

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

ıY�¨Y⌅|8

OS I/O Path Optimizations
for Flash Solid-State Drives

�ò‹ SSD|⌅\
¥�¥⌧ I/OΩ\\�T

2017D 2‘

⌧∏�YP�Y–

⌅0·ÙË0ıYÄ

‡≈

OS I/O Path Optimizations

for Flash Solid-State Drives

�ò‹ SSD|⌅\
¥�¥⌧ I/OΩ\\�T

¿ƒP⇠¸Ã�

t|8DıY�¨Y⌅|8<\⌧úh

2016D 12‘

⌧∏�YP�Y–

⌅0·ÙË0ıYÄ

‡≈

‡≈X�¨Y⌅|8Dx�h

2016D 12‘

⌅ – • @¿M (x)
Ä⌅–• ¸Ã� (x)
⌅ – π¸ (x)
⌅ – t¨± (x)
⌅ – @�¨ (x)

Abstract

OS I/O Stack Optimizations
for Flash Solid-State Drives

Woong Shin
Department of Electrical Engineering and Computer Science

College of Engineering
The Graduate School

Seoul National University

Flash memory technology, in the form of flash solid-state drives (flash SSDs), is steadily

replacing prior storage technology based on the value of affordable microsecond level

random access memory with high bandwidth. While the cost per bit is now compara-

ble with HDDs, the superior performance of SSDs are now replacing HDDs from our

storage systems. However, due to the high latency variability, flash SSDs are yet to be

a strong candidate to replace or complement DRAM based in-memory systems which

are commonly seen in modern data centers under latency sensitive applications.

Because of this variance, it can be challenging to meet both the IOPS and latency

requirements for these latency sensitive applications. While the latency of flash SSDs

are small enough to make software overheads of an I/O request not negligible, latency

variance increases the overheads by magnifying the impact of context switches which

harms both IOPS and latency capability of an I/O path. Also, the latency variance of

flash SSDs is exposed in an uncontrolled fashion towards the applications which harm

service level throughput of the data center. Such impact of variance has to be tolerated

or controlled within the I/O path.

To this end, this dissertation presents a set of host side OS I/O path optimizations

which address the impact of latency variance of flash SSDs with the goal of using

i

flash SSDs under latency sensitive applications. New I/O path designs based on two

distinct approaches, which are 1) exploiting additional resource based on parallelism

of multiple CPU cores or SSDs, and 2) exploiting the enhanced interactions between

the host and the SSD are proposed to cope with the variance. While prior research has

limitations on sacrificing one of either IOPS or latency to address variance, our I/O

path designs achieve both IOPS and latency by trading additional resources.

To reduce the software overhead caused by the variance, we implemented opti-

mized AHCI based flash SSD device driver which enhances the IOPS capability of the

I/O path by reducing the impact of context switches within the I/O completion path.

This device driver achieved 100% IOPS enhancement over the original Linux I/O path.

Also, an SSD extension was implemented on an SSD prototype platform which can

further reduce the latency of individual I/O requests by overlapping scheduling delays

with the actual I/O time. Here, the extension was able to introduce average 7 µs of

latency reduction per I/O request without diminishing in system parallelism.

To address the leakage of the latency variance, we developed a key-value stor-

age engine as a flash SSD backend for a Memcached. The negative impact of latency

spikes caused by write oriented operations was isolated from foreground read opera-

tions by exploiting redundant data copies placed on multiple SSDs. While this read-

write separation technique provided moderate impact cutting the tail latency of the key

value store to millisecond levels, dramatic reduction of was demonstrated by exploit-

ing SSDs with the capability of controlling internal I/O operations such as garbage

collection. The extensions achieved latency under 1 ms at the 99.9999th percentiles

from the storage engine level.

Keywords: Storage Stack Optimization, Flash SSD, Operating System, Cross-layer

Optimization, High Performance Storage Devices, Data Center, Key-value Stores, QoS

Student Number: 2010-23271

ii

Contents

Chapter 1 Introduction 1

1.1 Motivation . 1

1.1.1 Flash SSDs for Latency Sensitive Applications 2

1.1.2 The Impact of Flash SSD Latency Variability on the I/O Path . 2

1.1.3 The Impact of Latency Variability Exposure 3

1.2 Dissertation Goals . 4

1.3 Approach . 4

1.4 OS I/O Path Optimizations for Flash SSDs 5

1.5 Contributions . 7

1.6 Dissertation Structure . 8

Chapter 2 Background 9

2.1 Adoption of Flash SSDs and the Impact on Our I/O path 9

2.2 Next Generation Memory Technologies 10

2.3 The Impact of Modern Flash SSDs 11

2.4 I/O Path for Flash SSDs . 13

2.5 Related Work . 14

2.5.1 Reconsidering the I/O path 14

2.5.2 Black-box Approaches . 15

2.5.3 Cross-layer Approaches . 16

iii

2.5.4 Refactoring the I/O Path . 17

Chapter 3 IOPS Improvement by Reducing the Impact of Context Switches 18

3.1 Introduction . 18

3.2 Motivation . 19

3.3 Design and Implementation . 21

3.3.1 HIOPS Hardware Abstraction Layer 22

3.3.2 HAL API Operations . 23

3.3.3 OS I/O Path Optimizations 24

3.4 Evaluation . 27

3.5 Summary . 31

Chapter 4 Latency Reduction using SSD Internal Information 32

4.1 Introduction . 32

4.2 Motivation . 33

4.2.1 System Impact of Modern SSDs 34

4.2.2 SSDs, Unblinding the OS 35

4.3 Design and Implementation . 36

4.3.1 Predicting the I/O Time of SSDs 36

4.3.2 OS I/O Path Optimizations 38

4.4 Evaluation . 40

4.4.1 Experimental Setup . 40

4.4.2 Results . 41

4.5 Summary . 43

Chapter 5 Tail Latency Reduction using Host Side GC Control and Mul-

tiple Devices 45

5.1 Introduction . 45

5.2 Motivation . 47

5.2.1 Large Scale Key Value Stores and Flash SSDs 47

iv

5.2.2 Latency Spikes of Flash SSDs 48

5.2.3 Predictable latency, High IOPS but Higher Price 48

5.3 Design . 49

5.3.1 Overview . 49

5.3.2 SSD Control API . 51

5.3.3 Multi-SSD Storage Engine 52

5.3.4 Latency Control . 53

5.3.5 Scheduling I/O Operations 54

5.4 Evaluation . 56

5.4.1 Implementation and Environment 56

5.4.2 Micro Evaluation . 56

5.4.3 Full System Performance . 59

5.5 Limitations . 60

5.5.1 Additional Flash Chips . 60

5.5.2 Non Standard API . 60

5.5.3 Data Inconsistency upon Power Failures 61

5.5.4 Unbounded Write Latency 61

5.6 Summary . 61

Chapter 6 Conclusion 63

6.1 Summary and Conclusions . 63

6.2 Future Work . 65

6.2.1 Extending the Scope of I/O Path Optimizations 65

6.2.2 Extended Use Cases of Host Assisting SSD Extensions 66

6.2.3 Applications for Different Technologies 67

Bibliography 68

Acknowledgments 81

v

List of Figures

Figure 2.1 Modern SSD architecture (source: Jung et. al. [1]) 12

Figure 2.2 SSD internal parallelism (source: Bjørling et. al. [2]) 12

Figure 2.3 Performance stagnation with many-chip solid state drives (source:

Jung et. al. [1]) . 13

Figure 2.4 Layers and I/O interfaces within the I/O path 13

Figure 3.1 Minimizing scheduling delays within the I/O completion path 19

Figure 3.2 I/O performance of parallel 512-byte small random reads (Six

SATA 3.0 SSDs attached to a desktop I/O chipset integrated

AHCI controller) . 19

Figure 3.3 Scheduling delays in the I/O completion path 20

Figure 3.4 Comparison of our I/O path and the original Linux SCSI I/O

path . 23

Figure 3.5 Interactions between I/O strategies and low level drivers (LLDs) 23

Figure 3.6 OS I/O path optimizations with HIOPS-HAL 25

Figure 3.7 Hardware block diagram of our system 27

Figure 3.8 IOPS and bandwidth with increasing I/O block size (fio, Di-

rect I/O, 128 threads, six SATA 3.0 SSDs, Software RAID0,

128kB stripe, ext4, noop scheduler(SCSI)) 28

Figure 3.9 Effect of I/O processing optimizations 29

vi

Figure 3.10 Poll interval impact . 29

Figure 3.11 Key value storage performance (YCSB 100% get() perfor-

mance) . 30

Figure 4.1 Minimizing the impact of I/O completion scheduling delays

by having SSDs actively informing the OS 34

Figure 4.2 Proposal based on a simplified model of the internals of an

SSD having a buffer/cache and an array of NAND chips . . . 37

Figure 4.3 Behavioral models of SSD internals exposed to the OS . . . 39

Figure 4.4 Precompletion I/O threads vs CPU threads 42

Figure 4.5 Impact of precompletion on IOPS with multidepth I/O (80 µs

device latency) . 43

Figure 4.6 Impact of precompletion on latency with multidepth I/O (80 µs

device latency) . 44

Figure 5.1 Overview of our multi-SSD storage engine integrated as a

flash SSD backend for memcached 49

Figure 5.2 Latency control scheme which employs a heavy I/O token

being passed around multiple SSDs 53

Figure 5.3 Example timeline I/O being scheduled on multiple SSDs . . 54

Figure 5.4 Maximum read latency of multiple SSDs, under control of

our storage engine, in the presence of write activity (aggre-

gate of four SATA 6.0 Gb/s SSDs, 8 random 4kB readers and

4 random 1MB writers) . 57

Figure 5.5 Cumulative distribution of the foreground read latencies . . 57

Figure 5.6 Foreground 99.9999th percentile read latency of multiple SSDs

and their impact on read bandwidth under varied number of

reader threads (aggregate of four SATA 6.0 Gb/s SSDs, 4 ran-

dom 1MB writers) . 59

vii

List of Tables

Table 4.1 Accuracy of Latency Predictions (three-value moving average) 41

Table 5.1 SSD Control API . 50

Table 5.2 Full System Performance (Flash Memcached) 60

viii

Chapter 1

Introduction

1.1 Motivation

Without a new storage technology emerging, our computer systems have been fixed to

an HDD-based architecture for several decades, but the demands of serving data have

been increasing over time. Especially, modern data center workloads which are latency

sensitive and large in scale has grown almost impossible for our HDD based architec-

tures to support. There have been discussions about the increasing performance gap

between the CPU and DRAM which forms a “memory wall.” But with the advent of

internet scale data centers, “I/O wall” which comes from the performance gap between

DRAM and HDD has been overwhelming us.

The scale of such requests from the customers and the stringent requirements of la-

tency to provide better experience demanded our data centers to employ new methods

to service data. Here, with the advent of 64 bit multi-core CPUs and the drop of DRAM

price per GB made system architects look into in-memory computing systems, which

data is primarily serviced from DRAM, eliminating the negative impact of HDDs. This

brought a proliferation of in memory systems in the data center, In memory systems

such as memcached [3], Redis [4], MongoDB [5] and VoltDB [6] are aggressively used

1

as main workhorses to support latency sensitive applications. However, DRAM is both

space and power hungry, so it can run short of supporting the ever increasing scale of

data in our data centers.

1.1.1 Flash SSDs for Latency Sensitive Applications

Fortunately, there has been advances in technology resulting in the emerge of next

generation memory technologies such as PCM, STT-MRAM, FeRAM and also NAND

Flash. These technologies, each cultivated from the laboratories of both the industry

and the academia emerged to be our next storage technology, expected to save us

from the shortcomings of our HDD based storage architecture. NAND Flash memory

technology, in the form of flash SSDs, was the first breed of such next generation

memory to be commercialized, steadily replacing prior technologies based on the value

of affordable microsecond level random access memory.

Here, parallel small random reads of flash SSDs are gaining interest in the con-

text of SSD-backed key-value storage which is considered as a good use case of SSDs

[7, 8], because of the read-oriented small I/O from such workloads [9]. Even though

flash SSDs have higher latencies than DRAM, the IOPS and the latency of small read

I/O of flash SSDs are enough to match the service level agreement (SLA) typically

found with these systems [10]. This usage of flash SSDs was made possible because

of the significant amount of internal parallelism adopted by SSD vendors to keep up

with the expectations of such applications. However, flash SSDs are yet to dominate la-

tency sensitive (or critical) applications such as key-value stores because of the latency

variability of each access.

1.1.2 The Impact of Flash SSD Latency Variability on the I/O Path

Such latency variability has profound implications on the I/O supporting system soft-

ware where the variability increases the software overhead which the microsecond

latency of flash SSDs already magnified. In the case of flash SSDs, the latency portion

of the I/O supporting software is around 10% to 20% depending on the generation

2

of the underlying flash technology, though it is challenging to achieve both IOPS and

latency without sacrificing one another. This dilemma is because of the context switch-

ing overheads caused by multiplexing the significant amount of parallelism required

for our high die count multi-channel multi-way flash SSDs. If we assume predictable

access latency, polling [11] can address such overheads, but flash SSDs are far from

predictable. The variable latency of flash SSDs makes it impossible for the method

to be effective, which in turn leaving the I/O stack to sacrifice latency to avoid the

negative impact in system parallelism.

Resolving such problems would require the system software to be aware of the

variability and take measures to mitigate the impact. However, this conflicts with the

current trend of research in reducing the amount of system software execution from

the I/O path evolving towards direct hardware access. The impact of context switches

account at least 7 µs per I/O request and is comparable to the amount of latency reduced

by direct hardware access (reduced from 13.5 µs down to a few microseconds).

1.1.3 The Impact of Latency Variability Exposure

With current flash SSDs, the latency variability leaks from the SSD and escalates all the

way up to the application which affects end-to-end user experience. With flash SSDs,

the user experience of latency sensitive applications are mostly bound by the read

request latency, and the millisecond latency of writes and erases are usually hidden

under a write buffer at several levels of the I/O path including the flash SSD.

However, the millisecond latencies can impact foreground read latencies in the

presence of mixed read-write workloads typically seen in applications because there is

a significant difference between read, write and erase latencies. If a pending write or

erase request is present on a NAND chip, the following conflicting read request will

experience the millisecond delay of the pending requests.

Even though flash SSDs employ large numbers of flash chips to disperse the re-

quests, it is hard to avoid such conflicts under arbitrary read-write requests. Such vari-

ance is where flash SSDs fall short even though flash SSDs do have attractive traits

3

of affordable microsecond scale random access memory. While the multi-GB per sec-

ond bandwidth of modern flash SSDs are sufficient to provide value over HDDs, the

millisecond scaled spikes make it difficult to use flash SSDs in place of DRAM. Such

leakage of variance can be challenging to resolve and can negatively impact service

level throughput of data centers. Google [12] has presented the negative impact of

latency variance experienced from low-level system components.

1.2 Dissertation Goals

In this dissertation, we are motivated to propose new OS I/O path optimizations to

enhance the user experience of flash SSDs under latency sensitive applications. The

primary goals of this dissertation is as follows:

• Flash SSDs for Latency Sensitive Applications: Enable the use of flash SSDs

in place of DRAM to serve latency sensitive applications by resolving the impact

of the latency variability of flash SSDs.

• Host Side I/O Path Optimizations to Resolve the Impact of Latency Vari-

ance: Develop OS I/O path optimizations from the host side which resolve

(tolerate or eliminate) the impact of the latency variance of flash SSDs without

sacrificing IOPS or latency.

• Overcome the Architectural Challenges which Impacts the I/O Path: While

addressing the impact of latency variance, we aim propose I/O path optimiza-

tions which overcomes the architectural challenges of the narrowed gap between

flash based storage and post-Moore multi-core CPUs.

1.3 Approach

To address the impact of latency variance of flash SSDs on the I/O path, we have set

ourselves to focus on proposing optimizations based on two distinct approaches. The

approaches are 1) exploiting additional resource based on parallelism of multiple CPU

4

cores or SSDs, and 2) exploiting the enhanced interactions between the host and the

SSD.

First, the approach of exploiting additional resources in favor of sustaining both

IOPS and latency came from the observation where prior research have limitations

on sacrificing one of either IOPS or latency when addressing variance. While such

tradeoff is not obvious, providing a new tradeoff which does not sacrifice the core

values of the system would benefit system designers.

Second, the approach of exploiting enhanced interactions between host and the

SSD is based on the observation that the key factor in addressing the impact of vari-

ability comes from resolving the oblivious interactions between components within

the I/O path. For example, while the key element in addressing the latency spikes is

to coordinate each I/O requests to avoid the conflicts, the black-box interface designed

around boundaries (i.e., flash SSD interface) prohibits such optimizations. Instead of

working around the interface, our approach is to tackle the interface itself directly to

support the necessary coordination.

1.4 OS I/O Path Optimizations for Flash SSDs

Based on our goals and approach, this dissertation proposes new OS I/O path opti-

mizations to overcome the challenges of the latency variability of flash SSDs when

used under latency-sensitive environments. Here, the proposed OS I/O path optimiza-

tions are summarized as follows:

• Enhancing IOPS by Reducing the Impact of Context Switches: To enhance

the IOPS scalability of the OS I/O path using flash SSDs, we propose a series of

optimizations which reduces the impact of context switches. The optimizations

simplify the I/O completion path by eliminating bottom half software IRQ based

I/O processing contexts or inter-processor based IRQ steering contexts. Negative

impacts of removing such contexts are mitigated by optimizations such as lazy

I/O processing on the I/O thread contexts or work stealing cooperative I/O pro-

5

cessing which is based on exploiting the parallelism of multiple CPU cores. The

optimizations were made possible by introducing an HAL (Hardware Abstrac-

tion Layer) which gives a better abstraction to the upper layers. The HAL ex-

poses the abstraction of the memory mapped queue seen in many HBA (host bus

adaptors) which manages multiple in-flight I/O requests and gives fine grained

access to the status of each in-flight I/O. The optimized I/O path showed more

than 100% IOPS enhancement over the SCSI I/O path while maintaining the

same layered architecture.

• Reducing Latency Using SSD Internal Information: To further reduce the

impact of context switches, we propose an optimization which the host-side sys-

tem software exploits SSD internal information. Here, the SSD is enhanced to

notify the OS device driver to make better decisions on blocking or yielding a

CPU upon waiting for an I/O to complete. This enhancement was done by de-

composing the behavior of a flash SSD based on I/O contexts and their destined

internal H/W components. Decomposition was based on the observation that

modeling individual H/W components are far easier than modeling an SSD as

a whole. Simple behavioral models fed with accurate parameters explicitly pro-

vided by internal monitors or counters within the SSD-enabled low overhead,

highly accurate latency prediction. Each behavioral model is activated based on

the context of an I/O request and is used to provide future information of the re-

quest (i.e., expected latency) to the OS I/O processing software. This exposure

of behavioral models inspired aggressive optimizations such as pre-completion

and selective polling which lowers the user experienced latency of each I/O re-

quests. The feasibility and impact of our optimizations were demonstrated on an

SSD development platform equipped with actual MLC NAND flash chips.

• Tail Latency Reduction Using Host Side GC Control and Multiple Devices:

User experienced latency variance caused by I/O requests colliding on SSD in-

ternal resources are mitigated by exploiting host-side GC control and multiple

6

SSDs. Here, host-side GC control provides the ability to avoid foreground I/O

requests to conflict with background GC operations. The parallelism of multiple

SSDs provided means of distributing I/O requests to avoid further conflicts. The

benefits of such scheme were demonstrated by implementing a key-value stor-

age engine which employs multiple SSDs with the ability to control the physical

destination of each I/O requests and the ability to control SSD internal tasks

such as garbage collection. Our storage engine employs additional flash SSDs.

However, the engine does not harm the inherent latency of the underlying flash

SSDs.

Exposing the abstraction of physical LBA partitions based parallel H/W com-

ponents turned out to be useful in cutting the long tail of user experienced flash

SSD latency.

1.5 Contributions

The OS I/O path optimizations proposed in this dissertation contributes in resolving

the impact of the latency variation of flash SSDs under the requirements of latency

sensitive applications. The main contributions are summarized as follows:

• Design and Implementation of an Optimized Device Driver for Flash SSDs

which reduces the variance induced software overheads without compromising

IOPS (system parallelism) and latency. This device driver solves the problem

of the increasing overhead of context switches which is hard to avoid without

sacrificing IOPS or latency because of the highly variant nature of flash SSD

latency. This work contributes in proposing a technique which embraces the

latency variance of flash SSDs by introducing a practical optimization which

tolerates the latency variance.

• Design and Implementation of a Key-Value Storage Engine for Flash SSDs

which conceals the impact of latency variation of flash SSDs under arbitrary

7

workloads without sacrificing average latency. While the storage engine trades

more NAND chips for stable latency, the engine gives system designers a trade-

off to support latency sensitive applications. Also, this host-side storage engine

has the capability of masking the latency variance of flash SSDs without requir-

ing a particular type of flash SSD implementation, which is a value appreciated

by system architectures designing systems for the data center.

• SSD Extensions and Interface Designs which enhances the capability of host

side system software to deal with the latency variability of flash SSDs. Both

the presented device driver and the key-value storage engine benefits from these

extensions and goes and can go an extra mile towards a more efficient cross-

layer optimization based I/O path design.

This work contributes in proposing extensions which the host side system soft-

ware benefits from information from SSDs. While there are several cross-layer

proposals in hinting flash SSDs towards efficient flash SSD behavior, this work

focuses and contributes in the opposite direction which was relatively less stud-

ied, but now gaining interest within the context of special purpose I/O stack

implementations.

1.6 Dissertation Structure

The remainder of this dissertation is organized as follows. In the next Chapter (Chap-

ter 2), the adoption and the impact of modern flash SSDs and the trends which chal-

lenge the user experience is discussed. This will be followed by three chapters each

describing our engineering efforts on enhancing IOPS (Chapter 3), latency (Chapter 4),

and latency variation (Chapter 5). Chapter 6 will conclude this work.

8

Chapter 2

Background

2.1 Adoption of Flash SSDs and the Impact on Our I/O path

Flash SSDs, because it was first targeted as a drop in replacement, it has been so

successful in the market as a disruptive technology. This success brought significant

interest from both the industry and academia, and led generations of advancement

in flash SSD technology. Even though NAND flash technology had issues with its

non-overwritable destructive nature, the success drove the technology to achieve both

increase in performance and decrease in price, which made flash SSDs even more

viable. Flash SSDs were first intended to be placed in the location of HDDs, but the

merits of cheap microsecond access latency to a large density of random access non-

volatile memory brought new applications which complements or even replaces the

role of DRAM in our systems.

However, the success soon revealed that our I/O path developed around traditional

DRAM + HDD based architecture were coming short in supporting flash SSDs. Ap-

plying flash SSDs require major changes in our I/O path, or otherwise the potential

of flash SSDs would not benefit the user. This is because flash SSD latency scaled in

microseconds, even though it was 100 times larger than DRAM technology, was small

9

enough to magnify the time spent in host portion of the I/O path. This phenomenon has

been noticed by the researchers projecting the impact of next generation memory tech-

nologies and brought several proposals refactoring the I/O path in order to properly

support high performance storage devices such as our flash SSDs. In such studies, the

expected latency incurred by the underlying memory technology was in nanoseconds,

so it required significant changes in the I/O path minimizing the time spent in the host

portion of the I/O path.

2.2 Next Generation Memory Technologies

In the storage perspective, researchers within the context of next generation memory

technologies initially noticed this problem. Compared to the latency expected from

next-generation technologies such as PCM, RRAM, MRAM and STT-MRAM, the la-

tency induced by prior I/O processing software was unacceptable. The latency of the

SCSI I/O path (Linux) for a SATA SSD was reported to be around 13.5 microsec-

onds while the latency of next-generation memory technologies was expected to be at

nanosecond levels. This inspired researchers to rethink and refactor our OS I/O path

to better support new devices based on next generation memory technologies [13].

Early proposals such as Moneta [14] explored such new designs and was successful

to reduce the latency of software overheads down to one or two microseconds, though

required holistic reconsideration of the OS I/O path design. Aligned with such holistic

efforts, the vastly different character of new technologies also required us to rethink

prior HDD based I/O mechanisms and strategies running through the I/O path. Doing

so requires an end to end approach which spans from the application all the way down

to SSD internals. It was about time to redesign our I/O path end to end.

Nevertheless, such proposals were not enough or not even clear whether they

would improve the performance of our flash SSDs. Such research was good enough to

project the necessity of I/O path refactoring in the coming future, but failed to be justi-

fied in the context of flash SSDs. This is because flash SSDs are different. Compared to

10

the memory technologies to come which are projected to have nanosecond latencies,

flash SSDs have intermittent latencies neither in nanoseconds or milliseconds making

it difficult to apply techniques which were applied in the context of next generation

memory technologies.

2.3 The Impact of Modern Flash SSDs

After the success of penetrating into the market, the technology revolving around flash

SSDs have been advanced towards to a higher performance storage device with lower

price per GB. Two major drivers we observe is the advance in NAND technology and

the advance in SSD architectures. NAND technology has been advanced in order to

provide much higher densities, and SSD architectures have been advanced to have

more parallelism. NAND technology has been advanced in order to provide much

higher densities of NAND memory at a lower cost, and SSD architectures have been

advanced to have more parallelism to support the higher data demands from the host

system. Significant enhancements both in prices and performance have been possible,

however at a price which impacts the end to end experience (end user experience) of

flash SSDs. Here, we claim that the advances in NAND technology and SSD architec-

tures make it more difficult to preserve end to end experience.

The impact of high density NAND chips has been discussed by Grupp et. al. [15].

While SSD manufacturers strive towards high density for higher bytes per dollars,

increasing density using cutting edge flash chips can adversely affect performance,

power consumption and lifetime of these SSDs. Especially if we consider performance,

higher densities can sacrifice latencies of reads and writes as in Figure ??. Increasing

the density of NAND chips requires both shrinking the feature size and packing more

bits (MLC & TLC), though this brings difficulties in both programming and reading

NAND cells without errors. This impacts the system with increased magnitude and

variation in terms of latencies.

Under the demands of high bandwidth and the under the pressure of increasing

11

Figure 2.1: Modern SSD architecture (source: Jung et. al. [1])

Figure 2.2: SSD internal parallelism (source: Bjørling et. al. [2])

latencies of individual NAND chips, modern SSDs employ significant amount of par-

allelism to solve the problem [16], by having multiple independent channels, where

each channel has multiple NAND flash memory chips (Figure 2.1). Even with the

higher latencies of high density NAND chips, SSD architects can exploit I/O paral-

lelism of multiple NAND chips to achieve high performance (Figure 2.2). However,

the parallelism does not always lead to higher performance (Figure 2.3). Without care-

ful scheduling of I/O requests on these multiple NAND chips, hotspots as well as

idleness can occur as in Figure 2.3) leading to suboptimal performance.

Flash controller technology which supports high density NAND chips and the

much sophisticated SSD architectures have been advanced to cope with such changes

and the difficulties induced by the advances. However, the everlasting advance in both

directions pressures the controller in terms of technological effort, which eventually

12

Figure 2.3: Performance stagnation with many-chip solid state drives (source: Jung et.

al. [1])

Program

VFS

File-System

Block-I/O

SCSI-Top

SCSI-Low-Level

Controller- (HBA)

Technology

Libc (runtime)

Controller- (Storage)

POSIX

syscall
VFS-Midlayer
Block-API
SCSI-Top-API
SCSI-Midlayer

AHCI

SATA

Kernel-Internal-API

Standardized-API

Register-level-Interface

Protocol-
(Packets,-Commands)

SA
TA

SC
SI

Semantic
Gap

Figure 2.4: Layers and I/O interfaces within the I/O path

increases the price of flash SSDs. Nevertheless, the observation is that the black box

based design concept which runs in our I/O path would worsen the situation. With-

out breakthrough in design concepts, the end to end experience would not reach to an

optimal point, which leaves us to devise new approaches in I/O path optimizations.

2.4 I/O Path for Flash SSDs

Figure 2.4 depicts an I/O path we rely on with our third generation SATA3 or SAS

SSDs. Starting from the userspace (the application) all the way down to the NAND

chips (memory technology), there are several layers in between forming a layered ar-

13

chitecture. This particular architecture is actually based on SCSI standards, which is

designed to accommodate a large ecosystem of various vendors, devices, use cases

and applications. Each players in the storage industry, can dive and perform their role

within a layer without worrying much about other layers, thanks to the value of trans-

parency and separation of concerns. For example, a storage device vendor can develop

a storage device and ship it with a SCSI compliant low level device driver without the

burden of developing a file system for it. This feature of the architecture made the I/O

path an ecosystem of a the whole storage industry.

However, such layered architecture can introduce difficulties in terms of perfor-

mance optimizations. While the architecture is good for long term prosper for several

players in the industry, end to end performance which requires coordinated optimiza-

tion of several layers can cause difficulties. Transparency and separation of concerns

is beneficial in a way that a layer does not need to care about the details of the other

layers, though in other words it means that the layer is on its own. If the layer is not

designed to coordinate the effort, due to the semantic gap which can be introduced by

the layers can make it difficult to achieve optimal performance.

2.5 Related Work

2.5.1 Reconsidering the I/O path

The necessity of reconsidering the I/O path has been noticed by research related to

analyzing the impact of next-generation memory technologies, which inspired several

optimizations in order to cope with nanosecond scaled latencies [14, 17, 11, 18, 19].

Compared to the projected nanosecond scaled latencies, the overhead of the OS I/O

path was big enough to cause performance problems. These proposals refactored the

OS I/O path to a more lightweight and avoided overheads such as interrupt induced

context switches using I/O strategies such as polling [11]. Yet, the performance of

Flash SSDs were not competitive enough to be a problem, though flash SSD perfor-

mance increased over the years which also motivated changes in the I/O path. Linux

14

I/O Path optimizations based on analyzing flash SSD impact on systems were proposed

and were explored as well [20, 14, 21, 22, 23, 24].

Though the problem of flash SSDs were not limited to the OS I/O path magnified

by the lower latencies. In general, there has been proposals in advocate of refactoring

the I/O path [25, 20, 21, 11, 2, 26, 27, 28, 13, 29, 30, 31, 32, 33], by enhancing the in-

teraction between storage devices and the host side I/O path. To this end, optimizations

based on new interfaces [34, 35, 36, 37, 38, 39, 28, 40, 41, 42, 43, 19, 44] have been

proposed. New interfaces with new commands [40, 34], new data transfer mechanisms

[37, 38], efficient host to device interactions [19] and new primitives [35, 28, 39] were

proposed to enhance the interactions between storage devices and the host side I/O

path.

Cross layer designs can be found in other domain which rely on a strict layered

architecture (i.e., OSI 7 layers) to maintain prosper of the industry. In the wireless

network community, there has been several proposals which considers breaking the

boundaries of the layers in order to optimize performance [45, 46, 47, 48, 49, 50].

One interesting thing is that such performance issues were mostly end to end issues.

Despite of concerns such as [47] have been raised, such proposals are constantly being

raised by various researchers until now [50].

2.5.2 Black-box Approaches

Optimization based on black box approaches are in fact the ones we already employ in

our I/O path [51, 39, 52, 53, 54, 22, 28, 40, 55, 56, 57]. These optimizations are done

two ways in which 1) host S/W can be aware of flash SSDs (SSD aware optimizations

[54, 52, 40, 22, 57, 53, 55, 51, 56, 39, 28]), or 2) SSD controller S/W can be aware of

the workload (workload aware [58, 52, 59, 60, 61, 62, 63, 64]). The benefits of such

approaches comes from the value of transparency and separation of concerns. Given

the I/O path, evolved into a layered architecture to be an ecosystem, modifications

in respect of the optimizations are well isolated from each layers. This has been the

default mode of optimizations in various layers in the I/O path.

15

However as described in the background (Section 2), the pressure from high den-

sity unstable NAND chips, the demands of higher performance and the shortage of

CPU cycles for an I/O request makes us strive to find a new approach. With the black

box approach, the more aggressive optimizations are often discouraged due to the lack

of information (awareness) originated from black box interfaces.

2.5.3 Cross-layer Approaches

The difficulties in black box based I/O paths can be alleviated with cross layer opti-

mizations. In such designs, each I/O components (i.e, file system, device driver and the

SSD firmware) are aware of each other forming a specialized I/O path which eliminates

the inefficiencies from an end to end viewpoint of the I/O path. The awareness culti-

vates from explicit and also efficient inter layer or communication channels or inter-

faces exchanging behavioral information to enhance the awareness. With such higher

degree of awareness, each I/O components can perform aggressive optimizations with-

out introducing the unnecessary overheads. Because of these benefits, proposals based

on cross-layer optimizations are gaining interest [65, 31, 66, 52, 40, 44, 43, 67, 68, 69,

70, 33].

Cross-layer optimizations can also head in two ways in which 1) SSD internal

optimization issues are assisted by the host, and 2) host optimization issues are assisted

by the SSD. For example, the difficulties of reducing GC overheads can be alleviated

by having information about the lifetime of blocks informed by the application [65].

And the latency spikes and performance drops caused by ill scheduled GC operations

can be addressed [67, 70, 66] with GC interfaces presented in [66].

Other than this, other forms of cross-layer cooperation can be found in various

layers [31, 52, 40, 44, 43, 68, 69, 33]. For example, NVMKV [43] is an FTL aware

cross-layer approach involving interactions between host only components, as well as

PAQ [52] is an optimization which refactors the I/O path within the SSD exploiting

information about the physical address space.

16

2.5.4 Refactoring the I/O Path

There are I/O path designs which are not directly related cross-layer designs. In this

work we identify them as refactoring of an I/O path, but not cross-layer designs. One

example is computation offloading [71, 72, 73, 74]. Computation offloading is an I/O

path refactor proposal that explores the possibility of relocating computation near to

the NAND array, in order to benefit from larger internal bandwidth and the benefits

of low power embedded processors. Transactional SSDs providing atomicity to I/O

operations can be considered as another example [75, 35, 36, 76, 77, 78, 79]. This type

of I/O path refactoring moves the responsibility of providing atomicity to the SSD

since the non-overwritable nature of SSDs employing internal mapping tables can be

used to support atomicity while removing redundant logging schemes (log on log).

And since the role has been moved within the SSD, the SSD now has a higher level

interface which expresses the intent of atomicity.

Nevertheless, this does not mean that cross-layer designs are totally unrelated to

these I/O path refactoring effort. For example, host side FTL implementations or relo-

cating the role of the FTL to the host is a refactor of the I/O path [68, 43, 44, 32, 33], but

it can be a deliberate decision to make cross-layer cooperation more likely to happen

(i.e., FTL awareness implemented more easier since the FTL is already in the host).

17

Chapter 3

IOPS Improvement by Reducing the
Impact of Context Switches

3.1 Introduction

In this Chapter, we present OS I/O path optimizations for NAND flash solid-state

drives, aimed to minimize scheduling delays caused by additional contexts such as in-

terrupt bottom halves and background queue runs. With our optimizations, these con-

texts are eliminated and merged into hardware interrupts or I/O participating threads

without introducing side effects. This is done by placing I/O operations in hardware

interrupts or I/O participating parallel threads (Figure 3.1). Side effects of longer I/O

processing delays are addressed by adopting a cooperative I/O processing model. All

participating I/O threads actively share the burden of detecting I/O completions, per-

forming I/O post processing and issuing new commands. These I/O operations are

exposed at a hardware abstraction layer which provides abstractions such as queues,

tags and notifications commonly found in modern host controllers. The interface of the

layer allows I/O threads to make synchronous decisions on whether to process pending

I/O commands or not.

For evaluation, we implemented an I/O path based on our optimizations for an

18

I/O Thread 1 I/O Thread 1

H/W IRQ

Wakeup

Issue & sleep
Time flowSchedule DelayI/O WaitContexts

Post-process & Return to userspaceCooperateCooperate

Run-queue
[CPU1]

[CPU0]

Figure 3.1: Minimizing scheduling delays within the I/O completion path

0
200
400
600
800

1 2 4 6

kI
O

PS

Number of Devices

SCSI Optimized I/O Path

Figure 3.2: I/O performance of parallel 512-byte small random reads (Six SATA 3.0

SSDs attached to a desktop I/O chipset integrated AHCI controller)

AHCI controller which can be considered as a worst case scenario for SSDs. We built a

low cost system using six commodity SATA 3.0 SSDs connected to a single AHCI con-

troller. With parallel 512-byte small random reads, our optimized I/O path was capable

of accommodating up to five devices at 671k IOPS, while current Linux SCSI based

I/O path was limited at 354k IOPS (Figure 3.2). Evaluation on an SSD backed key

value system showed IOPS improvement using our I/O optimizations. Performance

gain of our I/O path was 7% with the highest throughput (32 clients) and 108% under

the highest load (256 clients).

3.2 Motivation

Whenever a new context (interrupt or thread) is introduced in the I/O path, scheduling

delays, which can be significant on a busy CPU, are added to the I/O path (Figure 3.3).

We were motivated to minimize these scheduling delays, which can be significant for

SSDs, within the I/O path (Figure 3.1). However, it is not trivial to remove these con-

texts since these contexts are employed to maintain system responsiveness and system

19

I/O Thread 1

I/O Thread 1H/W IRQ

S/W IRQ

IPI
H/W IRQIPI

Steered
MSI-x IRQ

I/O Thread 2

I/O Thread 2Wakeup

Wakeup
Issue & sleep

Issue & sleep

Background
queue runWakeup

Time flowSchedule Delay

(g)

I/O WaitContexts

(b)
(c)

(d)

(e)

(h)

(j)

(f)(a)

(i) IRQ
Thread

[CPU0]

[CPU1]

[CPU2]

[CPU3]

Figure 3.3: Scheduling delays in the I/O completion path

throughput. In the following, we state our motivations to remove these additional con-

texts and examine how they are employed in I/O paths for SSDs.

High IOPS, Smaller I/O: Software overheads, such as scheduling delays, can

be minimized by issuing larger requests. However, bandwidth waste can be signifi-

cant when the workload is oriented with high rates of small random requests. This

motivated our work to remove these contexts. Parallel small random reads are gain-

ing interest in the context of SSD backed key value storage which is considered as a

good use case of SSDs [7, 8]. In this type of workload, a 30:1 GET():SET() ratio

(read:write ratio) is observed, with 90% of values less than 500 bytes [9].

Conventional SCSI I/O Path: In many modern OSes, interrupt service handler

routines (ISRs) are split into two parts to minimize system lockdown caused by heavy

ISRs. This leads to at least two scheduling points during I/O completions. We show

this in Figure 3.3. I/O thread 1 ((a) to (f) in Figure 3.3) shows the I/O completion

path of Linux which is the I/O path for current SATA or SAS SSDs attached to AHCI

controllers and SCSI based SAS controllers. Software interrupts (d) are scheduled to

relieve the main hardware interrupt handler (b) from I/O post processing tasks such

as unmapping multiple DMA buffers and de-allocating I/O descriptors. To enhance

CPU cache utilization of I/O post processing, software interrupts (d) are steered using

inter processor interrupts (IPIs) [80] (c). In this case, an IPI to CPU core 1 is made

to have I/O thread 1 (a) and the software interrupt (d) run on the same CPU. The

background queue run context (f) is used to issue I/O requests which could not be

20

issued immediately (i.e., a busy device).

Advanced Block Driver I/O Path: Recent NVM-Express standard [81] can sim-

plify the I/O path with deeper (64k) queues and many (64k) queues. It is possible to

eliminate queue runs and IPIs, but multiple scheduling delays within the completion

path still exist. In Linux, NVM-Express proposes a device driver [82] which bypasses

the block layer (request queue) and the SCSI I/O subsystem. I/O Thread 2 ((g) to (j)

in Figure 3.3) shows the I/O completion path of this driver. This driver performs direct

issues to a deeper hardware queue, up to 64k in depth, which removes the necessity

of the background queue run context (f). Also, it is possible to remove the use of IPIs

for IRQ steering by having dedicated queue pairs (issue and completion) and inter-

rupts (MSI/MSI-x) on CPU cores. IRQ handling is natively steered to designated CPU

cores. Here, threaded interrupts are used, so software interrupts (d) are removed, but

there are still delays of scheduling the IRQ thread (i) and scheduling the completion

side of I/O thread 2 (j).

3.3 Design and Implementation

Our work was done to achieve the following goals: 1) Minimize scheduling delay

by removing additional contexts, 2) Preserve the semantics of previous optimizations

such as H/W IRQ relieving and IRQ steering, and 3) Generalize the optimizations to

be applied to various host controllers.

To achieve these goals, we adopted a cooperative I/O processing model based on a

set of fine grained operations exposed at a low level hardware abstraction layer (HAL).

This HAL was introduced to generalize our optimizations to various host controllers.

We first describe the HAL in Section 3.3.1 and discuss the cooperative I/O optimization

in Section 3.3.3.

21

3.3.1 HIOPS Hardware Abstraction Layer

The HAL, HIOPS-HAL (High IOPS - Hardware Abstraction Layer), has a role of ex-

posing access and control of necessary H/W abstractions such as queues, tags and no-

tifications implemented in the underlying H/W interface. These abstractions are com-

monly found in modern host controllers used for SSDs such as AHCI, NVM-Express,

SCSI-Express and various SAS adaptors. Figure 3.4 shows the architectural role of the

HAL which provides a generic interface to upper layers. The role is similar to the SCSI

middle layer of Linux, though our HAL gives more access and control to upper layers.

Low Level Drivers: Similar to the VFS layer and the SCSI middle layer in Linux,

the interface is implemented as a template of standard function pointers. Each entry of

the template defines an operation, later invoked by an API call to the HAL. These API

calls are implemented in Low Level Drivers (LLDs). Additionally, upper layer specific

handlers are registered to LLDs for an upcall, and the upcall is done by LLDs at the

point of notification. In this way, LLDs are capable of exposing execution contexts

such as interrupts to upper layers. Details of the API calls and the upcalls are described

in Section 3.3.2.

Interactions with Upper Layers: Beyond the HAL, an I/O strategy layer is re-

sponsible of mediating I/O requests from the upper layers to the HAL. In this work,

we implemented an I/O strategy based on a cooperative I/O model. The I/O strategy is

essentially a Linux block driver which provides a block interface to the rest of the sys-

tem. While I/O strategies are not limited to expose block interfaces, the block interface

was intended to limit upper layer modifications. Except for a few additional functions

exposed for a modified VFS layer (Figure 3.4), all other block interface functions re-

main the same. At the top layer, ordinary read() and write() system calls are

used to perform I/O, so applications can benefit from the I/O strategy optimizations

without any modifications.

22

VFS
(Modified VFS)

File System
(cloned ext4)

I/O Strategy

HIOPS HAL
AHCI

Low Level
Driver

VFS
(original VFS)
File System

(original ext4)

SCSI High Level(sd)

SCSI Mid Level

ATA Low Level
Driver

AHCI Driver

Block Layer

Chipset AHCI Implementation

md (RAID0)

Issue

Hard
IRQ

Queue, Tags

Status
Poll

Completion Issue

Hard IRQ

SoftIRQ

SoftIRQ

Completion

IPI HardIRQAsync
Poll

Optimized
I/O Path

Original
I/O Path

Figure 3.4: Comparison of our I/O path and the original Linux SCSI I/O path

Free I/O
Tags

Get
Free
Tag

I/O cmd

Queue

Bind
cmd

&
tag

Issue
I/O

Check, Fetch & Do
completion

Release
I/O
Tag

On
Event

Issue Side Completion Side

I/O
Strategy

LLD

Block

HAL
Free I/O

Tags

Async
Ctx

I/O Tag

Figure 3.5: Interactions between I/O strategies and low level drivers (LLDs)

3.3.2 HAL API Operations

Figure 3.5 describes interactions between the upper layers and low level drivers (LLDs).

The interactions consist of both issue side and completion side operations.

Issue Side Operations: In an I/O strategy, upper layer I/O requests are first con-

verted to a low level command. Then a free tag (get free tags) is requested to

be bound to the command (bind tag cmd). An implicit begin cmd is called to

timestamp the command (i.e., tracking I/O timeouts). Tags bound with commands are

issued to the device by issue tags calls. Note that tag related operations are named

with plurals because they can be batched.

23

This interface gives flexibility to the I/O strategy so that it can synchronously de-

termine whether the device is able to issue more I/O or not. If a get free tags call

fails, then the device is busy.

Completion Side Operations: I/O strategies can decide whether to rely on in-

terrupts. For interrupts, I/O strategies register a function pointer to gain synchronous

access to the notification context. There, I/O strategies can check the I/O event status

with check event calls. Whenever there is an event, fetch event is used to re-

trieve and process the command. If the I/O strategy does not rely on interrupts, it can

synchronously check for events with the same process described above. In this case,

the status check context is provided by the I/O strategy itself.

Completions are processed beginning with a detach tag cmd call to detach

commands and tags. Detached tags are released to the controller with release tags

and the I/O strategy post processing contexts are initiated by end cmd calls.

3.3.3 OS I/O Path Optimizations

In this Section, we describe OS I/O path optimizations based on a cooperative I/O

model. These optimizations are implemented as a HIOPS-HAL I/O strategy which is

mainly implemented as a Linux block driver.

Non-blocking I/O: No I/O contexts are blocked to acquire resources such as I/O

tags without introducing additional background queue runs. In the issue path, all I/O

commands are first enqueued into a simple software FIFO queue. If tags are available,

a command is dequeued to be issued. Otherwise, the actual issue is deferred to other

parallel issue paths or asynchronous contexts such as interrupts (Figure 3.6-(b)).

Here, the hardware interrupt context is used to issue remaining commands in the

software FIFO queue. Since free I/O tags are generated in the hardware interrupt con-

text, new I/O commands can be issued immediately using these free I/O tags without

being blocked. Impact on the hardware interrupt was not excessive because 1) multiple

CPU cores were used, and 2) modern controller features such as DMA64 relieved I/O

post processing.

24

Dequeue+Issue newEnqueue

Dequeue+Issue new
Issue Context H/W IRQ

Completion
Context

(b) Non-blocking I/O & Cooperative Issue

(c) Lazy I/O

Wakeup

Wakeup
Waiter

H/W IRQ

Limit CPU Affinity
Wait for I/O

Issue Context

Post
Process

Completion Context

Restore
Affinity

Wakeup

(d) Cooperative I/O

Check Fetch

Completion Queue

Post
ProcessH/W IRQ

Coop. Context
(Issue) Coop. Context

(Completion)
Fetch

Post
Process

Fetch Post
Process

Dequeue+Issue new

Check

Raise S/W
IRQ

Enqueue

Dequeue+Issue newIssue
Context H/W IRQ

Completion
Context

(a) Original I/O Path Wakeup
Post

Process

Check, Fetch, Post Process

Bg. Queue Run
Thread

Wake
Bg. Thread

S/W IRQ

(e) Poll I/O

Check Fetch Post
ProcessPoll Thread

Check Fetch Post
Process

Coop. Context (Issue)

Check Fetch Post
Process

Coop. Context
(Completion)

Figure 3.6: OS I/O path optimizations with HIOPS-HAL

Lazy I/O Processing: Lazy I/O processing offloads I/O processing to the actual

threads waiting for I/O completions (Figure 3.6-(c)). This eliminates additional context

switches introduced by deferred I/O processing schemes such as bottom halves and

threaded interrupts. This was done by exposing an alternative I/O-wait function from

the I/O strategy to be called instead of the original io schedule(). Here, a modified

VFS layer calls this I/O-wait function to provide the contexts of I/O threads calling

read() and write() system calls waiting for an I/O to complete. These I/O threads

are blocked inside the provided I/O-wait function. Upon completion, these I/O threads

are used for I/O post-processing instead of introducing additional contexts such as

bottom halves and threaded contexts. I/O post processing is done by having HIOPS-

HAL API calls after the I/O thread wakeup and before the I/O-wait function exits.

25

After the I/O post processing, I/O threads return from the I/O-wait function and go

back to the VFS layer and the userspace without any scheduling delays.

To enhance CPU cache hits during I/O post processing, waiters are awaken on

CPUs where they issued the I/O and went to sleep. This is achieved by temporarily

limiting the CPU affinity mask of a waiter thread to the current CPU before going to

sleep. After the thread wakes up, the CPU affinity mask is restored.

Cooperative I/O Processing: Cooperative contexts are introduced by having HAL

API calls from both the I/O issue path and the completion path (Figure 3.6-(d)) inside

the I/O strategy. These are helper contexts which perform I/O tasks of other threads.

All I/O threads voluntarily enter this cooperative context for every I/O request being

frequently scheduled on the CPU. Here, I/O tasks can be carried out in a timely man-

ner, even if the I/O owner thread is not being scheduled on the CPU. In a multi-core

machine, the parallelism of I/O threads entering cooperative contexts increases overall

I/O processing throughput of the system.

For cooperation, completion contexts make fetch event calls to steal I/O pro-

cessing work from post processing handlers. Issue threads performing non-blocking

I/O issues for other I/O threads play another form of cooperation (Figure 3.6-(b)).

Poll Based I/O: Under higher loads, interrupts can be disabled. With interrupts

disabled, a poll thread is introduced to poll for new I/O completions. Additionally,

cooperative contexts are set to perform opportunistic poll (Figure 3.6-(e)). Note that

polling is for the whole controller, not for individual I/O tags. Under high loads, the

processing times of individual I/O commands are unpredictable, but the interval be-

tween multiple I/O commands completing in parallel is predictable (0us to 20us). After

a single poll cycle, the poll thread releases the CPU and relies on high resolution timers

to schedule the next poll. Poll thread introduces the overhead of timer interrupts, but

the use of additional cooperative contexts lets us perform a rather coarse poll (16us to

32us).

It is possible to implement a hybrid mechanism to switch between the use of inter-

rupts and poll methods, however the complication of determining mode switch leaves

26

PCH
(Intel Z87
Chipset)

Quad Core
CPU MLC SSD 256GB

MLC SSD 256GB

MLC SSD 256GB

MLC SSD 256GB

MLC SSD 256GB

MLC SSD 256GB

SATA 3.0 (6Gbps) x6

DMI 2.0 (25Gbps)

SSD
S/W RAID0 Array

1Gbps
NIC

Quad
Port

PCI-e Gen2 x4

2.5GB/s

4.5GB/s2GB/s
Chipset integrated
AHCI Controller

A
H

C
I

PC
I-

e
x4

Main
Memory

Figure 3.7: Hardware block diagram of our system

this implementation for our future work. Our experiments showed that indicators such

as the current level of parallelism (occupied queue depth) combined with the current

level IOPS can be a candidate to permit such tasks.

3.4 Evaluation

Figure 3.7 shows the system we built for evaluation. The impact of our optimizations

was evaluated using a micro-benchmark application and a key value storage. fio 2.1.4

was used for our micro-benchmark evaluations, and Aerospike 2 was used as the key

value system [8]. YCSB [83] was used to load the key value system.

Implementation: Our optimizations were applied to a Linux 3.2.40 kernel as dy-

namic loadable modules. These modules include the HAL itself, HAL I/O strategy,

modified VFS and our custom AHCI HAL LLD (Figure 3.4). Here, the HAL consists

of 6,187 lines of original code and the HAL I/O strategy with 1,766 lines of original

code. The AHCI HAL low level driver was based on the AHCI SCSI libata device

driver of Linux 3.2.40 but was modified to be a HIOPS-HAL LLD. Total 2,424 lines

were original for HIOPS, and 2,632 lines were adopted from Linux 3.2.40. Modifica-

tions on the VFS layer was as small as 44 lines. However, the ext4 file system and the

27

0

500

1,000

1,500

2,000

0
200
400
600
800

0.5k 1k 2k 4k 8k 16k 32k 64k 128k

B
/W

 (M
B

/s
)

kI
O

PS

Blocksize (bytes)

SCSI B/W IRQ I/O B/W Poll I/O B/W
SCSI IOPS IRQ I/O IOPS Poll I/O IOPS

Figure 3.8: IOPS and bandwidth with increasing I/O block size (fio, Direct I/O, 128

threads, six SATA 3.0 SSDs, Software RAID0, 128kB stripe, ext4, noop sched-

uler(SCSI))

associated VFS layer consisting of the generic page cache and the direct-I/O path were

cloned to be a kernel module for ease of experiments.

Experimental Setup: We conducted our evaluations on a PC with an Intel i7-

4770 3.40Ghz hyper-threaded quad core CPU and 16GB DRAM. The system was

equipped with six Samsung 840 Pro 256GB SATA 3.0 SSDs connected to a single

AHCI controller which supports up to six SATA 3.0 ports. The AHCI controller was

integrated into an Intel Z87 platform controller hub(PCH) which has a direct media

interface uplink capable of 25Gbps.

I/O Throughput: Figure 3.8 shows the performance of our I/O paths with varying

I/O blocksize. IRQ I/O was the hardware interrupt based I/O path presented in Section

3.3.3 and Poll I/O was the I/O path with interrupts disabled. With Poll I/O, the poll

thread and the cooperative contexts performed poll altogether. All other optimizations

were applied in both I/O paths described in Section 3.3.3.

Our I/O paths achieve from 32% (4kB I/O) up to 89% (0.5kB I/O) IOPS gain over

the original SCSI I/O path. At the maximum, IRQ I/O achieved 671k IOPS while SCSI

was at 354k IOPS. IRQ I/O achieved 671k IOPS at maximum, while SCSI led 354k

IOPS. However, there was no significant difference in IOPS between IRQ I/O and Poll

I/O.

For requests larger than 8kB, there was no gain since the bandwidth was limited

28

0
20
40
60
80

100
120

SCSI Non-blocking I/O +Lazy I/O +Coop I/O

M
ax

 L
at

en
cy

(u

s)

8 Threads 128 Threads

Figure 3.9: Effect of I/O processing optimizations

0
200
400
600
800

1 2 4 8 16 32 64 128

kI
O

PS

Poll Thread Poll Interval (us)

w/ Coop Poll Async Poll Only

Figure 3.10: Poll interval impact

by the DMI 2.0 uplink bandwidth and the internal interconnects within the PCH. Our

I/O paths with 4kB I/O were also limited by the the DMI 2.0 uplink bandwidth. The

bandwidth converged to approximately 1.5GB/s which was similar to the bandwidth

achievable from x4 PCI-Express 2.0 channels. This bandwidth was smaller than the

DMI 2.0 25Gbps (2.5GB/s) uplink to the CPU.

I/O Post-processing Schemes: Figure 3.9 shows the effect of applying I/O post-

processing schemes by showing the maximum latency of interrupt handlers. Under

high loads (128 threads), basic Non-blocking I/O shows over 100us interrupt handling

latency while the original SCSI I/O path shows up to 18us. This is because all I/O

processing and next I/O issue had to be done in the hardware interrupt handler. When

Lazy I/O is applied (+Lazy I/O), the latency diminishes to 50us. With both Lazy I/O

and Coop I/O applied (+Coop I/O), the maximum latency drops to 20us which is sim-

ilar to the original SCSI I/O path.

Polling: Figure 3.10 shows the impact of the poll interval. The load was 128

threads performing 512-byte direct I/O (O DIRECT) read()s. ‘Async poll’ was with

a single poll thread polling, and ‘w/ Coop Poll’ was with opportunistic completion

29

0
25
50
75

100
125
150

1 4 8 16 32 64 128 256

ko
ps

/s
ec

Clients

SCSI IRQ I/O Poll I/O

Figure 3.11: Key value storage performance (YCSB 100% get() performance)

checks in both issue and completion paths helping the poll thread. The results show

that cooperative poll was capable of over 600k IOPS even if the poll interval increased

up to 128us.

Key Value Storage: We evaluated our I/O paths under an SSD backed key value

storage. For this evaluation, another identical Intel i7 quad core CPU system was linked

back to back through a pair of 1Gbps NICs. To minimize the storage latency, this key

value storage did not use file systems when it performed storage I/O. Also, all I/O was

performed with direct I/O (O DIRECT) to eliminate page cache incurred overheads.

In our evaluation, six SSDs were used by the key value storage.

Figure 3.11 shows key value throughput with increasing YCSB client threads.

While performance with SCSI I/O degrades beyond 128 clients, our optimizations

were able to mitigate the collapse. The highest throughput was 119kops/sec achieved

with IRQ I/O while SCSI I/O showed 110kops/sec and Poll I/O showed 101kops/sec.

Poll I/O showed lower performance than SCSI I/O, because the storage throughput was

not high enough relative to the storage throughput seen in Figure 3.8. This motivates a

poll & IRQ hybrid I/O scheme. The key value storage could only load the storage up

to 150k IOPS at its peak. Performance gain of IRQ I/O over SCSI was 7% with the

highest throughput (32 clients) and 108% under the highest load (256 clients).

30

3.5 Summary

Previous I/O completion schemes for fast storage are not sufficient to support current

flash SSDs. With faster memory technologies, the software delays of multiple context

switches can be mitigated with techniques such as polling; however, the noncommittal

latencies of flash SSDs, not like DRAM nor like hard disks, require the use of different

approaches in addition to such a technique.

In this work, we have presented a low latency I/O completion scheme based on

a cooperative I/O processing model. Additional I/O contexts such as bottom halves

and background queue runs are eliminated, and their absence is compensated with the

opportunistic help of I/O participating threads under parallel high IOPS workloads.

I/O workloads with low parallelism can enjoy the lower latency of the our simplified

hardware interrupt based I/O post processing. Our evaluation on an SSD backed key

value storage suggests that workloads of high I/O parallelism will benefit from our I/O

completion scheme. With an AHCI controller, our work presented a read oriented low

cost high IOPS configuration.

31

Chapter 4

Latency Reduction using SSD Internal
Information

4.1 Introduction

Flash memory latency, neither in nanoseconds or milliseconds, makes it difficult to

decide whether to yield the CPU or not when the CPU awaits I/O completion since

the scheduling delay can cause a non-negligible impact on performance. Blocking the

CPU (i.e., polling [11]) would avoid such delays but would be at the cost of sacrificing

parallelism. Recently, internal parallelism of SSDs (NAND channels, chips, dies, and

planes) has been increased to meet the demands on performance, capacity, and costs.

To utilize the capability of SSDs fully, the OS should multiplex higher numbers of

I/O contexts (i.e., threads or state machines). This, in turn, increases the chance of

scheduling. Addressing this issue is not trivial unless flash technology scales its latency

down to nanoseconds or we can break current CPU frequency limits in the era of post-

Moore’s law.

We can minimize these scheduling delays based on accurate estimation of SSD

latencies. However, queueing delays caused by high parallelism in SSDs and internal

operations, such as garbage collection, make it impossible. To address this issue, we

32

propose an optimization that enables the OS to make precise decisions on when to

yield the CPU or not upon a new I/O request. The optimization eliminates or hides I/O

completion scheduling delays while preserving system parallelism. This is done by

placing latency predictors supported by an I/O behavior tracker inside the SSD. The

tracker gathers information about the whereabouts of each I/O request and the state of

each internal resource, such as DRAM buffers and NAND chips.

Here, latency predictors either aid the OS in determining the latency of the next

I/O request or interrupt the OS when a pending I/O would finish in the near future.

With such information, the OS can make decisions on whether to yield the CPU or

not, or it can prepare itself to overlap the I/O time with the expected I/O completion

scheduling delays. Such H/W and S/W interactions are done with an extended SSD

interface, implemented as an in-band channel that is piggybacked on I/O completion

paths.

To evaluate our proposal, we employed a Xilinx Zynq-7000 SoC FPGA-based

OpenSSD 2 Cosmos evaluation board [84] accompanied with a flash DIMM mod-

ule based on MLC technology [85]. Evaluations on a prototype SSD showed that our

method was capable of reducing the impact of scheduling delays while having a low

impact on system parallelism.

4.2 Motivation

In this work, we aim to optimize user-perceived latency of flash SSDs by minimizing

I/O completion scheduling delays without sacrificing system parallelism. Here, we ob-

served that the fact that the OS was blind to the levels of SSD latency that it would

experience was the main obstacle of tackling such delays. This motivated us to ex-

plore the design space in which the SSD actively inform the OS of its behavior upon

performing system optimizations.

33

??

DRAM

DRAM

NANDQueue

Queue

?? ??

! !

NAND

! ! !

??

10 µs ~ 20 µs 70 µs ~ 6 ms

Sched.
Delay

Sched.
Delay

SSD
CPU

SSD
CPU

Hidden
Sched. Delay

No Sched.
Delay

a. Yield on DRAM hits b. Yield on NAND I/O

1. Blinded approach (Motivation)

2. Unblinded approach (Proposed method)

a. Block on DRAM hits b. Yield on NAND I/O and complete early

Timeline Informing eventsCritical path

!Informed Issue !Predicted completion
?Uninformed Issue ?Unpredictable completion

10 µs ~ 20 µs 70 µs ~ 6 ms

Figure 4.1: Minimizing the impact of I/O completion scheduling delays by having

SSDs actively informing the OS

4.2.1 System Impact of Modern SSDs

Modern SSDs employ a significant amount of parallelism in order to keep up with the

value of a high-performance random access storage device. Careless I/O control results

in low resource utilization with hotspots. SSDs employ various techniques to spread

I/O requests to achieve maximum utilization and performance. DRAM buffers, backed

with high-capacity capacitors, are employed to serve as staging areas to perform such

optimizations. Such performance considerations run deep in SSD design and have an

impact on various SSD internal I/O tasks.

The higher degree of parallelism of modern SSDs burdens the host system with

context-multiplexing overheads that introduce non-negligible scheduling delays. Mul-

tiple I/O contexts competing for CPU cycles vary user-perceived scheduling delays.

34

SSD internal tasks also cause significant variability in latency observed from the host

system. Even with the presence of DRAM hits or NAND read operations, which have

(fairly) favorable latencies, the OS has to assume higher levels of latencies and neglect

any optimizations based on lower latencies.

4.2.2 SSDs, Unblinding the OS

Blindness of the OS, unaware of SSD latencies, is a root of all evil that leads to sub

optimal conservative approaches. Figure 4.1-1) shows the impact of such conserva-

tive approach in determining whether to yield or block upon an I/O issue. For exam-

ple, blocking on a CPU core in the case of DRAM buffer (or cache) hit (Figure 4.1-

1 left) would eliminate the scheduling delay, but the OS yields the CPU assuming

much higher latencies (Figure 4.1-1 right), and takes the penalties of scheduling de-

lays because it has no information on such hits (at the points of question marks in

Figure 4.1-1).

What if we have predictable latency? The negative impacts of scheduling delays

can be minimized, since we can make a best decision that benefit the system based on

an accurately predicted latency (Figure 4.1-2). To this end, we were motivated achieve

predictable latency.

In this work, we positioned ourselves to define such predictability as being able

to predict what comes next instead of trying to make SSD latencies adhere a constant

latency value. Here, we unblind the OS by informing about SSD internals to enable

accurate latency predictions based on such information. To achieve this, our proposal is

to reinforce SSDs to inform the OS with appropriate information. The OS is informed

to make predictions (at the bold exclamation marks) of the expected completion time

of an I/O (the grey exclamation marks), making it possible to eliminate (Figure 4.1-

2 left) or mask (Figure 4.1-2 right) the impact of scheduling delays from the critical

path.

35

4.3 Design and Implementation

Based on our motivations, we implemented an I/O path in which the SSD actively

cooperates with the OS in order to optimize user-perceived performance. The goal of

the cooperation is to enable proper decisions, whether yielding or blocking a CPU

upon an I/O request would be beneficial. Such cooperation is based on an accurate

prediction of SSD latencies, which lies as the main challenge in our work. Our main

strategy to the challenge is to predict the latencies within SSDs, not outside SSDs.

To achieve this, the I/O path has an I/O behavior tracker within the SSD controller

S/W, which speaks to the predictor in the OS device driver through an extended SSD

interface. Our I/O path is based on modest changes only that are limited to S/W com-

ponents and implemented both in the host OS and the SSD controller.

4.3.1 Predicting the I/O Time of SSDs

The most challenging part of our design is predicting the behavior of SSDs, which

is highly variable. Our approach to this problem is to decompose SSD internals into

individual components (DRAM buffers and NAND chips), each behaving in a simple

way (compared to the whole system), and exploit the simple behavior to ease the pre-

diction. This prediction activity is based on a simple model of SSD internals depicted

in Figure 4.2-1 (a), where I/O requests first visit the DRAM buffer for opportunities of

caching (reads) or aggregating (writes) and then are issued to the NAND array.

1) Classifying I/O Requests: In the I/O path, each I/O request is classified in

terms of its destined components, and the prediction is based on the previous behavior

of the individual components. The I/O behavior tracker, implemented within the SSD,

tracks these component behaviors, which are translated into parameters of multiple be-

havioral models, each representing individual components (detailed in Section 4.3.2).

Based on the models and the parameters gathered by the tracker, the OS classifies

(predicts) the next I/O request at the I/O issue context (Figure 4.2-1 (a)) based on the

criteria, as shown in Figure 4.2-4.

36

(n) Variable
NAND
latency

Buffer Mgr FTL

(f) DRAM hit

 (h) DRAM miss / NAND hit(g) Queue delay + Flush delay

(j) Time spent in the SSD (with NAND I/O)

(i) Unpredicted wait (m) Remaining I/O time

(k) Predicted
wait

(l) Precompletion
window

(b) I/O issue

(c) I/O completion
(DRAM hit)

(e) I/O completion
(NAND I/O)(d) I/O completion

(Precompletion)

(a) Informed
classification

H/W IRQ
Issue queue

Flow of time

3. Precompletion (i) - (n)

2. Latency components (f) - (h)

1. SSD internals and host OS operations (a) ~ (e)

4. Classification of the expected latency

DRAM

NAND

Small Reads Small Writes
Predictable - Read hits*

(f) DRAM hit
Predictable - Write buffer hit

(f) DRAM hit
Unpredictable

(g) Queue delay + Flush delay
Partially predictable

(i) Unpredicted + (m) Predicted
Classification only applied to small I/O (Under 8kB) requests

(otherwise considered unpredictable)

SSD
Host OS

* Not included in this work although possible to apply
with an appropriate behavioral model (future work)

NAND
ArrayInternal

Queues

DRAM

Figure 4.2: Proposal based on a simplified model of the internals of an SSD having a

buffer/cache and an array of NAND chips

2) Remaining I/O Time: Even with the power of accessing internals of SSDs from

an SSD controller, predicting the I/O time of an SSD is still challenging. While there

are components with predictable latency, such as DRAM buffers, that a simple classifi-

cation can help (upper row in Figure 4.2-4), predicting latencies of a NAND chip array

(lower row in Figure 4.2-4) is difficult with the presence of multiple I/O requests col-

liding and queued up on resources (Figure 4.2-3 (i)), along with the inherent variability

of the chips (Figure 4.2-3 (n)). To overcome the challenge, a predictor within the SSD

considers only the remaining part of the I/O time (Figure 4.2-3 (m)) and predicts only

for small-read operations, which have low variance in NAND I/O latency (Figure 4.2-

2 (n)). Latency prediction begins only after a NAND I/O command (a single page read)

37

is actually issued to a NAND chip (the beginning of Figure 4.2-3 (m)), effectively elim-

inating the queuing delays (Figure 4.2-3 (i)) from the prediction landscape. For cases

when predictions can be inaccurate (write operations) or have marginal benefits (larger

I/O), the predictor simply falls back to not predicting anything.

3) Precompletion: For the remaining I/O time, the SSD side latency predictor

takes the moving average of three observed latency values as the prediction and notifies

the host OS of a predefined period (precompletion window in Figure 4.2-3 (l)) before

(Figure 4.2-1 (d)) the actual completion occurs (Figure 4.2-1 (e)). Optimizations based

on this interaction is detailed in Section 4.3.2.

4.3.2 OS I/O Path Optimizations

The simple behavior of each individual component is modeled with coarse-grained

implementation neutral behavioral models (Figure 4.3), which serve as an agreement

between the latency predictor and the OS, in order to provide accurate predictions as

well as protect SSD internals.

1) Applying Behavioral Models: We applied two models (Figure 4.3) to model

the behavior of the DRAM buffer (left) and the I/O completion of NAND chips (right).

The DRAM buffer model (Figure 4.3-left) is used by the device driver to determine

whether a write request would result in a DRAM hit (under buffer full threshold) or a

NAND I/O (exceeding buffer full threshold). The I/O completion model (Figure 4.3-

right) is used by the latency predictor within the SSD to notify the OS that a predictable

I/O operation is underway and that the actual completion would occur within a period

called the precompletion window (Figure 4.2-3 (l)). The models are applied to cover

the I/O requests classified into the gray areas of Figure 4.2-4, although this can be ex-

tended by defining additional behavioral models (i.e., read cache hits, read prefetching

hits), which leads to our future work.

2) Eliminating Scheduling Delays: For shorter latencies, experienced when an

I/O request hits the DRAM buffer within SSDs (Figure 4.2-2 (f)), the OS device driver

knows that this will happen by comparing the remaining space of the buffer and the

38

Remaining I/O time (us)

Precompletion
Window (us)

OverUnder

Target

Sched. delay

NAND
I/O

Threshold

Buffer full
Blocks

Time

+ -
Slope

in > out in < out

Remaining

1. Buffer model 2. I/O completion model

Figure 4.3: Behavioral models of SSD internals exposed to the OS

amount of write I/O it has to issue (Figure 4.3 left). This is possible since the exact

amount of free space within the buffer is passed from the SSD through the completion

of the previous completion. Upon buffer hits, the OS responds with blocking the CPU

core (busy waiting [11]) for the I/O completion in order to eliminate the scheduling

delay.

3) Hiding Scheduling Delays: For I/O requests headed for the NAND chips (Fig-

ure 4.2-2 (h)), the I/O path yields the CPU in order to preserve system parallelism at

the cost of scheduling delays. To deal with this delay, the I/O path overlaps schedul-

ing delays to hide the impact from the critical path. This is achieved by aligning the

size of the precompletion window with the size of scheduling delays (target window

size in Figure 4.3-right). If the precompletion window undershoots the target, schedul-

ing delays are exposed depending on how much the window undershot (under: gray

area in Figure 4.3-right). However, the window cannot overshoot since parallelism can

be harmed due to the penalty of busy waits (over: right side of the target window in

Figure 4.3-right). In addition, these scheduling delays can vary depending on system

load, so the window should consider system load as well. Currently, the precompletion

window is a fixed value given a priori that is planned to be reinforced with a dynamic

feedback mechanism based on runtime measurements.

39

4.4 Evaluation

4.4.1 Experimental Setup

1) Implementation: We implemented a prototype SSD on top of the “Greedy FTL

firmware”, which was included in the commercial distribution of the OpenSSD2 Cos-

mos evaluation board [84]. The implementation of our SSD was not a full-blown SSD,

although it implements key features described in Section 4.3. One key limitation was

that only a single I/O context (I/O depth 1) could be handled at a time while state-of-

the-art SSDs are capable of handling 32 I/O requests (i.e., SATA 3.0) or more (i.e.,

NVM-Express) simultaneously.

2) Methodology: The OpenSSD2 evaluation board was connected to the host as

an end point with a PCI-Express Gen1 x4 connection. The host system was equipped

with an Intel i7-4770 3.30 Ghz Quad-core CPU (hyper-thread enabled), loaded with a

custom block device driver that we developed on Linux 3.5.0. The I/O depth limitation

limited the evaluation scenarios to a single thread competing with other parallel con-

texts, such as I/O threads or CPU threads. In the scenarios, we used Fio 2.1.3 for I/O

threads (including the precompletion-based I/O thread) and a custom-built program

that burns CPU cycles. To see the benefits of precompletions, we show the average

latency without NAND latency and the throughput of the background task (CPU or

I/O oriented) compared to when it was executed alone.

3) Higher IOPS with Multidepth I/O: Since the SSD prototype was limited with

an I/O depth of 1, we further investigated the impact of the precompletion by imple-

menting a DRAM backed SSD emulator on a Xilinx VC709 evaulation board. Here,

multidepth I/O and a SSD latency emulator was implemented on the Virtex-7 FPGA

chip which communicated with the host system via a PCI-e Gen3 x4 link. On the

host system, we ported the device driver to talk with the SSD emulator which has an

interface similar to NVM-e. Because this board was not equipped with NAND flash

modules, data was stored in one of the 4GB on-board DRAM memory SODIMM mod-

ule.

40

Table 4.1: Accuracy of Latency Predictions (three-value moving average)

H/W Measured Std. dev Predicted Error
Flash 352 µs 0.66 µs 352 µs 0.94 µs
DMA 9 µs 0.26 µs 9 µs 0.56 µs

4.4.2 Results

In this study, we report 1) the effect of predicting DRAM buffer hits through classi-

fication, 2) the accuracy of device-side remaining time predictions, and 3) & 4) the

impact of precompletions to project the impact on full-featured SSDs.

1) Classifying I/O Requests: The impact of I/O classification was verified by mea-

suring the latency of a single I/O thread performing small random write operations. To

limit the latency impact of DRAM buffer flushes and garbage collection overwhelm-

ing the average latency, we limit the frequency of buffer full situations and separately

report buffer hit latencies. Our I/O path was able to reduce average latency up to 5.8 µs

from the baseline. While the baseline experiences scheduling delays even when I/O

requests hit the write buffer, I/O classification allows write buffer hits to be identified

and minimizes the scheduling delays by blocking the CPU.

2) Predicting Flash Latency: To verify the I/O latency predictability of flash

memory when in independent devices, we measured the latency of flash commands

on an LP-DDR flash DIMM equipped with four MLC 25 nm 16 GB flash chips [85]

provided by the OpenSSD2 project. This measurement was done inside the SSD on

top of the flash controller logic, which includes ECC correction 1. Flash latencies for

read operations had very little variance (Table 4.1) compared to other operations (i.e.,

DMA engine). The error, which is a root of the sum of squared differences, was less

than 1 µs.

3) Precompletion I/O vs I/O Threads: Light gray bars and lines in Figure 4.4

show the system impact of the completion schemes interacting with I/O threads. Polling
1The high latency was due to the unoptimized implementation of the stock NAND controller of the

OpenSSD2 project. Scheduling delays in this work, in terms of latency, are small with respect to the high
latency of the evaluation board, although modern SSDs have lower latencies.

41

0

20

40

60

80

100

0
10
20
30
40
50

Bg
. T
as
k
op

s/
se
c v

s s
ol
o
(%

)

N
on

‐N
AN

D
Av

g.
 L
at
en

cy
 (u

s)

vsCPU lat. vsIO lat. vsCPU BG vsIO BG

Figure 4.4: Precompletion I/O threads vs CPU threads

with (POLL PRIO) or without (POLL) task priority (niceness) showed the best latency,

while interrupts (IRQ) showed scheduling delays up to 11 µs. The cost of reducing this

amount of scheduling delays was the excessive CPU cycles causing 17.75% through-

put degradation of the background I/O threads.

Precompletions solve this dilemma between latency and parallelism by masking

the scheduling delays (11 µs) underneath the SSD I/O time while doing no harm to

background threads. However, a precise precompletion window should be given based

on observations on scheduling delays. In Figure 4.4, the best latency was achieved

with a 16 µs precompletion window (PRE16). Having a window larger than 16 µs

burns more CPU cycles, although this was marginal compared to poll-based methods.

4) Precompletion I/O vs CPU Threads: Dark gray bars and lines in Figure 4.4

show the interactions with CPU threads. With these interactions, we had to increase

the priority of the polling thread (POLL PRIO) since poll turns an I/O task into a CPU

thread. The CPU scheduler, Linux CFS in this case, gave the poll thread an equal share

of the CPU, so the poll thread (POLL) had difficulties in acquiring the CPU on time.

The measured latency of (POLL) was significantly greater (1,488 µs), while there was

no significant drop in background throughput. In contrast, interrupt-based I/O threads,

which are threads other than POLL and POLL PRIO, did not experience this problem.

Here, the cost of a shortened latency of POLL PRIO was a significant drop in

background CPU task performance, which recorded only 80% throughput (ops/sec)

compared to the solo-run scenario. Yet, precompletion effectively reduced this latency

42

0
20
40
60
80

100
120
140
160
180
200

1 thread 4 threads - 1
thread / core

8 threads - 2
threads / core

16 threads - 4
threads / core

kI
O

PS

IRQ PRE1 PRE2 PRE4 PRE8 PRE16 PRE32 PRE64

Figure 4.5: Impact of precompletion on IOPS with multidepth I/O (80 µs device la-
tency)

without severely degrading CPU tasks. In addition, the right size of the precompletion

window had to be used (PRE8) in this case.

5) Precompletion I/O with Higher IOPS and Multidepth I/O:

Figure 4.5 and Figure 4.6 shows the impact of precompletion on our SSD emulated

environment. This evaluation was focused on confirming the impact of precompletion

with multiple I/O depths and lower latency which we could not do with the OpenSSD

platform. This environment was configured to emulate a 8 channel 4 way flash array

which has 80 µs latency, which was similar to a SATA 6.0Gb/s SSD seen in the mar-

ket. We measured the impact of precompletion under varied the number of threads

performing a parallel 4kB random read I/O. Here, the results show that precomple-

tion is able to achieve both IOPS and latency of a parallel random I/O from multiple

threads. While the precompletion window has to be configured where it strikes a sweep

spot (PRE8), the gain of both IOPS and latency was approximately 8% compared to

the prior IRQ only scheme.

4.5 Summary

In this work, we presented a flash SSD latency optimization technique and reviewed

the preliminary results toward minimizing the impact of scheduling delays. Our opti-

43

0
10
20
30
40
50
60
70
80
90

100

1 thread 4 threads - 1
thread / core

8 threads - 2
threads / core

16 threads - 4
threads / core

L
at

en
cy

 (u
s)

IRQ PRE1 PRE2 PRE4 PRE8 PRE16 PRE32 PRE64

Figure 4.6: Impact of precompletion on latency with multidepth I/O (80 µs device
latency)

mization exploits accurate latency predictions that were enabled by tracking behavioral

parameters within the SSD. These predictions are based on simplified SSD behavioral

models, which are agreed between the OS and the SSD a priori. The accuracy of such

predictions is backed with the help of SSDs actively filling in the crucial parameters

required for the models.

This was based on the insight that it is far easier to predict the behavior of individ-

ual components within an SSD than to predict the behavior of multiple components

(the SSD as a whole) as a system. Based on this preliminary work, in future work

we plan to evaluate the impact of our optimization on a full-featured SSD under high

parallel workloads.

44

Chapter 5

Tail Latency Reduction using Host Side
GC Control and Multiple Devices

5.1 Introduction

In order to support large scale high performance data intensive applications, key value

stores have been gaining great interest from both industry and academia. To support

these workloads, key value stores rely on in-memory architectures which has been pro-

liferated due to the dropping price per performance of DRAM. However, the increasing

scale of these applications pushes in-memory architectures to its physical limits. The

limits, in which DRAM is both space and power hungry, can limit the scalability of

these architectures in large deployments.

To solve the problem, flash based solid-state drives (SSDs) have become more

viable as an alternative. With access latencies far lower than HDDs and being more

accessible, flash SSDs are now being employed into various system architectures to

fill the gap between DRAM and HDD. Several research explores the use of flash SSDs

[7, 86, 87, 88, 89, 90, 91] as the main means of data storage for key value stores.

However, flash based architectures are yet to dominate applications such as key

value stores. This is because of the high latency variablility of SSDs caused by internal

45

resource conflicts on flash channels, chips, dies and planes. Even though flash SSDs are

known for their competitive read latencies (50us to 150us), conflicting write operations

and erase operations can cause high spikes of uncontrollable latencies. Both triggered

by either foreground I/O or background SSD internal operations, these spikes are in

orders of milliseconds which can be unacceptable.

To deal with variance in latency, we present a host and SSD cooperative approach,

developing a host side storage engine capable of cooperating with SSDs. The storage

engine exploits the authority and capability of scheduling regular I/O and SSD internal

operations to avoid resource conflicts causing unpredictable latency spikes. The capa-

bility of SSD internal control was provided by the SSDs enhanced with a proprietary

SSD API [92]. While the SSD H/W architecture remains the same with off-the-shelf

SATA 6.0 Gb/s MLC SSDs, the SSD API comes with modest extensions only in the

firmware. This SSD API provides the means of triggering GC operations or suppress-

ing all internal activities (i.e., static wear leveling, write flushes) without excessively

exposing proprietary details of the SSD itself.

Yet, even with the total control of SSD internal operations, it is very difficult to

find application idle periods to schedule such operations when we consider classes of

applications serving external requests. Here, we adopted the scheme presented in [55]

which exploits redundancy provided by replicated data placed on multiple instances

of SSDs. This scheme places potentially conflicting requests (i.e., read and writes) on

distinct hardware resources (SSDs) to resolve resource conflicts at the cost of addi-

tional flash chips. The storage engine issues I/O operations to replicas of data blocks

spanned on distinct physical SSDs, having latency sensitive operations, such as reads,

issued on one replica while other latency heavy background operations, such as GC

and flushes, triggered on the other. When latency sensitive operations are served, all

internal SSD operations are suppressed with the help of the SSD API. While separating

reads and writes [55] significantly reduces the tail latency already, our storage engine

goes further eliminating the effects of SSD internal operations.

Four SATA 6.0 Gb/s SSDs enhanced with the SSD API [92] were used in our

46

evaluations. With micro-benchmarks, results show that our storage engine is capable

of cutting the 99.9999th percentile latency of flash SSDs, from 19ms down to 520us

(38 times). Also, having our storage engine integrated into memcached as a multi-SSD

backend replacing the in-memory hash table, 4.5 times reduction of latency spikes at

the 99th percentile was achieved.

5.2 Motivation
5.2.1 Large Scale Key Value Stores and Flash SSDs

Since flash technology have read latency smaller than write latency in an order of mag-

nitude, the read intensive workloads of key value stores fit particularly well with flash

technology. According to a recent study by Facebook [9], key value workloads are read

heavy and dominated by small sized key value pairs. Read write (get():set()) ra-

tio is generally 30:1 with most keys less than 32 bytes and most values less than 500

bytes. With the feature of low power and high density, this read optimized character-

istic is also another reason why flash technology is considered as an alternative. Yet,

there are concerns because flash latency is an order of magnitude larger than DRAM

even for reads.

Fortunately, flash technology in forms of SSDs have high structural parallelism.

Flash latency, which is inferior than DRAM, can be compensated by the value of hav-

ing multiple operations in-flight. Data from I/O requests are interleaved or spread on

multiple flash chips inside SSDs. Multiple flash chips can serve several small I/O re-

quests in parallel. Because of this, modern SSD I/O interfaces, such as SATA 3.0 and

NVM-Express, introduce queues to serve multiple in-flight I/O requests for maximum

performance. The value of overall throughput due to the higher parallelism gives sys-

tem architects an option of trading latency with higher throughput and capacity (com-

pared to DRAM).

47

5.2.2 Latency Spikes of Flash SSDs

However, the main hurdle of using flash SSDs is the uncontrollable latency spikes

caused by SSD internal resource conflicts. Since flash SSDs have limited knowledge

and control on applications, ill data placements can occur where hot spots on SSD

internal resources (i.e., channels) introduce significant resource conflicts. Here, read,

write and block erase operations each having different levels of latencies combined

with arbritrary input of mixed reads and writes can cause unpredictable latency spikes

when conflicts occur. Randomly (from the perspective of applications) scheduled SSD

internal operations such as garbage collection worsen the situation. Front end applica-

tion performance are affected by these latency spikes, where these latencies can be up

to a few milliseconds.

The negative impact of latency variance experienced from low level system compo-

nents has been presented by Google [12]. Long tail latency distributions can introduce

huge performance penalties even if less than 1% of requests are outliers. Highly paral-

lel, high fanout design of modern data center applications are heavily affected by these

outliers at the service level [12]. Here, flash SSDs are considered one of the sources

causing latency variance. While techniques of long tail immune message delivery and

processing were mostly discussed by the authors, cutting the long tail of individual

systems is also shown to provide significant performance benefits to the service. This

partially indicates why DRAM based in-memory systems are widely adopted to serve

latency sensitive data center applications. Flash SSDs, if used naively, are not even

close to have less than 1% of latency outliers (shown in Section 5.4).

5.2.3 Predictable latency, High IOPS but Higher Price

In this work, we were motivated to explore the use of multiple low cost storage compo-

nents to build a competitive storage system. To make flash technology more attractive,

eliminating or at least mitigating the unpredictable latency spikes of flash SSDs have

been a high priority agenda for both the academia and the industry. Significant amount

of effort have been put into development of SSD controllers to control the latency

48

OS

memcached
network service

Storage
Engine

GC API
Enhnaced
Flash SSDs

Block Cache

Multi Flash SSD
I/O Scheduler

Generic
I/O Layers

OS
Drivers

Front-end
Application

get() / set() /
delete()

Storage
Device

Single flash based
memcached node

GC
API

Flash based memcached
cluster

Client tier cluster

Client Access

Datacenter Network

Figure 5.1: Overview of our multi-SSD storage engine integrated as a flash SSD back-
end for memcached

spikes, resulting in a more sophisticated design with higher price tags. As a result, to

have more storage IOPS (I/O Per Second) at predictable levels of latency with SSDs,

one should spend up to multi-thousand dollars to purchase even a single device (i.e.,

PCI-e based high-end SSDs). This motivates us to look for alternatives, which can pro-

vide us reasonably predictable latency and higher IOPS at lower costs. Here, we intend

to fill this gap by proposing software methods which exploit multiple low cost SSDs

to control the latency predictability of SSDs.

5.3 Design
5.3.1 Overview

At the core of our work, we present a host side storage engine which is developed as

a shared library object which applications can integrate the engine’s functionality via

simple API calls. The purpose of this storage engine is to conceal the complexities of

I/O scheduling and SSD internal control into a single software component. Figure 5.1

shows an example of our storage engine integrated to memcached as a flash SSD back-

end, which is also used in our evaluations in Section 5.4.

49

Ta
bl

e
5.

1:
SS

D
C

on
tro

lA
PI

Ty
pe

Fu
nc

tio
n

D
es

cr
ip

tio
n

B
as

ic
g
e
t
u
s
e
r
/
d
e
v
i
c
e
c
a
p
a
c
i
t
y
(
d
e
v
i
c
e
)

Q
ue

rie
s

th
e

ca
pa

ci
ty

of
th

e
de

vi
ce

an
d

th
e

us
er

vi
si

-
bl

e
ca

pa
ci

ty
(r

es
ul

to
fo

ve
r-

pr
ov

is
io

ni
ng

)
g
e
t
e
b
s
i
z
e
(
d
e
v
i
c
e
)

Q
ue

rie
s

th
e

er
as

e
bl

oc
k

si
ze

of
th

e
SS

D
g
e
t
f
r
e
e
b
l
o
c
k
c
o
u
n
t
(
d
e
v
i
c
e
)

Q
ue

rie
s

th
e

am
ou

nt
of

er
as

e
bl

oc
ks

le
ft

in
th

e
SS

D
G

ar
ba

ge
C

ol
le

ct
io

n
g
e
t
/
s
e
t
g
c
t
h
r
e
s
h
o
l
d
(
d
e
v
i
c
e
,
t
h
r
e
s
h
o
l
d
)

Se
t/

ge
tG

C
th

re
sh

ol
ds

w
hi

ch
co

nt
ro

ls
th

e
be

ha
vi

or
of

SS
D

in
iti

at
ed

G
C

i
s
g
c
r
u
n
n
i
n
g
(
d
e
v
i
c
e
)

D
et

er
m

in
es

w
he

th
er

a
G

C
ac

tiv
ity

is
cu

rr
en

tly
un

-
de

rw
ay

r
u
n
g
c
(
d
e
v
i
c
e
,
t
i
m
e
)

A
n

as
yn

ch
ro

no
us

fu
nc

tio
n

ca
ll

w
hi

ch
tri

gg
er

s
th

e
ga

rb
ag

e
co

lle
ct

io
n

ac
tiv

ity
to

ru
n

fo
ra

fix
ed

am
ou

nt
of

tim
e

O
pt

im
iz

ed
R

ea
d

i
s
r
e
a
d
y
f
o
r
r
e
a
d
(
d
e
v
i
c
e
)

D
et

er
m

in
es

w
he

th
er

th
e

SS
D

is
in

a
re

ad
-o

nl
y

re
ad

y
st

at
e

50

5.3.2 SSD Control API

While normal I/O requests are issued along a regular OS I/O path, SSD control related

operations are issued through a proprietary library, provided as a shared library object

(Figure 5.1). With the API, host software can trigger GC operations or suppress all

internal operations for a certain period. The API is provided by the SSD firmware

which was enhanced to accept commands from the library [92]. This library exploits

vendor specific extensions defined in the ATA command specification, to communicate

with the SSDs. All the other SSD H/W resources remain the same. Table 5.1 outlines

the API provided by the this library.

Threshold Based GC

While this API aims to provide control to the host, there are certain situations where

the SSD should trigger mandatory internal operations. For GC, two thresholds, low

block watermark and high block watermark, are set and used to control the behavior.

When the level of free blocks goes below the low block watermark threshold, then GC

automatically starts until it restores the level of low block watermark again. The high

block watermark threshold limits the amount of free blocks being generated by host

initiated GC operations. These thresholds can be adjusted by the application using the

set gc threshold() API call.

Host Initiated GC

When the host initiates GC activity, it is triggered with a run gc() call with a time

period provided. The device executes GC activities until the time expires, or until

enough (high block watermark) free blocks are produced. Any run gc() call is ig-

nored by the device, when the level of free blocks exceeds the high block watermark

threshold. This run gc() call is an asynchronous operation which returns to the user

right after it triggers a GC activity. For this reason, the activity of GC should be moni-

tored by API calls such as is gc running() and get free block count().

51

Optimized Read

As a byproduct of the host controlled GC scheduling scheme, the device provides a

period where no SSD internal operations are being performed. In this period, read

operations are guaranteed to have no interference with SSD internal operations. All

internal operations are suppressed not to have any interference with the foreground

operations. This period can be triggered and acknowledged by the user program with

the is ready for read() call. Upon the first function call, the SSD preempts

pending GC or writes and returns 0 if the preemption is not yet finished. Subsequent

calls with a non-zero value indicates that there will be no pending GC or write which

can interfere with the subsequent read operations. This period lasts until the SSD re-

ceives a new write operation or a GC triggering event occurs (both upon a run gc()

call or crossing the low block watermark threshold).

5.3.3 Multi-SSD Storage Engine

The storage engine itself is divided into two parts: the block cache and the I/O sched-

uler. This is equivalent to the OS I/O path with the buffer cache and the block I/O

scheduler below without file systems and RAID components.

Block Cache

The block cache is the equivalent of the OS buffer cache, but is not associated with a

file system. The block cache faces the application with an API in front (i.e., get()/set(),

and it caches or mediates I/O requests to the I/O scheduler. A unified key value address

space is provided to the application, backed with multiple SSDs and a relatively small

DRAM cache in front. This cache implements a delayed write semantic, in which the

write storage I/O latency is decoupled from the foreground update operation. While

flash SSD read I/O has direct impact on foreground latency upon cache misses, flash

SSD write I/O does not have direct impact on foreground update latency, unless the

cache is full with dirty blocks. Here, we focus to minimize the impact of GC opera-

tions interfering especially with the foreground operations.

52

0
5
6

0
3
6

1
3
7

1
4
7

2
4
8

2
5
8

SSD0 SSD1 SSD2 SSD3 SSD4 SSD5

Block cache 1 3

Physical
Flash
SSDs

Heavy
I/O Queue

Heavy I/O
Token

33

tk. tk. tk.

Read cache miss Dirty block flush Read cache miss

Delayed
until next

token

Sync. fg
Read I/O

Async.
Bg Flush

I/O

tk. does
not allow
read I/O

0 4

Sync. fg
Read I/O

Figure 5.2: Latency control scheme which employs a heavy I/O token being passed
around multiple SSDs

I/O Scheduler

The I/O scheduler is the equivalent of the block I/O scheduler, but the scheduler has

central control of scheduling I/O among multiple SSDs. The scheduler can coordinate

I/O requests taking multiple SSDs into account. Here, the scheduler maintains a striped

replica data layout similar to RAID1+0 and exploits the layout to avoid collisions

between latency heavy background I/O operations and latency sensitive foreground

I/O operations (Figure 5.2). As seen in Figure 5.2, data blocks are replicated among

multiple SSDs having each replica located on different physical SSDs. Here, the I/O

scheduler schedules latency heavy I/O operations on one replica, and latency sensitive

I/O operations on the other replica; assuring these I/O operations do not interfere each

other.

5.3.4 Latency Control

Latency Control via Multi-SSDs

The I/O scheduler controls SSD I/O latencies by introducing heavy I/O tokens and

epochs assigned to a subgroup of SSDs in the array (Figure 5.2). Heavy I/O tokens

represent the opportunity for an SSD to perform latency heavy I/O operations, whereas

epochs represent the period of time where the SSD receives a token. When an SSD

53

SSD 0

SSD 1

SSD 2

SSD 3

GC

GC

Flush

ReadFlush

Read

ReadRead

Read

Read

Read

Read

GC

Flush GC Flush

GC

Flush

Read I/O

Flush I/O

Garbage Collection

Heavy I/O Token

Epoch 0
Token to

Even SSDs

Epoch 1
Token to
Odd SSDs

Epoch 2
Token to

Even SSDs

Epoch barrier

I/O Timeline

Figure 5.3: Example timeline I/O being scheduled on multiple SSDs

receives a heavy I/O token, latency heavy I/O operations, such as flushes (block cache)

or GC operations, are allowed to be performed on the SSD. For example, the flush

operation of block 3 of SSD1 is allowed to be performed since SSD1 has a token

(tk.). The flush operation of block 3 (since blocks have replicas) on SSD3 is postponed

until SSD3 receives a token. Read I/O, which are issued from read cache misses, are

diverted to the replicas placed on SSDs which are free from heavy I/O tokens (block 0

and block 4 in Figure 5.2).

Token Assignment

To make sure at least one data block replica is available to serve latency sensitive op-

erations, token assignment is aligned to epoch barriers (Figure 5.3). Also, considering

the data layout depicted in Figure 5.2, our scheduler repeatedly reassigns tokens to

odd index SSDs or to even index SSDs on each epoch barrier in turns (Figure 5.3).

The length of each epoch is determined by the amount of work to be done with the

token.

5.3.5 Scheduling I/O Operations

Scheduling GC and Writes

Heavy I/O operations, GC and writes in this work, are scheduled on a token assigned

SSD until the epoch ends (token epoch). As seen in Figure 5.3, GC related opera-

54

tions are issued before the write operations. The scheduler tries to make sure there are

enough free blocks to accept the amount of write operations during the epoch. This is

done by adjusting the max free blocks threshold to be just enough to accept the amount

of blocks which could be written during a write epoch. When the level of free blocks

is lower than the threshold, GC activity is triggered via the run gc() API call before

writes.

Optimized Reads

After all write operations are performed within the token epoch, the scheduler waits

for an is ready for read() indication and finalizes the epoch to make sure the

device is ready for optimized reads. This is to make sure the read operations performed

on SSDs are not interfered with write operations or GC operations.

Managing Replicated Blocks

Since the storage engine manages replicated blocks, there is a subtle issue of preserv-

ing data consistency under data updates. Here, we guarantee all updates are immedi-

ately visible to other queries. This affects how the I/O scheduler manages I/O. In our

implementation, the update is first updated and served from the block cache as an au-

thoritative copy until all replicated blocks are updated on the SSDs. The cached copy

lasts until all replicated blocks are guaranteed to serve the same version. The replica

updates are queued in per-device queues and are served when the device receives a

heavy I/O token.

However, when another update comes to the block cache, the new copy is selected

as an authoritative copy, and the corresponding replica updates are queued on corre-

sponding devices. Here, the old version is invalidated and the associated writes in the

per-device queue are cancelled, unless they are not pending. All replica updates are

queued in a FIFO order, so it is guaranteed that the latest updates are seen. Yet, at

events of process failures or power failures, on-storage data can be corrupted since the

in-flight replica updates can be lost. This is clearly a limitation of our implementation

55

which will be discussed in Section 5.5.3.

5.4 Evaluation
5.4.1 Implementation and Environment

Our storage engine was implemented in C language with total 8,421 lines of original

code. We conducted our evaluations on a PC with an Intel i7-4770 3.40Ghz hyper-

threaded quad core CPU and 16GB DRAM. The system was equipped with four GC

API enhanced SATA 6.0 Gb/s SSDs [92] connected to a single AHCI controller. Upon

all experiments, all SSDs were preconditioned with a secure erase followed with a pass

of sequential writes of random data.

For comparison, we set an array of four SSDs in RAID0 as a baseline, while setting

the four SSDs as RAID1+0 for our storage engine. Even though the baseline has more

logical space (i.e., RAID0 vs RAID1+0), we used the same number of SSDs for the

baseline to provide the same level of storage IOPS and bandwidth support from the

array. The RAID style block layouts were both implemented and managed by our

storage engine.

5.4.2 Micro Evaluation

To accurately measure the latency of SSDs, we built a small I/O kernel which issues

I/O patterns to our multi-SSD I/O storage engine. We used the following configura-

tions for our evaluations: EPCH and +GCCTRL, compared to the baseline MIX. EPCH

reflects our storage engine performing reads and writes isolated based on epochs and

replicas, which was reproducing the I/O scheme presented in [55]. +GCCTRL adds

GC control via the GC API [92] having EPCH implied. Both EPCH and +GCCTRL

performs I/O on four SSDs showing a similar timeline shown in Figure 5.3. For com-

parison, MIX performs reads and writes mixed on the baseline array of four SSDs in

RAID0.

All I/O operations were performed having eight 4kB block random reader threads

and four 1MB block random writer threads. Lower level parallelism was intended

56

0

2

4

6

8

10

12

14

16

200 400 600 800 1,000

L
a
te

n
cy

 (
m

s)

Time (secconds)

MIX EPCH +GCCTRL

Figure 5.4: Maximum read latency of multiple SSDs, under control of our storage
engine, in the presence of write activity (aggregate of four SATA 6.0 Gb/s SSDs, 8
random 4kB readers and 4 random 1MB writers)

 99

 99.2

 99.4

 99.6

 99.8

 100

100 1,000 10,000 100,000

C
D

F
 (

%
)

Latency (us)

MIX EPCH +GCCTRL

Figure 5.5: Cumulative distribution of the foreground read latencies

to avoid queueing effects on resources other than SSDs (i.e., CPU cores). Here, we

mainly show the latency of read operations to reflect the implementation of the block

cache which operates similarly to the OS buffer cache. Read operations are sensitive

to I/O latency, synchronously performed upon block cache misses, and write opera-

tions are sensitive to flush throughput, asynchronously performed by block cache flush

workers.

Stable Latency

Figure 5.4 and Figure 5.5 shows the impact of our optimizations on read latency, expe-

rienced in front of the SSD array. MIX showed significant fluctuations and a long tail

due to the mixed reads and writes and the impact of uncontrollable background GC

57

operations. EPCH added more stability by separating reads and writes, which confirms

the effectiveness of the I/O scheme presented in [55] even with different implementa-

tions, however it was not enough to cut the latency tail above the 99.7th percentiles.

The uncontrollable GC periods leaked out of heavy I/O token epochs and caused la-

tency spikes as high as 8ms–9ms. +GCCTRL was added to limit the GC operations to

be performed only in the background device, only when desired. +GCCTRL success-

fully suppresses the latency spikes, achieving sub-milli-second latency and significant

decrease of the latency tail above the 99.7th percentile zone. With +GCCTRL, we could

see stable latencies at much higher percentiles even as high as the 99.9999th. While

the 99.9999th percentile latency of the baseline (MIX) was over 19ms, EPCH was

measured at 2,204us. Our work (+GCCTRL) recorded 520us (38 times vs. MIX and 4.2

times vs. EPCH).

Application Latency and Throughput

Figure 5.6 shows the 99.9999th percentile latency and the throughput behavior under

increasing application load (reader threads). At the 99.9999th percentile latency, there

were significant gaps between each configuration. At 16 threads, the gaps between

MIX, EPCH and +GCCTRL were at their largest, both MIX and EPCH ranging in tens

of milli-seconds while +GCCTRL remained under a milli-second. From 32 threads, we

could see the increase in +GCCTRL latency due to the queuing effect on other shared

resources such as CPU cores (i.e., 64 threads on a 8 core CPU machine). The ag-

gregated bandwidth of EPCH and +GCCTRL was far larger than MIX which suggests

the advantage of SSDs dedicated to either reads and writes free from conflicts, though

there were no significant bandwidth difference between EPCH and +GCCTRL. Consid-

ering the DMI 2.0 25Gbps uplink from the PCH to the CPU, measured to be 1.5GB/s,

+GCCTRL was able to utilize approx. over two thirds (1.148GB/s, including the write

bandwidth) of the H/W bandwidth while maintaining the 99.9999th percentile latency

under a milli-second.

58

0

200

400

600

800

1

10

100

1,000

10,000

100,000

4 8 16 32 64 128

B
an

dw
id

th
 (M

B
/s

)

99
.9

99
9%

 L
at

en
cy

(u
s)

Reader Threads

MIX-BW EPCH-BW +GCCTRL-BW
MIX-Latency EPCH-Latency +GCCTRL-Latency

Figure 5.6: Foreground 99.9999th percentile read latency of multiple SSDs and their
impact on read bandwidth under varied number of reader threads (aggregate of four
SATA 6.0 Gb/s SSDs, 4 random 1MB writers)

5.4.3 Full System Performance

To demonstrate the impact of our GC scheduling scheme on a full system, the storage

engine was integrated into memcached 1.4.17 [3] as an item storage backend. YCSB

[83] on another identical system, linked back to back through a Quad 1Gbps NIC chan-

nel bonded, was used to load our system. The evaluation was focused on comparing

the optimizations (EPCH and +GCCTRL) to MIX. Table 5.2 shows the results.

Similar to the trends seen in Figure 5.6, flash SSD latency irregularities can heavily

impact on in-memory systems such as memcached. While the baseline flash array

MIX experiences super milli-seconds of latency spikes above the 90th percentiles, our

storage engine (both with EPCH and +GCCTRL) was able to limit the latency spikes

to a manageable level. However, the much higher levels of latencies measured in all

levels of percentiles, suggests further optimizations, dealing with software issues such

as concurrency, limited CPU parallelism, network I/O bottleneck and shared interrupts.

We leave these issues for our future work to improve the performance of flash SSD

based in-memory systems.

59

Table 5.2: Full System Performance (Flash Memcached)

Type ops/sec 50% 90% 95% 99%
MIX 51,362 696us 3,578us 4,420us 30,090us

EPCH 66,661 451us 791us 1,059us 9,514us
+GCCTRL 76,917 437us 779us 1,099us 6,548us

5.5 Limitations
5.5.1 Additional Flash Chips

The main concern of adopting our storage engine would be trading excessive SSD

capacity to enhance the latency stability of flash SSD storage systems. However, our

approach is targeted for in-memory systems, where DRAM is dominating. Even with

the double price of flash chips (assuming 2 copies), it is cheaper than DRAM in terms

of capacity. Also, the value of stable access latency, which enables the possibility of

low power / high density in-memory system with flash supplements, exceeds the cost

of sacrificing additional flash chips. Similar approaches based on replicas placed on

redundant H/W resources can be found in prior work such as [55, 59].

5.5.2 Non Standard API

Non-standard APIs can lead to problems such as vendor lock-ins, non-portable solu-

tions and the cost of modifying previous applications. The API we used is designed to

only expose abstractions of GC activity which provides enough control to the host pro-

gram while hiding SSD proprietary details. Applications can safely use the API even

if the actual SSD implementation would differ from vendor to vendor. This design

provides a foundation of API standards similar to the TRIM command. Additionally,

there are several proposals on new interfaces which would enhance overall efficiency

of S/W & H/W interactions, expecting the efficiency to outweigh the cost of extensions

[93, 94, 95, 35].

60

5.5.3 Data Inconsistency upon Power Failures

With our storage engine, data corruption can occur upon power failures, since the en-

gine does not have a recovery mechanism. Upon failures, there is no way to guarantee

that the current on-storage data is consistent. Currently, our storage engine relies on a

stable shutdown of the storage engine, which waits for all replica updates to be applied

to the SSDs, reaching a consistent state. We aim to address this issue in our future

research.

5.5.4 Unbounded Write Latency

While the storage engine guarantees stable read latency, our implementation is not

capable of bounding or stabilizing write latency. When the block cache has enough

space left, this would not be a problem, since the block cache would serve DRAM

latency. But if the block cache is full under a heavy write load, then the latency is

directly affected by the speed of free blocks being generated from invalidating previous

blocks. Since the speed of these invalidations are, at the core, bounded by the speed of

flushing the blocks (replica updates), foreground write operations at the block cache

are directly affected by the latency of flushing a block, when the flush speed cannot

catch up with the incoming updates. There should be either a way to limit the incoming

writes (write throttling) or a way to speed up the flush speed. We leave this issue to be

addressed in our future research.

5.6 Summary

While there are GC optimization approaches in various levels of the I/O path, from the

application and down to the SSD controller, the difficulty of predicting workload idle

periods limits these approaches from fundamentally eliminating foreground latency

spikes.

In this work, we have implemented a storage engine which exploits explicit GC

control provided by SSDs and the redundancy of data block replicas spanned on mul-

tiple SSDs. Our storage engine can reserve device-wise idle periods for GC, while

61

guaranteeing the availability of conflict free I/O paths for foreground I/O operations

at all times. We were able to build a low latency storage system with predictable la-

tencies, enabling flash technology to be used in latency sensitive environments such

as in-memory systems. We demonstrated this by integrating our storage engine into

memcached, a popular in-memory system used in data centers, showing that flash tech-

nology can take place of DRAM providing the benefits of low power and high density

with stable latency.

There are future research which can be drawn from our work. In terms of QoS,

it would be interesting to integrate our GC scheduling scheme with queue based I/O

schedulers, such as [51], since our work can enhance the accuracy of such methods by

providing a more predictable I/O model. Also, it would be worth exploring additional

tradeoffs, in order to reduce the space overhead of replicas. Additionally, implementing

our GC scheduling scheme in a single SSD by exploiting SSD internal parallelism or

redundancy of H/W resources would be interesting.

62

Chapter 6

Conclusion

6.1 Summary and Conclusions

Under the increasing demands of high rates of low latency access towards at scale,

our data centers aggressively use DRAM based in-memory systems, especially under

latency sensitive requirements. However, DRAM is both space and power hungry so

it can run short in supporting the ever increasing scale of data. Here, flash SSDs have

been gaining interest due to the affordable microsecond latency based on the character

of low power, high density of NAND flash technology with the expectation of replacing

the role of DRAM.

However, flash SSDs are yet favorable for such latency-sensitive environments

due to the high latency variance of flash SSDs. While the latency of flash SSDs are

small enough to make software overheads of an I/O request non-negligible, latency

variance increases the overheads by increasing the context multiplexing cost. Also, the

latency variance exposed all the way up to the applications to have an adverse impact

on overall throughput of data center applications. Such variance has to be tolerated or

blocked within the I/O path when using flash SSDs in place of DRAM under latency-

sensitive environments. It is challenging to do so with the limited amount of cycles per

63

CPU cores in the era of post-Moore. New I/O path designs are required to overcome

such challenges.

In this dissertation, we have proposed a series of OS I/O path optimizations which

address the impact of latency variance of flash SSDs with the aim of using flash SSDs

as DRAM alternatives in our latency-sensitive data centers. Here, we set our goals to

1) tolerate the impact of the variance from the I/O path, and 2) to conceal the impact of

variance at the I/O path. Our goals were achieved by presenting new I/O path designs

which seek to exploit the parallel hardware resources such as multiple CPU cores,

multiple SSDs or NAND chips, and also access to abstracted resources and information

inside SSDs. Such exploits are coordinated to cope with the latency variance of flash

SSDs. To make the case of our new I/O path designs and evaluate the impact of our

optimizations, we built two separate I/O path supporting software which addresses

each goal.

First, we optimized the magnified impact of context switches by introducing an

optimized device driver for flash SSDs. The device driver exploited the parallelism of

multiple cores to accelerate I/O completion processing and enhanced IOPS scalabil-

ity of the Linux I/O path for flash SSDs. Further extensions in hiding the impact of

context switches from foreground applications even under low loads were made by ex-

ploiting completion events monitored inside the SSD and exposed to the device driver.

This enhancement masked the impact of such context switches from the foreground

application without affecting both system parallelism and the latency itself.

Second, we optimized the foreground read I/O latency of flash SSDs by building

a key-value storage engine backend. The storage engine aimed to conceal the latency

spikes by explicitly controlling each I/O requests to meet the latency requirements

without sacrificing average latency. On each parallel hardware (SSD), low latency

read requests and high latency write oriented requests were temporally separated by

exploiting redundant copies of data placed on multiple SSDs. Further optimizations

by exploiting a host-controlled garbage collection SSD extension enabled the storage

engine to achieve significant latency stability (under 500 µs) even in higher percentiles

64

(i.e., 99.9999th percentiles).

6.2 Future Work
6.2.1 Extending the Scope of I/O Path Optimizations

The I/O path optimization techniques presented were limited to I/O path related to

flash SSDs. However, there are other portions of the I/O path which involves end-to-

end performance which is not flash SSD specific. The system software for flash SSD

specific I/O paths was heavily optimized, though the overheads in the other software

paths were extensive. These overheads have been noticed during the implementation

the key-value storage engine we proposed. While the primary purpose of the key-value

storage engine was to prohibit the latency spikes from leaking towards the application,

the average latency has increased merely due to the increase of CPU cycles used in the

I/O path without any contribution from sophisticated latency controls such as read pri-

oritization and preemptive background operations. The results were rather surprising

since the role of the storage engine was simple I/O routing and switching tasks without

relying on long loops or algorithms.

Such result opens up a future research towards performing a holistic end-to-end

I/O path optimization towards reducing the software overheads which spans through

1) the network I/O code, 2) the application code, and 3) flash SSD I/O code. Providing

such optimizations have several technical and architectural challenges since the opti-

mizations are not simply a matter of combining previous effort of three independent

component level optimizations. For example, having two I/O code from the network

and the flash SSD would have redundant I/O handling code involving DMA mapping,

interrupt handling and device control which requires special interest. The impact of

such redundant operations can be significant considering the microsecond scaled la-

tencies of flash SSDs. Also, the semantics of the data service routines from applications

should play in harmony with such optimizations.

Here, an interesting research would be figuring out how to present a new I/O stack

to the users, which is capable of performing optimizations across boundaries. While

65

the lack of CPU cycles per core in our post-Moore’s CPUs demands such optimiza-

tions, such cross-boundary optimizations need a way to be rationalized under the crit-

icism of being ad-hoc, unconventional, or unorthodox.

6.2.2 Extended Use Cases of Host Assisting SSD Extensions

The SSD extensions presented in this dissertation focus on enhancing the behavior of

host side system software. Such focus contrasts from many of the prior cross-layer

SSD optimizations which improve the behavior of the SSDs under challenging work-

loads. It is necessary to optimize the behavior of host side system software due to the

limits of cycles per CPU core with our post-Moore’s CPUs. Since the advance in speed

has been stagnated at the CPU, the advance in memory or storage technologies is form-

ing technical challenges towards the host. The relative scarcity of cycles per CPU core

leaves the host side software to behave well about the usage of CPU resources.

With modern CPUs, the character of underlying CPU resources such as cores,

caches, I/O ports, memory distance (i.e., NUMA), and power consumption are no

longer transparent to the host side software and has to be managed efficiently. While

such efficient usage of CPU resources are well studied in the context of the standalone

CPUs, the narrowed gap between CPUs and storage devices opens a new dimension

where we should ask how the CPUs and storage devices should be coordinated. As

demonstrated in this dissertation, a cooperative coordination of CPU and storage re-

source usage can be more efficient.

This coordination aligns with the movement of end-to-end vertical optimizations

done in our data centers. In these environments, each components within the critical

service path should cooperate well since the best behavior of all individual components

does not necessarily translate into the most efficient overall system. While having an

optimized software makes a huge difference in many aspects of the data center, engi-

neers are seeking tools and techniques to gain maximum efficiency out of the available

resources. Our approach can be used to achieve such efficiency.

66

6.2.3 Applications for Different Technologies

Another direction of future research is towards addressing the impact of latency vari-

ance in the context of other upcoming storage technologies. With the success of mul-

tiple generations of NAND flash storage devices, the industry is now moving towards

perfecting the ecosystem around NAND flash technology. Also, the industry is advanc-

ing towards the next generation memory technologies which are expected to give us

better characteristics than NAND flash.

For NAND flash, 3D NAND technology is giving us better characteristics regard-

ing performance, density, and reliability. With the 3rd generation of PCI-e being main-

stream, the standard interface towards flash SSDs has been advanced to a more NVM

specific standard (i.e., NVM-e). And, new form factors such as NVMDIMM are gain-

ing momentum based on the idea of using NAND flash as memory alternatives. For

the next memory technology, in the midst of several candidates (i.e., PCM, RRAM,

STT-MRAM), vendors such as Intel and Micron recently announced the imminent ar-

rival of 3D cross-point memory which is believed to be a form of PCM, meaning that

such technologies are no longer a distant future.

Here, the variance tolerating optimization techniques proposed in this dissertation

will gain more relevance with the advances in technologies stated above. Such rele-

vance is because the same trend of the latency variance and its impact can be found

in these technologies. The actual occurrence of the impact of such trend will differ

from flash SSDs from now, but the trends remain the same. Software overheads will

increase with better memory technologies, and the impact of latency variance will still

be there because of the resistive non-volatile characteristics of the candidate memory

technologies.

For example, PCM promises nanosecond read latencies but has a much higher

write latency which can introduce latency spikes. Such latency spikes can leak beyond

the boundaries of micro-architecture components and can impact service level user

experience under latency sensitive applications. While the latency variance of flash

67

SSDs had an impact on increasing the context multiplexing costs of the CPU, different

costs such as cache utilization, power consumption, or remote memory access. Future

research on understanding and optimizing the impact of such latency variations regard-

ing the effectiveness of CPU resource usage by the system software will be valuable.

68

Bibliography

[1] M. Jung and M. Kandemir, “Revisiting Widely Held SSD Expectations and Re-

thinking System-Level Implications,” in Proceedings of the ACM International

Conference on Measurement and Modeling of Computer Systems (SIGMET-

RICS), 2013.

[2] M. Bjørling, P. Bonnet, L. Bouganim, and N. Dayan, “The Necessary Death of

the Block Device Interface,” in Proceedings of the 6th Biennial Conference on

Innovative Data Systems Research (CIDR), 2013.

[3] “Memcached. a distributed memory object caching system.”

http://www.memcached.org, 2011.

[4] “Redis.” http://www.memcached.org.

[5] “Mongodb.” http://mongodb.com.

[6] “Voltdb. voltdb, the newsql database for high velocity applications..” http://

voltdb.com.

[7] B. Debnath, S. Sengupta, and J. Li, “FlashStore: High Throughput Persistent

Key-Value Store,” Proceedings of the VLDB Endowment, vol. 3, pp. 1414–1425,

Sep 2010.

[8] “Aerospike. aerospike2 free community version..”

http://www.aerospike.com.

69

[9] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Workload Anal-

ysis of a Large-Scale Key-Value Store,” in Proceedings of the ACM Interna-

tional Conference on Measurement and Modeling of Computer Systems (SIG-

METRICS), 2012.

[10] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy,

M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani, “Scal-

ing Memcache at Facebook,” in Proceedings of the 10th USENIX Conference on

Networked Systems Design and Implementation (NSDI), 2013.

[11] J. Yang, D. B. Minturn, and F. Hady, “When Poll is Better than Interrupt,” in

Proceedings of the 10th USENIX Conference on File and Storage Technologies

(FAST), 2012.

[12] J. Dean and L. A. Barroso, “The Tail at Scale,” Communications of the ACM,

vol. 56, p. 74, Feb 2013.

[13] A. M. Caulfield and S. Swanson, “Refactor, Reduce, Recycle: Restructuring the

I/O Stack for the Future of Storage,” Computer, vol. 46, pp. 52–59, Aug 2013.

[14] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and S. Swanson,

“Moneta: A High-Performance Storage Array Architecture for Next-Generation,

Non-volatile Memories,” in Proceedings of the 43rd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO), 2010.

[15] L. M. Grupp, J. D. Davis, and S. Swanson, “The Bleak Future of NAND Flash

Memory,” in Proceedings of the 10th USENIX Conference on File and Storage

Technologies (FAST), 2012.

[16] J.-U. Kang, J.-S. Kim, C. Park, H. Park, and J. Lee, “A Multi-Channel Archi-

tecture for High-Performance NAND Flash-Based Storage System,” Journal of

Systems Architecture, vol. 53, pp. 644–658, Sep 2007.

70

[17] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and S. Swanson, “Onyx:

a Protoype Phase Change Memory Storage Array,” in Proceedings of the 3rd

USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage),

2011.

[18] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn, and S. Swanson,

“Providing Safe, User Space Access to Fast, Solid State Disks,” in Proceedings

of the 17th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2012.

[19] D. Vučinić, Q. Wang, C. Guyot, R. Mateescu, F. Blagojević, L. Franca-neto, D. L.

Moal, H. San, T. Bunker, J. Xu, S. Swanson, and Z. Bandić, “DC Express : Short-

est Latency Protocol for Reading Phase Change Memory over PCI Express,” in

Proceedings of the 12th USENIX Conference on File and Storage Technologies

(FAST), 2014.

[20] E. Seppanen, M. T. O’Keefe, and D. J. Lilja, “High Performance Solid State

Storage Under Linux,” in Proceedings of the 26th IEEE Symposium on Mass

Storage Systems and Technologies (MSST), 2010.

[21] A. Foong, B. Veal, and F. Hady, “Towards SSD-Ready Enterprise Platforms,”

in Proceedings of the 1st International Workshop on Accelerating Data Man-

agement Systems Using Modern Processor and Storage Architectures (ADMS),

2010.

[22] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet, “Linux Block IO: Introducing

Multi-Queue SSD Access on Multi-Core Systems,” in Proceedings of the 6th

International Systems and Storage Conference on (SYSTOR), 2013.

[23] W. Shin, Q. Chen, M. Oh, H. Eom, and H. Y. Yeom, “OS I/O Path Optimiza-

tions for Flash Solid-state Drives,” in Proceedings of the 2014 USENIX Annual

Technical Conference (ATC), 2014.

71

[24] M. Wei, M. Bjørling, P. Bonnet, and S. Swanson, “I/O Speculation for the Mi-

crosecond Era,” in Proceedings of the 2014 USENIX Annual Technical Confer-

ence (ATC), 2014.

[25] G. R. Ganger, “Blurring the Line Between OSes and Storage Devices,” tech. rep.,

Carnegie Mellon University, Pittsburgh, PA, USA, 2001.

[26] A. Trivedi, P. Stuedi, B. Metzler, R. Pletka, B. G. Fitch, and T. R. Gross, “Unified

High-performance I/O: One Stack to Rule Them All,” in Proceedings of the 14th

USENIX Conference on Hot Topics in Operating Systems (HotOS), 2013.

[27] M. Jung, E. H. Wilson, W. Choi, J. Shalf, H. M. Aktulga, C. Yang, E. Saule, U. V.

Catalyurek, and M. Kandemir, “Exploring the Future of Out-of-Core Computing

with Compute-Local Non-Volatile Memory,” in Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis

(SC), 2013.

[28] M. Wei, J. D. Davis, T. Wobber, M. Balakrishnan, and D. Malkhi, “Beyond block

I/O: Implementing a Distributed Shared Log in Hardware,” in Proceedings of the

6th International Systems and Storage Conference (SYSTOR), 2013.

[29] M. Jung, “Exploring Design Challenges in Getting Solid State Drives Closer to

CPU,” IEEE Transactions on Computers, vol. 65, pp. 1103–1115, Apr 2014.

[30] J. Yang, N. Plasson, G. Gillis, N. Talagala, and S. Sundararaman, “Don’t Stack

Your Log on My Log,” in Proceedings of 2nd Workshop on Interactions of

NVM/Flash with Operating Systems and Workloads (INFLOW), 2014.

[31] S. Yang, T. Harter, N. Agrawal, S. S. Kowsalya, A. Krishnamurthy, S. Al-

Kiswany, R. T. Kaushik, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,

“Split-Level I/O Scheduling,” in Proceedings of the 25th ACM Symposium on

Operating Systems Principles (SOSP), 2015.

72

[32] S. Lee, J. Kim, and A. Mithal, “Refactored Design of I/O Architecture for Flash

Storage,” IEEE Computer Architecture Letters, vol. 14, pp. 70–74, Jan 2015.

[33] S. Lee, M. Liu, S. Jun, , S. Xu, J. Kim, and Arvind, “Application-Managed

Flash,” in Proceedings of the 14th USENIX Conference on File and Storage Tech-

nologies (FAST), 2016.

[34] J. Kim, H. Kim, L. Seongjin, and Y. Won, “FTL Design for TRIM Command,” in

Proceedings of the 5th International Workshop on Software Support for Portable

Storage (IWSSPS), 2010.

[35] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K. Panda, “Beyond block

I/O: Rethinking Traditional Storage Primitives,” in Proceedings of the IEEE 17th

International Symposium on High Performance Computer Architecture (HPCA),

2011.

[36] J. Coburn, T. Bunker, R. K. Gupta, and S. Swanson, “From ARIES to

MARS: Reengineering Transaction Management for Next-Generation, Solid-

State Drives,” tech. rep., UCSD Computer Science and Engineering, San Diego,

CA, USA, 2012.

[37] Y. Yu, D. Shin, W. Shin, and N. Song, “Exploiting peak device throughput from

random access workload,” in Proceedings of the 4th USENIX Workshop on Hot

Topics in Storage and File Systems (HotStorage), 2012.

[38] V. Vasudevan, M. Kaminsky, and D. G. Andersen, “Using Vector Interface to

Deliver Millions of IOPS from a Networked Key-Value Storage Server,” in Pro-

ceedings of the 3rd ACM Symposium on Cloud Computing (SoCC), 2012.

[39] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobber, M. Wei, and J. D. Davis,

“CORFU: a Shared Log design for Flash Clusters,” in Proceedings of the 9th

USENIX Conference on Networked Systems Design and Implementation (NSDI),

2012.

73

[40] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,

“Optimistic Crash Consistency,” in Proceedings of the 24th ACM Symposium on

Operating Systems Principles (SOSP), 2013.

[41] M. Saxena, Y. Zhang, M. M. Swift, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau, “Getting Real: Lessons in Transitioning Research Simulations into

Hardware Systems,” in Proceedings of the 11th USENIX Conference on File and

Storage Technologies (FAST), 2013.

[42] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang, “SDF: Software-

Defined Flash for Web-Scale Internet Storage Systems,” in Proceedings of the

19th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS), 2014.

[43] L. Marmol, “NVMKV : A Scalable and Lightweight Flash Aware Key-Value

Store,” in Proceedings of the 6th USENIX Workshop on Hot Topics in Storage

and File Systems (HotStorage), 2014.

[44] L. Marmol, S. Sundararaman, N. Talagala, and R. Rangaswami, “NVMKV: A

Scalable , Lightweight , FTL-Aware Key-Value Store,” in Proceedings of the

2015 USENIX Annual Technical Conference (ATC), 2015.

[45] S. Shakkottai, T. S. Rappaport, and P. Karlsson, “Cross-layer Design for Wireless

Networks,” IEEE Communications Magazine, vol. 41, no. 10, pp. 74–80, 2003.

[46] R. Braden, T. Faber, and M. Handley, “From Protocol Stack to Protocol Heap:

Role-Based Architecture,” ACM SIGCOMM Computer Communication Review,

vol. 33, pp. 17–22, Jan 2003.

[47] V. Kawadia and P. Kumar, “A Cautionary Perspective on Cross-Layer Design,”

IEEE Wireless Communications, vol. 12, pp. 3–11, Feb 2005.

74

[48] M. Van Der Schaar and S. Shankar N, “Cross-Layer Wireless Multimedia Trans-

mission: Challenges, Principles, and New Paradigms,” IEEE Wireless Communi-

cations, vol. 12, pp. 50–58, Aug 2005.

[49] V. Srivastava and M. Motani, “Cross-Layer Design: a Survey and the Road

Ahead,” IEEE Communications Magazine, vol. 43, pp. 112–119, Dec 2005.

[50] G. Vivekananda and P. Reddy, “Critical Analysis of Cross-Layer Approach,” in

Proceedings of the 2015 International Conference on Green Computing and In-

ternet of Things (ICGCIoT), 2015.

[51] S. Park and K. Shen, “FIOS: A Fair, Efficient Flash I/O Scheduler,” in Proceed-

ings of the 10th USENIX Conference on File and Storage Technologies (FAST),

2012.

[52] M. Jung, E. H. I. Wilson, and M. Kandemir, “Physically Addressed Queueing

(PAQ): Improving Parallelism in Solid State Disks,” in Proceedings of the 39th

Annual International Symposium on Computer Architecture (ISCA), 2012.

[53] K. Shen and S. Park, “FlashFQ: A Fair Queueing I/O Scheduler for Flash-Based

SSDs,” in Proceedings of the 2013 USENIX Annual Technical Conference (ATC),

2013.

[54] M. Balakrishnan, A. Zuck, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran,

M. Wei, J. D. Davis, S. Rao, and T. Zou, “Tango: Distributed Data Structures

over a Shared Log,” in Proceedings of the 24th ACM Symposium on Operating

Systems Principles (SOSP), 2013.

[55] D. Skourtis, D. Achlioptas, N. Watkins, C. Maltzahn, and S. Brandt, “Flash on

Rails : Consistent Flash Performance through Redundancy,” in Proceedings of

the 2014 USENIX Annual Technical Conference (ATC), 2014.

[56] C. Gao, L. Shi, M. Zhao, C. J. Xue, K. Wu, and E. H.-M. Sha, “Exploiting Paral-

lelism in I/O Scheduling for Access Conflict Minimization in Flash-based Solid

75

State Drives,” in Proceedings of the 30th Symposium on Mass Storage Systems

and Technologies (MSST), 2014.

[57] W. Shin, M. Kim, J. Choi, H. Eom, and H. Y. Yeom, “HIOPS-KV : Exploiting

Multiple Flash Solid-State Drives for Key Value Stores,” in Proceedings of the

20th IEEE International Conference on Parallel and Distributed Systems (IC-

PADS), 2014.

[58] Q. Wei, B. Gong, S. Pathak, B. Veeravalli, L. Zeng, and K. Okada, “WAFTL: A

Workload Adaptive Flash Translation Layer with Data Partition,” in Proceedings

of the 27th Symposium on Mass Storage Systems and Technologies (MSST), 2011.

[59] M. Jung and M. T. Kandemir, “Sprinkler: Maximizing Resource Utilization in

Many-Chip Solid State Disks,” in Proceedings of the 20th IEEE International

Symposium on High Performance Computer Architecture (HPCA), 2014.

[60] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim, “A Case for Flash

Memory SSD in Enterprise Database Applications,” in Proceedings of the 2008

ACM International Conference on Management of Data (SIGMOD), 2008.

[61] M. Jung, W. Choi, and S. Srikantaiah, “HIOS: A Host Interface I/O Scheduler

for Solid State Disks,” in Proceedings of the 41st International Symposium on

Computer Architecture (ISCA), 2014.

[62] W.-H. Lin and L.-P. Chang, “Dual Greedy: Adaptive Garbage Collection for

Page-Mapping Solid-State Disks,” in Proceedings of the 2012 Design, Automa-

tion & Test in Europe Conference & Exhibition (DATE), 2012.

[63] E. Lee, H. Bahn, and S. H. Noh, “Unioning of the Buffer Cache and Journaling

Layers with Non-volatile Memory,” in Proceedings of the 11th USENIX Confer-

ence on File and Storage Technologies (FAST), 2013.

[64] D. Park, B. Debnath, and D. H. Du, “A Workload-Aware Adaptive Hybrid Flash

Translation Layer with an Efficient Caching Strategy,” in Proceedings of the

76

19th Annual International Symposium on Modelling, Analysis, and Simulation

of Computer and Telecommunication Systems (MASCOTS), 2011.

[65] J.-u. Kang, J. Hyun, H. Maeng, and S. Cho, “The Multi-streamed Solid-State

Drive,” in Proceedings of the 6th USENIX Workshop on Hot Topics in Storage

and File Systems (HotStorage), 2014.

[66] W. Shin, M. Kim, K. Kim, and H. Y. Yeom, “Providing QoS through Host Con-

trolled Flash SSD Garbage Collection and Multiple SSDs,” in Proceedings of

the 2nd IEEE International Conference on Big Data and Smart Computing (Big-

Comp), 2015.

[67] Y. Kim, S. Oral, G. M. Shipman, J. Lee, D. A. Dillow, and F. Wang, “Harmonia:

A Globally Coordinated Garbage Collector for Arrays of Solid-State Drives,”

in Proceedings of the 27th IEEE Symposium on Massive Storage Systems and

Technologies (MSST), 2011.

[68] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn, “DFS: A File System for

Virtualized Flash Storage,” ACM Transactions on Storage, vol. 6, Sep 2010.

[69] Y. Zhang, L. P. Arulraj, A. C. Arpaci-dusseau, and R. H. Arpaci-dusseau, “De-

Indirection for Flash-Based SSDs with Nameless Writes,” in Proceedings of the

10th USENIX Conference on File and Storage Technologies (FAST), 2012.

[70] Y. Kim, J. Lee, S. Oral, D. A. Dillow, F. Wang, and G. M. Shipman, “Coordinat-

ing Garbage Collection for Arrays of Solid-State Drives,” IEEE Transactions on

Computers, vol. 63, pp. 888–901, Apr 2014.

[71] S. Boboila, Y. Kim, S. S. Vazhkudai, P. Desnoyers, and G. M. Shipman, “Active

Flash: Out-of-core Data Analytics on Flash Storage,” in Proceedings of the 28th

IEEE Symposium on Mass Storage Systems and Technologies (MSST), 2012.

[72] J. Ouyang, S. Lin, Z. Hou, P. Wang, Y. Wang, and G. Sun, “Active SSD Design for

Energy-Efficiency Improvement of Web-Scale Data Analysis,” in Proceedings of

77

the International Symposium on Low Power Electronics and Design (ISLPED),

2013.

[73] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger, “Active Disk Meets

Flash,” in Proceedings of the 27th ACM International Conference on Supercom-

puting (ICS), 2013.

[74] D. Tiwari, S. Boboila, and S. S. Vazhkudai, “Active Flash: Towards Energy-

Efficient, In-Situ Data Analytics on Extreme-Scale Machines,” in Proceedings

of the 11th USENIX Conference on File and Storage Technologies (FAST), 2013.

[75] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou, “Transactional Flash,” in Pro-

ceedings of the 8th USENIX conference on Operating Systems Design and Im-

plementation (OSDI), 2008.

[76] W.-h. Kang, S.-w. Lee, B. Moon, G.-H. Oh, and C. Min, “X-FTL: Transactional

FTL for SQLite Databases,” in Proceedings of the 2013 ACM International Con-

ference on Management of Data (SIGMOD), 2013.

[77] J. Coburn, T. Bunker, M. Schwarz, R. Gupta, and S. Swanson, “From ARIES

to MARS,” in Proceedings of the 24th ACM Symposium on Operating Systems

Principles (SOSP), 2013.

[78] Y. Lu, J. Shu, J. Guo, S. Li, and O. Mutlu, “LightTx: A Lightweight Transactional

Design in Flash-based SSDs to Support Flexible Transactions,” in Proceedings

of the 31st IEEE International Conference on Computer Design (ICCD), 2013.

[79] W. Shi, D. Wang, Z. Wang, and D. Ju, “Mobius : A High Performance Transac-

tional SSD with Rich Primitives,” in Proceedings of the 30th IEEE International

Conference on Massive Storage Systems and Technology (MSST), 2014.

[80] J. Axboe, “Io queuing and complete affinity.”

http://lwn.net/Articles/268713/, Feb 2008.

78

[81] A. Huffman, “NVM Express specification 1.1a.” http://www.

nvmexpress.org/specifications/, September 2013.

[82] NVM-Express.

http://www.nvmexpress.org/resources/

linux-driver-information/.

[83] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Bench-

marking Cloud Serving Systems with YCSB,” in Proceedings of the 1st ACM

Symposium on Cloud computing (SoCC), 2010.

[84] “The OpenSSD Project. Cosmos OpenSSD Platform.”

http://www.openssd-project.org/wiki/The_OpenSSD_

Project.

[85] “SK Hynix / H27QDG8VEBIR-BCB 16GB 2bit MLC chip.”

[86] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky, “SILT: A Memory-Efficient,

High-Performance Key-Value Store,” in Proceedings of the 23rd ACM Sympo-

sium on Operating Systems Principles (SOSP), 2011.

[87] B. Debnath, S. Sengupta, and J. Li, “SkimpyStash: RAM Space Skimpy Key-

Value Store on Flash-based Storage,” in Proceedings of the 2011 ACM Interna-

tional Conference on Management of Data (SIGMOD), (New York, New York,

USA), 2011.

[88] X. Ouyang, N. S. Islam, R. Rajachandrasekar, J. Jose, M. Luo, H. Wang, and

D. K. Panda, “SSD-Assisted Hybrid Memory to Accelerate Memcached over

High Performance Networks,” in Proceedings of the 9th USENIX conference on

Networked Systems Design and Implementation (NSDI), 2012.

[89] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V. Va-

sudevan, “FAWN: a Fast Array of Wimpy Nodes,” in Proceedings of the 22nd

ACM Symposium on Operating Systems Principles (SOSP), 2009.

79

[90] T. Kissinger, B. Schlegel, M. Boehm, D. Habich, and W. Lehner, “A High-

Throughput In-Memory Index, Durable on Flash-based SSD: Insights Into the

Winning Solution of the SIGMOD Programming Contest 2011,” ACM SIGMOD

Record, vol. 41, p. 44, Oct 2012.

[91] A. Anand, C. Muthukrishnan, S. Kappes, A. Akella, and S. Nath, “Cheap and

Large CAMs for High Performance Data-Intensive Networked Systems,” in Pro-

ceedings of the 7th USENIX Conference on Networked Systems Design and Im-

plementation (NSDI), 2010.

[92] “Samsung, GC control API enhanced SSD.” MZ7WD960HCGP-000PU 960GB

MLC SSD.

[93] J.-U. Kang, J. Hyun, H. Maeng, and S. Cho, “The Multi-Streamed Solid-State

Drive,” in Proceedings of the 6th USENIX Workshop on Hot Topics in Storage

and File Systems (HotStorage), 2014.

[94] A. Soga, C. Sun, and K. Takeuchi, “NAND Flash Aware Data Management Sys-

tem for High-Speed SSDs by Garbage Collection Overhead Suppression,” in Pro-

ceedings of the 6th IEEE International Memory Workshop (IMW), 2014.

[95] T. Frankie, G. Hughes, and K. Kreutz-Delgado, “A Mathematical Model of the

Trim Command in NAND-flash SSDs,” in Proceedings of the 50th ACM Annual

Southeast Regional Conference (SE), 2012.

80

�]

�ò‹ SSD (�ò‹ î¨‹ §Lt∏ ‹|t�) �‹X �ò‹ T®¨ 0 @ ‡

�ÌÌX �4\ »tl\ � ⇠�X úd a8§ T®¨X �X| 0⇠<\ t⌅

X§†¨¿0 D∏�à�¥X‡à‰.D∏˘D©t⌅¨ HDD (X‹§l

‹|t�)@ ¸¨Xò, Ù‰ ∞⇠\ ⌅¨X SSDX 1•@ ⌅¨X §†¨¿ ‹§

\–⌧ HDD|�¥X‡à‰.¯Ïò¿‹⌅t‰∞D‡|X0L8–�ò‹

SSDî⌘¸¿‹⌅–¸⇣\Q©⌅\¯®–⌧|⇠�<\¨©⇠î DRAM0

⇠T®¨¥‹§\D�¥XpòÙD`∞ �xƒÙ�⇠¿ª\‰.

tÏ\ D‡|1@ ⌘¸¿‹⌅– ¸⇣\ Q©⌅\¯®X IOPS@ ¿‹⌅

îl¨m®P|©q‹§îÉD¥5å\‰.�ò‹ SSDX⌘¸¿‹⌅@ I/O

î≠Xå⌅∏Ë¥D©D4‹ª`⇠�<\Ã‰Ã|ë¿Ã,⌘¸¿‹⌅XD

‡|1@8Â⌅XX�•DU�‹§pt–0|å⌅∏Ë¥D©tù�⇠¥ I/O

Ω\X IOPS ✏ ⌘¸¿‹⌅ •%@ �t ⇠ à‰. ⇣\ tÏ\ �ò‹ SSDX

⌘¸¿‹⌅ D‡|1@ µ⌧⇠¿ J@ D pt0 <0 ⇠�–L¿ xú⇠¥ ¥

�¨�tX⌧D§Xò¨…–�•D¯\‰.tÏ\D‡|1X�•@ I/OΩ\

¥–⌧˘ı⇠pòµ⌧⇠¥|\‰.

tÏ\0p\¯|8@⌘¸¿‹⌅–¸⇣\`�¨�tX–⌧�ò‹ SSD

|¨©\‰î©\\�ò‹ SSDX⌘¸¿‹⌅D‡|1X�•D˘ıX0⌅

\ 8§∏ ! ¥�¥⌧ I/OΩ\ \�T‰D ⌧‹\‰. ¯ |8–⌧î 1) ‰⌘ CPU

T¥ ⇣î SSD ¥ÄX —,1 0⇠\ î� ê– \© ✏ 2) 8§∏@ SSD ⌅X •

¡⌧ ¡8 ë© ¨©D µt D‡|1X �•D ˘ıXî »\¥ I/O Ω\ $ƒ�

⌧H⇠»‰. t⌅ l–⌧î IOPS ò ¿ ‹⌅ ⌘ Xò� l›⇠î \ƒ� à»

¿Ã¯|8X I/OΩ\$ƒîî�¨å§|¨©XÏ IOPS@�0‹⌅D®P

Ï1à‰.

¯ |8–⌧î D‡|1<\ x\ å⌅∏Ë¥ D©D ⌅t0 ⌅t I/O DÃ Ω

\¥–⌧8Â⌅XX�•D⌅Ñ<\h I/OΩ\X IOPS0•D•¡‹®\�T

81

⌧ AHCI 0⇠ �ò‹ SSD •X ‹|tÑ| l⌅à<p, 0t Linux I/OΩ\Ù‰

100%X IOPS•¡DÏ1X�‰.Tà¥,‰⌧ SSD⌅\†¿Ö�´¸–⌧ SSD0

•XU•Dµt I/O\x\�0‹⌅¸8Â⌅XX§�t¡¿‹⌅tŸ‹–

π–»⇠àƒ]X�<p,t|µt8§∏‹§\X—,1DtX¿J<t⌧

ƒ I/Oî≠˘…‡�0‹⌅D 7»tl\�⇣å‹¨⇠à»‰.

⇣\,D‡|1X�•tQ©<\xú⇠î8⌧|t∞X0⌅tMemcached

X �ò‹ SSD 1‘‹\ ¨©Xî §8X §†¨¿ ‘ƒt ⌧⌧⇠»<p, ÏÏ

SSD– ⌘ı pt0X ı¨¯D T 0X| \©\ ⌅Ω }0 ë≈¸ 0Ω 0 ë

≈X Ñ¨ 0ïD µt 0 ⌅¸ ∞‹ ⌧›Xî ⌘¸¿‹⌅ §�tlX Ä�

�x �•D ©¨‹⌧ § 8X �• Q© ⇠�–⌧X qL| ¿‹⌅D �¨ �

⇠�<\⌅|⇠à»‰.TòD�,�D¿⇠—¸⇡@ SSD¥ÄX I/Oë≈D⌧

¥`⇠àî SSDU•0•D\©XÏt�¨�⇠�XqL|⌘¸¿‹⌅D

99.9999th|<¿|–⌧ 1�¨�¯Ã<\Æú⇠à»‰.

¸î¥: §†¨¿ §› \�T, �ò‹SSD, ¥�¥⌧, P(ƒ5 \�T, ‡1• �

••X,pt0<0,§8X§†¨¿,⌧D§à»

Yà: 2010-23271

82

	Chapter 1 Introduction
	1.1 Motivation
	1.1.1 Flash SSDs for Latency Sensitive Applications
	1.1.2 The Impact of Flash SSD Latency Variability on the I/O Path
	1.1.3 The Impact of Latency Variability Exposure

	1.2 Dissertation Goals
	1.3 Approach
	1.4 OS I/O Path Optimizations for Flash SSDs
	1.5 Contributions
	1.6 Dissertation Structure

	Chapter 2 Background
	2.1 Adoption of Flash SSDs and the Impacton Our I/O path
	2.2 Next Generation Memory Technologies
	2.3 The Impact of Modern Flash SSDs
	2.4 I/O Path for Flash SSDs
	2.5 Related Work
	2.5.1 Reconsidering the I/O path
	2.5.2 Black-box Approaches
	2.5.3 Cross-layer Approaches
	2.5.4 Refactoring the I/O Path

	Chapter 3 IOPS Improvement by Reducing the Impact of Context Switches
	3.1 Introduction
	3.2 Motivation
	3.3 Design and Implementation.
	3.3.1 HIOPS Hardware Abstraction Layer
	3.3.2 HAL API Operations
	3.3.3 OS I/O Path Optimizations

	3.4 Evaluation
	3.5 Summary

	Chapter 4 Latency Reduction using SSD Internal Information
	4.1 Introduction.
	4.2 Motivation
	4.2.1 System Impact of Modern SSDs
	4.2.2 SSDs Unblinding the OS

	4.3 Design and Implementation
	4.3.1 Predicting the I/O Time of SSDs
	4.3.2 OS I/O Path Optimizations

	4.4 Evaluation
	4.4.1 Experimental Setup
	4.4.2 Results

	4.5 Summary

	Chapter 5 Tail Latency Reduction using Host Side GC Control and Multiple Devices
	5.1 Introduction
	5.2 Motivation
	5.2.1 Large Scale Key Value Stores and Flash SSDs
	5.2.2 Latency Spikes of Flash SSDs
	5.2.3 Predictable latency, High IOPS but Higher Price

	5.3 Design
	5.3.1 Overview
	5.3.2 SSD Control API
	5.3.3 Multi-SSD Storage Engine
	5.3.4 Latency Control
	5.3.5 Scheduling I/O Operations

	5.4 Evaluation
	5.4.1 Implementation and Environment
	5.4.2 Micro Evaluation
	5.4.3 Full System Performance

	5.5 Limitations
	5.5.1 Additional Flash Chips
	5.5.2 Non Standard API
	5.5.3 Data Inconsistency upon Power Failures
	5.5.4 Unbounded Write Latency

	5.6 Summary

	Chapter 6 Conclusion
	6.1 Summary and Conclusions
	6.2 Future Work
	6.2.1 Extending the Scope of I/O Path Optimizations
	6.2.2 Extended Use Cases of Host Assisting SSD Extensions
	6.2.3 Applications for Different Technologies

	Bibliography
	초록

<startpage>12
Chapter 1 Introduction 1
 1.1 Motivation 1
 1.1.1 Flash SSDs for Latency Sensitive Applications 2
 1.1.2 The Impact of Flash SSD Latency Variability on the I/O Path 2
 1.1.3 The Impact of Latency Variability Exposure 3
 1.2 Dissertation Goals 4
 1.3 Approach 4
 1.4 OS I/O Path Optimizations for Flash SSDs 5
 1.5 Contributions 7
 1.6 Dissertation Structure 8
Chapter 2 Background 9
 2.1 Adoption of Flash SSDs and the Impacton Our I/O path 9
 2.2 Next Generation Memory Technologies 10
 2.3 The Impact of Modern Flash SSDs 11
 2.4 I/O Path for Flash SSDs 13
 2.5 Related Work 14
 2.5.1 Reconsidering the I/O path 14
 2.5.2 Black-box Approaches 15
 2.5.3 Cross-layer Approaches 16
 2.5.4 Refactoring the I/O Path 17
Chapter 3 IOPS Improvement by Reducing the Impact of Context Switches 18
 3.1 Introduction 18
 3.2 Motivation 19
 3.3 Design and Implementation. 21
 3.3.1 HIOPS Hardware Abstraction Layer 22
 3.3.2 HAL API Operations 23
 3.3.3 OS I/O Path Optimizations 24
 3.4 Evaluation 27
 3.5 Summary 31
Chapter 4 Latency Reduction using SSD Internal Information 32
 4.1 Introduction. 32
 4.2 Motivation 33
 4.2.1 System Impact of Modern SSDs 34
 4.2.2 SSDs Unblinding the OS 35
 4.3 Design and Implementation 36
 4.3.1 Predicting the I/O Time of SSDs 36
 4.3.2 OS I/O Path Optimizations 38
 4.4 Evaluation 40
 4.4.1 Experimental Setup 40
 4.4.2 Results 41
 4.5 Summary 43
Chapter 5 Tail Latency Reduction using Host Side GC Control and Multiple Devices 45
 5.1 Introduction 45
 5.2 Motivation 47
 5.2.1 Large Scale Key Value Stores and Flash SSDs 47
 5.2.2 Latency Spikes of Flash SSDs 48
 5.2.3 Predictable latency, High IOPS but Higher Price 48
 5.3 Design 49
 5.3.1 Overview 49
 5.3.2 SSD Control API 51
 5.3.3 Multi-SSD Storage Engine 52
 5.3.4 Latency Control 53
 5.3.5 Scheduling I/O Operations 54
 5.4 Evaluation 56
 5.4.1 Implementation and Environment 56
 5.4.2 Micro Evaluation 56
 5.4.3 Full System Performance 59
 5.5 Limitations 60
 5.5.1 Additional Flash Chips 60
 5.5.2 Non Standard API 60
 5.5.3 Data Inconsistency upon Power Failures 61
 5.5.4 Unbounded Write Latency 61
 5.6 Summary 61
Chapter 6 Conclusion 63
 6.1 Summary and Conclusions 63
 6.2 Future Work 65
 6.2.1 Extending the Scope of I/O Path Optimizations 65
 6.2.2 Extended Use Cases of Host Assisting SSD Extensions 66
 6.2.3 Applications for Different Technologies 67
Bibliography 69
초록 81
</body>

