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COLLEGE OF ENGINEERING 

SEOUL NATIONAL UNIVERSITY 

 

     In this dissertation, we describe the highly sensitive pressure/strain sensor with 

nanowire composite for skin-attachable and wearable electronics. Multiscale 

structured nanowire composite composed of silver nanowires (AgNWs) and 

polydimethylsiloxane (PDMS) was designed and fabricated for the high 

performance multifunctional sensor. Based on this multiscale structured nanowire 

composite, high performance pressure/strain sensors were fabricated and 

characterized. 

     Nowadays, flexible and stretchable physical sensors such as pressure, strain, 

and temperature sensors have been widely investigated for the application to the 

wearable electronics. Especially, high performance pressure/strain sensors which 

show high sensitivity, fast response time, and high cycle stability are required. Due 

to these requirements, we developed the nanowire composite, the flexible and 
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stretchable electrode, and introduced the multiscale structure with nanometer-sized 

rough surface and micrometer-sized wavy structure to the nanowire composite. By 

integrating this nanowire composite and polymeric dielectric layer/printed Ag 

electrode, we fabricated capacitive-type pressure sensors and arrays. High pressure 

sensitivity (S >3.8 kPa-1), fast response and relaxation time (t <0.15s), high cycle 

stability (1500-cycle of repeated loading/unloading of pressure and 5000-cycle of 

repeated bending with bending radius of 3mm), and multiple sensing such as 

pressure and bending were obtained. Nanowire composite with multiscale structure 

can be easily scaled up for a large area sensor array and sensor arrays with 3 × 3 and 

5 × 5 pixels were fabricated. The sensor arrays can detect the spatial distribution of 

the applied pressure with the sensitivity as high as that of the single sensor. Wearable 

fingertip pressure sensor was fabricated to demonstrate the fingertip pressure sensing 

prototype device. We attached each pressure sensor on the four fingers except a little 

finger and measured the capacitance change by grabbing plastic beaker.  

We developed simple method to control the pressure sensitivity of the sensor. 

Simply, by controlling the mixing ratio of the matrix PDMS of the nanowire 

composite, we can tune the pressure sensitivity of the sensor. Three types of PDMS 

with different mixing ratio, a 5:1, 10:1, and 15:1 mixture of liquid PDMS and curing 

agent, were used to fabricate nanowire composites and sensors. Owing to the 

difference of Young’s modulus and the shape of the crest area of nanowire 

composites with different mixing ratio, pressure sensors showed different pressure 

sensitivity according to different mixing ratio.  

We investigated the highly bendable pressure sensor with high bending 

stability and pressure sensing ability in the bending state. By introducing bending 

sensing part beside the pressure sensing part, the bendable sensor can detect both 
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pressure and bending and distinguish the pressure and bending. We used the surface 

functionalization method and the PDMS spacer to demonstrate the bendable sensor. 

Strong siloxane bonding between the surface functionalized bottom plane, PDMS 

spacers and patterned nanowire composite was obtained and based on this bonding, 

our sensor showed high bending stability. Pressure sensitivity of the bendable sensor 

was increased up to 9 kPa-1 owing to the air gap from the PDMS spacer. The bendable 

sensor can detect ultra-low pressure of 0.7 Pa and show fast response and relaxation 

time below 0.075s. Even in the bending state, the bendable sensor can detect the 

normal pressure. By using this bendable sensor, we fabricated the wearable sensor 

to measure the wrist pulse and vibration of smart phone. Sensor array was also 

fabricated and we estimated the pressure in the bending state by calculating the 

capacitance change. We demonstrated the pressure sensitive transistor (PST) by 

integrating the bendable sensor and prined single-walled carbon nanotube thin film 

transistor (SWCNT TFT). PST can be operated in low voltage below 5V and ultra-

low power consumption of PST below 15 nW can be achieved (𝐼𝐷𝑆 < 15nA, 

𝑉𝐷𝑆= −1V). By using the PST and commercially available electronic devices such 

as LED chip, resistor, OP amp and battery, we fabricated the user inter-active 

pressure sensing device and pulse monitoring device. 

     Finally, we developed the stretchable multifunctional sensor which can detect 

the 3-axis force, the normal force and shear force, and strain by using nanowire 

composite for the application to the electronic skin. By introducing various sensing 

component to the sensing system, we can obtain multifunctional sensor to mimic 

human tactile receptors and skin. For the 3-axis sensing, four individual capacitive 

sensors composed single sensing cell. Our sensor can sense and distinguish the 

pressure and shear force by analyzing the capacitance change of four individual 
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capacitive sensors. For the strain sensing, flat nanowire composite was used. During 

the stretching process, the flat nanowire composite was deformed and this 

deformation resulted in the resistance change of the flat nanowire composite. Our 

sensor can detect the strain by analyzing the resistance change of the flat nanowire 

composite. 
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Chapter 1 

 

 

Introduction 

 

1.1 Wearable electronics 

 

Wearing electronic devices with multi-function is one of wishes of many people 

and engineers and now being actualized through wearable electronics and 

technologies. Technologies for the realization of wearing computers and integrated 

sensors have been widely investigated and these technologies will be accomplished 

in near future. Wearable electronics began from the development of wearable 

computers and wearable computers are electronic devices that are worn on the 

clothing or our body [1]. Prototype wearable electronics have been developed and 

commercialized, for example, displaying textiles from CuteCircuit, wearable mouse 

(Mycestro), smart watches (Fitbit, Galaxy gear, etc.) and Google Glass. And much 

more wearable electronics will be developed and commercialized based on these 

prototypes. Wearable electronics can be applied to various areas. Main application is 

the wearable computers for infotainment. The aim of wearable computers is the 

ubiquitous computers and various information can be communicated from wearable 

computers to people or from people to wearable computers. Advanced human-

machine interface, wearable sensors and health monitoring system, pattern 

recognition and augmented reality can be included in the researching area of 
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wearable computers [1].  

Among them, wearable sensors and health monitoring systems have been 

widely investigated. For these wearable electronics, physical or mechanical sensors 

are necessary as core devices. Sensors which can detect the movement of human 

body or muscles (strain or pressure from body or muscles), the pulse, blood pressure, 

heat and infrared radiation are generally used and applied to these wearable 

electronics (Figure 1.1) [2-7]. Electrograms such as electrocardiography (ECG), 

electromyography (EMG), and electroencephalography (EEG), which measure 

electrical signals from the heart, muscles, and brain, respectively, have been used as 

measuring tools and sensors [8] for diagnosis, therapy, and monitoring of health [9]. 

Conventional sensors using these electrograms are rigid and bulky mostly. Due to 

rigidity and large-bulk, these sensors have some limits to realize the skin-mountable 

and conformable wearable electronics. Recently, physical sensors with light weight, 

flexibility, and stretchability have been demonstrated [2-7, 10-12]. These sensors 

include various types of sensors such as pressure, strain, and temperature sensors. 

By integrating these sensors with communication modules and self-sustainable 

power supply devices, wearable sensors and health monitoring systems which can 

be mounted on the skin have been demonstrated to detect physiological signals of 

human body [4, 6-7]. Also, by integrating physical sensors with chemical or bio 

sensors, electronic skins which mimic the human skin or show superiority beyond 

the human skin can be realized and applied to the prosthetic skin, robotic skin, patient 

rehabilitation, firefighter uniform, and military armor (Figure 1.1(c)).  
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Figure 1.1 Wearable sensors and electronic skin. (a) Pulse monitoring sensors (Reference [4]). 

(b) Motion detection sensor (Strain sensor) (Reference [38]). (c) Electronic skin (Reference 

[3,6]). 
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1.2 Pressure sensor 

 

Pressure is the force applied perpendicular to the surface of an object per unit 

area over which that force is distributed. Pressure is ubiquitous in nature and human 

activity. For example, atmospheric, gas and liquid pressure induced from the Earth’s 

gravity, human body related pressures such as blood and intraocular pressure, gentle 

touch, hug, clap, etc., and crash between two objects can be pressure. Pressure 

sensors are pressure measuring devises and transducers that can operate in a signal 

transduction [13-14]. The human body related pressures are mainly distributed in 

low- (<10 kPa) to midum-pressure ranges (10-100 kPa) [13-14] and the human skin 

generally can detect these pressures (Figure 1.2). The detection of the pressures of 

these ranges is crucial for the wearable health monitoring system and electronic skins 

[13-14]. 

Flexible and stretchable pressure sensors have been researched widely as a core 

device for the wearable electronics due to their versatile applications such as 

wearable health monitoring system, electronic skins and human-machine interfaces 

[4-6,8,13-32]. Most of pressure sensors mimic the tactile receptor of the human skin 

which shows high pressure sensitivity, fast response time, mechanical softness and 

high stability and these things are the key parameters of pressure sensors. The 

sensitivity is one of the most important parameters of pressure sensors. The pressure 

sensitivity is defined as S = dX/dP, where S is the sensitivity and X and P denote the 

quantitative output signal and applied pressure, respectively [13]. High pressure 

sensitivity (S > 0.1 kPa-1) is desirable to pressure sensors, because pressure 

sensitivity determines the measurement accuracy and effectiveness of the device and 

high pressure sensitivity means high accuracy and effectiveness [13]. The response 
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time is also an important parameter of pressure sensors. The response time is defined 

as the time consumption of a pressure sensor during response processes, from 

inputting pressure to producing a signal output [13]. Quick response of the pressure 

sensor from the external pressure or mechanical stimulus is desirable and needed 

(response time < 0.5s). Mechanical softness of pressure sensors is an important 

parameter for realization of the wearable electronics. Electronic devices with 

mechanical flexibility of stretchability only can realize the true wearable electronics 

without any inconvenience. Lastly, the high stability of pressure sensors must be 

satisfied. Pressure sensors must be robust and stable to repetitive pressures and 

mechanical deformations such as bending or stretching. Also, low power 

consumption of pressure sensors must be satisfied for the wearable electronics.  

Various pressure sensing and transduction mechanisms have been demonstrated. 

First transduction mechanism is piezoresistive type. Piezoresistive sensors transduce 

a change in the resistance of a device into a measurement of pressure and have been 

investigated extensively because of their simple device structures and easy read-out 

mechanism [13-14]. The change of the resistance can be derived from several factors. 

Typically, the change of contact resistance between two materials and the change of 

the total resistance of conducting composite due to change of the distance between 

conducting particles have been widely used as piezoresistive sensing mechanisms. 

Piezoresistive polymer composites have been extensively investigated recently and 

piezoresistance of composite materials depends on the composition, morphology, 

and pressure range of the system. Mainly the modification of tunneling resistance 

between fillers and the break-up and reforming of percolating pathways have been 

used as mechanisms. In early days, PSR (pressure sensitive rubber) material have 

been widely used to demonstrate electronic skins. PSR has conducting carbon 
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particle fillers and elastomeric matrix. Someya and coworkers have demonstrated 

large area electronic skin by integrating PSR with OFETs (organic field effect 

transistors) [15]. Javey and coworkers also have demonstrated large area electronic 

skin by integrating PSR with semiconducting nanowires and SWCNTs (single-

walled carbon nanotubes) [16-17]. Javey and coworkers demonstrated user-

interactive electronic skin for pressure visualization by integrating pressure sensor 

arrays with OLEDs (organic light-emitting diodes) [17]. Recently, nano materials 

such as graphene, gold nanowire, PEDOT:PSS (poly(3,4-ethylenedioxythiophene–

poly(styrenesulfonate)) and CNTs have been used by integrating with microstructure 

to surpass the sensing properties of PSR [18-21].  

Second transduction mechanism is capacitive type. Capacitive sensors 

transduce a change in the capacitance of a device into a measurement of pressure and 

have been investigated extensively because of their simple device structures and low 

power consumption [13-14]. The capacitance (C) of a parallel plate capacitor is given 

by: C = ε0εr A/d, where ε0 is the free space permittivity, εr is the relative permittivity, 

A is the area, and d is the distance between electrodes [22]. The dielectric materials 

for the capacitive sensors must show deformable properties to the external 

mechanical stimulus and based on this reason elastomeric materials have been 

widely used as dielectric materials. Simply, the distance d is changed from the 

applied pressure and this results in the change of the capacitance. Dielectric materials 

with elastomeric property and low modulus such as PDMS and Ecoflex have been 

used and stretchable and transparent capacitive sensors have been demonstrated by 

using these materials with CNTs or AgNWs (silver nanowires) [23-24]. However, 

these sensors show relatively low pressure sensitivity (S <0.1 kPa-1) due to their 

limited compressibility. Low pressure sensitivity of capacitive sensors was overcame 
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by introducing microstructure to the dielectric material. Owing to the microstructure, 

the dielectric material can be compressed more easily and the pressure sensitivity of 

the capacitive sensors was enormously enhanced (S >0.5 kPa-1) [25]. Capacitive 

sensors also can be integrated with transistors as a dielectric layer or gate insulator. 

Bao and coworkers demonstrated pressure sensitive transistors by integrating the 

microstructured dielectric layer with organic transistors [25-26] and they showed 

high pressure sensitivity. Zhu and coworkers also demonstrated the pressure 

sensitive transistor with suspended gate structure and organic transistor and this 

sensor showed ultra-high pressure sensitivity (S ~192 kPa-1) [27]. However, 

operation voltages for these pressure sensitive transistors are somewhat high (Vgate > 

60V) and power consumptions are also high for the application to wearable 

electronics. 

Third transduction mechanism is piezoelectric type. Piezoelectric sensors 

transduce the generation of electrical charges of a device into a measurement of 

pressure and have been investigated extensively because of their high sensitivity and 

fast response time [13-14]. Piezoelectricity means the electrical charge generation in 

certain materials from the applied mechanical stress to the materials. To generate 

electrical charges, electric dipole moments must occur in materials when external 

pressure or mechanical stress is applied. PZT (lead zirconate titanate) and ZnO (zinc 

oxide) have been widely investigated as piezoelectric inorganic materials [28-29]. 

Baik and coworkers have demonstrated piezoelectric nanogenerator and pressure 

sensor by using ZnO hollow hemisphere [30]. For flexible pressure senor, polymer 

materials with piezoelectric effect also have been investigated. PVDF 

(Poly(vinylidenedifluoride)) and its copolymer have been widely used due to their 

flexibility and easy processing (solubility in solvent) [31]. These piezoelectric 



 

 8 

pressure sensors showed high sensitivity and fast response time and used to measure 

the vibrations of sound and slip. However, these sensors are hard to detect static 

pressure and exhibit drift in sensor response over time [14].  

Other types of pressure sensors also have been demonstrated, including 

triboelectric sensor and optical sensor. Triboelectric pressure sensors use the 

principle of triboelectric effect. The triboelectric effect is a contact-induced 

electrification in which a material becomes electrically charged after it is contacted 

with a different material through friction and this triboelectric effect happens every 

day in our life [32-33]. Wang and coworkers applied this common effect to pressure 

sensors and nanogenerators, inversely [32-33]. Optical pressure sensors can detect 

the pressure from the modulation of the light intensity [14]. These sensors consist of 

the light source, transmission medium and light detector. Due to the deformation of 

the transmission medium for the applied pressure, the light intensity is modulated 

and the modulated light intensity was detected through the light detector. Force-

sensitive waveguides or flexible optical fibers has been used for optical pressure 

sensors [34-36].  
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Figure 1.2 Pressure ranges about each application and human skin. 

 

 

 

 

Figure 1.3 Various types of pressure sensors. (a) Piezoresistive-type sensor (Reference [18]). 

(b) Capacitive-type sensor (Reference [25]). (c) Piezoelectric-type sensor (Reference [28-

29]). (d) Triboelectric-type sensor (left) and optical-type sensor (right) (Reference [33,36]). 
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1.3 Strain sensor 

 

Strain is the deformation of the material when external force is applied to the 

material. Strain is also ubiquitous in nature and human activity like pressure. When 

we move our body, we bend a paper or plastic, we pull clothes or a rubber, or 

materials are pulled or pressed, strain occurs every time. Strain sensors are strain 

measuring devices and transducers that can operate in a signal transduction [8,37]. 

Recently, flexible and stretchable strain sensors have been researched widely due to 

their versatile applications such as human-motion monitoring and electronic skins. 

Most of strain sensors have been intensively researched as main devices for the 

human-motion monitoring. Strain levels for monitoring human-body motions can be 

classified two categories: 1) detection of large scale level motions (e.g., strains 

during bending motions of the legs, arms, and hands) and 2) detection of small scale 

level motions (e.g., strains during breathing, swallowing, and speaking) [8,37-39]. 

Detection ability of strain sensors about these strain levels is of great importance for 

the application in human-motion monitoring for medical area such as diagnostics for 

damaged vocal cords, respiratory disorders, angina, and evaluating the inner spatial 

gap between bones, determining the degree of change of spinal posture, monitoring 

Parkinson’s disease, detection of posture and movement, analyzing facial expression 

changes, and monitoring skin sclerosis [8,37]. The sensitivity of the strain sensor is 

referred to as the gauge factor (GF). GF is defined as GF= (dX/X0)/ε, where X denotes 

the quantitative output signal (X0 means the initial value) and ε denotes the strain [37]. 

Various strain sensing and transduction mechanisms have been demonstrated. 

First transduction mechanism is piezoresistive type. This sensing type is widely 

investigated in both pressure and strain sensors. Conventional Si and metals based 
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strain sensors showed high sensitivity. However, these sensors can be used in very 

small strain sensing range and have low flexibility and stretchability [8,40]. Recently, 

various nanomaterials have been investigated for piezoresistive strain sensors with 

high flexibility and stretchability. Hata and coworkers demonstrated a new type of 

stretchable CNT strain sensor [41]. They used vertically aligned SWCNT thin films 

and arranged SWCNT films side by side. When these arranged films were stretched, 

the deformation of films was similar to the structural deformation of a string cheese 

when peeled. Their CNT strain sensor can be stretched up to 280% and showed high 

durability (10,000 cycles at 150% strain), fast response (delay time, 14 ms), and low 

creep (3.0% at 100% strain) [41]. Park and coworkers fabricated a piezoresistive 

strain sensor by using nanowire composite of AgNW and PDMS [42]. Their strain 

sensor showed high and tunable gauge factor of 2 to14 and a high stretchability up 

to 70%. Other nanomaterials graphene or PEDOT:PSS based piezoresistive strain 

sensors were also demonstrated [43-44].  

Second transduction mechanism is capacitive type. Stretchable capacitive 

strain sensors generally consist of two layers of stretchable electrodes and 

sandwiched elastomeric dielectric layer [8,23,45]. Owing to the elastomeric 

dielectric layer, most of these sensors can detect both the strain and the pressure 

[23,45]. Bao and coworkers fabricated capacitive strain sensors by using CNT and 

PDMS [23]. Their sensor was transparent and can be stretched up to 150%. Zhu and 

coworkers fabricated capacitive strain sensors by using AgNW and PDMS [45]. 

Their sensor showed the multi-functionality. Their sensor can detect the pressure, 

strain, and touch. They also demonstrated wearable applications of the strain sensor 

such as monitoring human motions of walking running, squatting, and jumping. 

 Third transduction mechanism is piezoelectric type. Piezoelectric strain 
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sensors generally showed very high sensitivity based on the piezoelectric materials 

and nanomaterials [46-48]. Piezoelectric strain sensors using P(VDF-TrFE) and ZnO 

NWs have been investigated recently [46-48]. Especially, strain sensors with ZnO 

NWs showed ultra-high sensitivity [47-48]. Yang and coworkers reported a flexible 

strain sensor with vertically aligned ZnO NWs arrays and this sensor showed ultra-

high gauge factor of 1813 [47]. Wang and coworkers developed strain sensors with 

a single ZnSnO3 NW and this sensor showed an ultra-high gauge factor of 3740 [48]. 

Due to the limited flexibility, stretchability, and detection of low strain level, 

piezoelectric sensors can be restrictively applied to wearable sensors [8]. Therefore, 

piezoelectric sensors with high stretchability must be investigated. 
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Figure 1.4 Strain sensors. (a) Piezoresistive strain sensor (Reference [41]). (b) Capacitive 

strain sensor (Reference [23]). (c) Piezoelectric strain sensor (Reference [48]). 
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1.4 Silver nanowire and Nanowire composite 

 

A nanowire is nano-meter scale (10-9 meters) material with a wire-like shape 

or a rod-like shape. The diameter of the nanowire is a nano-meter scale and the length 

of the nanowire is much larger than the diameter, typically micro-meter scale (10-6 

meters). The ratio of the length to diameter is greater than 100~1000. Due to this 

aspect ratio, nanowires are often referred to as one-dimensional (1-D) materials. 

Nanowires show interesting properties which are not observed in bulk materials as 

most nano-materials. Many different types of nanowires have been researched 

including semiconducting (Si, GaN, etc.), metallic (Ag, Au, Ni, etc.) and insulating 

(SiO2, TiO2, etc.). 

Among these nanowires, metallic nanowires have gained exponential interest 

recently for the application to the transparent, flexible or stretchable electronics [49-

64]. Owing to the high electrical and thermal conductivity of bulk silver, the 

synthesis of AgNWs (Silver Nanowires) have received great attention. AgNWs can 

be easily synthesized via the polyol reduction process of AgNO3 [49-54]. Typically, 

heated ethylene glycol (EG) serves as both the solvent and a precursor to the reducing 

agent [51], with solutions of AgNO3 and poly(vinyl pyrrolidone) (PVP) (both also 

in EG) being simultaneously added using a two-channel syringe pump [50]. AgNWs 

with high aspect ratio have been applied to the transparent and flexible electrode due 

to their high conductivity and optical transmittance from their random networks [52-

54]. AgNWs film shows typically the sheet resistance of 20~100 ohms/sq and 

transmittance of 80~90% [52-54]. These AgNWs film is flexible and even foldable 

maintaining their transmittance and resistance [53-54] and based on these properties 

AgNW will be the key material for the foldable displays.  
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Also the AgNW is applied to highly stretchable and conducting electrode by 

depositing AgNW film on the stretchable substrate or embedding AgNWs into the 

stretchable matrix [55-57]. Stretchable electrodes based on AgNWs can be stretched 

up to 50% with very small change of conductance. Ko et al. showed the synthesis of 

very long AgNWs and this AgNWs on the Ecoflex substrate can be stretched up to 

460% with small change of conductance [55]. Stretchable and flexible electrodes by 

embedding AgNWs into the stretchable matrix have been developed to complement 

the weak adhesion property of AgNWs and increase the cyclic robustness of AgNWs 

(Nanowire composite is generally composed of nanowires, the fillers, and matrix 

materials. AgNWs embedded PDMS is also the nanowire composite, because the 

AgNWs is the fillers and PDMS is the matrix. So, the AgNWs embedded PDMS is 

referred to as nanowire composite in this dissertation). PDMS (Polydimethylsiloxane) 

have been widely used as a stretchable matrix for the nanowire composite [57-60]. 

PDMS is a polymeric organosilicon compound that is well known as a silicone 

rubber due to its good elastic properties. PDMS is optically transparent, electrically 

non-conductive and mechanically stretchable. Also due to its non-toxic and bio-

compatible properties, PDMS is widely investigated for the biomedical application 

[61-62]. Elastic modulus of the PDMS can be easily controlled by changing the 

mixing ratio of the liquid PDMS and crosslinking agent material [63]. Simple tuning 

method of the elastic modulus of PDMS make the application to the various 

stretchable electronics suitable. Based on these properties of PDMS, PDMS is one 

of the most famous materials in the field of flexible/stretchable electronics and 

wearable electronics.  

     Due to the robustness and stretchability of the nanowire composite, AgNWs 

embedded PDMS, nanowire composite have been applied to wearable electronics 
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and stretchable electronics. Also various mechanical sensors such as strain sensor, 

pressure sensor and bending sensor have been fabricated using nanowire composite 

[58,64].  

 

 

 

Figure 1.5 (a), (b) SEM image of AgNW. (c) Image of PDMS. (d) Chemical formula of 

PDMS. (e) Image of nanowire composite (multiscale structured AgNW embedded PDMS). 

(f) SEM image of nanowire composite. 
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1.5 Organization of this dissertation 

 

This Ph.D. dissertation will present the studies on the flexible and stretchable 

multifunctional sensors and their applications in wearable sensing and health 

monitoring systems. Motivated by the urgent demand for the wearable 

multifunctional sensor for wearable healthcare devices and electronic artificial skins, 

we developed multifunctional sensors which can detect the pressure and strain by 

using the nanowire composite and printed electronics. By introducing the multiscale 

structure to the nanowire composite and air gap between the nanowire composite and 

dielectric layer, we can obtain highly sensitive pressure sensors. 

This thesis is composed of five chapters including Introduction and 

Conclusion. 

Chapter 1 introduces the concept and current status of wearable electronics, 

pressure and strain sensors, and nanowire composite.  

Chapter 2 explains our approaches for the highly sensitive and flexible 

pressure sensors with tunable sensitivity. We fabricated the nanowire composite with 

multiscale structure and integrated this composite with solution-processed polymer 

dielectric layer/Ag electrode to demonstrate the capacitive pressure sensor.  

Chapter 3 describes the bonding method for the realization of the bendable 

multifunctional sensor and a new method for the pressure sensitive transistor. We 

introduced the surface functionalization and spacer for the bendable sensor and the 

floating gate structure for the low voltage operation and low power consumption of 

the pressure sensitive transistor.  

Chapter 4 covers the stretchable multifunctional sensor which can detect the 

pressure, strain, and shear force. This sensor was fully fabricated by using nanowire 
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composite and PDMS.  

Chapter 5 summarizes the development of the highly sensitive flexible 

pressure sensor, the bendable sensor using the bonding method, and the stretchable 

multifunctional sensor. 
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Chapter 2 
 

 

Multiscale structured nanowire composite for 

flexible pressure sensor 
 

 

 

2.1. Highly sensitive capacitive pressure sensor 

 

2.1.1 Introduction 
 

 
Flexible, bendable or stretchable pressure sensors have gained exponential 

interest recently, because of their versatile application to the human oriented future 

technologies such as electronic skins [1-4], wearable healthcare monitors [5-8], 

prosthetic skins [2,9,10], patient rehabilitation [11-12], robotic skins [13-15] and 

touch interfaces [16-17]. For the realization of most of the aforementioned 

technologies that mimic human skin or human tactile receptors, highly sensitive 

pressure sensors for low pressure-regime (<10 kPa, gentle touch) [18] with 

mechanical flexibility or strecthability are required. Various sensing mechanisms 

have demonstrated the possibility to fabricate highly sensitive and flexible pressure 

sensors. They includes piezoresistive sensing [5,19-24], piezoelectric sensing [25-

27], triboelectric sensing [27,28], and capacitive sensing mechanisms [9,16,30-34]. 

The piezoresistive sensors based on pressure sensitive rubber (PSR) have been 

widely investigated by being integrated with organic field effect transistors [1,4,15] 

or inorganic semiconducting nanowire-based transistors [3] for large area artificial 

electronic skins.      
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Recently, a PSR based pressure sensor array fabricated with semiconducting 

carbon nanotube transistors and organic light-emitting diodes [35] and a 

piezoelectric nanowire light-emitting diode-based pressure sensor array [27] 

demonstrate the real-time visualization of pressure mapping. However, vacuum 

processes are needed for these sensor arrays and PSR based sensors are susceptible 

to hysteresis and show low stability [13,36]. 

Capacitive pressure sensors with elastomeric dielectric materials also have 

been widely investigated [17,30,32,34]. The elastomeric dielectric layer is deformed 

(e.g., the thickness of the dielectric layer is reduced) when an external pressure is 

applied to the sensor and this deformation induces the capacitance change of the 

sensor. Various metals (gold, silver) or liquid metal have been used as electrodes of 

the capacitive pressure sensor [17,34]. Nanomaterials such as silver nanowires 

(AgNWs) or carbon nanotubes which have been widely investigated for stretchable 

electronics were also used with elastomeric dielectric layers for stretchable 

capacitive pressure sensors [16,30,32,37]. Although these sensors have mechanical 

stretchability, their pressure sensitivity is low. To enhance the pressure sensitivity of 

capacitive-type sensors, recently, microstructured elastomeric dielectric layers have 

been introduced and the pressure sensors with them show high pressure sensitivity 

and mechanical flexibility [9,31]. By integrating organic field effect transistors with 

the microstructured elastomer as a gate insulator, pressure sensitive active sensor 

devices have been fabricated [9,31]. However, the manufacturing process of the 

mould for microstructured elastomers is based on the photolithography and chemical 

etching, which are expensive and complicated processes.  

In this work, we present a highly sensitive and flexible capacitive pressure 

sensor with the multiscale-structured elastomeric electrode by using a simple and 
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low-cost process. The spontaneous buckle formation of ultraviolet/ozone (UV/O3) 

treated pre-strained PDMS [38] was used as a simple and low cost mould fabrication 

method. Through this mould, the AgNWs embedded multiscale-structured PDMS 

electrode was fabricated. By sandwiching the multiscale-structured electrode and a 

solution processed dielectric layer/electrode template, the flexible capacitive 

pressure sensor can be obtained. The sensor shows high sensitivity (3.8 kPa-1), fast 

response and relaxation time (< 150 ms), high flexibility and high stability. In 

addition, the pixel-type pressure sensor array can be easily fabricated and scaled up 

from the simple cutting and attaching process. The fingertip grip pressure sensing 

device is also demonstrated by attaching each sensor onto the fingertips. 
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2.1.2 Experimental 

 
 

The multiscale-structured PDMS electrode was fabricated as schematically 

illustrated in Figure 2.1. To obtain the multiscale-structured electrode, we used the 

spontaneous buckle formation of PDMS surface due to the relaxation of pre-

stretched PDMS with stiff silicon oxide film [38] as a mould. The mould PDMS was 

prepared by mixing the liquid PDMS elastomer (Sylgard 184, Dow corning) and a 

curing agent in the ratio 10:1 by weight. The liquid mixture was poured onto a glass 

substrate and thermally cured at 130 °C for 20 min. The cured PDMS was cut into 

rectangles (8 cm × 10 cm) and placed onto the glass substrate. After that, we 

stretched the PDMS uniaxially up to 40% with tweezers, and fixed the both ends of 

PDMS with binder clips. The stretched PDMS was UV/O3-treated (power = 28 mW 

cm-2) for 30 minutes to form the SiOX thin film on the PDMS surface. AgNWs (SLV-

NW-90, Blue Nano inc.) were tip-sonicated (52 W, 10 minutes) to obtain the length 

of 5 ~ 10 μm. AgNWs were bar-coated onto the stretched and UV/O3 treated PDMS 

several times through the Arylite mask (3 cm × 4 cm) to obtain the resistance below 

30 Ω. The bar-coated AgNW film was dried at 60 °C for 30 min. After the heat 

treatment, AgNW coated PDMS was released to its original condition (no strain) to 

introduce the spontaneous buckle formation. Due to the preformed silicon oxide thin 

film on the mould PDMS surface, the buckled structure was introduced on the PDMS 

surface [38] and the AgNW film also showed the buckled surface as shown in Figure 

2.1(b). The mixture of a liquid PDMS elastomer and a curing agent (10:1, w/w) was 

poured on the buckled AgNW film, and then cured at 65 °C for 12 h in air. Due to 

the penetration of the liquid PDMS into the AgNW network, the AgNW film was 

embedded tightly into the cured PDMS [38]. After the curing process, we inverted 
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the cured PDMS/mould PDMS and then peeled off the mould PDMS from the 

AgNW-embedded PDMS while the AgNW-embedded PDMS is attached to the glass 

by using tweezers. Finally we obtained the AgNW-embedded multiscale-structured 

PDMS as shown in Figure 2.1(b). The AgNW-embedded surface of PDMS is 

conductive and the opposite surface of PDMS is non-conductive. The resistances of 

the AgNW film (20Ω) and the multiscale-structured electrode (45Ω) at each 

fabrication stage are indicated in Figure 2.1(b). The resistance of the AgNW film 

was increased slightly after strain releasing (25Ω) due to the rearrangement of each 

AgNW and AgNW junctions. The resistance of the AgNW-embedded multiscale-

structured PDMS electrode was increased over 100% after peeling off due to the 

penetration and filling of the AgNW junctions of PDMS and the peel-off stress 

[39,40]. 

The Ag ink (Sigma-Aldrich) was printed on the flexible Arylite substrate (200 

μm thickness, Ferrania Corp.) by using a piezoelectric inkjet-printer (DMP-2831, 

Dimatix Corp.), and then sintered at 100 °C for 1 h. A PMMA solution containing 

10 wt% of PMMA (Mw ~120,000, Sigma-Aldrich) dissolved in propylene glycol 

methyl ether acetate (PGMEA) or a PVP solution containing 10 wt% of PVP (Mw 

~30,000, Sigma-Aldrich) and 2 wt% of poly(melamine-co-formaldehyde) as a cross-

linking agent dissolved in PGMEA was spin-coated on the Ag printed Arylite 

substrate for the formation of the dielectric layer. Afterward, the PMMA film was 

dried at 120 °C for 1h and the PVP film was cross-linked at 200 °C for 1 h. The 

capacitive pressure sensor was fabricated by laminating the multiscale-structured 

electrode (A pressure of 10 kPa was applied to the multiscale-structured electrode 

before the lamination) on top of the dielectric layer/Ag printed Arylite substrate 

(Figure 2.2) (We will call the dielectric layer coated bottom electrode as the bottom 
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plane) and thin PET film (50, 100 μm thickness, Toray Corp.) was placed on top of 

 

Figure 2.1 Fabrication process of the multiscale-structured electrode and the capacitive 

pressure sensor. (a) Schematic diagrams of the fabrication process of the AgNW-embedded 

multiscale-structured PDMS electrode. (b) Microscopic images of the AgNW film at each 

fabrication step. AgNW film was bar-coated on the PDMS (left). Buckled AgNW film was 

formed after strain releasing (middle). The buckled AgNWs were totally embedded into the 

PDMS and AgNWs were hardly left on the mould PDMS (right). (Scale bar = 100 μm). 
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Figure 2.2 Fabrication process of the capacitive pressure sensor. (a) The multiscale-

structured electrode for a top electrode. (b) Schematic diagrams of the fabrication process of 

the bottom plane. Inkjet-printed Ag electrode and spin coated dielectric layer compose the 

bottom plane. (c) The capacitive pressure sensor is obtained by laminating the multiscale-

structured electrode onto the bottom plane.   
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the multiscale-structured PDMS to avoid the stickiness of PDMS during the pressure 

sensing tests. Both electrodes were connected to copper wire with silver paste for 

electrical measurements. For 3 × 3 and 5 × 5 sensor arrays, the multiscale-structured 

electrodes were cut into 2 mm × 22 mm and 4 mm × 22 mm respectively by a razor 

blade and attached to PET film to form pixel type arrays. For the fingertip pressure 

sensors, we stuck elastomeric foam-tape (3MTM VHBTM Tape) on the poly glove and 

laminated each bottom plane on the tape. After that, we sandwiched the multiscale-

structured electrode on the bottom plane by using Kapton tape to fabricate the 

pressure sensors. 

The microstructure of the AgNW-embedded multiscale-structured PDMS 

electrode was characterized by a field emission scanning electron microscope (FE-

SEM, Hitachi S-48000), a 3-D surface profiler (NanoFocus) and AFM (XE-100, 

Park Systems Corp.). For the 3-D surface profiler measurement, thin gold layer 

(20nm) was deposited on the PDMS and AgNW-embedded PDMS by using thermal 

evaporator. The microscopic images were obtained by an optical microscope 

(EGTECH). Capacitance was measured at 1 kHz with a 0.1 V a.c. signal by using 

the Agilent 4284A LCR meter. IMADA force gauge with z-axis stage was used to 

apply the pressure to the sensor and metal or plastic weights were used to apply the 

pressure to the arrays and the sensor. A mechanical bending test was performed using 

a home-made bending apparatus. 
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2.1.3 Results and Discussion 

 

 
The multiscale structure of the AgNW-embedded PDMS electrode was 

characterized by using scanning electron microscopy (SEM), 3-D surface profiler 

and atomic force microscopy (AFM). The multiscale structure consists of the wavy 

structure (micrometer-size) obtained from the buckled PDMS mould and the rough 

surface of the crest of the wavy structure (nanometer-size) obtained from the 

relaxation of peel-off stress, as shown in Figure 2.3. The uniform wavy structure of 

the AgNW-embedded PDMS was characterized by using SEM. The average 

wavelength and amplitude of the wavy structure are about 22 μm and 6 μm, 

respectively, as shown in Figure 2.3(a) and 2.3(b). Figure 2.3(a) and 2.3(b) also show 

that the wavy structure was formed uniformly over the entire region and AgNWs 

were totally embedded into the PDMS matrix. The rough surface of the crest was 

observed from 3-D surface profiler and AFM images (see Figure 2.3(c) and 2.3(d)). 

When peeling off the cured PDMS, the peel-off stress was applied to the entire 

domain of the AgNW-embedded PDMS. More excessive peel-off stress was applied 

to the sharp crest of the wavy structure among the entire domain and the rough 

surface was formed spontaneously to release the peel-off stress at the crest [39, 40]. 

However, no rough surface of the crest was observed from the structured PDMS 

without AgNWs as shown in Figure 2.3(c) and 2.3(f). The root-mean-square (RMS) 

values of the measured line roughness at the crest are about 350 nm for AgNW-

embedded PDMS and 30 nm for only PDMS, respectively. The AgNW-embedded 

PDMS is still flexible, bendable and deformable as reported elsewhere [16,30,39]. 

The resistance of the wavy structured electrode was hardly changed from its original 

value during the repeated pressing (up to 10 kPa) as shown in Figure 2.4. 
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Figure 2.3 The microstructure of the multiscale-structured electrode. (a) SEM image of the 

multiscale-structured electrode with high uniformity. (b) AgNWs are totally embedded into 

the PDMS and the high magnification inset image shows that AgNWs are embedded well 

even in the crest of the wavy structure. (c) 3-D surface profiler image of the multiscale-

structured electrode. The rough surface at the crest of wavy structure is formed. (d) AFM 

image and line profile of the crest of the multiscale-structured electrode. In this crest, the 

root-mean-square (RMS) value of the measured line roughness is about 350 nm. (e) 3-D 

surface profiler image of the structured PDMS (AgNWs were not bar-coated onto the mould 

PDMS. It means that the bar-coating of AgNWs is omitted from the fabrication process in 

Fig. 1a). (f) AFM image and line profile of the crest of the structured PDMS. In this crest, 

the root-mean-square (RMS) value of the measured line roughness is about 30 nm. 
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Figure 2.4 (a) The resistance change of the multiscale-structured electrode during the 

repeated loading/unloading of the pressure of 10 kPa. (b) The microscopic images of the as-

prepared multiscale-structured electrode and the multiscale-structured electrode after 80-

cycle test, respectively. 

 

Pressure was applied to the capacitive pressure sensor to test the pressure 

sensitivity. The force gauge with z-axis motor stage and weights were used as 

pressure applying tools. The size of the square pressure sensitive capacitor was 16 

mm2 (the size of the multiscale-structured electrode is 4 × 10 mm2). To avoid the 
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stickiness of PDMS that could hinder the pressure sensor test, the poly(ethylene 

terephthalate) (PET) film (100 μm) was attached on the PDMS surface and thin glass 

slide was placed onto the PET film. The pressure from the multiscale-structured 

electrode with PET film and glass slide (180 mg) is defined as the base pressure (45 

Pa) and the capacitance at the base pressure is defined as the base capacitance C0. 

The external pressure was applied from 0 Pa to 4.5 kPa. Figure 2.5(a) shows the 

pressure sensitivities of the sensors with the multiscale-structured electrode and non-

structured flat electrode, respectively. The pressure sensitivity of the pressure sensor 

(S) can be defined as the slope of the relative capacitance change-pressure curve in 

Figure 2.5(a) (S=δ(∆C/C0)/δp, ∆C = C-C0, where C and C0 denote the capacitance 

with the applied pressure and the base capacitance, respectively, and p denotes the 

applied pressure). The sensor with non-structured electrode (flat electrode in Figure 

2.5(a)) shows no change of capacitance according to the applied pressure. However, 

the sensor with the multiscale-structured electrode shows high sensitivity of 3.8 kPa-

1 in the low pressure regime (45 ~ 500 Pa), 0.8 kPa-1 in the mid pressure regime (500 

Pa ~ 2.5 kPa) and 0.35 kPa-1 in the high pressure regime (2.5 ~ 4.5 kPa). The 

sensitivity of our sensor surpassed that of the previously reported capacitive pressure 

sensors for a wide pressure regime (0 ~ 4.5 kPa) [9,31]. The pressure sensor with the 

multiscale-structured electrode shows very small hysteresis as shown in Figure 

2.6(a). The pressure sensor can detect the loading and unloading of a paper ship of 

very small weight (40 mg) as shown in Figure 2.5(b). The pressure of the paper ship 

is about 15 Pa. The capacitance change of the sensor is large enough to detect the 

small pressure. Ten independent sensors were measured to check the sample-to-

sample variation in pressure sensitivity and the average capacitance values at each 

pressure are plotted with error bars (standard deviation) as shown in Figure 2.6(b).  
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Figure 2.5 Characterization of the capacitive pressure response of the pressure sensor. (a) 

Relative capacitance change-pressure curve for the multiscale-structured electrode with PVP 

or PMMA dielectric layer and the non-structured flat electrode with PVP dielectric layer. The 

sensors with the multiscale-structured electrode exhibit higher pressure sensitivity than the 

sensor with non-structured electrode. (b) Capacitance-time curve for the detection of very 

small pressure (15 Pa) according to the loading and unloading of a paper ship (40mg). (c) 

Fast response and relaxation time (< 150 ms) of the sensor. (d) Stair-like pressure loading 

and unloading. The sensors show fast response and relaxation regardless of the previous 

pressure. 
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Figure 2.6 (a) Relative capacitance change-pressure curves from the consecutive loading-

unloading cycles. (b) The capacitance-pressure curve of the pressure sensor. We tested ten 

independent samples and the error bars represent the standard deviation from ten samples. 
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Figure 2.7 (a,b) Microscopic images of the multiscale-structured electrode obtained from the 

mould with pre-strain level of 25%. The average wavelength and amplitude are about 25 μm 

and 5 μm, respectively. (c,d) Microscopic images of the multiscale-structured electrode 

obtained from the mould with pre-strain level of 55%. The average wavelength and amplitude 

are about 22 μm and 7 μm, respectively. (e) Relative capacitance change-pressure curve of 

the sensors from the mould PDMS with different pre-strain level. 
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Pressure sensors fabricated by using multiscale-structured electrodes obtained from 

the mould PDMS with different pre-strain level were also tested to check the 

variation of pressure sensitivity according to the pre-strain level of the mould PDMS, 

as shown in Figure 2.7. The variation of pressure sensitivity was small. Therefore, 

we used the mould PDMS with pre-strain level of 40% only based on this result.  

This dramatic high pressure sensitivity of the pressure sensor can be based on 

the multiscale structure (it consists of the wavy structure and the rough surface of 

the crest) and the deformable property of the electrode. The AgNW-embedded 

PDMS electrode can be deformed by the applied pressure or external force. From 

this property, the contact area and the volume of air gap between the multiscale-

structured electrode and dielectric layer are changed by the applied pressure. 

Therefore, when the pressure is applied to the sensor, the sharp contact edges of the 

wavy structure and the rough surface of the crest provide dramatic changes of the 

contact area and the volume of air gap. Through these changes of the contact area 

and the volume of air gap, the capacitance of the sensor changes dramatically and 

the sensor shows high pressure sensitivity. Due to the rubberlike property of the 

multiscale-structured electrode, any kind of the dielectric layer that shows higher 

mechanical rigidity than the multiscale-structured electrode can be used to the sensor. 

Polymer dielectric materials such as PMMA and PVP can be applied to the sensor as 

a dielectric layer as shown in Figure 2.5(a). Even oxide dielectric material can be 

used to the sensor. (Figure 2.8). Each sensitivity of the sensors was similar, with the 

variation below 10 %, regardless of the kind of polymer dielectric layer.  

Figure 2.5(c) and insets show the response and relaxation times of the sensor. 

When the pressure of 1.5 kPa was loaded and unloaded to the sensor, the response 

and relaxation times were less than 150 ms, respectively. When the pressure like stair 
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shape, a rising and falling pressure (400 Pa → 1500 Pa → 400 Pa → no load), is 

applied, the response and relaxation times are less than 500 ms and the capacitance 

shows the same value for the same pressure regardless of the previous pressure 

(Figure 2.5(d)). The capacitance of the sensor does not change for the static pressure, 

which means the stable operation of the sensor for the static pressure and 

demonstrates the accurate measurement for the applied pressure (Figure 2.5(c) and 

(d)). 

 

 

 

Figure 2.8 The pressure sensor with oxide dielectric layer. (a) Schematic diagram of the 

pressure sensor fabricated with the multiscale-structured electrode, SiO2 dielectric layer 

(thermally grown, 200 nm) and p+ silicon substrate (b) Pressure-response curves of the 

pressure sensor. 
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Figure 2.9 Stability of the pressure sensor. (a) Stability of pressure response to the 1500-cycle 

loading/unloading pressure of 1500 Pa. (b) Bending stability of pressure response after 5000-

cycle bending test. 
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The stability of the pressure sensor was investigated from the repeated 

loading/unloading cycling test. The capacitance changes of the sensor were 

measured when the pressure of 1.5 kPa was loaded and unloaded repeatedly up to 

1500 times as shown in Figure 2.9(a). The capacitance of the sensor at each pressure 

was hardly changed for repeated cycles. The result indicates that the pressure sensor 

has high stability for the repeated loading/unloading. In addition, the bending 

stability of the sensor was tested by using a home-made bending apparatus. For the 

bending test, the multiscale-structured electrode was fastened to the bottom plane by 

using a Kapton tape. The relative capacitance change- pressure curve of the sensor 

were measured before bending and after 5000-cycle bending with 3 mm radius of 

curvature. The relative capacitance changes of the 5000-cycle bending tested sensor 

at each pressure show no appreciable degradation in comparison with the as-prepared 

sensor (Figure 2.9(b)). The pressure sensor with the multiscale-structured electrode 

is robust and stable to the repeated loading/unloading and bending cycles based on 

the above results.  

The AgNW-embedded multiscale-structured PDMS electrode can be easily 

handled and scaled up for a large-area fabrication. Simply, by cutting and attaching 

the multiscale-structured PDMS electrode of desired size onto the PET substrate (50 

μm thick), we fabricated pixel-type capacitive pressure sensor arrays. The bottom 

Ag electrode was inkjet-printed and PVP dielectric layer was spin-coated. As shown 

in Figure 2.10(a) and 2.10(d), sensor arrays with 3 × 3 pixels and 5 × 5 pixels were 

obtained (size of the sensor array is 24 × 24 mm2) and the sizes of each capacitor 

were 4 × 4 mm2 and 2 × 2 mm2, respectively. To investigate the sensing ability of the 

sensor arrays, a small weight (5 g, 8 mm diameter) was loaded to the marked site of 

the sensor array with 3 × 3 pixels as shown in Figure 2.10(a) and 2.10(b).  
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Figure 2.10 Pixel-type pressure sensor arrays. (a) Photograph of the sensor array with 3 × 3 

pixels. (b,c) 5g weight is loaded onto the 3 × 3 sensor array and the corresponding two-

dimensional intensity profile is shown. (d) Photograph of the sensor array with 5 × 5 pixels. 

(e,f) 1g and 2g weights are loaded onto the 5 × 5 sensor array and the corresponding two-

dimensional intensity profile is shown. 

 

The corresponding result is visualized to a two-dimensional intensity profile as 

shown in Figure 2.10(c). It is notable that the loaded site only shows a large 

increment of capacitance and other sites show small increments of capacitances. 

Also, the large increment value that obtained from this array device is similar to that 

of the single sensor device for 1.5 kPa pressure. We also fabricated the sensor array 

with 5 × 5 pixels that has much smaller size of pixel (2 × 2 mm2). This 5 × 5 sensor 

array has a smaller sensing area per pixel than 3 × 3 array (Figure 2.10(d)). Small 

weights (1 g, 6 mm diameter and 2g, 6mm diameter) were loaded onto the marked 

sites as shown in Figure 2.10(d) and 2.10(e). The corresponding result is visualized 

to a two-dimensional intensity profile as shown in Figure 2.10(f). The capacitances 

of the sites with weights only increase dramatically. The increment value of the site 
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with 2g weight is higher than those of the sites with 1g weight and the increment 

values of the sites with 1g weight are almost same. These results from sensor arrays 

of 3 × 3 pixels and 5 × 5 pixels demonstrate that the sensor arrays can detect the 

spatial distribution of the applied pressure with the sensitivity as high as that of the 

single sensor and be applied to the electronic skins or large area wearable sensing 

devices. 

Our pressure sensor can be used to measure the pressures of fingertips when 

an object is grabbed with fingers. To realize the fingertip pressure sensing prototype 

device, each sensor was attached on the four fingers except a little finger as shown 

in Figure 2.11(a). The capacitor size of each finger sensor was 4 × 4 mm2 and PMMA 

was used as a dielectric layer. The plastic beaker (28.11 g) was grabbed tightly not 

to drop it down by the four fingers (Figure 2.11(b)). Figure 2.11(c) shows each 

capacitance change ratio (∆C/C0) of the pressure sensors attached on the four fingers. 

The capacitance change ratio of the sensor on the thumb is about 7.6, the largest 

value among the fingertip sensors, which means that the highest pressure was applied 

to the thumb among the four fingers when the beaker was grabbed. The capacitance 

change ratio of the index finger is the second largest (5), that of the middle finger is 

third (4.6) and that of the ring finger is forth (3.2). The result demonstrates that the 

pressure sensor can be used to sense the fingertip pressure distribution, when 

grabbing an object. Our pressure sensor can be applied to the finger or hand muscles 

rehabilitation treatment to measure the degree of the grip strength of the patient and 

the sportswear to measure the distribution of pressures or forces of people’s hands 

when grabbing a ball, a bat, a racket, a golf club, etc. 
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Figure 2.11 Fingertip grip pressure sensing device. (a) Photograph of the fingertip grip 

pressure sensor. Each pressure sensor is attached on the fingertips. (b,c) Grabbing a plastic 

beaker with four fingertips and the corresponding relative capacitance changes are visualized. 
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2.1.4 Conclusion 
 

In summary, we developed capacitive pressure sensors based on the robust and 

elastomeric AgNW-embedded multiscale-structured PDMS electrode with a low-

cost and simple fabrication process for the first time. The capacitive pressure sensor 

has high pressure sensitivity 3.8 kPa-1 (45 ~ 500Pa), 0.8 kPa-1 (500 Pa ~ 2.5 kPa) and 

0.35 kPa-1 (2.5 ~ 4.5 kPa) and can detect very small pressure of 15 Pa. The sensor 

also shows fast response and relaxation times (< 150 ms), high stability for repeated 

cycles over 1500 times and high bending stability. We demonstrated easy handling 

and scaling up of our sensor by fabricating 3 × 3 and 5 × 5 arrays. These arrays also 

show high pressure sensitivity similar to the single sensor device and can detect the 

spatial distribution of the applied pressure. We also fabricated the fingertip pressure 

sensing device to detect the pressure distribution of fingers, when grabbing an object. 

The highly sensitive and stable capacitive pressure sensor with a low-cost fabrication 

and easy handling may open and broaden its application to wearable electronic skins 

for rehabilitation treatment of patients and pressure mapping in sports activities or 

daily activities. 
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2.2. Pressure sensor with tunable sensitivity 

 

2.2.1 Introduction 

 

Wearable electronics have gained huge interest nowadays, because of their 

versatile applications such as human-machine interface, real-time health monitoring, 

patient rehabilitation and wearable displays. Flexible pressure sensor or tactile sensor, 

one of the core device of wearable electronics, has been widely investigated due to 

its multifunctional application to wearable electronics [1,5-6,9,16]. Flexible pressure 

sensors can detect wide range pressure from gentle touch (<10kPa) to body pressure 

mapping (>1MPa) and even very small pressure (<10Pa) [5-6,9,16]. Based on these 

properties, flexible pressure sensors can be applied to human-machine interfaces, 

next generation touch interfaces for wearable displays and health care system [5-

7,9,16,20,43,44]. For these applications, pressure sensors must have high pressure 

sensitivity, flexibility, stability and also tunable sensitivity like human skin. Because 

pressure sensors with customized sensitivity which is suitable for versatile 

application are desirable, the tunable pressure sensitivity of the sensor is needed [44]. 

A number of flexible pressure sensors with high sensitivity have been reported [1,5-

7,9,16,20,43]. However, only a few papers have been reported for the pressure 

sensors with tunable sensitivity [24,44]. Bao et al. reported tunable flexible pressure 

sensor using different microstructured elastomer geometries [44]. They used 

different microstructured moulds to obtain different microstructured elastomers. 

However, the preparation of different moulds leads to complexity of the fabrication 

process and increase of the fabrication cost. 

Recently, our group reported a capacitive flexible pressure sensor with 
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elastomeric nanowire composite [43]. However, the pressure sensitivity of the 

reported sensor was fixed and not tunable. In this paper, we report highly sensitive 

and flexible pressure sensor with tunable sensitivity. By controlling the mixing ratio 

of the matrix PDMS of the nanowire composite, we can tune the pressure sensitivity 

of the sensor easily. Three types of PDMS with different mixing ratio, a 5:1, 10:1 

and 15:1 mixture of liquid PDMS and curing agent, were used to fabricate pressure 

sensor. All the sensors show different pressure sensitivity in the wide pressure range 

(0 ~ 2500 Pa). 
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2.2.2 Experimental 

 

AgNW ink (SLV-NW-90, Blue Nano inc.) was spray-coated onto the mould 

PDMS to obtain AgNW film. After heat treatment of the spray-coated AgNW film, 

the AgNW film coated mould PDMS was released to zero strain condition to obtain 

buckled structure. Finally, the mixtures of a liquid PDMS and a curing agent (5:1, 

10:1, and 15:1, w/w) were casted onto the buckled surface of the AgNW film, 

followed by curing at 100 °C for 2 h. After the curing process, the mould PDMS was 

detached to obtain the AgNW-embedded PDMS, nanowire composite, with buckled 

structure as shown in Figure 2.12(a). No delamination and increase of resistance 

were observed to the AgNW-embedded PDMS after 3M tape test [39,43]. The 

fabrication process of buckled mould PDMS and the bottom plane (dielectric 

layer/inkjet printed Ag on poly(ethylene 2,6- naphtharate) (PEN) substrate) were 

explained in detail in our previous work [43]. The pressure sensors were fabricated 

by sandwiching the AgNW-embedded PDMS with buckled surface and the bottom 

plane. For the bending test, the AgNW-embedded PDMS was fastened onto the 

bottom plane by using Kapton tape and the sensor was bent by using home-made 

bending test machine. The microstructure of the AgNW-embedded PDMS was 

characterized by 3D surface profiler (NanoFocus) and an optical microscope 

(EGTECH). Capacitance was measured at 1 kHz with a 0.5 V a.c. signal by using 

the Agilent 4284A LCR meter. IMADA force gauge with z-axis stage was used to 

apply the pressure to the sensor and metal or plastic weights were used to apply the 

pressure to the sensor. 
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Figure 2.12 Fabrication process. (a) Fabrication process of nanowire composites with 

different mixing ratio of matrix PDMS. (b) Fabrication process of bottom plane: Inkjet 

printing of Ag electrode onto the PEN substrate and spin coating of PVP dielectric layer. (c) 

Capacitive flexible pressure sensor with nanowire composite and bottom plane. 
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2.2.3 Results and discussion 

 

Microstructure of the AgNW-embedded PDMS was characterized by using 

3D surface profiler and optical microscopy (OM). As shown in Figure 2.13, the 

buckled structure was introduced successfully onto the AgNW-embedded PDMS 

surface and the AgNWs were totally embedded into the matrix PDMS, even into the 

sharp crest area of the matrix PDMS [43]. All the nanowire composites showed wavy 

structure regardless of the mixing ratio of matrix PDMS. However, the shape of the 

buckled structure was different according to the mixing ratio of the matrix PDMS as 

shown in Figure 2.12 and Table 2.1. Surface roughness value of the crest area of the 

wavy structure was different according to the mixing ratio. Nanowire composite with 

mixing ratio of 10:1 showed the highest roughness value about 0.3μm. For the 

nanowire composite with mixing ratio of 15:1, the crest area of the buckled structure 

looked like crumpled and blunt compared to the mixing ratio of 5:1 and 10:1 as 

shown in Figure 2.12(c). The smallest amplitude of the wavy structure and the largest 

width of crest area (width of crest area at top 5 % of amplitude) in the Table 1 

supported the crumpled crest area of the nanowire composite of 15:1. Differences of 

the buckled structure including surface roughness, width of crest and amplitude 

according to the different mixing ratio resulted from the different peeling-off stress, 

which is related to the mechanical property of the matrix PDMS of nanowire 

composite, during the detaching process from the mould PDMS. 
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Figure 2.13 Optical images and 3D surface profiler images: (a) nanowire composite with 

mixing ratio of 5:1, (b) nanowire composite with mixing ratio of 10:1 and (c) nanowire 

composite with mixing ratio of 15:1. (d) Wavy structures of nanowire composites (left) and 

single wavy structures of nanowire composites (right).  

 

PDMS : cross linker 5:1 10:1 15:1 

Crest area surface 

roughness 
0.22 μm 0.3 μm 0.15 μm 

Width of crest (5%) 1.3 μm 1.7 μm 2.5 μm 

Wavelength & 

Amplitude 
25 & 7 μm 24 & 5 μm 24 & 4 μm 

 

Table 2.1 Microstructure of nanowire composites 
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Elastic modulus of the matrix PDMS and the nanowire composite was 

predicted by using modified Halpin-Tsai equation [45,46] 

 

𝐸𝑟𝑎𝑛𝑑𝑜𝑚 3𝐷 𝑓𝑖𝑏𝑒𝑟 ≅ 0.184𝐸∥ + 0.816𝐸⊥       (1) 

𝐸𝑐 = 𝐸𝑚
𝐸𝑓+𝜉[(1−𝜙)𝐸𝑚+𝜙𝐸𝑓]

[(1−𝜙)𝐸𝑓 +𝜙𝐸𝑚 + 𝜉𝐸𝑚  ]
              (2) 

 

Where 𝜙 is the volume fraction of fiber, 𝐸𝑓 is the modulus of fiber and 𝐸𝑚 is 

the modulus of matrix PDMS. The parameter 𝜉 is the shape factor for a solicitation 

parallel to the wire orientation,𝜉 = 2(𝐿 𝑑),⁄  and for a transverse solicitation, 𝜉 =

2. By using equation (1) and (2), we calculated the elastic modulus of nanowire 

composite as shown in Figure 2.14. Each modulus of nanowire and PDMS with 

different mixing ratio was referred [47]. As shown in Figure 2.14, a nanowire 

composite with mixing ratio of 5:1 showed the highest modulus at the condition of 

the same nanowire volume fraction. The higher the modulus of matrix PDMS is, the 

higher the modulus of nanowire composite is. Difference of the elastic modulus of 

the nanowire composite according to the mixing ratio resulted in difference of the 

microstructure of the nanowire composite after the peeling-off process. 
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Figure 2.14 Elastic modulus – AgNW volume fraction curve of nanowire composites 

calculated from the modified Halpin-Tsai equation. 

 

 

 

 
Figure 2.15 Relative capacitance change–pressure curve for the pressure sensors of nanowire 

composites with different mixing ratio. 
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The structure of the flexible capacitive pressure sensor is illustrated in Figure 

2.12 (c). AgNW-embedded area was facing PVP dielectric layer and the air gap was 

formed between AgNW-embedded PDMS and PVP as shown in Figure 2.12 (c). The 

pressure sensitivity of each sensor with different PDMS mixing ratio was tested by 

applying pressure as shown in Figure 2.15. The pressure sensitivity of the sensor can 

be defined as the slope of the relative capacitance change-pressure curve in Figure 

2.15,  𝑆 = 𝛿(∆𝐶 𝐶0)⁄ 𝛿𝑝⁄ , ∆𝐶 = 𝐶 − 𝐶0  where 𝐶  and 𝐶0  denote the 

capacitance with the applied pressure and base pressure, respectively, and 𝑝 

denotes the applied pressure. The pressure sensor with mixing ratio of 10:1 showed 

highest sensitivity among the sensors. This sensor showed very high pressure 

sensitivity, 4 kPa-1 (0~450Pa) and 0.6 kPa-1 (450~2500Pa) in the wide pressure 

regime. The pressure sensitivity of the sensor with mixing ratio of 5:1 was 3 kPa-1 

(0~450Pa) and 0.4 kPa-1 (450~2500Pa) and the pressure sensitivity of the sensor with 

mixing ratio of 15:1 was 1 kPa-1 (0~450Pa) and 0.4 kPa-1 (450~2500Pa). The 

pressure sensitivity of the sensor was dramatically changed by simply changing the 

mixing ratio of the liquid PDMS and curing agent of the matrix PDMS. This simply 

tunable pressure sensitivity resulted from the mechanical property of the matrix 

PDMS and the shape of the crest area of the buckled structure. For the sensors with 

the mixing ratio of 5:1 and 10:1, these sensors had relatively smooth crest area and 

similar buckled structure as shown in Figure 2.13(a) and 2.13(b). However, the 

pressure sensitivities were different due to the difference of mechanical property of 

the matrix PDMS, specifically, the elastic modulus of the PDMS. According to the 

mechanical property of the matrix PDMS, the degree of deformation of the nanowire 

composite was different in the same pressure and this difference induced the 
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difference pressure sensitivity. For the sensor with the mixing ratio of 15:1, this 

sensor had crumpled crest area as shown in Figure 2.13(c) and this crumpled shape 

of the buckled structure induced lower pressure sensitivity. Due to the crumpled and 

blunt crest area of the nanowire composite with 15:1, the base capacitance of the 

sensor, 𝐶0, was highest among the three sensors and this sensor shows the lowest 

pressure sensitivity due to the highest base capacitance (𝐶0 =17 pF (5:1), 16 pF 

(10:1) and 24 pF (15:1)). Based on these results we can conclude that the mechanical 

property of the matrix PDMS and the shape of the crest area of the buckled structure 

affect the pressure sensitivity. 

The response and relaxation properties of the sensor were also measured. As 

shown in Figure 2.16, the sensors with nanowire composites of mixing ratio 5:1 and 

10:1 showed fast response and relaxation properties below 0.15 seconds. However, 

the sensor with nanowire composite of mixing ratio 15:1 showed very slow 

relaxation property. The relaxation time was almost 8 seconds. This slow relaxation 

is related to the viscoelastic property of the nanowire composite [9]. 

Our pressure sensor can also detect the bending strain and the capacitance 

change of the sensor according to the bending radius is shown in Figure 2.17(a). As 

the moving distance increased and the bending radius decreased, the capacitance of 

the sensor was increased. The bending stability of the pressure sensor was also tested 

by using a bending machine. The capacitance change and pressure sensitivity of the 

sensor were measured before bending and after 5000-cycle bending with 3 mm 

radius of curvature. We calculated the relative capacitance change of the sensors 

before and after bending cycle (Relative capacitance change = (𝐶𝑎𝑓𝑡𝑒𝑟 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 −

𝐶𝑏𝑒𝑓𝑜𝑟𝑒 𝑏𝑒𝑛𝑑𝑖𝑛𝑔)/𝐶𝑏𝑒𝑓𝑜𝑟𝑒 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 ). At 400 Pa, the sensor showed slightly decreased 
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capacitance value about 20% after bending process. However, in the other pressure 

ranges, the sensor showed no appreciable degradation in comparison with the as-

prepared sensor as shown in Figure 2.17(b). Our sensor is sensitive to the bending 

strain and is robust and stable to the repeated bending strain. 
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Figure 2.16 Response and relaxation properties of the pressure sensor: (a) nanowire 

composite with mixing ratio of 5:1, (b) nanowire composite with mixing ratio of 10:1 and (c) 

nanowire composite with mixing ratio of 15:1. 
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Figure 2.17 (a) Bending stability of the pressure sensor after 5000-cycle bending test 

(nanowire composite with mixing ratio of 10:1). (b) Relative capacitance change-moving 

distance curve; Inset: The bending radius-moving distance curve (nanowire composite with 

mixing ratio of 10:1). (c) Relative capacitance change-bending strain curve. 
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2.2.4 Conclusion 

 

In summary, we fabricated sensitivity tunable pressure sensors by controlling 

the mixing ratio of the matrix PDMS. Due to the difference of the mechanical 

property of the matrix PDMS and the shape of the crest area of the buckled structure, 

we can easily tune the pressure sensitivity of the sensor. Our sensor can also detect 

the bending strain and is very stable to the repeated bending condition. This pressure 

sensor can be applied to the next generation human-machine interface for wearable 

or flexible/foldable displays and electronics. 
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Chapter 3 
 

 

Bendable sensor and its application to pressure 

sensitive transistor 
 

 

 

3.1. Introduction 

 
Flexible pressure sensor is one of the most important devices for human 

oriented future technologies such as wearable health monitoring systems, touch 

interfaces and electronic skins [1-20]. For these application, pressure sensors must 

mimic sensing abilities of human tactile receptors such as high sensitivity, fast 

response, flexibility, stretchability and distinguishment of different mechanical 

stimuli. Micro- or nano-structured soft materials with various sensing mechanisms 

that include capacitive [1-6], piezoresistive [7-13], piezoelectric [14,15], and 

triboelectric sensing [16,17] have been introduced to satisfy these demands. Pressure 

sensors based on these materials can detect very small pressure (P < 20 Pa) and the 

movement of human muscles caused by pulse or vibration during speech [2,7-10,12-

14]. Also they show fast response (t < 1 s) to the change of the pressure and they are 

flexible or stretchable [2,7-10,12-14]. 

Among these soft materials, micro-structured polydimethylsiloxane (PDMS) 

has been widely investigated due to its elastomeric property and biocompatibility 

[1,2,4,6,7,9,21]. Pressure sensors with micro-structured PDMS show high pressure 

sensitivity and fast response. Small contact area and air gap between the micro-

structured PDMS and substrate enabled the high sensitivity and fast response 
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[1,2,4,7,9,21]. However, due to this small contact area and air gap, micro-structured 

PDMS is physically separated from the substrate in most flexible sensors. Micro-

structured PDMS is just sandwiched or endpiece of the micro-structured PDMS is 

only bonded to the substrate by using temporary methods such as epoxy bonding or 

taping [1,2,4,9,21]. Due to these reasons, pressure sensing of the flexible pressure 

sensor in the bending state is more difficult than pressure sensing in the flat state and 

only a few paper have reported the pressure sensing in the bending state [8]. Flexible 

pressure sensors with micro-structured PDMS can detect not only pressure but also 

bending and twisting [2,6,7,9,21]. However, the distinguishment of each stimulus, 

when multiple mechanical stimuli were simultaneously applied to the sensor, still 

remains a challenge [6]. Thus, the development of flexible pressure sensor that can 

detect pressure even in the bending state and distinguish the type of applied 

mechanical stimuli is needed.  

Pressure sensors have been integrated with various electronic devices to 

demonstrate active sensor array, user-interactive sensing system and wearable 

sensing system [1-3,14,18,19]. Among these devices, thin film transistors (TFTs) 

with organic semiconductors or semiconducting carbon nanotubes have been widely 

integrated with pressure sensors as active elements in the pressure sensing system 

[1-3,18,19,22,23]. Capacitive-type pressure sensors have been generally integrated 

with organic thin film transistors (OTFTs) as dielectric layers and these OTFTs are 

pressure sensitive due to the dependence of the output current on the capacitance of 

the dielectric layer [1-3,22]. These pressure sensitive transistors (PSTs) enable the 

amplification of the pressure sensitivity and easy integration with other electronic 

devices as the output value of the sensor from the change of the pressure is not 

capacitance but current. However, the operation voltage of PSTs integrated with 
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capacitive-type pressure sensors is above tens or even hundreds volt due to the low 

capacitance value of the dielectric layer (C < 1 nF cm-2) [1-3,22]. This voltage level 

is too high to fabricate wearable sensing system by using the commercially available 

batteries (V ≤ 5 V). Hence, for the realization of the wearable sensing system, the 

operation voltage of PSTs must be reduced.  

In this chapter, we demonstrate a highly sensitive and bendable pressure 

sensor with the ability of distinguishment of pressure and bending and a PST which 

can be operated below 5V [24]. By introducing the PDMS spacer and surface 

treatment, the patterned AgNW (Silver nanowire) embedded PDMS electrode can 

be strongly bonded to the bottom plane (PMMA/Ag/PEN) and this results in high 

pressure sensitivity and high bending stability of the pressure sensor. Our bendable 

pressure sensor shows high pressure sensitivity of 9 kPa-1 and can detect the pressure 

and operate stably even in the bending state. Also our sensor can distinguish the 

pressure and bending by the aid of the additional bending sensor. By integrating the 

bendable pressure sensor and inkjet printed single-walled carbon nanotube TFT 

(SWCNT TFT), we fabricated the PST with low voltage device operation of ≤ 5V. 

The low voltage operation of the PST enables to demonstrate the wearable user-

interactive pulse monitoring system by using commercial available electronic 

devices.  
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3.2 Experimental 
 

PDMS with buckled patterns was used as a mold for the patterned electrode. 

The mold PDMS (Sylgard 184, Dow corning. Liquid PDMS and a curing agent were 

mixed in the ratio 10:1 by weight) was stretched uniaxially up to 40% and UV/O3 

treatment (power = 28 mW/cm2) was conducted to form the patterned SiOx thin film 

on the mold PDMS surface by using patterned mask. Then, AgNW solution (YURUI 

chemical, AgNW length 5~10μm) was spray-coated onto the mold PDMS. Spray-

coated AgNW film was dried at 50℃ for 30min. After heat treatment, the mold 

PDMS was released to its initial state (zero strain) and the buckled patterns was 

introduced to the AgNW film and mold PDMS. Due to the mask during UV/O3 

treatment, SiOx thin film was formed selectively and buckled structure was also 

selectively introduced onto the area of SiOx. AgNW film followed well the buckled 

structure. We poured the mixture of liquid PDMS and curing agent (10:1 ratio of 

weight) on the AgNW film and then cured it at 100℃ for 60min. Due to the void 

between the AgNW networks, the liquid PDMS can penetrate into the AgNW film 

and the AgNW film can be embedded into the cured PDMS tightly. After curing, we 

peeled off the mold PDMS from the AgNW embedded PDMS and finally obtained 

the patterned AgNW embedded PDMS electrode (the patterns consist of the wavy 

structure (from buckled structure) and flat structure). 

Bottom plane was fabricated using inkjet printing and spin coating process. 

The Ag metal-organic ink (Jet600C, Hisense Electronics, Kunshan, China) was 

printed on the PEN substrate (Q65H, Teijin DuPont Films) using a piezoelectric 

inkjet-printer (DMP-2831, Dimatix Corp.) and annealed at 100℃ for 1h. PMMA 

(Mw ∼ 120000, Sigma-Aldrich) layer, the dielectric layer, was deposited on the Ag 
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electrode by using spin coating (PMMA solution containing 10 wt % of PMMA 

dissolved in propylene glycol methyl ether acetate (PGMEA)) and heated at 100℃ 

for 1h. For the APTES surface treatment, UV/O3 treatment was conducted to the 

bottom plane and after UV/O3 treatment, APTES solution (Sigma-Aldrich) was spin-

coated at 3000rpm for 30 s. After baking the APTES coated bottom plane on hot 

plate at 80℃ for 0.5h, APTES-functionalized PMMA surface was obtained (A 

silylated layer was formed on the PMMA surface as shown in Figure 3.3(a)). To 

bond PDMS spacer and APTES-functionalized PMMA, both surfaces are activated 

using the oxygen plasma (CUTE-1MP, Femto Science) for 1 min and activated 

surfaces of PDMS spacer and APTES-functionalized PMMA were sandwiched 

together. Then, we heated sandwiched sample at 80℃ for 30min and irreversible 

strong chemical bonding was successfully introduced between the PDMS spacer and 

APTES-functionalized PMMA. To fabricate the bendable sensor, patterned 

electrode and PDMS spacer bonded bottom plane were activated through the oxygen 

plasma treatment (CUTE-1MP, Femto Science) and they were sandwiched together 

to introduce the strong chemical bonding between the PDMS spacer and flat area of 

patterned electrode. Finally we obtained the bendable pressure sensor. 

Bottom plane for PST was fabricated using inkjet printing. UV/O3 treatment 

was conducted to the PEN substrate and Poly-L-Lysine (PLL, Sigma-Aldrich) was 

drop-casted on the PEN for surface functionalization. And then, semiconducting 

SWCNT (IsoNanotubes-STM 95%, NanoIntegris) was inkjet-printed on the PLL-

functionalized PEN substrate (PLL enhance the anchoring and deposition of the 

semi-SWCNT on the substrate). Source/drain Ag electrode was printed on the semi-

SWCNT printed substrate and annealed 100℃ for 1h. BTO ink (PD-100; Paru 
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Corporation, Korea) was inkjet-printed on to the active region of semi-SWCNT to 

form insulating layer. BTO composite was sintered at 100℃ for 1h. Ag electrode, 

top gate electrode, was also inkjet-printed on the BTO composite insulating layer. 

This top gate was integrated with both semi-SWCNT transistors and bendable sensor. 

To integrate with bendable sensor, PMMA layer and APTES was deposited on the 

Ag electrode by using spin coating, respectively. And the same processes to bond 

PDMS spacer and patterned electrode were conducted to fabricate the pressure 

sensitive transistor. 

The microstructure of the patterned electrode was characterized by using a 

field emission scanning electron microscope (FE-SEM, Hitachi S-48000), a 3-

dimensional surface profiler (NanoFocus) and optical microscope (EGTECH). 

Pressure was applied to the sensors by using IMADA force gauge with a z-aixs stage 

and metal weights. The capacitance of the bendable sensor was measured at 1 kHz 

with a 0.1 V a.c. signal by using Agilent 4284A LCR meter and electrical 

characteristics of semi-SWCNT transistor and PST were measured by using Agilent 

4145B analyzer in ambient air. Bending test of the sensor was performed using a 

home-made bending apparatus. 
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Figure 3.1 Fabrication process of our bendable sensor. (a) Schematic illustration of the 

fabrication of the patterned electrode. (b) Schematic illustration of the fabrication of the 

bendable sensor. First, we bonded the bottom plane and the spacer by using oxygen plasma 

treatment. Next, we bonded the patterned electrode and the spacer bonded bottom plane to 

fabricate the bendable sensor. 
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3.3 Results and Discussion 

 

3.3.1 Bendable sensor 

 

A schematic illustration of the bendable pressure sensor is shown in Figure 

3.2(a) Our sensor consists of the patterned AgNW embedded PDMS electrode 

(patterned electrode), spacers and the bottom plane. By using the (3-

Aminopropyl)triethoxysilane (APTES) surface treatment and spacer, the patterned 

electrode can be combined with bottom plane tightly. Due to the strong siloxane 

bonding (Si-O-Si) between the APTES treated bottom plane, PDMS spacers and 

patterned electrode [25,26], the combined sensor is bendable (see Figure 3.3(a) and 

3.3(b)). The bonding is so strong that our sensor can lift the 50g metal weight as 

shown in Figure 3.3(c). Patterned electrode consists of the wavy and flat patterns as 

shown in Figure 3.4. The average wavelength and amplitude of the wavy pattern 

were about 22μm and 6μm, respectively. Wavy area of the AgNW embedded PDMS 

is introduced for the pressure sensing with high sensitivity [4]. Flat area of AgNW 

embedded PDMS is introduced for the bonding between the PDMS spacers and 

patterned electrode. Figure 3.2(c) shows SEM image of the bonding area and the 

spacer bonds patterned electrode and bottom plane tightly. Air gap was introduced 

between patterned electrode and bottom plane as shown in Figure 3.2(b) and 3.2(c). 
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Figure 3.2 Device structure and microstructures. (a) Schematic illustration of the bendable 

pressure sensor with description of each layer. (b) SEM image of the pressure sensing area. 

Wavy patterned electrode, air gap, and bottom plane are shown. (c) SEM image of the 

bonding and bending sensing area. Flat patterned electrode, PDMS spacer, air gap, and 

bottom plane are shown. 
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Figure 3.3 Siloxane bonding and bonding strength. (a) Schematic representation of the 

bonding process. Irreversible strong bonding was formed between the PMMA layer and 

PDMS spacer. (b) Bending of the bendable sensor with hand. (c) Lift up of metal weight of 

50g. 
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Figure 3.4 Microstructures of the patterned electrode. (a) SEM image of the wavy patterned 

area. (b) SEM images of the patterned electrode with wavy structure and flat structure. SEM 

mages in left and middle show the boudary area of wavy and flat structure. SEM image in 

right shows the flat patterned area. (c) 3-D surface profiler image of the patterned electrode 

at the boundary area. (d) Optical microscopic images of the patterned electrode. Wavy area 

(left), boundary area (middle), and Flat area (right). 
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Bendable pressure sensor consists of two parts with different function. First 

part is the pressure sensing part which consists of wavy patterned electrode/air 

gap/bottom plane (Figure 3.2(a)). This part can detect the pressure from the 

capacitance change. Pressure was applied to the sensing part to measure the pressure 

sensitivity. Relative capacitance change of the sensor ( ∆C/𝐶0 ,  ∆𝐶 = 𝐶 − 𝐶0 ) 

according to the pressure change is shown in Figure 3.5(a). We measured the 

capacitance change of the sensor by changing the spacer thickness. As the thickness 

of the spacer increased, the pressure sensitivity of the sensor increased (Pressure 

sensitivity  𝑆 = δ(∆C/𝐶0 )/𝛿𝑝, ∆𝐶 = 𝐶 − 𝐶0 , where 𝐶  and 𝐶0 denote the 

capacitance with the applied pressure and the base capacitance, respectively, and 𝑝 

denotes the applied pressure). The sensor with 50μm spacer shows the highest 

sensitivity,𝑆 = 9 kPa−1(0~0.6kPa) and 𝑆 =  0.6 kPa−1(0.6~6.6kPa). This sensor 

can detect very small pressure of only 0.7 Pa as shown in Figure 2b. Repeated 

loading/unloading of very small pressure of 0.7 Pa can be detected by using our 

sensor. Due to the air gap between the patterned electrode and bottom plane, the 

pressure sensitivity of the sensor with spacer is enhanced at low pressure region 

(P=0~0.6kPa) when it is compared to the sensor without spacer ( 𝑆 =

3.8 kPa−1(0~0.5kPa)) [4]. Base capacitance of the sensor with spacer is smaller 

due to the air gap and this results in the higher pressure sensitivity. Also, the air gap 

enables the distance between the patterned electrode and dielectric layer to be 

decreased easily even under low pressures and this increased the pressure sensitivity 

[6]. At high pressure region (P=0.6~6kPa), the wavy structure of the patterned 

electrode touched the dielectric layer and the pressure sensitivity was decreased. In 

this pressure region, wavy structure of the patterned electrode was deformed by the 

applied pressure and based on this deformation, the contact area and air gap between 
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the wavy structure and dielectric layer were changed [4]. According to these changes, 

the capacitance of the sensor changed to the applied pressure. Pressure sensing part 

is not only sensitive to the pressure but also sensitive to the bending. As the bending 

radius decreased, the capacitance of the sensor increased as shown in Figure 3.6(a).  

 

 

 

 

Figure 3.5 Sensing performance of our bendable sensor. (a) Relative capacitance change-

pressure curve of pressure sensing part with different spacer thickness. (b) Capacitance 

change-time curve for the detection of very small pressure (0.7 Pa) according to the repeated 

loading/unloading of a paper (1.2 mg) (spacer thickness = 50μm). (c) Relative capacitance 

change-bending radius curve of bending sensing part (spacer thickness = 50μm). (d) Relative 

capacitance change-bending strain curve of bending sensing part (spacer thickness = 50μm). 
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However, we cannot distinguish which one among pressure or bending caused the 

capacitance change of the sensor, because of the property of the pressure sensor that 

the pressure sensor is sensitive to both pressure and bending. For this reason, we 

introduced the second part, the bending sensing part to classify the pressure and 

bending as shown in Figure 3.2(a). The bending sensing part is sensitive to the 

bending as shown in Figure 3.5(c) and 3.5(d) (The bending sensing part is relatively 

less sensitive to the pressure than bending as shown in Figure 3.6(b) and based on 

this property, we introduced the bending sensing part). By the aid of the bending 

sensor, the sensor can notice that it is in the bending state or not and classify the 

pressure and bending from the capacitance change. 

Our sensor operates stably in the bending state and can detect the pressure 

even in the bending state as shown in Figure 3.7(a) and 3.7(b). We attached our 

sensor onto the home-made bending machine and bent our sensor with bending 

radius of 8.5 and 5 mm, respectively. After bending our sensor, we applied pressure 

to the sensor and the capacitance of the sensor was changed as shown in Figure 3.7(a). 

The capacitance change of the sensor was linearly increased to the change of the 

pressure in both bending states with bending radius of 8.5 and 5mm. However, the 

capacitance change value at the same pressure is larger in the smaller bending radius 

as shown in Figure 3.7(a) inset. As shown in Figure 3.6(a), the base capacitance of 

the pressure sensing part increased as the bending radius decreased and this increased 

capacitance caused by bending became the base capacitance value of the sensor in 

the bending state. We plotted the capacitance-pressure curve and compared the 

capacitance change of the sensor according to the change of the pressure in the 

bending state and in the flat state as shown in Figure 3.6(c). The capacitance change 
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behavior of the bent sensor to the applied pressure is almost same with that behavior 

of the flat sensor.  

 

 

 

 

 

 

Figure 3.6 (a) Capacitance-bending radius curve of the pressure sensing part. Inset shows the 

relative capacitance change-bending radius curve of the pressure sensing part. (b) Relative 

capacitance change-pressure curve of the bending sensing part. Relative capacitance change 

value is below 0.75% up to 2.3 kPa. (c) Capacitance-pressure curves of the sensing part in 

the flat state (black squar), the sensing part in the bending state of bending radius of 8.5 mm 

(red circle), and the sensing part in the bending state of bending radius of 5 mm (blue triangle), 

respectively. 
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Figure 3.7 Pressure sensing in various conditions. (a) Capacitance-pressure curve of pressure 

sensing part in the bending state. Inset is a capacitance change-pressure curve in the bending 

state. (b) Capacitance change-time curve for the detection of loading/unloading of pressure 

in the bending state (bending radius ~5mm). (c) Wrist pulse measurements by using our 

bendable sensor. Upper capacitance-time curve: wrist pulse measurement in normal condition 

of health man. Lower capacitance change-time curves: wrist pulse measurement in exercise 

and rest condition of health man. (d) Vibration measurement by using our bendable sensor. 

Capacitance-time curve: measurement of vibration caused from the smart phone. 
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The capacitance value of the sensor can be increased from the bending or applied 

pressure and if we applied additional pressure to the sensor with the same increased 

capacitance value, the capacitance change behavior to the applied pressure is almost 

same regardless of the source of the initially increased capacitance value as shown 

in Figure 3.6(c). This means that the pressure sensing performance of our sensor is 

maintained even in the bending state. Also, we loaded different weights onto the 

sensor in the bending state with bending radius of 5mm as shown in Figure 3.7(b). 

Our sensor can distinguish the difference of the pressure even in the bending state 

with small bending radius. The response and relaxation of the sensor were also fast 

and the capacitance change of the sensor was almost same for the same pressure even 

in the bending state as shown in Figure 3.7(b). We monitored the wrist pulse by using 

our sensor. Our sensor was fixed onto the commercial plaster by using 3MTM VHBTM 

tape and then we wrapped wrist area with this plaster. As shown in Figure 3c, our 

sensor can detect wrist pulse with three distinguishable peaks [2,9] and his heart rate 

was about 75 bpm from the measured data. We also monitored the wrist pulse after 

exercise and rest. After exercise (sixty push-ups) and 10 minutes rest, we monitored 

the wrist pulse, respectively, as shown in Figure 3.7(c). From the capacitance change 

time curve (Figure 3.7(c)), we can notice two differences. First, wrist pulse rate (or 

heart rate) is faster in exercise condition than in rest condition. Wrist pulse rates (or 

heat rate) were 101 and 90 bpm for exercise and rest condition, respectively. Second, 

capacitance change is larger in exercise condition than in rest condition and it means 

that the blood pressure is higher in exercise condition than in rest condition. We also 

measured the vibration of the smart phone by using our sensor. We placed our sensor 

onto the smart phone and then called to the smart phone to vibrate the smart phone. 

As shown in Figure 3.7(d), our sensor can detect the vibration of the smart phone. 
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Figure 3.8 (a) Response and relaxation property of our bendable sensor to the pressure of 

1000 Pa. Response and relaxation time of our sensor is below 75 ms. (b) Relative capacitance 

change-pressure curves of our bendable sensor for as-prepared and 1000-cycle bending with 

5mm bending radius, respectively. Our sensor shows high bending stability. (c) Relative 

capacitance change-time curve of our bendable sensor for the 1000-cycle loading/unloading 

of the pressure of 12 kPa. Our sensor shows high repeated cycle stability. (d) Relative 

capacitance change-pressure curves of our bendable sensor up to 12 kPa. 
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The response and relaxation times of our sensor were measured as shown in 

Figure 3.8(a). We applied the pressure of 1000 pa repeatedly and both the response 

and relaxation time were less than 75ms. Bending cycle stability of the sensor was 

also measured by using home-made bending machine. Before the bending and after 

1000-cycle bending with a 5mm radius of curvature, we measured the capacitance 

change of the sensor by applying pressure as shown in the relative capacitance 

change–pressure curves of Figure 3.8(b). Relative capacitance change values at each 

pressure show no appreciable difference before bending and after bending. Repeated 

loading/unloading of the pressure was also performed to investigate the cycle 

stability of our sensor. We loaded and unloaded a pressure of 12 kPa repeatedly up 

to 1000 times and measured the capacitance changes of the sensor as shown in Figure 

3.8(c). Our sensor operates robustly to the repeated pressure cycle up to 12 kPa and 

this indicates that our bendable sensor has high stability to the repeated 

loading/unloading of the pressure. Our sensor is robust to the repeated pressure 

loading/unloading and bending cycle based on these results. 

Our sensor can be easily scaled up for large-area sensor array. We fabricated 

3 × 3 pixel type sensor array with sensing area of 4 mm × 4mm as shown in Figure 

3.9. Metal weight of 2g (6mm diameter) was loaded on the sensor array to investigate 

the sensing ability of the sensor array and the corresponding two-dimensional 

mapping with color contrast was illustrated in Figure 3.9(a). Dramatic increment of 

capacitance occurred only in the weight loaded site and very small increment of 

capacitance occurred in other sites. We loaded the same weight to the same site of 

the sensor array which is in the bending state (bending radius ~25mm) as shown in 

Figure 3.9(b). Based on the measured data from the pressure sensor and bending 

sensor, we calculated the pressure of the weight. Figure 3.9(b) shows the calculated 
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pressure and its corresponding two-dimensional mapping. Highest pressure value 

was only obtained from the loaded site and calculated pressures from other site were 

small. The calculated pressure in the bending state was about 820 Pa and the pressure 

in the flat state was about 700 Pa. This discrepancy may come from the reduction of 

the pressing area of the weight according to the bending. These results demonstrate 

that our sensor array can detect the spatial distribution of the pressure not only in the 

flat state but also in the bending state.  

 

Figure 3.9 Bendable sensor array and pressure sensing. (a) Photograph of the sensor array 

with 3 × 3 pressure sensing pixels and 3 × 3 bending sensing pixels and pressure loading 

(left). Corresponding two-dimensional mapping with color contrast (right). (b) Photograph 

of the sensor array in the bending state (bending radius ~25mm) and pressure loading (left). 

Corresponding two-dimensional mapping with color contrast (right). 
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3.3.2 Pressure sensitive transistor 

 

We fabricated the pressure sensitive transistor (PST) using the bendable 

pressure sensor. To demonstrate the low voltage operation (also low power 

consumption) and wearable sensing device, we used the floating gate transistor 

connected with the capacitive bendable pressure sensor as shown in Figure 3.10(a). 

For low voltage operation of the floating gate transistor (𝑉𝐺𝑆, 𝑉𝐷𝑆 < 5V), we used 

semiconducting single-walled carbon nanotube (s-SWCNT) and high-k oxide 

dielectric material, BaTiO3. All the components of the floating gate transistor were 

fabricated using inkjet printing method on the PEN substrate. After obtaining the 

floating gate transistor, bendable sensor was fabricated onto the transistor. Top gate 

of the floating gate transistor which functioned as a floating gate was connected with 

bendable sensor as an electrode of the capacitor. Operation mechanism of the PST is 

based on the modulation of the voltage of the floating gate and its corresponding 

field effect to the transistor [24]. If we are considering Gauss equation, the total 

charge of the floating gate can be written as 

𝑄0 = 𝐶𝐷(𝑉𝐹𝐺 − 𝑉𝐷) + 𝐶𝑆(𝑉𝐹𝐺 − 𝑉𝑆) + 𝐶𝑠𝑒𝑛𝑠𝑜𝑟(𝑉𝐹𝐺 − 𝑉𝑠𝑒𝑛𝑠𝑜𝑟)      (1) 

where 𝐶𝐷  and 𝐶𝑆  are the parasitic capacitances of drain and source electrodes, 

respectively, and 𝐶𝑠𝑒𝑛𝑠𝑜𝑟 is the capacitance of the bendable pressure sensor. Drain 

and source electrodes were biased by 𝑉𝐷  and 𝑉𝑆 , respectively, and the top 

electrode of the bendable pressure sensor was biased by 𝑉𝑠𝑒𝑛𝑠𝑜𝑟. If the floating gate 

is totally floated, the total charge of the floating gate, 𝑄0, is constant. And therefore, 

𝑉𝐹𝐺  changes to maintain 𝑄0 constant if the pressure is applied to the bendable sensor. 

The floating gate voltage can be extracted from equation (1) as 
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𝑉𝐹𝐺 =
𝐶𝐷

𝐶𝑠𝑢𝑚
𝑉𝐷 +

𝐶𝑆

𝐶𝑠𝑢𝑚
𝑉𝑆 +

𝐶𝑠𝑒𝑛𝑠𝑜𝑟

𝐶𝑠𝑢𝑚
𝑉𝑠𝑒𝑛𝑠𝑜𝑟 +

𝑄0

𝐶𝑠𝑢𝑚
 ,  (𝐶𝑠𝑢𝑚 =  𝐶𝐷 + 𝐶𝑆 + 𝐶𝑠𝑒𝑛𝑠𝑜𝑟)         

(2) 

From the equation (2), we can notice that 𝑉𝐹𝐺 can be modulated by changing the 

capacitance of the bendable sensor, 𝐶𝑠𝑒𝑛𝑠𝑜𝑟 . And this change of 𝑉𝐹𝐺  affect the 

current of the floating gate transistor. Drain current of the floating gate transistor in 

the linear region can be written as 

𝐼𝐷𝑆 =
𝑊

𝐿
𝜇𝐶𝑂𝑋(𝑉𝐹𝐺𝑆 − 𝑉𝑇𝐻 −

𝑉𝐷𝑆

2
)𝑉𝐷𝑆,  (𝑉𝐹𝐺𝑆 =  𝑉𝐹𝐺 − 𝑉𝑆)      (3) 

where W and L are the channel width and length respectively, 𝜇 is the mobility of 

the s-SWCNT (average field effect mobility ~ 3.5 cm2 V-1 s-1), 𝐶𝑂𝑋 is the capacitance 

per unit area of the dielectric layer (20 nF cm-2), and 𝑉𝑇𝐻 is threshold voltage. From 

the equation (2) and (3), we can conclude that drain current of the floating gate 

transistor can be modulated by changing the capacitance of the bendable sensor, 

𝐶𝑠𝑒𝑛𝑠𝑜𝑟.  
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Figure 3.10 Pressure sensitive transistor and its application to wearable user inter-active 

pressure sensing device. (a) Schematic illustration of the pressure sensitive transistor (PST) 

with description of each layer. (b) Drain current-pressure curve of the PST for the negative 

bias of the sensor, Vsensor < 0. (c) Drain current-pressure curve of the PST for the positive 

bias of the sensor, Vsensor > 0. (d) Photographs of wearable user inter-active pressure sensing 

device. It consists of the PST, LED circuit, and batteries. (e) Light emitting of LED according 

to the pressure. (f) Wearable user inter-active pulse monitoring system. Wrist pulse measuring 

(left) and neck pulse measuring (right). 
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Figure 3.11 Transfer curves of the PST and pressure sensitivity of the PST. (a) Transfer curves 

of the PST by increasing the applied pressure. Black curve is for the top gate SWCNT TFT 

and color curves are for the PST at different pressure. (b) Relative current change-pressure 

curves of the PST at Vsensor of -1V and -5V, respectively. Pressure sensitivity at each 

Vsensor were calculated. (c) Drain current-pressure curves of the PST at Vsensor of 1V and 

4V, respectively. Pressure sensitivity at each Vsensor were also calcualted. Pressure 

sensitivity was calculated by using different equation compared to the (b) due to the different 

behavior of current according to the pressure. Pressure sensitivity S is defined as the slope of 

the current versus pressure (S=dR/dP). 
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We measured and plotted transfer curves of the PST by applying pressure as 

shown in Figure 3.11(a) and we demonstrated that the PST can operate at low 

voltages below 5V as shown in Figure 3.10(b) and 3.10(c). Shape of the transfer 

curve was changed by changing the applied pressure. As shown in Figure 3.10(b) 

and 3.11(a), when the top electrode of the bendable pressure sensor was negatively 

biased, drain current was increased by increasing the applied pressure and as shown 

in Figure 3.10(c) and 3.11(a), when the top electrode of the bendable pressure sensor 

was positively biased, drain current was decreased by increasing the applied pressure. 

This means that the transfer curve of the PST follows the transfer curve of the top 

gate s-SWCNT TFT as increasing the applied pressure as shown in Figure 3.11(a). 

Figure 3.10(b) and 3.10(c) show the drain current-pressure curves at negatively 

biased 𝑉𝑠𝑒𝑛𝑠𝑜𝑟 and positively biased 𝑉𝑠𝑒𝑛𝑠𝑜𝑟, respectively. PST can operate below 

5V and even in the low voltage of 1V. When PST operates at a voltage of 1V 

(𝑉𝑠𝑒𝑛𝑠𝑜𝑟 = 1𝑉), ultra-low power consumption of < 15 nW can be achieved (𝐼𝐷𝑆< 

15nA, 𝑉𝐷𝑆= −1V) as shown in Figure 3.10(c). The higher the absolute value of 

𝑉𝑠𝑒𝑛𝑠𝑜𝑟  is, the higher the pressure sensitivity is as shown in Figure 3.10(b) and 

3.10(c). The pressure sensitivity of the PST at certain voltages is shown in Figure 

3.11(b) and 3.11(c). Based on these results, we can notice that the pressure sensitivity 

of the PST can be tunable simply by controlling the voltage of the bendable pressure 

sensor, 𝑉𝑠𝑒𝑛𝑠𝑜𝑟 and the direction of the change of the drain current can be controlled 

by biasing 𝑉𝑠𝑒𝑛𝑠𝑜𝑟  negatively or positively. Further studies about the operation of 

the PST are now under investigation. Because the output of the PST to external 

pressure is not capacitance but current, the PST enables easy integration with various 

electronic devices such as LED chip, OLED, resistor, battery and so on. Also, due to 

the tunable sensitivity and controllability of the direction of the current change, the 
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PST can be applied to the wearable sensors or electronic skins which need 

customized sensitivity and function depending on the type of application.  

We fabricated pressure sensing devices by integrating the PST with certain 

electronic devices such as LED chip, resistor, OP amp and battery to demonstrate 

low voltage operation of the PST and wearable sensing device. We integrated the 

PST with LED chip, resistor, OP amp and battery to demonstrate the user inter-active 

pressure sensing device. We used commercially available resistors, OP amp, LED 

chip and batteries and the circuit was fabricated onto the PEN substrate. Schematic 

images of the circuit of the pressure sensing device are shown in Figure 3.12(a) and 

3.12(b). The PST operated below 3V and the total device operated below 4.5V. We 

designed the circuit to emit brighter light as the applied pressure increases. We tested 

the sensing performance of the pressure sensing device to the pressure by applying 

the pressure from 0 to 3.3 kPa. As shown in Figure 3.10(e), the emitted light from 

LED chip became brighter as the applied pressure increased. We measured the 

voltage of the node at each pressure and Figure 3.12(c) shows the relationship 

between the luminance and the pressure and the current and the pressure, 

respectively. Also we demonstrated the wearable user inter-active health monitoring 

system by combining the light emitting and pulse measuring. We designed the circuit 

like Figure 3.12(b) and in this condition the brightness of the LED chip was 

decreased as the applied pressure increased. Wrist and neck pulse were measured as 

shown in Figure 3.10(f), respectively. We can see the change of the brightness of the 

LED chip according to the change of the pressure induced from the pulse. 

 

 

 



 

 91 

 

Figure 3.12 (a) Schematic image of the circuit to emit brighter light as the applied pressure 

increases. (b) Schematic image of the circuit to emit brighter light as the applied pressure 

decreases. This design was used for the wearable user inter-active pulse monitoring system. 

(c) The current and luminous intensity of LED chip as a function of the applied pressure. (d) 

Schematic image of the circuit to measure the neck pulse by using battery, resistor, and PST 

(left). Voltage-time curve for the neck pulse measurment by using the device from this circuit 

design. 

 

 

 

 

 

 

Type Manufacturer part number 

Op-Amp LM2904 

Resistor (10 MΩ) R3216G1005F1-4W50V 

Resistor (50 Ω) R3216G51R0F1-4W50V 

LED XZM2CYK78W 

Table 3.1 Chip Information. 
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3.4 Conclusion 

 

In summary, we have demonstrated a highly sensitive and bendable sensor 

capable of pressure sensing in flat and bending state and distinguishment of pressure 

and bending and PST with ultra-low power consumption below 15 nW for the first 

time. Based on the APTES surface functionalization and spacer, the bendable sensor 

can be operated stably and detect the pressure exactly in the bending state. Also, by 

introducing the bending sensing part beside the pressure sensing part, the bendable 

sensor can detect both pressure and bending and distinguish the pressure and bending. 

We integrated the bendable sensor with the inkjet-printed SWCNT TFT for the 

fabrication of the pressure sensitive transistor (PST). PST can be operated in low 

voltage below 5V and ultra-low power consumption of PST below 15 nW can be 

achieved (𝐼𝐷𝑆< 15nA, 𝑉𝐷𝑆= −1V). By using the PST and commercially available 

electronic devices such as LED chip, resistor, OP amp and battery, we fabricated the 

user inter-active pressure sensing device and pulse monitoring device. Our bendable 

sensor and PST may open and broaden their application to the wearable health 

monitoring/sensing system or electronic skins with low power consumption.  
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Chapter 4 
 

 

Stretchable multifunctional sensor 
 

 

 

4.1. Introduction 

 
     Stretchable electronics have gained huge interest, because of their versatile 

applications such as stretchable displays, comfortable and wearable sensing systems, 

epidermal electronics, electronic skins, and wearable electronics [1-13]. Among the 

various stretchable devices and systems, stretchable sensors which mimic the 

sensing ability of the human skin have been widely investigated for the realization 

of electronic skins, robotic skins and prosthetic skins [1,4,7-13]. To mimic the human 

skin, the human tactile receptors, stretchable sensor must detect the force applied to 

the various direction and strain. In other words, stretchable sensor must detect not 

only the normal force, but also the shear force and this means the 3-axis force sensing. 

Up to date, however, most of the stretchable sensors can detect only normal contact 

force, the pressure, and strain [7-13]. Most of the 3-axis force sensors have been 

fabricated using the silicon microelectromechanical systems (MEMS) technology 

[14,15] or flexible polymer MEMS technology [16]. Based on these fabrication 

method and materials, previously reported 3-axis force sensors are not stretchable 

[14-16]. Recently, polydimethylsiloxane (PDMS) based 3-axis force sensors have 

been developed. However, most of the sensors with PDMS are not stretchable due 

to the stiff metal electrode [17-21] and only a few papers reported stretchability by 

using liquid metal electrode [22].  
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     In this chapter, we demonstrate the stretchable multifunctional sensor which 

can detect the 3-axis force, the normal force and shear force, and strain by using 

nanowire composite. By introducing various sensing component to the sensing 

system, we can obtain multifunctional sensor to mimic human tactile receptors and 

skin. For the 3-axis sensing, four individual capacitive sensors composed single 

sensing cell. Our sensor can sense and distinguish the pressure and shear force by 

analyzing the capacitance change of four individual capacitive sensors. For the strain 

sensing, flat nanowire composite was used. During the stretching process, the flat 

nanowire composite was deformed and this deformation resulted in the resistance 

change of the flat nanowire composite. Our sensor can detect the strain by analyzing 

the resistance change of the flat nanowire composite. 
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4.2. Experimental 

 
AgNW ink (YURUI chemical, Shanghai, China, AgNW length ~20μm) was 

spray-coated on the glass with patterning mask. Spray-coated AgNW film was dried 

at 50℃ for 30min. We poured the mixture of liquid PDMS and curing agent 

(Sylgard 184, Dow corning. Liquid PDMS and a curing agent were mixed in the ratio 

10:1 by weight) on the AgNW film and then cured it at 65℃ for 12 hours. After 

curing, we peeled off the the AgNW embedded PDMS from the glass and finally 

obtained the flat AgNW embedded PDMS electrode, the bottom electrode. PDMS 

dielectric layer (10:1 ratio of weight) was spin-coated onto the bottom electrode. The 

patterned top electrode with wavy and flat structure was obtained from the selective 

forming of SiOx thin film by using patterning mask and UV/O3 treatment. The mold 

PDMS was stretched uniaxially up to 40% and UV/O3 treatment (power = 28 

mW/cm2) was conducted to form the patterned SiOx thin film on the mold PDMS 

surface by using patterned mask. Then, AgNW ink (YURUI chemical, AgNW length 

5~10μm) was spray-coated onto the mold PDMS. Spray-coated AgNW film was 

dried at 50℃ for 30min. After heat treatment, the mold PDMS was released to its 

initial state (zero strain) and the buckled patterns was introduced to the AgNW film 

and mold PDMS. Due to the mask during UV/O3 treatment, SiOx thin film was 

formed selectively and buckled structure was also selectively introduced onto the 

area of SiOx. AgNW film followed well the buckled structure. We poured the 

mixture of liquid PDMS and curing agent on the AgNW film and then cured it at 

65℃ for 12 hours. After curing, we peeled off the mold PDMS from the AgNW 
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embedded PDMS and finally obtained the patterned AgNW embedded PDMS 

electrode, the patterned nanowire composite. To bond PDMS spacer and the PDMS 

dielectric layer, both surfaces are activated using the oxygen plasma (CUTE-1MP, 

Femto Science) for 40 seconds and activated surfaces of PDMS spacer and the 

PDMS dielectric layer were sandwiched together. Then, we heated sandwiched 

sample at 80℃ for 30min and irreversible strong chemical bonding was successfully 

introduced between the PDMS spacer and the PDMS dielectric layer. To fabricate 

the multifunctional sensor, the patterned nanowire composite and PDMS spacer were 

activated through the oxygen plasma treatment and they were sandwiched together 

to introduce the strong chemical bonding between the PDMS spacer and flat area of 

patterned nanowire composite. Finally we obtained the stretchable multifuctional 

sensor. 

The microstructure of the patterned electrode was characterized by using a 

field emission scanning electron microscope (FE-SEM, Hitachi S-48000), a 3-

dimensional surface profiler (NanoFocus) and optical microscope (EGTECH). 

Pressure was applied to the sensors by using IMADA force gauge with a z-aixs stage 

and metal weights. The capacitance of the bendable sensor was measured at 1 kHz 

with a 0.1 V a.c. signal by using Agilent 4284A LCR meter. The resistance of the 

nanowire composite was measured at 1V by using digital sourcemeter (Keithley 

2420). Stretching test of the sensor was performed using a home-made stretching 

apparatus. 
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4.3. Results and Discussion 

 

A schematic illustration of the stretchable multifuctional sensor is shown in 

Figure 4.1(a). Our sensor consists of the patterned nanowire composite (patterned 

electrode), spacers and the bottom plane (PDMS dielectric layer and flat nanowire 

composite). Each component of the sensor is stretchable and based on this 

stretchability the multifunctional sensor is also stretchable. We introduced various 

sensing ability to the sensor to demonstrate the multifunctionality like human skin. 

As shown in Figure 4.1, we introduced pressure and shear force sensing area and 

strain sensing area. For the pressure and shear force sensing, four individual 

capacitive sensors composed single sensing cell. Our sensor can sense the pressure 

and shear force by analyzing the capacitance change of four individual capacitive 

sensors. For the strain sensing, flat nanowire composite was used. During the 

stretching process, the flat nanowire composite was deformed and this deformation 

resulted in the resistance change of the flat nanowire composite. Our sensor can 

detect the strain by analyzing the resistance change of the flat nanowire composite.  

     Pressure and shear force were applied to our sensor to measure the pressure 

sensitivity and shear force sensitivity. Relative capacitance changes of four 

individual capacitive sensors ( ∆C/𝐶0 ,  ∆𝐶 = 𝐶 − 𝐶0 ) according to the pressure 

change are shown in Figure 4.2 (a). Four individual capacitive sensors showed 

almost same capacitance change behavior under the normal pressure as shown in 

Figure 4.2 (a). The pressure sensitivity,  𝑆 = 0.9 kPa−1(0~0.6kPa), 𝑆 =

 3 kPa−1(0.6~1.3kPa), 𝑎𝑛𝑑 𝑆 =  0.3 kPa−1(> 1.3kPa). We applied shear force to 
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the right direction as shown in Figure 4.2 (b) and measured the capacitance changes 

of four individual capacitive sensors. Capacitance changes of four individual 

capacitive sensors were different from the capacitance changes in normal  

 

 

Figure 4.1 (a) Schematic image of the stretchable multifunctional sensor. (b) Top view image 

of the sensor. (c) Side view image of the sensor. 

 

pressure condition. As shown in Figure 4.2 (b), when the shear force to the right 

direction is applied to the bump of the sensor, the bump and nanowire composite in 

the sensing area were deformed due to the torque generated from the shear force. 

The air gap on the left side of the sensing area increased, whereas the air gap on the 

right side of the sensing area decreased as shown in Figure 4.2 (b). As a result, the 
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capacitance values of the sensor number 1 and number 3 decreased as the shear force 

increased and the capacitance values of the sensor number 2 and number 4 increased 

as the shear force increased as shown in Figure 4.2 (b). The behavior of the 

capacitance change of the sensor in the same deformation condition was almost same 

as shown in Figure 4(b). 

 

 

 

Figure 4.2 (a) Normal pressure to the sensor (left). Relative capacitance change-pressure 

curves of four individual capacitive sensors (right). (b) Shear force direction and the 

deformation of the sensor according to the shear force (left). Relative capacitance change-

shear force curves of four individual capacitive sensors (right). 
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The shear force sensitivity, 𝑆 (𝑆 = δ(∆C/𝐶0 )/𝛿𝑓, ∆𝐶 = 𝐶 − 𝐶0 , where 𝐶  and 

𝐶0 denote the capacitance with the applied pressure and the base capacitance, 

respectively, and 𝑓  denotes the shear force) was calcualted. The shear force 

sensitivity of the sensor for the left side of the sensing area,  𝑆 =

−0.03 mN−1(0~7 mN) and 𝑆 =  −0.01 mN−1(7~20 mN ).  The shear force 

sensitivity of the sensor for the right side of the sensing area,  𝑆 =

0.006 mN−1(0~8 mN) and 𝑆 =  0.05 mN−1(8~18 mN ).  

     The repeated pressure and shear force were applied to the sensor, respectively, 

to demonstrate the stability and robust sensing ability of the sensor. We pressed our 

sensor with finger, several times, and measured the capacitance changes of four 

individual capacitive sensors as shown in Figure 4.3 (a). When we pressed the sensor 

with finger, all the capacitance values of four individual capacitive sensors increased 

up to almost same value as shown in Figure 4.3 (a). Also, the capacitance values at 

pressing condition were maintained constantly during the repeated pressing cycle as 

shown in Figure 4.3 (a). We applied shear force to the right direction repeatedly by 

using home-made motorized moving machine and force gauge. By attaching the 

force gauge onto the moving machine and moving the force gauge back and forth, 

we applied repeated shear force. We measured the capacitance change during the 

repeated shear force cycle as shown in Figure 4.3 (b). The capacitance values of the 

sensor number 1 decreased as the shear force increased and almost same capacitance 

changes were obtained to the repeated shear force (Maximum shear force is about 

20mN.) as shown in Figure 4.3 (b). The capacitance values of the sensor number 2 

increased as the shear force increased and almost same capacitance changes were 

obtained to the repeated shear force (Maximum shear force is about 20mN.) as 

shown in Figure 4.3 (b). These results demonstrate the robust sensing ability of the 
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sensor and stability to the repeated pressure and shear force. 

 

 

 

 

Figure 4.3 (a) Applied pressure to the sensor by touching with finger (left). Capacitance 

change-time curves of four individual capacitive sensors (right). (b) Shear force direction and 

the deformation of the sensor according to the shear force (left). Capacitance change-time 

curves of sensor number 1 to sensor number 2 (right). 
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     We stretched our sensor up to 30% and measured the resistance change of the 

flat nanowire composite during the stretching as shown in Figure 4.4. Because the 

flat nanowire composite is free to the deformation when the pressure or shear force 

is applied to the sensor, we selected the flat nanowire composite as a resistive strain 

sensor. As shown in Figure 4.4 (a), the resistance of the flat nanowire composite 

increased as the strain increased. The gauge factor, GF = (∆R/𝑅0 )/(∆L/𝐿0 ), of 

the resistive strain sensor was about 2.7. We stretched the sensor up to 30% and 100 

times and measured the resistance change as shown in Figure 4.4 (b). We stretched 

the sensor with stretching speed of 0.5mm/s. As shown in Figure 4.4 (b), the relative 

resistance change values were maintained stably within 10% variation during the 

100-cycle test and this demonstrate that strain sensor is stable and robust to the 

repeated stretching. 

 

 

 

 

Figure 4.4 (a) Relative resistance change-strain curve of the flat nanowire composite. (b) 

Relative resistance change-time curve of the flat nanowire composite. We stretched the sensor 

up to 30% and 100 times. 
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4.4. Conclusion 

 

     We have fabricated stretchable multifunctional sensor which can detect the 

pressure, shear force, and strain. By introducing various sensing component to the 

sensing system, we can obtain multifunctional sensor to mimic human tactile 

receptors and skin. For the pressure and shear force sensing, four individual 

capacitive sensors composed single sensing cell. Our sensor can sense and 

distinguish the pressure and shear force by analyzing the capacitance change of four 

individual capacitive sensors. The maximum pressure sensitivity is about 3kPa-1 and 

the maximum shear force sensitivity is about 0.05mN-1 for increasing area and -

0.03mN-1 for decreasing area. For the strain sensing, flat nanowire composite was 

used. During the stretching process, the flat nanowire composite was deformed and 

this deformation resulted in the resistance change of the flat nanowire composite. 

Our sensor can detect the strain by analyzing the resistance change of the flat 

nanowire composite and the gauge factor is about 2.7. Our sensor may open and 

broaden its application to the wearable and comfortable multifunctional sensing 

systems and electronic skins. 
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Chapter 5 

 

 

Conclusion 

 

     In this thesis, we report pressure and strain sensing devices based on 

the nanowire composite composed of silver nanowires (AgNWs) and 

polydimethylsiloxane (PDMS). By introducing the multiscale structure which is 

composed of nanometer-sized rough surfaces and micrometer-sized wavy structures 

to the nanowire composite and fabricating the sensor with multiscale structured 

nanowire composite, we obtained highly sensitive pressure/strain sensors.  

     We used the buckled silicon oxide/PDMS as a mold to demonstrate the simple 

and low-cost microscale mold fabrication method and fabricated multiscale 

structured nanowire composite by using this mold. Owing to the peel-off stress 

during the peeling off process of nanowire composite from the mold, nanoscale 

rough surface was successfully introduced to the crest area of microscale wavy 

structure. The pressure sensor integrated with multiscale structured nanowire 

composite and polymeric dielectric layer/printed Ag electrode on plastic substrate 

showed highly pressure sensitivity and flexibility. We obtained maximum pressure 

sensitivity of 3.8 kPa-1 in low pressure region and very small pressure of 15 Pa can 

be detected by using the sensor. Sensor arrays were also demonstrated and can detect 

the spatial distribution of the applied pressure. We also fabricated the fingertip 

pressure sensing device to detect the pressure distribution of fingers, when grabbing 
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an object. 

     We fabricated pressure sensor with tunable pressure sensitivity by controlling 

the mechanical property of the matrix PDMS of nanowire composite. Due to the 

difference of the mechanical property of the matrix PDMS and the shape of the crest 

area of the buckled structure, the pressure sensitivity of the sensor can be easily tuned. 

This sensor can also detect the bending strain and is very stable to the repeated 

bending condition. 

Based on the APTES surface functionalization and spacer, we have bonded all 

components of the sensor and fabricated bendable pressure sensor which can detect 

the pressure even in the bending state and operate stably in the bending state. By 

introducing the bending sensing part beside the pressure sensing part, the bendable 

sensor can detect both pressure and bending and distinguish the pressure and bending. 

We integrated the bendable sensor with the inkjet-printed SWCNT TFT for the 

fabrication of the pressure sensitive transistor (PST). PST can be operated in low 

voltage below 5V. By using the PST and commercially available electronic devices 

such as LED chip, resistor, OP amp and battery, we fabricated the user inter-active 

pressure sensing device and pulse monitoring device.  

We fabricated stretchable multifunctional sensor which can detect the pressure, 

shear force, and strain by using only nanowire composite and PDMS. By introducing 

various sensing component to the sensing system, we demonstrated multifunctional 

sensor to mimic human tactile receptors. For the pressure and shear force sensing, 

four individual capacitive sensors composed single sensing cell. Multifunctional 

sensor can sense and distinguish the pressure and shear force by analyzing the 

capacitance change of four individual capacitive sensors. For the strain sensing, flat 

nanowire composite was used. During the stretching process, the flat nanowire 
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composite was deformed and this deformation resulted in the resistance change of 

the flat nanowire composite. By analyzing the resistance change of the flat nanowire 

composite, strain can be detected. Our sensor may open and broaden its application 

to the wearable and comfortable multifunctional sensing systems and health 

monitoring/sensing system. 
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한글 초록 

 

본 논문에서는 피부 부착 가능하며 입을 수 있는 전자소자 구현을 

위해 나노와이어 복합체를 이용한 고민감도의 압력/변위 센서에 대해 연

구하였다. 이를 위해 은나노와이어와 PDMS로 구성된 다중스케일 구조

의 나노와이어 복합체를 고안하였으며 이를 이용해 다기능 센서를 제조

하였다. 다중스케일 구조의 나노와이어 복합체를 기반으로 한 고성능의 

압력/변위 센서를 제조하였으며 이를 분석 하였다.  

최근 웨어러블 전자소자로의 응용을 위해서 유연하거나 신축성 있는 

압력, 변위, 온도 센서와 같은 물리 센서들이 광범위하게 연구되고 있다. 

이러한 응용을 위해서는 특히 높은 민감도, 빠른 응답속도, 반복 안정성

을 갖는 고성능의 압력/변위 센서들이 요구된다. 따라서 본 연구는 나노

미터 사이즈의 거친 표면과 마이크로미터 사이즈의 물결 구조로 이루어

진 다중스케일 구조를 갖는 나노와이어 복합체를 개발하였으며 이를 고

분자 유전층과 인쇄된 은전극과 활용해 정전용량식 압력센서와 어레이를 

개발하였다. 제작된 센서는 높은 압력 민감도 (S >3.8 kPa-1), 빠른 응답속

도 (t <0.15s), 반복 안정성 (1500회의 압력 사이클과 5000회의 굽힘 사이

클)을 보였으며 압력과 굽힘을 측정할 수 있었다. 나노와이어 복합체를 

이용하여 대면적의 센서 어레이를 제작할 수 있었으며 3행 3열과 5행 5

열의 압력센서 어레이를 제작하였다. 센서 어레이는 단일 센서와 비슷한 

민감도 특성을 보였으며 공간적으로 분포된 압력을 측정 할 수 있었다. 

손가락 끝에 압력센서를 붙여 장갑형태의 센서를 구현하였으며 플라스틱 

비커를 잡았을 때 손가락에서의 압력 분포를 측정 하였다.  

나노와이어 복합체를 구성하는 PDMS의 배합 비율을 달리하여 압력

센서의 민감도를 조절 할 수 있는 방법을 개발하였다. 5:1, 10:1, 15:1의 비

율로 배합된 액상 PDMS와 가교제를 이용하여 나노와이어 복합체를 제

작하였다. 배합비율에 따라 복합체의 탄성비율과 구조가 달라져서 제작 

된 센서의 민감도 특성이 각 배합 비율에 따라 달라지는 특성을 보였다. 
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굽힘 안정성과 굽힘 상태에서 압력을 측정 할 수 있는 벤더블 압력

센서를 개발 하였다. 센서에 압력 측정 영역과 굽힘 측정 영역을 넣어서 

압력과 굽힘 모두를 측정 할 수 있으며 구별 할 수 있는 벤더블 센서를 

개발 하였다. 고분자 유전층 위에 표면처리와 산소 플라즈마 처리를 통

해서 규소 산소 간의 강한 결합을 유도하여 굽힘에서 안정적으로 동작하

는 벤더블 압력 센서를 제작하였다. PDMS 스페이서를 통해 유도된 공기

층으로 인해서 센서의 민감도가 9 kPa-1로 크게 향상 되었다. 이로 인해 

0.7 파스칼의 매우 작은 압력을 측정 할 수 있었고 0.075초 이내의 매우 

빠른 응답속도를 보였다. 또한 굽힘 환경에서도 압력을 측정 할 수 있었

으며 이러한 벤딩 센서를 이용하여 손목 맥박과 휴대전화의 진동을 감지 

할 수 있었다. 센서 어레이를 제작하였으며 굽힘 상태에서의 가해진 압

력을 역으로 계산하였다. 벤더블 센서와 단일벽 탄소나노튜브 트랜지스

터를 결합하여 압력 민감 트랜지스터를 개발 하였다. 압력 민감 트랜지

스터는 5V이하의 동작전압에서 작동하였으며 15nW의 매우 작은 전력을 

소모하였다. 압력 민감 트랜지스터와 LED 칩, 저항, 증폭기, 배터리를 활

용하여 사용자 상호작용 센싱 시스템과 맥박 측정 장비를 개발 하였다.  

마지막으로 수직방향과 수평방향 힘을 측정하고 변위를 측정 할 수

있는 신축성 다기능 센서를 나노와이어 복합체를 사용하여 개발 하였

다. 특히 사람의 피부와 촉각 수용기를 모사하기 위해서 여러 센서 요

소들을 도입하였다. 3축 방향의 힘을 감지하기 위해서 4개의 개별 정전

용량 센서를 하나로 통합하였으며 각 개별 센서의 정전용량의 변화를 

관측하여 압력과 전단력을 구별 할 수 있었다. 나노와이어 복합체의 

스트레칭 시에 저항 변화를 통해서 변위를 감지하였다.  
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