

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

CPU/GPU 이종 병렬 플랫폼을 위한

GPU-in-the-loop 시뮬레이션 기법

GPU-in-the-loop Simulation for CPU/GPU Heterogeneous

Platform

2016년 2월

서울대학교 대학원

전기컴퓨터 공학부

고 영 섭

i

Abstract

A mobile GPU has been widely adopted in most embedded systems to handle the

complex graphics computations required in modern 3D games and highly

interactive UI (User Interface). Moreover, as mobile GPUs are gaining more

computation power and becoming increasingly programmable, they are also used to

accelerate general-purpose computations in various fields such as physics and math,

and so on. Unlike server GPUs, mobile GPUs usually have fewer cores since a

limited amount of power is available in a battery. Thus, it is important to efficiently

utilize both CPUs and GPUs in mobile platforms to satisfy the performance and

power constraints.

For design space exploration of such a CPU-GPU heterogeneous architecture or

debugging the SW in the early design stage, a full system simulator is typically used,

in which simulation models of all HW components in the target system is included.

Unfortunately, building a full system simulator with GPU simulator is not always

possible because there is no available GPU simulator, or if any, it is prohibitively

slow since they are mainly developed for architecture exploration varying the

internal micro-architecture of GPUs.

To solve these problems, this thesis proposes a GPU-in-the-loop (GIL) simulation

technique that integrates a real GPU with a full system simulator for CPU/GPU

heterogeneous platforms.

In the first part of this thesis, we propose a system call-level simulation technique

in which a full system simulator interacts with a GPU board at system call level.

ii

Since the shared on-chip memory in the target system is modeled by two separate

memories in the simulator and the board, memory synchronization is the most

challenging problem in the proposed technique. To handle this problem in the

system call-level technique, address translation tables are maintained for the shared

memory regions and these memory regions are synchronized whenever the system

calls which trigger the GPU execution are invoked in the board. To model the GPU

execution in the simulator, interrupt-based modeling technique is proposed, in

which the GPU interrupt is generated in consideration of the GPU execution time

obtained from the real board.

In the second part of this thesis, we propose an API-level simulation technique in

which a simulator and a board interact with each other at API level. Since the device

driver in the original software stack makes it difficult to support various GPUs, a

synthetic library is defined and it replaces the GPU library in the original software

stack in order to ensure that the device driver is not used. To model timing of the

API execution in the simulator, the sleep function is called in the synthetic driver so

that the measured API time in the board elapses in the simulated time.

From the existing GPU APIs, we propose API-level simulation techniques for

three commonly used APIs which are OpenCL, CUDA and OpenGL ES. And

several challenging problems such as asynchronous behavior, multi-process support

and memory synchronization for complex data structures are properly handled by

several methods for correct simulation.

From the experimental results, we can confirm that the proposed technique can

iii

provide fast simulation speed with a reasonable timing accuracy. Therefore, it can

be used not only for SW development but also for system level performance

estimation. Moreover, the proposed technique makes the full system simulation for

CPU/GPU heterogeneous platforms feasible even if a GPU simulator is not

available.

Keywords : CPU/GPU heterogeneous platform, GPU Simulation, Virtual

prototyping system, GPU-in-the-loop simulation, System call, API

Student Number : 2009-20750

iv

Contents

Abstract ... i

Contents .. iv

List of Figures .. vii

List of Tables .. x

Chapter 1 Introduction ... 1

1.1 Motivation ... 1

1.2 Contribution ... 4

1.3 Thesis Organization ... 6

Chapter 2 Related Works .. 7

2.1 Acceleration techniques for GPU simulation 7

2.1.1 Parallel Simulation .. 8

2.1.2 Sampled Simulation .. 9

2.1.3 Statistical Simulation... 11

2.1.4 HW-accelerated Simulation... 11

2.2 CPU/GPU Simulation framework ... 12

2.3 Summary ... 15

Chapter 3 GPU-in-the-loop Simulation.. 18

3.1 Basic Idea .. 18

3.2 Different levels of CPU/GPU Interaction...................................... 20

3.3 Detection Mechanism .. 21

v

3.4 Memory Coherency Problem .. 23

3.5 Overall GIL simulation flow ... 23

Chapter 4 System call- level GIL Simulation 26

4.1 Target System .. 26

4.1.1 Typical Execution Scenario of the Systems 27

4.2 Memory Synchronization .. 29

4.2.1 Address Translation Table ... 30

4.3 Timing Modeling ... 32

4.3.1 Interrupt Modeling .. 33

4.3.2 Regression based timing correction for GPU time.............. 34

4.3.3 An Example of System-level GIL Simulation Scenario 35

4.4 Experiments ... 37

4.4.1 Parallelization for diff operation ... 37

4.4.2 Simulation Time Analysis ... 39

4.4.3 Contention overhead in Pixel Processors (PP) 40

4.4.4 Internal System Behavior Profiling 41

4.4.5 Accuracy Evaluation ... 42

4.5 Summary ... 43

Chapter 5 API-Level GIL Simulation .. 44

5.1 Differences between API-level and System call-level techniques 45

5.1.1 Synthetic Library ... 47

5.2 Timing Modeling ... 49

5.2.1 Regression-based compensation for timing error................ 51

vi

5.3 Memory Synchronization .. 52

5.4 GPGPU API (CUDA & OpenCL) Implementation Case 55

5.4.1 Asynchronous Behavior Modeling...................................... 55

5.4.2 Implementation Issues ... 58

5.4.3 Experiments ... 61

5.4.4 Simulation Overhead ... 68

5.5 OpenGL ES Implementation Case .. 69

5.5.1 Background ... 69

5.5.2 Additional modification for SW stack 71

5.5.3 Memory synchronization... 72

5.5.4 Multi-Process Support ... 77

5.5.5 High-level Timing Modeling for other GPUs 79

5.5.6 Porting To a New GPU Board ... 81

5.5.7 Experiments ... 83

5.6 Summary ... 92

Chapter 6 Conclusion and Future Work ... 94

Bibliography .. 98

vii

List of Figures

Figure 1-1. Simulation performance comparison results from [22] and [26] 3

Figure 3-1. The overall GIL simulation framework ... 19

Figure 3-2. Typical GPU execution scenario ... 20

Figure 3-3. Extension for CPU simulator and detection code in the host interface . 22

Figure 3-4. Simulation flow between host/board interfaces 24

Figure 4-1. CPU/GPU heterogeneous system that integrates an ARM CPU and a Mali

400 GPU: a GPU core represented as PP stands for Pixel Processor, and as GP

for Geometry Processor ... 27

Figure 4-2. Typical execution scenarios on a CPU/GPU system with the Linux kernel

 ... 29

Figure 4-3. Address translation table to match the same memory region 31

Figure 4-4. Typical execution scenario on the target platform 33

Figure 4-5. An example of the HIL simulation sequence with the scenario shown in

Figure 4-2 ... 36

Figure 4-6. The execution time for diff operation for sequential and parallel

implementations ... 38

Figure 4-7. Simulation time (sec) for two benchmarks.. 39

Figure 4-8. Execution time distribution for PPs .. 40

Figure 5-1. Modified SW stack in API-level GIL simulation 46

file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722993
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722994
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722995
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722996
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722997
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722998
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722998
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722998
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722999
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441722999
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723000
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723001
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723002
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723002
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723003
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723003
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723004
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723005
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723006

viii

Figure 5-2. An example code of the synthetic library for cudaMemcpy API 47

Figure 5-3. Synthetic driver code used in GIL simulation 50

Figure 5-4. Two ways to share data between CPU and GPU in GPU applications . 52

Figure 5-5. Synthetic Library code for gpuMap API ... 54

Figure 5-6. Real execution scenario for the synchronization API............................ 55

Figure 5-7. Simulation scenario for Figure 5-6 .. 57

Figure 5-8. Original (a) and modified (b) CUDA code .. 60

Figure 5-9. The execution times of the two applications (CUDA, OpenCL) 63

Figure 5-10. Simulated time for GPGPU API (267x189) .. 64

Figure 5-11. The execution time of kernel executed for the face detection application

(267x189) ... 65

Figure 5-12. Communication overhead for memory APIs (267x189) 66

Figure 5-13. The execution time for the matrix multiplication varying the number 67

Figure 5-14. Simulation time composition in the GIL simulation 68

Figure 5-15. Overview for Android Graphics .. 69

Figure 5-16. Modification for Software stack in OpenGL ES API 71

Figure 5-17. Code extension for the native window in synthetic library 73

Figure 5-18. Modified code for gralloc module .. 76

Figure 5-19. Multi-thread structure for Board Interface in OpenGL ES API GIL

file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723007
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723008
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723009
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723010
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723011
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723012
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723013
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723014
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723015
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723016
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723016
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723017
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723018
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723019
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723020
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723021
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723022
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723023
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723024

ix

simulation ... 77

Figure 5-20. Rendering times for three benchmarks with three boards 85

Figure 5-21. Accuracy results for three benchmarks with three boards 86

Figure 5-22. Linear regression analysis result for two benchmarks 87

Figure 5-23. The error ratio before and after the correction factor is applied 88

Figure 5-24. The total execution time and the call count for each API 89

Figure 5-25. The error ratio for Lesson16 benchmark with 4 combinations of

CPU/GPU frequencies on the Odroid-XU3 board ... 90

Figure 5-26. The rendering time for Lesson16 benchmark on the odroid-xu3 board

varying CPU/GPU frequencies .. 91

file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723024
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723025
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723026
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723027
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723028
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723029
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723030
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723030
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723031
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723031

x

List of Tables

Table 2-1. Comparison of the acceleration techniques for GPU simulation 16

Table 2-2. Comparison of CPU/GPU simulation frameworks 17

Table 4-1. GPU response time for Cubic app .. 42

Table 4-2. GPU execution time and utilization for Cubic app 42

Table 4-3. Accuracy evaluation for the Android apps .. 42

Table 5-1. Common structure (common_s) .. 48

Table 5-2. API-specific structure for cudaMemcpy API (cuda_memcpy_s) 48

file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723032
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723033
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723034
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723035
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723036
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723037
file:///D:/연구실/졸업/논문심사/작성/논문%20및%20발표%20자료/최종%20논문/최종제출/공학박사학위논문_고영섭_감사글포함.docx%23_Toc441723038

1

Chapter 1 Introduction

1.1 Motivation

With ever increasing demand for computation in the embedded systems, a mobile

GPU has become an essential component in most embedded systems. We can easily

find many SoCs that integrate both a CPU and a GPU: Tegra from NVIDIA,

Snapdragon from Qualcomm, and Exynos from Samsung, to name a few. These

chips are widely used on many platforms ranging from automobiles to

high-performance smart phones and tablet PCs. Since low power consumption is the

major design constraint in most computer systems these days, the trend towards

CPU/GPU heterogeneous platforms will continue, also with the increasing number

of cores in CPUs and GPUs.

To design such a CPU/GPU heterogeneous platform efficiently, it is crucial to

profile the target applications and utilize both a CPU and GPU better by identifying

the performance bottleneck and capturing the dynamic system behaviors between

2

CPU and GPU. There exist many profiling tools [1][2][3], where a predefined set of

hardware performance counters is collected and displayed to the designer to provide

an overview of performance. However, this approach is only applicable to the

exiting target platforms.

For the target platform under design, a virtual prototype is commonly used for

performance estimation. Especially, full system simulation is performed in virtual

prototypes since complete software stacks can run without modification by

modeling all components of the target system including processors (CPUs, GPUs),

memory, interconnections as well as peripherals. Generally, full system simulation

is used for early software development or system-level DSE (Design Space

Exploration) in early design stage. In these purposes, since SW implementation is

modified frequently and lots of design candidates are verified, a large number of

simulations are performed repetitively and fast simulation is really important.

Moreover, as the complexity of the embedded system is increased greatly, much

more HW components are integrated in a single system and the importance of the

fast simulation is even more highlighted.

Upon the current move toward CPU/GPU heterogeneous platforms, many

researches have been performed to simulate these platforms by integrating a CPU

simulator with a GPU simulator. However, in this approach, there are some

problems due to the existing GPU simulators. Since most of the existing GPU

simulators [4][5][6][7][10][11] are mainly developed for architecture exploration

varying the internal micro-architecture of GPUs, GPUs are modeled accurately in

3

cycle-level, but the simulation speed is prohibitively slow. In previous researches

[22][26], they present some experimental results for the simulation speed of some

GPU simulators [6][11].

From the results shown in Figure 1-1, the slowdown is around 170,000x ~

2,000,000x for GPGPU-Sim [6] and 80,000x for MacSim [11] compared with

native execution, which means that it takes more than a day to simulate a GPU for 1

second. However, this is not acceptable speed for early SW development or

system-level DSE (Design Space Exploration) since a large number of simulations

are repeated for these objectives. Moreover, for some mobile GPUs such as Mali

and PowerVR, there is no publicly available simulator. Thus, it is impossible to

Figure 1-1. Simulation performance comparison results from [22] and [26]

4

build a full system simulator for the target platforms consisting of these GPUs.

To deal with these problems, we propose GPU-in-the-loop simulation technique

that integrates a real GPU and a CPU simulator for fast simulation. The full system

simulator and a GPU board can interact with each other at three different levels; API

(Application Programming Interface), system call, and register/memory access.

From them, two interactions at the system call and the API is covered in this thesis.

There are two major challenges in the proposed technique. First, since the

on-chip shared memory in the target system is modeled with the two separate

memories in the simulator and the board, we must synchronize the duplicated

shared memory models to maintain the coherence. Second, since the detailed

behavior of the GPU cannot be observed in the board, it is not easy to model the

timing of the GPU in the proposed technique. To handle these problems, several

methods for memory synchronization and timing modeling are proposed for each

interfacing mechanism.

1.2 Contribution

The contribution of this thesis can be summarized as follows.

1) We propose a GPU-in-the-loop (GIL) simulation technique that integrates

an existent GPU hardware with a full system simulator.

A. Unlike previous works, since real GPU HW is used instead of slow

5

GPU simulators, the full system simulation becomes fast enough for

early software development in the early stage with sacrificing some

timing accuracy.

B. Moreover, it make the full system simulation feasible for CPU/GPU

heterogeneous platforms even if a GPU simulator is not available for

the target platforms.

2) As well as the simulation speed is increased in the proposed technique,

approximate timing of GPU can be modeled by novel modeling techniques

A. The proposed technique can be used to estimate the performance for

system level design space exploration such as task partitioning

problem between CPUs and GPUs

3) The proposed interfacing mechanisms can also be applied in integrating a

HW other than GPU with a full system simulator

6

1.3 Thesis Organization

This thesis is organized as follows. In Chapter 2, the representative previous

researches on acceleration technique for GPU simulation and CPU/GPU simulation

frameworks are reviewed. Chapter 3 explains the basic idea of the

“GPU-in-the-loop” simulation technique and overall simulation flow will be briefly

explained in this chapter. In Chapter 4 and Chapter 5, two simulation interface

mechanisms, system call-level and API-level, are explained. Finally, we draw the

conclusion and address future work in Chapter 6.

7

Chapter 2 Related Works

2.1 Acceleration techniques for GPU

simulation

Since GPUs have become an important component in many platforms ranging

from mobile devices to desktop PCs, the research interest in the GPU architecture is

increasing and several GPU simulators are developed for the research purpose. For

the architecture research, since micro-architecture of GPUs should be modeled

accurately, current GPU simulators are really slow as mentioned in Chapter 1. To

accelerate the slow GPU simulators, various techniques are proposed and they can

be categorized into four approaches: parallel simulation, sampled simulation,

statistical simulation and HW-accelerated simulation. In this chapter, we review the

some exiting acceleration techniques for GPU simulations in these approaches.

8

2.1.1 Parallel Simulation

To accelerate the simulation for the many-core architectures, several parallel

simulation frameworks have been proposed such as HSim [20] and Graphite [21], in

which the simulation work for each processor is partitioned into multiple threads

and performed in parallel on multi-core CPUs or multi-host machines. Since there

are a large number of cores in a GPU, parallel simulation technique might be a

viable solutions to accelerate the GPU simulation and several researches are

proposed recently [22][23].

In [22], they proposed the work-group parallel simulation technique. Among the

internal components in a GPU, the simulation for Computing Units (CU) are

parallelized by multiple simulation threads; A CU corresponds to a Stream

Multiprocessor (SM) in Nvidia GPU and a Data Parallel Processor (DPP) array in

AMD GPU where several cores are executed in a SIMD manner. And, the other

components such as a work control unit, interconnection networks and memory sub

systems are simulated by two separate threads: Work distribution and control (WDC)

and Interconnect-memory subsystem (IMS) threads. Since the lock-step

synchronization method suffers from the synchronization overhead, they proposed

the work-group based synchronization method in which synchronization is

performed at the end of work-group execution on a CU to keep the same

work-group distribution in the single-threaded simulation as much as possible. To

improve the accuracy of the simulation for interconnection networks and memory

9

sub systems, two additional synchronization mechanisms are applied to maintain the

memory request order and model the contention in the interconnection network and

the memory system more accurately.

Since the CU threads and the IMS thread are simulated independently in [22], the

global memory request sequence can be different with that in the single-threaded

simulation and this incurs the simulation error. To address this problem, error

predictive synchronization (EPS) is proposed in [23] as an extended work for [22].

In this synchronization method, the instruction history is recorded within a specific

cycle range to count the number of memory instructions executed in a CU. And, if

the total memory instruction count for all CUs is larger than a given threshold, the

parallel simulation is disabled and the simulation is performed sequentially until the

total memory instruction count is below the threshold to reduce the memory latency

error.

2.1.2 Sampled Simulation

Sampling is a well-known technique to speed up architecture simulation of

long-running workloads by simulating only a small but representative portion of the

application in detail while maintaining the accuracy. Several sampling techniques

for single-threaded and multi-threaded CPU applications are proposed so far

[24][25], they cannot be directly applied to GPU simulation, since it may lead to

10

large sampling sizes and need to re-profile the target platform when the simulated

configuration is changed.

In TBPoint [26], they proposed a new profile-based sampling technique for GPU

simulation. For the hardware independency, it uses GPUOcelot [29] profile tool to

collect the information about each thread block. Using the profiled information, it

designs feature vectors for each kernel and thread blocks, then they are used for

inter-launch sampling and intra-launch sampling technique to reduce simulation

time. In inter-launch sampling, the kernels are clustered based on the kernel feature

vectors and only the kernel selected as a simulation point is simulated by a detailed

simulator such as MacSim [11] and other kernels in the same cluster re-use the IPC

of the simulated kernel without the simulation. In intra-launch sampling, the thread

blocks are clustered based on stall probability and region ID is assigned to each

cluster. During the simulation, the homogeneous regions are identified when the

region IDs for all concurrently running thread blocks are same. Then, the simulation

is skipped just using the sampled IPC until the one of the region ID for concurrent

thread blocks differs from others. Since the proposed technique leverages the

regular execution behaviors in GPGPU kernels, GPGPU kernels with irregular

execution pattern can incur high sampling size and the slow simulation is still a

problem.

11

2.1.3 Statistical Simulation

In a statistical simulation, it measures a well-chosen set of program

characteristics during GPGPU execution and generates a small synthetic benchmark

with those characteristics. Then, the architecture simulation is performed using the

small benchmarks. In [27], to keep the original characteristic, it first profiles the

original GPGPU workloads through a fast functional simulator and the

characteristics such as thread hierarchy, instruction mix, control flow and memory

access pattern are collected. Then, loop patterns of the GPGPU kernel are analyzed

based on the Divergence Flow Statistics Graph (DFSG) and the synthetic

benchmark is generated by reducing the iteration counts of loops while maintaining

the original characteristics. Since it requires some loops to increase the simulation

speed, speed-up is limited for GPGPU kernels with small loop counts and a large

number of thread blocks.

2.1.4 HW-accelerated Simulation

In software-based parallel simulation, due to the synchronization overhead, only

coarse-grained parallelism can be exploited and the speed-up is limited. However, in

a FPGA, since the cycle-level synchronization is much faster than SW

implementation, fine-grained parallelism can be exploited. Thus, the simulation

12

work performed sequentially in software-based parallel simulation can be done in

parallel on the FPGA to further reduce the simulation speed.

In FastLanes [28], since modern GPUs are too complex to fit into even the largest

single-chip FPGA, only a smaller number of multi-processors in the target GPU is

implemented on the FPGA and they are re-used to simulate all multi-processors in a

time-division multiplexing manner. Since only small number of threads are

simulated on FPGA at a given moment, the contexts of the threads which are

swapped out from the FPGA should be reserved in off-chip- memory. Since this

incurs non-negligible performance overhead, the duration of a time slice is

determined by an analytical performance model to balance the simulation speed and

accuracy. The FPGA-based acceleration technique can provide fast simulation speed

enough for full system simulation. However, it requires significant effort to develop

since the simulator should written in a hardware description language (HDL) such

as Verilog or VHDL.

2.2 CPU/GPU Simulation framework

To simulate the CPU/GPU heterogeneous platforms, a common practice is to

integrate a GPU simulator with a CPU simulator. In [10][11][12], application-only

simulators are implemented to simulate the GPGPU applications, in which only

applications are simulated and OS services such as system calls are emulated by the

13

simulation host. In FusionSim [12], several existing simulators (PTLSim [35],

GPGPU-Sim [6] and MARSSx86 [36]) are integrated and two kinds of CPU/GPU

systems (fused and discrete system) are modeled. In Multi2Sim [10], the functional

simulator and the architecture simulator (timing model) are decoupled and the

instruction traces obtained from the functional simulator are feed to the architecture

simulator to accurately model the latencies of the instructions. In MacSim [11], only

the trace-driven architecture simulator is implemented and the trace generators such

as (Pin [34] and GPUOcelot [29]) are used to generate the CPU and GPU traces for

the architecture simulator. And the OS is modeled in the process manager

considering process and thread scheduling.

Since the significant errors can be introduced if the OS effect is not modeled [37],

several researches are conducted based on the full system simulator such as gem5

[8], QEMU [9] and MARSSx86 [36]. In [13][14], they integrate the gem5 simulator

with GPGPU-Sim by providing a common memory interface for both simulators. In

SCHP [13], each process is created for gem5 and GPGPU-Sim respectively and the

overall simulation is performed in lockstep. In order to ensure that both simulators

are running in lock-step, the shared memory region is defined for

inter-process-communication (IPC) and gem5 triggers the simulation of

GPGPU-SIM by setting a flag in the shared memory and blocks until GPGPU-Sim

completes the execution of a GPU cycle and the flags is reset. Also, since the

memory system is modeled in the gem5, the memory requests from the

GPGPU-SIM are stored in the shared memory to be handled in the gem5 simulator.

14

Unlike SCHP, gem5-gpu [14] combines two simulator as one process by integrating

GPGPU-Sim’s CU model into gem5.

Since the exiting CPU/GPU simulation frameworks only consider GPGPU

applications written with CUDA or OpenCL, several full system simulation

frameworks are developed to simulate the graphics applications [15][16][17][18]. In

[15], it integrates the gem5 with ATTILA simulator [4] and can support Multi-CPU

and Multi-GPU heterogeneous architecture.

In other CPU/GPU simulation frameworks [16][17][18], since fast simulation is

really important and their concern is not in the CPU, QEMU full system simulator is

used since it can achieve fast simulation based on dynamic binary translation. In

[16], to verify the software and hardware architecture for multi-view GPU in the

early design stage, QEMU simulator is integrated with multi-view GPU model

implemented in SystemC or RTL codes. Since the unimportant HW components are

simulated quickly with the QEMU simulator and only the important part is

simulated in detail with SystemC model, the co-design for hardware and software

can be performed efficiently. In [18], it develops cycle-accurate GPU simulators

which can models two types of micro-architectures in modern GPUs such as

Tile-Based Renderer (TBDR) and Immediate-Mode Rendering (IMR). Also, it

provides a power model for a GPU using McPAT [19] to analyze energy

consumption in GPUs. In [17], the full system simulator for many-core

heterogeneous SoCs is developed using GPU and QEMU semi-hosting [46].

Though this work targets the many-core accelerator not a typical GPU, the

15

semi-hosting interface mechanism proposed in this work can be used to integrate

the QEMU simulator with a GPU simulator such as GPGPU-Sim.

2.3 Summary

Table 2-1 shows the comparison result of the acceleration techniques for GPU

simulation. From the result, they shows remarkable speed-up results in comparison

with original GPU simulators with some reasonable errors. However, there some

limitations for each approach and these approaches are only applicable when GPU

simulators are available. But, the proposed technique can perform the full system

simulation even if GPU simulators are not available.

Table 2-2 shows the comparison result of existing CPU/GPU simulation

frameworks. They are classified based on three criteria: GPU functionality,

simulation scope, and simulation detail. Since the accurate but slow GPU simulators

are used in exiting CPU/GPU simulation frameworks, they will suffers from slow

simulation speed and they are not suitable for SW development or System-level

DSE purposes.

16

Table 2-1. Comparison of the acceleration techniques for GPU

simulation

P
ro

p
o

sed
 T

ech
n

iq
u

e

F
P

G
A

-b
ased

 S
im

u
latio

n

[2
8

]

S
tatistical S

im
u

latio
n

[2
7

]

P
ro

file b
ased

 S
am

p
led

S
im

u
latio

n

[2
6

]

P
arallel S

im
u

latio
n

[2
2

]

A
ccelera

tio
n

T
ech

n
iq

u
e

N
o

 sim
u

lato
r

G
P

G
P

U
-S

im

G
P

G
P

U
-S

im

M
ac-S

im

G
P

G
P

U
-S

im

B
a

selin
e

G
P

U

S
im

u
la

to
r

ab
o

u
t 1

0
0
x

(2
 o

rd
ers

m
ag

n
itu

d
e)

1
x

 ~
 5

8
9
x

2
x

 ~
 5

0
x

U
p

 to
 4

.1
5
x

o
n

 q
u

ad
-co

re

S
p

eed
-u

p

F
u

n
ctio

n
ally

C
o

rrect

F
u

n
ctio

n
ally

C
o

rrect

N
o

F
u

n
ctio

n
ality

N
o

F
u

n
ctio

n
ality

F
u

n
ctio

n
ally

C
o

rrect

F
u

n
ctio

n
a

l

C
o

rrectn
ess

U
p

 to
 2

0
%

(T
o

tal

E
x

ecu
tio

n

T
im

e)

N
o

In
fo

rm
atio

n

U
p

 to
 1

6
 %

(T
o

tal IP
C

)

U
p

 to
 1

4
.0

 %

(T
o

tal IP
C

)

0
.0

5
 ~

2
6

.6
1

 %

(T
o

tal C
y

cle)

T
im

in
g

A
ccu

ra
cy

(%
)

O
n

ly
 m

o
d

el th
e C

P
U

/G
P

U

p
latfo

rm
s w

ith
 ex

istin
g

 G
P

U
s

H
ard

 to
 im

p
lem

en
t th

e

sim
u

lato
r

S
p

eed
-u

p
 is lim

ited
 fo

r k
ern

els

w
ith

 sh
o

rt lo
o
p

 co
u

n
ts

T
h

e sam
p

le size can
 b

e u
p

 to

5
0
%

 o
f to

tal in
stru

ctio
n

s fo
r

k
ern

els w
ith

 irreg
u
lar

ex
ecu

tio
n
 p

attern
s

T
h

e sp
eed

-u
p

 is lim
ited

 b
y

 th
e

#
 o

f C
P

U
 co

res in
 th

e

sim
u

latio
n
 h

o
st

L
im

ita
tio

n
s

17

Table 2-2. Comparison of CPU/GPU simulation frameworks

Existing

Researches

GPU Func. Full System/

App. Only

Functional

Correctness

Timing Accuracy

CPU GPU

MacSim

[11]

GPGPU Application

Only

No

Functionality

Cycle-Acc.

(Own)

Cycle-Acc.

(Own)

Multi2Sim

[10]

GPGPU Application

Only

Functionally

Correct

Cycle-Acc.

(Own)

Cycle-Acc.

(Own)

FusionSim

[12]

GPGPU Application

Only

Functionally

Correct

Cycle-Acc.

(PTLSim)

Cycle-Acc.

(GPGPU-sim)

SCHP [14]

gem5-gpu [13]

GPGPU Full System Functionally

Correct

Cycle-Acc.

(gem5)

Cycle-Acc.

(GPGPU-sim)

MCMG

[15]

Graphics Full System Functionally

Correct

Cycle-Acc.

(gem5)

Cycle-Acc.

(ATTILA)

QEMU

+SystemC

[16]

Graphics Full System Functionally

Correct

No timing

(QEMU)

Cycle-Acc.

(SystemC)

TEAPOT

[18]

Graphics Full System Functionally

Correct

No timing

(QEMU)

Cycle-Acc.

(Own)

Proposed

Technique

GPGPU

Graphics

Full System Functionally

Correct

Cycle-Acc.

(gem5)

Cycle-Approx.

(Real HW)

18

Chapter 3 GPU-in-the-loop

Simulation

3.1 Basic Idea

The basic idea for the GIL simulation technique is to integrate a real GPU with a

CPU simulator in full system simulation framework instead of a GPU simulator.

Since the proposed technique is not designed to be applicable for a specific

simulator, any full system simulators can be used. In this thesis, as an example, the

proposed technique is implemented based on gem5 simulator [8].

Figure 3-1 illustrates an overview of GPU-in-the-loop (GIL) simulation technique.

In the simulation framework, a full system simulator is configured for the target

CPU/GPU heterogeneous system using the gem5 simulator, which includes the

simulation model of a multi-core CPU and other HW components except for the

GPU, and actually runs the Android full software stack with Full system (FS) mode.

19

To connect the full system simulator with the GPU board, the host interface is added

in the simulation host and it interacts with the CPU model to detect GPU requests

and obtain the additional information for the requests (①). In the GPU board, the

board interface is implemented in Android application in which GPU requests are

received from the host interface through the network interface (②) and they are

processed using real GPU in the board (③). After the requests are completed, the

output results are sent to the host interface (④) and they are reflected to the

simulator for both functional and timing correctness.

Figure 3-1. The overall GIL simulation framework

20

3.2 Different levels of CPU/GPU

Interaction

Figure 3-2 illustrates the typical GPU SW stacks in most CPU/GPU platforms in

which three different levels of GPU requests are used to deliver some tasks on the

GPU. In the GPU application, it invokes the API functions in the GPU libraries

which are provided to enable the application developers to utilize the graphics

(OpenGL ES) or GPGPU (OpenCL and CUDA) functionalities of the GPU. In the

GPU libraries, each API request is translated into several low-level GPU commands

and they are passed to the GPU device driver using system calls such as ioctl and

mmap. In the GPU device driver, the shared memory and the GPU registers are

Figure 3-2. Typical GPU execution scenario

21

accessed to directly pass the requested commands to the GPU.

Since the board interface is implemented as a user-level application in the

proposed technique, from the three types of GPU requests, only the API and system

call requests can be used in the board interface to pass the requests to the GPU.

Thus, the API-level and system call-level GIL simulation techniques will be covered

in this paper.

3.3 Detection Mechanism

The first process that happens in the proposed technique is to detect GPU

requests from the CPU model. In the proposed technique, since a GPU request is

defined as a function call (system call or API), it can be detected by comparing the

current instruction address (PC) of the CPU model with the start address of the

target function. For this, first we should obtain the address information for the target

functions. Since the target functions are included in OS kernel, the target address

can be obtained from the OS kernel image used in the simulation by disassembling

the image using objdump utility. Using this address information, the detection

mechanism is implemented in the host interface as shown in Figure 3-3 (c). And

since the PC value is only available in CPU model, the original CPU model (Figure

3-3 (a)) is extended to pass the PC value to the host interface (Figure 3-3 (b)).

22

Instead of comparing the address, it is possible to detect GPU requests by using

special instructions such as pseudo instructions available in the simulator or SW

interrupt instruction (svc) used in ARM semi-hosting [46]. In this approach, unlike

the address-based detection mechanism mentioned above, the original source code

of the GPU library or the device driver should be provided to insert the special

instructions to the detection point in the code and the binaries are re-built from the

modified source code. However, it is possible to detect the functions in both user

space and kernel space in this approach. Whereas, only the functions in the kernel

address can be detected in the address-based detection mechanism since the address

of the user space is determined by the dynamic linker during the simulation. For this

Figure 3-3. Extension for CPU simulator and detection code in the host

interface

23

reason, the synthetic driver is added should be added in the API-level technique.

However, if we apply the instruction-base detection mechanism, the synthetic driver

is not required.

3.4 Memory Coherency Problem

In most mobile platforms, on-chip memory is shared by a CPU and a GPU.

However, in the proposed technique, the shared memory is modeled by two separate

memories in the simulator and the board, and the CPU model and the real GPU

accesses the different memory in each side. Thus, the modification in one memory

is not reflected to the other memory and in-correct simulation result can be obtained.

To solve this problem, memory synchronization should be performed between two

memories. Details of the memory synchronization mechanisms will be explained in

later sections.

3.5 Overall GIL simulation flow

Figure 3-4 shows the simulation flow between host/board interfaces after a GPU

request is detected by the detection mechanism in the host interface. First, the

arguments for the GPU request are obtained using readIntReg() and readMem()

24

functions. These gem5 functions read the value of registers (e.g. r0-r3 that are used

for arguments by ARM call conventions) and memory. After that, the GPU request

and arguments are sent to the board interface and memory synchronization is

performed for input data in the arguments. In the board interface, the GPU request is

processed by invoking system call or API with the received arguments. Once it is

returned, which means that the GPU execution is completed, the result for the GPU

request is sent to back to the host interface and memory synchronization is

Figure 3-4. Simulation flow between host/board interfaces

25

performed for output data in the arguments. After that, in the host interface, it

reflects the result of the GPU request to the related simulation components and the

original CPU simulation routine is executed as usual.

26

Chapter 4 System call- level GIL

Simulation

Depending on the GPU, types of system calls and parameters for system calls are

varied. Thus, the implementation issues to be considered in the system call-level

GIL simulation technique may be slightly different depending on the GPU. For this

reason, we assumes the target platform with Mali 400 GPU [38] as shown in Figure

4-1 and the system call level GIL simulation technique will be described with

respect to this platform.

4.1 Target System

As low power and energy consumption being the crucial design constraints, GPU

has become an inevitable component in the recent embedded systems. Figure 4-1

27

shows a typical CPU/GPU heterogeneous system: multi-core CPU and multi-core

GPU are connected to the on-chip bus where the shared memory and other

peripherals are connected to. The GPU usually has its own MMU so that it can

directly access the memory on the bus with its own virtual address.

In this platform, GPU requests are processed using several system calls such as

gpu_ioctl() and gpu_mmap(). Thus, whenever these calls are detected inside the

host interface, it delivers the corresponding request to the board interface that runs

on the real CPU on the board, which in turn requests to the real GPU on the board

as explain in Figure 3-1.

4.1.1 Typical Execution Scenario of the Systems

The typical software stack in the target platform includes the Linux kernel and

Figure 4-1. CPU/GPU heterogeneous system that integrates an ARM CPU

and a Mali 400 GPU: a GPU core represented as PP stands for Pixel

Processor, and as GP for Geometry Processor

AXI

ARM

Cortex-A9

Quad-core

RAM DMAC …

G

P

P

P

0

P

P

2

P

P

3

MMU

L2

Mali-400

MP

Quad-core

P

P

1

28

the Android: An Android app runs on top of the Android, which in turn requests

services to the Linux kernels. Suppose we have an Android app that utilizes the

GPU by calling OpenGL ES APIs. In the APIs, each request for graphics

computation is translated into a set of gpu_ioctl() calls that have different

commands and arguments. There are many use cases of gpu_ioctl() with different

commands.

Figure 4-2 shows typical scenarios for job enqueue and wait commands in Mali

GPU as an example. mali_core_session_add_job() in the Linux driver is called first

in enqueue command. It enqueues the target job to the GPU job queue, and calls

mali_core_subsystem_schedule(). In this scheduling function, it checks

idle_render_unit_list to find any idle render unit in the GPU. If there is no idle

render unit, it returns without performing any operation. But if there is any, it

dequeues a job from the GPU job queue and calls susbsystem_(gp/pp)_start_job()

with the arguments (job and render unit). In start_job(), it writes commands and

arguments (start address of input) to GPU registers to execute target job. Lastly, it

writes start command to command register, and GPU starts to process the target job.

In wait command, mali_osk_notificaion_queue_receive() is called first. In this

function, it checks if there is any notification in the notification queue. If there is no

notification, it sleeps and current process stops. After some time passed, this process

will be woken up by mali_osk_notification_queue_send(), which is called by the

interrupt handler for the GPU completion.

29

4.2 Memory Synchronization

In the target platform, the memory region shared by a CPU and a GPU is

allocated by gpu_mmap() system call which is called from a GPU library. Since a

CPU virtual address is returned to the GPU library as a return value of the system

Figure 4-2. Typical execution scenarios on a CPU/GPU system with the

Linux kernel

30

call, in the GPU library, the input data for a GPU is stored to the shared memory

region using the address. After that, to allocate some tasks to a GPU, gpu_ioctl()

system call is invoked with start command and the addresses for the input/output

data are passed as arguments. In the GPU, a given task is processed using the input

data pointed by the input data address and the result is stored to the memory region

pointed by the output data address.

Since the memory synchronization is required before/after GPU actually is

executed on the board, the memory synchronization is performed when gpu_ioctl()

is invoked with start command. While arguments of gpu_ioctl() are memory

addresses not real data, input data exists only in the simulator and output data exists

only in the board. Before gpu_ioctl() is invoked in the board interface, the input

data must be sent to the board and the board interface must update the board

memory using memcpy(). After gpu_ioctl() is finished, on the other hand, the

modified memory region by the GPU execution must be sent back to the simulator

so that the host simulation interface can update the modified memory region in the

gem5 simulator.

4.2.1 Address Translation Table

To copy the contents of the memory mapped region for synchronization, a CPU

virtual address is needed in the host and board interfaces; The host interface can

31

access the memory only through the CPU model and the board interface itself is a

CPU task that actually runs on a CPU on the board, thus it cannot access the

mapped memory with the GPU virtual address.

However, since GPU virtual addresses are provided as arguments of gpu_ioctl(),

we maintain translation tables for GPU to CPU virtual address in each interface as

depicted in Figure 4-3. Whenever gpu_mmap() is called in the CPU (gem5) side

during the simulation, the host interface update its address translation table using

the mapping information obtained from the gpu_mmap(). Then, when this system

call is processed in the board interface, it also update its address translation table.

Figure 4-3 illustrates an example of address translation. When the address given

as a command argument in the gpu_ioctl() is 0x40000080, the host interface

Figure 4-3. Address translation table to match the same memory region

32

searches the mapping table with 0x40000000 and find out the corresponding CPU

virtual address is 0x400D0000 (①). It reads the data from the address considering

the offset (0x80), and sends it to the board interface via socket (②). The board

interface looks up its translation table and figures out its CPU virtual address to be

0x410F0000 (③). Finally, it writes the received data to the address considering the

offset. With such a mechanism, the gem5 simulator and the GPU have an illusion

that they share the same memory, although they are in fact two separate memories

in different machines in the framework.

From the arguments of gpu_ioctl() system call, we can’t know which memory

regions are modified in the whole memory area. Thus, the simple solution is to

synchronize all the shared memory regions. However, since this incurs significant

communication overhead between the host interface and the board interface, only

diffed data in the shared memory region is synchronized by performing diff

operation.

4.3 Timing Modeling

Figure 4-4 shows the typical scenario where GPU execution is controlled by two

commands explained in Figure 4-2, start command and wait command. In this

scenario, two commands are called from the two separate threads (Thread 0, Thread

1). When wait command is invoked from Thread 0, it is blocked inside gpu_ioctl()

33

to wait for the notification of the GPU job completion. In the meanwhile, in Thread

1, start command is invoked and it will trigger the GPU execution. When the GPU

execution is completed, an interrupt in generated by the GPU and an interrupt

handler will be invoked. In last, the interrupt handler sends a notification signal

which awakes the waiting thread (Thread 0).

4.3.1 Interrupt Modeling

Since the original software stack is used in the simulation without modification,

the CPU parts in Figure 4-4 simulated by the CPU model. Thus, only GPU part

should be modeled in this technique for functional and timing correctness. For

functional correctness, the GPU interrupt should be modeled since the waiting

thread in Figure 4-4 will be blocked indefinitely if the GPU interrupt is not

Figure 4-4. Typical execution scenario on the target platform

34

generated in the simulation. For timing correctness, the waiting timing in the CPU

part should be accurately modeled. For this, the GPU interrupt should be generated

at accurate timing considering the GPU execution.

To generate the interrupt in the simulator, the virtual GPU model is implemented

in the gem5 simulator in which only interrupt related part is modeled without the

details of GPU micro-architecture. And the GPU execution time (Δ) can be obtained

from the result of gpu_ioctl() when it is invoked with start command in the board.

Once the result is passed to the host interface, an interrupt event is inserted at

timestamp t1 + Δ, when Δ is the execution time of the GPU and t1 is the current

simulate time. Then, when the simulation is progressed to t1 + Δ, the interrupt is

generated by the virtual GPU model.

4.3.2 Regression based timing correction for GPU

time

In this technique, GPU execution time (Δ) is obtained from the real board.

However, this value does not include contention overhead between multiple PPs. In

the real system, when multiple gpu_ioctl() requests for PPs can be made

simultaneously and executed in parallel by multiple PPs. As PPs share the resources

(cache, memory, bus, etc.), the execution time of each gpu_ioctl() request becomes

35

longer than the case when only one PP is executed. In contrast, in the GIL

simulation, multiple gpu_ioctl() requests are actually processed sequentially.

To consider the contention overhead, we measured the ratio α, which is the ratio

of the average execution time with contention (Δ`) to the one without contention (Δ)

in the real board. Then, interrupt is generated at t1 + α ∙ Δ (= Δ`) in the simulation.

We will explain in more detail how to measure Δ` in the experiment section.

4.3.3 An Example of System-level GIL Simulation

Scenario

The System call-level GIL simulation sequence for the scenario shown in Figure

4-2, which assumes Mali GPU as an example, is illustrated in Figure 4-5 assuming

that a wait command is called first, followed by an enqueue command as shown in

Figure 4-4. When the host interface detects the wait command, it sends the

command to the board interface running on a real CPU in the board. The board

interface creates a new thread (wait thread) waiting for the completion of the GPU

execution to avoid any possible dead-lock. Simulation continues and detects

gpu_ioctl() for enqueue command. Then, the host interface stores gpu_ioctl()

arguments and calls add_job(), schedule(), start_job() in sequence. In add_job(), a

job ID is assigned for start_job() by which the GPU execution is finally triggered.

On the GPU execution, it first sends a memory synchronization message

36

(MALI_PUT) for input data, and the board interface updates the memory

accordingly. Then, it sends ioctl messages (GP/PP_START) that are handled by the

main thread in the board interface. The main thread sleeps until the completion of

the GPU execution is notified by the wait thread. On the completion, the main

thread sends a message to the host interface, and finally, the host interface sends a

memory synchronization message (MALI_GET) to update the modified memory

region by the GPU execution.

Figure 4-5. An example of the HIL simulation sequence with the scenario

shown in Figure 4-2

37

4.4 Experiments

In our experiments, we simulated the Exynos 4412 system [39]. The system has a

quad-core ARM Cortex-A9 CPU and ARM Mali-400MP GPU that has four Pixel

Processors and one Geometry Processor. They are connected to an AXI bus where

also 256KB on-chip memory is connected. We used ODROID-X board [40] to

execute the Mali GPU hardware, and used gem5 simulator for a quad-core ARM

Cortex-A9 CPU modeling. We ran Android apps, Lesson09 that moves and blends

textured objects in a 3D space [30] and Cubic [31]. In Android OpenGL ES

application, a rendering function called onDrawFrame in the application is invoked

repeatedly to draw the current frame. In the Lesson09 benchmark, the rendering

function only includes the API call sequence without any computation. However, in

the Rubik benchmark, the rendering function includes both the computation and the

API call sequence, in which the proportions of two parts are 37.4% (computation)

and 63.6 % (API call sequence) respectively. We ran these apps on the proposed

GIL simulation framework for 3 seconds in real time (i.e., the time in the

ODROID-X board) and measured the execution time of the rendering function.

4.4.1 Parallelization for diff operation

As mentioned in 4.2.1, to reduce the communication overhead between the

38

simulator and the board, diff operation is performed in the host interface and the

board interface. Since the size of shared memory region is significantly large, the

overhead for the diff operation takes large portion of the total simulation time,

especially in the board interface. To reduce the diff overhead, we parallelize the diff

operation in the board interface. Figure 4-6 shows the normalized speed-up for the

parallel implementations (2, 3, 4 threads) compared with the sequential

implementation (1 thread) when diff operation is performed 100 and 200 times

during the simulation. From the result, we can know that the speed-up of x1.83 ~

x2.39 can be achieved in the parallel implementation and the maximum

performance can be achieved when the number of thread is 3.

Figure 4-6. The execution time for diff operation for sequential and parallel

implementations

39

4.4.2 Simulation Time Analysis

In the system-level GIL simulation technique, the simulation time is decomposed

as shown in Figure 4-7. For Lesson09 app, the total GIL simulation takes about

2014 seconds, among which gem5 simulation time takes 48% and the interfacing

time between two interfaces takes 52%. It corresponds to about 1.5M cycles per

second of simulation performance. In the interfacing time, 860 seconds is spent for

memory synchronization, which is 42.7% of the total time.

For Cubic app, the total simulation time is 7304 seconds and achieves about 0.8

M cycles per second of simulation performance. This is because the portion of

Figure 4-7. Simulation time (sec) for two benchmarks

40

memory synchronization increased in this application and GPU execution portion is

larger than Lesson09.

4.4.3 Contention overhead in Pixel Processors (PP)

As explained in 4.3.2, we estimate the contention overhead of PPs of the GPU by

modifying the number of available PPs from Linux driver. We measured two GPU

execution time, Δ` and Δ, for 4000 gpu_ioctl() requests in the real target board; Δ` is

measured by setting the number of available PPs to 4 (all cores are available), and Δ

is measured by setting the number to 1 (only 1 core is available so that there is no

contention). Figure 4-8 shows the histogram for Δ` and Δ, where x axis represents

Figure 4-8. Execution time distribution for PPs

41

the execution time of a single gpu_ioctl() request and y axis the occurrence count.

The average execution time for the Δ` and Δ are 3059 (us) and 1460 (us)

respectively, which results in the ratio α to be 2.1. Thus GPU execution time was

scaled by this ratio in the simulation.

4.4.4 Internal System Behavior Profiling

With the proposed GIL simulation framework, we could observe the internal

system behavior during the app execution. Table 4-1 shows the execution time, the

waiting time, and the response time for each processor (1 GP and 4 PPs). Also, as

shown in Table 4-2, we could obtain the GPU utilization. If the app utilizes the GPU

not only for the rendering or shading job, but also for the general purpose job such

as OpenCL kernel, this observability would be more useful. We could not use

OpenCL applications in the current implementation for Exynos system, since Mali

400 GPU does not support GPGPU.

42

4.4.5 Accuracy Evaluation

To evaluate the timing accuracy of the proposed framework, we measured the

execution time of a rendering function that calls several OpenGL ES APIs, by

inserting time stamping code to the application. We accumulated the execution time

Table 4-1. GPU response time for Cubic app

Processor

Type

Avg. Exec.

Time(ms)

Avg. Waiting

Time(ms)

Avg. Response

Time(ms)

Geometry Proc. 0.178 0.029 0.207

Pixel Processor

(PP0 ~ PP3)

1.847

~ 1.866

0.036

~ 0.041

1.884

~ 1.906

Table 4-2. GPU execution time and utilization for Cubic app

Processor

Type

of GPU

Execution

Total Exec

Time (ms)

GPU

Utilization (%)

Geometry Proc. 506 90.195 1.53

Pixel Processor

(PP0 ~ PP3)

505

~ 506

932.966

~ 943.994

15.85

~ 15.99

Table 4-3. Accuracy evaluation for the Android apps

Accumulated

Execution Time

Real Board

 (sec)

Simulation

(sec)

Error Ratio

(%)

Lesson09 1.21 ~ 1.57 0.99 ~ 1.42 -29.66 ~ - 5.22

Cubic 0.76 ~ 1.02 0.77 ~ 2.09 - 1.53 ~ + 104.91

43

for 50 invocations of the rending function. We performed the experiment for 5 runs

both on ODROID-X board and on the simulation framework. The range of

execution time and the error ratio are shown in Table 4-3. It confirms that the

accuracy of the proposed GIL simulation technique is about the same order of the

gem5 simulator that is simulated at the instruction-level. We observed that the

accuracy error gets smaller as we run an app longer. Since Cubic runs longer than

Lesson09, the accuracy error of Cubic gets smaller than Lesson09. More detailed

analysis on the accuracy is left for future investigation.

4.5 Summary

In this chapter, we have proposed a system call-level GIL simulation technique

for CPU/GPU platforms that integrates a real GPU hardware instead of GPU

simulator for full system simulation, running complete software stack without

modification. We devised a novel interfacing mechanism between a CPU simulator

and the GPU hardware. For correct operation, several issues had to be considered,

including memory synchronization, address translation, and interrupt handing. We

took Exynos 4412 system as our case study and ran two Android apps where a

number of OpenGL ES APIs were called. To the best of our knowledge, it is the first

example of full system simulation of a CPU/GPU heterogeneous system. We can

achieve simulation performance up to 1.5 M cycles per second.

44

Chapter 5 API-Level GIL

Simulation

System call-level GIL simulation technique has a limited extensibility. In GPU,

ioctl system call is widely used to process the device-specific operations. It takes a

parameter specifying a request code and the request code is often device-specific.

Therefore, to support other GPUs, the simulation framework should be modified to

consider the new request code unless other GPUs have the same request codes for

ioctl system call. Moreover, to correctly simulate the device driver in the original

software stack, some GPU specific functionalities such as GPU registers and

interrupts should be modeled for functional correctness, which requires

considerable effort to understand interactions between the device driver and the

GPU registers.

45

5.1 Differences between API-level and

System call-level techniques

An API (Application Programming Interface) is usually defined independent of

the HW for portability. For GPU APIs such as OpenGL ES and OpenCL, the

application written with APIs can run on various CPU/GPU platforms without any

modification. Thus, if the GIL simulation technique is performed at API level

instead of system call level, the GIL simulation can be performed with various GPU

boards with minor modification for the simulation framework.

Even if the simulation is performed at API level, if the original software stack is

used in the simulation, some GPU specific functionalities related with the device

driver in original software stack need to be modeled. To further reduce the GPU

dependency from the simulation code, the device driver in original software stack

should not be used in the simulation. Since the device driver is accessed from the

GPU libraries through system calls, if the original GPU libraries are not used in the

simulation, the device driver is also no longer used during the simulation. For this

reason, in the API-level GIL simulation, the GPU libraries in the original software

stack is replaced by the synthetic library which implements stub functions for the

APIs of the original GPU libraries as shown in Figure 5-1.

46

For the API-level simulation technique, the GPU request should be detected when

an API is invoked from the GPU applications. Since the target address is required in

our detection mechanism explained in section 3.3, the start address of APIs defined

in the synthetic library should be known to detect the API request. However, it is

not easy to know the address since the synthetic library is located in user space and

the address is determined when the library is loaded by a dynamic linker. To know

the address, we should track the linking process during the simulation, but this

would incur considerable overhead to the simulator. Instead, since the addresses of

functions in kernel space can be obtained from the kernel image before the

simulation, the synthetic driver is added in OS kernel for this purpose. Thus, in the

synthetic library, it just forwards the API requests to the synthetic driver without

Figure 5-1. Modified SW stack in API-level GIL simulation

47

any operation and the API request is detected in the synthetic driver by the detection

mechanism.

5.1.1 Synthetic Library

Figure 5-2 shows an example code of the synthetic library for cudaMemcpy API

in the CUDA library. To share the API information between the simulator and the

board, two structures represented in Table 5-1 and Table 5-2 are used.

The common structure (common_s) contains the data commonly used in all APIs.

It has 5 variables; api_id variable is used to notify which API is invoked from the

Figure 5-2. An example code of the synthetic library for cudaMemcpy API

48

application. thread_id and process_id variables are used to distinguish the thread

and process calling the API. api_time variable is used to store the API time

measured in the board and this variable is set by the host interface when the API

time is passed from the board interface. And, api_arg variable is a pointer to an

API-specific structure.

The API-specific structure contains all arguments for the target API and it is

varied depending on the target API. For example, in case of cudaMemcpy API,

cuda_memcpy_s structure is used and contains four variables: destination memory

address (dst), source memory address (src), copied memory size (count), and

Table 5-1. Common structure (common_s)

Variable name Description

api_id An identifier for target API

thread_id Thread id for the thread calling the API

process_id Process id for the process calling the API

api_arg A pointer to an API specific structure

api_time API time measured in the board

Table 5-2. API-specific structure for cudaMemcpy API

(cuda_memcpy_s)

Variable name Description

src Source memory address

dst Destination memory address

count Copied memory size

kind Direction for memory copy

ret Return value

49

direction for memory copy (kind). After variables in the two structures are set using

arguments passed from the application, ioctl system call is called with a pointer to

the common structure to pass the API request to the synthetic driver. Once the ioctl

is returned, since the return value has been set in ret variable in API-specific

structure by the host interface, it is returned to the application.

5.2 Timing Modeling

In the system call-level GIL simulation technique, the GPU execution time is

reflected to the simulator by the interrupt. However, since the device driver is not

simulated in the API-level GIL simulation technique, the interrupt-based timing

modeling technique can’t be used. Instead, since we can measure the API execution

in the board by inserting timestamping code before/after the API invocation, the API

execution time is reflected to the simulator by spending that amount time in the

synthetic driver.

Figure 5-3 illustrates the implementation of the synthetic driver. In Linux booting

phase, gil_simulation_driver_init is invoked and it creates the virtual device named

gil_dev. After the initialization of the device, it can be accessed as a file using open

and ioctl system calls from the synthetic library. When ioctl is called for gil_dev

device from the synthetic library as shown in Figure 5-2 (the first argument of ioctl

call), gil_simulation_ioctl() will be invoked. When the first instruction for this

50

function is executed on the CPU simulator, it is detected by the detection routine in

the host interface and the API is request sent to the board interface. In the board

interface, target API is invoked and the API execution time is measured using time

functions such as gettimeofday() and clock_gettime(). Then, the return value and the

execution time for the API are sent back to the host interface and the API execution

time is stored into api_time variable in the common structure. After the simulation

for the target API has been completed, the original CPU simulation routine executes

gil_simulation_ioctl code shown in Figure 5-3. To model the timing, it simply calls

the usleep function so that the measured API time (api_time) elapses in the

simulated time.

Figure 5-3. Synthetic driver code used in GIL simulation

51

5.2.1 Regression-based compensation for timing

error

In the API-level simulation technique, the timing accuracy is first bounded by the

processor simulator that measures the execution time only at the instruction level.

For timing estimation of GPU execution, we estimate the execution time of each

API by measuring the execution time directly in the board. The GPU execution time

is modeled by simply summing up all the estimated API times and added to the

CPU simulation time by using the usleep function explained in the section 5.2. This

simple method itself is a source of timing inaccuracy. There are other sources of

timing inaccuracy. In the board, time stamping is inserted before and after an API is

called and the execution time is estimated by subtracting two time stamps. If the

simulated system architecture or API implementation is not the same as the board,

timing inaccuracy is inevitable. Even if we use the same architecture, time stamping

affects the internal behavior. Also, usleep function has some overhead to set up the

timer and this makes the elapsed time by the usleep will be larger than the measured

API time.

Since most internal implementation of GPU libraries are proprietary and the

source code is not available, it is impossible to model the low level details of API

interaction. Hence we perform a simple linear regression analysis to compensate the

unknown sources of time inaccuracy with some selected benchmarks. We compute

the ratio between the measured execution time of an application in the actual board

52

and the simulated time in the proposed simulator. We adjust the simulated time of

another benchmark by this ratio and compare it with the measured execution time.

5.3 Memory Synchronization

Since the fact that one logical memory is modeled by two separate memories in

the simulator and board is not changed, the memory synchronization is also a key

Figure 5-4. Two ways to share data between CPU and GPU in GPU

applications

53

issue for correctness in API-level GIL simulation. However, since the original SW

tack is not used in the API-level simulation, memory synchronization is somewhat

different.

In API-level GIL simulation, there are two types of memory sharing between a

CPU and a GPU. In the first way shown in Figure 5-4 (a), the application allocates a

memory region (cpu_addr) and it is copied to a GPU memory (gpu_addr) using

memory copy API (gpuMemcpy) after it is modified. Since the memory region

allocated by malloc is not simulated in the board, it is only allocated in the

simulator memory and not exist in the board. When gpuMemcpy is simulated in the

board, it will access the board memory using the given CPU address (cpu_addr),

but invalid pointer error would occur since this address is not defined in the board

memory. To solve this problem, a new memory region is allocated temporally in the

board memory and the input data in the simulated memory is copied to newly

allocated board memory. Then, the address for the allocated memory region is

passed as an argument of gpuMemcpy instead.

In the second way shown in Figure 5-4 (b), to directly access the GPU memory in

this application, gpuMap API is invoked to obtain a CPU virtual address for the

GPU memory. When this API is simulated in the board, the pointer for the board

memory (cpu_addr) is returned and it is used to access the GPU memory in the

application. However, since this address is not defined in the simulator memory,

segmentation fault error will occur in the simulator when the address is accessed

and the application will be aborted. To solve this problem, similar to the former case,

54

temporal memory region is allocated in the simulator memory and it is used as a

return value for gpuMap API by modifying the gpuMap API code in the synthetic

library like Figure 5-5.

Figure 5-5. Synthetic Library code for gpuMap API

55

5.4 GPGPU API (CUDA & OpenCL)

Implementation Case

5.4.1 Asynchronous Behavior Modeling

In the API-level GIL simulation, as explain in section 5.2, the API measured in

the board is annotated to the simulated time by usleep function in the synthetic

driver to model the API timing. This simple mechanism assumes that the APIs are

synchronous, which means that code execution will wait until the actual execution

of the API is completed. For the synchronous API, its execution time is not changed

depending on other APIs or the call time. Thus, we can guarantee that the measured

Figure 5-6. Real execution scenario for the synchronization API

56

API in the board during the simulation is same with the one in the real execution.

However, this is not true for asynchronous APIs.

Figure 5-6 shows the scenario that a kernel launch API (gpuKernelLaunch) and a

device synchronization API (gpuDeviceSynchronize) are called in series. As

gpuKernelLaunch is asynchronous, it is returned after δ time without waiting for the

kernel completion. And gpuDeviceSynchronize is called immediately to wait until

the kernel completes. Since the execution time of the kernel is Ek, the execution

time for device synchronization API becomes Ek – δ.

Let us consider the simulation scenario for the Figure 5-6, which is shown in

Figure 5-7. When gpuKernelLaunch is invoked and captured by the host interface at

time t1, it is simulated by invoking gpuKernelLaunch in the board and the execution

time (δ) is reflected to simulated time as explained. Then, gpuDeviceSynchronize is

invoked in the CPU model at time t1 + δ and it is also captured by the host interface.

When gpuDeviceSynchronize is invoked in the board interface, the execution time

of gpuDeviceSynchronize would be almost zero, not Ek since the kernel launched by

gpuKernelLaunch has been already completed by the real GPU at that time. This is

because the CPU model is considerably slower than the real GPU hardware.

Since the problem occurs for the asynchronous API followed by a synchronous

API, the execution time should be calculated differently. As the synchronization API

waits until all the operations launched by the previous APIs finish, the execution

time of the synchronization is determined by the end time of the last completed

operation and the invocation time of the synchronization API. To figure out the end

57

time of the last finished operation, we need to know the end times of all operations.

To obtain the end time of each asynchronous operation, a dummy synchronization

API is invoked to explicitly wait until the operation launched by asynchronous API

completes. In such a way, the end times of all operations including asynchronous

APIs are obtained and stored, and these values are used when a synchronization API

is called: an API queue is managed to store the asynchronous APIs tagged with the

end time. When a synchronization API is called, the API queue is searched to find

out the time when the last asynchronous operation finished. Then, the execution

Figure 5-7. Simulation scenario for Figure 5-6

58

time of a synchronization API is calculated by subtracting the invocation time from

the last end time.

5.4.2 Implementation Issues

5.4.2.1 Locating Source/Binary Files

For the Android GPGPU application, it consists of a host code and a kernel code

which are executed in a CPU and a GPGPU respectively. For the host code, it is

statically compiled and the host executable (apk) is used when the application runs

on Android. However, for the kernel code, both source and binary files are used to

build the kernel dynamically. When the GPGPU API is invoked from the host

executable to pass the source or binary files, there are two ways. One is that the host

executable passes the pointer to a string which contains the whole contents of the

source file. In this case, the file system call should be invoked to get a code string

from the source file. The other is to pass the file name, and the file is loaded in the

API internally.

For the former case, since the OpenCL host code will access the disk in the target

system, source or binary files should be included in the image file for the Android

file system, which is used to model the disk in the target system. However, for the

latter case, since an API is executed in the simulation host not in the target system

and it access the disk in the simulation host with the given file name, source or

59

binary files should be located in the same path with the simulator.

5.4.2.2 CUDA Implementation

The proposed simulation technique supports CUDA on Android as well as

OpenCL. Even though the basic mechanism of defining APIs for the synthetic

library is the same, there are some CUDA specific implementation issues.

In CUDA, kernel arguments are passed by a pointer from the application using

cuLaunchkernel. But the simulator cannot directly figure out the information such

as the number of arguments and the size of each argument from the pointer. To solve

this problem, we add a separate utility function that analyzes a ptx (Parallel Thread

Execution) file, which is a pseudo-assembly code generated by the CUDA compiler.

Since the ptx file is loaded by cuModuleLoad before cuLaunchkernel is invoked, we

can obtain the necessary information by calling the analyzing routine before

cuLaunchkernel. Then, cuLaunchkernel can be called with the correct information.

Another issue is regarding the CUDA building with an ARM compiler. In the

proposed framework, we assume that all the requests to the GPGPU are performed

in a form of API call. For CUDA, however, there are some expressions which are

not in this form. In CUDA, as shown in Figure 5-8 (a), it is possible to launch a

kernel from the host using the notation below as the CUDA compiler (nvcc) can

accept this notation.

However, as the ARM compiler is used to compile the host code in the proposed

kernel <<<grid, block >>> (arg1, arg2, …)

60

framework, this is not accepted. Hence, the application should be written in the

form of an API call like Figure 5-8 (b) to use the proposed simulation framework.

Also, since the ARM compiler cannot compile the kernel source code, the kernel

and the host code should be split into separate files, which is not necessary in the

Figure 5-8. Original (a) and modified (b) CUDA code

61

original CUDA because nvcc can compile both the host and the kernel code in a

same file. Since this form of CUDA application code is also allowed in the original

CUDA environment, it can guarantee that the application code used in the

simulation can run on the real target without any modification.

5.4.3 Experiments

The GPGPU API level GIL simulation framework is constructed based on the

system call level framework explained in Chapter 4 and extended to support

GPGPU applications on Android. Since the GPGPU is only supported in the host

GPGPU and not supported in the GPU board currently, host GPGPU in the

simulation host is used for the GPGPU API level GIL simulation technique. Since

two GPU functionalities (Graphics and GPGPU) are simulated by different GPUs in

the simulation host and the board (Mali GPU), this assumes the target platform with

two GPUs, one takes charge of rendering jobs, whereas the GPGPU is only used as

an accelerator.

We used ODROID-X board to execute the Mali GPU hardware, gem5 simulator

to simulate components other than GPU, and the GPGPU hardware in the

simulation host machine for the GPGPU simulation.

5.4.3.1 GPGPU Performance

The first set of experiments is performed to show that the proposed framework

62

can monitor the performance of GPGPU applications written with CUDA and

OpenCL. For this experiment, we implemented face detection applications based on

two source codes. One is the face detection sample code in OpenCV [43], which has

two versions: CPU and GPGPU version written with CUDA. The second one is

implemented in OpenCL. Since these two implementations parallelize the

application differently, direct comparison between two implementations is not

meaningful in this experiment.

Three images in PGM (Portable Gray Map) format are used in the experiment

varying the image size: 267x189, 600x419 and 1100x733. Since the CPU

simulation model used in the proposed framework is not cycle-accurate

(AtomicSimpleCPU in gem5 simulator [45]), we measured the execution time of the

CPU version on ARM cortex A9 CPU board (ODROID-X). And the execution time

of the GPGPU version is measured from the GIL simulation framework varying the

GPGPUs used in the simulation: GTS450 (192 cores) and GTX480 (480 cores). The

result is shown in Figure 5-9. As shown in Figure 5-9 (a), the CUDA version with

GTS450 is 7.90 ~ 16.98 times faster than the CPU version, and the speedup is

increased as the image size grows. With GTX 480, we observe the similar

performance increase, 1.07 ~ 1.49 times faster than GTS450.

For the OpenCL application, GPGPU version (with GTS) is 1.34 ~ 1.58 times

faster than CPU version. The speedup is not as large as the CUDA implementation,

because not all algorithms were parallelized using OpenCL: Image resizing is

executed on the CPU. Also, since the CPU model used in the simulation is not

63

cycle-accurate and is overestimated, the execution time on the CPU would be a bit

larger than it should be, increasing the total execution time. For the accurate result,

cycle accurate CPU model in gem5 simulator (O3 model) should be used at the

expense of slower simulation.

Figure 5-9. The execution times of the two applications (CUDA, OpenCL)

64

Figure 5-10 shows the simulated time for GPGPU APIs (267x189-sized image)

that is partitioned into three parts: Kernel Execution, Memory Copy and Memory

Allocation. In CUDA implementation, image resizing is performed in GPGPU and

GPGPU memory space is allocated/de-allocated each time, which makes memory

allocation the most time consuming part, and the kernel execution the next. In

contrast, in OpenCL implementation, image resizing is performed in the CPU and

the resized images are copied to GPGPU memory. Thus, memory copy is the most

timing consuming part in OpenCL.

Figure 5-11 shows the detailed performance profiling of the face detection

applications, obtained from the proposed simulation framework. In the CUDA

Figure 5-10. Simulated time for GPGPU API (267x189)

65

implementation, the classification part, lbp_cascade kernel, takes the most of the

time but the sum of vertical_pass and horizontal_pass, which are the feature

extraction parts, is larger. On the other hand, we can see that

lbp_imageGPU_1x1_aggr which is a feature extraction part, takes a bit larger than

the processingRectLoop_WS_2D which is a classification part. In Figure 5-11, it

shows the communication overhead between CPU and GPGPU. As seen in the 5-11

more memory copy are occurred in OpenCL by clEnqueueWriteBuffer which

transfers data from host memory to GPGPU memory.

5.4.3.2 CPU/GPGPU Job Sharing

As we explained in Chapter 1, it is good to consider job sharing between CPU

and GPU to fully utilize the system, since embedded GPUs are not powerful like

server GPUs. To rapidly and easily estimate the performance impact of different

CPU-GPU partitioning configurations, another set of experiments is performed with

Figure 5-11. The execution time of kernel executed for the face detection

application (267x189)

66

a matrix multiplication application that is written in CUDA and Pthread. We

parallelize the computation by rows so that each row can be executed in the GPGPU

or in the CPU. Although the target embedded GPU in the Android device should be

used, the simulation is performed using the GPGPU in the simulation host since the

OpenCL driver for the embedded GPUs is not publicly available yet. In order to

invoke a target API in the embedded GPU board, information such as API

arguments and which API is to be called needs to be passed to the board from the

simulation host, which is straightforward to implement but remains as a future work

due to the availability of the driver. In the current simulation environment, we limit

the number of threads in the GPGPU from 8 to 64 to approximately model the

performance of an embedded GPU. For the CPU, we fixed the number of Pthreads

Figure 5-12. Communication overhead for memory APIs (267x189)

67

to four since ARM Cortex-A9 quad-core CPU is simulated in the experiment.

Figure 5-12 shows the execution time of the application when the number of rows

allocated to CPU and GPGPU varies from 0 to 128. As expected, the optimal job

distribution point depends on the GPGPU computing power, and each optimal point

is shown in Figure 5-13. Even if the proposed simulation is not cycle-accurate, this

information is useful as the approximate performance trend of the GPGPU

application can be estimated.

Figure 5-13. The execution time for the matrix multiplication varying the

number

68

5.4.4 Simulation Overhead

To figure out the overhead of the proposed GIL simulation, we measured the

detailed simulation time for the face detection application, which is shown in Figure

5-14. From the figure, we can see that the overhead of the GIL simulation for

GPGPU is about 3.0 % of the total simulation time. This confirms that the proposed

approach has very low overhead and the GPGPU simulation would not be a

performance bottleneck in the full system simulation unlike the one with

conventional GPGPU simulator.

Figure 5-14. Simulation time composition in the GIL simulation

69

5.5 OpenGL ES Implementation Case

5.5.1 Background

5.5.1.1 Android Graphics Overview

Figure 5-15 shows an overview for Android Graphics. In Android applications,

there are four components including activities, services, content providers and

broadcast receivers [47]. Among them, the activity is responsible for the graphics

Figure 5-15. Overview for Android Graphics

70

operations and each activity has a window to draw its user interface. Each window

has its own surface which has some buffers obtained from SurfaceFlinger process.

In the SurfaceFlinger, it only provides an interface for buffer allocation, which is

actually performed through a memory allocator called “gralloc”. In Android, there

are two gralloc modules: the one is provided by the vendor as a library (so file) and

the other is a default module provided in Android and is used when the

vendor-specific gralloc module is not provided.

After the activity obtains a buffer, the drawing is performed by 2D graphics APIs

in Canvas or 3D graphics APIs in OpenGL ES, whose result is rendered onto the

obtained buffer in a surface. Then, the drawn buffer is submitted to the

SurfaceFlinger process and multiple surfaces are composed based on the window

status (visibility, Z-order, alpha value, etc) received from the Window Manager. To

compose the surfaces, OpenGL ES library is used in the SurfaceFlinger and much of

the composition work can be delegated to the HW composer to offload some work

to the GPU.

In Android, the OpenGL ES library consists of platform-independent and

dependent layers. The platform dependent OpenGL ES library is provided in

Android source code and it simply calls down to the vendor specific libraries in

most cases. During the initialization process in this library, the vendor specific

OpenGL ES library is loaded dynamically based on the configuration file (egl.cfg)

which contains a tag like mali or adreno, which is used to construct the name of the

vendor specific library. The vendor specific library provides an interface to the GPU

71

and is responsible for managing the work for the GPU. To allocate rendering work

to the GPU, a group of ioctl system calls is invoked in the library and the GPU

device driver in Linux kernel accesses the registers and memories in the GPU to

allocate the work.

5.5.2 Additional modification for SW stack

In OpenGL ES API, to consider the memory synchronization for complex data

structures (native window and native window buffer) and multi-process support,

Figure 5-16. Modification for Software stack in OpenGL ES API

72

additional modification for SW stack is required as shown in Figure 5-16. Helper

APIs are added in the synthetic library to assist OpenGL API-level GIL simulation

to obtain the process information for multi-process support and the necessary

information for the memory synchronization. Since some information for memory

synchronization can be obtained from the gralloc, original gralloc module is

modified to invoke Helper APIs to pass the information.

5.5.3 Memory synchronization

In section 5.3, we explained how the memory synchronization is handled in the

API level GIL simulation. For GPGPU APIs, since the memory region to be

synchronized is fully specified with the API parameters (the start address and the

size of the region), the memory synchronization is not difficult. However, in

OpenGL ES API, some complex data structures such as native window and native

window buffer are used in the OpenGL ES APIs and only the address for these data

is provided when the APIs are called. Thus, it is far from straightforward to keep

these data structures in a separate GPU board consistently with the simulator.

5.5.3.1 Native Window

The native window is a C/C++ class that corresponds to the surface in the Java

application. To render image from the OpenGL ES graphics application, it requires a

native window to get the buffers for rendering. So, when the application requests for

73

the native window, it is created by the Non-OpenGL code in SurfaceFlinger and

passed to the application. Then, in the application, eglCreateWindowSurafce

OpenGL ES API is invoked with the handle for the native window to create an EGL

Surface which extends the native window with auxiliary buffers. When this

OpenGL ES API is called, it is executed in the board and the native window is

accessed with the handle that has been given as an API parameter. However, since

the handle is created by the Non-OpenGL code in SurfaceFlinger, its data is located

in the simulator memory and invalid access error would occur when the API is

Figure 5-17. Code extension for the native window in synthetic library

74

executed in the board.

To solve this problem, the corresponding native window should be created in the

board using the same properties like width, height and format. For this, these

properties are extracted from the simulator memory in the synthetic library as

shown in Figure 5-17. Then, these properties will be sent to the board with the

eglCreateWindowSurface API request and the corresponding native window will be

created in the board. Even if the properties are obtained, it is not possible to create a

native window in the board, since the Android does not provide a library to create a

native window from an application. For this reason, the original Android software

stack executed in the board should be extended to build the library that provides an

interface for creating a native window.

5.5.3.2 Native Window Buffer

In the graphics applications, images can be drawn in two ways: 2D graphics APIs

in Canvas and 3D graphics APIs in OpenGL ES. When the drawn buffers are

submitted to the SurfaceFlinger process, they are composed using OpenGL ES APIs

in the SurfaceFlinger process. Since the native window buffer is not directly usable

by the OpenGL ES, it is extended to a general image object called EGL Image by

calling eglCreateImageKHR API in the SurfaceFlinger process. The problem

happens when the native buffers drawn by 2D graphics APIs are composed. Since

the buffer is drawn by the Non-OpenGL graphics APIs, the drawn buffer is located

in the simulator memory. When eglCreateImageKHR OpenGL ES API is executed

in the board, the native window buffer will be accessed using the handle given as a

75

parameter. However, since the handle points to the simulator memory, invalid

access error will occur during the API execution. Thus, the corresponding native

buffer should be created in the board just like the native window. To obtain the

properties for a native window buffer, the gralloc module, which is responsible for

the actual buffer allocation in Android, is modified.

Figure 5-18 illustrates the modified gralloc_alloc function in gralloc module to

obtain the properties required for the native window buffer creation (width, height

and format). Then, getWindowBuffer Helper API is called to pass these properties to

the board and the corresponding native window buffer will be created.

For the case of the native window buffer, in addition to creating it with the same

properties, the content in the buffer should be correctly synchronized by copying the

pixel data from the simulator memory to the board memory before the OpenGL ES

APIs for the composition are executed in the board. It is not sufficient to

synchronize the native window buffer when eglCreateImage API is executed

because an EGL Image is created only once when the buffer is submitted first and

eglCreateImage API is not be called when the same buffer is re-submitted. Instead,

EGLImageTargetTexture2DOES API is invoked to generate the texture arrays from

the EGL Image whenever the buffer is submitted. Thus, we synchronize the native

window buffer whenever this API is invoked.

After the OpenGL ES APIs for the composition are processed in the board, the

simulated SurfaceFlinger process will pass the composited buffer to the display

controller in the simulator. Since it is composed by OpenGL ES APIs, however, the

76

result is located in the board memory and, without proper synchronization, wrong

images would be displayed in the simulator display. Thus, the pixel data for the

composite buffer should be synchronized after eglSwapBuffer API is executed in the

board, which finalizes the pixel data.

Figure 5-18. Modified code for gralloc module

77

5.5.4 Multi-Process Support

In GPGPU API, we assume that only target application uses the API and there is

no need to consider the effect between the API call from the different simulated

process in the simulator. But in OpenGL ES in Android, there are many system

applications which are executed during the boot process and APIs calls from the

multiple processes should be correctly handled in the API level GIL simulation.

Generally, in OpenGL ES, each thread has its own OpenGL ES context and the

result of API execution is reflected only in the current context. And each context are

linked with a specific window and the drawing operations performed by OpenGL

Figure 5-19. Multi-thread structure for Board Interface in OpenGL ES API

GIL simulation

78

ES APIs are reflected to the window linked to the current thread. However, if the

GIL simulation is implemented as a single thread, since only one window can be

linked to the thread, the API requests from the multiple threads are reflected in the

one specific window, drawing results from the multiple threads are mixed in that

window. Therefore, in order to prevent the interference between the API requests

from the different threads, multiple threads are created in the board interface and

they are processed by separate threads as shown in Figure 5-19.

5.5.4.1 Thread Allocation

When the first OpenGL ES API is requested from the application,

createThreadContext Helper API is requested first from the synthetic library. Then,

the corresponding thread is generated in the board and the thread id is allocated in

the host interface. And a client socket is created in the host interface, which is

connected with the server socket for the generated thread in the board. The binding

information between the thread id and the socket is reserved in the host interface

internally, and the thread id is stored in the thread_id variable to pass it to the

synthetic library. In the synthetic library, the thread id is stored in a per-thread data

structure for later use.

5.5.4.2 Target Thread Selection

When the OpenGL ES API is requested, in the synthetic library, thread_id

variable is set by calling getThreadId() function in which thread id is restored from

per-thread data structure as shown in Figure 5-2. In the host interface, to find out

79

which thread is responsible for simulating the requested API, the binding

information which was previously reserved by the thread allocation process is

searched to establish the socket connection. Since thread information is passed by

the thread_id and process_id variables in the common structure, the target socket

connection can be obtained using these values from the binding information.

5.5.5 High-level Timing Modeling for other GPUs

Since a real GPU HW is used in the simulation, the proposed technique can

simulate the target platforms only if the existing GPU is re-used. For this reason, the

design space exploration for the GPU can be performed by using several GPU

boards with different GPUs. To overcome this limitation, we proposed a simple

analytical timing modeling technique that estimates the execution time of OpenGL

API when a non-existing GPU is included in the target platform.

Let CPU/GPU frequency be represented by (F𝑐, F𝑔). In our simple timing model,

the API execution time for given CPU/GPU frequency level (F𝑐, F𝑔) consists of

three parts: Idle time (𝑇𝐼𝐷𝐿𝐸), CPU execution time (𝑇𝐶𝑃𝑈
F𝑐), and GPU execution time

(𝑇𝐺𝑃𝑈

F𝑔
) as shown in below.

𝑇𝐴𝑃𝐼(F𝑐 , F𝑔) = 𝑇𝐼𝐷𝐿𝐸 + 𝑇𝐶𝑃𝑈
F𝑐 + 𝑇𝐺𝑃𝑈

F𝑔
 (1)

80

The execution time of the CPU and GPU can be calculated by multiplying the

total number of cycle (𝐶𝑃𝑈_𝐶𝑦𝑐𝑙𝑒𝑠F𝑐, 𝐺𝑃𝑈_𝐶𝑦𝑐𝑙𝑒𝑠F𝑔) and the clock cycle time

(inverse of the clock frequency) of the CPU and the GPU.

𝑇𝐶𝑃𝑈
F𝑐 =

𝐶𝑃𝑈_𝐶𝑦𝑐𝑙𝑒𝑠F𝑐

F𝑐
 (2)

𝑇𝐺𝑃𝑈

F𝑔 =
𝐺𝑃𝑈_𝐶𝑦𝑐𝑙𝑒𝑠F𝑔

F𝑔
 (3)

In our simple timing model, only the clock frequencies of CPU and GPU can be

configured in the target platform and other architecture features are same with GPU

board. Moreover, the same code is executed on the target platform so that the total

number of cycles of the CPU and the GPU would be remained unchanged

regardless of the variation in the clock frequencies of the CPU and the GPU. Let the

tuple (F𝑐
′ , F𝑔

′) represent the frequencies of the CPU and GPU in the target platform

and the tuple (F𝑐, F𝑔) represent the frequencies in the GPU board used in the

simulation. Then, since the total number of cycles of the CPU and the GPU are not

changed depending on the clock frequencies, below equations can be obtained using

Equation (2), (3).

𝑇𝐶𝑃𝑈
F𝑐

′

 = 𝑇𝐶𝑃𝑈
F𝑐 ∗

F𝑐

F𝑐
′

𝑇𝐺𝑃𝑈

F𝑔
′

 = 𝑇𝐺𝑃𝑈

F𝑔 ∗
F𝑔

F𝑔
′

81

From these equations, we can know that the execution times of CPU and GPU on

the target platform (𝑇𝐶𝑃𝑈
F𝑐

′

, 𝑇𝐺𝑃𝑈

F𝑔
′

) can calculated from the execution times measured

in the GPU board. And these information can be obtained from the GPU board

using the performance analyzer or the profiler such as profiler such as ARM

StreamLine [1] during the simulation.

As shown in Equation (1), to model the API execution time in the target platform,

we also need to know the idle time in the target platform (𝑇𝐼𝐷𝐿𝐸). For simplicity, we

assume that the idle time is not changed depending on the clock frequencies. Thus,

we can re-use the idle time obtained from the GPU board. Finally, we can obtain the

following equation to model the API execution time in the target platform varying

the clock frequencies of the CPU and GPU based on the profile information

obtained from the GPU board.

𝑇𝐴𝑃𝐼(F𝑐
′ , F𝑔

′) = 𝑇𝐼𝐷𝐿𝐸 + 𝑇𝐶𝑃𝑈
F𝑐

′

+ 𝑇𝐺𝑃𝑈

F𝑔
′

 = 𝑇𝐼𝐷𝐿𝐸 + 𝑇𝐶𝑃𝑈
F𝑐 ∗

F𝑐

F𝑐
′ + 𝑇𝐺𝑃𝑈

F𝑔 ∗
F𝑔

F𝑔
′

5.5.6 Porting To a New GPU Board

Since the CPU-GPU interface is performed at the OpenGL ES API level which is

independent of the GPU, it can be easily extended to support various types of GPUs.

82

To apply the proposed technique to a new GPU board, it is necessary to modify the

parts related with the native window, the native window buffer in the board

interface, and the Android OS in the board.

For the native window buffer, memory synchronization part in the board interface

should be modified since the structure for the native window buffer is different

across the target GPU. Thus, the source code to obtain the pointer to the pixel data

should be modified to apply the proposed technique to the new GPU board. This

information can be inferred from the header file (gralloc_priv.h) of gralloc module

which is provided by the GPU vendor as a part of the Android source code. Given

this file, it takes about a day to modify the source code for the native window buffer.

For the native window, as mentioned in 5.5.3.1, the basic Android does not

provide an interface to create the native window from the application. Since the

native window is needed from the board interface, the original Android source code

should be extended to build the library that provides the interface. For this purpose,

the source code for the library in the previous framework is copied to the Android

source code for the new GPU board and the protection level for the SurfaceFlinger

is lowered so that it can be accessed from the application. Exceptionally, if the way

to obtain the native window from the SurfaceFlinger is changed, the library source

code from the previous framework may not be applicable. Nevertheless, from our

experience, it is not difficult to write the library code to provide an interface for

creating the native window.

For the native window, the original Android source code should be extended

83

since the original Android does not provide an interface to create the native window

from the application. It has to be extended to provide such an interface. For this

purpose, the source code for the interface, or library, in the previous framework

should be copied to the Android source code for the new GPU board and the

protection level for the SurfaceFlinger process should be lowered so that it can be

accessed from the application.

5.5.7 Experiments

In the proposed simulation framework, the target system is based on the Exynos

4412 system and only the GPU part is changed depending on the development

board used in the simulation. We used three development boards (Odroid-X [40],

5250 Arndale [42], and Odroid-XU3 [41]) with different GPUs (Mali 400MP4, Mali

T604, and Mali T628 respectively). To make the full system simulation fast enough

for software development and verification while sacrificing the timing accuracy, we

used the AtomicSimple CPU model in gem5.

We ran three Android graphics applications called Rubik [31], Lesson05 and

Lesson16 [30]. As explained in 4.4, the Rubik benchmark includes both the

computation and the API call sequence, in which the proportions of two parts are

37.4% (computation) and 63.6 % (API call sequence) respectively. However, other

benchmarks (Lesson05, Lesson16) only include the API call sequence without any

84

computation. To measure the rendering performance for the benchmarks, we

measured only the execution time of the OpenGL API call sequence in the rendering

function without computation part, by inserting time stamping code to the

application.

It is known that measuring the rendering time for the OpenGL ES application is

not a simple problem [33] due to the asynchronous behavior in the OpenGL ES

APIs and the window buffer limitation. For asynchronous behavior, if there is no

synchronization API at the end of the API sequence, the measured API time only

includes the queuing overhead without rendering time. Thus, we inserted the

synchronization API at the end of the APIs in the original application to measure the

actual rendering time. In Android OpenGL ES application, each application obtains

the native window buffer from the buffer queue in the SurfaceFlinger. If there is no

free buffer available, the application should wait until the buffer is composed and

the measured time can include the waiting time for the buffer. To avoid this problem,

we insert a redundant glClear API before the first API in each application to

guarantee the availability of free buffers.

5.5.7.1 Simulation Speed

The proposed technique can achieves high simulation performance up to about 10

Mcps (cycles per second). Since the AtomicSimple model does not simulate the

CPU when it becomes idle [32] when the usleep function in the synthetic driver is

called, gem5 just skips the period without any simulation. In case the application

spends most of the time in the GPU, as the benchmark programs used in the

85

experiments do, we can obtain higher GIL simulation speed than the gem5 simulator.

Since the performance for the system call-level GIL simulation is about 1 Mcps, the

API-level GIL simulation technique can achieve significant speed-up compared

with the system call-level GIL simulation.

5.5.7.2 Rendering Performance

Figure 5-20 shows the rendering performance (i.e., simulated time) result for

three benchmarks when they are simulated using three development boards. In

Odroid-X, the execution times for the rendering are 0.248 to 0.288 seconds. As

200 frames are displayed, the rendering performance is about 694.6 ~ 807.6 fps

and we can expect that all the benchmarks can display the image to screen without

Figure 5-20. Rendering times for three benchmarks with three boards

86

any delay since it is faster than the display rate (60 fps). In other boards, compared

to Odroid-X, the execution time is increased by about 1.07 ~ 1.26 and 1.59 ~ 1.72

times for Arndale and Odroid-XU3 board respectively.

5.5.7.3 Accuracy Evaluation

To evaluate the timing accuracy of the proposed framework, we first measured

the rendering time of the native execution, and compared with the simulated time

from the proposed framework. As shown in Figure 5-21, the timing error is in range

of 15.8 % ~ 38.9 %. From the result, we can know that there exist some timing

errors compared with the native execution. As mentioned in section 5.2.1, to reduce

these timing errors, the simple linear regression analysis is performed based on the

Figure 5-21. Accuracy results for three benchmarks with three boards

87

rendering time results from two benchmarks: Rubik and Lesson05. From the result

shown in Figure 5-22, the ratio factor of 1.232 is obtained. Then, the simulation for

Lesson16 benchmark is performed, dividing the measured API time by this factor.

Figure 5-23 shows the timing error before and after the ratio factor is applied to the

simulation result. From the result, we can know that the average error ratio is

decreased from the 30.8 % to 10.8 %. It is confirmed that the proposed approach

with regression-based timing modeling provides good timing accuracy with about

10% of timing error for the graphics benchmark examples.

Figure 5-22. Linear regression analysis result for two benchmarks

88

5.5.7.4 Dynamic Behavior Profiling

To efficiently optimize the rendering performance, it is important to figure out

which API has the longest execution time. Since the OpenGL ES APIs are executed

asynchronously in the board, the measured API time during the simulation only

includes the queueing overhead without the actual execution time. To obtain the

execution time information for actual rendering, synchronous model is implemented

in which a synchronization API such as glFinish is appended to each API to enforce

waiting until the actual execution of the API is completed. Figure 5-24 shows the

detailed performance profile information for the Rubik benchmark when the

simulation is performed with Odroid-X board in the synchronous model. The

information includes the number of API calls and the total execution time for the

Figure 5-23. The error ratio before and after the correction factor is applied

89

APIs. From the results, we observe that glDrawElements and glClear API take the

longest execution times which are 0.202 and 0.197 seconds, respectively, for 200

executions.

5.5.7.5 Design Exploartion varying CPU/GPU frequencies

To overcome the limitation in the proposed technique, a simple timing modeling

technique that can model the timing of OpenGL API varying the frequencies of the

CPU and the GPU is proposed in 5.5.5. To evaluate timing accuracy of this

modeling technique, we first measured the rendering times of the native execution

for 4 different CPU/GPU frequency combinations as shown in Figure 5-25. In the

simulation, first the simulation is performed by fixing the CPU/GPU frequencies to

1.0 GHZ and 266 MHZ respectively and the profile information required in the

modeling technique is obtained using the ARM streamline performance analyzer [1].

Figure 5-24. The total execution time and the call count for each API

90

After that, the rendering times for the other three configurations are estimated by

the proposed modeling technique based on the profile information and the estimated

API time is divided by the regression factor obtained in 5.5.7.3, which is 1.232. As

shown in Figure 5-25, the timing error is in range of 5.0 % ~ 26.3 % and the

average error is 17.0 %.

In the Odroid-XU3 board, 5 CPU clock frequencies (1.0, 1.1, 1.2, 1.3 and 1.4

GHZ) and 6 GPU clock frequencies (177, 266, 350, 420, 480, 543) are supported.

To show that the proposed technique can be used for design space exploration,

additional CPU/GPU frequencies which are not available in the Odroid-XU3 board

are considered in the proposed modeling technique. From the result shown in Figure

Figure 5-25. The error ratio for Lesson16 benchmark with 4 combinations

of CPU/GPU frequencies on the Odroid-XU3 board

91

5-26, in the highest CPU/GPU frequencies (CPU=2.0 GHz, GPU = 1000 MHZ),

about 1.26 times higher performance (0.199 seconds) can be achieved compared

with the highest performance (0.250 seconds) in the Odroid-XU3 board (CPU=1.4

GHZ, GPU=543 MHZ).

Figure 5-26. The rendering time for Lesson16 benchmark on the

odroid-xu3 board varying CPU/GPU frequencies

92

5.6 Summary

In this section, we have proposed a fast and extensible GPU-in-the-loop

simulation technique that integrates a real GPU hardware with the full system

simulator at the API level to make a best compromise between the simulation speed

and the timing accuracy. To provide an easily extensible interfacing mechanism

between the simulator and the GPU board, a synthetic library is defined for the GIL

simulation.

In the GPGPU API-level GIL simulation technique, we simulated a real-life

example of face detection applications which both utilize CPU and GPU. Through

the simulation, we could estimate the execution time of the face detection. The

results show that GPGPU version can increase the performance compared to the

CPU only version by 5.7X ~ 10.5X for CUDA version, and 1.29X ~ 1.56X faster

for OpenCL version, depending on the input image size. We could also confirm that

the proposed approach can easily adopt a new GPGPU in the GIL simulation. We

used two different types of GPGPUs, GTS450 and GTX480, without any

modification in the simulation framework. From the simulation time profiling, only

4.0 % of the total time is spent on the GPGPU simulation.

In OpenGL ES API-level GIL simulation technique, the proposed technique

achieved up to about 10 Mcps, which is 10 times of speedup for Android graphics

benchmark applications compared to the system call-level GIL simulation technique.

We could apply the proposed technique successfully to three development boards

93

with a little modification of the board interface and Android source code in the

board for the native window management. The most challenging problem in the

proposed framework is to synchronize two distinct memories in the GPU board and

the simulation host. We proposed a novel method to keep the native window and the

native window buffers consistent. For timing accuracy, we propose a simple linear

regression analysis to compensate the difference between the measured execution

time and the simulated time, without the detailed information for the OpenGL ES

driver code. Moreover, for the design space exploration varying CPU/GPU

frequencies, a simple timing modeling technique is proposed to model the timing of

the API execution GPU platforms with the frequencies not supported in the existing

GPU.

94

Chapter 6 Conclusion and

Future Work

Emerging mobile devices are likely to adopt CPU-GPU heterogeneous

architecture where an embedded GPU executes offloaded computations from the

CPU as well as rendering tasks. Thus, building a full system simulator for a

CPU/GPU heterogeneous architecture recently draws keen attention of mobile

device developers for design space exploration or SW development at the early

design stage.

For these purposes, since it is very desirable to run the same application software

on a full system simulator, simulation performance is really important. However, all

known GPU simulators are mainly developed for architectural exploration, those

simulators are prohibitively slow. Moreover, for some mobile GPUs such as Mali or

PowerVR, since GPU simulators does not exist, it is impossible to build a full

system simulator for the target platforms consisting of these GPUs.

95

To solve these problems, this thesis propose a GPU-in-the-loop (GIL) simulation

technique, which integrates a real GPU Hardware with a full system simulator.

Since real HW is used, it can provide fast simulation speed enough for SW

development purpose and can build a full system simulator even if a GPU simulator

is not available.

There are two major challenges in the proposed technique. First, since the

on-chip shared memory in the target system is modeled with the two separate

memories in the simulator and the board, we must synchronize the duplicated

shared memory models to maintain the coherence. Second, since the detailed

behavior of the GPU cannot be observed in the board, it is not easy to model the

timing of the GPU in the proposed technique. To handle these challenges, two novel

interfacing techniques that interact with a real GPU at system call and API level are

proposed in this thesis.

In the system call-level GIL simulation technique, since GPU virtual address is

used in the system call argument, address translation table is maintained for

memory synchronization. And to model the GPU execution, the interrupt handing

mechanism is modeled.

In API-level GIL simulation technique, to provide an easily extensible interfacing

mechanism between the simulator and the board, a synthetic library is defined and

original SW stack is modified not to simulate the device driver. Since the device

driver in the original SW stack is not simulated, interrupt-based timing modeling

technique can’t be applied. Instead, the API execution is modeled by simply calling

96

a sleep function in the synthetic driver. Since the type of API varies depending on

the GPU functionality, two types of APIs for GPGPU and Graphic are considered in

this thesis and several API-specific challenges such as asynchronous behavior

modeling and memory synchronization for complex data structures are properly

handled.

Since the two interfacing techniques have different features, depending on the

purpose of the simulation, the suitable interfacing level may be different. To

monitor the internal behaviors of the GPU device driver or the API library, the

system-call level simulation technique is proper since the device driver and the API

library are actually simulated. However, if we are only interested in the high-level

performance information on the application such as API-execution time, the

API-level simulation technique is proper since it can provide faster and extensible

simulation than the system-call level technique.

From the experimental results, we can confirm that the proposed technique

successfully make a best compromise between the simulation the timing accuracy

so that it can be used for early SW development and system performance

estimation.

In the proposed technique, it has a limitation that it can only model the target

platform with existing GPU. To overcome this limitation, we proposed a simple

timing modeling technique which models the frequencies that is not supported in

existing GPU using the profiling tool. Since current model is too simple and only

clock frequency can be configured, more sophisticated model is required to consider

97

other high-level architecture characteristics of the GPU such as the number of GPU

cores and this is left as a future work.

Also, to verify the effectiveness of current GPU power governors, the current

GIL simulation technique will be extended to model the power as well as the

performance. In the current experiment results, a small number of benchmarks and

GPUs are used. Thus, to faithfully verify the proposed technique, we will perform

the experiments using more benchmarks and various types of GPUs in the future

work.

98

Bibliography

[1] Streamline Performance Analyzer,

http://www.arm.com/products/tools/software-tools/ds-5/streamline.php

[2] PVRTune,

http://community.imgtec.com/developers/powervr/tools/pvrtune/

[3] Snapdragon Profiler,

https://developer.qualcomm.com/software/snapdragon-profiler

[4] V. M. del Barrio, C. Gonzalez, A. Fernandez, R. Espasa, “ATTILA: A

Cycle-Level Execution-Driven Simulator for Modern GPU

Architectures” IEEE International Symposium on Performance

Analysis of System and Software (ISPASS), pp. 10-12, Mar. 2006.

[5] Wang, P. H., Lo, C. W., Yang, C. L., & Cheng, Y. J. (2012, April). A

cycle-level SIMT-GPU simulation framework. In Performance

Analysis of Systems and Software (ISPASS), 2012 IEEE International

Symposium on (pp. 114-115). IEEE.

[6] Bakhoda, G. Yuan, W. Fung, H. Wong, T. Aamodt, “Analyzing

CUDA Workloads Using a Detailed GPU Simulator”, in IEEE

http://www.arm.com/products/tools/software-tools/ds-5/streamline.php
http://community.imgtec.com/developers/powervr/tools/pvrtune/
https://developer.qualcomm.com/software/snapdragon-profiler

99

International Symposium on Performance Analysis of Systems and

Software, Apr. 2009.

[7] Collange, S., Daumas, M., Defour, D., & Parello, D. (2010, August).

Barra: A parallel functional simulator for gpgpu. In Modeling,

Analysis & Simulation of Computer and Telecommunication Systems

(MASCOTS), 2010 IEEE International Symposium on (pp. 351-360).

IEEE.

[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,

M. Shoaib, N. Vaish, M. D. GILl, and D. A. Wood, “The gem5

simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no.

2, 2011.

[9] Fabrice Bellard, “QEMU, a fast and portable dynamic translator”,

USENIX Annual Technical Conference, 2005.

[10] R. Ubal, B. Jang, P. Mistry, D. Schaa, D. Kaeli, “Multi2Sim: A

Simulation Framework for CPU-GPU Computing”, Parallel

Architectures and Compilation Techniques, Sep. 2012.

[11] Kim, Hyesoon, et al. "MacSim: a CPU-GPU heterogeneous simulation

framework user guide." "Georgia Institute of Technology (2012).

[12] Zakharenko, V., Aamodt, T., & Moshovos, A. (2013, March).

Characterizing the performance benefits of fused CPU/GPU systems

using FusionSim. In Proceedings of the Conference on Design,

Automation and Test in Europe (pp. 685-688). EDA Consortium.

100

[13] H. Wang, V. Sathish, R. Singh, M. Schulte, N. Kim, “Workload and

Power Budget Partitioning for Single Chip Heterogeneous Processors,”

IEEE Conf. on Parallel Architecture and Compilation Techniques, Sep.

2012.

[14] J. Power, J. Hestness and M. S. Orr, “gem5-gpu: A Heterogeneous

CPU-GPU Simulator”, IEEE Computer Architecture Letters, DOI

10.1109/LCA.2014.2299539

[15] J Ma, J., Yu, L., John, M. Y., & Chen, T. (2015). MCMG simulator: A

unified simulation framework for CPU and graphic GPU. Journal of

Computer and System Sciences, 81(1), 57-71.

[16] S. Shen, S.Lee, C. Chen, “Full System Simulation with QEMU: an

Approach to Multi-view 3D GPU Design”, Circuits and Systems

(ISCAS), May, 2010.

[17] S. Raghav, C. Pinto, , M. Ruggiero, A. Marongiu, D. Atienza, L.

Benini, “Full System Simulation of Many-Core Heterogeneous SoCs

using GPU and QEMU Semihosting,” in Proceedings of the 5th

Annual Workshop on General-Purpose Processing with Graphics

Processing Units (GPGPU-5), pp. 101-109, Mar. 2012

[18] Arnau, Jose-Maria, Joan-Manuel Parcerisa, and Polychronis Xekalakis.

"TEAPOT: a toolset for evaluating performance, power and image

quality on mobile graphics systems." Proceedings of the 27th

international ACM conference on International conference on

supercomputing. ACM, 2013.

101

[19] Li, Sheng, et al. "McPAT: an integrated power, area, and timing

modeling framework for multicore and manycore architectures."

Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM

International Symposium on. IEEE, 2009.

[20] H. Kim, D. Yun, S. Ha, “Scalable and Retargetable Simulation

Techniques for Multiprocessor Systems”, CODES+ISSS pp 89-98 Oct,

2009.

[21] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald III, N. Beckmann, C.

Celio, and A. Agarwal, “Graphite: A distributed parallel simulator for

multicores”, In Proceedings of the 16th International Symposium on

High Performance Computer Architecture (HPCA), pp. 1–12, Jan.

2010.

[22] S. Lee, W. Ro, “Parallel GPU architecture simulation framework

exploiting work allocation unit parallelism”, IEEE International

Symposium on Performance Analysis of System and Software

(ISPASS), 2013

[23] Lee, Sangpil, and Won Woo Ro. "Parallel GPU Architecture

Simulation Framework Exploiting Architectural-Level Parallelism with

Timing Error Prediction.", IEEE Transactions on Computers,

10.1109/TC.2015.2444848

[24] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically

characterizing large scale program behavior”. In ASPLOS, 2002.

[25] T. E. Carlson, W. Heirman, and L. Eeckhout. “Sampled simulation of

multi-threaded applications” In ISPASS, 2013

102

[26] J. Huang, L. Nai, H. Kim and H. Lee, “TBPoint: Reducing Simulation

Time for Large-Scale GPGPU Kernels”, IEEE International

Conference on Parall and Distributed Processing Symposium (IPDPS),

pp 437-446, May. 2014.

[27] Z. Yu, et al. “GPGPU-MiniBench: Accelerating GPGPU

Micro-Architecture Simulation”, IEEE Transactions on Computers, doi.

10.1109/TC.2015.2395427

[28] K. Fang, Y. Ni, J. He, Z. Li, S. Mu, Y. Deng, “FastLanes: An FPGA

Accelerated GPU Micro-architecture Simulator”, IEEE International

Conference on Computer Design (ICCD), pp. 241-248, Oct. 2013.

[29] GPUOcelot, http://gpuocelot.gatech.edu/

[30] Lesson05 – 3D shapes, Lesson 09 – Moving bitmaps in 3D space,

Lesson16 – Cool Looking Fog

http://insanitydesign.com/wp/projects/nehe-android-ports/

[31] Rubik Cube Animation Example In Android,

http://www.edumobile.org/android/rubik-cube-animation-example-in-a

ndroid/

[32] http://comments.gmane.org/gmane.comp.emulators.m5.users/11513

[33] http://blog.imgtec.com/powervr/micro-benchmark-your-render-on-pow

ervr-series5-series5xt-and-series6-gpus

[34] Pin. A Binary Instrumentation Tool. http://www.pintool.org.

http://gpuocelot.gatech.edu/
http://insanitydesign.com/wp/projects/nehe-android-ports/
http://www.edumobile.org/android/rubik-cube-animation-example-in-android/
http://www.edumobile.org/android/rubik-cube-animation-example-in-android/
http://comments.gmane.org/gmane.comp.emulators.m5.users/11513
http://blog.imgtec.com/powervr/micro-benchmark-your-render-on-powervr-series5-series5xt-and-series6-gpus
http://blog.imgtec.com/powervr/micro-benchmark-your-render-on-powervr-series5-series5xt-and-series6-gpus
http://www.pintool.org/

103

[35] Yourst, Matt T. "PTLsim: A cycle accurate full system x86-64

microarchitectural simulator." Performance Analysis of Systems &

Software, 2007. ISPASS 2007. IEEE International Symposium on.

IEEE, 2007.

[36] MARSSx86: Micro-ARchitectural and System Simulator for x86 based

Systems. www.marss86.org

[37] Cain, Harold W., et al. "Precise and accurate processor simulation."

Workshop on Computer Architecture Evaluation using Commercial

Workloads, HPCA. Vol. 8. 2002.

[38] Mali-400 MP,

http://www.arm.com/products/multimedia/mali-cost-efficient-graphics/

mali-400-mp.php

[39] Samsung Exynos 4 Quad (Exynos4412),

http://www.samsung.com/global/business/semiconductor/file/product/

Exynos_4_Quad_User_Manaul_Public_REV1.00-0.pdf

[40] Odroid-X board,

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G13

3999328931

[41] Odroid-XU3 Board,

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G14

0448267127

[42] Arndale Board,

http://www.arndaleboard.org/wiki/index.php/Main_Page

http://www.marss86.org/
http://www.arm.com/products/multimedia/mali-cost-efficient-graphics/mali-400-mp.php
http://www.arm.com/products/multimedia/mali-cost-efficient-graphics/mali-400-mp.php
http://www.samsung.com/global/business/semiconductor/file/product/Exynos_4_Quad_User_Manaul_Public_REV1.00-0.pdf
http://www.samsung.com/global/business/semiconductor/file/product/Exynos_4_Quad_User_Manaul_Public_REV1.00-0.pdf
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G133999328931
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G133999328931
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
http://www.arndaleboard.org/wiki/index.php/Main_Page

104

[43] OpenCV, http://opencv.org/

[44] SystemC, http://accellera.org/downloads/standards/systemc

[45] AtomicSimpleCPU model in gem5,

http://www.m5sim.org/SimpleCPU

[46] ARM Semihosting Interface,

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0471

g/Bgbjjgij.html

[47] http://developer.Android.com/guide/components/fundamentals.html#C

omponents

http://opencv.org/
http://accellera.org/downloads/standards/systemc
http://www.m5sim.org/SimpleCPU
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0471g/Bgbjjgij.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0471g/Bgbjjgij.html
http://developer.android.com/guide/components/fundamentals.html#Components
http://developer.android.com/guide/components/fundamentals.html#Components

105

초록

복잡한 3D 게임을 처리하거나, 높은 반응성을 가지는 유저인터페이스

를 제공하기 위해서, 대부분의 임베디드 시스템에서 모바일 GPU 가 사용

되고 있다. 게다가, 모바일 GPU 의 계산 능력이 높아지고, GPU 에 대한

프로그래밍이 가능해짐에 따라, 모바일 GPU 가 하나의 보조 연산 장치로

서 여겨지고 있다. 모바일 GPU 의 경우, 서버 환경과 달리 제약된 파워

상에서 수행되어야 하므로, 대게 적은 수의 코어를 포함한다. 그러므로,

주어진 성능과 파워 제약 조건을 만족시키기 위해서는 CPU 와 GPU 모

두를 효율적으로 활용하는 것이 매우 중요하다.

CPU/GPU 이종 병렬 아키텍쳐를 설계하는 초기 단계에서 SW 에 대한

오류를 검출하거나 또는 다양한 설계 공간 탐색을 위해서, 가상 프로토타

이핑 시스템을 사용하는 것이 일반적이다. 가상 프로토타이핑 시스템에서

는 대상하는 시스템의 모든 구성요소에 대한 시뮬레이션 모델을 포함하

므로, CPU 와 GPU 가 포함되는 이종 병렬 아키텍쳐를 위해서는 GPU 에

대한 시뮬레이션 모델이 반드시 필요하다. 그러나 일부 GPU 의 경우, 시

뮬레이션 모델이 존재하지 않고, 있는 경우에도 주로 마이크로 아키텍쳐

수준에서의 아키텍쳐 탐색을 위한 목적으로 개발되어, 시뮬레이션 성능이

좋지 않다.

이러한 문제를 해결하기 위해서, 본 논문에서는 실제 하드웨어와 시뮬

레이터를 결합하는 GPU-in-the-loop (GIL) 시뮬레이션 기법을 제안하려고

106

한다.

제안하는 방법의 경우, 다양한 수준에서 CPU 와 GPU 간의 연동이 가

능한데, 첫번째 방법으로 시스템 콜 수준에서 시뮬레이터와 GPU 보드 간

의 연동하는 기법을 제안한다. 제안하는 기법에서는 대상 시스템에 있는

공유 메모리가 시뮬레이터와 보드 상에 존재하는 서로 다른 두개의 메모

리를 통해 시뮬레이션이 되므로, 두 메모리 간의 일관성을 유지하기 위한

메모리 동기화가 가장 중요한 문제이다. 시스템 콜 기반 기법에서 이 문

제를 다루기 위해서, 주소 변환 테이블을 통해서 공유 되는 메모리 영역

에 대한 정보를 저장하고, 실제 보드 상의 GPU 를 수행시키는 System

Call 이 요청될 때마다, 해당 테이블을 이용하여 공유 되는 영역에 대한

동기화가 수행된다. GPU 의 수행을 시뮬레이터 상에서 모델링하기 위해,

인터럽트 기반 모델링 기법을 제안하였는데, 이 기법에서는 보드에서 측

정된 GPU 수행시간을 고려하여, 시뮬레이터 상에서 GPU 인터럽트를 발

생하도록 한다.

두번째 방법으로 API 수준에서 시뮬레이터와 보드 간의 연동하는 기법

을 제안한다. 기존 Software Stack 에 포함된 디바이스 드라이버가 시뮬레

이션 되는 경우, 다양한 GPU 를 지원하도록 확장하는 것이 어려우므로,

API 기반 기법에서는 시뮬레이션 용도로 사용되는 새로운 라이브러리를

정의하고, 기존 SW stack 상에 존재하는 GPU 라이브러리를 대체하도록

하여, 디바이스 드라이버가 시뮬레이션 되지 않도록 한다. 그리고 API 수

행시간을 시뮬레이터 상에서 모델링하기 위해서, 시뮬레이션을 위한 새로

107

운 디바이스 드라이버를 정의하여, 해당 드라이버 내에서 sleep 함수를 호

출하여, 보드에서 측정된 API 시간이 시뮬레이터상에 반영되게 된다.

현존하는 GPU API 중에서, 본 논문에서는 가장 많이 사용되는 OpenCL,

CUDA 그리고 OpenGL ES API 에 대한 API 기반 시뮬레이션 기법을 제안

한다. 그리고 올바른 시뮬레이션을 위해서, 비동기 동작, 멀티프로세스 지

원, 복잡한 데이터 구조에 대한 메모리 동기화와 같은 어려운 문제들을

다양한 기법들을 통해 해결하였다.

실험 결과를 통해서, 제안된 기법이 적절한 수준의 정확도를 보장하면

서, 빠른 시뮬레이션 성능을 제공할 수 있음을 확인할 수 있다. 그러므로,

제안된 기법은 SW 개발 용도뿐만 아니라, 시스템 수준에서의 성능 예측

을 위한 용도로서 사용이 가능하다. 게다가, 제안된 기법의 경우, 실제 하

드웨어가 사용되므로, GPU 에 대한 시뮬레이터가 제공되지 않는 경우에

도 CPU/GPU 이종 병렬 시스템을 위한 가상 프로토타이핑 시스템을 구축

하는 것이 가능하다.

주요어 : CPU/GPU 이종 병렬 플랫폼, GPU 시뮬레이션, 가상 프로토타

이핑 시스템, GPU-in-the-loop 시뮬레이션, 시스템 콜, API

학 번 : 2009-20750

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Thesis Organization

	Chapter 2 Related Works
	2.1 Acceleration techniques for GPU simulation
	2.1.1 Parallel Simulation
	2.1.2 Sampled Simulation
	2.1.3 Statistical Simulation
	2.1.4 HW-accelerated Simulation

	2.2 CPU/GPU Simulation framework
	2.3 Summary

	Chapter 3 GPU-in-the-loop Simulation
	3.1 Basic Idea
	3.2 Different levels of CPU/GPU Interaction
	3.3 Detection Mechanism
	3.4 Memory Coherency Problem
	3.5 Overall GIL simulation flow

	Chapter 4 System call- level GIL Simulation
	4.1 Target System
	4.1.1 Typical Execution Scenario of the Systems

	4.2 Memory Synchronization
	4.2.1 Address Translation Table

	4.3 Timing Modeling
	4.3.1 Interrupt Modeling
	4.3.2 Regression based timing correction for GPU time
	4.3.3 An Example of System-level GIL Simulation Scenario

	4.4 Experiments
	4.4.1 Parallelization for diff operation
	4.4.2 Simulation Time Analysis
	4.4.3 Contention overhead in Pixel Processors (PP)
	4.4.4 Internal System Behavior Profiling
	4.4.5 Accuracy Evaluation

	4.5 Summary

	Chapter 5 API-Level GIL Simulation
	5.1 Differences between API-level and System call-level techniques
	5.1.1 Synthetic Library

	5.2 Timing Modeling
	5.2.1 Regression-based compensation for timing error

	5.3 Memory Synchronization
	5.4 GPGPU API (CUDA & OpenCL) Implementation Case
	5.4.1 Asynchronous Behavior Modeling
	5.4.2 Implementation Issues
	5.4.3 Experiments
	5.4.4 Simulation Overhead

	5.5 OpenGL ES Implementation Case
	5.5.1 Background
	5.5.2 Additional modification for SW stack
	5.5.3 Memory synchronization
	5.5.4 Multi-Process Support
	5.5.5 High-level Timing Modeling for other GPUs
	5.5.6 Porting To a New GPU Board
	5.5.7 Experiments

	5.6 Summary

	Chapter 6 Conclusion and Future Work
	Bibliography
	초록

<startpage>13
Chapter 1 Introduction 1
 1.1 Motivation 1
 1.2 Contribution 4
 1.3 Thesis Organization 6
Chapter 2 Related Works 7
 2.1 Acceleration techniques for GPU simulation 7
 2.1.1 Parallel Simulation 8
 2.1.2 Sampled Simulation 9
 2.1.3 Statistical Simulation 11
 2.1.4 HW-accelerated Simulation 11
 2.2 CPU/GPU Simulation framework 12
 2.3 Summary 15
Chapter 3 GPU-in-the-loop Simulation 18
 3.1 Basic Idea 18
 3.2 Different levels of CPU/GPU Interaction 20
 3.3 Detection Mechanism 21
 3.4 Memory Coherency Problem 23
 3.5 Overall GIL simulation flow 23
Chapter 4 System call- level GIL Simulation 26
 4.1 Target System 26
 4.1.1 Typical Execution Scenario of the Systems 27
 4.2 Memory Synchronization 29
 4.2.1 Address Translation Table 30
 4.3 Timing Modeling 32
 4.3.1 Interrupt Modeling 33
 4.3.2 Regression based timing correction for GPU time 34
 4.3.3 An Example of System-level GIL Simulation Scenario 35
 4.4 Experiments 37
 4.4.1 Parallelization for diff operation 37
 4.4.2 Simulation Time Analysis 39
 4.4.3 Contention overhead in Pixel Processors (PP) 40
 4.4.4 Internal System Behavior Profiling 41
 4.4.5 Accuracy Evaluation 42
 4.5 Summary 43
Chapter 5 API-Level GIL Simulation 44
 5.1 Differences between API-level and System call-level techniques 45
 5.1.1 Synthetic Library 47
 5.2 Timing Modeling 49
 5.2.1 Regression-based compensation for timing error 51
 5.3 Memory Synchronization 52
 5.4 GPGPU API (CUDA & OpenCL) Implementation Case 55
 5.4.1 Asynchronous Behavior Modeling 55
 5.4.2 Implementation Issues 58
 5.4.3 Experiments 61
 5.4.4 Simulation Overhead 68
 5.5 OpenGL ES Implementation Case 69
 5.5.1 Background 69
 5.5.2 Additional modification for SW stack 71
 5.5.3 Memory synchronization 72
 5.5.4 Multi-Process Support 77
 5.5.5 High-level Timing Modeling for other GPUs 79
 5.5.6 Porting To a New GPU Board 81
 5.5.7 Experiments 83
 5.6 Summary 92
Chapter 6 Conclusion and Future Work 94
Bibliography 98
ÃÊ·Ï 105
</body>

