
with the arguments (job and render unit). In start job(), it writes commands and
arguments (start address of input) to GPU registers to execute target job. Lastly, it
writes start command to command register, and GPU starts to process the target job.

In wait command, mali osk_notificaion_queue_receive() is called first. In this
function, it checks if there is any notification in the notification queue. If there is no
notification, it sleeps and current process stops. After some time passed, this process
will be woken up by mali osk notification_queue_send(), which is called by the

interrupt handler for the GPU completion.

28 1
1

CPU

CPU

mali_ioctl

(1) Enqueue Job

A

_ ¥ (3) Dequeue Job

-
-

] (2) Get idle render unit

\ add_job

A

rd

schedule
\

start_job

(4) Write start command

(a) An execution scenario for enqueue command

mali_joctl

\

queue_receive

Interrupt 1 WakeUp
Handler \ :

queue_send

I
I
I Interrupt
I

(b) An execution scenario for wait command

Figure 4-2. Typical execution scenarios on a CPU/GPU system with the

Linux kernel

4.2 Memory Synchronization

In the target platform, the memory region shared by a CPU and a GPU is

allocated by gpu_mmap() system call which is called from a GPU library. Since a

CPU virtual address is returned to the GPU library as a return value of the system

< A Z &k

g
—

call, in the GPU library, the input data for a GPU is stored to the shared memory
region using the address. After that, to allocate some tasks to a GPU, gpu ioctl()
system call is invoked with start command and the addresses for the input/output
data are passed as arguments. In the GPU, a given task is processed using the input
data pointed by the input data address and the result is stored to the memory region
pointed by the output data address.

Since the memory synchronization is required before/after GPU actually is
executed on the board, the memory synchronization is performed when gpu_ioctl()
is invoked with start command. While arguments of gpu ioctl/() are memory
addresses not real data, input data exists only in the simulator and output data exists
only in the board. Before gpu ioctl() is invoked in the board interface, the input
data must be sent to the board and the board interface must update the board
memory using memcpy(). After gpu ioctl() is finished, on the other hand, the
modified memory region by the GPU execution must be sent back to the simulator
so that the host simulation interface can update the modified memory region in the

gemS5 simulator.

4.2.1 Address Translation Table

To copy the contents of the memory mapped region for synchronization, a CPU

virtual address is needed in the host and board interfaces; The host interface can

30

access the memory only through the CPU model and the board interface itself is a
CPU task that actually runs on a CPU on the board, thus it cannot access the

mapped memory with the GPU virtual address.

Mapping Table in host interface

Mali Virtual Address | CPU Virtual Address
1 0x40000000 _~ 0x400D0000
) 0x40004000 // 0x41030000
-I Command Arguments |- / /
: (1 host interf. reads from
Stacr}t Toaébﬁ‘ggéess / 0x400D0080 ~ 0x400DO0EQ
(Ox) I\ (2 Passed via socket
End Mali Address @) board interf. writes to
(Ox400000EO0) 0x410F0080 ~ Ox410F00EO
Mapping Ta\blg in board interface

Ii‘fl_ali VirtuaIAddress\\CPU Virtual Address
¥ 0x40000000 N 0x410F0000
0x40004000 0x41330000

Figure 4-3. Address translation table to match the same memory region

However, since GPU virtual addresses are provided as arguments of gpu_ioctl(),
we maintain translation tables for GPU to CPU virtual address in each interface as
depicted in Figure 4-3. Whenever gpu mmap() is called in the CPU (gem5) side
during the simulation, the host interface update its address translation table using
the mapping information obtained from the gpu mmap(). Then, when this system
call is processed in the board interface, it also update its address translation table.

Figure 4-3 illustrates an example of address translation. When the address given

as a command argument in the gpu ioctl() is 0x40000080, the host interface

31 2

searches the mapping table with 0x40000000 and find out the corresponding CPU
virtual address is 0x400D0000 (D). It reads the data from the address considering
the offset (0x80), and sends it to the board interface via socket ((2)). The board
interface looks up its translation table and figures out its CPU virtual address to be
0x410F0000 (). Finally, it writes the received data to the address considering the
offset. With such a mechanism, the gem5 simulator and the GPU have an illusion
that they share the same memory, although they are in fact two separate memories
in different machines in the framework.

From the arguments of gpu ioctl() system call, we can’t know which memory
regions are modified in the whole memory area. Thus, the simple solution is to
synchronize all the shared memory regions. However, since this incurs significant
communication overhead between the host interface and the board interface, only
diffed data in the shared memory region is synchronized by performing diff

operation.

4.3 Timing Modeling

Figure 4-4 shows the typical scenario where GPU execution is controlled by two
commands explained in Figure 4-2, start command and wait command. In this
scenario, two commands are called from the two separate threads (Thread 0, Thread

1). When wait command is invoked from Thread 0, it is blocked inside gpu_ioctl()

32

i 1(| [Tgpuroctl | Steep gpu ioctl
-------- * mmm—m= .
Thread 0 (wait vt
o octl ! Wake up
Thread 1 gpuio Interrupt
—__J\) (start) Handler .
|
GPU request : Interrupt
|

I
I
|
_

Figure 4-4. Typical execution scenario on the target platform

W

to wait for the notification of the GPU job completion. In the meanwhile, in Thread
1, start command is invoked and it will trigger the GPU execution. When the GPU
execution is completed, an interrupt in generated by the GPU and an interrupt
handler will be invoked. In last, the interrupt handler sends a notification signal

which awakes the waiting thread (Thread 0).

4.3.1 Interrupt Modeling

Since the original software stack is used in the simulation without modification,
the CPU parts in Figure 4-4 simulated by the CPU model. Thus, only GPU part
should be modeled in this technique for functional and timing correctness. For
functional correctness, the GPU interrupt should be modeled since the waiting
thread in Figure 4-4 will be blocked indefinitely if the GPU interrupt is not

33

generated in the simulation. For timing correctness, the waiting timing in the CPU
part should be accurately modeled. For this, the GPU interrupt should be generated
at accurate timing considering the GPU execution.

To generate the interrupt in the simulator, the virtual GPU model is implemented
in the gem5 simulator in which only interrupt related part is modeled without the
details of GPU micro-architecture. And the GPU execution time (A) can be obtained
from the result of gpu_ioctl() when it is invoked with start command in the board.
Once the result is passed to the host interface, an interrupt event is inserted at
timestamp ¢/ + A, when A is the execution time of the GPU and ¢/ is the current
simulate time. Then, when the simulation is progressed to ¢/ + A, the interrupt is

generated by the virtual GPU model.

4.3.2 Regression based timing correction for GPU

time

In this technique, GPU execution time (A) is obtained from the real board.

However, this value does not include contention overhead between multiple PPs. In
the real system, when multiple gpu ioctl() requests for PPs can be made
simultaneously and executed in parallel by multiple PPs. As PPs share the resources

(cache, memory, bus, etc.), the execution time of each gpu_ioctl() request becomes

34 -

longer than the case when only one PP is executed. In contrast, in the GIL
simulation, multiple gpu_ioct/() requests are actually processed sequentially.

To consider the contention overhead, we measured the ratio o, which is the ratio
of the average execution time with contention (A") to the one without contention (A)
in the real board. Then, interrupt is generated at ¢/ + o - A (= A") in the simulation.

We will explain in more detail how to measure A" in the experiment section.

4.3.3 An Example of System-level GIL Simulation

Scenario

The System call-level GIL simulation sequence for the scenario shown in Figure
4-2, which assumes Mali GPU as an example, is illustrated in Figure 4-5 assuming
that a wait command is called first, followed by an engueue command as shown in
Figure 4-4. When the host interface detects the wait command, it sends the
command to the board interface running on a real CPU in the board. The board
interface creates a new thread (wait thread) waiting for the completion of the GPU
execution to avoid any possible dead-lock. Simulation continues and detects
gpu_ioctl() for enqueue command. Then, the host interface stores gpu ioctl()
arguments and calls add job(), schedule(), start job() in sequence. In add job(), a
job ID is assigned for start job() by which the GPU execution is finally triggered.

On the GPU execution, it first sends a memory synchronization message

35

(MALI_PUT) for input data, and the board interface updates the memory
accordingly. Then, it sends ioct/ messages (GP/PP_START) that are handled by the
main thread in the board interface. The main thread sleeps until the completion of
the GPU execution is notified by the wait thread. On the completion, the main
thread sends a message to the host interface, and finally, the host interface sends a
memory synchronization message (MALI GET) to update the modified memory

region by the GPU execution.

s
Simulated t|1 t1 I+A
Time ! |
(h ioctl | ioct |
CPU start_job " Interrupt
model | Process MO0 o start_job e c e
| ' interrupt
(gem3) | ! { schedule ! : handlepr
— ' | | .
Process? (:ﬁ;ﬂ) E i .: i
H= |
! store mem add
Host | store arg | job ID | | Sync | event ireﬂect resulti
interface i Sorearg e
I
\ / ! MALI'_F’U:I'-\
[} 1 ~
' GP/PP START -
Wf"T i r MALI_GET
(A an [thread mem | foctcall | _"s[send
Board Thread || generation Sync | (start job) | result
Interface | Wait | ~~~---__[Tocll cal Pendng L_. iocti call 1/
\ A Thread (wait) [~7° T : (wait) | Wakeup

[Mal __Atime__ nterrpt
| (Boarg B

Figure 4-5. An example of the HIL simulation sequence with the scenario

shown in Figure 4-2

36

4.4 Experiments

In our experiments, we simulated the Exynos 4412 system [39]. The system has a
quad-core ARM Cortex-A9 CPU and ARM Mali-400MP GPU that has four Pixel
Processors and one Geometry Processor. They are connected to an AXI bus where
also 256KB on-chip memory is connected. We used ODROID-X board [40] to
execute the Mali GPU hardware, and used gem5 simulator for a quad-core ARM
Cortex-A9 CPU modeling. We ran Android apps, Lesson09 that moves and blends
textured objects in a 3D space [30] and Cubic [31]. In Android OpenGL ES
application, a rendering function called onDrawFrame in the application is invoked
repeatedly to draw the current frame. In the Lesson09 benchmark, the rendering
function only includes the API call sequence without any computation. However, in
the Rubik benchmark, the rendering function includes both the computation and the
API call sequence, in which the proportions of two parts are 37.4% (computation)
and 63.6 % (API call sequence) respectively. We ran these apps on the proposed
GIL simulation framework for 3 seconds in real time (i.e., the time in the

ODROID-X board) and measured the execution time of the rendering function.

4.4.1 Parallelization for diff operation

As mentioned in 4.2.1, to reduce the communication overhead between the

37 :

simulator and the board, diff operation is performed in the host interface and the
board interface. Since the size of shared memory region is significantly large, the
overhead for the diff operation takes large portion of the total simulation time,
especially in the board interface. To reduce the diff overhead, we parallelize the diff’
operation in the board interface. Figure 4-6 shows the normalized speed-up for the
parallel implementations (2, 3, 4 threads) compared with the sequential
implementation (1 thread) when diff operation is performed 100 and 200 times
during the simulation. From the result, we can know that the speed-up of x1.83 ~
x2.39 can be achieved in the parallel implementation and the maximum

performance can be achieved when the number of thread is 3.

m # of diff op. = 100 m # of diff op. = 200
2.50

2.00
1.50
1.00
os II
0.00

1 thread 2 thread 3 thread 4 thread

(Sequential) (Parallel}
m#ofdiffop. =100 1.00 1.86 2.39 2.26
m#ofdiffop. =200 1.00 1.83 2.35 2.20

Figure 4-6. The execution time for diff operation for sequential and parallel

implementations

38 =
~ A2 tf) &t

System Call(0.7%) Sﬁitem Call(0.6%)

100% A
174 478
809%
60%
0% m loctl Call
Others
20% (::;) _ mDiff in Board
2132 : -
(29.2%) Gem5 Simulation
0%
Lesson 09 Cubic

Figure 4-7. Simulation time (sec) for two benchmarks

4.4.2 Simulation Time Analysis

In the system-level GIL simulation technique, the simulation time is decomposed
as shown in Figure 4-7. For Lesson09 app, the total GIL simulation takes about
2014 seconds, among which gem5 simulation time takes 48% and the interfacing
time between two interfaces takes 52%. It corresponds to about 1.5M cycles per
second of simulation performance. In the interfacing time, 860 seconds is spent for
memory synchronization, which is 42.7% of the total time.

For Cubic app, the total simulation time is 7304 seconds and achieves about 0.8

M cycles per second of simulation performance. This is because the portion of

N Rk g

memory synchronization increased in this application and GPU execution portion is

larger than Lesson09.

Execution Time w/Contention pyecution Time w/o Contention

(# of avalable PP = 4) (# of available PP=1)
2500 2500
2000 2000
1500 1500
1000 1000
500 1 500
0 1L 0 n 0 _

us

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 (Us)

Figure 4-8. Execution time distribution for PPs

4.4.3 Contention overhead in Pixel Processors (PP)

As explained in 4.3.2, we estimate the contention overhead of PPs of the GPU by
modifying the number of available PPs from Linux driver. We measured two GPU
execution time, A* and A, for 4000 gpu_ioctl() requests in the real target board; A" is
measured by setting the number of available PPs to 4 (all cores are available), and A
is measured by setting the number to 1 (only 1 core is available so that there is no

contention). Figure 4-8 shows the histogram for A’ and A, where x axis represents

40 2] 2 11
|

-
=]
1

11

the execution time of a single gpu_ioctl() request and y axis the occurrence count.
The average execution time for the A" and A are 3059 (us) and 1460 (us)
respectively, which results in the ratio a to be 2.1. Thus GPU execution time was

scaled by this ratio in the simulation.

4.4.4 Internal System Behavior Profiling

With the proposed GIL simulation framework, we could observe the internal
system behavior during the app execution. Table 4-1 shows the execution time, the
waiting time, and the response time for each processor (1 GP and 4 PPs). Also, as
shown in Table 4-2, we could obtain the GPU utilization. If the app utilizes the GPU
not only for the rendering or shading job, but also for the general purpose job such
as OpenCL kernel, this observability would be more useful. We could not use
OpenCL applications in the current implementation for Exynos system, since Mali

400 GPU does not support GPGPU.

41

Table 4-1. GPU response time for Cubic app

Processor Avg. Exec. | Avg. Waiting | Avg. Response
Type Time(ms) Time(ms) Time(ms)
Geometry Proc. 0.178 0.029 0.207
Pixel Processor 1.847 0.036 1.884

(PPO ~ PP3) ~1.866 ~0.041 ~ 1.906

Table 4-2. GPU execution time and utilization for Cubic app

Processor # of GPU Total Exec GPU
Type Execution Time (ms) | Utilization (%)
Geometry Proc. 506 90.195 1.53
Pixel Processor 505 932.966 15.85
(PPO ~ PP3) ~ 506 ~ 943,994 ~15.99

Table 4-3. Accuracy evaluation for the Android app

7]

Accumulated Real Board | Simulation Error Ratio
Execution Time (sec) (sec) (%)
Lesson09 1.21 ~ 1.57 0.99~142 -29.66 ~-522
Cubic 0.76 ~ 1.02 0.77~2.09 -1.53~+104.91

4.4.5 Accuracy Evaluation

To evaluate the timing accuracy of the proposed framework, we measured the
execution time of a rendering function that calls several OpenGL ES APIs, by

inserting time stamping code to the application. We accumulated the execution time

42

for 50 invocations of the rending function. We performed the experiment for 5 runs
both on ODROID-X board and on the simulation framework. The range of
execution time and the error ratio are shown in Table 4-3. It confirms that the
accuracy of the proposed GIL simulation technique is about the same order of the
gem5 simulator that is simulated at the instruction-level. We observed that the
accuracy error gets smaller as we run an app longer. Since Cubic runs longer than
Lesson09, the accuracy error of Cubic gets smaller than Lesson09. More detailed

analysis on the accuracy is left for future investigation.

4.5 Summary

In this chapter, we have proposed a system call-level GIL simulation technique
for CPU/GPU platforms that integrates a real GPU hardware instead of GPU
simulator for full system simulation, running complete software stack without
modification. We devised a novel interfacing mechanism between a CPU simulator
and the GPU hardware. For correct operation, several issues had to be considered,
including memory synchronization, address translation, and interrupt handing. We
took Exynos 4412 system as our case study and ran two Android apps where a
number of OpenGL ES APIs were called. To the best of our knowledge, it is the first
example of full system simulation of a CPU/GPU heterogeneous system. We can

achieve simulation performance up to 1.5 M cycles per second.

43

Chapter 5 API-Level GIL
Simulation

System call-level GIL simulation technique has a limited extensibility. In GPU,
ioctl system call is widely used to process the device-specific operations. It takes a
parameter specifying a request code and the request code is often device-specific.
Therefore, to support other GPUs, the simulation framework should be modified to
consider the new request code unless other GPUs have the same request codes for
ioctl system call. Moreover, to correctly simulate the device driver in the original
software stack, some GPU specific functionalities such as GPU registers and
interrupts should be modeled for functional correctness, which requires
considerable effort to understand interactions between the device driver and the

GPU registers.

44

5.1 Differences between API-level and

System call-level techniques

An API (Application Programming Interface) is usually defined independent of
the HW for portability. For GPU APIs such as OpenGL ES and OpenCL, the
application written with APIs can run on various CPU/GPU platforms without any
modification. Thus, if the GIL simulation technique is performed at API level
instead of system call level, the GIL simulation can be performed with various GPU
boards with minor modification for the simulation framework.

Even if the simulation is performed at API level, if the original software stack is
used in the simulation, some GPU specific functionalities related with the device
driver in original software stack need to be modeled. To further reduce the GPU
dependency from the simulation code, the device driver in original software stack
should not be used in the simulation. Since the device driver is accessed from the
GPU libraries through system calls, if the original GPU libraries are not used in the
simulation, the device driver is also no longer used during the simulation. For this
reason, in the API-level GIL simulation, the GPU libraries in the original software
stack is replaced by the synthetic library which implements stub functions for the

APIs of the original GPU libraries as shown in Figure 5-1.

45

User Space
GPU Application
I AP call
Modified SW stack] Syathetc utheic ST
used for simulation enGL OpeaCL CUDA
Kernel Space (05) System Call
Device Driver Synthetic Driver
o I Register/Memory access
GPU

Figure 5-1. Modified SW stack in API-level GIL simulation

For the API-level simulation technique, the GPU request should be detected when
an API is invoked from the GPU applications. Since the target address is required in
our detection mechanism explained in section 3.3, the start address of APIs defined
in the synthetic library should be known to detect the API request. However, it is
not easy to know the address since the synthetic library is located in user space and
the address is determined when the library is loaded by a dynamic linker. To know
the address, we should track the linking process during the simulation, but this
would incur considerable overhead to the simulator. Instead, since the addresses of
functions in kernel space can be obtained from the kernel image before the
simulation, the synthetic driver is added in OS kernel for this purpose. Thus, in the

synthetic library, it just forwards the API requests to the synthetic driver without

46

any operation and the API request is detected in the synthetic driver by the detection

mechanism.

5.1.1 Synthetic Library

Figure 5-2 shows an example code of the synthetic library for cudaMemcpy API
in the CUDA library. To share the API information between the simulator and the
board, two structures represented in Table 5-1 and Table 5-2 are used.

The common structure (common_s) contains the data commonly used in all APIs.

It has 5 variables; api_id variable is used to notify which API is invoked from the

cudaError_t cudallemcpy{void * dst, const void * src, size_t count,
enum cudaMemcpyKind kind)
{
common_s arg;
cuda_memcpy_sapi_arg;
api_arg.dst = dst;
api_arg.src = src;
api_arg.count = count;
api_arg.kind = kind;
arg.api_id = CUDA_MEMCPY;
arg.api_arg = &(api_arg);
arg.process_id = getProcld();
arg.thread_id = getThreadld();
int ret = ioctl{gil_dev, GIL_SIMULATION, &arg);
return api_arg.ret;

Figure 5-2. An example code of the synthetic library for cudaMemcpy AP1

47

2] 2] &)

11

Table 5-1. Common structure (common_s)

Variable name Description
api_id An identifier for target API
thread id Thread id for the thread calling the API
process_id Process id for the process calling the API
api_arg A pointer to an API specific structure
api_time API time measured in the board

Table 5-2. API-specific structure for cudaMemcpy API

(cuda_memcpy _s)

Variable name Description
src Source memory address
dst Destination memory address
count Copied memory size
kind Direction for memory copy
ret Return value

application. thread id and process_id variables are used to distinguish the thread
and process calling the APIL. api time variable is used to store the API time
measured in the board and this variable is set by the host interface when the API
time is passed from the board interface. And, api arg variable is a pointer to an
API-specific structure.

The API-specific structure contains all arguments for the target API and it is
varied depending on the target API. For example, in case of cudaMemcpy API,
cuda_memcpy s structure is used and contains four variables: destination memory

address (dst), source memory address (src), copied memory size (count), and

48 4

direction for memory copy (kind). After variables in the two structures are set using
arguments passed from the application, ioct/ system call is called with a pointer to
the common structure to pass the API request to the synthetic driver. Once the ioct!
is returned, since the return value has been set in ret variable in API-specific

structure by the host interface, it is returned to the application.

5.2 Timing Modeling

In the system call-level GIL simulation technique, the GPU execution time is
reflected to the simulator by the interrupt. However, since the device driver is not
simulated in the API-level GIL simulation technique, the interrupt-based timing
modeling technique can’t be used. Instead, since we can measure the API execution
in the board by inserting timestamping code before/after the API invocation, the API
execution time is reflected to the simulator by spending that amount time in the
synthetic driver.

Figure 5-3 illustrates the implementation of the synthetic driver. In Linux booting
phase, gil simulation_driver_init is invoked and it creates the virtual device named
gil _dev. After the initialization of the device, it can be accessed as a file using open
and ioctl system calls from the synthetic library. When ioct! is called for gil dev
device from the synthetic library as shown in Figure 5-2 (the first argument of ioct/

call), gil simulation ioctl() will be invoked. When the first instruction for this

49 4

function is executed on the CPU simulator, it is detected by the detection routine in
the host interface and the API is request sent to the board interface. In the board
interface, target API is invoked and the API execution time is measured using time
functions such as gettimeofday() and clock gettime(). Then, the return value and the
execution time for the API are sent back to the host interface and the API execution
time is stored into api_time variable in the common structure. After the simulation
for the target API has been completed, the original CPU simulation routine executes
gil_simulation_ioctl code shown in Figure 5-3. To model the timing, it simply calls
the usleep function so that the measured API time (api time) elapses in the

simulated time.

Static int gif_simufation_joctN .., cmd, arqg) {
I arg.api_tmie_usec > 0) {
usleepi{arg.api_time_usec);
h
H

int gil_simulation_driver_init() {
device_ create(. .., “gi_dev™):

return 0;

¥

void hil_simulation_driver_exit() {

¥

Figure 5-3. Synthetic driver code used in GIL simulation

50 e
M2l

5.2.1 Regression-based compensation for timing

CrIror

In the API-level simulation technique, the timing accuracy is first bounded by the
processor simulator that measures the execution time only at the instruction level.
For timing estimation of GPU execution, we estimate the execution time of each
API by measuring the execution time directly in the board. The GPU execution time
is modeled by simply summing up all the estimated API times and added to the
CPU simulation time by using the us/eep function explained in the section 5.2. This
simple method itself is a source of timing inaccuracy. There are other sources of
timing inaccuracy. In the board, time stamping is inserted before and after an API is
called and the execution time is estimated by subtracting two time stamps. If the
simulated system architecture or APl implementation is not the same as the board,
timing inaccuracy is inevitable. Even if we use the same architecture, time stamping
affects the internal behavior. Also, usleep function has some overhead to set up the
timer and this makes the elapsed time by the usleep will be larger than the measured
API time.

Since most internal implementation of GPU libraries are proprietary and the
source code is not available, it is impossible to model the low level details of API
interaction. Hence we perform a simple linear regression analysis to compensate the
unknown sources of time inaccuracy with some selected benchmarks. We compute

the ratio between the measured execution time of an application in the actual board

51 :

and the simulated time in the proposed simulator. We adjust the simulated time of

another benchmark by this ratio and compare it with the measured execution time.

5.3 Memory Synchronization

Since the fact that one logical memory is modeled by two separate memories in

the simulator and board is not changed, the memory synchronization is also a key

int main() {
int * gpu_addr = gpuMalloc(mem_size);
int * cpu_addr = malloc(mem_size);
for{inti=0;1<1024; i++){

(@) cpu_addri] =1i;

}

gpuMemep y(gpu_addr, cpu_addr, mem_size);

int main() {
int * gpu_addr = gpuMalloc(mem_size),
int * cpu_addr = gpuMap({gpu_addr, mem_size)
b for{inti=0;1<1024; i++){
(} cpu_addmi] =1;
b
gpulnmap(gpu_addr);

Figure 5-4. Two ways to share data between CPU and GPU in GPU

applications

oz . Jﬂ L 1_'_” 51

issue for correctness in API-level GIL simulation. However, since the original SW
tack is not used in the API-level simulation, memory synchronization is somewhat
different.

In API-level GIL simulation, there are two types of memory sharing between a
CPU and a GPU. In the first way shown in Figure 5-4 (a), the application allocates a
memory region (cpu_addr) and it is copied to a GPU memory (gpu_addr) using
memory copy API (gpuMemcpy) after it is modified. Since the memory region
allocated by malloc is not simulated in the board, it is only allocated in the
simulator memory and not exist in the board. When gpuMemcpy is simulated in the
board, it will access the board memory using the given CPU address (cpu_addr),
but invalid pointer error would occur since this address is not defined in the board
memory. To solve this problem, a new memory region is allocated temporally in the
board memory and the input data in the simulated memory is copied to newly
allocated board memory. Then, the address for the allocated memory region is
passed as an argument of gpuMemcpy instead.

In the second way shown in Figure 5-4 (b), to directly access the GPU memory in
this application, gpuMap API is invoked to obtain a CPU virtual address for the
GPU memory. When this API is simulated in the board, the pointer for the board
memory (cpu_addr) is returned and it is used to access the GPU memory in the
application. However, since this address is not defined in the simulator memory,
segmentation fault error will occur in the simulator when the address is accessed

and the application will be aborted. To solve this problem, similar to the former case,

53

temporal memory region is allocated in the simulator memory and it is used as a
return value for gpuMap API by modifying the gpuMap API code in the synthetic

library like Figure 5-5.

cudaError_t gpuMap(void * gpu_addr, int size)
{

common_s arg,
gpu _map api sapi_arg;

int ret = ioctl{gil_dev, GIL_SIMULATION, &arg);
api_argtemp_mem = malloc(size);

return api_arg.temp_mem;

Figure 5-5. Synthetic Library code for gpuMap API

54 . .-_;rx_‘| _-Z_‘I_':r_ 1_” -

5.4 GPGPU API (CUDA & OpenCL)

Implementation Case

5.4.1 Asynchronous Behavior Modeling

In the API-level GIL simulation, as explain in section 5.2, the API measured in
the board is annotated to the simulated time by usleep function in the synthetic
driver to model the API timing. This simple mechanism assumes that the APIs are
synchronous, which means that code execution will wait until the actual execution
of the API is completed. For the synchronous API, its execution time is not changed

depending on other APIs or the call time. Thus, we can guarantee that the measured

Real tt]+0 t + E
Time API Time
» E-0)
Application |:| 5 ['-—1]
Kemel b |
U1 cuon | Launeh Dl !
Library | Device b
Synchronize | :'
|
| E.
GPGPU I

Figure 5-6. Real execution scenario for the synchronization API

55 :

API in the board during the simulation is same with the one in the real execution.
However, this is not true for asynchronous APIs.

Figure 5-6 shows the scenario that a kernel launch API (gpuKernelLaunch) and a
device synchronization API (gpuDeviceSynchronize) are called in series. As
gpuKernelLaunch is asynchronous, it is returned after ¢ time without waiting for the
kernel completion. And gpuDeviceSynchronize is called immediately to wait until
the kernel completes. Since the execution time of the kernel is Ek, the execution
time for device synchronization API becomes Ek — 9.

Let us consider the simulation scenario for the Figure 5-6, which is shown in
Figure 5-7. When gpuKernelLaunch is invoked and captured by the host interface at
time t1, it is simulated by invoking gpuKernelLaunch in the board and the execution
time (0) is reflected to simulated time as explained. Then, gpuDeviceSynchronize is
invoked in the CPU model at time t1 + ¢ and it is also captured by the host interface.
When gpuDeviceSynchronize is invoked in the board interface, the execution time
of gpuDeviceSynchronize would be almost zero, not Ek since the kernel launched by
gpuKernelLaunch has been already completed by the real GPU at that time. This is
because the CPU model is considerably slower than the real GPU hardware.

Since the problem occurs for the asynchronous API followed by a synchronous
API, the execution time should be calculated differently. As the synchronization API
waits until all the operations launched by the previous APIs finish, the execution
time of the synchronization is determined by the end time of the last completed

operation and the invocation time of the synchronization API. To figure out the end

56 2
1

Simulation part t1 t1+8 t1+25
Simulated Time R

Application E' E’ F|
Kernel | o !
cPy | Synthetic | Launch | | ' ! l
Model | Library Device | B i
Synchronize : usleep (9) : usleep (3) [
0S Synthetic II] II
(Linux) Driver v I~
Host s *l;|\ i
Interface I:'I .
<ea o Lq:l ::
Kemel ' 51
CUDA Launch ,‘j i
CPU . . , ¥
Library Device | Ij
Synchronize : E.
>
GPGPU N

Figure 5-7. Simulation scenario for Figure 5-6

time of the last finished operation, we need to know the end times of all operations.
To obtain the end time of each asynchronous operation, a dummy synchronization
API is invoked to explicitly wait until the operation launched by asynchronous API
completes. In such a way, the end times of all operations including asynchronous
APIs are obtained and stored, and these values are used when a synchronization API
is called: an API queue is managed to store the asynchronous APIs tagged with the
end time. When a synchronization API is called, the API queue is searched to find

out the time when the last asynchronous operation finished. Then, the execution

o7

2] 2] &)

1L

time of a synchronization API is calculated by subtracting the invocation time from

the last end time.

5.4.2 Implementation Issues

5.4.2.1 Locating Source/Binary Files

For the Android GPGPU application, it consists of a host code and a kernel code
which are executed in a CPU and a GPGPU respectively. For the host code, it is
statically compiled and the host executable (apk) is used when the application runs
on Android. However, for the kernel code, both source and binary files are used to
build the kernel dynamically. When the GPGPU API is invoked from the host
executable to pass the source or binary files, there are two ways. One is that the host
executable passes the pointer to a string which contains the whole contents of the
source file. In this case, the file system call should be invoked to get a code string
from the source file. The other is to pass the file name, and the file is loaded in the
API internally.

For the former case, since the OpenCL host code will access the disk in the target
system, source or binary files should be included in the image file for the Android
file system, which is used to model the disk in the target system. However, for the
latter case, since an API is executed in the simulation host not in the target system

and it access the disk in the simulation host with the given file name, source or

58 -

binary files should be located in the same path with the simulator.

5.4.2.2 CUDA Implementation

The proposed simulation technique supports CUDA on Android as well as
OpenCL. Even though the basic mechanism of defining APIs for the synthetic
library is the same, there are some CUDA specific implementation issues.

In CUDA, kernel arguments are passed by a pointer from the application using
cuLaunchkernel. But the simulator cannot directly figure out the information such
as the number of arguments and the size of each argument from the pointer. To solve
this problem, we add a separate utility function that analyzes a ptx (Parallel Thread
Execution) file, which is a pseudo-assembly code generated by the CUDA compiler.
Since the ptx file is loaded by cuModuleLoad before cuLaunchkernel is invoked, we
can obtain the necessary information by calling the analyzing routine before
cuLaunchkernel. Then, cuLaunchkernel can be called with the correct information.
Another issue is regarding the CUDA building with an ARM compiler. In the
proposed framework, we assume that all the requests to the GPGPU are performed
in a form of API call. For CUDA, however, there are some expressions which are
not in this form. In CUDA, as shown in Figure 5-8 (a), it is possible to launch a
kernel from the host using the notation below as the CUDA compiler (nvee) can

accept this notation.

kernel <<<grid, block >>> (argl, arg2, ...)

However, as the ARM compiler is used to compile the host code in the proposed

59

framework, this is not accepted. Hence, the application should be written in the
form of an API call like Figure 5-8 (b) to use the proposed simulation framework.
Also, since the ARM compiler cannot compile the kernel source code, the kernel

and the host code should be split into separate files, which is not necessary in the

__global__ VecAdd_kernel(int * A, int * B, int * C)
1

int index =threadldx x;

Clindex] = Alindex] + Blindex];
}

void vecAddGPGPU(int * h_A, int *h_B, int *h_C, int M)
{

int*d_A, *d_B,*d_C;

CUmodule culaodule;

ClUfunction cuFunc;

VecAdd_kernel<==grid, block==>{d_A d_B. d_C):

¥
(a) Original CUDA Code (*.cu)
__qglobal__ VecAdd kernel(int * A, int * B, int * C)
¢ int index = threadldx x;
Clindex] = Alindex] + Blindex];
¥

void vecAddGPGPU(int *h_A int *h_B, int * h_C, int M)
1

int*d_A *d B, *d_C;

ClUmodule culodule;

ClUfunction cuFunc;

cuModuleLoad{&cuModule, “* ptx");
culModuleGetFunction(&cuFunc, cuModule, “VecAdd kernel™);
void * args[3] = {&d_A, &d_B, &d_C},;
cuLaunchKernel{cuFunc, .., args, 0);

(b) Meodified CUDA (*.cu and “.cpp)

Figure 5-8. Original (a) and modified (b) CUDA code

v > 2] L))

original CUDA because nvce can compile both the host and the kernel code in a
same file. Since this form of CUDA application code is also allowed in the original
CUDA environment, it can guarantee that the application code used in the

simulation can run on the real target without any modification.

5.4.3 Experiments

The GPGPU API level GIL simulation framework is constructed based on the
system call level framework explained in Chapter 4 and extended to support
GPGPU applications on Android. Since the GPGPU is only supported in the host
GPGPU and not supported in the GPU board currently, host GPGPU in the
simulation host is used for the GPGPU API level GIL simulation technique. Since
two GPU functionalities (Graphics and GPGPU) are simulated by different GPUs in
the simulation host and the board (Mali GPU), this assumes the target platform with
two GPUs, one takes charge of rendering jobs, whereas the GPGPU is only used as
an accelerator.

We used ODROID-X board to execute the Mali GPU hardware, gem5 simulator
to simulate components other than GPU, and the GPGPU hardware in the

simulation host machine for the GPGPU simulation.

54.3.1 GPGPU Performance

The first set of experiments is performed to show that the proposed framework

61 4

can monitor the performance of GPGPU applications written with CUDA and
OpenCL. For this experiment, we implemented face detection applications based on
two source codes. One is the face detection sample code in OpenCV [43], which has
two versions: CPU and GPGPU version written with CUDA. The second one is
implemented in OpenCL. Since these two implementations parallelize the
application differently, direct comparison between two implementations is not
meaningful in this experiment.

Three images in PGM (Portable Gray Map) format are used in the experiment
varying the image size: 267x189, 600x419 and 1100x733. Since the CPU
simulation model used in the proposed framework is not cycle-accurate
(AtomicSimpleCPU in gem5 simulator [45]), we measured the execution time of the
CPU version on ARM cortex A9 CPU board (ODROID-X). And the execution time
of the GPGPU version is measured from the GIL simulation framework varying the
GPGPUs used in the simulation: GTS450 (192 cores) and GTX480 (480 cores). The
result is shown in Figure 5-9. As shown in Figure 5-9 (a), the CUDA version with
GTS450 is 7.90 ~ 16.98 times faster than the CPU version, and the speedup is
increased as the image size grows. With GTX 480, we observe the similar
performance increase, 1.07 ~ 1.49 times faster than GTS450.

For the OpenCL application, GPGPU version (with GTS) is 1.34 ~ 1.58 times
faster than CPU version. The speedup is not as large as the CUDA implementation,
because not all algorithms were parallelized using OpenCL: Image resizing is

executed on the CPU. Also, since the CPU model used in the simulation is not

62

Execution Time(CUDA)

900.00
200.00
J00.00
600.00
— 500.00
£ ao0o0.00
300,00
200.00
100.00
0.00 — |
267x189 600x419 1100x733
m CPU 44.69 239.35 812.11
= GTS450 5.66 17.59 47.81
m GTX480 5.26 13.02 32.01
(a) CUDA application
Execution Time(OpenCL)
900.00
800.00
F00.00
600.00
- 500.00
£ 400.00
300.00
200.00
100.00
0.00 — R
267x189 600x419 1100x733
= CPU 49.36 277.68 779.97
m GTS450 3493 176.16 581.33
m GTX480 33.60 177.15 577.21

(b) OpenCL application
Figure 5-9. The execution times of the two applications (CUDA, OpenCL)
cycle-accurate and is overestimated, the execution time on the CPU would be a bit
larger than it should be, increasing the total execution time. For the accurate result,

cycle accurate CPU model in gem5 simulator (O3 model) should be used at the

expense of slower simulation.

: s A2

Figure 5-10 shows the simulated time for GPGPU APIs (267x189-sized image)

that is partitioned into three parts: Kernel Execution, Memory Copy and Memory

Allocation. In CUDA implementation, image resizing is performed in GPGPU and

GPGPU memory space is allocated/de-allocated each time, which makes memory

allocation the most time consuming part, and the kernel execution the next. In

contrast, in OpenCL implementation, image resizing is performed in the CPU and

the resized images are copied to GPGPU memory. Thus, memory copy is the most

timing consuming part in OpenCL.

Simulated Time for GPGPU APIs

(ms)

4

CuUD A OpenCL
KernelExecution 1.63 0.387
= Memory Copy 0.724 2.259
= Memory Dealloc/Alloc 1.772 0.481

Figure 5-10. Simulated time for GPGPU API (267x189)

Figure 5-11 shows the detailed performance profiling of the face detection

applications, obtained from the proposed simulation framework. In the CUDA

64

,-,,ﬁ

= O oF

implementation, the classification part, /bp cascade kernel, takes the most of the
time but the sum of vertical pass and horizontal pass, which are the feature
extraction parts, is largerr On the other hand, we can see that
Ibp imageGPU Ix1 _aggr which is a feature extraction part, takes a bit larger than
the processingRectLoop WS 2D which is a classification part. In Figure 5-11, it
shows the communication overhead between CPU and GPGPU. As seen in the 5-11
more memory copy are occurred in OpenCL by clEnqueueWriteBuffer which

transfers data from host memory to GPGPU memory.

Kernel Execution Time
vertical_pass(CUDA) ; I : ' asa
resize_linear(CUDA) 191

processingRectloop WS 2D...

lbp_imageGPU_1x1 aggr(Op...

Ibp_cascade(CUDA) 666
horizontal _pass(CUDA) I lzss
disjoin(CUDA) 26 | ‘
1] 100 200 300 400 500 600 700

(us)

Figure 5-11. The execution time of kernel executed for the face detection

application (267x189)

5.4.3.2 CPU/GPGPU Job Sharing

As we explained in Chapter 1, it is good to consider job sharing between CPU
and GPU to fully utilize the system, since embedded GPUs are not powerful like
server GPUs. To rapidly and easily estimate the performance impact of different

CPU-GPU partitioning configurations, another set of experiments is performed with

65 1

.-':l'\._! "'I- H 1!: C
I 1]

a matrix multiplication application that is written in CUDA and Pthread. We
parallelize the computation by rows so that each row can be executed in the GPGPU
or in the CPU. Although the target embedded GPU in the Android device should be
used, the simulation is performed using the GPGPU in the simulation host since the
OpenCL driver for the embedded GPUs is not publicly available yet. In order to
invoke a target API in the embedded GPU board, information such as API
arguments and which API is to be called needs to be passed to the board from the
simulation host, which is straightforward to implement but remains as a future work
due to the availability of the driver. In the current simulation environment, we limit
the number of threads in the GPGPU from 8 to 64 to approximately model the

performance of an embedded GPU. For the CPU, we fixed the number of Pthreads

Communication Overhead

clEnqueueUnmapMem Object s

clEnqueueMapBuffer

clEnqueueWriteBuffer

clEnqueueReadBuffer

cudaMemcpy2D Ii;gi
cudaMemcpy i
] 1000000 2000000 3000000 4000000
GPGPU-To-GPU m CPU-To-GPGPU (Bytes)

Figure 5-12. Communication overhead for memory APIs (267x189)

66 R - I
A eti

to four since ARM Cortex-A9 quad-core CPU is simulated in the experiment.
Figure 5-12 shows the execution time of the application when the number of rows
allocated to CPU and GPGPU varies from 0 to 128. As expected, the optimal job
distribution point depends on the GPGPU computing power, and each optimal point
is shown in Figure 5-13. Even if the proposed simulation is not cycle-accurate, this
information is useful as the approximate performance trend of the GPGPU

application can be estimated.

Total Execution Time

-~-GPU=8 -e=-GPU=16 -e-GPU=32 GPU=64

50000
45000 N

40000 ~

35000 ~ \\ —
30000

25000 T~ \.-—i"
20000 \'\k

15000 ———
10000
5000

{us) CPU=0, CPU=32, CPU=64, CPU=96, CPU=128,
GPU =128 GPU=96 GPU=64 GPU=32 GPU=0

Figure 5-13. The execution time for the matrix multiplication varying the

number

67 :

5.4.4 Simulation Overhead

To figure out the overhead of the proposed GIL simulation, we measured the
detailed simulation time for the face detection application, which is shown in Figure
5-14. From the figure, we can see that the overhead of the GIL simulation for
GPGPU is about 3.0 % of the total simulation time. This confirms that the proposed
approach has very low overhead and the GPGPU simulation would not be a
performance bottleneck in the full system simulation unlike the one with

conventional GPGPU simulator.

4000.00
3000.00 _GET5
Simulator CUDA
OpenCL 1770.73 -simulation
Simulation (49.0%) 2.81(0%)
2000.00
105.99
(3.0%)
1000.00
0.00

Simulation Time
m Mali Interface m OpenCL = CUDA " Gem5 Simulator

Figure 5-14. Simulation time composition in the GIL simulation

i Rk A R

5.5 OpenGL ES Implementation Case

5.5.1 Background

5.5.1.1 Android Graphics Overview

Activity Activity

[l [l
I:lk Buffer Queue (j |:|

Window . Activity
i SurfaceFlinger Manager
' ' '
{ \
> OpenGL ES [HWComposer] [Gralloc] [Gralloc]
\ Z
's 3
OpenGL vendor
Libraries
> <
GPU driver Android Vendor Kernel
§) Framework D Library Driver

Figure 5-15. Overview for Android Graphics

Figure 5-15 shows an overview for Android Graphics. In Android applications,
there are four components including activities, services, content providers and
broadcast receivers [47]. Among them, the activity is responsible for the graphics

69

operations and each activity has a window to draw its user interface. Each window
has its own surface which has some buffers obtained from SurfaceFlinger process.
In the SurfaceFlinger, it only provides an interface for buffer allocation, which is
actually performed through a memory allocator called “gralloc”. In Android, there
are two gralloc modules: the one is provided by the vendor as a library (so file) and
the other is a default module provided in Android and is used when the
vendor-specific gralloc module is not provided.

After the activity obtains a buffer, the drawing is performed by 2D graphics APIs
in Canvas or 3D graphics APIs in OpenGL ES, whose result is rendered onto the
obtained buffer in a surface. Then, the drawn buffer is submitted to the
SurfaceFlinger process and multiple surfaces are composed based on the window
status (visibility, Z-order, alpha value, etc) received from the Window Manager. To
compose the surfaces, OpenGL ES library is used in the SurfaceFlinger and much of
the composition work can be delegated to the HW composer to offload some work
to the GPU.

In Android, the OpenGL ES library consists of platform-independent and
dependent layers. The platform dependent OpenGL ES library is provided in
Android source code and it simply calls down to the vendor specific libraries in
most cases. During the initialization process in this library, the vendor specific
OpenGL ES library is loaded dynamically based on the configuration file (egl.cfg)
which contains a tag like mali or adreno, which is used to construct the name of the

vendor specific library. The vendor specific library provides an interface to the GPU

70

and is responsible for managing the work for the GPU. To allocate rendering work
to the GPU, a group of ioctl system calls is invoked in the library and the GPU
device driver in Linux kernel accesses the registers and memories in the GPU to

allocate the work.

5.5.2 Additional modification for SW stack

User Space .
GPU Application
=
Synthetic Gralloc
/ OpenGL | (buffer allocation)
I/ 5-_‘
Kern#l Space (OS) 1\
Syninetic Driver
(7 N\
OpenGL ES API Helper API
[‘openGL Api 1 | ||[_getwinBuffer |
| createThread I

\.

J/

Figure 5-16. Modification for Software stack in OpenGL ES API

In OpenGL ES API, to consider the memory synchronization for complex data

structures (native window and native window buffer) and multi-process support,

71

additional modification for SW stack is required as shown in Figure 5-16. Helper
APIs are added in the synthetic library to assist OpenGL API-level GIL simulation
to obtain the process information for multi-process support and the necessary
information for the memory synchronization. Since some information for memory
synchronization can be obtained from the gralloc, original gralloc module is

modified to invoke Helper APIs to pass the information.

5.5.3 Memory synchronization

In section 5.3, we explained how the memory synchronization is handled in the
API level GIL simulation. For GPGPU APIs, since the memory region to be
synchronized is fully specified with the API parameters (the start address and the
size of the region), the memory synchronization is not difficult. However, in
OpenGL ES API, some complex data structures such as native window and native
window buffer are used in the OpenGL ES APIs and only the address for these data
is provided when the APIs are called. Thus, it is far from straightforward to keep

these data structures in a separate GPU board consistently with the simulator.

5.5.3.1 Native Window

The native window is a C/C++ class that corresponds to the surface in the Java
application. To render image from the OpenGL ES graphics application, it requires a
native window to get the buffers for rendering. So, when the application requests for

72

the native window, it is created by the Non-OpenGL code in SurfaceFlinger and
passed to the application. Then, in the application, eg/CreateWindowSurafce
OpenGL ES API is invoked with the handle for the native window to create an EGL
Surface which extends the native window with auxiliary buffers. When this
OpenGL ES API is called, it is executed in the board and the native window is
accessed with the handle that has been given as an API parameter. However, since
the handle is created by the Non-OpenGL code in SurfaceFlinger, its data is located

in the simulator memory and invalid access error would occur when the API is

typedef struct{
EGLDisplay dpy;
EGLConfig config;
EGLNativeWindowType win;
const EGLInt * attrib_list;
int width;
int height;
int format;
EGLSurface surface;
}egl create window surface s;

EGLSurface eglCreateWindowSurface(dpy, config, win, attrib_list) {
opengl_api_s arg;

l..n-f.in->query[win, NATIVE_WINDOW_WIDTH, &(api_arg.width));
win->query(win, NATIVE_WINDOW_HEIGHT, &(api_arg.height));
win->query(win, NATIVE_WINDOW_FORMAT &(api_arg.format));

int ret = iocti(hilsim_dev, HILSIM_API, &arg);
return api_arg.surface;

Figure 5-17. Code extension for the native window in synthetic library

73 - .-_{'_~| _-i_‘l_':r_ ,I__” :.I

]

I

11

executed in the board.

To solve this problem, the corresponding native window should be created in the
board using the same properties like width, height and format. For this, these
properties are extracted from the simulator memory in the synthetic library as
shown in Figure 5-17. Then, these properties will be sent to the board with the
eglCreateWindowSurface API request and the corresponding native window will be
created in the board. Even if the properties are obtained, it is not possible to create a
native window in the board, since the Android does not provide a library to create a
native window from an application. For this reason, the original Android software
stack executed in the board should be extended to build the library that provides an

interface for creating a native window.

5.5.3.2 Native Window Buffer

In the graphics applications, images can be drawn in two ways: 2D graphics APIs
in Canvas and 3D graphics APIs in OpenGL ES. When the drawn buffers are
submitted to the SurfaceFlinger process, they are composed using OpenGL ES APIs
in the SurfaceFlinger process. Since the native window buffer is not directly usable
by the OpenGL ES, it is extended to a general image object called EGL Image by
calling eglCreatelmageKHR API in the SurfaceFlinger process. The problem
happens when the native buffers drawn by 2D graphics APIs are composed. Since
the buffer is drawn by the Non-OpenGL graphics APIs, the drawn buffer is located
in the simulator memory. When eg/CreatelmageKHR OpenGL ES API is executed

in the board, the native window buffer will be accessed using the handle given as a

74

parameter. However, since the handle points to the simulator memory, invalid
access error will occur during the API execution. Thus, the corresponding native
buffer should be created in the board just like the native window. To obtain the
properties for a native window buffer, the gral/loc module, which is responsible for
the actual buffer allocation in Android, is modified.

Figure 5-18 illustrates the modified gralloc alloc function in gralloc module to
obtain the properties required for the native window buffer creation (width, height
and format). Then, getWindowBuffer Helper API is called to pass these properties to
the board and the corresponding native window buffer will be created.

For the case of the native window buffer, in addition to creating it with the same
properties, the content in the buffer should be correctly synchronized by copying the
pixel data from the simulator memory to the board memory before the OpenGL ES
APIs for the composition are executed in the board. It is not sufficient to
synchronize the native window buffer when eglCreatelmage API is executed
because an EGL Image is created only once when the buffer is submitted first and
eglCreatelmage API is not be called when the same buffer is re-submitted. Instead,
EGLImageTargetTexture2DOES API is invoked to generate the texture arrays from
the EGL Image whenever the buffer is submitted. Thus, we synchronize the native
window buffer whenever this API is invoked.

After the OpenGL ES APIs for the composition are processed in the board, the
simulated SurfaceFlinger process will pass the composited buffer to the display

controller in the simulator. Since it is composed by OpenGL ES APIs, however, the

75

result is located in the board memory and, without proper synchronization, wrong

images would be displayed in the simulator display. Thus, the pixel data for the

composite buffer should be synchronized after eglSwapBuffer API is executed in the

board, which finalizes the pixel data.

typedef struct {

int width;

int height;

int format;

unsigned int bufferHandle;
} get_window_buffer_;s

unsigned int getWindowBuffer(int width, int height, int format) {
api_arg.width = width;
api_arg.height = height;
api_arg format = format;
arg.api_id = GL_GET_WINDOW_BUFFER;
arg.process_id = getProcld();
arg.thread_id = getContext();
arg.api_arg = &(api_arg);
int ret = iocti(hilsim_dev, HILSIM_API, &arg);
return api_arg.bufferHandle;

gralloc_alloc(buffer_handle_t * pHandle, int w, int h, int format) {

(pHandle->bufferHandle) = getWindowBuffer(w, h, format);

Figure 5-18. Modified code for gralloc module

76

L,

8

: 1_'_” [

]

I

11

5.5.4 Multi-Process Support

Board Interface

SurfaceFlinger Thread

Thread Creation BootAnimation Thread

Main Thread SystemUl Thread

Android Launcher Thread

Figure 5-19. Multi-thread structure for Board Interface in OpenGL ES API

GIL simulation

In GPGPU API, we assume that only target application uses the API and there is
no need to consider the effect between the API call from the different simulated
process in the simulator. But in OpenGL ES in Android, there are many system
applications which are executed during the boot process and APIs calls from the
multiple processes should be correctly handled in the API level GIL simulation.

Generally, in OpenGL ES, each thread has its own OpenGL ES context and the
result of API execution is reflected only in the current context. And each context are

linked with a specific window and the drawing operations performed by OpenGL

77 -

ES APIs are reflected to the window linked to the current thread. However, if the
GIL simulation is implemented as a single thread, since only one window can be
linked to the thread, the API requests from the multiple threads are reflected in the
one specific window, drawing results from the multiple threads are mixed in that
window. Therefore, in order to prevent the interference between the API requests
from the different threads, multiple threads are created in the board interface and

they are processed by separate threads as shown in Figure 5-19.

5.54.1 Thread Allocation

When the first OpenGL ES API is requested from the application,
createThreadContext Helper API is requested first from the synthetic library. Then,
the corresponding thread is generated in the board and the thread id is allocated in
the host interface. And a client socket is created in the host interface, which is
connected with the server socket for the generated thread in the board. The binding
information between the thread id and the socket is reserved in the host interface
internally, and the thread id is stored in the thread id variable to pass it to the
synthetic library. In the synthetic library, the thread id is stored in a per-thread data

structure for later use.

5.5.4.2 Target Thread Selection

When the OpenGL ES API is requested, in the synthetic library, thread id
variable is set by calling getThreadld() function in which thread id is restored from

per-thread data structure as shown in Figure 5-2. In the host interface, to find out

78

which thread is responsible for simulating the requested API, the binding
information which was previously reserved by the thread allocation process is
searched to establish the socket connection. Since thread information is passed by
the thread id and process _id variables in the common structure, the target socket

connection can be obtained using these values from the binding information.

5.5.5 High-level Timing Modeling for other GPUs

Since a real GPU HW is used in the simulation, the proposed technique can
simulate the target platforms only if the existing GPU is re-used. For this reason, the
design space exploration for the GPU can be performed by using several GPU
boards with different GPUs. To overcome this limitation, we proposed a simple
analytical timing modeling technique that estimates the execution time of OpenGL
API when a non-existing GPU is included in the target platform.

Let CPU/GPU frequency be represented by (F¢, Fg). In our simple timing model,
the API execution time for given CPU/GPU frequency level (F¢, Fj) consists of

three parts: Idle time (T;p.r), CPU execution time (Tg;u), and GPU execution time

(T; 5y as shown in below.

F. F
Tap1(Fe, Fg) = Tipg + Tegy + Topy (1)

79 1

The execution time of the CPU and GPU can be calculated by multiplying the

total number of cycle (CPU_CyclesTe, GPU_Cycles¥9) and the clock cycle time

(inverse of the clock frequency) of the CPU and the GPU.

F. _ CPU_Cyclesfc
Tepy = ~ F.)

F GPU_Cycles™d

g — -
e il ©

In our simple timing model, only the clock frequencies of CPU and GPU can be
configured in the target platform and other architecture features are same with GPU
board. Moreover, the same code is executed on the target platform so that the total
number of cycles of the CPU and the GPU would be remained unchanged
regardless of the variation in the clock frequencies of the CPU and the GPU. Let the
tuple (F¢, Fj) represent the frequencies of the CPU and GPU in the target platform
and the tuple (F;, Fy) represent the frequencies in the GPU board used in the
simulation. Then, since the total number of cycles of the CPU and the GPU are not
changed depending on the clock frequencies, below equations can be obtained using

Equation (2), (3).

F. _ —Fc F¢
Tepy = Tepy * 5r
c

F} F F
g _ g ,rtg
Tepy = Tepy * 5
g

80

From these equations, we can know that the execution times of CPU and GPU on

!

!
the target platform (TCFISU,) can calculated from the execution times measured

Topy
in the GPU board. And these information can be obtained from the GPU board
using the performance analyzer or the profiler such as profiler such as ARM
StreamLine [1] during the simulation.

As shown in Equation (1), to model the API execution time in the target platform,
we also need to know the idle time in the target platform (T;p.). For simplicity, we
assume that the idle time is not changed depending on the clock frequencies. Thus,
we can re-use the idle time obtained from the GPU board. Finally, we can obtain the
following equation to model the API execution time in the target platform varying

the clock frequencies of the CPU and GPU based on the profile information

obtained from the GPU board.

F! Fy
Tap1(Fe, Fg) = Tipe + Togy + Tepy

_ Fo _Fe Fg Fg
= TipLe + Tepy * 5 + Topy * 5
c g

5.5.6 Porting To a New GPU Board

Since the CPU-GPU interface is performed at the OpenGL ES API level which is

independent of the GPU, it can be easily extended to support various types of GPUs.

81

To apply the proposed technique to a new GPU board, it is necessary to modify the
parts related with the native window, the native window buffer in the board
interface, and the Android OS in the board.

For the native window buffer, memory synchronization part in the board interface
should be modified since the structure for the native window buffer is different
across the target GPU. Thus, the source code to obtain the pointer to the pixel data
should be modified to apply the proposed technique to the new GPU board. This
information can be inferred from the header file (gralloc priv.h) of gralloc module
which is provided by the GPU vendor as a part of the Android source code. Given
this file, it takes about a day to modify the source code for the native window buffer.

For the native window, as mentioned in 5.5.3.1, the basic Android does not
provide an interface to create the native window from the application. Since the
native window is needed from the board interface, the original Android source code
should be extended to build the library that provides the interface. For this purpose,
the source code for the library in the previous framework is copied to the Android
source code for the new GPU board and the protection level for the SurfaceFlinger
is lowered so that it can be accessed from the application. Exceptionally, if the way
to obtain the native window from the SurfaceFlinger is changed, the library source
code from the previous framework may not be applicable. Nevertheless, from our
experience, it is not difficult to write the library code to provide an interface for
creating the native window.

For the native window, the original Android source code should be extended

82

since the original Android does not provide an interface to create the native window
from the application. It has to be extended to provide such an interface. For this
purpose, the source code for the interface, or library, in the previous framework
should be copied to the Android source code for the new GPU board and the
protection level for the SurfaceFlinger process should be lowered so that it can be

accessed from the application.

5.5.7 Experiments

In the proposed simulation framework, the target system is based on the Exynos
4412 system and only the GPU part is changed depending on the development
board used in the simulation. We used three development boards (Odroid-X [40],
5250 Arndale [42], and Odroid-XU3 [41]) with different GPUs (Mali 400MP4, Mali
T604, and Mali T628 respectively). To make the full system simulation fast enough
for software development and verification while sacrificing the timing accuracy, we
used the AtomicSimple CPU model in gemS5.

We ran three Android graphics applications called Rubik [31], Lesson05 and
Lessonl6 [30]. As explained in 4.4, the Rubik benchmark includes both the
computation and the API call sequence, in which the proportions of two parts are
37.4% (computation) and 63.6 % (API call sequence) respectively. However, other

benchmarks (Lesson05, Lesson16) only include the API call sequence without any

83

computation. To measure the rendering performance for the benchmarks, we
measured only the execution time of the OpenGL API call sequence in the rendering
function without computation part, by inserting time stamping code to the
application.

It is known that measuring the rendering time for the OpenGL ES application is
not a simple problem [33] due to the asynchronous behavior in the OpenGL ES
APIs and the window buffer limitation. For asynchronous behavior, if there is no
synchronization API at the end of the API sequence, the measured API time only
includes the queuing overhead without rendering time. Thus, we inserted the
synchronization API at the end of the APIs in the original application to measure the
actual rendering time. In Android OpenGL ES application, each application obtains
the native window buffer from the buffer queue in the SurfaceFlinger. If there is no
free buffer available, the application should wait until the buffer is composed and
the measured time can include the waiting time for the buffer. To avoid this problem,
we insert a redundant g/Clear API before the first API in each application to

guarantee the availability of free buffers.

5.5.7.1 Simulation Speed

The proposed technique can achieves high simulation performance up to about 10
Mcps (cycles per second). Since the AtomicSimple model does not simulate the
CPU when it becomes idle [32] when the usleep function in the synthetic driver is
called, gem5 just skips the period without any simulation. In case the application

spends most of the time in the GPU, as the benchmark programs used in the

84

experiments do, we can obtain higher GIL simulation speed than the gem5 simulator.
Since the performance for the system call-level GIL simulation is about 1 Mcps, the
API-level GIL simulation technique can achieve significant speed-up compared

with the system call-level GIL simulation.

(s) RENDERING TIME
0.600

0.400
0.200 I I I I I
0.000

Rubik Lesson05 Lessonl6

m Odroid-X 0.288 0.248 0.248
Arndale Board 0.363 0.265 0.264
B Odroid-XU3 0.496 0.401 0.393

Figure 5-20. Rendering times for three benchmarks with three boards

5.5.7.2 Rendering Performance

Figure 5-20 shows the rendering performance (i.e., simulated time) result for
three benchmarks when they are simulated using three development boards. In
Odroid-X, the execution times for the rendering are 0.248 to 0.288 seconds. As
200 frames are displayed, the rendering performance is about 694.6 ~ 807.6 fps

and we can expect that all the benchmarks can display the image to screen without

; A 2ol & i

any delay since it is faster than the display rate (60 fps). In other boards, compared
to Odroid-X, the execution time is increased by about 1.07 ~ 1.26 and 1.59 ~ 1.72

times for Arndale and Odroid-XU3 board respectively.

40.0%
30.0%
20.0%
10.0% I
0.0% L L L L L L
. 550N | Lesson . eas5s50n e5s50n . 550N | Lesson
Rubik 05 16 Rubik 05 16 Rubik 05 16
Odroid-X Arndale Odroid-XU3
W Error 24.2%\27.1%|22.3% 21.7%\32.2%\31.2% 15.3%\33.3%\33.9%

Figure 5-21. Accuracy results for three benchmarks with three boards

5.5.7.3 Accuracy Evaluation

To evaluate the timing accuracy of the proposed framework, we first measured
the rendering time of the native execution, and compared with the simulated time
from the proposed framework. As shown in Figure 5-21, the timing error is in range
of 15.8 % ~ 38.9 %. From the result, we can know that there exist some timing
errors compared with the native execution. As mentioned in section 5.2.1, to reduce

these timing errors, the simple linear regression analysis is performed based on the

” 2 X2 t) &

rendering time results from two benchmarks: Rubik and Lesson05. From the result
shown in Figure 5-22, the ratio factor of 1.232 is obtained. Then, the simulation for
Lessonl6 benchmark is performed, dividing the measured API time by this factor.
Figure 5-23 shows the timing error before and after the ratio factor is applied to the
simulation result. From the result, we can know that the average error ratio is
decreased from the 30.8 % to 10.8 %. It is confirmed that the proposed approach
with regression-based timing modeling provides good timing accuracy with about

10% of timing error for the graphics benchmark examples.

y=1.232x
2 =

o 1.2 R? = 0.9486

§ Lesson05 _

= 1 {(Odroid-XU3) e

En = Rubik

5 o os (Odroid-X) po L

s t—; 0.6 Lesson05 N {Odroid-XU3)

= £ {Arndale) - Rubik

E 5 04 (Arndale)

N £ 0.2 Lesson05

= ' (Odroid-X)

£

5 0

L 0 0.2 0.4 0.6 0.8 1

MNormalized Rendering Time
in Native Execution

Figure 5-22. Linear regression analysis result for two benchmarks

87

Error Ratio(Lessonl16)

50.0%
40 .0% 38.9%
31.2% 30.8%
30.0%
22.3% 13.0% 15.8%
20.0%% 10.8%
10.0% 3.5% . .
0.0% —
Before correction After correction
m Odroid-x 22.3% 3.5%
m Arndale 31.2% 12.0%
Odroid-XU3 38 .9%. 15.8%

m AVERAGE 30.8% 10.8%

Figure 5-23. The error ratio before and after the correction factor is applied

5.5.7.4 Dynamic Behavior Profiling

To efficiently optimize the rendering performance, it is important to figure out
which API has the longest execution time. Since the OpenGL ES APIs are executed
asynchronously in the board, the measured API time during the simulation only
includes the queueing overhead without the actual execution time. To obtain the
execution time information for actual rendering, synchronous model is implemented
in which a synchronization API such as gl/Finish is appended to each API to enforce
waiting until the actual execution of the API is completed. Figure 5-24 shows the
detailed performance profile information for the Rubik benchmark when the
simulation is performed with Odroid-X board in the synchronous model. The

information includes the number of API calls and the total execution time for the

" BEEE

e

ITU

APIs. From the results, we observe that giDrawElements and glClear API take the
longest execution times which are 0.202 and 0.197 seconds, respectively, for 200

executions.

LX) 0,050 0100 0,150 0200 0.250
450
glEnableclientState || 400
glRotatef

350
I 300
250
IFinish
g || 200

giclear [—— 150
100
glDrawElements —— 20
[1]

glDrawElem . glEnabledli
ICl IFinish IRotatef
ents gitiear girinis gihotate entstate
mmm total time(s) 0.202 0.197 0.007 0.005 0.005
== Call Count 200 200 400 400 400

Figure 5-24. The total execution time and the call count for each API

5.5.7.5 Design Exploartion varying CPU/GPU frequencies

To overcome the limitation in the proposed technique, a simple timing modeling
technique that can model the timing of OpenGL API varying the frequencies of the
CPU and the GPU is proposed in 5.5.5. To evaluate timing accuracy of this
modeling technique, we first measured the rendering times of the native execution
for 4 different CPU/GPU frequency combinations as shown in Figure 5-25. In the
simulation, first the simulation is performed by fixing the CPU/GPU frequencies to
1.0 GHZ and 266 MHZ respectively and the profile information required in the

modeling technique is obtained using the ARM streamline performance analyzer [1].

. A 2ol & i

After that, the rendering times for the other three configurations are estimated by
the proposed modeling technique based on the profile information and the estimated
API time is divided by the regression factor obtained in 5.5.7.3, which is 1.232. As
shown in Figure 5-25, the timing error is in range of 5.0 % ~ 26.3 % and the

average error is 17.0 %.

(%)

30.0

23.0
20.0
15.0
10.0
5.0
B

CPU=1.0GHZ, CPU=1.0GHZ CPU=14GHZ, CPU=1.4GHZ
GPU=266 MHZ GPU=343 MHZ GPU=266 MHZ GPU=5343 MHZ

N Error 26.7 26.3 3.0 9.9 17.0

AVERAGE

Figure 5-25. The error ratio for Lesson16 benchmark with 4 combinations

of CPU/GPU frequencies on the Odroid-XU3 board

In the Odroid-XU3 board, 5 CPU clock frequencies (1.0, 1.1, 1.2, 1.3 and 1.4
GHZ) and 6 GPU clock frequencies (177, 266, 350, 420, 480, 543) are supported.
To show that the proposed technique can be used for design space exploration,
additional CPU/GPU frequencies which are not available in the Odroid-XU3 board

are considered in the proposed modeling technique. From the result shown in Figure

N 3 A=t el w

T
 m—

5-26, in the highest CPU/GPU frequencies (CPU=2.0 GHz, GPU = 1000 MHZ),
about 1.26 times higher performance (0.199 seconds) can be achieved compared
with the highest performance (0.250 seconds) in the Odroid-XU3 board (CPU=1.4

GHZ, GPU=543 MHZ).

Rendering Time
~—CPU=1.0GHZ —+CPU=1.4GHZ -~ CPU=2.0GHZ

0.400

0.350 \\

0.300 —

0.250

0.200

0.150

GPU=266 MHZ GPU=543 MHZ GPU=800 MHZ GPU=1000 MHZ
== CPU=1.0 GHZ 0.355 0.326 0.314 0.307
== CPU=1.4 GHZ 0.280 0.250 0.242 0.234
CPU=2.0 GHZ 0.248 0.215 0.204 0.139

Figure 5-26. The rendering time for Lesson16 benchmark on the

odroid-xu3 board varying CPU/GPU frequencies

91

5.6 Summary

In this section, we have proposed a fast and extensible GPU-in-the-loop
simulation technique that integrates a real GPU hardware with the full system
simulator at the API level to make a best compromise between the simulation speed
and the timing accuracy. To provide an easily extensible interfacing mechanism
between the simulator and the GPU board, a synthetic library is defined for the GIL
simulation.

In the GPGPU API-level GIL simulation technique, we simulated a real-life
example of face detection applications which both utilize CPU and GPU. Through
the simulation, we could estimate the execution time of the face detection. The
results show that GPGPU version can increase the performance compared to the
CPU only version by 5.7X ~ 10.5X for CUDA version, and 1.29X ~ 1.56X faster
for OpenCL version, depending on the input image size. We could also confirm that
the proposed approach can easily adopt a new GPGPU in the GIL simulation. We
used two different types of GPGPUs, GTS450 and GTX480, without any
modification in the simulation framework. From the simulation time profiling, only
4.0 % of the total time is spent on the GPGPU simulation.

In OpenGL ES API-level GIL simulation technique, the proposed technique
achieved up to about 10 Mcps, which is 10 times of speedup for Android graphics
benchmark applications compared to the system call-level GIL simulation technique.

We could apply the proposed technique successfully to three development boards

92

with a little modification of the board interface and Android source code in the
board for the native window management. The most challenging problem in the
proposed framework is to synchronize two distinct memories in the GPU board and
the simulation host. We proposed a novel method to keep the native window and the
native window buffers consistent. For timing accuracy, we propose a simple linear
regression analysis to compensate the difference between the measured execution
time and the simulated time, without the detailed information for the OpenGL ES
driver code. Moreover, for the design space exploration varying CPU/GPU
frequencies, a simple timing modeling technique is proposed to model the timing of
the API execution GPU platforms with the frequencies not supported in the existing

GPU.

93 4
1

Chapter 6 Conclusion and
Future Work

Emerging mobile devices are likely to adopt CPU-GPU heterogencous
architecture where an embedded GPU executes offloaded computations from the
CPU as well as rendering tasks. Thus, building a full system simulator for a
CPU/GPU heterogeneous architecture recently draws keen attention of mobile
device developers for design space exploration or SW development at the early
design stage.

For these purposes, since it is very desirable to run the same application software
on a full system simulator, simulation performance is really important. However, all
known GPU simulators are mainly developed for architectural exploration, those
simulators are prohibitively slow. Moreover, for some mobile GPUs such as Mali or
PowerVR, since GPU simulators does not exist, it is impossible to build a full

system simulator for the target platforms consisting of these GPUs.

94

To solve these problems, this thesis propose a GPU-in-the-loop (GIL) simulation
technique, which integrates a real GPU Hardware with a full system simulator.
Since real HW is used, it can provide fast simulation speed enough for SW
development purpose and can build a full system simulator even if a GPU simulator
is not available.

There are two major challenges in the proposed technique. First, since the
on-chip shared memory in the target system is modeled with the two separate
memories in the simulator and the board, we must synchronize the duplicated
shared memory models to maintain the coherence. Second, since the detailed
behavior of the GPU cannot be observed in the board, it is not easy to model the
timing of the GPU in the proposed technique. To handle these challenges, two novel
interfacing techniques that interact with a real GPU at system call and API level are
proposed in this thesis.

In the system call-level GIL simulation technique, since GPU virtual address is
used in the system call argument, address translation table is maintained for
memory synchronization. And to model the GPU execution, the interrupt handing
mechanism is modeled.

In API-level GIL simulation technique, to provide an easily extensible interfacing
mechanism between the simulator and the board, a synthetic library is defined and
original SW stack is modified not to simulate the device driver. Since the device
driver in the original SW stack is not simulated, interrupt-based timing modeling

technique can’t be applied. Instead, the API execution is modeled by simply calling

95 2
1

a sleep function in the synthetic driver. Since the type of API varies depending on
the GPU functionality, two types of APIs for GPGPU and Graphic are considered in
this thesis and several API-specific challenges such as asynchronous behavior
modeling and memory synchronization for complex data structures are properly
handled.

Since the two interfacing techniques have different features, depending on the
purpose of the simulation, the suitable interfacing level may be different. To
monitor the internal behaviors of the GPU device driver or the API library, the
system-call level simulation technique is proper since the device driver and the API
library are actually simulated. However, if we are only interested in the high-level
performance information on the application such as API-execution time, the
API-level simulation technique is proper since it can provide faster and extensible
simulation than the system-call level technique.

From the experimental results, we can confirm that the proposed technique
successfully make a best compromise between the simulation the timing accuracy
so that it can be used for early SW development and system performance
estimation.

In the proposed technique, it has a limitation that it can only model the target
platform with existing GPU. To overcome this limitation, we proposed a simple
timing modeling technique which models the frequencies that is not supported in
existing GPU using the profiling tool. Since current model is too simple and only

clock frequency can be configured, more sophisticated model is required to consider

96 2
1

other high-level architecture characteristics of the GPU such as the number of GPU
cores and this is left as a future work.

Also, to verify the effectiveness of current GPU power governors, the current
GIL simulation technique will be extended to model the power as well as the
performance. In the current experiment results, a small number of benchmarks and
GPUs are used. Thus, to faithfully verify the proposed technique, we will perform
the experiments using more benchmarks and various types of GPUs in the future

work.

97 -

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

Streamline Performance Analyzer,

http://www.arm.com/products/tools/software-tools/ds-5/streamline.php

PVRTune,

http://community.imgtec.com/developers/powervr/tools/pvrtune/

Snapdragon Profiler,

https://developer.qualcomm.com/software/snapdragon-profiler

V. M. del Barrio, C. Gonzalez, A. Fernandez, R. Espasa, “ATTILA: A
Cycle-Level Execution-Driven Simulator for Modern GPU

Architectures” IEEE International Symposium on Performance

Analysis of System and Software (ISPASS), pp. 10-12, Mar. 2006.

Wang, P. H., Lo, C. W., Yang, C. L., & Cheng, Y. J. (2012, April). A
cycle-level SIMT-GPU simulation framework. In Performance
Analysis of Systems and Software (ISPASS), 2012 IEEE International
Symposium on (pp. 114-115). IEEE.

Bakhoda, G. Yuan, W. Fung, H. Wong, T. Aamodt, “Analyzing
CUDA Workloads Using a Detailed GPU Simulator”, in IEEE

98 -

http://www.arm.com/products/tools/software-tools/ds-5/streamline.php
http://community.imgtec.com/developers/powervr/tools/pvrtune/
https://developer.qualcomm.com/software/snapdragon-profiler

[7]

[8]

[9]

[10]

[11]

[12]

International Symposium on Performance Analysis of Systems and

Software, Apr. 2009.

Collange, S., Daumas, M., Defour, D., & Parello, D. (2010, August).
Barra: A parallel functional simulator for gpgpu. In Modeling,
Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS), 2010 IEEE International Symposium on (pp. 351-360).
IEEE.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. GILI, and D. A. Wood, “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no.
2,2011.

Fabrice Bellard, “QEMU, a fast and portable dynamic translator”,
USENIX Annual Technical Conference, 2005.

R. Ubal, B. Jang, P. Mistry, D. Schaa, D. Kaeli, “Multi2Sim: A
Simulation Framework for CPU-GPU Computing”, Parallel
Architectures and Compilation Techniques, Sep. 2012.

Kim, Hyesoon, et al. "MacSim: a CPU-GPU heterogeneous simulation

framework user guide." "Georgia Institute of Technology (2012).

Zakharenko, V., Aamodt, T., & Moshovos, A. (2013, March).
Characterizing the performance benefits of fused CPU/GPU systems
using FusionSim. In Proceedings of the Conference on Design,

Automation and Test in Europe (pp. 685-688). EDA Consortium.

99 ~

[13]

[14]

[15]

[16]

[17]

[18]

H. Wang, V. Sathish, R. Singh, M. Schulte, N. Kim, “Workload and
Power Budget Partitioning for Single Chip Heterogeneous Processors,”

IEEE Conf. on Parallel Architecture and Compilation Techniques, Sep.
2012.

J. Power, J. Hestness and M. S. Orr, “gem5-gpu: A Heterogeneous
CPU-GPU Simulator”, IEEE Computer Architecture Letters, DOI
10.1109/LCA.2014.2299539

JMa,J., Yu, L., John, M. Y., & Chen, T. (2015). MCMG simulator: A
unified simulation framework for CPU and graphic GPU. Journal of

Computer and System Sciences, 81(1), 57-71.

S. Shen, S.Lee, C. Chen, “Full System Simulation with QEMU: an
Approach to Multi-view 3D GPU Design”, Circuits and Systems
(ISCAS), May, 2010.

S. Raghav, C. Pinto, , M. Ruggiero, A. Marongiu, D. Atienza, L.
Benini, “Full System Simulation of Many-Core Heterogeneous SoCs
using GPU and QEMU Semihosting,” in Proceedings of the 5th
Annual Workshop on General-Purpose Processing with Graphics

Processing Units (GPGPU-5), pp. 101-109, Mar. 2012

Arnau, Jose-Maria, Joan-Manuel Parcerisa, and Polychronis Xekalakis.
"TEAPOT: a toolset for evaluating performance, power and image
quality on mobile graphics systems." Proceedings of the 27th
international ACM conference on International conference on

supercomputing. ACM, 2013.

100 -

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Li, Sheng, et al. "McPAT: an integrated power, area, and timing
modeling framework for multicore and manycore architectures."
Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM
International Symposium on. IEEE, 2009.

H. Kim, D. Yun, S. Ha, “Scalable and Retargetable Simulation
Techniques for Multiprocessor Systems”, CODES+ISSS pp 89-98 Oct,
2009.

J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald III, N. Beckmann, C.
Celio, and A. Agarwal, “Graphite: A distributed parallel simulator for
multicores”, In Proceedings of the 16th International Symposium on
High Performance Computer Architecture (HPCA), pp. 1-12, Jan.
2010.

S. Lee, W. Ro, “Parallel GPU architecture simulation framework
exploiting work allocation unit parallelism”, IEEE International
Symposium on Performance Analysis of System and Software

(ISPASS), 2013

Lee, Sangpil, and Won Woo Ro. "Parallel GPU Architecture
Simulation Framework Exploiting Architectural-Level Parallelism with
Timing Error Prediction.", IEEE Transactions on Computers,

10.1109/TC.2015.2444848

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior”. In ASPLOS, 2002.

T. E. Carlson, W. Heirman, and L. Eeckhout. “Sampled simulation of

multi-threaded applications” In ISPASS, 2013

101

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

J. Huang, L. Nai, H. Kim and H. Lee, “TBPoint: Reducing Simulation
Time for Large-Scale GPGPU Kernels”, IEEE International

Conference on Parall and Distributed Processing Symposium (IPDPS),
pp 437-446, May. 2014.

Z. Yu, et al. “GPGPU-MiniBench: Accelerating GPGPU
Micro-Architecture Simulation”, IEEE Transactions on Computers, doi.

10.1109/TC.2015.2395427

K. Fang, Y. Ni,J. He, Z. L1, S. Mu, Y. Deng, “FastLanes: An FPGA
Accelerated GPU Micro-architecture Simulator”, IEEE International
Conference on Computer Design (ICCD), pp. 241-248, Oct. 2013.

GPUOcelot, http://gpuocelot.gatech.edu/

Lesson05 — 3D shapes, Lesson 09 — Moving bitmaps in 3D space,
Lesson16 — Cool Looking Fog

http://insanitydesign.com/wp/projects/nehe-android-ports/

Rubik Cube Animation Example In Android,
http://www.edumobile.org/android/rubik-cube-animation-example-in-a

ndroid/

http://comments.gmane.org/gmane.comp.emulators.m5.users/11513

http://blog.imgtec.com/powervr/micro-benchmark-your-render-on-pow

ervr-seriesS-series5xt-and-series6-gpus

Pin. A Binary Instrumentation Tool. http://www.pintool.org.

102 -

http://gpuocelot.gatech.edu/
http://insanitydesign.com/wp/projects/nehe-android-ports/
http://www.edumobile.org/android/rubik-cube-animation-example-in-android/
http://www.edumobile.org/android/rubik-cube-animation-example-in-android/
http://comments.gmane.org/gmane.comp.emulators.m5.users/11513
http://blog.imgtec.com/powervr/micro-benchmark-your-render-on-powervr-series5-series5xt-and-series6-gpus
http://blog.imgtec.com/powervr/micro-benchmark-your-render-on-powervr-series5-series5xt-and-series6-gpus
http://www.pintool.org/

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Yourst, Matt T. "PTLsim: A cycle accurate full system x86-64
microarchitectural simulator." Performance Analysis of Systems &
Software, 2007. ISPASS 2007. IEEE International Symposium on.
IEEE, 2007.

MARSSx86: Micro-ARchitectural and System Simulator for x86 based

Systems. www.marss86.org

Cain, Harold W., et al. "Precise and accurate processor simulation."
Workshop on Computer Architecture Evaluation using Commercial

Workloads, HPCA. Vol. 8. 2002.

Mali-400 MP,

http://www.arm.com/products/multimedia/mali-cost-efficient-graphics/

mali-400-mp.php

Samsung Exynos 4 Quad (Exynos4412),
http://www.samsung.com/global/business/semiconductor/file/product/

Exynos 4 Quad User Manaul Public REV1.00-0.pdf

Odroid-X board,
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G13
3999328931

Odroid-XU3 Board,

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G14
0448267127

Arndale Board,

http://www.arndaleboard.org/wiki/index.php/Main_Page

1 1] 2]} &

1L

http://www.marss86.org/
http://www.arm.com/products/multimedia/mali-cost-efficient-graphics/mali-400-mp.php
http://www.arm.com/products/multimedia/mali-cost-efficient-graphics/mali-400-mp.php
http://www.samsung.com/global/business/semiconductor/file/product/Exynos_4_Quad_User_Manaul_Public_REV1.00-0.pdf
http://www.samsung.com/global/business/semiconductor/file/product/Exynos_4_Quad_User_Manaul_Public_REV1.00-0.pdf
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G133999328931
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G133999328931
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
http://www.arndaleboard.org/wiki/index.php/Main_Page

[43]

[44]

[45]

[46]

[47]

OpenCV, http://opencv.org/

SystemC, http://accellera.org/downloads/standards/systemc

AtomicSimpleCPU model in gemS5,
http:/www.m5sim.org/Simple CPU

ARM Semihosting Interface,

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0471

o/Bgbjjgij.html

http://developer.Android.com/guide/components/fundamentals.html#C

omponents

104 . .;x_-| "i 1_” X

http://opencv.org/
http://accellera.org/downloads/standards/systemc
http://www.m5sim.org/SimpleCPU
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0471g/Bgbjjgij.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0471g/Bgbjjgij.html
http://developer.android.com/guide/components/fundamentals.html#Components
http://developer.android.com/guide/components/fundamentals.html#Components

=&et 3D AYS MElstALY,

£ HM33t7| Ui, tHEE2| UHICIE AAROM 2HY GPU 7t ALE
Tl ACH ACH7L Z2HEY GPU 2 A4t 30| ZOFX[1, GPU Of Cist
T2 Y0| ZhsSiEol mal, 2HY GPU 7t LSl EE QA FX|E
M O{AX|D QUCt ZHIY GPU 2 B2, MH hA@nt FHE| MR e
YoM F=HE[O0F StEE, TfA M2 £ ROE ZEYoiCt OB E,

FO|Z dsit oty Mef =ds WEAF|7| floiME CcPU 2 GPU 2

CPU/GPU 0|F HE OI7|HINHE HAASt= x=7| THAOIM sw Of CHet
REE AZFGIHL} L& CHYSH A Z7t SMES QSN 714 ZTZEE}

o8 A2ElS ALEStE A0| EEAHOICE 7he Z2EEO|E A[AEOA

CHst AlZ2o|M meo| BIEA| Wil d2iLt A GpU of HS, A
Sajlo|M DHO| EXSIX %1, Y= HSOT F2 00|22 of7|EH

TEOA2 OF7|HN S St SH2=2 JWEE0, A= 0]d 850

O

x| otct

LS

ojgiet 2ME dlZoH’| 2lohM, = =20AME 2 StERO R AlE

f

H|O|E{E Z%eStE= GPU-in-the-loop (GIL) AlE20|M 7|HE M Qtst

105 -

gl
1
—

2| Sof AlZd|o]d0] £[22, & M2 Zte] EEdS wAloH| fl
22 S7(=7F 7t St ZHO[Lh A[A - = 78 7[-0A o &
ME CHR7| RI8HAM, T2 gz Hols2 SdiM S+ =& HZ2d 39

of tiet 82E MTotd, 2H 2EE ¢2 GrU

mjn
4>
o
>
N
rir
n
«
w
o
S

Call O 2F& WO, 3iY HO|l2S 0|83t &7 =& FHol ot
7|27t +=dEDh GpU o +dS AZ0|H oM ZRHISHY| 28,
|

& GPU FHAIZLE 130, AlE8|0lH H0AM GPU QAHEES &

r
m
10
|m
N
r
Ho
fliz=
o
N

| EH
H

mjo
>
ro

SIAEL, O 7|8oME EE0A

Al

FUN HHEo =2 API =FO0|M A|E20|HQt HE 7to] ASSt= 7|
2 HM|etotCt. 7|E Software Stack Off ZghEl CHHO|A E2HO[H7) Al
, Ctget GPU E X|JStER 2 5t= A0 O{HREE,
APl 7|8t 7|E0M= AlZE0|d 82 AMEE= MEZR 2H0[EZE|E
golot, 7|E& SW stack &0 ZX5t= GPU 2i0|ERE[E CMStES

o}of, CfHfO[A EEtO[H 7t A0 &|X| =S otCf. J2[i1 API

1

BAIZEE Al=20lH oA ZEESHY| 2B, AlZ20|HS 2t M=z

106 1
] ©

= C|HO|A E2tO|HE 2[510], siE E2tO|H LHO|AM sleep TS 2
E510], EE0|AM ZHEE API A|7H0| A2 Ol &0f BHAZ|A =IO,
HES= GPUAPI B0M, & =20M= 71 BO| AHBE[= OpenCL
CUDA 2|1 OpenGL ES API Of CH®F API 7|8 A|E80|M 7|HE KXt
oiCh d2|1 ZHHE AlZ20|d2 oM, HIE7| &, BE[ZENA X

o, sfet Mol =0 ot HE22 S7l=tet €2 o2 2MSS

n
09
_(')_I-
N
1
mujn
mjo
ofm
ot
jeld
Y
O
k4]
in

M, BE A[E0[H 55 Mg = UASS =AY = ALy 222
Merel 71g2 sw 7ie =& OfL2 A[AE =FE0 AL d5 05

o

= st EZZM ALEO| 7hsSICE AHCHE, Motz 7|8ol AL, AKX ot
EAo7l AFE2E22, GPU Of CHeH A|Z20|EH7I MSEX| 2e 20
L CPU/GPU O|F HE A|AHRIZS 2ot 71 TZEEO|E A|AH”IEZ 2=

P

20| 7hs5tEt.

ot
rir

F820] : CPU/GPU O|F HE FME, GPU A|Z4(0|M, 74 ZTEEE}
O|E A|AE! GPU-in-the-loop A|Z2{0|M, A|AE = API

st H - 2009-20750

107

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Thesis Organization

	Chapter 2 Related Works
	2.1 Acceleration techniques for GPU simulation
	2.1.1 Parallel Simulation
	2.1.2 Sampled Simulation
	2.1.3 Statistical Simulation
	2.1.4 HW-accelerated Simulation

	2.2 CPU/GPU Simulation framework
	2.3 Summary

	Chapter 3 GPU-in-the-loop Simulation
	3.1 Basic Idea
	3.2 Different levels of CPU/GPU Interaction
	3.3 Detection Mechanism
	3.4 Memory Coherency Problem
	3.5 Overall GIL simulation flow

	Chapter 4 System call- level GIL Simulation
	4.1 Target System
	4.1.1 Typical Execution Scenario of the Systems

	4.2 Memory Synchronization
	4.2.1 Address Translation Table

	4.3 Timing Modeling
	4.3.1 Interrupt Modeling
	4.3.2 Regression based timing correction for GPU time
	4.3.3 An Example of System-level GIL Simulation Scenario

	4.4 Experiments
	4.4.1 Parallelization for diff operation
	4.4.2 Simulation Time Analysis
	4.4.3 Contention overhead in Pixel Processors (PP)
	4.4.4 Internal System Behavior Profiling
	4.4.5 Accuracy Evaluation

	4.5 Summary

	Chapter 5 API-Level GIL Simulation
	5.1 Differences between API-level and System call-level techniques
	5.1.1 Synthetic Library

	5.2 Timing Modeling
	5.2.1 Regression-based compensation for timing error

	5.3 Memory Synchronization
	5.4 GPGPU API (CUDA & OpenCL) Implementation Case
	5.4.1 Asynchronous Behavior Modeling
	5.4.2 Implementation Issues
	5.4.3 Experiments
	5.4.4 Simulation Overhead

	5.5 OpenGL ES Implementation Case
	5.5.1 Background
	5.5.2 Additional modification for SW stack
	5.5.3 Memory synchronization
	5.5.4 Multi-Process Support
	5.5.5 High-level Timing Modeling for other GPUs
	5.5.6 Porting To a New GPU Board
	5.5.7 Experiments

	5.6 Summary

	Chapter 6 Conclusion and Future Work
	Bibliography
	초록

<startpage>13
Chapter 1 Introduction 1
 1.1 Motivation 1
 1.2 Contribution 4
 1.3 Thesis Organization 6
Chapter 2 Related Works 7
 2.1 Acceleration techniques for GPU simulation 7
 2.1.1 Parallel Simulation 8
 2.1.2 Sampled Simulation 9
 2.1.3 Statistical Simulation 11
 2.1.4 HW-accelerated Simulation 11
 2.2 CPU/GPU Simulation framework 12
 2.3 Summary 15
Chapter 3 GPU-in-the-loop Simulation 18
 3.1 Basic Idea 18
 3.2 Different levels of CPU/GPU Interaction 20
 3.3 Detection Mechanism 21
 3.4 Memory Coherency Problem 23
 3.5 Overall GIL simulation flow 23
Chapter 4 System call- level GIL Simulation 26
 4.1 Target System 26
 4.1.1 Typical Execution Scenario of the Systems 27
 4.2 Memory Synchronization 29
 4.2.1 Address Translation Table 30
 4.3 Timing Modeling 32
 4.3.1 Interrupt Modeling 33
 4.3.2 Regression based timing correction for GPU time 34
 4.3.3 An Example of System-level GIL Simulation Scenario 35
 4.4 Experiments 37
 4.4.1 Parallelization for diff operation 37
 4.4.2 Simulation Time Analysis 39
 4.4.3 Contention overhead in Pixel Processors (PP) 40
 4.4.4 Internal System Behavior Profiling 41
 4.4.5 Accuracy Evaluation 42
 4.5 Summary 43
Chapter 5 API-Level GIL Simulation 44
 5.1 Differences between API-level and System call-level techniques 45
 5.1.1 Synthetic Library 47
 5.2 Timing Modeling 49
 5.2.1 Regression-based compensation for timing error 51
 5.3 Memory Synchronization 52
 5.4 GPGPU API (CUDA & OpenCL) Implementation Case 55
 5.4.1 Asynchronous Behavior Modeling 55
 5.4.2 Implementation Issues 58
 5.4.3 Experiments 61
 5.4.4 Simulation Overhead 68
 5.5 OpenGL ES Implementation Case 69
 5.5.1 Background 69
 5.5.2 Additional modification for SW stack 71
 5.5.3 Memory synchronization 72
 5.5.4 Multi-Process Support 77
 5.5.5 High-level Timing Modeling for other GPUs 79
 5.5.6 Porting To a New GPU Board 81
 5.5.7 Experiments 83
 5.6 Summary 92
Chapter 6 Conclusion and Future Work 94
Bibliography 98
ÃÊ·Ï 105
</body>

