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Abstract 

 

Rational design for enzyme engineering of CYP153 

family and its application to production of ω-hydroxy 

palmitic acid 

 

  Eunok Jung 

School of Chemical and Biological Engineering 

The Graduated School 

Seoul National University 

 

In this study, the ω–specific hydroxylation of fatty acids using cytochrome P450 

monooxygenase (CYPs) was investigated. Among bacterial CYPs in CYP153 

family which reported as fatty acid ω-hydroxylase, CYP153As from Marinobacter 

aquaeolei VT8 (CYP153A33), Alcanivorax borkumensis SK2 (CYP153A13) and 

Gordonia alkanivorans (CYP153A35) were selected, and compared their specific 

activities and product yields of ω-hydroxy palmitic acid based on whole-cell 

reactions toward palmitic acid. Using CamAB as redox partner, CYP153A35 and 

CYP153A13 showed the highest product yields of ω-hydroxy palmitic acid by 

whole-cell and in vitro reactions, respectively.  

To investigate electron transfer system for CYP153A35, artificial self-sufficient 
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CYP153A35-BMR was constructed by fusing it to the reductase domain of 

CYP102A1 (i.e. BM3) from Bacillus megaterium, and its catalytic activity was 

compared with CYP153A35 and CamAB system. Unlike the expectations, the 

system with CamAB resulted 1.5 fold higher yield of ω-hydroxy palmitic acid than 

that using A35-BMR in whole-cell reaction, whereas the electron coupling 

efficiency of CYP153A35-BM3 reductase was 4 times higher than that of 

CYP153A35 and CamAB system.  

Furthermore, various CamAB expression systems according to gene 

arrangements of the three proteins and promoter strength in their gene expression 

were compared in terms of product yields and productivities. Tricistronic 

expression of the three proteins in the order of camB, cyp153A35 and camA, i.e. 

A35-AB2 construct, showed the highest product yield from 5 mM of palmitic acid 

within 9 h in batch reaction system owing to the concentration of CamB, which is 

the rate limiting factor for the activity of CYP153A35. However, in fed-batch 

reaction system, A35-AB1 construct, which expressed the three proteins 

individually using three T7 promoters, resulted the highest product yield of 17.0 

mM (4.6 g/L) of ω-hydroxy palmitic acid from 20 mM (5.1 g/L) of palmitic acid in 

30 h.  

For the improvement of hydroxylation activity of CYP153A35, the structures of 

CYP153A35 were predicted by homology modelling, and the major cavities and 

the amino acid interacting with the fatty acid were revealed by CAVER 3.0. In 

order to screen mutants, a powerful high-throughput screening assay was 

developed, which used Purpald to sense formaldehyde produced as a by-product 

during O-dealkylation reaction. Saturation mutagenesis on 19 amino acids was 
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performed and D131S mutant showing 281.4 min-1mM-1 of catalytic constant 

which was more than 17 times higher value than that of wild-type (16.5 min-1mM-1). 

To optimize the linker sequence between fatty acid ω-hydroxylase (CYP153A33) 

and reductase domain of CYP102A1, repeated flexible or rigid sequence are 

designed randomly and screened. The best mutant, EAAAK-(GGGGS)3-EAAAK, 

showed the 50% higher specific activity than native BM3 linker, although poor 

expression level in E.coli. 

 

Student number: 2009-21025 

 

Keywords: ω-Hydroxy fatty acid, Cytochrome P450 monooxygenase, CYP153, 

Electron transfer system, Semi-rational engineering, Linker design, Protein 

expression optimization 
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Chapter 1.  

Introduction 
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1.1 ω-Hydroxy fatty acid for ceramide synthesis  

 

1.1.1 Ceramides for cosmetic ingredient  

Stratum corneum (SC), the outermost layer of the epidermis, is the most 

important organ for skin barrier function and composed with corneocytes and 

intercellular lipids (Figure 1.1a) (Haftek, Callejon et al. 2011). Various lipids exist 

in intracellular lipids such as ceramides, cholesterol, free fatty acids, triglycerides, 

squalene, etc. (Schürer and Elias 1991) Especially, ceramides are an important 

determinant of the water retention properties and play crucial roles in lamellar 

structure of stratum corneum. Therefore, ceramide deficiency may provide an 

etiologic basis for dry and barrier-disturbed skin (Yamamoto, Serizawa et al. 1991, 

Choi and Maibach 2005). However, natural ceramides have two drawbacks for 

cosmetic ingredient. Natural ceramide are broken down in the skin by the action of 

ceramidases to liberate sphingosine, and free sphingosine inhibits the activity of 

protein kinase C, which may be affect cell division (Downing 1992). In addition, 

isolation from natural sources is expensive, thus it is difficult to obtain in the 

quantities needed for application in cosmetic ingredient (Weber, Lambers et al. 

2000). 

Among the various human ceramides, ceramide I is the most significant for the 

formation of the lateral lipid packing as well as the long range lamellar ordering in 

SC (Bouwstra, Gooris et al. 1998). Ceramide I contained mainly 30 and 32-carbon 

saturated, straight-chained ω-hydroxy fatty acids (Wertz, Miethke et al. 1985). We 

designed new psuedoceramide similar to ceramide I, thus cost-effective supply of 

ω-hydroxy palmitic acid is key for synthesis of psuedoceramide (Figure 1.1b). 
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Figure 1.1 Structure of stratum corneum and proposed psuedoceramide (A) 

Structure of the epidermis and stratum corneum (B) Structure of ceramide I 

and designed psuedoceramide 
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1.1.2 Chemical and biological synthesis of ω-hydroxy fatty acids 

ω-hydroxy fatty acids (ω-HFAs) are valuable chemicals for various synthesis of 

ceramide and additives such as lubricants, adhesives (Vandamme and Soetaert 

2002, Metzger and Bornscheuer 2006). ω-HFAs can be chemically synthesized by 

oxidation of alkanediols (Scott, Crawford et al. 1993), reduction of dicarboxylic 

acids (Yokota and Watanabe 1993), or ring opening of lactones/enamines (Cho and 

DeFlorio 1996, Stephan and Mohar 2006), all these methods require multi-step 

reactions for controlled selectivity with high temperature, and also used expensive 

starting materials, which are major hurdles for their economic chemical syntheses 

(Labinger and Bercaw 2002, Labinger 2004). As alternatives, biological 

synthesises of ω-HFAs have been developed, for example, using alkane 

monooxygenase (AlkB) (Kusunose, Coon et al. 1964, McKenna and Coon 1970, 

Clomburg, Blankschien et al. 2015), or using multistep reactions supported by 

hydratase, alcohol dehydrogenase, Baeyer–Villiger monooxygenase and esterase 

(Song, Jeon et al. 2013). In addition, a chemo-enzymatic synthetic method using 

Baeyer–Villiger monooxygenase and RANEY® Ni catalyst was recently reported 

(Jang, Singha et al. 2016). Despite good attempts, these methods are limited only 

for medium-chain fatty acids (C6:0–C12:0). 

 

1.2 Cytochrome P450s (CYPs)  

Cytochrome P450s (CYPs) belong to monooxygenase and are widely distributed 

in nature (Hrycay and Bandiera 2015). CYPs were discovered in rat liver 

microsomes at first and a Soret peak at 450 nm was identified in reduced form of 

CYPs with CO, hence, it was named cytochrome P450 (Brodie, Axelrod et al. 1955, 
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Omura and Sato 1964). CYPs contain a heme which binds to a conserved cysteine 

covalently, which provide a reason for its spectroscopic properties and the Soret 

peak at 450 nm. CYPs play important roles in living organism such as the 

metabolism of xenobiotics, antibiotics and steroids (Anzenbacher and 

Anzenbacherova 2001). Because of those significance, CYPs are interesting 

powerful biocatalysts in chemical industry (Urlacher and Girhard 2012). 

 

1.2.1 Reaction mechanism of CYPs 

The catalytic mechanism of CYP was initially introduced in 1968 (Figure 1.1). 

The catalytic cycle of CYPs can be described in seven consecutive steps. First, the 

substrate binds FeIII, displacing a molecule of water. Then, FeIII was reduced into 

FeII by transferred an electron. An oxy-ferrous intermediate is generated by the 

binding of FeII to dioxygen, and a second electron reduces the iron-peroxo complex, 

causing an iron-hydroperoxo intermediate. The intermediate is immediately 

cleaved, and one molecule of water was released, generating highly reactive iron-

oxo ferryl specie, referred to as compound I. The activated oxygen atom of the 

compound I oxidized the substrate, and the product is released, displaying a water 

molecule.  

 

1.2.2 Classification of CYP electrons transfer system 

According to a general CYP reaction mechanism, two electrons are required 

sequentially to form compound I, and the electrons from NAD(P)H are transferred 

to P450 via various typed auxiliary redox proteins containing prosthetic groups 

such as FAD, FMN and Fe-S cluster depending upon the types of CYPs (Figure 1.2) 
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(Hannemann, Bichet et al. 2007). Therefore, optimization of electron flow between  

 

 

Figure 1.1 Catalytic cycle of CYPs. 

The reaction requires the sequential input of two electrons and one dioxygen to 

catalyze hydroxylation reaction. (Adapted from Denisov et al. Chem. Rev. 2005, 

105, 2253-2277) (Denisov, Makris et al. 2005)  
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the redox partner proteins can result enhanced active oxygen compound level 

leading to enhanced substrate conversion to product (Bernhardt and Urlacher 2014). 

To find out an optimum or efficient electron transfer system for a specified CYP 

among a large number of ferredoxins and ferredoxin reductases, screening 

approaches are generally used as a first trial such as comparison of various redox 

proteins from different origins (Choi, Kim et al. 2009, Bell, Dale et al. 2010, Bell, 

Xu et al. 2010). Another approach is designing a class VIII self-sufficient CYP, 

which is a fusion protein of CYP and CYP reductase domain with additional 

flexible linker peptide sequences to achieve high electron transfer efficiency 

(Fairhead, Giannini et al. 2005, Dodhia, Fantuzzi et al. 2006, Choi, Jung et al. 2012, 

Scheps, Honda Malca et al. 2013). 

 

1.2.3 Structural features of CYP 

Even though CYP sequences are various with only three conserved amino acids, 

Cys for heme binding and the EXXR-motif, the CYP-fold consists of thirteen 

conserved α–helices and five β–sheets, the α–helices are alphabetically named A-L 

and the β–sheets are numbered 1-5 (Figure 1.3) (Sevrioukova, Li et al. 1999). In 

this conserved fold six substrate recognition sites (SRSs) covering most of the 

substrate binding pocket and substrate entrance were identified (Figure 1.4) (Gotoh 

1992). SRS1 is located on the BC-loop region, SRS2 is located on α-helix F, SRS3 

on α-helix G, SRS4 on α-helix I, SRS5 covers β-strand 1-4 and the neighboring 

loops, and SRS6 spans over β-strands 4-1 and 4-2. SRS2 and 3 constitute most of 

the substrate access channel, whereas SRS1, 4, 5, and 6 form the walls of the 

binding pocket. Because the SRS positions not only directly interact with the 
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substrate but also  

 

 

 

Figure 1.2 Representatives among various CYP electron transfer systems 

(A) Class I; Three-protein systems, P450, ferredoxin and ferredoxin reductase are 

soluble in bacterial cytoplasm (B) Class II; Two-protein systems, cytochrome P450 

reductase and P450 are membraned bound in eukaryote ER (C) Class VIII; One-

protein systems, fusion protein of P450 and P450 reductase domain are soluble 
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Figure 1.3 Crystal structure of CYP102A1 BM3 from Bacillus megaterium 

[PDB:1BVY] 
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Figure 1.4 Schematic representation of the CYP-fold.  

All α-helices are visualized as blue tubes, β-sheets as grey arrows and the SRS 

regions of CYPs are marked as yellow circles. (Adapted from Sirim et al. BMC 

Structural Biology 2010, 10:34) (Sirim, Widmann et al. 2010) 
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contribute to the general architecture and flexibility of the binding pocket, it is 

clear that some SRS positions will be more significant for the determination of 

selectivity and specificity than other (Li and Poulos 1997, Li and Poulos 1999).  

 

1.2.4 Artificial self-sufficient CYP 

CYP102A1 BM3 is a natural self-sufficient CYP in a single 119 kDa 

polypeptide chain containing CYP and reductase domain. BM3 catalyzes oxidation 

of arachidonic acid with kcat of >280 s-1, which is dramatically faster than any CYP 

enzyme (Noble, Miles et al. 1999), therefore, numerous attempts have been 

designed to construct an artificial self-sufficient CYP (Dodhia, Fantuzzi et al. 2006, 

Choi, Jung et al. 2012). In addition, a flexible linker (Gly-Gly-Ser)n has been used 

to enhance the stability between the two fused domains (Scheps, Honda Malca et al. 

2013).  

  Another natural self-sufficient CYPs, CYP116B family containing FAD and 

2Fe-2S cluster, were recently discovered, which correspond with Class I bacterial 

CYP electron transfer system (De Mot and Parret 2002). Reductase domain of 

CYP116B2 RhF from Rhodococcus sp.was also suitable for the generation of 

efficient artificial self-sufficient CYP (Nodate, Kubota et al. 2006, Robin, Kohler et 

al. 2011). The artificial construct CYP153A13-RhF reductase successfully 

produced 1-octanol from octanol (Bordeaux, de Girval et al. 2014). Variation in 

linker length improved electron transfer efficiency between CYP153A33 and 

reductase domain of CYP116B3 PFOR from Rhodococcus ruber, although poor 

solubility of fusion protein remained for further optimization (Hoffmann, 

Weissenborn et al. 2016). 
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Several efforts have been reported on fusion of heterologous expressed CYP and 

redox proteins. Fusion construction of CYP51 and Fe-S cluster-containing 

reductase succeeded with sterol demethylation activity (Choi, Park et al. 2010). 

CYP176A1 from Citrobacter braakii, P450cin catalyzing cineole oxidation, was 

fused to its native flavodoxin (CinA) using peptides of different lengths to improve 

electron transfer efficiency (Belsare, Ruff et al. 2014).  

 

1.2.5 CYP engineering by direct evolution and semi-rational design 

Various CYPs have been subjected to protein engineering to improve their 

specific activities, regio-selectivities and stabilities by directed evolution, rationally 

designed mutations based on computation methods, and hybrid combination of 

these approaches (Girvan and Munro 2016). CYP102A1 BM3, for instance, has 

been engineered for various substrate such as drugs, alkanes, terpenes, and 

polycyclic aromatic hydrocarbon (PAH) (Peters, Meinhold et al. 2003, Whitehouse, 

Bell et al. 2012, Roiban and Reetz 2015). CYP153A7, another example, has been 

also evolved to catalyze hydroxylation of butanol or alicyclic compounds with high 

regio- and stereo-selectivity (Yang, Chi et al. 2015, Yang and Li 2015). 

Cytochrome P450 has also been engineered to improve hydroxylation activity 

toward fatty acid. CYP102A1 L181K and L75T/L181K mutant showed 13-, 15-

fold improvement of catalytic activity toward C4 and C6, respectively (Ost, Miles et 

al. 2000). CYP102A2 P15S mutant showed 10-fold enhancement of specific 

activity toward C12 (Axarli, Prigipaki et al. 2005). G307 on CYP153A33 was 

selected as key amino acid for substrate binding, based on sequence alignment with 

CYP101A1 (Honda Malca, Scheps et al. 2012). CYP153A33 G307A/S233G and 
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G307A/S120R/P165N/S453N mutant developed for higher activity toward C12 and 

oleic acid, respectively (Duan, Ba et al. 2016, Notonier, Gricman et al. 2016). 

Among the methods for generation of mutant library, semi-rational engineering, 

combination of directed evolution and rational design, merges mechanistic and 

structural information, as well as computational prediction to select promising 

target sites, dramatically reduced library size with higher possibility (Lutz 2010, 

Porter, Rusli et al. 2016, Zorn, Oroz-Guinea et al. 2016). For instance, semi-

rational engineering of CYP102A1 allowed equal improvement for propane 

hydroxylation compared to 10-12 rounds of directed evolution using random and 

site-saturation mutagenesis (Chen, Snow et al. 2012). Computation tools for 

rational designs have been developed based on sequence alignment (Gricman, 

Vogel et al. 2014, Gricman, Vogel et al. 2015), substrate entrance tunnel (Liskova, 

Bednar et al. 2015), substrate docking simulation (Chen, Snow et al. 2012), and 

calculation of mutability using combination of both sequence and structural 

information (Pavelka, Chovancova et al. 2009, Bendl, Stourac et al. 2016). 

 

1.2.6 Fatty acid ω-hydroxylase 

Among the various fatty acid hydroxylases (Kim and Oh 2013), only CYP can 

do ω-hydroxylation of fatty acid regioselectively. For instance, CYP4 in 

mammalian (Hardwick 2008) and CYP86, CYP94 and CYP96 in plant were well 

characterized as fatty acid ω-hydroxylase (Benveniste, Tijet et al. 1998, Tijet, 

Helvig et al. 1998, Benveniste, Saito et al. 2006), but their low turnover rates and 

poor expression levels in E.coli are the limitations for application in industry level.  

In addition, alkane induced CYPs in CYP52 family also showed similar terminal 
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hydroxylation activity toward fatty acids as well as alkanes, producing ω-HFAs and 

α,ω-diols, respectively (Zimmer, Ohkuma et al. 1996, Scheller, Zimmer et al. 1998). 

A biosynthetic process converting methyl tetradecanoate (200 g/L) to 14-hydroxy 

tetradecanoic acid (174 g/L) and 1,14-tetradecanedioic acid (6.1 g/L) in 148 h of 

fermentation was demonstrated in engineered Candida tropicalis (Table 1.1) (Lu, 

Ness et al. 2010). Although such ω-HFA production was mainly attempted using 

yeast as industrial host system, it is still desirable to use E.coli as a host in the case 

of single hydroxylation reaction since E.coli is more competent host microbial 

system than yeast due to its rapid growth, well-known physiology, and easy genetic 

manipulation (Steen, Kang et al. 2010). However, to accomplish such development 

of E.coli system, eukaryotic P450s are inappropriate because those are membrane-

anchored enzymes localized at the endo-plasmatic reticulum (ER) of the cell, thus 

additional engineering of the membrane anchored region of P450s is required for 

functional expression in E.coli (Gillam, Baba et al. 1993). 

Recently, bacterial CYPs in the CYP153A family such as CYP153A16 from 

Mycobacterium marinum, CYP153A33 from Marinobacter aquaeolei and 

CYP153A34 from Polaromonas sp. were characterized as fatty acid ω-hydroxylase 

that acts on saturated and unsaturated fatty acids(Honda Malca, Scheps et al. 2012). 

Using CYP153A33 in recombinant E.coli system, high ω-regioselective 

bioconversion of 1.2 g/L of 12-hydroxy dodecanoic acid from 10.0 g/L (50 mM) of 

dodecanoic acid and 4.0 g/L of 12-hydroxy dodecanoic acid methyl ester from 

dodecanoic acid methyl ester was achieved by overexpression of AlkL, the fatty 

acid ester transport (Scheps, Honda Malca et al. 2013), and bioconversion of 2.4 

g/L of 16-hydroxy palmitic acid from 2.6 g/L (10 mM) of palmitic acid was also 



 １５  

reported by deletion of fatty acid ω-oxidation degradation pathway (i.e. DfadD) and 

overexpression of a fatty acid transporter FadL (Bae, Park et al. 2014). Despite 

such  

Table 1.1 Summarization of production of ω-hydroxy fatty acid using CYPs 

host CYP 
Redox 
protein

(s) 
Product 

Titer  
(g/L) 

Produc
tivity 

(g/L/h) 
ref 

Candida 
tropicalis  

CYP52 CaCPR 

14-
hydroxy 
tetradeca
noic acid 

174 1.17  
(Lu, 

Ness et 
al. 2010) 

E.coli 
CYP153

A33 
fused 
BMR 

12-
hydroxy 
dedecano

ic acid 

4 0.14 

(Scheps, 
Honda 

Malca et 
al. 2013) 

E.coli 
CYP153

A33 
CamA/
CamB 

16-
hydroxy 
hexadeca
noic acid 

2.4 0.07 
(Bae, 

Park et 
al. 2014) 
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successful ω-HFA production in E.coli, still there are rooms for enhancing both 

yield and productivity of long chain (C12-C18) ω-HFAs by screening higher 

catalytically active CYPs among numerous CYP sequences and incorporating an 

appropriate electron transfer system into CYPs. 

 

1.3 Research objectives 

In this study, first, CYP153A13 and CYP153A35 were newly cloned from 

Alcanivorax borkumensis SK2 and Gordonia alkanivorans, respectively, and ω-

hydroxylation activities toward saturated fatty acids were compared with 

CYP153A33 from Marinobacter aquaeolei VT8 previously reported (Honda Malca, 

Scheps et al. 2012). CYP153A35 exhibited the highest whole-cell activity toward 

palmitic acid among the CYP153As with putidaredoxin reductase (CamA) and 

putidaredoxin (CamB). Then, to find out efficient electron transfer system for 

CYP153A35, firstly, class I P450 system with CamAB requiring NADH, and class 

VIII self-sufficient system requiring NADPH, i.e., a CYP153A35 gene fused to 

reductase domain of CYP102A1 (BMR) from Bacillus megaterium were compared. 

Secondly, further improvement in terms of initial productivity of ω-hydroxy 

palmitic acid was obtained by gene rearrangement and changing promoter strengths 

to optimize the relative expression levels of CYP153A35 and CamAB in whole-

cell. This result highlights a disagreement of evaluations of electron transfer system 

whole-cell and in vitro and suggests careful consideration for data analysis in two 

systems. 

Second, engineering of CYP153A35-BMR was performed to obtain high- 

performance mutants of ω-hydroxylation activity toward palmitic acid. To select 
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target amino acids, two computational tools, Modeller 9.11 and CAVER 3.0, were 

used to identify the amino acid residues involved in recognition and binding of 

fatty acids, i.e. substrate recognition sites (SRSs), and hence determine fatty acid 

specificity. Then, using colorimetric HTS method base on O-demethylation activity 

of P450, mutants were screened and investigated the effects toward palmitic acid. 

This result highlights altering fatty acid chain length specificity and improvement 

catalytic activity in ω-hydroxylation reaction. 

Finally, linker sequences between CYP153A33 and reductase domain of 

CYP102A1 were optimized using repeated flexible or rigid sequence randomly. 

Using developed HTS method, the best mutants were selected and examined 

compare to native BM3 linker.  
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2.1 Bacterial strains and chemical materials 

Saturated fatty acids, ω-hydroxy palmitic acid, purpald and N,O-

bis(trimethylsily)trifluoroacetamide (BSTFA) for the derivatization for GC/MS 

analysis were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). 

All other chemicals were were purchased from Sigma-Aldrich, and Junsei 

Chemical Co. Ltd. (Tokyo, Japan). 

Restriction enzymes, T4 DNA ligase, DNA polymerase, and other DNA 

modifying enzymes were purchased from Thermo Fermentas (Waltham, MA, 

USA), New England Biolabs (Ipswich, MA, USA), Takara (Shiga, Japan), Solgent 

(Korea), and Promega (Madison, WI, USA), and used as recommended by the 

manufacturers.  

Escherichia coli DH5α, BL21 (DE3), BW25113 (DE3) were used as hosts for 

cloning and expression of CYPs. For the culture of cells above, Difco Luria-

Bertani (LB) (1% tryptone, 0.5% yeast extract, 1% sodium chloride) and Difco 

Terrific broth (TB) (1.2% pancreatic digest of casein, 2.4% yeast extract, 0.94% 

dipotassium phosphate, 0.22% monopotassium phosphate, and 0.4% glycerol) were 

used (Becton, Dickinson and company, USA).  

 

2.2 Construction of CYP and redox protein plasmids 

All plasmids and PCR primers of CYPs and redox proteins are listed in Table 

2.1 and Table 2.2. Alcanivorax borkumensis SK2 and Gordonia alkanivorans 

DSM44369 were obtained from the Korea Collection for Type Cultures (KCTC, 

Daejeon, South Korea). CYP153A13 (GI:CAL15649.1) from Alcanivorax 

borkumensis SK2 and CYP153A35 (GI:GAA11433.1) from Gordonia 
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alkanivorans DSM44369 were amplified by PCR with oligonucleotides. After 

restriction digestion and T4 DNAase ligation, the plasmid was used to transform 

competent E.coli DH5α cells. Successful cloning was verified by DNA sequencing. 

Construction method of a self-sufficient fusion protein (pCYP153A35-BMR) with 

CYP153A35 and reductase domain of CYP102A1 was carried out following 

previously described procedures (Scheps, Honda Malca et al. 2013). pCW ori+ 

vector was kindly provided by the laboratory of Donghak Kim at Konkuk Univ. 

pCW-CYP153A35 and pCW-CamA were constructed by NdeI and BglII. pCamB-

CYP153A35, pCamB-CamA, pCamB-CYP153A35-CamA and pCamB-CamA-

CYP153A35 encoding cyp153A35 and camAB as an operon were constructed by 

compatible cohesive ends produced by SpeI and XbaI. We previously cloned 

CYP153A33 from Marinobacter aquaeolei and fadL from E. coli into pCDFmT7 

and camA and camB from Pseudomonas putida were cloned into pET28a and 

pETDuet-1  

 

2.3 Saturation mutagenesis for construction of CYP libraries  

Saturation mutagenesis was performed to search a single mutation among the 

selected amino acid residues in substrate binding site of CYP153A35. To generate 

mutant library, PCR was carried out using the vector pET28a(+) harboring the 

CYP153A35 fused CYP102A1 (pCYP153A35-BMR) as a template and the 

designed primers shown in Table 2.3. Thermal cycling program consisted of the 

following reaction conditions: 95 °C for 10 min, 25 cycles [95 °C for 30 s, 50 °C 

for 30 s, 72 °C for 5 min], and 72 °C for 5min. The PCR products were purified 
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after DpnI treatment and transformed into E. coli DH5α. The plasmids harvested 

from the E. coli DH5α cells were transformed into E. coli BL21 (DE3). 



 ２２  

Table 2.1 plasmids of CYP and redox protein 1 

Plasmids  Description 

pET28a pBR322 ori lacI T7 promoter, KmR 

pET24ma P15A ori lacI T7 promoter, KmR 

pETduet-1 pBR322 ori lacI T7 promoter, AmpR 

pCDFmT7 
Modified pCDFDuet-1 to harbor only one T7 promoter, CDF 

ori, StrR 

pCWori+ pBR322 ori lacI tac promoter, AmpR 

pCYP153A33 pET24ma encoding for cyp153A33 

pCYP153A13 pET24ma encoding for cyp153A13 

pCYP153A35 pET24ma encoding for cyp153A35 

pCamA pET28a encoding for camA 

pCamB pET28a encoding for camB 

pCamAB pETDuet-1 encoding for camA and camB 

pFadL pCDFmT7 encoding for fadL 

pCYP153A35-BMR pET28a encoding for cyp153A35 fused cyp102A1 reductase 

pCW-CYP153A35 pCWori+ encoding for cyp153A35 

pCW-camA pCWori+ encoding for camA 

pCamB-CYP153A35 pET24ma encoding for camB-cyp153A35 operon 

pCamB-CamA pET24ma encoding for camB-camA operon 

pCamB-CYP153A35-CamA pET24ma encoding for camB-cyp153A35-camA operon 

pCamB-CamA-CYP153A35 pET24ma encoding for camB -camA-cyp153A35 operon 
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Table 2.2 PCR primers used in the construction of CYP and redox prote1 

Name Sequence (5’ to 3’) Details 

153A13-F ATAT CATATG TCAACGAGTTCAAGTACAA 

Cloning into 

pET24ma vector 

using NdeI and XhoI 

restriction enzymes 

153A13-R ATAT CTCGAG TTTTTTTGCCGTCAATTTAACCATCA 

153A35-F ATAT CATATG CAGATCCTCGACCGCGTCGT 

153A35-R ATAT CTCGAG TCATGACCGTGTCTTCGGCGTGA 

A35fusion-F ATAA CCATGG GCATGCAGATCCTCGACCG 
Cloning into pET28a 

vector using NcoI 

and XhoI restriction 

enzymes and PCR 

fused by assembly 

PCR 

A35fusion-R 
AGCAGACTGTTCAGTGCTAGGTGAAGGAATTGACCGTGTCTTCGG

CGTG 

BMRfusion-F ATTCCTTCACCTAGCACTGAAC 

BMR-R ATAT CTCGAG CCCAGCCCACACGTCTTTTG 

CYP153A35-

bglII-R 
ATAT AGATCT TCATGACCGTGTCTTCGGCGTGA 

Cloning into pCW 

ori+ vector using 

NdeI and BglII 

restriction enzymes 

CamA-F ATAT CATATG AACGCAAACGACAACGTGG 

CamA-R ATAT AGATCT TCAGGCACTACTCAGTTCAGCTTTGG 

CamB-F ATAT CATATG TCTAAAGTAGTGTATGTGT 

Operon constructed 

by compatible 

cohesive ends by 

restriction enzyme 

using SpeI and XbaI 

speI-CamB-R ATAT GAATTC ACTAGT TTACCATTGCCTATCGGGAACATCGA 

rbs-A35-F CCC TCTAGA AATAATTTTGTTTAACTT 

speI-A35-R ATAT GAATTC ACTAGT TCATGACCGTGTCTTCGGCGTGA 

rbs-CamA-F CCC TCTAGA AATAATTTTGTTTAACTT 

speI-CamA-R ATAT GAGCTC ACTAGT TCAGGCACTACTCAGTTCAGCTTTGG 
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Table 2.3 Primer sequences used for site-directed mutagenesis 1 

Amino acid Sequence (5’ to 3’) 

I123 
F AACCCTTCATCGTGNNKGGCACTCCC 

R GGGAGTGCCMNNCACGATGAAGGGTT 

P128 
F GGCACTCCCCCANNKGGCCTCAGCGTCGA 

R TCGACGTCGAGGCCMNNTGGGGGAGTGCC 

L130 
F CACCGGGCNNKAGCGTCGAGATG 

R CATCTCGACGCTMNNGCCCGGTG 

D131 
F GGCCTCNNKGTCGAGATGTTCATC 

R ACATCTCGACMNNGAGGCCCG 

V132 
F GCCTCGACNNKGAGATGTTCATC 

R GATGAACATCTCMNNGTCGAGGC 

M134 
F TCGACGTCGAGNNKTTCATCGCGATG 

R CATCGCGATGAAMNNCTCGACGTCGA 

I136 
F GTCGAGATGTTCNNKGCGATGGACC 

R GGTCCATCGCMNNGAACATCTCGAC 

A219 
F TGGTCCGATCTCNNKTCCGGCAG 

R CTGCCGGAMNNGAGATCGGACCA 

Y236 
F GAGGTGNNKGCGGCAGCCCTG 

R CTGCCGCMNNCACCTCGTCGG 

A239 
F TACGCGGCANNKCTGGAGATGACC 

R CATCTCCAGMNNTGCCGCGTACAC 

L240 
F GCAGCCNNKGAGATGACCCGTG 

R GGTCATCTCMNNGGCTGCCGC 

 
F GAGATGNNKCGTGCCTTCAGCG 

R GGCACGMNNCATCTCCAGGGC 
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T292 
F GCAACCTGNNKCTGCTGATCGTCG 

R ATCAGCAGMNNCAGGTTGCCGAT 

L293 
F GC AAC CTG ACG DYK CTG ATC GTC G 

R CGACGATCAGMRHCGTCAGGTTGC 

V296 
F GCTGCTGATCNNKGGCGGAAACG 

R CGTTTCCGCCMNNGATCAGCAGC 

T301 
F GGAAACGACNNKACGCGCAACTC 

R GAGTTGCGCGTMNNGTCGTTTCC 

L344 
F AGACCCCGNNKGCGTACATGCGA 

R TCGCATGTACGCMNNCGGGGTCT 

M347 
F CTCGCGTACNNKCGACGGGTC 

R GACCCGTCGMNNGTACGCGAG 

F445 
F TGCAGTCCAACNNKGTCCGTGGTTAC 

R GTAACCACGGACMNNGTTGGACTGCA 
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2.4 Screening of mutants based colorimetric HTS assay 

According to the theoretical calculations, a total of 172 mutant clones are 

required for each amino acid residue to have 95 % coverage of all 20 possible 

amino acids (Nov 2012). Therefore, 180 clones for each site were taken and 

inoculated into two 96-deep well plates, where each well contained 200 μL of LB 

medium supplemented with 50 μg/mL of kanamycin. The deep-well plate was 

shaken at 500 rpm and 37 °C for 12 h. Each culture (30 μL) was transferred to a 

fresh deep-well plate containing 450 μL of TB medium supplemented with 50 

μL/mL of kanamycin. After incubating the plate for 1 h at 37 °C, protein expression 

was induced by adding 0.01 mM IPTG, 0.5 mM ALA and 0.1 mM FeSO4 at 30 °C 

for 16 h. The cells were harvested by centrifugation at 3500 rpm for 15 min. The 

cell pellets were thoroughly resuspended with 200 μL of 100 mM potassium 

phosphate buffer (pH 7.5) and disrupted by sonication. The lysates were 

centrifuged, and 30 μL of the supernatants were transferred to a new 96-well 

microplates containing 70 μL of substrate solution (100 mM phosphate buffer 

(pH7.5), 0.2 mM 16-methoxy palmitic acid, 0.4 mM NADP+, 4 mM glucose, 0.1 

U/mL of glucose dehydrogenase. After incubating for 20 min at 37 °C, Purpald 

(168 mM in 2 M NaOH) was added. After 15 min at room temperate, the 

absorbance of each well was measured at 550 nm. 

 

2.5 Analysis by gas chromatography 

Reactions were stopped by adding 0.2 mL CHCl3 and the products were 

extracted with vigorous vortexing for 1 min. After centrifugation, the organic phase 

was transferred to an Eppendorf tube, and samples converted to their trimethylsilyl 
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derivatives by incubation at 50 °C for 20 min with an excess of BSTFA. 

Qualitative analysis was performed by a Trace GC Ultra system (Thermo Scientific, 

Waltham, MA, USA), coupled to an ion trap mass detector ITQ 1100 (GC/MS). 

The GC injector (250 °C) was operated in a pulsed splitless mode, one microliter of 

the sample was injected and analyzed using a nonpolar capillary column (5 % 

phenyl methyl siloxane capillary 30 m × 0.25 mm i.d. × 0.25 μm film thickness, 

TR-5MS), and the GC oven started at 50 °C for 1 min, and was then increased by 

15 °C/min to 250 °C, holding at this temperature for 10 min. Samples were 

transferred through a heated transfer line (275 °C) to an ion source (230 °C) in 

mass detector. Mass spectra were obtained by electron impact ionization at 70 eV.  

Quantitative analysis was performed by an HP 6890 Series (Agilent 

Technologies, Santa Clara, CA, USA) with flame ionization detector (GC/FID). 

Two microliters of the sample was injected by split mode (split ratio 20:1) and 

analyzed using a nonpolar capillary column (5 % phenyl methyl siloxane capillary 

30 m × 0.32 mm i.d. × 0.25 μm film thickness, HP-5). The GC oven temperature 

program was the same as that of the GC/MS. Each peak was identified by 

comparison of the GC chromatogram with that of an authentic reference. Errors in 

the analysis were corrected for by using heptadecanoic acid as the internal standard. 

 

2.6 Quantification of intracellular cofactors using LC-MS 

To quantify intracellular redox cofactors such as NAD(H) and NADP(H), E.coli 

BW25113 was incubated at 30 °C for 16 h. After harvest cells, quenching was done 

by mixing with methanol pre-chilled at -48 °C, and centrifuge for 10 min at 13000 

rpm. The pellets were dissolved using 3 mL of MeOH, frozen in liquid nitrogen, 
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and allowed to thaw on ice three times. Extracted metabolite samples were 

analyzed using UPLC/triple quadrupole mass spectrometry (QQQ-MS) (Thermo 

Scientific, Waltham, MA, USA). The analysis was carried out following described 

procedures (Sung, Jung et al. 2015). 

 

2.7 Homology modeling and docking simulations 

The structure of CYP153A35 was obtained by homology modeling using 

Modeller 9.11 (Sali and Blundell 1993). CYP153A7 (PDB ID: 3RWL from 

Sphingopyxis macrogoltabida) used as a template has 53 % protein sequence 

identity with CYP153A35. The substrate entrance channels were investigated using 

CAVER 3.0 (Chovancova, Pavelka et al. 2012). Coordinates of Fe atom in heme 

were fixed as starting points. AutoDock Vina 1.1.2 (Trott and Olson 2010) and 

MGLTools 1.5.6 were used for docking simulation. Grid spacing, exhaustiveness 

and energy range were set as default, which were 20Å, 8, 5, respectively. Among 

the 20 docking poses generated from docking simulations, the one with the 

minimum docking energy value was selected. Docking results were evaluated via 

binding energy score and distance between terminal carbon of palmitic acid and Fe 

on heme. 
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ω-Hydroxylation using bacterial P450s (CYP153As) 



 ３０  

3.1 Sequence alignment analysis of target CYP153As 

CYP153A family was known to catalyze ω-hydroxylation reaction toward 

saturated and unsaturated fatty acids (Honda Malca, Scheps et al. 2012). To 

explore ω-hydroxylase activity of CYP153As toward fatty acids, two CYP153A 

sequences were selected by a BLAST search of GeneBank protein database using 

CYP153A33 protein sequence as a template, which showed the highest activity 

toward palmitic acid among the reported fatty acid ω-hydroxylases. From the 

search, the most promising two enzyme candidates were selected. One was 

CYP153A16 from A. borkumensis, which was well known as alkane ω-

hydroxylase (van Beilen, Funhoff et al. 2006) with 80 % sequence identity. 

Another was putative CYP153A from G. alkanivorans, which showed 68% 

sequence identity with CYP153A33. Later, CYP153A from G. alkanivorans was 

classified as CYP153A35 (Nelson 1998). 

Amino acid sequence analysis revealed a high sequence similarity and two 

distinct characteristics (Figure 3.1). First, the residues at the entrance of the 

substrate access channel are diverse, which may differentiate their substrate 

specificity and binding affinity according to alkyl chain length, methyl and 

carboxylic acid moiety. Second, CYP153 family contains a conserved sequence of 

NXXLLIVGGNDTT in the central I-helix implying that these residues might be 

responsible for high ω-regioselectivity of CYP153A. 

 

3.2 Cloning of cyp153As and codon optimization of cyp153A13 

Firstly, genetic sequence information of cyp153A13 and cyp153A35 was 

obtained from NCBI database (Figure 3.2). Two cyp153As were newly cloned to 
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pET24ma expression vector. CYP153A35 was well expressed functionally in 

E.coli BL21 

 

Figure 3.1 Sequence alignment of select regions of CYP153A family members. 

(A) Identification of critical residues of substrate access channel in CYP153A 

(B) Conserved amino acid sequences in the central I-helix 
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whereas CYP153A13 was poor expressed. To improve the expression level of 

CYP153A13, the cyp153A13 gene was newly synthesized for codon optimization 

(Bioneer, Korea). The sequence of synthesized gene sub-cloned into T-vector was 

confirmed by sequencing (Figure 3,3). 

 

3.3 Substrate specificity of three CYP153As in vitro 

The hydroxylation activities of the three CYP153As for C12:0–C16:0 fatty acids 

were measured in vitro using CamAB as electron transfer partners. The specific 

activity of each enzyme system is shown in Figure 3.4. CYP153A35 showed the 

similar substrate specificity with CYP153A33 (Honda Malca, Scheps et al. 2012) 

such that the specific activity for myristic acid was the highest. It was seven times 

and 2.7 times higher than those for lauric acid and palmitic acid, respectively. In 

contrast, CYP153A13 had a broad substrate specificity towards C12:0–C16:0. 

Especially, the specific activity of CYP153A13 toward palmitic acid was two times 

higher than those of CYP153A33 and CYP153A35. 

In terms of the regioselectivity, both CYP153A13 and CYP153A35 had high ω-

regioselectivity similar to CYP153A33. (>92% of the total product, Table 3.1, 

Figure 3.5, 3.6) 

 

3.4 Determination of kinetic parameters of CYP153As 

Additional experiments confirmed that CYP153A13 was more active toward 

palmitic acid than CYP153A33 and CYP153A35 (Table 3.2). The turnover number 

(kcat) of CYP153A13 was 3.5 times and two times higher than that of CYP153A33 

and CYP153A35, respectively. On the other hand, the Michaelis constant (KM) of 
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>gi|193248874|dbj|AB426724.1| Gordonia alkanivorans goaBAC 

gene for cytochrome P450, complete cds  

ATGCAGATCCTCGACCGCGTCGTTGAGACGGTGCAGGCGAACATCCCGCTGGACCGTCAGG

TTCAGGGCCTCCAGCTCTTCCACAAGACGCGTGCTCGCCTGCTCGGCGAGTCGCGGCCGGA

AACCTATGTGGAGCAGCCTATCCCGCCGGTCAACGAAGTCGGTCTGGACGAGATCGACATG

AGCAACCCGTTCATGTACCGGCAGGGGCAGTGGGTTCCCTACTTCGCTCGCCTCCGCGCCG

AGGCGCCGGTCCACTATCAGCCGGAAAGCCGGTTCGGCCCGTTCTGGTCGATCACCCGCTA

CGACGACATCATGACAGTCGACAAGGACCACGAGACCTTCTCGGCCGAACCCTTCATCGTG

ATCGGCACTCCCCCACCGGGCCTCGACGTCGAGATGTTCATCGCGATGGACCCGCCGCGGC

ATGACGAGCAGCGTCGCGCCGTTCAGGGCGTCGTCGCCCCGAAGAATCTCAAGGAGATGGA

AGGGCTGATCCGGGAACGCGTGTGCGAGGTTCTCGACAACCTTCCCGTCGGCGAACCGTTC

AATTGGGTCGATCGCGTTTCGGTCGAGATCACCGCCCGGACCCTGGCGACCATCCTCGACT

TCCCGTACGAGCAGCGGCGCAGTCTCGTCCGCTGGTCCGATCTCGCGTCCGGCAGCGAAGA

GGCCACCGGCGGCGCCAGCGATCCCGACGAGGTGTACGCGGCAGCCCTGGAGATGACCCGT

GCCTTCAGCGCGCTGTGGCACGACAAGGCCGCACGACGCGCCGCCGGCGAGGCACCGGGAT

TCGACCTCATCAGCATGCTGCAGTCCGATCCGAAGACCGCCGACCTAGTGAAGCGTCCGAT

GGAGTTCATCGGCAACCTGACGCTGCTGATCGTCGGCGGAAACGACACCACGCGCAACTCG

ATGTCGGGCGGTGTCTACGCACTGAACAAGTTCCCCGCCGAGTTCGAGAAGCTCAAGGCTG

ATCCGAGCCTGATCCCGAACATGGTGTCGGAGATCATCCGCTGGCAGACCCCGCTCGCGTA

CATGCGACGGGTCGCGAAGAAGGATGCGATTCTCAACGGCCAATTCATCCGCAAGGGCGAC

AAGCTGGTGATGTGGTACGCCTCGGGCAACCGGGACGAGACCAAGTTCGACAGCCCCGACG

AACTCATCATCGACCGGCCGAACGCCCGCAACCACATGGCATTCGGTTTCGGTGTGCACCG

GTGCATGGGCAACCGTCTCGCCGAACTGCAGCTGCGCATCCTCTGGGAAGAACTGCTGCAG

CGCTTCGATGACATCAAGGTCATCGAGGAACCCGAGTACGTGCAGTCCAACTTCGTCCGTG

GTTACAGCAAGCTGATGGTCGAACTCACGCCGAAGACACGGTCATGA 

Figure 3.2 Genetic sequence information of cyp153A35 
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ATGTCAACGAGTTCAAGTACAAGTAATGACATTCAGGCAAAAATAATAAACGCCACATCTA

AAGTCGTCCCAATGCATCTGCAGATCAAAGCATTAAAAAACCTGATGAAGGTGAAACGGAA

GACAATTGGCACTTCCCGCCCACAGGTGCATTTTGTTGAAACCGACTTGCCTGACGTGAAT

GATTTGGCGATAGAAGATATCGATACGAGCAACCCTTTTTTATACCGACAAGGTAAAGCGA

ATGCCTACTTTAAGCGGTTGCGTGATGAAGCGCCGGTCCACTATCAGAAAAATTCTGCTTT

TGGGCCGTTCTGGTCGGTTACAAGGTACGAAGATATTGTCTTCGTAGACAAGAGCCATGAT

CTATTTTCAGCCGAGCCCCAAATTATTCTCGGTGACCCTCCGGAAGGCCTGTCTGTTGAAA

TGTTCATCGCTATGGATCCGCCCAAGCACGACGTACAGCGTCGGGCAGTCCAGGGTGTTGT

TGCGCCTAAAAATCTGAAAGAAATGGAGGGACTGATCCGCAAAAGAACCGGGGACGTACTG

GACAGCCTGCCGTTGGACACTCCGTTTAACTGGGTGCCTGTGGTGTCAAAAGAACTGACCG

GGCGGATGCTTGCTTCACTGTTAGATTTCCCGTATGACGAACGCGAAAAACTGGTTGGTTG

GAGTGATCGACTCTCCGGCGCGTCCTCGGCAACCGGCGGCGAGTTTACTAATGAAGATGTA

TTTTTTGATGACGCTGCAGATATGGCCTGGGCTTTCTCCAAACTTTGGCGTGATAAAGAGG

CCCGTCAAAAAGCAGGTGAAGAGCCGGGCTTCGATCTTATCTCTATGCTTCAGAGTAATGA

AGACACAAAAGATCTGATTAATCGTCCTTTAGAATTCATTGGTAATCTCGCGTTACTGATT

GTTGGAGGTAATGATACTACGCGTAACTCAATGAGCGGGGGAGTGCTGGCTCTCAATCAGT

TCCCCGAGCAGTTTGAGAAGCTAAAAGCGAACCCAAAGCTGATCCCCAATATGGTCTCTGA

AATCACTCGCTGGCAAACCCCGCTTGCATATATGCGCCGTGTTGCCAAGCAGGATGTGGAG

CTGAATGGACAGACCATCAAGAAGGGTGATCGCGTACTGATGTGGTATGCGAGCGGCAACC

AGGATGAGAGAAAATTCGAGAATCCAGAGCAATTTATTATAGATCGCAAAGATACGCGTAA

CCATGTGAGCTTTGGTTATGGAGTTCACAGATGTATGGGCAACCGCCTTGCCGAACTGCAG

CTGCGTATTCTGTGGGAAGAGCTTTTGCCACGCTTTGAAAACATAGAAGTAATTGGTGAAC

CGGAGAGAGTGCAATCGAATTTTGTAAGGGGGTATTCCAAAATGATGGTTAAATTGACGGC

AAAAAAATAA 

Figure 3.3 Genetic sequence information of codon optimized cyp153A13 
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Figure 3.4 Specific activity of CYP153As for fatty oxidation reaction using 

purified enzyme.  

Reaction mixture contained 2 μM P450, 10 μM CamA, 20 μM CamB, 0.5 mM 

substrate, 2 % DMSO, 0.5 mM NADH with cofactor regeneration. 
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Table 3.1 Product distributions in oxidation reactions catalyzed by CYP153As 

 
C12:0 C14:0 C16:0 

Enzyme 
(ω-1)-

OH 
ω-OH 

(ω-1)-

OH 
ω-OH 

(ω-1)-

OH 
ω-OH 

CYP153A13 - 100 7.2 92.8 2.9 97.1 

CYP153A33 - 100 4.0 96.0 - 100 

CYP153A35 - 100 - 100 - 100 
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Figure 3.5 GC/MS total ion current (TIC) of CYP153A-catalyzed reactions 

with palmitic acid. 

CYP153A13 (red line), CYP153A33 (black line), and CYP153A35 (blue line). 

Abbreviations: C16:0, palmitic acid; (ω-1)-OH, 15-hydroxy palmitic acid; ω-OH, 

16-hydroxy palmitic acid; * impurity 
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Figure 3.6 Mass spectra of TMS derivatives of (hydroxylated) palmitic acid. 

The common fragment ion m/z =73 occurs upon the loss of one TMS ester group. 

The fragment ion m/z =149, typical of polysylated compounds, involves the loss of 

a methyl radical from one silyl group and its interaction with another TMS ester 

group. Characteristic peaks of each derivatives are indicated in the corresponding 

mass spectrum. 
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CYP153A13 was 1.5 times higher than that of CYP153A33 and similar to that of 

CYP153A35. In terms of catalytic efficiency, the specificity constant, kcat/KM, of 

CYP153A13 was the highest among the three CYP153As.  

 

3.5 Substrate specificities of CYP153As in whole-cell reaction 

To apply CYP153A for large scales industrial process, using isolated enzyme 

has disadvantages for maintaining enzyme stability and supply of expensive 

nicotinamide cofactors (Woodley 2006). Therefore, the activities of three 

CYP153As were re-evaluated with individual whole-cell reaction co-expressing 

CamAB as redox partners. pCYP153A13, pCYP153A33 and pCYP153A35 were 

all transformed with pCamAB into E.coli DL (∆fadD, pFadL), generating A13-

AB1, A33-AB1 and A35-AB1 strains, respectively. To minimize the changes in 

enzyme concentration by cell growth and to maintain NADH cofactor regeneration, 

a resting cell reaction in the presence of glucose (1 % w/v) and fatty acid (1 mM of 

each C12:0–C16:0 fatty acid) in phosphate buffer solution (pH 7.5) was used for fatty 

acid hydroxylation. To compare the initial reaction rate, the reaction media were 

sampled every two hours for several points in time. 

Interestingly, the activities of CYP153As using whole-cell were completely 

different from those using purified enzymes (Figure 3.7). The resting cell assay 

revealed that the specific ω-hydroxylation activities of CYP153A35 and 

CYP153A33 for palmitic acid in in vitro reaction were almost the same. A35-AB1 

strain resulted 193 μM/h and 176 μM/h productivities toward C14:0 and C16:0, which 

were 2.5 times and 1.6 times higher than those of A33-AB1 strain (78 μM/h for 

C14:0 and 109 μM/h for C16:0).
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Table 3.2 Kinetic constants of CYP153A13, CYP153A33 and CYP153A35 

towards palmitic acid.  

 

* 1 μM CYP153A, 5 μM CamA and 10 μM CamB were used for measurement.

Enzyme KM (mM) kcat (min-1) kcat/KM (min-1mM-1) 

CYP153A13 0.35 ±0.05 16.35 ±3.15 46.71 ±3.0 

CYP153A33 0.24 ±0.03 4.63 ±1.22 19.3 ±1.1 

CYP153A35 0.39 ±0.05 7.12 ±3.02 17.9 ±2.8 
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On the other hand, the productivity of A35-AB1 strain with C12:0 was twice lower 

than that of A33-AB1 strain. Therefore, A33-AB1 strain was the best for the 

production of 12-hydroxy lauric acid, whereas A35-AB1strain resulted the highest 

yield for the production of 14-hydroxy myristic acid and 16-hydroxy palmitic acid. 

Second, A13-AB1 strain showed only 70 μM/h, 55 μM/h, 60 μM/h productivities 

of the corresponding ω-hydroxylated products of C12:0, C14:0 and C16:0, respectively. 

It was somewhat unexpected result because CYP153A13 in in vitro reaction 

showed the highest specific activity toward lauric acid and palmitic acid. To figure 

out the differences between the whole-cell activities and specific activities of 

CYP153As in in vitro reaction, the quantification of active P450 enzyme 

concentration was carefully carried out by CO-binding and SDS-PAGE gel 

analysis (Table 3.3, Figure 3.8) (Omura and Sato 1964), after the cell suspensions 

were concentrated to final OD600 of 20. The functional expression level of 

CYP153A35 was the highest among the three CYP153As, hence supporting the 

results of the highest whole-cell activity toward palmitic acid. Whereas 

CYP153A13 showed the lowest functional expression level, suggesting that protein 

solubility and functional protein expression level are key determinants to achieve 

high yield of ω-hydroxylation of fatty acids. In results, CYP153A13 was unsuitable 

for the production of ω-hydroxy palmitic acid for whole-cell reaction system even 

though it showed good specific activity, and further yield improvement 

experiments using whole-cell system was proceeded with CYP153A35. 
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Figure 3.7 Whole cell reaction of CYP153As for fatty oxidation reaction 

Whole cell reaction of CYP153A13, CYP153A33 and CYP153A35 was performed 

with 1 mM each fatty acid. The ODs at 600 nm of the cell suspensions were 20. 
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Table 3.3 Concentration of CYP153As based on CO binding assay 

Strain A13-AB1 A33-AB1 A35-AB1 

[P450] 

(nmol/gDCW) a 
11.0 49.8 90.0 

 

a Values were obtained by triplicate experiments with standard deviations within 

≤10% 
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(A)  

 

(B)  

 

Figure 3.8 Expression of CYP153As in E.coli BL21 

(A) Detection of P450 expression using SDS-PAGE (M, mid-range marker; T, 

total; S, soluble) 

(B) CO-binding spectra of CYP153A13, CYP153A33, and CYP153A35. Solid 

line, CYP153A13; dotted line, CYP153A33; dashed line, CYP153A35. 
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Chapter 4. 

Comparison and optimization of CYP electron 

transfer system 
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4.1 Hydroxylation activity of CYP153A35 with different redox systems 

 

4.1.1 Electron transfer efficiency of CamAB and self-sufficient system 

Among various electron transfer systems for CYP reactions, class I 

(CYP153A35 and CamAB) and class VIII (CYP153A35-BMR fusion) were 

selected for CYP153A35. In CYP153A35 and CamAB system, electron transfer 

occurs following the sequence of NADH → FAD (CamA) → 2Fe-2S (CamB) → 

Heme (P450), whereas in CYP153A35-BMR fusion system, where cyp153A35 

was fused to the reductase domain of cyp102A1 without using any additional linker, 

initial electron donor would be NADPH and follows NADPH → FAD (BMR) → 

FMN (BMR) → Heme (P450). The fusion protein was functionally expressed 

(Figure 4.1) and purified to examine the activity toward palmitic acid. The product 

formation rate of CYP153A35-BMR in in vitro reaction was five times higher than 

that of CYP153A35+CamAB for palmitic acid, whereas a NAD(P)H consumption 

rate is rather similar (Table 4.1), indicating that coupling efficiency for electron 

transfer of CYP153A35-BMR is four times higher than that of 

CYP153A35+CamAB. 

 

4.1.2 Comparison of yield of CamAB and self-sufficient system 

A35-BMR strain was also constructed by transforming pCYP153A35-BMR 

into E.coli DL (∆fadD, ::pFadL) and whole-cell reactions were compared. The 

final product yield of A35-AB1 and A35-BMR at 1 mM palmitic acid for 6 h 

reaction time were 98 % and 65 %, respectively (Figure 4.2), indicating that the 

class VIII self-sufficient system is no longer better than class I system in whole-
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cell reaction, which is rather surprising and contradictory to our current 

understanding. To our 
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(A) 

 

(B) 

 

 

Figure 4.1 UV-visible absorbance spectra of purified CYP153A35-BMR  

(A) Dotted line, oxidized form; dashed line, reduced form with dithionite; solid line, 

CO-difference spectra 

(B) CO-binding spectra of CYP153A35-BMR 
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Table 4.1 NAD(P)H consumption, product formation, and coupling efficiency 

of CYP153A35 by different electron transfer system toward fatty acida  

 

a Values were obtained by triplicate experiment with standard deviations within 

≤10 % 

b Product was ω-hydroxy fatty acid 

c not determined 

Substrate 

CamA/CamB fused CYP102A1 reductase 

NADH 

consumption 

rate 

(uM/min) 

Product 

formation 

rate b 

(uM/min) 

Coupling 

efficiency 

(%) 

NADPH 

consumption 

rate 

(uM/min) 

Product 

formation 

rate 

(uM/min) 

Coupling 

efficiency 

(%) 

C12:0 13.9 nd c - d 23 nd b - c 

C14:0 22 1.1 5.0 31.3 8.5 27.1 

C16:0 21.1 1.3 6.0 27.8 6.6 23.7 
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d no calculation 
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surprise, the evaluation of functional CYP153A35 concentrations between the 

two systems based on CO binding assay showed almost the same amount of 

P450s (Table 4.2). This is one of the rare cases of showing such that 

CYP+CamAB system is better than its own self-sufficient CYP system in whole-

cell reaction. 

To explain this results, the concentrations of NAD(H) and NADP(H) in E.coli 

BW25113(DE3) were measured (Table 4.3). According to our analysis, total 

amount of NADH is about twice higher than NADPH in E.coli BW25113, 

suggesting that the concentration of electron donor in CamAB system would be 

twice higher than that in self-sufficient system in whole-cell. 

 

4.2 Optimization for CYP153A35 and CamAB 

 

4.2.1 Specific activity depends on ratio of CYP153A35 and CamAB in vitro 

Rate-limiting step in P450 reaction is often the transfer of the second electron to 

an oxy-P450-substrate complex, thus the oxidation rate of P450 was seriously 

affected by the relative ratios of P450 to redox partners (Girhard, Klaus et al. 2010). 

To enhance the oxidation rates of CYP153A35, optimization of the expression 

ratios of the redox partners was investigated through varying concentrations of 

each redox protein in in vitro reaction system. As somewhat expected, it was 

observed that the relative concentrations of CamAB versus CYP153A35 showed a 

significant effect on the activity of CYP153A35 toward palmitic acid (Table 4.4). 

For example, the increase in CamA concentration from 1:1:10 (P450:CamA:CamB) 

up to a ratio of 1:5:10 resulted an almost two times improved product yield of ω-
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hydroxylation from 7.5% up to 15.7 % at 0.2 mM palmitic acid, respectively, 

whereas the increase in 
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Figure 4.2 Resting cell reaction for the production of 16-hydroxy fatty acid 

using A35-AB1 and A35-BMR strains  

Reaction was performed with 1 mM palmitic acid. The OD at 600 nm of the cell 

suspensions were 20. 
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Table 4.2 Concentration of CYP153A35 and CYP153A35-BMR based on CO 

binding assay 

Strain A13-AB1 A35-BMR 

[P450] (nmol/gDCW) a 90.0 84.4 

 

a Values were obtained by triplicate experiments with standard deviations within 

≤10 % 
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Table 4.3 Quantification of NAD(H) and NADP(H) in E.coli BW25113(DE3) 

 

NAD+ NADH NADP+ NADPH 

Conc. 

(μmol/gDCW) a 
9.38 0.56 1.0 0.3 

 

a Values were obtained by triplicate experiments with standard deviations within 

≤10 % 
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CamB concentration ratio from 1:2:5 to 1:2:20 resulted much higher folds 

increased product yield of ω-hydroxylation from 3.7 % up to 30.7 %, respectively, 

suggesting that CamB concentration is a bottleneck for the in vitro activity 

reconstitution of CYP153A35. Finally, the product yield of ω-hydroxylation 

increased up to 66.2 % at 0.2 mM palmitic acid when the ratio of 

CYP153A35:CamA:CamB was optimized to 1:5:20. 

 

4.2.2 Controlling of protein expression of CYP153A35 with CamAB 

In order to maintain the same ratio of the three proteins in E.coli cell system with 

that obtained from in vitro system, several gene arrangements and promoter 

strength change were investigated and their effects on the production of ω-hydroxy 

palmitic acid were evaluated. To achieve this, several expression vectors were 

constructed. Since CamB concentration should be much higher than CamA and 

CYP153A35, camB was located in upfront position after T7 promoter, and camA 

and cyp153A35 were sequentially situated.  Furthermore, relatively weak tac 

promoter was used for achieving lower expression level of CamA and CYP153A35. 

Four expression systems, A35-AB2 (∆fadD, pFadL, pCamB-CYP153A35-CamA), 

A35-AB3 (∆fadD, pFadL, pCamB-CamA-CYP153A35), A35-AB4 (∆fadD, pFadL, 

pCamB-CYP153A35, pCW-CamA) and A35-AB5 (∆fadD, pFadL, pCamB-CamA, 

pCW-CYP153A35) were constructed and compared using A35-AB1 (∆fadD, 

pFadL, pCYP153A35, pCamAB) as a control (Figure 4.3). 
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Table 4.4 Production of ω-hydroxy palmitic acid by CYP153A35 and CamAB 

system with varying ratios of redox partner proteins 

P450:CamA:CamB [μM] Product yield (%)a 

1:1:1 ndb 

1:1:5 nd 

1:1:10 7.5 

1:1:20 28.1 

1:2:5 3.7 

1:2:10 4.5 

1:2:20 10.7 

1:5:1 2.2 

1:5:5 7.0 

1:5:10 15.7 

1:5:20 66.2 

 

a Product yield was determined with 0.2 mM palmitic acid after 1 h. Values were 

obtained by triplicate experiment with standard deviations within ≤10 % 

b not determined
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Figure 4.3 Schematic representation of the plasmid systems used for 

modulating CYP153A35 and CamAB  

The gray dot upstream of the target genes represents Shine-Dalgarno sequences. 
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4.2.3 Comparison of productivity and yield of various constructs 

As shown in Figure 4.4, A35-AB2 resulted the highest product yield for ω-

hydroxy palmitic acid in batch flask reaction at 5 mM of palmitic acid, which is 66% 

improvement compared A35-AB1 with two vectors using each T7 promoter for the 

three genes. The cases of A35-AB2 and A35-AB3 showed that only gene 

arrangement can make a difference in 50 % product yield of ω-hydroxylation 

reaction. The quantification of CYP153A35 concentration was also carried out by 

CO-binding in each system (Table 4.5). To our surprise, despite the low product 

yield of A35-AB1 strain, the functional expression level of CYP153A35 was the 

highest in A35-AB1 strain. In addition, although the product yield of A35-AB1 

was only 20% higher than that of A35-AB5, the measured concentration of 

CYP153A35 in A35-AB1strain was ten times higher than that of CYP153A35 in 

A35-AB5, suggesting that excess CYPA35 expressed in A35-AB1strain does not 

function properly for the production of ω-hydroxy palmitic acid. The lack of 

correlation between the concentration of CYP153A35 and the production of ω-

hydroxy palmitic acid indicates that optimal ratio between CYP153A35 and 

CamAB to achieve high electron transfer efficiency is more important to obtain the 

maximal production of ω-hydroxy palmitic acid. 

 

4.2.4 Fed-batch reaction 

In order to evaluate such rankings of product yield and productivity are 

maintained in fed-batch reaction with glucose feeding and pH control at pH 7.5, 

A35-AB1 and A35-AB2 strain were compared using 20 mM (5.1 g/L) of palmitic 

acid initial substrate concentration for 30 h reaction time. Surprisingly again, their 
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rankings
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Figure 4.4 Reaction profiles of the different expression systems for 

CYP153A35 and CamAB 

Reactions were performed with 5 mM palmitic acid 

0

0.5

1

1.5

2

2.5

3

0 3 6 9 12 15

1
6
-h

y
d

ro
xy

 p
al

m
it

ic
 a

ci
d

(m
M

)

time (h)

A35-AB1

A35-AB2

A35-AB3

A35-AB4

A35-AB5



 ６２  

Table 4.5 Concentration of CYP153A35 based on CO binding assay 

Strain A35-AB1 A35-AB2 A35-AB3 A35-AB4 A35-AB5 

[P450] 

(nmol/gDCW) a 
90.0 55.1 16.5 44.0 9.2 

 

a Values were obtained by triplicate experiments with standard deviations within 

≤10 % 
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of final product yields in batch reaction were different in fed-batch reactions. A35-

AB1 strain resulted the highest product yield of 17.0 mM (4.6 g/L) of ω-hydroxy 

palmitic acid (Figure 4.6) and 154 mg/L/h of the productivity, which are 1.9 times 

increased product yield of 8.8 mM (2.4 g/L) and 2.3 times enhanced productivity 

(66 mg/L/h) compared to A33-AB1strain (Bae, Park et al. 2014). Whereas A35-

AB2 strain only produced 11.1 mM (3.0 g/L) of ω-hydroxy palmitic acid, although 

the initial productivity within 6 h was 1.2 times higher than that of A35-AB1 strain, 

suggesting that CYP expression level and stability become more important for long 

time fed-batch production of ω-hydroxy fatty acids. This result also indicated that 

comparison of mutants in batch type reaction does not always agree with the 

evaluation in fed-batch reaction in the case of CYPA35 reaction for higher product 

concentrations. This is one example of P450 reaction why it is very tricky to 

perform a correct evaluation of P450 reaction system. 
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Figure 4.5 Fed-batch reaction time profiles of the different expression systems 

for production of 16-hydroxy palmitic acid 

Reactions were performed with 10 mM palmitic acid. 0.4 % glucose was added 

every 6 h. 
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Figure 4.6 Fed-batch reaction time profiles of A35-AB1 and A35-AB2 for 

production of 16-hydroxy palmitic acid 

Reactions were performed with 20 mM palmitic acid using A35-AB1 and A35-

AB2 strains. 
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4.3 Optimization for CYP153A13 and CamAB 

 

4.3.1 Specific activity depends on ratio of CYP153A13 and CamAB in vitro 

Similar to CYP153A35 and CamAB system, the optimization of the expression 

ratios of the redox partners was investigated through varying concentrations of 

each redox protein in in vitro reaction system to enhance the oxidation rates of 

CYP153A13. As somewhat expected, it was observed that the relative 

concentrations of CamB showed a significant effect on the activity of CYP153A13 

toward palmitic acid (Table 4.4). Although the increase in CamA concentration did 

not affect ω-hydroxylation activity of CYP153A13, the increase in CamB 

concentration ratio from 1:1:1 to 1:1:10 resulted 5.1 times improvement of ω-

hydroxylation activity of CYP153A13, suggesting that CamB concentration is a 

bottleneck for the in vitro activity reconstitution of CYP153A13.  

 

4.3.2 Controlling of protein expression of CYP153A13 with CamAB 

In order to maintain the same ratio of the three proteins in E.coli cell system with 

that obtained from in vitro system, several gene arrangements and promoter 

strength change were investigated and their effects on the production of ω-hydroxy 

palmitic acid were evaluated. To achieve this, several expression vectors were 

constructed. Since CamB concentration should be much higher than CamA and 

CYP153A13, camB was located in upfront position after T7 promoter, and 

cyp153A13 and camA  were sequentially situated. Furthermore, relatively weak 

tac promoter was used for achieving lower expression level of CamA and 

CYP153A13. Three expression systems, A13-AB2 (∆fadD, pFadL, pCamB-
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CYP153A13-CamA), A13-AB3  

Table 4.6 Production of ω-hydroxy palmitic acid by CYP153A13 and CamAB 

system with varying ratios of redox partner proteins 

P450:CamA:CamB [μM] Relative activity (%)a 

1:1:1 100 

1:1:5 306 

1:1:10 514 

1:2:1 112 

1:2:5 380 

1:2:10 539 

1:5:5 331 

1:5:10 464 

1:5:20 595 

 

a Product yield was determined with 0.5 mM palmitic acid after 2 h.  
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(∆fadD, pFadL, pCamB-CYP153A13, pCW-CamA) and A35-AB4 (∆fadD, pFadL, 

pCamB-CamA, pCW-CYP153A13) were constructed and compared using A13-

AB1 (∆fadD, pFadL, pCYP153A13, pCamAB) as a control (Figure 4.7). 

 

4.3.3 Comparison of productivity and yield of various constructs 

As shown in Figure 4.8, A13-AB2 resulted the highest product yield for ω-

hydroxy palmitic acid in batch flask reaction at 1 mM palmitic acid, which is 50 % 

improvement compared A13-AB1 with two vectors using each T7 promoter for the 

three genes. The quantification of CYP153A13 concentration was also carried out 

by CO-binding in each system (Table 4.7). To our surprise, the solubility of 

CYP153A13 increased as cyp153A13 gene located after camB under T7 promoter, 

which might cause week expression of CYP153A13 (Figure 4.9). In addition, 

although the product yield of A13-AB1 was only 20% higher than that of A13-

AB4, the measured concentration of CYP153A13 in A13-AB1 strain was ten times 

higher than that of CYP153A13 in A13-AB5, suggesting that the functional 

expression of CYP153A13 caused the enhancement of production of ω-hydroxy 

palmitic acid. 

 

4.3.4 Fed-batch reaction 

In order to evaluate such rankings of product yield and productivity are 

maintained in fed-batch reaction with glucose feeding and pH control at pH 7.5, 

A13-AB1, A13-AB2 and A13-AB3 strain were compared using 10 mM (2.6 g/L) 

palmitic acid initial substrate concentration for 24 h reaction time. Surprisingly 

again, their rankings of final product yields in batch reaction were different in fed-
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batch reactions. A13-AB3 strain resulted the highest product yield of 4.8 mM (1.3 

g/L) ω-hydroxy palmitic
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Figure 4.7 Schematic representation of the plasmid systems used for 

modulating CYP153A13 and CamAB  

The gray dot upstream of the target genes represents Shine-Dalgarno sequences. 



 ７１  

 

Figure 4.8 Reaction profiles of the different expression systems for 

CYP153A13 and CamAB 

Reactions were performed with 1 mM palmitic acid 
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Table 4.7 Concentration of CYP153A13 based on CO binding assay 

Strain A13-AB1 A13-AB2 A13-AB3 A13-AB4 

[P450] 

(nmol/gDCW) 
11.0 20.6 35.8 13.4 
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Figure 4.9 SDS-PAGE of CYP153A13 and CamAB in various expression 

systems.  
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acid (Figure 4.10) and 54 mg/L/h of the productivity, which are 8.8 times increased 

product yield of 0.54 mM (0.15 g/L) and 9 times enhanced productivity (6.1 

mg/L/h) compared to A13-AB1strain. Whereas A13-AB2 strain produced 4 mM 

(1.1 g/L) ω-hydroxy palmitic acid. It was also proved that P450 expression level 

and stability become more important for long time fed-batch production of ω-

hydroxy fatty acids using CYP153A13. 
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Figure 4.10 Fed-batch reaction time profiles for production of 16-hydroxy 

palmitic acid  

Reactions were performed with 10 mM palmitic acid using A13-AB1, A13-AB2, 

and A13-AB3 strains. 
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  Chapter 5.  

Engineering CYP153A35 by site-directed 

/saturation mutagenesis 
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5.1 Selection of mutation sites of CYP153A35 for semi-rational design 

Enhancing catalytic activity and changing substrate specificity of cytochrome 

P450 are mainly achieved by mutations within its active site (Nickerson, 

HarfordCross et al. 1997, Meinhold, Peters et al. 2005, Yang and Li 2015). To 

explore such possibility, firstly, we constructed a homology model of CYP153A35 

by using CYP153A7 as the template which has a 56% protein sequence identity. 

Nextly, substrate access routes of CYP153A35 were predicted by CAVER3.0 

which approximates the channels involved in movements of its substrates and 

products from the inner active site to the protein surface (Petrek, Otyepka et al. 

2006, Cojocaru, Winn et al. 2007). We set the starting point as 3 Å above the iron 

of the heme in the CYP153A35 structure. The only one route passing through 

between the BC-loop and F/G helix was identified and it is also described as 

Substrate Recognition Sites (SRSs) as shown in Figure 5.1 (Gotoh 1992, Sirim, 

Widmann et al. 2010). All the residues which might be involved in the recognition 

and binding of palmitic acid shown in Figure 5.2 are located in SRSs: SRS1: Ile123, 

Pro128, Leu130, Asp131, Val132, Met134 and Ile136; SRS2: Ala219; SRS3: 

Tyr236, Ala239, Leu240, and Thr243; SRS4: Thr292, Leu293, Val296 and Thr301; 

SRS5: Leu344 and Met347; and SRS6: F445 (Table 5.1) 

 

5.2 Development of high-throughput screening assay 

Direct on-site screening P450 libraries by detecting the hydroxylated products in 

the reaction mixture is quite desirable and can dramatically reduce the time for 

mutation experiments. Among the several high-throughput screening (HTS)  
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Figure 5.1 A route for recognition and binding of fatty acid predicted using 

CAVER3.0 



 ７９  

 

 

Figure 5.2 Spatial overview of 19 selected amino acid residues for site-directed 

saturation mutagenesis  

Those are related with the substrate binding site of palmitic acid in CYP153A35 
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Table 5.1 List of 19 residues and those of location on SRSs of CYP153A35 

SRS residues location 

1 
I123, P128, L130, D131, V132, 

M134, I136 
BC-loop 

2 A219 C-terminal of αF 

3 Y236, A239, L240, T243 N-terminal of αG 

4 T292, L293, V296, T301 N-terminal of αI 

5 L344, M347 β3 

6 F445 β5 
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methods for P450 mutation (Schwaneberg, Otey et al. 2001, Celik, Speight et al. 

2005, Yang and Li 2015), detection of O-demethylation activity of P450 using a 

surrogate substrate is a well-known and very sensitive method (Meinhold, Peters et 

al. 2006, Choi, Yang et al. 2015, Yang, Chi et al. 2015). We have followed the 

same principle of detection of stoichiometrically released aldehyde from the 

surrogate substrate, i.e. 16-methoxy palmitate, as shown in Figure 5.3a and CYP 

reaction will generate 16-hydroxy palmitic acid and formaldehyde equivalently. 

The amount of formaldehyde produced can be detected by reacting with Purpald to 

give a purple product and following UV absorbance of at 550 nm using a 

microplate reader (Meinhold, Peters et al. 2006). This assay showed a linear 

relationship between 15 μM and 1 mM of formaldehyde (Figure 5.3b). 

 

5.3 Site direct saturation mutagenesis of CYP153A35-BMR 

Using CYP153A35 fused with CYP102A1 reductase domain as a template, we 

constructed 19 individual libraries generated by single-site saturation mutagenesis 

of all the amino acid residues in the substrate binding sites except Cys408 which 

provides a thiolate ligand to the heme iron. After screening of 3420 clones each 

180 clones for putative 19 mutation sites, two mutants substituted at Asp131 in 

SRS1 were found to exhibit improved activities while no mutants in other sites 

exhibited higher activity than those of wild-type (Figure 5.4a). Using saturated 

mutation library at Asp131 position, the correlation between the O-demethylation 

activity of 16-methoxy palmitic acid and the hydroxylation activity of palmitic acid 

was confirmed by the data generated by the colorimetric UV assay and GC analysis 

(Figure 5.4b), respectively, because using a surrogate screening always has a 
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danger 
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Figure 5.3 Scheme of high-throughput screening assay 

 (A)  Principle of the colorimetric HTS assay using 16-methoxy palmitic acid.  

The formaldehyde produced turns dark purple in the presence of Purpald. (B) 

Detection limits of the Purpald assay ranged from 15 μM to 1 mM 
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Figure 5.4 Representative example of 96-well plate after using high-

throughput colorimetric assay (A) The stronger purple color indicating higher 

concentration of the purple product. (B) The hydroxylation activity toward palmitic 

acid correlated with the O-demethylation activity toward 16-methoxy palmitic acid. 
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of identifying mutants that are more active on the surrogate substrate but not the 

target substrate. The result suggests that the surrogate substrate-based HTS assay is 

very reliable to substitute for real screening of terminal hydroxylation. 

 

5.4 Evaluation of hydroxylation activity of screened mutants in vitro 

Using DNA sequencing, we found that Asp131 of the wild type CYP153A35-

BMR was replaced with Ser or Phe, respectively, and the two mutants were 

purified for further characterization (Figure 5.5). Total turnover numbers (TTN) for 

terminal hydroxylation of the fatty acids of chain length C12:0 - C16:0 were measured 

in Table 5.2. In order to compare the changes in the substrate specificity of fatty 

acids D131F and D131S mutants were subjected to the hydroxylation reactions 

withC12:0 - C16:0 fatty acids. The degrees of enhancement for different chain length 

fatty acids were different. The TTN of D131S mutant for palmitic acid was 

increased by 16.5-fold, whereas those for lauric acid and myristic acid was 

increased by 2.2- and 7.6-fold, respectively, indicating that Asp131 in SRS1 exerts 

a critical effect on the binding of palmitic acid in its active site. 

To understand the mechanisms for the enhancement of hydroxylation activity of 

the mutants, the kinetic constants of the purified mutants were measured toward 

palmitic acid (Table 5.3). Compared to the wild type, D131S and D131F mutants 

showed 2.8-fold and 2.6- fold decreased KM values of palmitic acid, respectively, 

suggesting the improved palmitic acid binding affinity of the mutants. In addition, 

the turnover number (kcat) of D131S and D131F mutants increased remarkably by a 

factor of 6.7 and 4.7, respectively. In result, the overall catalytic efficiencies 

(kcat/KM) of D131S and D131F mutants increased by 17-folds and 13-folds 
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compared to that 
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Figure 5.5 SDS-PAGE of purified CYP153A35-BMR wild-type and mutants 

M, broad-range marker; 1, wild-type; 2, D131S mutant; 3, D131F mutants
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Table 5.2 Total turnover numbers of CYP153A35 wild-type and mutants for 

various fatty acids 

Enzyme C12:0 C14:0 C16:0 

 TTNa folds TTN folds TTN folds 

WT 
14.1 ±

8.8 
-b 

20.6 ±1

3.9 
- 10.3 ±6.1 - 

D131F 
28.8 ±

14.4 
2.0 

125.1 ±

22.8 
6.1 134.8 ±9.4 13.1 

D131S 
31.4 ±

18.5 
2.2 

156.9 ±

22.1 
7.6 

169.6 ±17.

4 
16.5 

 

a Total turnover numbers determined as μmol product/ μmol protein. The reactions 

were carried out with CYP (1 μM), an NADPH regeneration system (0.4 mM 

NADP+, 4 mM glucose, 0.1 U/mL of glucose dehydrogenase) and fatty acids (0.2 

mM) in 100 mM potassium phosphate buffer (pH 7.5) for 30 min at 37°C. 

b no calculation 
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Table 5.3 Kinetic constants of CYP153A35 wild-type and mutants towards 

palmitic acida  

Enzyme 
KM  

(mM) 

kcat  

(min-1) 

kcat/KM  

(min-1mM-1) 

WT 0.42 ±0.12 6.91 ±0.87 16.5 

D131F 0.15 ±0.08 32.53 ±5.23 214.1 

D131S 0.16 ±0.06 45.98 ±5.90 281.4 

 

a The substrate concentration ranged from 50 μM to 1 mM 
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of the wild-type. 

 

5.5 Evaluation of hydroxylation activity of screened mutants in whole-cell 

reaction  

Because in vitro evolution always correlate to in vivo production, the effects of 

the mutants were investigated in resting cell reaction. The D131S mutant resulted 

the best product yield with 0.5 mM of 16-hydroxy palmitic acid, which is the 55% 

improvement compared wild-type (0.32 mM of 16-hydroxy palmitic acid) (Figure 

5.6), despite 35% decrease of the expression level compared wild-type (Table 5.4). 

 

5.6 Docking simulation of fatty acids 

In silico docking simulation of fatty acid into the homology model of wild-type 

CYP153A35 and D131S mutant were performed using Autodock Vina to 

understand the reason for the changes in specific activities of different chain-length 

fatty acids. As shown in Figure 5.7, Asp131 is located in the substrate access 

channel, suggesting that the carboxylic moiety of Asp131 can have a potential 

hindering effect on both recognition and binding of fatty acid in the CYP153A35 

binding pocket. By replacing this negative charged amino acid residue with either 

Ser or Phe, the hydroxylation activity for the fatty acids was greatly increased 

(Table 5.2). In addition, Asp131 is very close to the carboxylic acid moiety of 

palmitic acid (2.9 Å, Figure 5.7c), compared to those of myristic acid (5.7 Å, 

Figure 5.7b) and those of lauric acid (11.4 Å, Figure 5.7a), thus the effect of 

Asp131 appears to be the strongest for palmitic acid and to be reduced as chain-

length of fatty acid becomes shorter. Similar report was published for BM3 mutant 
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such that R47E mutants lost its catalytic activity toward arachidonic acid, but still 

maintained some activities toward shorter chain fatty acids (Graham-Lorence, 

Truan et al. 1997, Oliver, Modi et al. 1997). 

On the other hand, the substitution of Ser for Asp showed that the hydroxyl 

moiety of Ser stabilized the binding of palmitic acid, which might situate the 

terminal carbon of palmitic acid closer to heme (Figure 5.8). In general, hydroxyl 

group-containing amino acid such as Tyr51 in BM3 can interact with the carboxyl 

group of fatty acid in the entrance of substrate channel and the residue is well 

conserved (Noble, Miles et al. 1999). In the case of D131F mutant, the phenyl 

moiety of Phe would make somewhat hydrophobic surface of the substrate channel 

in CYP153A35, enabling to become a fatty acid recognition and binding site 

(Ravichandran, Boddupalli et al. 1993, Girvan and Munro 2016).  
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Figure 5.6 Reaction profile of wild-type and mutants 

Resting cell reaction profiles for the production of 16-hydroxy fatty acid with 2 

mM of palmitic acid using CYP153A35-BMR wild type and mutants. The OD at 

600nm of the cell suspensions were 20. 
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Table 5.4 Concentration of CYP153A35-BMR wild-type and mutants based on 

CO binding assay 

Strain Wild-type D131F D131S 

[P450] (nmol/gDCW) a 67.3 62.3 43.4 

 

a Values were obtained by triplicate experiments with standard deviations within 

≤10% 
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Figure 5.7 Docking of fatty acid into the active sites of wild-type.  

(a) Lauric acid; (b) Myrisitic acid; (c) Palmitic acid. Distance between Asp131 and 

carboxylic moiety of fatty acids (in angstrom) are denoted by red dashed lines. 
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Figure 5.8 Docking of palmitic acid into the active sites of D131S mutant.  

Distance between Ser131 and carboxylic moiety of fatty acids (in angstrom) are 

denoted by red dashed lines. 
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Chapter 6. 

Linker design for artificial self-sufficient CYP 
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6.1 Design of random linker sequence libraries for artificial self-sufficient fatty 

acid ω-hydroxylase 

Natural self-sufficient CYPs are composed with N-terminal heme domain and C-

terminal reductase domain, and 20~30 amino acids act as linker to connect two 

domains (Figure 6.1a) (Munro, Girvan et al. 2007). Therefore, artificial self-

sufficient CYPs were generally constructed by fusion interest class I type P450 to 

reductase domain of self-sufficient CYP using genetic techniques (Nodate, Kubota 

et al. 2006, Choi, Jung et al. 2012, Scheps, Honda Malca et al. 2013, Zuo, Zhang et 

al. 2016). However, the impact of fusion protein was smaller than expected due to 

stability and coupling efficiency (Hoffmann, Weissenborn et al. 2016). To optimize 

the linker sequence between fatty acid ω-hydroxylase and reductase domain of 

P450 BM-3 (Figure 6.1b), repeated flexible or rigid sequence are designed 

randomly (Figure 6.2a). Gly-rich sequences (GGGGS) provide flexibility and α-

helix sequences contribute orientations of the fused domains direction and specific 

conformations to two domains (Arai, Ueda et al. 2001). EAAAK peptide sequence 

used for α-helix conformation. After cloning of linker fragment to CYP153A33-

BMR plasmid, 8 clones were selected randomly and plasmid prep were performed. 

After bglII digestion, DNA gel electrophoresis was carried out, and 73% cloning 

efficiency was confirmed (Figure 6.2b). To evaluation the quality of library, 10 

clones were selected, and DNA sequencing was performed (Table 6.1). The linker 

sequences were encoded (GGGGS)m(EAAAK)n (m, n = 1-12), hence the total 

number of variants was 4096. The number of transformants actually screened was 

calculated based on previously proposed algorithms (Reetz, Kahakeaw et al. 2008). 

To ensure a 0.95 probability of full coverage, the required library size was 12270.      
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Figure 6.1 Construction of artificial self-sufficient CYP  

(a) Composition of self-sufficient CYP (P450-linker-CPR) (b) fatty acid ω-

hydroxylase fusion protein 
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Figure 6.2 Strategy for construction of library using flexible or rigid (helix) 

linker sequence randomly 

(a) Strategy for construction of library using flexible or rigid (helix) linker 

sequence randomly (b) Quality control of linker library using restriction enzyme; 

After BglII digestion, samples run on a DNA gel electrophoresis with 0.7% agarose. 

Lane 2,3, 6-8, and 10-15 indicate successful cloning of linker sequence, whereas 

Lane 1,4,5, and 9 show negative control.  
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Table 6.1 Quality control of linker library using DNA sequencing 

 
Linker sequence 

No. of repetitive 

sequence 

1 ELEEAAAK GAS 1 

2 ELEGGGGS GAS 1 

3 ELEEAAAK EAAAK GAS 2 

4 ELEGGGGS EAAAK EAAAK EAAAK GAS 4 

5 ELEGGGGS EAAAK GGGGS EAAAK GGGGS GAS 5 

6 
ELEEAAAK EAAAK EAAAK EAAAK EAAAK 

EAAAK GAS 
6 

7 
ELEGGGGS EAAAK GGGGS EAAAK EAAAK 

EAAAK GGGGS GAS 
7 

8 
ELEGGGGS GGGGS EAAAK GGGGS GGGGS 

EAAAK EAAAK GAS 
7 

9 
ELEGGGGS GGGGS GGGGS EAAAK EAAAK 

EAAAK GGGGS GGGGS EAAAK GGGGS GAS 
10 

10 

ELEEAAAK GGGGS EAAAK EAAAK GGGGS 

EAAAK EAAAK EAAAK EAAAK EAAAK GGGGS 

GGGGS GAS 

12 
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6.2 Evaluation of mutants for production of ω-hydroxy palmitic acid 

After screening of 400 clones using HTS method (Section 2.4), five mutants 

were selected (Table 6.2 and 6.3). All mutants have EAAAK at the both ends of the 

linker as well as with high frequency, which suggest that α-helix forming 

sequences are more efficient for structural orientations of the fusion. The effects of 

the mutants were investigated in resting cell reaction with 1 mM of palmitic acid, 

following BM3 linker used as control. A33-BMR showed the highest conversion 

yield with 47.5 %, and H9 mutant was the best among the selected mutant with 

32.2 % of conversion yield (Table 6.4). The quantification of P450 concentration 

was carried out by CO-binding assay. Most mutants showed lower expression level 

than A33-BMR, in addition, poor solubility (Figure 6.3). To compare the activities 

of the enzyme in resting cells, thereby excluding the expression level, specific 

activities were calculated by normalizing the in vivo conversion yield to the P450 

concentration. The analysis revealed that the H11 mutants showed the highest 

specific activity, which 50% higher than BM3 native linker, and the specific 

activity of the H9 mutants was 20% higher than those of A33-BMR.  
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Table 6.2 DNA sequences of selected linker mutants 

mutants DNA sequences 

H9 
GAGCTCGAGGAAGCCGCAGCGAAAGAAGCCGCAGCGAA
AGGAGCTAGC 

H11 
GAGCTCGAGGAAGCCGCAGCGAAAGGTGGCGGTGGCAG
CGGTGGCGGTGGCAGCGGTGGCGGTGGCAGCGAAGCCGC
AGCGAAAGGAGCTAGC 

D3 

GAGCTCGAGGAAGCCGCAGCGAAAGAAGCCGCAGCGAA
AGAAGCCGCAGCGAAAGGTGGCGGTGGCAGCGAAGCCG
CAGCGAAAGGTGGCGGTGGCAGCGAAGCCGCAGCGAAA
GGAGCTAGC 

C10 

GAGCTCGAGGAAGCCGCAGCGAAAGAAGCCGCAGCGAA
AGGTGGCGGTGGCAGCGGTGGCGGTGGCAGCGGTGGCGG
TGGCAGCGAAGCCGCAGCGAAAGAAGCCGCAGCGAAAG
AAGCCGCAGCGAAAGAAGCCGCAGCGAAAGGAGCTAGC 

C12 

GAGCTCGAGGAAGCCGCAGCGAAAGGTGGCGGTGGCAG
CGAAGCCGCAGCGAAAGGTGGCGGTGGCAGCGAAGCCG
CAGCGAAAGAAGCCGCAGCGAAAGAAGCCGCAGCGAAA
GGTGGCGGTGGCAGCGAAGCCGCAGCGAAAGGTGGCGG
TGGCAGCGAAGCCGCAGCGAAAGGAGCTAG 

 

* red: rigid sequence, blue: flexible sequence, and gray: adaptor sequence 
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Table 6.3 Amino acid sequences of selected linker mutants 

mutants Amino acid sequences 

H9 ELEEAAAK EAAAKGAS 

H11 ELEEAAAK GGGGS GGGGS GGGGS EAAAKGAS 

D3 
ELEEAAAK EAAAK EAAAK GGGGS EAAAK GGGGS 
EAAAKGAS 

C10 
ELEEAAAK EAAAK GGGGS GGGGS GGGGS EAAAK 
EAAAK EAAAK EAAAKGAS 

C12 
ELEEAAAK GGGGS EAAAK GGGGS EAAAK EAAAK 
EAAAK GGGGS EAAAK GGGGS EAAAKGAS 

 

* red: rigid sequence, blue: flexible sequence, and gray: adaptor sequence 
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 Table 6.4 Yields of ω-hydroxy palmitic acid using linker mutants 

 

a The reactions were carried out with 1 mM of palmitic acid for 6 h. The OD at 

600nm of the cell suspensions were 20.  

b Concentration of P450 was measured by CO binding assay 

c Specific activity calculated as μmol product/μmol CYP in vivo. 

Strain 
ω-hydroxy 

palmitic acid 
(μM) a 

Conc. of P450 
(nmol/gDCW) b 

Specific 
activity  

(μmol/μmol) c 

Relative 
specific 

activity (%) 

A33-
BMR 475 22.8 83.3 100 

H9 322 12.8 100.6 120 

H11 275 8.8 125 150 

D3 152 8.8 69.1 83 

C10 82 4.8 68.3 82 

C12 62 4.0 62 74 
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Figure 6.3 SDS-PAGE of linker mutants and CYP153A33-BMR  
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Overall discussion and further suggestion 
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7.1 Overall discussion 

Since the first CYP153A1 was found in Acinetobacter calcoaceticus cultured on 

minimal medium with hexadecane as carbon source (Asperger, Naumann et al. 

1981), CYP153 enzymes have been well known to catalyze ω-hydroxylation 

toward aliphatic, alicyclic, and alkyl-substituted compounds with high regio- and 

stereo-selectivity (Funhoff, Salzmann et al. 2007). Recently, it was discovered that 

CYP153A16, CYP153A33 and CYP153A34 could catalyze ω-hydroxylation 

toward saturated and unsaturated fatty acids (Honda Malca, Scheps et al. 2012) as 

well as alkanes and alcohols (Scheps, Malca et al. 2011). In this study, we have 

confirmed that CYP153A13 previously characterized as alkane ω-hydroxylase 

(Funhoff, Salzmann et al. 2007) also showed a good fatty acid ω-hydroxylase 

activity with 16.4 ±3.15 min-1 of turnover number toward palmitic acid. Its 

specific activity was 3.5 times higher than that of CYP153A33 (4.6 ±1.22 min-1) 

which showed the highest fatty acid ω-hydroxylase activity in the previous reports 

(Table 3.1) (Honda Malca, Scheps et al. 2012). Although the ω-hydroxylation 

activity of CYP153A13 was superior, the productivity of ω-hydroxy palmitic acid 

using whole cell system was only 55% of that of CYP153A33 (Figure 3.5) caused 

by its low expression level: Compared to 50 nmol/gCDW of CYP153A33, the 

expression level of CYP153A13 was only 11 nmol/gCDW(Table 3.2). Similarly, the 

expression level of self-sufficient CYP153A13-Red was only 10% of that of 

CYP102A1 (i.e. BM3) in E.coli BL21 (DE3) which is well known for its high 

soluble expression (Bordeaux, de Girval et al. 2014), indicating that solublization 

and functional expression of CYP153A13 would be a critical to achieve high 

product yields and become a big challenge for application in industry. 
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Although the CYP153A35 from Gordonia alkanivorans was not yet 

characterized as ω-hydroxylase, Gordonia alkanivorans strain was identified as 

indigenous diesel-degrading strain (Young, Lin et al. 2005), and three alkanal 

monooxygenase genes related to hydrocarbon degradation were suggested by 

genome sequencing (Wang, Jin et al. 2014), suggesting that CYP153A35 is very 

likely to show ω-hydroxylation activity toward fatty acids. In this study, ω-

hydroxylation activity of CYP153A35 for palmitic acid and its highest productivity 

of ω-hydroxy palmitic acid were observed with high expression level in E.coli (90 

nmol/gCDW) (Figure 3.5, Table 3.2). 

Among the various electron transfer system for P450 (Hannemann, Bichet et al. 

2007),  CamAB system and BM3 diflavin reductase fusion system were applied to 

CYP153A35 for the production of ω-hydroxy palmitic acid. The two systems were 

often compared and evaluated for hydroxylation of isoflavonoids and fatty acids in 

vitro and in vivo (Choi, Jung et al. 2012, Scheps, Honda Malca et al. 2013, Choi, 

Jung et al. 2014, Sung, Jung et al. 2015). In general, the self-sufficient type CYP 

showed superior electron coupling transfer efficiency over CYP+CamAB system in 

the optimized condition in vitro, since the self-sufficient system has the 

characteristics of intra-molecular electron transfer system. However, in the case of 

in vivo, the situation becomes a little bit different depending upon CYPs, since the 

amount of functional CYP and ratios of the expressed redox partner proteins vary 

depending on the promoter strength, plasmid copy number, induction strategy and 

concentration of reducing power NAD(P)H. Although CYP153A35-BMR showed 

the electron transfer efficiency four times higher than CYP153A35+CamAB in 

vitro (Table 4.1), the result of the whole cell reactions showed that CYP153A35-
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BMR is no longer the better system for P450 reaction (Figure 4.2). There are two 

hypotheses to explain this result; 1) different cofactor dependency between 

CYP153A35+CamAB system and CYP153A35-BMR system resulting from the 

difference in the concentration of NADH and NADPH in the cells, and 2) 

significant reduction of the effective reaction (electron transfer in the case of P450 

reaction) volume for CamAB system and different functional CYP expression level. 

First, CamA is the NADH dependent reductase, whereas BM3 reductase has 

NADPH dependency. According to our analysis (Table 4.3), total amount of 

NADH is about twice higher than NADPH in E.coli BW25113, suggesting that the 

concentration of electron donor in CamAB system would be twice higher than that 

in self-sufficient system in vivo. 

Second, in vitro CYP activity is often compared in micro-centrifuge tubes with a 

volume of 100 μL reaction buffer, whereas the volumes of a E.coli cell and a CYP 

protein are is approximately 10-9 μL and 10-16 μL, assuming a cylinder and a round 

ball, respectively (Harpaz, Gerstein et al. 1994). Then, the effective reaction 

(electron transfer) volume for class VIII self-sufficient CYP is 10-16 μL and it does 

not change although the CYP reaction goes to in vivo cell reaction. However, in the 

case of class I CYP with CamAB, the concentrations of CYP as well as CamAB in 

the 100 μL reaction buffer increase dramatically when they go to in vivo cell 

system. Therefore, if the initial enzyme concentration is fixed as a constant, the 

effective reaction (electron transfer) volume is reduced by 1011 fold, enhancing the 

same degree of density of the enzyme, i.e. concentration. Although this is a very 

rough calculation of the fold changes in the effective electron transfer efficiency 

based on the reduction in effective reaction volume, CYP153A35+ CamAB system 
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has some genuine advantages (ca. 1011 fold) in effective volume effect over 

CYP153A35-BMR system when it goes to in vivo whole cell reaction (Figure 7.1). 

In result, although CYP153A35-BMR system appears to be a superior to 

CYP153A35+CamAB system in vitro, it may not be true anymore in in vivo cell 

system. 

For further enhancement of class I system, the oxidation rate of CYP was 

compared according to the relative ratios of CYP and redox partners, and usage of 

different redox partners in the previous reports (Bell, Dale et al. 2010, Girhard, 

Klaus et al. 2010, Yang, Bell et al. 2010). The results suggested that the amount or 

the type of ferredoxin protein is the most important factor for the CYP oxidation. 

Despite importance of ferredoxin, gene order of three proteins among P450 and 

CamAB in the expression system was not considered in detail (Bell, Harford-Cross 

et al. 2001, Kim, Cryle et al. 2007, Ringle, Khatri et al. 2013). In this study, it was 

confirmed that the concentration of ferredoxin protein, CamB, is significant for 

P450 oxidation in vitro, and the different product yields of five mutants (Figure 4.4) 

suggested that understanding the relationship between CYP153A35 and its redox 

partners in the whole cell system is a key to improve its specific activity and 

productivity. However, CYP expression level and stability become more important 

when it goes to long term production using fed-batch fermentation. Therefore, the 

optimization of three components for class I CYP reaction in vivo should be 

considered carefully for further improvement for CYP biotransformation. The 

results in this study emphasized that correct evaluation of P450 reaction system is 

really difficult, since many factors such as in vitro/in vivo reaction, the expression 

ratio of CYP to electron partners, induction strategy, functional expression and 
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protein stability are involved for the evaluation. 

 

 

Figure 7.1 Scheme for reduced volume effect on in whole-cell system 
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7.2 Further suggestion 

From the chapter 5, we figured out Asp131 cause instable binding of fatty acid, 

especially palmitic acid, due to closeness. Therefore, elimination of negative 

charged amino acid, such as aspartic acid, glutamic acid, in active site of fatty acid 

hydroxylase might improve the hydroxylation activity of enzyme. To verify this 

idea, the structure of CYP153A33, which is also fatty acid ω-hydroxylase, was 

predicted and cavies were scanned. In CYP153A33, there are three negative 

charged amino acid, Glu137, Glu142, and Glu242, were selected (Figure 7.2), and 

alanine scanning experiments were performed. Using whole cell system with 

CamAB as redox proteins, relative activities of CYP153A33 wild-type and mutants 

were evaluated (Table 7.2). As a results, E137A mutant showed slight improvement 

for both myricitic acid and palmitic acid, and E142A mutant showed only 

enhancement for palmitic acid. Later, three mutants were also evaluated for lauric 

acid hydroxylation, and E142A mutants showed twice higher yield using 2 mM 

lauric acid (data not shown), thus those mutants are need for further 

characterization in vitro. 



 １１４ 

Table 7.1 Summarization of production of ω-hydroxy fatty acid using CYPs 

host CYP 
Redox 

protein(s) 
Product 

Yield  
(g/L) 

Productivity 
(g/L/h) 

ref 

Candida 
tropicalis  

CYP52 CaCPR 
14-hydroxy 

tetradecanoic acid 
174 1.17  

(Lu, Ness 
et al. 2010) 

Candida 
tropicalis  

CYP52 CaCPR 
16-hydroxy 

hexadecanoic acid 
24 - 

(Lu, Ness 
et al. 2010) 

Candida 
tropicalis  

CYP52 CaCPR 
18-hydroxy 

octadecanoic acid 
12 - 

(Lu, Ness 
et al. 2010) 

E.coli CYP153A33 fused BMR 
12-hydroxy 

dedecanoic acid 
4 0.14 

(Scheps, 
Honda 

Malca et al. 
2013) 

E.coli CYP153A33 CamA/CamB 
16-hydroxy 

hexadecanoic acid 
2.4 0.07 

(Bae, Park 
et al. 2014) 

E.coli CYP153A35 CamA/CamB 
16-hydroxy 

hexadecanoic acid 
4.6 0.15 This study 
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Figure 7.2 Docking of palmitic acid into the active sites of CYP153A33 
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Table 7.2 Relative activity of CYP153A33 wild-type and mutants  1 

mutants 

Relative activity (%) 

C14 C16 

WT 100 100 

E137A 121 128 

E142A 93 140 

E242A 54 82 
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AI. Ortho-Hydroxylation of Mammalian Lignan Enterodiol by Cytochrome 

P450s from Actinomycetes sp. 

 

AI.1 Abstract 

An animal lignin, i.e. enterodiol (END), is known to be formed by conversion of 

secoisolariciresinol from flaxseed by intestinal bacteria. Thirteen bacteria strains 

were examined for their hydroxylation activity for END. Among them, 

Streptomyces avermitilis MA-4680 and Nocardia facinica IFM10152 showed the 

highest hydroxylation activity for END. Reaction products profiling using GC/MS 

revealed that four products mono-hydroxylated in aliphatic position (Al-OH-END) 

and three products mono-hydroxylated in aromatic ring (Ar-OH-END) were found 

in S. avermitilis MA-4680, whereas only two Ar-OH-ENDs were detected in the 

case of N. facinica IFM10152. From 15mg/L of END, 900ug/L of Al-OH-END and 

210ug/L of 4-hydroxy END (4-OH-END) were produced by S. avermitilis MA-

4680, and 300ug/L of 2-hydroxy END (2-OH-END) and 480ug/L of 4-OH-END 

were obtained by N. facinica IFM10152. To find out the P450s are responsible for 

the  substrate specificity to END, 33 P450s from S. avermitilis MA-4680 and 26 

P450s from N. facinica IFM10152 were cloned and compared with coexpression of  

putidaredoxin reductase(camA) and putidaredoxin(camB) from Pseudomonas 

putida as redox partners in E.coli. As a result, Nfa45180 showed the highest 

hydroxylation activity especially for ortho-hydroxylation in aromatic ring in vivo. 

The results of the docking simulation of END into the homology model of 

Nfa45180 explained the reason for regio-specificity of the hydroxylation. To our 

knowledge, this is the first report of regioselective hydroxylation of END using 
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microorganism P450s. 

AI.2 Introduction 

Lignan, one of phytoestogens, biosynthesized in human body from the plant 

lignans uptaken through our diet has drawn great attention due to their estrogenic, 

anticarcinogenic, antioxidant effects on our body (Thompson 1998, Murkies, 

Dalais et al. 2000, McCann, Thompson et al. 2010). Among such animal lignans, 

enterodiol (END) is known to be formed by conversion of secoisolariciresinol from 

flaxseed by intestinal bacteria. Flax-seed contains several plant lignans such as  

secoisolariciresinol ,matairesinol, isolariciresinol, and pinoresinol (Meagher, 

Beecher et al. 1999). Secoisolariciresinol and matairesinol are known to be 

digested by intestinal bacteria and finally converted into the mammalian lignans 

enterodiol (END) and enterolactone (ENL). Subsequently, the final metabolites of 

such lignans are excreted in the liver of rats and humans (Axelson and Setchell 

1981). Moreover, it has been reported that END gives rise to seven 

monohydroxylated metabolites upon incubation with microsomes from rat, pig, and 

human liver (Jacobs and Metzler 1999). Recently, hydroxylated compounds have 

attracted considerable scientific interests due to their health related qualities. 

Hydroxylated phytoestrogens such as asdaidzein or genistein have potent 

antioxidant properties that contribute to their cholesterol-lowering effects, 

cardiovascular protection, antitumor effects, and anticarcinogenic properties (Rufer 

and Kulling 2006). Regiospecific hydroxylation of aromatic compounds by 

chemical synthesis is difficult and involves diverse reaction steps. The conversion 

of aromatic hydrocarbons into hydroxylated aromatic hydrocarbons, i.e., inserting 

an oxygen atom into a carbon-hydrogen bond, in microorganism is one of the key 
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features of oxidative metabolism of many aromatic compounds. There have been 

few reports about lignin hydroxylation by human P450 in E.coli (Rufer and Kulling 

2006). In addition, microbial biotransformation of phytoestrogen has also been 

studied, aiming for regio- and stereoselective hydroxylation using cytochrome 

P450 from Actinomycetes sp. (Choi, Kim et al. 2009, Roh, Seo et al. 2009, Choi, 

Jung et al. 2012, Pandey, Lee et al. 2014) 

In this study, microorganisms participating in hydroxylations of END were 

screened among 13 Streptomyces sp., Bacillus sp., and Nocardia sp. as they are 

known to have several cytochrome P450 monoxygease enzymes (CYPs) which are 

involved in mono-hydroxylation both on aliphatic and aromatic molecules. And the 

hydroxylation products were discovered from the extracts from whole cell reaction 

of S. avermitilis MA-4680 and N. facinica IFM10152, and the structures of the 

products were identified by GC/MS. Finally, three CYPs from S. avermitilis MA-

4680 and four CYPs from N. facinica IFM10152 showed the activity for 

hydroxylation of END. Especially, CYP154 (Nfa45180) from N. facinica 

IFM10152 showed the highest activity for ortho-specific hydroxylation of END. 

 

AI.3 Material and Method 

 

Chemicals and biochemicals   

Enterodiol was purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, 

USA) and N,O-bis(trimethylsily)trifluoroacetamide for the derivatization for 

GC/MS analysis was obtained from Fluka (Buchs, Switzerland).  All other 

chemicals were of the highest grade. 
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Bacterial Strains and culture condition  

Streptomyces spp. including S. avermitilis MA-4680 were obtained from the 

Korea Collection for Type Cultures (KCTC, Daejeon, South Korea). Various kinds 

of Bacillus spp. were obtained from the Microbial Resources Center (SNU, South 

Korea). N. farcinica IFM10152 was provided by the Research Center for 

Pathogenic Fungi and Microbial Toxicoses, Chiba University, Japan . All microbes 

were cultured in an appropriate nutrient medium and under recommended culture 

conditions (Microbial Resources Center, SNU; Korea Collection for Type 

Cultures). Streptomyces spp. were cultured in 30℃ in R5- liquid broth. Various 

kinds of Bacillus spp. were cultured in 30 ℃ in Luria-Bertani(LB) medium.  N. 

farcinica IFM10152 was grown in 37℃ in BactoTM Brain Heart Infusion Broth 

from BD Bioscience, Sparks, Md, USA.  

 

Co-expression of cytochrome P450s and redox partners CamA/CamB in E.coli 

and cell distruption for UV absorbance CO-binding spectra 

The 33 P450 genes from S. avermitilis MA-4680 and 26 P450 genes from N. 

farcinica IFM10152 were cloned into expression vector pET28a(+) and protein 

soluble expression was confirmed with CO binding spectra.(Choi, Park et al. 2010). 

The expression vector, pETDuet-1 (Novagen) was used for the cloning of camA 

and camB(Roh, Seo et al. 2009). The plasmids of both P450 and redox partners 

were transformed together into E.coli BL21(DE3). The transformant was grown in 

Luria-Bertani(LB) medium containing 25 μg/ml of kanamycin and 25 μg/ml of 

ampicillin at 37℃ until the cell concentration reached to 0.6 of OD600nm, and 
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isopropyl-thio-β-D-galactopyranoside (IPTG) and δ-aminolevulinic acid which is 

heme precursor were added to a final concentration of 0.5 mM, followed by 

growing the cell at 30℃ for 12 hours. The recombinant cell were harvested and 

were resuspended in 5ml of sonication buffer composed of 10mM Tris–HCl (pH 

7.0), 2mM EDTA, 1mM PMSF, and 0.01% (v/v) 2-mercaptoethanol, and disrupted 

by sonication. The disrupted soluble fraction was collected by centrifugation. UV 

absorption spectra of CO-bound recombinant CYP proteins after sodiumdithionite 

reduction were measured by UV/vis spectrometry (SPECTRONIC, GENESYS, 

MILTON ROY, USA) by scanning wavelength from 400 to 500 nm. 

Concentrations of each protein were measured based on CO-difference spectra 

using an extinction coefficient of 91mM−1 cm−1 at 450nm. 

 

Reaction condition for END biotransformation with wild type S. avermitilis 

MA-4680, N. farcinica IFM10152 and E. coli BL21(DE3) co-expressing both 

P450 and redox proteins  

After grown, the cells were harvested, washed twice with PBS buffer(pH 7.2), 

and resuspended in 15 ml of 100 mM phosphate buffer(pH 7.5). END dissolved in 

10 mM MeOH was added into 20ml of the cell suspension to make a final 

concentration of 50 mM. The mixture was shaken in 200 rpm for oxygen supply at 

30℃ for 20 hours.  

 

Extraction of products after biotransformation  

After incubation of the cells with END, the reaction was stopped by adding the 

same volume of ethyl acetate (JUNSEI, Japan) and vortexed vigorously. The 
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mixtures were centrifuged at 13,000 rpm for 5 minutes, and the upper organic layer 

was evaporated by vacuum concentrator (BioTron, South Korea). Subsequently, the 

residual was dissolved in 50 ml of methanol (MERK, Germany) and ethyl acetate 

for anlaysis by HPLC and GC/MS, respectively.  

 

GC/MS analysis  

For GC/MS analysis, reaction products were converted to their trimethylsilyl 

(TMS) derivatives by incubating for 20 min at 70 °C with N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA). Analysis by GC/MS was performed 

using a TRACE GC ULTRA gas chromatograph, coupled to an ion trap mass 

detector ITQ1100. The TMS-derivatives were analyzed using a nonpolar capillary 

column (5% phenyl methyl siloxane capillary 30 m×250 μm i.d., 0.25 μm film 

thickness, TR-5ms) with a linear temperature gradient (100 °C 1 min, 30 °C/min to 

250 °C, hold for 10 min, 1 °C/min to 280 °C, and hold for 1 min). The injector port 

temperature was 230 °C. The temperature of the connecting parts was 275 °C and 

the electron energy for the EI mass spectra was 70 eV. Identification was 

performed by comparison of retention time and mass spectral data (recorded by full 

scan in the selected ion mode; m/z 50–1000) of the sample with that of authentic 

references.  

 

Computational methods 

Nfa45180 from N. facinica IFM10152 (accession number, 3109062) shows a 

sequence identity of 64.6% to CYP154A1 of S. coelicolor. The corresponding 

crystallographic structure [protein data bank (PDB) entry 1ODO] was chosen as 
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structural template. The alignment generated with ClustalW 1.83 (Thompson, 

Higgins et al. 1994) and SPEM (Zhou and Zhou 2005). A model were generated by 

Modeller 9.4 (Sali and Blundell 1993) with hetero-atom contain mode. The 

coordinates of END for docking were generated manually and energetically 

optimized using the MM + force field using Chem3D Ultra 8.00. AutoDock 

(version 3.00) was applied for docking of END into the homology model of 

Nfa45180 (Sali and Blundell 1993). 1000 docking runs were carried out, and the 

minimum energy value was -1.43kcal/mol. 

 

AI.4 Results and Discussion 

 

Whole cell reaction of END by S. avermitilis MA-4680 and N. farcinica 

IFM10152 

Recently completed genome sequences of a couple of Actinomycetes sp. strains 

revealed that more than a dozen of CYP monooxygenases are present in their 

genome. The CYP enzymes are known to be involved in various hydroxylation 

steps of primary and secondary metabolites (Roh, Seo et al. 2009). Based on this 

observation, Streptomyces sp., Bacillus sp., and Nocardia sp. were examined for 

their ability to convert END into their corresponding hydroxylated products (Table 

A1). Among the strains examined, two strains showed hydroxylation activities for 

END. The products of S. avermitilis MA-4680 and N. farcinica were separated by 

GC and their structures were identified by mass spectrometry. Various 

hydroxylation products were observed and they were divided into two major 

groups, hydroxylated ENDs at aliphatic moiety and aromatic moiety. From the 
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previous studies on the microsomal metabolism of END and ENL (Jacobs and 

Metzler, 1999) and on the urinary metabolites of lignans in humans (Jacobs et al., 

1999), the mass values of the monohydroxylated ENDs at the aromatic or aliphatic 

moiety were reported. Table A2 shows the major ions in the mass spectra of the 

TMS derivative of END and its monohydroxylated products. The GC separation 

showed different patterns of hydroxylated ENDs (Figure A1). Among the seven 

products from the reaction with S. avermitilis, four Al-OH-ENDs and three Ar-OH-

ENDs were observed (Figure A1a and Figure A2). The m/z values of three highest 

ions at GC peaks I, II, III and VI in Figure A1a were 395, 408 and 588 

corresponding to GC/MS fragment patterns of Al-OH-END. However, any 

reference compounds of Al-OH-END were not observed here. So the specific 

hydroxylation position was not identified. The m/z value of major ions of 

fragmented Ar-OH-END were equivalent to the m/z value of three highest ions at 

GC peaks IV, V and VII in Figure A1a as 268, 498 and 588. The position of the 

additional hydroxyl group was identified using GC chromatography of three 

synthetic reference compounds of the Ar-OH-END(Jacobs and Metzler, 1999). As 

a result, GC peak IV was 6-hydroxy-END (6-OH-END), that is, hydroxylation in 

para position, GC peak V was 2-OH-END, that is, hydroxylation in ortho position 

and GC peak VII was 4-OH-END, that is, hydroxylation in another ortho position 

(Figure A3). The mass fragmentation pattern was proposed in Figure A4. From the 

whole cell reaction by N. farcinica IFM10152, two hydroxylated products were 

analyzed, and those corresponded with ortho-hydroxylation END showing the 

identical retention time in Figure A1b and mass spectra compared to the results 

from S. avermitilis MA-4680. (data are not shown) From 15mg/L of END, 900ug/L 
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of Al-OH-END and 210ug/L of 4-OH-END were produced by S. avermitilis and 

300 ug/L of 2-OH-END and 480ug/L of 4-OH-END were biotransformated by N. 

facinica IFM10152. (Table A3) 
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Table A1. List of strains used in screening for hydroxylation activity toward 

enterodiol 

Strains 

Streptomyces avermitilis MA4680 

Streptomyces coelicolor A3(2) 

Streptomyces carbophilus 

Streptomyces venezuelae 

Streptomyces peucetius ATCC 27952 

Streptomyces lividans 

Streptomyces griseolus 

Nocardia farcinica IFM10152  

Bacillus subtilis subsp. subtilis 

Bacillus licheniformis ATCC14580 

Bacillus megaterium DSM319 

Bacillus cereus KCCM12145 

Bacillus amyloliquefaciens ATCC10987 
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Table A2. Three major ions in the mass spectra of the TMS derivatives of END 

and its monohydroxylated products.  

 m/z 

enterodiol (END) 500, 410, 180 

hydroxylated in aromatic ring 588, 498, 268 

hydroxylated in aliphatic position 588, 408, 395 
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Table A3. The yield of major three hydroxylated products by S. avermitilis 

MA-4680 and N. facinica IFM10152  

Strains 

Yield  (ug/L) 

Al-OH-END 2-OH-END 4-OH-END 

S.avermitilis MA-4680 900 90 210 

Nocardia facinica 

IFM10152 
n.d.a) 300 480 

 

a) not detected  
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Figure A1 GC/MS total ion current (TIC) of extract from whole cell reaction 

with END 

(A) Seven hydroxylation products from S. avermitlis MA-4680 were separated. (B) 

Two hydroxylation products from N. facinica IFM10152 were shown. 
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Figure A2 Mass spectra of hydroxylated END (TMS derivatives) 

The GC peak numbers refer to Figure A1. There were four Al-OH-ENDs and three 

Ar-OH-ENDs. The m/z value of three highest ions at GC peaks I, II, III and VI in 

Figure A1a were 395, 408 and 588 corresponding to GC/MS fragment pattern of 

Al-OH-ENDs. And, the m/z value of major ions of fragmented Ar-OH-ENDs were 

equal to the m/z value of three highest ions at GC peaks IV, V and VII in Figure 

A1a as 268, 498 and 588. 
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Figure A3 Structures of END and hydroxylation products  

The GC peak numbers refer to Figure A1 and Figure A2. 
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Figure A4 Proposed mass fragmentation scheme for Al-OH-ENDs and Ar-OH-

ENDs 
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Identification of P450 genes responsible for the END monohydroxylation 

reaction 

 

To identify P450s which are responsible for the END hydroxylation activity, the 

P450 library in E.coli was constructed. First, 33 P450s from S. avermitilis and 26 

P450s from N. facinica were cloned and expressed in E. coli. 59 P450s belong to 

29 CYP families, which have sequence identity above 40% compared to P450s in 

same families (Table A4). Using cell extract, CO binding spectra were measured to 

confirm the protein soluble expression. As a result, 14 P450s from S. avermitilis 

MA-4680 and 26 P450s from N. facinica IFM10152 showed UV absorption CO 

binding spectra, suggesting that those were expressed with functionality. For their 

electron transfer proteins, putidaredoxin reductase (CamA) and putidaredoxin 

(CamB) from P.putida were chosen and coexpressed. Finally, 40 recombinants 

were constructed and screened for END hydroxylation activity. As a results, three 

CYPs from S. avermitilis MA-4680 and four CYPs from N. facinica IFM10152 

showed the activity for hydroxylation of END (Table A5). Especially, one CYP 

encoded by nfa45180 showed the highest activity. This CYP enzyme belongs to 

CYP154 family which is well known for its activity toward aromatic compounds. 

(Choi, Park et al. 2010) By GC/MS analysis, the structure of product was revealed 

as 4-hydroxylation END due to the identical retention time and mass spectra 

compared to the results from N. facinica (Figure A5). 
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Table A4 List of CYPs cloned from Streptomyces avermitilis and Nocardia 

facinica 

strain P450 family P450 family P450 family 

S.avermitilis 

Sav109 CYP154A Sav412 CYP105D Sav413 CYP105P 

Sav575 CYP102D Sav584 CYP147B Sav838 CYP178A 

Sav941 CYP171A Sav1171 CYP107F Sav1308 CYP154D 

Sav1611 CYP105Q Sav1987 CYP107L Sav2061 CYP179A 

Sav2165 CYP180A Sav2377 CYP107Y Sav2385 CYP181A 

Sav2806 CYP182A Sav2894 CYP107W Sav2999 CYP183A 

Sav3031 CYP170A Sav3519 CYP107V Sav3536 CYP107U 

Sav3704 CYP154B Sav3881 CYP157A Sav3882 CYP154C 

Sav4539 CYP107P Sav5111 CYP184A Sav5841 CYP125A 

Sav6249 CYP107X Sav6706 CYP157C Sav7130 CYP158A 

Sav7186 CYP105R Sav7426 CYP102B Sav7469 CYP105D 

N. farcinica 

Nfa4950 CYP157A Nfa5180 CYP191A Nfa11380 CYP136B 

Nfa11960 CYP157A Nfa12130 CYP193A Nfa12160 CYP193A 

Nfa21340 CYP157A Nfa21760 CYP210A Nfa22290 CYP140A 

Nfa22920 CYP157A Nfa22930 CYP154B Nfa24320 CYP125A 

Nfa25810 CYP109A Nfa25870 CYP125A Nfa25890 CYP51A 

Nfa30590 CYP104A Nfa33510 CYP151A Nfa33880 CYP107E 

Nfa34990 CYP159A Nfa43600 CYP120A Nfa45170 CYP157A 

Nfa45180 CYP154A Nfa46410 CYP107A Nfa53100 CYP157A 

Nfa53110 CYP154H Nfa56380 CYP110D   
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Table A5 List of CYPs used in screening for hydroxylation activity toward 

enterodiol 

Strain P450 activity Strain P450 activity 

S.avermitilis 

Sav412 -a) 

     N. farcinica 

Nfa21340 - 

Sav413 +b) Nfa21760 - 

Sav838 - Nfa22290 - 

Sav1171 - Nfa22920 - 

Sav1987 - Nfa22930 - 

Sav2377 + Nfa24320 - 

Sav2894 + Nfa25810 - 

Sav3519 + Nfa25870 - 

Sav3882 - Nfa25890 - 

Sav4539 - Nfa30590 - 

Sav5111 - Nfa33510 - 

Sav6249 - Nfa33880 - 

Sav7186 - Nfa34990 - 

Sav7469 - Nfa43600 - 

     N. farcinica 

Nfa4950 - Nfa45170 - 

Nfa5180 ++c) Nfa45180 +++d) 

Nfa11380 - Nfa46410 - 

Nfa11960 - Nfa53100 - 

Nfa12130 - Nfa53110 - 

Nfa12160 + Nfa56380 - 

a) No activity 

b) Relative hydroxylation activity is within 30%  

c) Relative hydroxylation activity is from 30 to 70% 

d) Relative hydroxylation activity is up to 70% 
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Figure A5 GC/MS chromatography of END conversion using Nfa45180 

(A) GC/MS total ion current (TIC) of END conversion in the presence of 

Nfa45180 in E.coli. The product peak (tR=19.52) was identified as 4-OH-END. (B) 

mass spectra of 4-OH-END. 
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Docking simulation of Nfa45180 with substrates and identification of key 

residues 

Computer modeling of Nfa45180 and its complexes with END was performed to 

obtain more insight about the structural basis for the regio-specific hydroxylation 

of END. Nfa45180 from N. facinica has the highest amino acid identity (64.6%) 

with CYP154A1 from Streptomyces coelicolor among the known crystal structures 

of bacterial cytochrome P450s deposited in the PDB. The corresponding 

crystallographic structure (PDB entry 1ODO) was chosen as structural template. 

Docking simulation of Nfa45180 with enterodiol as a substrate was performed to 

identify the key residues involved in interaction between the enzyme and the 

substrate. Figure A6 shows the heme active site with enterodiol and there are four 

residues (Asn90, Phe92, Leu240, and Ala244) which interacts with enterodiol. The 

distances toward the iron atom are 3.92 Å for END. As Asn90/Phe92 and aromatic 

moiety of END forms hydrophobic interaction, another aromatic moiety of END is 

located near heme geometrically. Also, Ala244 which is the nearest residue from 

heme provides a room for the aromatic moiety of END. This indicates the reason 

for the regioselective hydroxylation of END in structural aspect. 
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Figure A6 Docking simulation in the homology model of Nfa45180  

I-helix which is the most important secondary structure around heme is shown in 

cyan and key residues surrounding substrate are shown in blue. 



 １６０ 

AI.5 Conclusion 

In the present study, we have investigated the hydroxylation of mammalian 

lignin END using whole cell reaction of S. avermitilis and N. farcinica. Seven and 

two hydroxylated products were separated from S. avermitlis and N. facinica, 

respectively, and their structures were identified by mass fragmentation 

(GC/MS/MS) study. In the GC spectra, seven hydroxylated products from S. 

avermitilis were identified as four ENDs with aliphatic hydroxylation and three 

ENDs with aromatic hydroxylation, whereas the two hydroxylated END products 

from N. facinica IFM10152 were all hydroxylated at ortho-position of an aromatic 

ring. All the P450s of S. avermitilis and N. farcinica were examined to determine 

the P450s responsible for hydroxylation reaction. Among them, Nfa45180 was 

screened to have hydroxylation activity at C4 position of END. To elucidate the 

structural understanding of regio-selectivity of the Nfa45180 for END, docking 

studies were performed using a homology model of Nfa45180. As a results, the 

model with the shortest distance between heme and C4 position in enterodiol had 

the lowest energy. This model thoroughly explains the high regio-specificity of 

CYP154 toward enterodiol. 
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국문 초록 

 

본 연구는 유사세라마이드의 전구체로 사용되는 탄소수 16 이상의 

오메가 수산화 지방산 생산을 위한 시토크롬 P450 수산화 효소의 

전자전자 시스템의 이해, 공학적 변이, 링커 디자인, 단백질 발현 

최적화의 연구를 다루고 있다. 

첫 번째로, 지방산 오메가 수산화 효소로 잘 알려진 CYP153 

패밀리에 속하는 유전자 중, Marinobacter aquaeolei VT8 유래의 

CYP153A33, Alcanivorax borkumensis SK2 유래의 

CYP153A13, Gordonia alkanivorans 유래의 CYP153A35를 

대장균에 클로닝하여 효소 활성과 오메가 수산화 팔미트산 생산을 

비교하였다. 수산화 효소의 반응에 사용되는 전자를 전달하기 위하여 

Pseudomonas putida유래의 CamAB를 전자 전달 단백질로 

사용하였을 때, 정제된 단백질 활성은 CYP153A13이, 전세포 

반응에서의 생산성은 CYP153A35가 각각 제일 높았다.  

두 번째로, CYP153A35에 대한 전자 전달 시스템의 연구를 위하여, 

CYP153A35와 Bacillus megaterium 유래의 CYP102A1의 

FMN/FAD 결합부위를 접합한 신규 자립형 P450 효소를 제작하였다. 

정제된 CYP153A35 자립형 P450 효소는 CYP153A35 효소 

단백질과 CamAB 단백질을 이용한 시스템과 비교하였을 때, 

CYP153A35 자립형 P450 효소의 전자 전달 효율이 CamAB 
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시스템보다 4배 높았다. 그러나 두 시스템을 전세포 반응에서 

비교하였을 경우, CamAB 시스템의 생산성이 1.5배 더 높았다. 

추가적으로, CYP153A35의 활성은 전자전달 단백질인 CamAB의 

농도 비율에 영향을 받는데, 특히 CamB 단백질의 농도가 율속인자이다. 

대장균내의 세 개의 단백질을 발현할 때, 프로모터 세기, 유전자 배열 

순서를 고려하여 5개의 다양한 발현 시스템을 구축하였고, 오메가 

수산화 팔리트산 생산을 비교하였다. 5 mM의 팔미트산을 기질로 

사용하였을 때, T7 프로모터 아래 camB, cyp153A35, camA 순서의 

오페론 제작 균주인 A35-AB2가 9시간 반응 이내, 회분식 반응 

시스템에서 가장 높은 생산성을 보였다. 그러나 유가식 반응 

시스템에서는, 세 개의 단백질을 각각 T7 프로모터를 사용하여 발현을 

한 A35-AB1 균주가 20 mM (5.1 g/L)의 팔미트산을 기질로 

사용하였을 때, 30시간동안 17.0 mM (4.6 g/L)의 오메가 수산화 

팔미트산을 생산을 함으로서 가장 높은 수치를 보였다.  

세 번째로, CYP153A35의 수산화 활성을 증가시키기 위하여, 

호몰로지 모델링을 이용하여 CYP153A35의 구조를 예측하였다. 그 

다음으로, CAVER 3.0 프로그램을 사용하여 CYP153A35 내부에 

존재하는 주요 구멍을 예측하여 기질인 지방산과 상호작용 할 것으로 

예상되는 아미노산을 탐색하였다. 고활성 P450 효소를 선별하기 

위하여, 우선 P450의 탈메틸 반응에 의해 부산물로 생성되는 

포름알데하이드를 Purpald 시약을 이용하여 검출하는 고속스크리닝 
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방법을 개발하였다. 19개의 아미노산에 대하여 위치 특이적 포화변이를 

수행한 결과 D131S와 D131F 단일 아미노산 변이체가 탐색되었다. 그 

중 D131S 변이체는 야생형 대비 17배의 효소 활성 증가를 보였다. 

마지막으로, CYP153A33와 CYP102A1의 조효소 결합 부위의 

융합 단백질을 개발함에 있어서 두 도메인 간의 링커 서열을 

최적화하였다. 이를 위하여 유연성의 또는 견고한 펩타이드 서열의 

반복성을 임의적으로 디자인하여 라이브러리를 구축하였다. 그 결과, 

EAAAK-(GGGGS)3-EAAAK의 링커 서열을 갖는 변이체가 

탐색되었으나 융합 단백질의 대장균 내에서의 불용성에 의하여 생산 

균주 개발의 한계를 남겼다.  

                                                                                                                             

주요어: 오메가 수산화 지방산, 시토크롬 P450 모노옥시다아제, 

CYP153, 전자 전달 시스템, 효소 단백질 공학적 변이, 링커 디자인, 

단백질 발현 최적화 
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