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Abstract 

A mobile GPU has been widely adopted in most embedded systems to handle the 

complex graphics computations required in modern 3D games and highly 

interactive UI (User Interface). Moreover, as mobile GPUs are gaining more 

computation power and becoming increasingly programmable, they are also used to 

accelerate general-purpose computations in various fields such as physics and math, 

and so on. Unlike server GPUs, mobile GPUs usually have fewer cores since a 

limited amount of power is available in a battery. Thus, it is important to efficiently 

utilize both CPUs and GPUs in mobile platforms to satisfy the performance and 

power constraints. 

For design space exploration of such a CPU-GPU heterogeneous architecture or 

debugging the SW in the early design stage, a full system simulator is typically used, 

in which simulation models of all HW components in the target system is included. 

Unfortunately, building a full system simulator with GPU simulator is not always 

possible because there is no available GPU simulator, or if any, it is prohibitively 

slow since they are mainly developed for architecture exploration varying the 

internal micro-architecture of GPUs. 

To solve these problems, this thesis proposes a GPU-in-the-loop (GIL) simulation 

technique that integrates a real GPU with a full system simulator for CPU/GPU 

heterogeneous platforms. 

In the first part of this thesis, we propose a system call-level simulation technique 

in which a full system simulator interacts with a GPU board at system call level. 
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Since the shared on-chip memory in the target system is modeled by two separate 

memories in the simulator and the board, memory synchronization is the most 

challenging problem in the proposed technique. To handle this problem in the 

system call-level technique, address translation tables are maintained for the shared 

memory regions and these memory regions are synchronized whenever the system 

calls which trigger the GPU execution are invoked in the board. To model the GPU 

execution in the simulator, interrupt-based modeling technique is proposed, in 

which the GPU interrupt is generated in consideration of the GPU execution time 

obtained from the real board. 

In the second part of this thesis, we propose an API-level simulation technique in 

which a simulator and a board interact with each other at API level. Since the device 

driver in the original software stack makes it difficult to support various GPUs, a 

synthetic library is defined and it replaces the GPU library in the original software 

stack in order to ensure that the device driver is not used. To model timing of the 

API execution in the simulator, the sleep function is called in the synthetic driver so 

that the measured API time in the board elapses in the simulated time. 

From the existing GPU APIs, we propose API-level simulation techniques for 

three commonly used APIs which are OpenCL, CUDA and OpenGL ES. And 

several challenging problems such as asynchronous behavior, multi-process support 

and memory synchronization for complex data structures are properly handled by 

several methods for correct simulation. 

From the experimental results, we can confirm that the proposed technique can 
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provide fast simulation speed with a reasonable timing accuracy. Therefore, it can 

be used not only for SW development but also for system level performance 

estimation. Moreover, the proposed technique makes the full system simulation for 

CPU/GPU heterogeneous platforms feasible even if a GPU simulator is not 

available. 
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Chapter 1 Introduction 

1.1 Motivation 

With ever increasing demand for computation in the embedded systems, a mobile 

GPU has become an essential component in most embedded systems. We can easily 

find many SoCs that integrate both a CPU and a GPU: Tegra from NVIDIA, 

Snapdragon from Qualcomm, and Exynos from Samsung, to name a few. These 

chips are widely used on many platforms ranging from automobiles to 

high-performance smart phones and tablet PCs. Since low power consumption is the 

major design constraint in most computer systems these days, the trend towards 

CPU/GPU heterogeneous platforms will continue, also with the increasing number 

of cores in CPUs and GPUs. 

To design such a CPU/GPU heterogeneous platform efficiently, it is crucial to 

profile the target applications and utilize both a CPU and GPU better by identifying 

the performance bottleneck and capturing the dynamic system behaviors between 
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CPU and GPU. There exist many profiling tools [1][2][3], where a predefined set of 

hardware performance counters is collected and displayed to the designer to provide 

an overview of performance. However, this approach is only applicable to the 

exiting target platforms. 

For the target platform under design, a virtual prototype is commonly used for 

performance estimation. Especially, full system simulation is performed in virtual 

prototypes since complete software stacks can run without modification by 

modeling all components of the target system including processors (CPUs, GPUs), 

memory, interconnections as well as peripherals. Generally, full system simulation 

is used for early software development or system-level DSE (Design Space 

Exploration) in early design stage. In these purposes, since SW implementation is 

modified frequently and lots of design candidates are verified, a large number of 

simulations are performed repetitively and fast simulation is really important. 

Moreover, as the complexity of the embedded system is increased greatly, much 

more HW components are integrated in a single system and the importance of the 

fast simulation is even more highlighted. 

Upon the current move toward CPU/GPU heterogeneous platforms, many 

researches have been performed to simulate these platforms by integrating a CPU 

simulator with a GPU simulator. However, in this approach, there are some 

problems due to the existing GPU simulators. Since most of the existing GPU 

simulators [4][5][6][7][10][11] are mainly developed for architecture exploration 

varying the internal micro-architecture of GPUs, GPUs are modeled accurately in 
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cycle-level, but the simulation speed is prohibitively slow. In previous researches 

[22][26], they present some experimental results for the simulation speed of some 

GPU simulators [6][11]. 

 

From the results shown in Figure 1-1, the slowdown is around 170,000x ~ 

2,000,000x for GPGPU-Sim [6] and 80,000x for MacSim [11] compared with 

native execution, which means that it takes more than a day to simulate a GPU for 1 

second. However, this is not acceptable speed for early SW development or 

system-level DSE (Design Space Exploration) since a large number of simulations 

are repeated for these objectives. Moreover, for some mobile GPUs such as Mali 

and PowerVR, there is no publicly available simulator. Thus, it is impossible to 

 

Figure 1-1. Simulation performance comparison results from [22] and [26] 
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build a full system simulator for the target platforms consisting of these GPUs. 

To deal with these problems, we propose GPU-in-the-loop simulation technique 

that integrates a real GPU and a CPU simulator for fast simulation. The full system 

simulator and a GPU board can interact with each other at three different levels; API 

(Application Programming Interface), system call, and register/memory access. 

From them, two interactions at the system call and the API is covered in this thesis. 

There are two major challenges in the proposed technique. First, since the 

on-chip shared memory in the target system is modeled with the two separate 

memories in the simulator and the board, we must synchronize the duplicated 

shared memory models to maintain the coherence. Second, since the detailed 

behavior of the GPU cannot be observed in the board, it is not easy to model the 

timing of the GPU in the proposed technique. To handle these problems, several 

methods for memory synchronization and timing modeling are proposed for each 

interfacing mechanism. 

1.2 Contribution 

The contribution of this thesis can be summarized as follows. 

1) We propose a GPU-in-the-loop (GIL) simulation technique that integrates 

an existent GPU hardware with a full system simulator. 

A. Unlike previous works, since real GPU HW is used instead of slow 
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GPU simulators, the full system simulation becomes fast enough for 

early software development in the early stage with sacrificing some 

timing accuracy. 

B. Moreover, it make the full system simulation feasible for CPU/GPU 

heterogeneous platforms even if a GPU simulator is not available for 

the target platforms. 

2) As well as the simulation speed is increased in the proposed technique, 

approximate timing of GPU can be modeled by novel modeling techniques 

A. The proposed technique can be used to estimate the performance for 

system level design space exploration such as task partitioning 

problem between CPUs and GPUs 

3) The proposed interfacing mechanisms can also be applied in integrating a 

HW other than GPU with a full system simulator 
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1.3 Thesis Organization 

This thesis is organized as follows. In Chapter 2, the representative previous 

researches on acceleration technique for GPU simulation and CPU/GPU simulation 

frameworks are reviewed. Chapter 3 explains the basic idea of the 

“GPU-in-the-loop” simulation technique and overall simulation flow will be briefly 

explained in this chapter. In Chapter 4 and Chapter 5, two simulation interface 

mechanisms, system call-level and API-level, are explained. Finally, we draw the 

conclusion and address future work in Chapter 6. 
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Chapter 2 Related Works 

2.1 Acceleration techniques for GPU 

simulation 

Since GPUs have become an important component in many platforms ranging 

from mobile devices to desktop PCs, the research interest in the GPU architecture is 

increasing and several GPU simulators are developed for the research purpose. For 

the architecture research, since micro-architecture of GPUs should be modeled 

accurately, current GPU simulators are really slow as mentioned in Chapter 1. To 

accelerate the slow GPU simulators, various techniques are proposed and they can 

be categorized into four approaches: parallel simulation, sampled simulation, 

statistical simulation and HW-accelerated simulation. In this chapter, we review the 

some exiting acceleration techniques for GPU simulations in these approaches. 
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2.1.1 Parallel Simulation 

To accelerate the simulation for the many-core architectures, several parallel 

simulation frameworks have been proposed such as HSim [20] and Graphite [21], in 

which the simulation work for each processor is partitioned into multiple threads 

and performed in parallel on multi-core CPUs or multi-host machines. Since there 

are a large number of cores in a GPU, parallel simulation technique might be a 

viable solutions to accelerate the GPU simulation and several researches are 

proposed recently [22][23]. 

In [22], they proposed the work-group parallel simulation technique. Among the 

internal components in a GPU, the simulation for Computing Units (CU) are 

parallelized by multiple simulation threads; A CU corresponds to a Stream 

Multiprocessor (SM) in Nvidia GPU and a Data Parallel Processor (DPP) array in 

AMD GPU where several cores are executed in a SIMD manner. And, the other 

components such as a work control unit, interconnection networks and memory sub 

systems are simulated by two separate threads: Work distribution and control (WDC) 

and Interconnect-memory subsystem (IMS) threads. Since the lock-step 

synchronization method suffers from the synchronization overhead, they proposed 

the work-group based synchronization method in which synchronization is 

performed at the end of work-group execution on a CU to keep the same 

work-group distribution in the single-threaded simulation as much as possible. To 

improve the accuracy of the simulation for interconnection networks and memory 
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sub systems, two additional synchronization mechanisms are applied to maintain the 

memory request order and model the contention in the interconnection network and 

the memory system more accurately. 

Since the CU threads and the IMS thread are simulated independently in [22], the 

global memory request sequence can be different with that in the single-threaded 

simulation and this incurs the simulation error. To address this problem, error 

predictive synchronization (EPS) is proposed in [23] as an extended work for [22]. 

In this synchronization method, the instruction history is recorded within a specific 

cycle range to count the number of memory instructions executed in a CU. And, if 

the total memory instruction count for all CUs is larger than a given threshold, the 

parallel simulation is disabled and the simulation is performed sequentially until the 

total memory instruction count is below the threshold to reduce the memory latency 

error. 

2.1.2 Sampled Simulation 

Sampling is a well-known technique to speed up architecture simulation of 

long-running workloads by simulating only a small but representative portion of the 

application in detail while maintaining the accuracy. Several sampling techniques 

for single-threaded and multi-threaded CPU applications are proposed so far 

[24][25], they cannot be directly applied to GPU simulation, since it may lead to 
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large sampling sizes and need to re-profile the target platform when the simulated 

configuration is changed. 

In TBPoint [26], they proposed a new profile-based sampling technique for GPU 

simulation. For the hardware independency, it uses GPUOcelot [29] profile tool to 

collect the information about each thread block. Using the profiled information, it 

designs feature vectors for each kernel and thread blocks, then they are used for 

inter-launch sampling and intra-launch sampling technique to reduce simulation 

time. In inter-launch sampling, the kernels are clustered based on the kernel feature 

vectors and only the kernel selected as a simulation point is simulated by a detailed 

simulator such as MacSim [11] and other kernels in the same cluster re-use the IPC 

of the simulated kernel without the simulation. In intra-launch sampling, the thread 

blocks are clustered based on stall probability and region ID is assigned to each 

cluster. During the simulation, the homogeneous regions are identified when the 

region IDs for all concurrently running thread blocks are same. Then, the simulation 

is skipped just using the sampled IPC until the one of the region ID for concurrent 

thread blocks differs from others. Since the proposed technique leverages the 

regular execution behaviors in GPGPU kernels, GPGPU kernels with irregular 

execution pattern can incur high sampling size and the slow simulation is still a 

problem. 
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2.1.3 Statistical Simulation 

In a statistical simulation, it measures a well-chosen set of program 

characteristics during GPGPU execution and generates a small synthetic benchmark 

with those characteristics. Then, the architecture simulation is performed using the 

small benchmarks. In [27], to keep the original characteristic, it first profiles the 

original GPGPU workloads through a fast functional simulator and the 

characteristics such as thread hierarchy, instruction mix, control flow and memory 

access pattern are collected. Then, loop patterns of the GPGPU kernel are analyzed 

based on the Divergence Flow Statistics Graph (DFSG) and the synthetic 

benchmark is generated by reducing the iteration counts of loops while maintaining 

the original characteristics. Since it requires some loops to increase the simulation 

speed, speed-up is limited for GPGPU kernels with small loop counts and a large 

number of thread blocks. 

2.1.4 HW-accelerated Simulation 

In software-based parallel simulation, due to the synchronization overhead, only 

coarse-grained parallelism can be exploited and the speed-up is limited. However, in 

a FPGA, since the cycle-level synchronization is much faster than SW 

implementation, fine-grained parallelism can be exploited. Thus, the simulation 
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work performed sequentially in software-based parallel simulation can be done in 

parallel on the FPGA to further reduce the simulation speed. 

In FastLanes [28], since modern GPUs are too complex to fit into even the largest 

single-chip FPGA, only a smaller number of multi-processors in the target GPU is 

implemented on the FPGA and they are re-used to simulate all multi-processors in a 

time-division multiplexing manner. Since only small number of threads are 

simulated on FPGA at a given moment, the contexts of the threads which are 

swapped out from the FPGA should be reserved in off-chip- memory. Since this 

incurs non-negligible performance overhead, the duration of a time slice is 

determined by an analytical performance model to balance the simulation speed and 

accuracy. The FPGA-based acceleration technique can provide fast simulation speed 

enough for full system simulation. However, it requires significant effort to develop 

since the simulator should written in a hardware description language (HDL) such 

as Verilog or VHDL. 

2.2 CPU/GPU Simulation framework 

To simulate the CPU/GPU heterogeneous platforms, a common practice is to 

integrate a GPU simulator with a CPU simulator. In [10][11][12], application-only 

simulators are implemented to simulate the GPGPU applications, in which only 

applications are simulated and OS services such as system calls are emulated by the 
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simulation host. In FusionSim [12], several existing simulators (PTLSim [35], 

GPGPU-Sim [6] and MARSSx86 [36]) are integrated and two kinds of CPU/GPU 

systems (fused and discrete system) are modeled. In Multi2Sim [10], the functional 

simulator and the architecture simulator (timing model) are decoupled and the 

instruction traces obtained from the functional simulator are feed to the architecture 

simulator to accurately model the latencies of the instructions. In MacSim [11], only 

the trace-driven architecture simulator is implemented and the trace generators such 

as (Pin [34] and GPUOcelot [29]) are used to generate the CPU and GPU traces for 

the architecture simulator. And the OS is modeled in the process manager 

considering process and thread scheduling. 

Since the significant errors can be introduced if the OS effect is not modeled [37], 

several researches are conducted based on the full system simulator such as gem5 

[8], QEMU [9] and MARSSx86 [36]. In [13][14], they integrate the gem5 simulator 

with GPGPU-Sim by providing a common memory interface for both simulators. In 

SCHP [13], each process is created for gem5 and GPGPU-Sim respectively and the 

overall simulation is performed in lockstep. In order to ensure that both simulators 

are running in lock-step, the shared memory region is defined for 

inter-process-communication (IPC) and gem5 triggers the simulation of 

GPGPU-SIM by setting a flag in the shared memory and blocks until GPGPU-Sim 

completes the execution of a GPU cycle and the flags is reset. Also, since the 

memory system is modeled in the gem5, the memory requests from the 

GPGPU-SIM are stored in the shared memory to be handled in the gem5 simulator. 
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Unlike SCHP, gem5-gpu [14] combines two simulator as one process by integrating 

GPGPU-Sim’s CU model into gem5. 

Since the exiting CPU/GPU simulation frameworks only consider GPGPU 

applications written with CUDA or OpenCL, several full system simulation 

frameworks are developed to simulate the graphics applications [15][16][17][18]. In 

[15], it integrates the gem5 with ATTILA simulator [4] and can support Multi-CPU 

and Multi-GPU heterogeneous architecture. 

In other CPU/GPU simulation frameworks [16][17][18], since fast simulation is 

really important and their concern is not in the CPU, QEMU full system simulator is 

used since it can achieve fast simulation based on dynamic binary translation. In 

[16], to verify the software and hardware architecture for multi-view GPU in the 

early design stage, QEMU simulator is integrated with multi-view GPU model 

implemented in SystemC or RTL codes. Since the unimportant HW components are 

simulated quickly with the QEMU simulator and only the important part is 

simulated in detail with SystemC model, the co-design for hardware and software 

can be performed efficiently. In [18], it develops cycle-accurate GPU simulators 

which can models two types of micro-architectures in modern GPUs such as 

Tile-Based Renderer (TBDR) and Immediate-Mode Rendering (IMR). Also, it 

provides a power model for a GPU using McPAT [19] to analyze energy 

consumption in GPUs. In [17], the full system simulator for many-core 

heterogeneous SoCs is developed using GPU and QEMU semi-hosting [46]. 

Though this work targets the many-core accelerator not a typical GPU, the 
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semi-hosting interface mechanism proposed in this work can be used to integrate 

the QEMU simulator with a GPU simulator such as GPGPU-Sim. 

2.3 Summary 

Table 2-1 shows the comparison result of the acceleration techniques for GPU 

simulation. From the result, they shows remarkable speed-up results in comparison 

with original GPU simulators with some reasonable errors. However, there some 

limitations for each approach and these approaches are only applicable when GPU 

simulators are available. But, the proposed technique can perform the full system 

simulation even if GPU simulators are not available. 

Table 2-2 shows the comparison result of existing CPU/GPU simulation 

frameworks. They are classified based on three criteria: GPU functionality, 

simulation scope, and simulation detail. Since the accurate but slow GPU simulators 

are used in exiting CPU/GPU simulation frameworks, they will suffers from slow 

simulation speed and they are not suitable for SW development or System-level 

DSE purposes. 
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Table 2-1. Comparison of the acceleration techniques for GPU 
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Table 2-2. Comparison of CPU/GPU simulation frameworks 

Existing 

Researches 

GPU Func. Full System/ 

App. Only 

Functional 

Correctness 

Timing Accuracy 

CPU GPU 

MacSim 

[11] 

GPGPU Application 

Only 

No 

Functionality 

Cycle-Acc. 

(Own) 

Cycle-Acc. 

(Own) 

Multi2Sim 

[10] 

GPGPU Application 

Only 

Functionally 

Correct 

Cycle-Acc. 

(Own) 

Cycle-Acc. 

(Own) 

FusionSim 

[12] 

GPGPU Application 

Only 

Functionally 

Correct 

Cycle-Acc. 

(PTLSim) 

Cycle-Acc. 

(GPGPU-sim) 

SCHP [14] 

gem5-gpu [13] 

GPGPU Full System Functionally 

Correct 

Cycle-Acc. 

(gem5) 

Cycle-Acc. 

(GPGPU-sim) 

MCMG 

[15] 

Graphics Full System Functionally 

Correct 

Cycle-Acc. 

(gem5) 

Cycle-Acc. 

(ATTILA) 

QEMU 

+SystemC 

[16] 

Graphics Full System Functionally 

Correct 

No timing 

(QEMU) 

Cycle-Acc. 

(SystemC) 

TEAPOT 

[18] 

Graphics Full System Functionally 

Correct 

No timing 

(QEMU) 

Cycle-Acc. 

(Own) 

Proposed 

Technique 

GPGPU 

Graphics 

Full System Functionally 

Correct 

Cycle-Acc. 

(gem5) 

Cycle-Approx. 

(Real HW) 
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Chapter 3 GPU-in-the-loop 

Simulation 

3.1 Basic Idea 

The basic idea for the GIL simulation technique is to integrate a real GPU with a 

CPU simulator in full system simulation framework instead of a GPU simulator. 

Since the proposed technique is not designed to be applicable for a specific 

simulator, any full system simulators can be used. In this thesis, as an example, the 

proposed technique is implemented based on gem5 simulator [8]. 

Figure 3-1 illustrates an overview of GPU-in-the-loop (GIL) simulation technique. 

In the simulation framework, a full system simulator is configured for the target 

CPU/GPU heterogeneous system using the gem5 simulator, which includes the 

simulation model of a multi-core CPU and other HW components except for the 

GPU, and actually runs the Android full software stack with Full system (FS) mode. 
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To connect the full system simulator with the GPU board, the host interface is added 

in the simulation host and it interacts with the CPU model to detect GPU requests 

and obtain the additional information for the requests (①). In the GPU board, the 

board interface is implemented in Android application in which GPU requests are 

received from the host interface through the network interface (②) and they are 

processed using real GPU in the board (③). After the requests are completed, the 

output results are sent to the host interface (④) and they are reflected to the 

simulator for both functional and timing correctness. 

 

 

 

Figure 3-1. The overall GIL simulation framework 
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3.2 Different levels of CPU/GPU 

Interaction 

 

Figure 3-2 illustrates the typical GPU SW stacks in most CPU/GPU platforms in 

which three different levels of GPU requests are used to deliver some tasks on the 

GPU. In the GPU application, it invokes the API functions in the GPU libraries 

which are provided to enable the application developers to utilize the graphics 

(OpenGL ES) or GPGPU (OpenCL and CUDA) functionalities of the GPU. In the 

GPU libraries, each API request is translated into several low-level GPU commands 

and they are passed to the GPU device driver using system calls such as ioctl and 

mmap. In the GPU device driver, the shared memory and the GPU registers are 

 

Figure 3-2. Typical GPU execution scenario 
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accessed to directly pass the requested commands to the GPU. 

Since the board interface is implemented as a user-level application in the 

proposed technique, from the three types of GPU requests, only the API and system 

call requests can be used in the board interface to pass the requests to the GPU. 

Thus, the API-level and system call-level GIL simulation techniques will be covered 

in this paper. 

3.3 Detection Mechanism 

The first process that happens in the proposed technique is to detect GPU 

requests from the CPU model. In the proposed technique, since a GPU request is 

defined as a function call (system call or API), it can be detected by comparing the 

current instruction address (PC) of the CPU model with the start address of the 

target function. For this, first we should obtain the address information for the target 

functions. Since the target functions are included in OS kernel, the target address 

can be obtained from the OS kernel image used in the simulation by disassembling 

the image using objdump utility. Using this address information, the detection 

mechanism is implemented in the host interface as shown in Figure 3-3 (c). And 

since the PC value is only available in CPU model, the original CPU model (Figure 

3-3 (a)) is extended to pass the PC value to the host interface (Figure 3-3 (b)). 
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Instead of comparing the address, it is possible to detect GPU requests by using 

special instructions such as pseudo instructions available in the simulator or SW 

interrupt instruction (svc) used in ARM semi-hosting [46]. In this approach, unlike 

the address-based detection mechanism mentioned above, the original source code 

of the GPU library or the device driver should be provided to insert the special 

instructions to the detection point in the code and the binaries are re-built from the 

modified source code. However, it is possible to detect the functions in both user 

space and kernel space in this approach. Whereas, only the functions in the kernel 

address can be detected in the address-based detection mechanism since the address 

of the user space is determined by the dynamic linker during the simulation. For this 

 

Figure 3-3. Extension for CPU simulator and detection code in the host 

interface 
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reason, the synthetic driver is added should be added in the API-level technique. 

However, if we apply the instruction-base detection mechanism, the synthetic driver 

is not required. 

3.4 Memory Coherency Problem 

In most mobile platforms, on-chip memory is shared by a CPU and a GPU. 

However, in the proposed technique, the shared memory is modeled by two separate 

memories in the simulator and the board, and the CPU model and the real GPU 

accesses the different memory in each side. Thus, the modification in one memory 

is not reflected to the other memory and in-correct simulation result can be obtained. 

To solve this problem, memory synchronization should be performed between two 

memories. Details of the memory synchronization mechanisms will be explained in 

later sections. 

3.5 Overall GIL simulation flow 

Figure 3-4 shows the simulation flow between host/board interfaces after a GPU 

request is detected by the detection mechanism in the host interface. First, the 

arguments for the GPU request are obtained using readIntReg() and readMem() 



 

 
24 

functions. These gem5 functions read the value of registers (e.g. r0-r3 that are used 

for arguments by ARM call conventions) and memory. After that, the GPU request 

and arguments are sent to the board interface and memory synchronization is 

performed for input data in the arguments. In the board interface, the GPU request is 

processed by invoking system call or API with the received arguments. Once it is 

returned, which means that the GPU execution is completed, the result for the GPU 

request is sent to back to the host interface and memory synchronization is 

 

Figure 3-4. Simulation flow between host/board interfaces 
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performed for output data in the arguments. After that, in the host interface, it 

reflects the result of the GPU request to the related simulation components and the 

original CPU simulation routine is executed as usual. 
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Chapter 4 System call- level GIL 

Simulation 

Depending on the GPU, types of system calls and parameters for system calls are 

varied. Thus, the implementation issues to be considered in the system call-level 

GIL simulation technique may be slightly different depending on the GPU. For this 

reason, we assumes the target platform with Mali 400 GPU [38] as shown in Figure 

4-1 and the system call level GIL simulation technique will be described with 

respect to this platform. 

4.1 Target System 

As low power and energy consumption being the crucial design constraints, GPU 

has become an inevitable component in the recent embedded systems. Figure 4-1 
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shows a typical CPU/GPU heterogeneous system: multi-core CPU and multi-core 

GPU are connected to the on-chip bus where the shared memory and other 

peripherals are connected to. The GPU usually has its own MMU so that it can 

directly access the memory on the bus with its own virtual address. 

In this platform, GPU requests are processed using several system calls such as 

gpu_ioctl() and gpu_mmap(). Thus, whenever these calls are detected inside the 

host interface, it delivers the corresponding request to the board interface that runs 

on the real CPU on the board, which in turn requests to the real GPU on the board 

as explain in Figure 3-1. 

 

4.1.1 Typical Execution Scenario of the Systems 

The typical software stack in the target platform includes the Linux kernel and 

 

Figure 4-1. CPU/GPU heterogeneous system that integrates an ARM CPU 

and a Mali 400 GPU: a GPU core represented as PP stands for Pixel 

Processor, and as GP for Geometry Processor 
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the Android: An Android app runs on top of the Android, which in turn requests 

services to the Linux kernels. Suppose we have an Android app that utilizes the 

GPU by calling OpenGL ES APIs. In the APIs, each request for graphics 

computation is translated into a set of gpu_ioctl() calls that have different 

commands and arguments. There are many use cases of gpu_ioctl() with different 

commands. 

Figure 4-2 shows typical scenarios for job enqueue and wait commands in Mali 

GPU as an example. mali_core_session_add_job() in the Linux driver is called first 

in enqueue command. It enqueues the target job to the GPU job queue, and calls 

mali_core_subsystem_schedule(). In this scheduling function, it checks 

idle_render_unit_list to find any idle render unit in the GPU. If there is no idle 

render unit, it returns without performing any operation. But if there is any, it 

dequeues a job from the GPU job queue and calls susbsystem_(gp/pp)_start_job() 

with the arguments (job and render unit). In start_job(), it writes commands and 

arguments (start address of input) to GPU registers to execute target job. Lastly, it 

writes start command to command register, and GPU starts to process the target job. 

In wait command, mali_osk_notificaion_queue_receive() is called first. In this 

function, it checks if there is any notification in the notification queue. If there is no 

notification, it sleeps and current process stops. After some time passed, this process 

will be woken up by mali_osk_notification_queue_send(), which is called by the 

interrupt handler for the GPU completion. 
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4.2 Memory Synchronization 

In the target platform, the memory region shared by a CPU and a GPU is 

allocated by gpu_mmap() system call which is called from a GPU library. Since a 

CPU virtual address is returned to the GPU library as a return value of the system 

 

Figure 4-2. Typical execution scenarios on a CPU/GPU system with the 

Linux kernel 
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call, in the GPU library, the input data for a GPU is stored to the shared memory 

region using the address. After that, to allocate some tasks to a GPU, gpu_ioctl() 

system call is invoked with start command and the addresses for the input/output 

data are passed as arguments. In the GPU, a given task is processed using the input 

data pointed by the input data address and the result is stored to the memory region 

pointed by the output data address. 

Since the memory synchronization is required before/after GPU actually is 

executed on the board, the memory synchronization is performed when gpu_ioctl() 

is invoked with start command. While arguments of gpu_ioctl() are memory 

addresses not real data, input data exists only in the simulator and output data exists 

only in the board. Before gpu_ioctl() is invoked in the board interface, the input 

data must be sent to the board and the board interface must update the board 

memory using memcpy(). After gpu_ioctl() is finished, on the other hand, the 

modified memory region by the GPU execution must be sent back to the simulator 

so that the host simulation interface can update the modified memory region in the 

gem5 simulator. 

4.2.1 Address Translation Table 

To copy the contents of the memory mapped region for synchronization, a CPU 

virtual address is needed in the host and board interfaces; The host interface can 



 

 
31 

access the memory only through the CPU model and the board interface itself is a 

CPU task that actually runs on a CPU on the board, thus it cannot access the 

mapped memory with the GPU virtual address. 

 

However, since GPU virtual addresses are provided as arguments of gpu_ioctl(), 

we maintain translation tables for GPU to CPU virtual address in each interface as 

depicted in Figure 4-3. Whenever gpu_mmap() is called in the CPU (gem5) side 

during the simulation, the host interface update its address translation table using 

the mapping information obtained from the gpu_mmap(). Then, when this system 

call is processed in the board interface, it also update its address translation table. 

Figure 4-3 illustrates an example of address translation. When the address given 

as a command argument in the gpu_ioctl() is 0x40000080, the host interface 

 

Figure 4-3. Address translation table to match the same memory region 
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searches the mapping table with 0x40000000 and find out the corresponding CPU 

virtual address is 0x400D0000 (①). It reads the data from the address considering 

the offset (0x80), and sends it to the board interface via socket (②). The board 

interface looks up its translation table and figures out its CPU virtual address to be 

0x410F0000 (③). Finally, it writes the received data to the address considering the 

offset. With such a mechanism, the gem5 simulator and the GPU have an illusion 

that they share the same memory, although they are in fact two separate memories 

in different machines in the framework. 

From the arguments of gpu_ioctl() system call, we can’t know which memory 

regions are modified in the whole memory area. Thus, the simple solution is to 

synchronize all the shared memory regions. However, since this incurs significant 

communication overhead between the host interface and the board interface, only 

diffed data in the shared memory region is synchronized by performing diff 

operation. 

4.3 Timing Modeling 

Figure 4-4 shows the typical scenario where GPU execution is controlled by two 

commands explained in Figure 4-2, start command and wait command. In this 

scenario, two commands are called from the two separate threads (Thread 0, Thread 

1). When wait command is invoked from Thread 0, it is blocked inside gpu_ioctl()
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to wait for the notification of the GPU job completion. In the meanwhile, in Thread 

1, start command is invoked and it will trigger the GPU execution. When the GPU 

execution is completed, an interrupt in generated by the GPU and an interrupt 

handler will be invoked. In last, the interrupt handler sends a notification signal 

which awakes the waiting thread (Thread 0). 

4.3.1 Interrupt Modeling 

Since the original software stack is used in the simulation without modification, 

the CPU parts in Figure 4-4 simulated by the CPU model. Thus, only GPU part 

should be modeled in this technique for functional and timing correctness. For 

functional correctness, the GPU interrupt should be modeled since the waiting 

thread in Figure 4-4 will be blocked indefinitely if the GPU interrupt is not 

 

Figure 4-4. Typical execution scenario on the target platform 
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generated in the simulation. For timing correctness, the waiting timing in the CPU 

part should be accurately modeled. For this, the GPU interrupt should be generated 

at accurate timing considering the GPU execution. 

To generate the interrupt in the simulator, the virtual GPU model is implemented 

in the gem5 simulator in which only interrupt related part is modeled without the 

details of GPU micro-architecture. And the GPU execution time (Δ) can be obtained 

from the result of gpu_ioctl() when it is invoked with start command in the board. 

Once the result is passed to the host interface, an interrupt event is inserted at 

timestamp t1 + Δ, when Δ is the execution time of the GPU and t1 is the current 

simulate time. Then, when the simulation is progressed to t1 + Δ, the interrupt is 

generated by the virtual GPU model. 

4.3.2 Regression based timing correction for GPU 

time 

In this technique, GPU execution time (Δ) is obtained from the real board. 

However, this value does not include contention overhead between multiple PPs. In 

the real system, when multiple gpu_ioctl() requests for PPs can be made 

simultaneously and executed in parallel by multiple PPs. As PPs share the resources 

(cache, memory, bus, etc.), the execution time of each gpu_ioctl() request becomes 
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longer than the case when only one PP is executed. In contrast, in the GIL 

simulation, multiple gpu_ioctl() requests are actually processed sequentially. 

To consider the contention overhead, we measured the ratio α, which is the ratio 

of the average execution time with contention (Δ`) to the one without contention (Δ) 

in the real board. Then, interrupt is generated at t1 + α ∙ Δ (= Δ`) in the simulation. 

We will explain in more detail how to measure Δ` in the experiment section. 

4.3.3 An Example of System-level GIL Simulation 

Scenario 

The System call-level GIL simulation sequence for the scenario shown in Figure 

4-2, which assumes Mali GPU as an example, is illustrated in Figure 4-5 assuming 

that a wait command is called first, followed by an enqueue command as shown in 

Figure 4-4. When the host interface detects the wait command, it sends the 

command to the board interface running on a real CPU in the board. The board 

interface creates a new thread (wait thread) waiting for the completion of the GPU 

execution to avoid any possible dead-lock. Simulation continues and detects 

gpu_ioctl() for enqueue command. Then, the host interface stores gpu_ioctl() 

arguments and calls add_job(), schedule(), start_job() in sequence. In add_job(), a 

job ID is assigned for start_job() by which the GPU execution is finally triggered. 

On the GPU execution, it first sends a memory synchronization message 
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(MALI_PUT) for input data, and the board interface updates the memory 

accordingly. Then, it sends ioctl messages (GP/PP_START) that are handled by the 

main thread in the board interface. The main thread sleeps until the completion of 

the GPU execution is notified by the wait thread. On the completion, the main 

thread sends a message to the host interface, and finally, the host interface sends a 

memory synchronization message (MALI_GET) to update the modified memory 

region by the GPU execution. 

 

 

Figure 4-5. An example of the HIL simulation sequence with the scenario 

shown in Figure 4-2 
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4.4 Experiments 

In our experiments, we simulated the Exynos 4412 system [39]. The system has a 

quad-core ARM Cortex-A9 CPU and ARM Mali-400MP GPU that has four Pixel 

Processors and one Geometry Processor. They are connected to an AXI bus where 

also 256KB on-chip memory is connected. We used ODROID-X board [40] to 

execute the Mali GPU hardware, and used gem5 simulator for a quad-core ARM 

Cortex-A9 CPU modeling. We ran Android apps, Lesson09 that moves and blends 

textured objects in a 3D space [30] and Cubic [31]. In Android OpenGL ES 

application, a rendering function called onDrawFrame in the application is invoked 

repeatedly to draw the current frame. In the Lesson09 benchmark, the rendering 

function only includes the API call sequence without any computation. However, in 

the Rubik benchmark, the rendering function includes both the computation and the 

API call sequence, in which the proportions of two parts are 37.4% (computation) 

and 63.6 % (API call sequence) respectively. We ran these apps on the proposed 

GIL simulation framework for 3 seconds in real time (i.e., the time in the 

ODROID-X board) and measured the execution time of the rendering function. 

4.4.1 Parallelization for diff operation 

As mentioned in 4.2.1, to reduce the communication overhead between the 
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simulator and the board, diff operation is performed in the host interface and the 

board interface. Since the size of shared memory region is significantly large, the 

overhead for the diff operation takes large portion of the total simulation time, 

especially in the board interface. To reduce the diff overhead, we parallelize the diff 

operation in the board interface. Figure 4-6 shows the normalized speed-up for the 

parallel implementations (2, 3, 4 threads) compared with the sequential 

implementation (1 thread) when diff operation is performed 100 and 200 times 

during the simulation. From the result, we can know that the speed-up of x1.83 ~ 

x2.39 can be achieved in the parallel implementation and the maximum 

performance can be achieved when the number of thread is 3. 

 

 

Figure 4-6. The execution time for diff operation for sequential and parallel 

implementations 
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4.4.2 Simulation Time Analysis 

In the system-level GIL simulation technique, the simulation time is decomposed 

as shown in Figure 4-7. For Lesson09 app, the total GIL simulation takes about 

2014 seconds, among which gem5 simulation time takes 48% and the interfacing 

time between two interfaces takes 52%. It corresponds to about 1.5M cycles per 

second of simulation performance. In the interfacing time, 860 seconds is spent for 

memory synchronization, which is 42.7% of the total time. 

For Cubic app, the total simulation time is 7304 seconds and achieves about 0.8 

M cycles per second of simulation performance. This is because the portion of 

 

Figure 4-7. Simulation time (sec) for two benchmarks 
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memory synchronization increased in this application and GPU execution portion is 

larger than Lesson09. 

 

4.4.3 Contention overhead in Pixel Processors (PP) 

As explained in 4.3.2, we estimate the contention overhead of PPs of the GPU by 

modifying the number of available PPs from Linux driver. We measured two GPU 

execution time, Δ` and Δ, for 4000 gpu_ioctl() requests in the real target board; Δ` is 

measured by setting the number of available PPs to 4 (all cores are available), and Δ 

is measured by setting the number to 1 (only 1 core is available so that there is no 

contention). Figure 4-8 shows the histogram for Δ` and Δ, where x axis represents 

 

Figure 4-8. Execution time distribution for PPs 
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the execution time of a single gpu_ioctl() request and y axis the occurrence count. 

The average execution time for the Δ` and Δ are 3059 (us) and 1460 (us) 

respectively, which results in the ratio α to be 2.1. Thus GPU execution time was 

scaled by this ratio in the simulation. 

4.4.4 Internal System Behavior Profiling 

With the proposed GIL simulation framework, we could observe the internal 

system behavior during the app execution. Table 4-1 shows the execution time, the 

waiting time, and the response time for each processor (1 GP and 4 PPs). Also, as 

shown in Table 4-2, we could obtain the GPU utilization. If the app utilizes the GPU 

not only for the rendering or shading job, but also for the general purpose job such 

as OpenCL kernel, this observability would be more useful. We could not use 

OpenCL applications in the current implementation for Exynos system, since Mali 

400 GPU does not support GPGPU. 
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4.4.5 Accuracy Evaluation 

To evaluate the timing accuracy of the proposed framework, we measured the 

execution time of a rendering function that calls several OpenGL ES APIs, by 

inserting time stamping code to the application. We accumulated the execution time 

Table 4-1. GPU response time for Cubic app 

Processor 

Type 

Avg. Exec. 

Time(ms) 

Avg. Waiting 

Time(ms) 

Avg. Response 

Time(ms) 

Geometry Proc. 0.178 0.029 0.207 

Pixel Processor 

(PP0 ~ PP3) 

1.847  

~ 1.866 

0.036  

~ 0.041 

1.884  

~ 1.906 

Table 4-2. GPU execution time and utilization for Cubic app 

Processor 

Type 

# of GPU 

Execution 

Total Exec 

Time (ms) 

GPU 

Utilization (%) 

Geometry Proc. 506 90.195 1.53 

Pixel Processor 

(PP0 ~ PP3) 

505 

~ 506 

932.966  

~  943.994 

15.85 

~ 15.99 

Table 4-3. Accuracy evaluation for the Android apps 

Accumulated 

Execution Time 

Real Board 

 (sec) 

Simulation 

(sec) 

Error Ratio 

(%) 

Lesson09 1.21 ~ 1.57 0.99 ~ 1.42 -29.66 ~ - 5.22 

Cubic 0.76 ~ 1.02 0.77 ~ 2.09 - 1.53 ~ + 104.91 
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for 50 invocations of the rending function. We performed the experiment for 5 runs 

both on ODROID-X board and on the simulation framework. The range of 

execution time and the error ratio are shown in Table 4-3. It confirms that the 

accuracy of the proposed GIL simulation technique is about the same order of the 

gem5 simulator that is simulated at the instruction-level. We observed that the 

accuracy error gets smaller as we run an app longer. Since Cubic runs longer than 

Lesson09, the accuracy error of Cubic gets smaller than Lesson09. More detailed 

analysis on the accuracy is left for future investigation. 

4.5 Summary 

In this chapter, we have proposed a system call-level GIL simulation technique 

for CPU/GPU platforms that integrates a real GPU hardware instead of GPU 

simulator for full system simulation, running complete software stack without 

modification. We devised a novel interfacing mechanism between a CPU simulator 

and the GPU hardware. For correct operation, several issues had to be considered, 

including memory synchronization, address translation, and interrupt handing. We 

took Exynos 4412 system as our case study and ran two Android apps where a 

number of OpenGL ES APIs were called. To the best of our knowledge, it is the first 

example of full system simulation of a CPU/GPU heterogeneous system. We can 

achieve simulation performance up to 1.5 M cycles per second. 
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Chapter 5 API-Level GIL 

Simulation 

System call-level GIL simulation technique has a limited extensibility. In GPU, 

ioctl system call is widely used to process the device-specific operations. It takes a 

parameter specifying a request code and the request code is often device-specific. 

Therefore, to support other GPUs, the simulation framework should be modified to 

consider the new request code unless other GPUs have the same request codes for 

ioctl system call. Moreover, to correctly simulate the device driver in the original 

software stack, some GPU specific functionalities such as GPU registers and 

interrupts should be modeled for functional correctness, which requires 

considerable effort to understand interactions between the device driver and the 

GPU registers. 



 

 
45 

5.1 Differences between API-level and 

System call-level techniques 

An API (Application Programming Interface) is usually defined independent of 

the HW for portability. For GPU APIs such as OpenGL ES and OpenCL, the 

application written with APIs can run on various CPU/GPU platforms without any 

modification. Thus, if the GIL simulation technique is performed at API level 

instead of system call level, the GIL simulation can be performed with various GPU 

boards with minor modification for the simulation framework. 

Even if the simulation is performed at API level, if the original software stack is 

used in the simulation, some GPU specific functionalities related with the device 

driver in original software stack need to be modeled. To further reduce the GPU 

dependency from the simulation code, the device driver in original software stack 

should not be used in the simulation. Since the device driver is accessed from the 

GPU libraries through system calls, if the original GPU libraries are not used in the 

simulation, the device driver is also no longer used during the simulation. For this 

reason, in the API-level GIL simulation, the GPU libraries in the original software 

stack is replaced by the synthetic library which implements stub functions for the 

APIs of the original GPU libraries as shown in Figure 5-1. 
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For the API-level simulation technique, the GPU request should be detected when 

an API is invoked from the GPU applications. Since the target address is required in 

our detection mechanism explained in section 3.3, the start address of APIs defined 

in the synthetic library should be known to detect the API request. However, it is 

not easy to know the address since the synthetic library is located in user space and 

the address is determined when the library is loaded by a dynamic linker. To know 

the address, we should track the linking process during the simulation, but this 

would incur considerable overhead to the simulator. Instead, since the addresses of 

functions in kernel space can be obtained from the kernel image before the 

simulation, the synthetic driver is added in OS kernel for this purpose. Thus, in the 

synthetic library, it just forwards the API requests to the synthetic driver without 

 

Figure 5-1. Modified SW stack in API-level GIL simulation 
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any operation and the API request is detected in the synthetic driver by the detection 

mechanism. 

5.1.1 Synthetic Library 

Figure 5-2 shows an example code of the synthetic library for cudaMemcpy API 

in the CUDA library. To share the API information between the simulator and the 

board, two structures represented in Table 5-1 and Table 5-2 are used. 

The common structure (common_s) contains the data commonly used in all APIs. 

It has 5 variables; api_id variable is used to notify which API is invoked from the 

 

Figure 5-2. An example code of the synthetic library for cudaMemcpy API 
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application. thread_id and process_id variables are used to distinguish the thread 

and process calling the API. api_time variable is used to store the API time 

measured in the board and this variable is set by the host interface when the API 

time is passed from the board interface. And, api_arg variable is a pointer to an 

API-specific structure. 

The API-specific structure contains all arguments for the target API and it is 

varied depending on the target API. For example, in case of cudaMemcpy API, 

cuda_memcpy_s structure is used and contains four variables: destination memory 

address (dst), source memory address (src), copied memory size (count), and 

Table 5-1. Common structure (common_s) 

Variable name Description 

api_id An identifier for target API 

thread_id Thread id for the thread calling the API 

process_id Process id for the process calling the API 

api_arg A pointer to an API specific structure 

api_time API time measured in the board 

Table 5-2. API-specific structure for cudaMemcpy API 

(cuda_memcpy_s) 

Variable name Description 

src Source memory address 

dst Destination memory address 

count Copied memory size 

kind Direction for memory copy 

ret Return value 
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direction for memory copy (kind). After variables in the two structures are set using 

arguments passed from the application, ioctl system call is called with a pointer to 

the common structure to pass the API request to the synthetic driver. Once the ioctl 

is returned, since the return value has been set in ret variable in API-specific 

structure by the host interface, it is returned to the application. 

5.2 Timing Modeling 

In the system call-level GIL simulation technique, the GPU execution time is 

reflected to the simulator by the interrupt. However, since the device driver is not 

simulated in the API-level GIL simulation technique, the interrupt-based timing 

modeling technique can’t be used. Instead, since we can measure the API execution 

in the board by inserting timestamping code before/after the API invocation, the API 

execution time is reflected to the simulator by spending that amount time in the 

synthetic driver. 

Figure 5-3 illustrates the implementation of the synthetic driver. In Linux booting 

phase, gil_simulation_driver_init is invoked and it creates the virtual device named 

gil_dev. After the initialization of the device, it can be accessed as a file using open 

and ioctl system calls from the synthetic library. When ioctl is called for gil_dev 

device from the synthetic library as shown in Figure 5-2 (the first argument of ioctl 

call), gil_simulation_ioctl() will be invoked. When the first instruction for this 
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function is executed on the CPU simulator, it is detected by the detection routine in 

the host interface and the API is request sent to the board interface. In the board 

interface, target API is invoked and the API execution time is measured using time 

functions such as gettimeofday() and clock_gettime(). Then, the return value and the 

execution time for the API are sent back to the host interface and the API execution 

time is stored into api_time variable in the common structure. After the simulation 

for the target API has been completed, the original CPU simulation routine executes 

gil_simulation_ioctl code shown in Figure 5-3. To model the timing, it simply calls 

the usleep function so that the measured API time (api_time) elapses in the 

simulated time. 

 

 

Figure 5-3. Synthetic driver code used in GIL simulation 
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5.2.1 Regression-based compensation for timing 

error 

In the API-level simulation technique, the timing accuracy is first bounded by the 

processor simulator that measures the execution time only at the instruction level. 

For timing estimation of GPU execution, we estimate the execution time of each 

API by measuring the execution time directly in the board. The GPU execution time 

is modeled by simply summing up all the estimated API times and added to the 

CPU simulation time by using the usleep function explained in the section 5.2. This 

simple method itself is a source of timing inaccuracy. There are other sources of 

timing inaccuracy. In the board, time stamping is inserted before and after an API is 

called and the execution time is estimated by subtracting two time stamps. If the 

simulated system architecture or API implementation is not the same as the board, 

timing inaccuracy is inevitable. Even if we use the same architecture, time stamping 

affects the internal behavior. Also, usleep function has some overhead to set up the 

timer and this makes the elapsed time by the usleep will be larger than the measured 

API time. 

Since most internal implementation of GPU libraries are proprietary and the 

source code is not available, it is impossible to model the low level details of API 

interaction. Hence we perform a simple linear regression analysis to compensate the 

unknown sources of time inaccuracy with some selected benchmarks. We compute 

the ratio between the measured execution time of an application in the actual board 
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and the simulated time in the proposed simulator. We adjust the simulated time of 

another benchmark by this ratio and compare it with the measured execution time. 

5.3 Memory Synchronization 

Since the fact that one logical memory is modeled by two separate memories in 

the simulator and board is not changed, the memory synchronization is also a key 

 

Figure 5-4. Two ways to share data between CPU and GPU in GPU 

applications 
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issue for correctness in API-level GIL simulation. However, since the original SW 

tack is not used in the API-level simulation, memory synchronization is somewhat 

different. 

In API-level GIL simulation, there are two types of memory sharing between a 

CPU and a GPU. In the first way shown in Figure 5-4 (a), the application allocates a 

memory region (cpu_addr) and it is copied to a GPU memory (gpu_addr) using 

memory copy API (gpuMemcpy) after it is modified. Since the memory region 

allocated by malloc is not simulated in the board, it is only allocated in the 

simulator memory and not exist in the board. When gpuMemcpy is simulated in the 

board, it will access the board memory using the given CPU address (cpu_addr), 

but invalid pointer error would occur since this address is not defined in the board 

memory. To solve this problem, a new memory region is allocated temporally in the 

board memory and the input data in the simulated memory is copied to newly 

allocated board memory. Then, the address for the allocated memory region is 

passed as an argument of gpuMemcpy instead. 

In the second way shown in Figure 5-4 (b), to directly access the GPU memory in 

this application, gpuMap API is invoked to obtain a CPU virtual address for the 

GPU memory. When this API is simulated in the board, the pointer for the board 

memory (cpu_addr) is returned and it is used to access the GPU memory in the 

application. However, since this address is not defined in the simulator memory, 

segmentation fault error will occur in the simulator when the address is accessed 

and the application will be aborted. To solve this problem, similar to the former case, 
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temporal memory region is allocated in the simulator memory and it is used as a 

return value for gpuMap API by modifying the gpuMap API code in the synthetic 

library like Figure 5-5. 

 

  

 

Figure 5-5. Synthetic Library code for gpuMap API 
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5.4 GPGPU API (CUDA & OpenCL) 

Implementation Case 

5.4.1 Asynchronous Behavior Modeling 

In the API-level GIL simulation, as explain in section 5.2, the API measured in 

the board is annotated to the simulated time by usleep function in the synthetic 

driver to model the API timing. This simple mechanism assumes that the APIs are 

synchronous, which means that code execution will wait until the actual execution 

of the API is completed. For the synchronous API, its execution time is not changed 

depending on other APIs or the call time. Thus, we can guarantee that the measured 

 

Figure 5-6. Real execution scenario for the synchronization API 
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API in the board during the simulation is same with the one in the real execution. 

However, this is not true for asynchronous APIs. 

Figure 5-6 shows the scenario that a kernel launch API (gpuKernelLaunch) and a 

device synchronization API (gpuDeviceSynchronize) are called in series. As 

gpuKernelLaunch is asynchronous, it is returned after δ time without waiting for the 

kernel completion. And gpuDeviceSynchronize is called immediately to wait until 

the kernel completes. Since the execution time of the kernel is Ek, the execution 

time for device synchronization API becomes Ek – δ. 

Let us consider the simulation scenario for the Figure 5-6, which is shown in 

Figure 5-7. When gpuKernelLaunch is invoked and captured by the host interface at 

time t1, it is simulated by invoking gpuKernelLaunch in the board and the execution 

time (δ) is reflected to simulated time as explained. Then, gpuDeviceSynchronize is 

invoked in the CPU model at time t1 + δ and it is also captured by the host interface. 

When gpuDeviceSynchronize is invoked in the board interface, the execution time 

of gpuDeviceSynchronize would be almost zero, not Ek since the kernel launched by 

gpuKernelLaunch has been already completed by the real GPU at that time. This is 

because the CPU model is considerably slower than the real GPU hardware. 

Since the problem occurs for the asynchronous API followed by a synchronous 

API, the execution time should be calculated differently. As the synchronization API 

waits until all the operations launched by the previous APIs finish, the execution 

time of the synchronization is determined by the end time of the last completed 

operation and the invocation time of the synchronization API. To figure out the end 
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time of the last finished operation, we need to know the end times of all operations. 

To obtain the end time of each asynchronous operation, a dummy synchronization 

API is invoked to explicitly wait until the operation launched by asynchronous API 

completes. In such a way, the end times of all operations including asynchronous 

APIs are obtained and stored, and these values are used when a synchronization API 

is called: an API queue is managed to store the asynchronous APIs tagged with the 

end time. When a synchronization API is called, the API queue is searched to find 

out the time when the last asynchronous operation finished. Then, the execution 

 

Figure 5-7. Simulation scenario for Figure 5-6 
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time of a synchronization API is calculated by subtracting the invocation time from 

the last end time. 

5.4.2 Implementation Issues 

5.4.2.1 Locating Source/Binary Files 

For the Android GPGPU application, it consists of a host code and a kernel code 

which are executed in a CPU and a GPGPU respectively. For the host code, it is 

statically compiled and the host executable (apk) is used when the application runs 

on Android. However, for the kernel code, both source and binary files are used to 

build the kernel dynamically. When the GPGPU API is invoked from the host 

executable to pass the source or binary files, there are two ways. One is that the host 

executable passes the pointer to a string which contains the whole contents of the 

source file. In this case, the file system call should be invoked to get a code string 

from the source file. The other is to pass the file name, and the file is loaded in the 

API internally. 

For the former case, since the OpenCL host code will access the disk in the target 

system, source or binary files should be included in the image file for the Android 

file system, which is used to model the disk in the target system. However, for the 

latter case, since an API is executed in the simulation host not in the target system 

and it access the disk in the simulation host with the given file name, source or 
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binary files should be located in the same path with the simulator. 

5.4.2.2 CUDA Implementation 

The proposed simulation technique supports CUDA on Android as well as 

OpenCL. Even though the basic mechanism of defining APIs for the synthetic 

library is the same, there are some CUDA specific implementation issues. 

In CUDA, kernel arguments are passed by a pointer from the application using 

cuLaunchkernel. But the simulator cannot directly figure out the information such 

as the number of arguments and the size of each argument from the pointer. To solve 

this problem, we add a separate utility function that analyzes a ptx (Parallel Thread 

Execution) file, which is a pseudo-assembly code generated by the CUDA compiler. 

Since the ptx file is loaded by cuModuleLoad before cuLaunchkernel is invoked, we 

can obtain the necessary information by calling the analyzing routine before 

cuLaunchkernel. Then, cuLaunchkernel can be called with the correct information. 

Another issue is regarding the CUDA building with an ARM compiler. In the 

proposed framework, we assume that all the requests to the GPGPU are performed 

in a form of API call. For CUDA, however, there are some expressions which are 

not in this form. In CUDA, as shown in Figure 5-8 (a), it is possible to launch a 

kernel from the host using the notation below as the CUDA compiler (nvcc) can 

accept this notation. 

 

However, as the ARM compiler is used to compile the host code in the proposed 

kernel <<<grid, block >>> ( arg1, arg2, …  ) 
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framework, this is not accepted. Hence, the application should be written in the 

form of an API call like Figure 5-8 (b) to use the proposed simulation framework. 

Also, since the ARM compiler cannot compile the kernel source code, the kernel 

and the host code should be split into separate files, which is not necessary in the 

 

Figure 5-8. Original (a) and modified (b) CUDA code 
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original CUDA because nvcc can compile both the host and the kernel code in a 

same file. Since this form of CUDA application code is also allowed in the original 

CUDA environment, it can guarantee that the application code used in the 

simulation can run on the real target without any modification. 

5.4.3 Experiments  

The GPGPU API level GIL simulation framework is constructed based on the 

system call level framework explained in Chapter 4 and extended to support 

GPGPU applications on Android. Since the GPGPU is only supported in the host 

GPGPU and not supported in the GPU board currently, host GPGPU in the 

simulation host is used for the GPGPU API level GIL simulation technique. Since 

two GPU functionalities (Graphics and GPGPU) are simulated by different GPUs in 

the simulation host and the board (Mali GPU), this assumes the target platform with 

two GPUs, one takes charge of rendering jobs, whereas the GPGPU is only used as 

an accelerator. 

We used ODROID-X board to execute the Mali GPU hardware, gem5 simulator 

to simulate components other than GPU, and the GPGPU hardware in the 

simulation host machine for the GPGPU simulation. 

5.4.3.1 GPGPU Performance 

The first set of experiments is performed to show that the proposed framework 
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can monitor the performance of GPGPU applications written with CUDA and 

OpenCL. For this experiment, we implemented face detection applications based on 

two source codes. One is the face detection sample code in OpenCV [43], which has 

two versions: CPU and GPGPU version written with CUDA. The second one is 

implemented in OpenCL. Since these two implementations parallelize the 

application differently, direct comparison between two implementations is not 

meaningful in this experiment.  

Three images in PGM (Portable Gray Map) format are used in the experiment 

varying the image size: 267x189, 600x419 and 1100x733. Since the CPU 

simulation model used in the proposed framework is not cycle-accurate 

(AtomicSimpleCPU in gem5 simulator [45]), we measured the execution time of the 

CPU version on ARM cortex A9 CPU board (ODROID-X). And the execution time 

of the GPGPU version is measured from the GIL simulation framework varying the 

GPGPUs used in the simulation: GTS450 (192 cores) and GTX480 (480 cores). The 

result is shown in Figure 5-9. As shown in Figure 5-9 (a), the CUDA version with 

GTS450 is 7.90 ~ 16.98 times faster than the CPU version, and the speedup is 

increased as the image size grows. With GTX 480, we observe the similar 

performance increase, 1.07 ~ 1.49 times faster than GTS450. 

For the OpenCL application, GPGPU version (with GTS) is 1.34 ~ 1.58 times 

faster than CPU version. The speedup is not as large as the CUDA implementation, 

because not all algorithms were parallelized using OpenCL: Image resizing is 

executed on the CPU. Also, since the CPU model used in the simulation is not 
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cycle-accurate and is overestimated, the execution time on the CPU would be a bit 

larger than it should be, increasing the total execution time. For the accurate result, 

cycle accurate CPU model in gem5 simulator (O3 model) should be used at the 

expense of slower simulation. 

 

Figure 5-9. The execution times of the two applications (CUDA, OpenCL) 
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Figure 5-10 shows the simulated time for GPGPU APIs (267x189-sized image) 

that is partitioned into three parts: Kernel Execution, Memory Copy and Memory 

Allocation. In CUDA implementation, image resizing is performed in GPGPU and 

GPGPU memory space is allocated/de-allocated each time, which makes memory 

allocation the most time consuming part, and the kernel execution the next. In 

contrast, in OpenCL implementation, image resizing is performed in the CPU and 

the resized images are copied to GPGPU memory. Thus, memory copy is the most 

timing consuming part in OpenCL. 

 

Figure 5-11 shows the detailed performance profiling of the face detection 

applications, obtained from the proposed simulation framework. In the CUDA 

 

Figure 5-10. Simulated time for GPGPU API (267x189) 
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implementation, the classification part, lbp_cascade kernel, takes the most of the 

time but the sum of vertical_pass and horizontal_pass, which are the feature 

extraction parts, is larger. On the other hand, we can see that 

lbp_imageGPU_1x1_aggr which is a feature extraction part, takes a bit larger than 

the processingRectLoop_WS_2D which is a classification part. In Figure 5-11, it 

shows the communication overhead between CPU and GPGPU. As seen in the 5-11 

more memory copy are occurred in OpenCL by clEnqueueWriteBuffer which 

transfers data from host memory to GPGPU memory. 

 

5.4.3.2 CPU/GPGPU Job Sharing 

As we explained in Chapter 1, it is good to consider job sharing between CPU 

and GPU to fully utilize the system, since embedded GPUs are not powerful like 

server GPUs. To rapidly and easily estimate the performance impact of different 

CPU-GPU partitioning configurations, another set of experiments is performed with 

 

Figure 5-11. The execution time of kernel executed for the face detection 

application (267x189) 
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a matrix multiplication application that is written in CUDA and Pthread. We 

parallelize the computation by rows so that each row can be executed in the GPGPU 

or in the CPU. Although the target embedded GPU in the Android device should be 

used, the simulation is performed using the GPGPU in the simulation host since the 

OpenCL driver for the embedded GPUs is not publicly available yet. In order to 

invoke a target API in the embedded GPU board, information such as API 

arguments and which API is to be called needs to be passed to the board from the 

simulation host, which is straightforward to implement but remains as a future work 

due to the availability of the driver. In the current simulation environment, we limit 

the number of threads in the GPGPU from 8 to 64 to approximately model the 

performance of an embedded GPU. For the CPU, we fixed the number of Pthreads 

 

Figure 5-12. Communication overhead for memory APIs (267x189) 
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to four since ARM Cortex-A9 quad-core CPU is simulated in the experiment. 

Figure 5-12 shows the execution time of the application when the number of rows 

allocated to CPU and GPGPU varies from 0 to 128. As expected, the optimal job 

distribution point depends on the GPGPU computing power, and each optimal point 

is shown in Figure 5-13. Even if the proposed simulation is not cycle-accurate, this 

information is useful as the approximate performance trend of the GPGPU 

application can be estimated. 

 

 

Figure 5-13. The execution time for the matrix multiplication varying the 

number 
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5.4.4 Simulation Overhead 

To figure out the overhead of the proposed GIL simulation, we measured the 

detailed simulation time for the face detection application, which is shown in Figure 

5-14. From the figure, we can see that the overhead of the GIL simulation for 

GPGPU is about 3.0 % of the total simulation time. This confirms that the proposed 

approach has very low overhead and the GPGPU simulation would not be a 

performance bottleneck in the full system simulation unlike the one with 

conventional GPGPU simulator.  

 

  

 

Figure 5-14. Simulation time composition in the GIL simulation 
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5.5 OpenGL ES Implementation Case 

5.5.1 Background 

5.5.1.1 Android Graphics Overview 

 

Figure 5-15 shows an overview for Android Graphics. In Android applications, 

there are four components including activities, services, content providers and 

broadcast receivers [47]. Among them, the activity is responsible for the graphics 

 

Figure 5-15. Overview for Android Graphics 
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operations and each activity has a window to draw its user interface. Each window 

has its own surface which has some buffers obtained from SurfaceFlinger process. 

In the SurfaceFlinger, it only provides an interface for buffer allocation, which is 

actually performed through a memory allocator called “gralloc”. In Android, there 

are two gralloc modules: the one is provided by the vendor as a library (so file) and 

the other is a default module provided in Android and is used when the 

vendor-specific gralloc module is not provided. 

After the activity obtains a buffer, the drawing is performed by 2D graphics APIs 

in Canvas or 3D graphics APIs in OpenGL ES, whose result is rendered onto the 

obtained buffer in a surface. Then, the drawn buffer is submitted to the 

SurfaceFlinger process and multiple surfaces are composed based on the window 

status (visibility, Z-order, alpha value, etc) received from the Window Manager. To 

compose the surfaces, OpenGL ES library is used in the SurfaceFlinger and much of 

the composition work can be delegated to the HW composer to offload some work 

to the GPU. 

In Android, the OpenGL ES library consists of platform-independent and 

dependent layers. The platform dependent OpenGL ES library is provided in 

Android source code and it simply calls down to the vendor specific libraries in 

most cases. During the initialization process in this library, the vendor specific 

OpenGL ES library is loaded dynamically based on the configuration file (egl.cfg) 

which contains a tag like mali or adreno, which is used to construct the name of the 

vendor specific library. The vendor specific library provides an interface to the GPU 
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and is responsible for managing the work for the GPU. To allocate rendering work 

to the GPU, a group of ioctl system calls is invoked in the library and the GPU 

device driver in Linux kernel accesses the registers and memories in the GPU to 

allocate the work. 

5.5.2 Additional modification for SW stack 

 

In OpenGL ES API, to consider the memory synchronization for complex data 

structures (native window and native window buffer) and multi-process support, 

 

Figure 5-16. Modification for Software stack in OpenGL ES API 
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additional modification for SW stack is required as shown in Figure 5-16. Helper 

APIs are added in the synthetic library to assist OpenGL API-level GIL simulation 

to obtain the process information for multi-process support and the necessary 

information for the memory synchronization. Since some information for memory 

synchronization can be obtained from the gralloc, original gralloc module is 

modified to invoke Helper APIs to pass the information. 

5.5.3 Memory synchronization 

In section 5.3, we explained how the memory synchronization is handled in the 

API level GIL simulation. For GPGPU APIs, since the memory region to be 

synchronized is fully specified with the API parameters (the start address and the 

size of the region), the memory synchronization is not difficult. However, in 

OpenGL ES API, some complex data structures such as native window and native 

window buffer are used in the OpenGL ES APIs and only the address for these data 

is provided when the APIs are called. Thus, it is far from straightforward to keep 

these data structures in a separate GPU board consistently with the simulator. 

5.5.3.1 Native Window 

The native window is a C/C++ class that corresponds to the surface in the Java 

application. To render image from the OpenGL ES graphics application, it requires a 

native window to get the buffers for rendering. So, when the application requests for 
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the native window, it is created by the Non-OpenGL code in SurfaceFlinger and 

passed to the application. Then, in the application, eglCreateWindowSurafce 

OpenGL ES API is invoked with the handle for the native window to create an EGL 

Surface which extends the native window with auxiliary buffers. When this 

OpenGL ES API is called, it is executed in the board and the native window is 

accessed with the handle that has been given as an API parameter. However, since 

the handle is created by the Non-OpenGL code in SurfaceFlinger, its data is located 

in the simulator memory and invalid access error would occur when the API is 

 

Figure 5-17. Code extension for the native window in synthetic library 
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executed in the board. 

To solve this problem, the corresponding native window should be created in the 

board using the same properties like width, height and format. For this, these 

properties are extracted from the simulator memory in the synthetic library as 

shown in Figure 5-17. Then, these properties will be sent to the board with the 

eglCreateWindowSurface API request and the corresponding native window will be 

created in the board. Even if the properties are obtained, it is not possible to create a 

native window in the board, since the Android does not provide a library to create a 

native window from an application. For this reason, the original Android software 

stack executed in the board should be extended to build the library that provides an 

interface for creating a native window. 

5.5.3.2 Native Window Buffer 

In the graphics applications, images can be drawn in two ways: 2D graphics APIs 

in Canvas and 3D graphics APIs in OpenGL ES. When the drawn buffers are 

submitted to the SurfaceFlinger process, they are composed using OpenGL ES APIs 

in the SurfaceFlinger process. Since the native window buffer is not directly usable 

by the OpenGL ES, it is extended to a general image object called EGL Image by 

calling eglCreateImageKHR API in the SurfaceFlinger process. The problem 

happens when the native buffers drawn by 2D graphics APIs are composed. Since 

the buffer is drawn by the Non-OpenGL graphics APIs, the drawn buffer is located 

in the simulator memory. When eglCreateImageKHR OpenGL ES API is executed 

in the board, the native window buffer will be accessed using the handle given as a 
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parameter. However, since the handle points to the simulator memory, invalid 

access error will occur during the API execution. Thus, the corresponding native 

buffer should be created in the board just like the native window. To obtain the 

properties for a native window buffer, the gralloc module, which is responsible for 

the actual buffer allocation in Android, is modified. 

Figure 5-18 illustrates the modified gralloc_alloc function in gralloc module to 

obtain the properties required for the native window buffer creation (width, height 

and format). Then, getWindowBuffer Helper API is called to pass these properties to 

the board and the corresponding native window buffer will be created. 

For the case of the native window buffer, in addition to creating it with the same 

properties, the content in the buffer should be correctly synchronized by copying the 

pixel data from the simulator memory to the board memory before the OpenGL ES 

APIs for the composition are executed in the board. It is not sufficient to 

synchronize the native window buffer when eglCreateImage API is executed 

because an EGL Image is created only once when the buffer is submitted first and 

eglCreateImage API is not be called when the same buffer is re-submitted. Instead, 

EGLImageTargetTexture2DOES API is invoked to generate the texture arrays from 

the EGL Image whenever the buffer is submitted. Thus, we synchronize the native 

window buffer whenever this API is invoked. 

After the OpenGL ES APIs for the composition are processed in the board, the 

simulated SurfaceFlinger process will pass the composited buffer to the display 

controller in the simulator. Since it is composed by OpenGL ES APIs, however, the 
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result is located in the board memory and, without proper synchronization, wrong 

images would be displayed in the simulator display. Thus, the pixel data for the 

composite buffer should be synchronized after eglSwapBuffer API is executed in the 

board, which finalizes the pixel data. 

 

 

Figure 5-18. Modified code for gralloc module 
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5.5.4 Multi-Process Support 

 

In GPGPU API, we assume that only target application uses the API and there is 

no need to consider the effect between the API call from the different simulated 

process in the simulator. But in OpenGL ES in Android, there are many system 

applications which are executed during the boot process and APIs calls from the 

multiple processes should be correctly handled in the API level GIL simulation. 

Generally, in OpenGL ES, each thread has its own OpenGL ES context and the 

result of API execution is reflected only in the current context. And each context are 

linked with a specific window and the drawing operations performed by OpenGL 

 

Figure 5-19. Multi-thread structure for Board Interface in OpenGL ES API 

GIL simulation 
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ES APIs are reflected to the window linked to the current thread. However, if the 

GIL simulation is implemented as a single thread, since only one window can be 

linked to the thread, the API requests from the multiple threads are reflected in the 

one specific window, drawing results from the multiple threads are mixed in that 

window. Therefore, in order to prevent the interference between the API requests 

from the different threads, multiple threads are created in the board interface and 

they are processed by separate threads as shown in Figure 5-19. 

5.5.4.1 Thread Allocation 

When the first OpenGL ES API is requested from the application, 

createThreadContext Helper API is requested first from the synthetic library. Then, 

the corresponding thread is generated in the board and the thread id is allocated in 

the host interface. And a client socket is created in the host interface, which is 

connected with the server socket for the generated thread in the board. The binding 

information between the thread id and the socket is reserved in the host interface 

internally, and the thread id is stored in the thread_id variable to pass it to the 

synthetic library. In the synthetic library, the thread id is stored in a per-thread data 

structure for later use. 

5.5.4.2 Target Thread Selection 

When the OpenGL ES API is requested, in the synthetic library, thread_id 

variable is set by calling getThreadId() function in which thread id is restored from 

per-thread data structure as shown in Figure 5-2. In the host interface, to find out 
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which thread is responsible for simulating the requested API, the binding 

information which was previously reserved by the thread allocation process is 

searched to establish the socket connection. Since thread information is passed by 

the thread_id and process_id variables in the common structure, the target socket 

connection can be obtained using these values from the binding information. 

5.5.5 High-level Timing Modeling for other GPUs 

Since a real GPU HW is used in the simulation, the proposed technique can 

simulate the target platforms only if the existing GPU is re-used. For this reason, the 

design space exploration for the GPU can be performed by using several GPU 

boards with different GPUs. To overcome this limitation, we proposed a simple 

analytical timing modeling technique that estimates the execution time of OpenGL 

API when a non-existing GPU is included in the target platform. 

Let CPU/GPU frequency be represented by (F𝑐, F𝑔). In our simple timing model, 

the API execution time for given CPU/GPU frequency level (F𝑐, F𝑔) consists of 

three parts: Idle time (𝑇𝐼𝐷𝐿𝐸), CPU execution time (𝑇𝐶𝑃𝑈
F𝑐 ), and GPU execution time 

(𝑇𝐺𝑃𝑈

F𝑔
) as shown in below. 

 

𝑇𝐴𝑃𝐼(F𝑐 , F𝑔) = 𝑇𝐼𝐷𝐿𝐸 +  𝑇𝐶𝑃𝑈
F𝑐 + 𝑇𝐺𝑃𝑈

F𝑔
    (1) 
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The execution time of the CPU and GPU can be calculated by multiplying the 

total number of cycle (𝐶𝑃𝑈_𝐶𝑦𝑐𝑙𝑒𝑠F𝑐, 𝐺𝑃𝑈_𝐶𝑦𝑐𝑙𝑒𝑠F𝑔) and the clock cycle time 

(inverse of the clock frequency) of the CPU and the GPU. 

 

𝑇𝐶𝑃𝑈
F𝑐 =  

𝐶𝑃𝑈_𝐶𝑦𝑐𝑙𝑒𝑠F𝑐

F𝑐
  (2) 

𝑇𝐺𝑃𝑈

F𝑔 =  
𝐺𝑃𝑈_𝐶𝑦𝑐𝑙𝑒𝑠F𝑔

F𝑔
  (3) 

 

In our simple timing model, only the clock frequencies of CPU and GPU can be 

configured in the target platform and other architecture features are same with GPU 

board. Moreover, the same code is executed on the target platform so that the total 

number of cycles of the CPU and the GPU would be remained unchanged 

regardless of the variation in the clock frequencies of the CPU and the GPU. Let the 

tuple (F𝑐
′ , F𝑔

′ ) represent the frequencies of the CPU and GPU in the target platform 

and the tuple (F𝑐, F𝑔) represent the frequencies in the GPU board used in the 

simulation. Then, since the total number of cycles of the CPU and the GPU are not 

changed depending on the clock frequencies, below equations can be obtained using 

Equation (2), (3). 

 

𝑇𝐶𝑃𝑈
F𝑐

′

 = 𝑇𝐶𝑃𝑈
F𝑐 ∗

F𝑐

F𝑐
′  

𝑇𝐺𝑃𝑈

F𝑔
′

 = 𝑇𝐺𝑃𝑈

F𝑔 ∗
F𝑔

F𝑔
′  
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From these equations, we can know that the execution times of CPU and GPU on 

the target platform (𝑇𝐶𝑃𝑈
F𝑐

′

, 𝑇𝐺𝑃𝑈

F𝑔
′

) can calculated from the execution times measured 

in the GPU board. And these information can be obtained from the GPU board 

using the performance analyzer or the profiler such as profiler such as ARM 

StreamLine [1] during the simulation. 

As shown in Equation (1), to model the API execution time in the target platform, 

we also need to know the idle time in the target platform (𝑇𝐼𝐷𝐿𝐸). For simplicity, we 

assume that the idle time is not changed depending on the clock frequencies. Thus, 

we can re-use the idle time obtained from the GPU board. Finally, we can obtain the 

following equation to model the API execution time in the target platform varying 

the clock frequencies of the CPU and GPU based on the profile information 

obtained from the GPU board. 

 

𝑇𝐴𝑃𝐼(F𝑐
′ , F𝑔

′ )  = 𝑇𝐼𝐷𝐿𝐸 +  𝑇𝐶𝑃𝑈
F𝑐

′

+ 𝑇𝐺𝑃𝑈

F𝑔
′

 

                                        = 𝑇𝐼𝐷𝐿𝐸 + 𝑇𝐶𝑃𝑈
F𝑐 ∗

F𝑐

F𝑐
′ + 𝑇𝐺𝑃𝑈

F𝑔 ∗
F𝑔

F𝑔
′  

5.5.6 Porting To a New GPU Board 

Since the CPU-GPU interface is performed at the OpenGL ES API level which is 

independent of the GPU, it can be easily extended to support various types of GPUs.  
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To apply the proposed technique to a new GPU board, it is necessary to modify the 

parts related with the native window, the native window buffer in the board 

interface, and the Android OS in the board. 

For the native window buffer, memory synchronization part in the board interface 

should be modified since the structure for the native window buffer is different 

across the target GPU. Thus, the source code to obtain the pointer to the pixel data 

should be modified to apply the proposed technique to the new GPU board. This 

information can be inferred from the header file (gralloc_priv.h) of gralloc module 

which is provided by the GPU vendor as a part of the Android source code. Given 

this file, it takes about a day to modify the source code for the native window buffer. 

For the native window, as mentioned in 5.5.3.1, the basic Android does not 

provide an interface to create the native window from the application. Since the 

native window is needed from the board interface, the original Android source code 

should be extended to build the library that provides the interface. For this purpose, 

the source code for the library in the previous framework is copied to the Android 

source code for the new GPU board and the protection level for the SurfaceFlinger 

is lowered so that it can be accessed from the application. Exceptionally, if the way 

to obtain the native window from the SurfaceFlinger is changed, the library source 

code from the previous framework may not be applicable. Nevertheless, from our 

experience, it is not difficult to write the library code to provide an interface for 

creating the native window. 

For the native window, the original Android source code should be extended 
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since the original Android does not provide an interface to create the native window 

from the application. It has to be extended to provide such an interface. For this 

purpose, the source code for the interface, or library, in the previous framework 

should be copied to the Android source code for the new GPU board and the 

protection level for the SurfaceFlinger process should be lowered so that it can be 

accessed from the application. 

5.5.7 Experiments 

In the proposed simulation framework, the target system is based on the Exynos 

4412 system and only the GPU part is changed depending on the development 

board used in the simulation. We used three development boards (Odroid-X [40], 

5250 Arndale [42], and Odroid-XU3 [41]) with different GPUs (Mali 400MP4, Mali 

T604, and Mali T628 respectively). To make the full system simulation fast enough 

for software development and verification while sacrificing the timing accuracy, we 

used the AtomicSimple CPU model in gem5. 

We ran three Android graphics applications called Rubik [31], Lesson05 and 

Lesson16 [30]. As explained in 4.4, the Rubik benchmark includes both the 

computation and the API call sequence, in which the proportions of two parts are 

37.4% (computation) and 63.6 % (API call sequence) respectively. However, other 

benchmarks (Lesson05, Lesson16) only include the API call sequence without any 
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computation. To measure the rendering performance for the benchmarks, we 

measured only the execution time of the OpenGL API call sequence in the rendering 

function without computation part, by inserting time stamping code to the 

application. 

It is known that measuring the rendering time for the OpenGL ES application is 

not a simple problem [33] due to the asynchronous behavior in the OpenGL ES 

APIs and the window buffer limitation. For asynchronous behavior, if there is no 

synchronization API at the end of the API sequence, the measured API time only 

includes the queuing overhead without rendering time. Thus, we inserted the 

synchronization API at the end of the APIs in the original application to measure the 

actual rendering time. In Android OpenGL ES application, each application obtains 

the native window buffer from the buffer queue in the SurfaceFlinger. If there is no 

free buffer available, the application should wait until the buffer is composed and 

the measured time can include the waiting time for the buffer. To avoid this problem, 

we insert a redundant glClear API before the first API in each application to 

guarantee the availability of free buffers. 

5.5.7.1 Simulation Speed 

The proposed technique can achieves high simulation performance up to about 10 

Mcps (cycles per second). Since the AtomicSimple model does not simulate the 

CPU when it becomes idle [32] when the usleep function in the synthetic driver is 

called, gem5 just skips the period without any simulation. In case the application 

spends most of the time in the GPU, as the benchmark programs used in the 



 

 
85 

experiments do, we can obtain higher GIL simulation speed than the gem5 simulator. 

Since the performance for the system call-level GIL simulation is about 1 Mcps, the 

API-level GIL simulation technique can achieve significant speed-up compared 

with the system call-level GIL simulation. 

 

5.5.7.2 Rendering Performance 

Figure 5-20 shows the rendering performance (i.e., simulated time) result for 

three benchmarks when they are simulated using three development boards. In 

Odroid-X, the execution times for the rendering are 0.248 to 0.288 seconds. As  

200 frames are displayed, the rendering performance is about 694.6 ~ 807.6 fps  

and we can expect that all the benchmarks can display the image to screen without 

 

Figure 5-20. Rendering times for three benchmarks with three boards 



 

 
86 

any delay since it is faster than the display rate (60 fps). In other boards, compared 

to Odroid-X, the execution time is increased by about 1.07 ~ 1.26 and 1.59 ~ 1.72 

times for Arndale and Odroid-XU3 board respectively. 

 

5.5.7.3 Accuracy Evaluation 

To evaluate the timing accuracy of the proposed framework, we first measured 

the rendering time of the native execution, and compared with the simulated time 

from the proposed framework. As shown in Figure 5-21, the timing error is in range 

of 15.8 % ~ 38.9 %. From the result, we can know that there exist some timing 

errors compared with the native execution. As mentioned in section 5.2.1, to reduce 

these timing errors, the simple linear regression analysis is performed based on the 

 

Figure 5-21. Accuracy results for three benchmarks with three boards 
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rendering time results from two benchmarks: Rubik and Lesson05. From the result 

shown in Figure 5-22, the ratio factor of 1.232 is obtained. Then, the simulation for 

Lesson16 benchmark is performed, dividing the measured API time by this factor. 

Figure 5-23 shows the timing error before and after the ratio factor is applied to the 

simulation result. From the result, we can know that the average error ratio is 

decreased from the 30.8 % to 10.8 %. It is confirmed that the proposed approach 

with regression-based timing modeling provides good timing accuracy with about 

10% of timing error for the graphics benchmark examples. 

 

 

Figure 5-22. Linear regression analysis result for two benchmarks 
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5.5.7.4 Dynamic Behavior Profiling 

To efficiently optimize the rendering performance, it is important to figure out 

which API has the longest execution time. Since the OpenGL ES APIs are executed 

asynchronously in the board, the measured API time during the simulation only 

includes the queueing overhead without the actual execution time. To obtain the 

execution time information for actual rendering, synchronous model is implemented 

in which a synchronization API such as glFinish is appended to each API to enforce 

waiting until the actual execution of the API is completed. Figure 5-24 shows the 

detailed performance profile information for the Rubik benchmark when the 

simulation is performed with Odroid-X board in the synchronous model. The 

information includes the number of API calls and the total execution time for the 

 

Figure 5-23. The error ratio before and after the correction factor is applied 
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APIs. From the results, we observe that glDrawElements and glClear API take the 

longest execution times which are 0.202 and 0.197 seconds, respectively, for 200 

executions. 

 

5.5.7.5 Design Exploartion varying CPU/GPU frequencies 

To overcome the limitation in the proposed technique, a simple timing modeling 

technique that can model the timing of OpenGL API varying the frequencies of the 

CPU and the GPU is proposed in 5.5.5. To evaluate timing accuracy of this 

modeling technique, we first measured the rendering times of the native execution 

for 4 different CPU/GPU frequency combinations as shown in Figure 5-25. In the 

simulation, first the simulation is performed by fixing the CPU/GPU frequencies to 

1.0 GHZ and 266 MHZ respectively and the profile information required in the 

modeling technique is obtained using the ARM streamline performance analyzer [1]. 

 

Figure 5-24. The total execution time and the call count for each API 
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After that, the rendering times for the other three configurations are estimated by 

the proposed modeling technique based on the profile information and the estimated 

API time is divided by the regression factor obtained in 5.5.7.3, which is 1.232. As 

shown in Figure 5-25, the timing error is in range of 5.0 % ~ 26.3 % and the 

average error is 17.0 %. 

 

In the Odroid-XU3 board, 5 CPU clock frequencies (1.0, 1.1, 1.2, 1.3 and 1.4 

GHZ) and 6 GPU clock frequencies (177, 266, 350, 420, 480, 543) are supported. 

To show that the proposed technique can be used for design space exploration, 

additional CPU/GPU frequencies which are not available in the Odroid-XU3 board 

are considered in the proposed modeling technique. From the result shown in Figure 

 

Figure 5-25. The error ratio for Lesson16 benchmark with 4 combinations 

of CPU/GPU frequencies on the Odroid-XU3 board 
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5-26, in the highest CPU/GPU frequencies (CPU=2.0 GHz, GPU = 1000 MHZ), 

about 1.26 times higher performance (0.199 seconds) can be achieved compared 

with the highest performance (0.250 seconds) in the Odroid-XU3 board (CPU=1.4 

GHZ, GPU=543 MHZ). 

 

 

Figure 5-26. The rendering time for Lesson16 benchmark on the 

odroid-xu3 board varying CPU/GPU frequencies 
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5.6 Summary 

In this section, we have proposed a fast and extensible GPU-in-the-loop 

simulation technique that integrates a real GPU hardware with the full system 

simulator at the API level to make a best compromise between the simulation speed 

and the timing accuracy. To provide an easily extensible interfacing mechanism 

between the simulator and the GPU board, a synthetic library is defined for the GIL 

simulation. 

In the GPGPU API-level GIL simulation technique, we simulated a real-life 

example of face detection applications which both utilize CPU and GPU. Through 

the simulation, we could estimate the execution time of the face detection. The 

results show that GPGPU version can increase the performance compared to the 

CPU only version by 5.7X ~ 10.5X for CUDA version, and 1.29X ~ 1.56X faster 

for OpenCL version, depending on the input image size. We could also confirm that 

the proposed approach can easily adopt a new GPGPU in the GIL simulation. We 

used two different types of GPGPUs, GTS450 and GTX480, without any 

modification in the simulation framework. From the simulation time profiling, only 

4.0 % of the total time is spent on the GPGPU simulation. 

In OpenGL ES API-level GIL simulation technique, the proposed technique 

achieved up to about 10 Mcps, which is 10 times of speedup for Android graphics 

benchmark applications compared to the system call-level GIL simulation technique. 

We could apply the proposed technique successfully to three development boards 
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with a little modification of the board interface and Android source code in the 

board for the native window management. The most challenging problem in the 

proposed framework is to synchronize two distinct memories in the GPU board and 

the simulation host. We proposed a novel method to keep the native window and the 

native window buffers consistent. For timing accuracy, we propose a simple linear 

regression analysis to compensate the difference between the measured execution 

time and the simulated time, without the detailed information for the OpenGL ES 

driver code. Moreover, for the design space exploration varying CPU/GPU 

frequencies, a simple timing modeling technique is proposed to model the timing of 

the API execution GPU platforms with the frequencies not supported in the existing 

GPU. 
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Chapter 6 Conclusion and 

Future Work 

Emerging mobile devices are likely to adopt CPU-GPU heterogeneous 

architecture where an embedded GPU executes offloaded computations from the 

CPU as well as rendering tasks. Thus, building a full system simulator for a 

CPU/GPU heterogeneous architecture recently draws keen attention of mobile 

device developers for design space exploration or SW development at the early 

design stage.  

For these purposes, since it is very desirable to run the same application software 

on a full system simulator, simulation performance is really important. However, all 

known GPU simulators are mainly developed for architectural exploration, those 

simulators are prohibitively slow. Moreover, for some mobile GPUs such as Mali or 

PowerVR, since GPU simulators does not exist, it is impossible to build a full 

system simulator for the target platforms consisting of these GPUs. 
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To solve these problems, this thesis propose a GPU-in-the-loop (GIL) simulation 

technique, which integrates a real GPU Hardware with a full system simulator. 

Since real HW is used, it can provide fast simulation speed enough for SW 

development purpose and can build a full system simulator even if a GPU simulator 

is not available. 

There are two major challenges in the proposed technique. First, since the 

on-chip shared memory in the target system is modeled with the two separate 

memories in the simulator and the board, we must synchronize the duplicated 

shared memory models to maintain the coherence. Second, since the detailed 

behavior of the GPU cannot be observed in the board, it is not easy to model the 

timing of the GPU in the proposed technique. To handle these challenges, two novel 

interfacing techniques that interact with a real GPU at system call and API level are 

proposed in this thesis. 

In the system call-level GIL simulation technique, since GPU virtual address is 

used in the system call argument, address translation table is maintained for 

memory synchronization. And to model the GPU execution, the interrupt handing 

mechanism is modeled. 

In API-level GIL simulation technique, to provide an easily extensible interfacing 

mechanism between the simulator and the board, a synthetic library is defined and 

original SW stack is modified not to simulate the device driver. Since the device 

driver in the original SW stack is not simulated, interrupt-based timing modeling 

technique can’t be applied. Instead, the API execution is modeled by simply calling 
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a sleep function in the synthetic driver. Since the type of API varies depending on 

the GPU functionality, two types of APIs for GPGPU and Graphic are considered in 

this thesis and several API-specific challenges such as asynchronous behavior 

modeling and memory synchronization for complex data structures are properly 

handled. 

Since the two interfacing techniques have different features, depending on the 

purpose of the simulation, the suitable interfacing level may be different. To 

monitor the internal behaviors of the GPU device driver or the API library, the 

system-call level simulation technique is proper since the device driver and the API 

library are actually simulated. However, if we are only interested in the high-level 

performance information on the application such as API-execution time, the 

API-level simulation technique is proper since it can provide faster and extensible 

simulation than the system-call level technique. 

From the experimental results, we can confirm that the proposed technique 

successfully make a best compromise between the simulation the timing accuracy 

so that it can be used for early SW development and system performance 

estimation. 

In the proposed technique, it has a limitation that it can only model the target 

platform with existing GPU. To overcome this limitation, we proposed a simple 

timing modeling technique which models the frequencies that is not supported in 

existing GPU using the profiling tool. Since current model is too simple and only 

clock frequency can be configured, more sophisticated model is required to consider 
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other high-level architecture characteristics of the GPU such as the number of GPU 

cores and this is left as a future work. 

Also, to verify the effectiveness of current GPU power governors, the current 

GIL simulation technique will be extended to model the power as well as the 

performance. In the current experiment results, a small number of benchmarks and 

GPUs are used. Thus, to faithfully verify the proposed technique, we will perform 

the experiments using more benchmarks and various types of GPUs in the future 

work.
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초록 

복잡한 3D 게임을 처리하거나, 높은 반응성을 가지는 유저인터페이스

를 제공하기 위해서, 대부분의 임베디드 시스템에서 모바일 GPU 가 사용

되고 있다. 게다가, 모바일 GPU 의 계산 능력이 높아지고, GPU 에 대한 

프로그래밍이 가능해짐에 따라, 모바일 GPU 가 하나의 보조 연산 장치로

서 여겨지고 있다. 모바일 GPU 의 경우, 서버 환경과 달리 제약된 파워

상에서 수행되어야 하므로, 대게 적은 수의 코어를 포함한다. 그러므로, 

주어진 성능과 파워 제약 조건을 만족시키기 위해서는 CPU 와 GPU 모

두를 효율적으로 활용하는 것이 매우 중요하다. 

CPU/GPU 이종 병렬 아키텍쳐를 설계하는 초기 단계에서 SW 에 대한 

오류를 검출하거나 또는 다양한 설계 공간 탐색을 위해서, 가상 프로토타

이핑 시스템을 사용하는 것이 일반적이다. 가상 프로토타이핑 시스템에서

는 대상하는 시스템의 모든 구성요소에 대한 시뮬레이션 모델을 포함하

므로, CPU 와 GPU 가 포함되는 이종 병렬 아키텍쳐를 위해서는 GPU 에 

대한 시뮬레이션 모델이 반드시 필요하다. 그러나 일부 GPU 의 경우, 시

뮬레이션 모델이 존재하지 않고, 있는 경우에도 주로 마이크로 아키텍쳐 

수준에서의 아키텍쳐 탐색을 위한 목적으로 개발되어, 시뮬레이션 성능이 

좋지 않다. 

이러한 문제를 해결하기 위해서, 본 논문에서는 실제 하드웨어와 시뮬

레이터를 결합하는 GPU-in-the-loop (GIL) 시뮬레이션 기법을 제안하려고 
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한다. 

제안하는 방법의 경우, 다양한 수준에서 CPU 와 GPU 간의 연동이 가

능한데, 첫번째 방법으로 시스템 콜 수준에서 시뮬레이터와 GPU 보드 간

의 연동하는 기법을 제안한다. 제안하는 기법에서는 대상 시스템에 있는 

공유 메모리가 시뮬레이터와 보드 상에 존재하는 서로 다른 두개의 메모

리를 통해 시뮬레이션이 되므로, 두 메모리 간의 일관성을 유지하기 위한 

메모리 동기화가 가장 중요한 문제이다. 시스템 콜 기반 기법에서 이 문

제를 다루기 위해서, 주소 변환 테이블을 통해서 공유 되는 메모리 영역

에 대한 정보를 저장하고, 실제 보드 상의 GPU 를 수행시키는 System 

Call 이 요청될 때마다, 해당 테이블을 이용하여 공유 되는 영역에 대한 

동기화가 수행된다. GPU 의 수행을 시뮬레이터 상에서 모델링하기 위해, 

인터럽트 기반 모델링 기법을 제안하였는데, 이 기법에서는 보드에서 측

정된 GPU 수행시간을 고려하여, 시뮬레이터 상에서 GPU 인터럽트를 발

생하도록 한다. 

두번째 방법으로 API 수준에서 시뮬레이터와 보드 간의 연동하는 기법

을 제안한다. 기존 Software Stack 에 포함된 디바이스 드라이버가 시뮬레

이션 되는 경우, 다양한 GPU 를 지원하도록 확장하는 것이 어려우므로, 

API 기반 기법에서는 시뮬레이션 용도로 사용되는 새로운 라이브러리를 

정의하고, 기존 SW stack 상에 존재하는 GPU 라이브러리를 대체하도록 

하여, 디바이스 드라이버가 시뮬레이션 되지 않도록 한다. 그리고 API 수

행시간을 시뮬레이터 상에서 모델링하기 위해서, 시뮬레이션을 위한 새로
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운 디바이스 드라이버를 정의하여, 해당 드라이버 내에서 sleep 함수를 호

출하여, 보드에서 측정된 API 시간이 시뮬레이터상에 반영되게 된다. 

현존하는 GPU API 중에서, 본 논문에서는 가장 많이 사용되는 OpenCL, 

CUDA 그리고 OpenGL ES API 에 대한 API 기반 시뮬레이션 기법을 제안

한다. 그리고 올바른 시뮬레이션을 위해서, 비동기 동작, 멀티프로세스 지

원, 복잡한 데이터 구조에 대한 메모리 동기화와 같은 어려운 문제들을 

다양한 기법들을 통해 해결하였다. 

실험 결과를 통해서, 제안된 기법이 적절한 수준의 정확도를 보장하면

서, 빠른 시뮬레이션 성능을 제공할 수 있음을 확인할 수 있다. 그러므로, 

제안된 기법은 SW 개발 용도뿐만 아니라, 시스템 수준에서의 성능 예측

을 위한 용도로서 사용이 가능하다. 게다가, 제안된 기법의 경우, 실제 하

드웨어가 사용되므로, GPU 에 대한 시뮬레이터가 제공되지 않는 경우에

도 CPU/GPU 이종 병렬 시스템을 위한 가상 프로토타이핑 시스템을 구축

하는 것이 가능하다. 
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