저작자 표시 - 비영리 - 변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이와 같은 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약 (Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer
Essays on the Effects and Transmission of Monetary Policy

통화정책의 영향과 전이에 대한 연구

2017년 2월

서울대학교 대학원

경제학부 경제학 전공

임 건 태
Abstract

Essays on the Effects and Transmission of Monetary Policy

Lim Kun Tae
Department Economics
The Graduate School
Seoul National University

This dissertation consists of two essays on the effects and transmission of monetary policy. In chapter 1, this study empirically investigates the effects of monetary policy shocks on exchange rates in four small open economies (United Kingdom, Canada, Sweden, and Australia) by using VAR models in which sign restrictions on impulse responses are imposed to identify monetary policy shocks. The results suggest that the delay in overshooting is relatively short, at best six months, and that the deviation from the UIP condition is often insignificant. These results are in stark contrast with the long delay and the significant deviations found by past studies such as Eichenbaum and Evan (1995) and more recently by Scholl and Uhlig (2008). Further investigation suggests that (1) considering only the inflation targeting period (during which monetary policy operating procedure does not change substantially) and (2) constructing the empirical model that incorporates the features of small open economies are both important to correctly infer the effect in these economies. In chapter 2, I investigate the effects in six emerging countries (Korea, Thailand, the Philippines, Mexico, Brazil, and Colombia) using the same method as chapter 1. The main findings are as follows. First, various puzzles such as the “exchange rate puzzle,” “delayed overshooting puzzle,” and “forward discount bias puzzle” are frequently found in these countries. Second, more severe puzzles are found in these emerging countries than in small open advanced countries.

Keywords: VAR, Monetary Policy Shocks, Exchange Rate, UIP Condition, Delayed Overshooting
Student Number: 2013-30066
Contents

1. Effects of Monetary Policy Shocks on Exchange Rate in Small Open Economies
 - 1.1 Introduction ... 1
 - 1.2 Methodology and Data .. 4
 - 1.2.1 Structural VAR Model with Sign Restrictions 4
 - 1.2.2 Empirical Model and Data 7
 - 1.3 Empirical Results .. 9
 - 1.4 Extended Experiments ... 11
 - 1.4.1 Robustness .. 11
 - 1.4.2 Sample Period and Identification 12
 - 1.5 Conclusion ... 15
 - 1.6 References ... 17
 - 1.7 Appendix ... 19

2. Effects of Monetary Policy Shocks on Exchange Rate in Emerging Countries
 - 2.1 Introduction ... 28
 - 2.2 Methodology and Data .. 31
 - 2.2.1 Structural VAR Model with Sign Restrictions 31
 - 2.2.2 Empirical Model and Data 34
 - 2.3 Empirical Results .. 36
 - 2.3.1 Baseline Model .. 36
 - 2.3.2 Extended Models for Robustness 38
 - 2.4 Comparison with Advanced Countries 40
 - 2.5 Conclusion ... 46
 - 2.6 References ... 48
 - 2.7 Appendix ... 51
Abstract in Korean ... 62
List of Tables

2.1 Capital Control Measures by Schindler et al. (2015) 60
2.2 Exchange Rate Flexibility Measures ... 60
2.3 Financial Market Development Measures .. 61
List of Figures

1.1 Impulse Responses to Contractionary Monetary Policy Shocks

1.2 Accumulated Risk Premium Conditional on Monetary Policy Shocks

1.3 Robustness

1.4 Estimation from mid-1970s

1.5 Model by Scholl and Uhlig (2008)

1.6 Model by Scholl and Uhlig (2008) estimated from mid-1970s

1.7 Recursive VAR estimation

2.1 Impulse Responses to Contractionary Monetary Policy Shocks

2.2 Accumulated Risk Premium Conditional on Monetary Policy Shocks

2.3 Robustness

2.4 Impulse Responses to Contractionary Monetary Policy Shocks in Advanced Countries

2.5 Impulse Responses to Contractionary Monetary Policy Shocks in Advanced Countries: Sample Period from 1999
Chapter 1. Effects of Monetary Policy Shocks on Exchange Rate in Small Open Economies

1.1 Introduction

The effect of monetary policy shocks on exchange rates is a contentious issue. Past studies often found puzzling results such as “delayed” overshooting. In contrast to predictions of popular theory such as that proposed by Dornbusch (1976), previous empirical studies often documented that the maximum response of the exchange rate could be observed only with a substantial delay. In addition, large and significant deviations from the UIP condition, conditional on monetary policy shocks, are frequently found.

Eichenbaum and Evans (1995) documented that the delay is two to four years by investigating the effects of United States monetary policy shocks on the exchange rates of the US dollar against other major currencies, with a recursive VAR model introduced by Sim (1980). Eichenbaum and Evan (1995) also reported huge, persistent, and significant deviations from the UIP condition, conditional on monetary policy shocks.

Many subsequent studies investigated the issue by using alternative identification methods and/or considering other countries, but the results remain controversial. Some studies such as Kim and Roubini (2000) and
Faust and Rogers (2003) proposed alternative identification methods and documented that delays in overshooting are relatively short or less certain, and that deviations from the UIP condition are relatively small or less certain. However, by using a new identification method that imposes sign restrictions on impulse responses, Scholl and Uhlig (2008) documented that the responses are as puzzling as those reported by Eichenbaum and Evans (1995); the delay is one to three years and the deviation from UIP is huge, persistent, and significant for the US.

This study investigates the effects of monetary policy shocks on exchange rates in small open economies by focusing on two controversial issues, that is, the length of delay in overshooting and whether the deviation from the UIP condition is significant or not. Scholl and Uhlig (2008) is the recent study that documents huge puzzling responses; thus, we use this study as the benchmark and deviate from it in two aspects. As Scholl and Uhlig (2008) did, we use the identification method of monetary policy shocks by imposing similar sign restrictions on impulse responses. However, (1) we construct the empirical model to account for the features of small open economies because we investigate the effects on such economies, and (2) we consider the inflation targeting period only, which is different from the sample period from the 1970s that most previous studies investigated.

Most past studies, including Scholl and Uhlig (2008), investigated the issue by using the entire floating exchange-rate sample period that started
from the 1970s. However, the monetary policy operating procedure for most countries have changed significantly during this period. In particular, many countries adopted inflation targeting and changed their policy instruments from monetary aggregates to the interest rate in the 1990s. Such changes in monetary policy operating procedure are likely to imply substantial changes in monetary policy behavior and its effect on the economy, which may be difficult to capture in a single model estimated over the entire floating exchange-rate regime period. Therefore, we investigate the inflation targeting periods only.

We consider four small open economies, namely, the UK, Canada, Sweden, and Australia\(^1\). These are advanced economies where inflation targeting was adopted in the 1990s and monthly data were available for the inflation targeting period. To reflect the features of small open economies, we treat the US or the world variables as exogenous variables. We also consider variables such as foreign exchange reserves and the US spread to consider foreign exchange intervention and unconventional monetary policy of the U.S. that are likely to affect the exchange rate movements of these countries.

In Section 2, we explain the empirical method and the empirical model. In Section 3, we report the empirical results from the baseline model. In Section 4, we perform extended experiments to check the robustness of the

\(^1\) Of small open advanced economies, these four countries have bigger GDP and are more accessible to data than other countries.
results and to draw further implications of the results. In Section 5, we conclude the study with a summary of the results.

1.2 Methodology and Data

1.2.1 Structural VAR Model with Sign Restrictions

To identify exogenous monetary policy shocks and examine the effects of the identified shocks on the exchange rate, structural VAR models with sign restrictions (Uhlig 2005) are used. Past studies on the effects of monetary policy have frequently used structural VAR models, which are useful in identifying exogenous monetary policy shocks. By imposing proper sign restrictions, several puzzling responses (e.g., liquidity and price puzzles) can be eliminated. The identification strategy that uses sign restrictions on impulse responses is appealing because puzzling responses are often regarded as failures in identifying proper monetary policy shocks. The methodology of the structural VAR model with sign restrictions is briefly described below.

A reduced form of the VAR model is considered:

2 An exogenous monetary expansion (contraction) is supposed to increase (decrease) monetary aggregates and price levels and decrease (increase) interest rates. However, in a model that uses innovations in broad monetary aggregates as monetary policy shocks, both monetary aggregates and interest rates increase. This phenomenon is called the “liquidity puzzle.” On the other hand, in a model that uses innovations in interest rates as monetary policy shocks, both interest rates and price levels increase. This phenomenon is called the “price puzzle.” These puzzles are often regarded as indications that exogenous shocks to monetary policy are not properly identified in the model. Sims (1992), Christiano, Eichenbaum, and Evans (1999), and Kim (2013) have provided a survey of the literature.
\[Y_t = B(L)Y_{t-1} + C(L)X_t + u_t, \]

(1.1)

where \(Y_t \) is an \(l \times 1 \) vector of endogenous variables, \(X_t \) is an \(m \times 1 \) vector of exogenous variables, \(u_t \) is an \(l \times 1 \) residual vector, \(E(u_t) = 0 \), \(E(u_t'u_t') = \Sigma \), and \(B(L) \) and \(C(L) \) are \(l \times l \) and \(l \times m \) matrix polynomials in lag operator \(L \).

In general, reduced-form residuals (elements of \(u_t \)) can be written as the linear combinations of structural shocks (elements of \(v_t \)) as follows:

\[u_t = Av_t, \]

(1.2)

where \(A \) is an \(l \times l \) matrix, \(v_t \) is an \(l \times 1 \) vector of structural shocks, \(E(v_t) = 0 \), and \(E(v_tv_t') = 1 \). Previous studies recovered orthogonal structural shocks from reduced-form residuals by determining \(A \). For example, the recursive identification strategy developed by Sims (1980) recovers \(A \) as a lower triangular matrix by applying Cholesky decomposition on \(\Sigma \).

Uhlig (2005) has identified structural shocks by imposing sign restrictions on impulse responses. The study has identified only one type of structural shock in particular, that is, monetary policy shock, which amounts
to identifying a single column $a \in \mathbb{R}^m$ of the matrix A. Uhlig (2005) has defined the impulse vector as follows.

Definition 1. The vector $a \in \mathbb{R}^m$ is called an impulse vector if matrix A exists; thus, $A A' = \Sigma$ and a is a column of A.

Uhlig (2005) has shown that any impulse vector a can be characterized by $a = \tilde{A} \alpha$, where $\tilde{A} \tilde{A}' = \Sigma$ is a Cholesky decomposition of Σ and α is an l-dimensional vector of unit length. Thereafter, the vector impulse response $r_a(k)$ for a can be expressed by the following: $r_a(k) = \sum_{j=1}^{l} \alpha_j r_j(k)$, where $r_j(k) \in \mathbb{R}^l$ is the vector response at horizon k to the jth variable in a Cholesky decomposition of Σ. A list of inequality restrictions on the entries of the vector impulse response $r_a(k)$ at various horizons k is then imposed.

Following the pure sign restriction approach by Uhlig (2005), a Bayesian prior for the VAR parameters (B, Σ) and an independent uniform prior for α are assumed. Only the draws that satisfy the inequality restrictions are retained in the simulation exercise. The probability bands are calculated based on 5,000 of such draws.

1.2.2 Empirical Model and Data
The model developed in this study aims to identify monetary policy shocks in small open economies. In particular, the model is different from that of Scholl and Uhlig (2008) who identified monetary policy shocks for the US that is regarded as a large open economy. Different from the approach used by Scholl and Uhlig (2008), our method treats the US or the world variables as exogenous variables. In addition, some variables such as foreign exchange reserves are included to account for foreign exchange intervention in these economies.

Six endogenous variables are included in the baseline VAR model: call rate, monetary base, consumer price index (CPI), industrial production (IP), exchange rate of domestic currency against the US dollar, and foreign exchange reserves. 3 The first four variables are key macro/monetary variables that are included to identify monetary policy shocks. The exchange rate is the focus of this study. We also include foreign exchange reserves because the exchange rate may critically depend on foreign exchange rate intervention and omitting foreign exchange reserves may lead to mismeasurement of the effect in these economies. 4

Three variables are also included as exogenous variables in the baseline model, namely, the federal funds rate (FFR), IP of the US, and the CPI of the US. The FFR is included to control for US monetary policy, which

3 M1 is used instead of MB in the UK because MB is not available.
4 Refer to Kim (2005), who suggested that delayed overshooting can be related to foreign exchange intervention in a small open economy such as Canada.
is likely to affect the exchange rate. IP and CPI of the US are included because these macro fundamentals are likely important in determining the exchange rate against US dollars in each country. These exogenous variables are also not restricted in terms of their contemporaneous effect on endogenous variables in the model, as shown in Equation (1).

The following sign restrictions on impulse responses are imposed to identify contractionary monetary policy shocks: (1) call rate increases, (2) monetary base decreases, and (3) CPI decreases. By imposing these restrictions, liquidity and price puzzles are avoided by construction. Thus, the impulse responses of these basic macro variables to monetary policy shocks are consistent with conventional wisdom on the effects of monetary policy. These types of restrictions are imposed by Uhlig (2005) and frequently used in past studies such as Scholl and Uhlig (2008). The sign restrictions are imposed on the impulse responses for the first 12 months after a shock, following Scholl and Uhlig (2008).

Monthly data are used. Details on data definitions and sources are found in the Appendix. Six lags for endogenous variables are assumed. To save the degree of freedom, no lags are assumed for exogenous variables in the baseline model, but certain lags are allowed in the extended models (in Section 4) to verify the robustness of the results. For each country, we consider the sample period during which inflation targeting is adopted. The estimation periods are 1992:10–2014:9, 1991:2–2014:9, 1993:1–2014:9, and
1993:3–2014:9, respectively, for the UK, Canada, Sweden, and Australia.

1.3 Empirical Results

Figure 1 reports the (median) impulse responses to monetary policy shocks with 68% probability bands for each country. The interest rate increases in the short run, the monetary base decreases, and the CPI declines in all countries. The price and liquidity puzzles are not found by construction because sign restrictions on impulse responses of these variables are imposed. The effects on IP are negative with more than 84% probability in the UK and Sweden, but error bands are wide and include zero responses in Canada and Australia.

In all countries, the exchange rate appreciates, which is consistent with the standard theory. The exchange rate responses are different from zero with more than 84% probability in all countries. The maximum appreciation is observed within six months in all countries. That is, the length of the “delay” in overshooting is very small, and almost immediate overshooting is found. In the UK, the maximum appreciation is observed within one month after the shock, based on the median response. In the three other countries, the maximum appreciation is found within four to six months after the shock, based on the median response. The length of the delay determined in this study is significantly less than previously reported such as in Scholl and Uhlig
(2008), who observed a delay of 12 to 24 months. The sizes of maximum appreciation are approximately 0.8%, 0.7%, 1.3%, and 1.5% in the UK, Canada, Sweden, and Australia, respectively.

Figure 1 also shows the impulse responses of foreign exchange reserves. Foreign exchange reserves tend to increase in Sweden and Australia in the short run, which may be interpreted as foreign exchange intervention to stabilize the exchange rate appreciation following monetary contraction. Such foreign exchange intervention may result in a delay in overshooting. Kim (2005) provides a related discussion for Canada.

Figure 2 reports the responses of the accumulated risk premium. Based on many previous studies such as Eichenbaum and Evans (1995), the risk premium or the deviation from the UIP condition at t is calculated as follows:

$$
\rho_t = \frac{(i_t - i^*_t)}{12} + S_t - S_{t+1},
$$

where i, i^*, and S are the domestic interest rate, foreign interest rate, and exchange rate, respectively. The risk premium is accumulated over time.

In many cases, the accumulated risk premium is not significantly different from zero based on a 68% probability band. In the UK, it is not significantly different from zero based on such a probability band. In Canada, the accumulated risk premium is different from zero with more than 84%
probability only at horizons of over 29–48 months. In Sweden and Australia, it is different from zero with more than 84% probability only within a few short-run horizons.

1.4 Extended Experiments

1.4.1 Robustness

In this section, the baseline model is extended in various ways to check the robustness of the results. First, in the baseline model, lags of exogenous variables are not included to save the degree of freedom. Now, three or six lags of exogenous variables are included to check the robustness of the results. Second, the spread in the US is additionally included as an exogenous variable. The spread of the US represents the unconventional monetary policy conducted in the country after the global financial crisis, which is likely to affect the exchange rate of these countries against the U.S. dollar. Past studies, such as Baumeister and Benati (2013) and Kapetanios et al. (2012) have used the term spread to represent the unconventional monetary policy actions. Third, we include a dummy variable for the global financial crisis (2008:7–2008:12) because the exchange rate may show abnormal behavior during the global financial crisis.

Figure 3 reports the responses of the exchange rate and risk premium in each case. The results are qualitatively similar when the lags of exogenous
variables are included, although the error bands are sometimes wide because the degree of freedom decreases. The results are also qualitatively similar when the spread is added in the model. In these experiments, the main results hold. First, the exchange rate appreciates in response to contractionary monetary policy shocks. Second, maximum appreciation is observed within six months after the shock. Third, the estimated deviation of the UIP condition is insignificant in most cases.

1.4.2 Sample Period and Identification

To explore why we found a short delay in overshooting and an insignificant deviation from the UIP condition, differently from the findings of past studies such as Scholl and Uhlig (2008), some extended experiments are performed. First, past studies often used the sample period from the mid-1970s when the floating exchange rate regime was adopted. Although the monetary policy operating procedure has changed from time to time, the usual VAR models do not consider such changes. A significant deviation from the UIP condition or a long delay in overshooting found in past studies might be due to such a problem.

Figure 4 reports the results when the model is estimated for the sample period that starts from the mid-1970s. The exchange rate responses are small.

5 The sample periods are from 1975:7 to 2014:9 except in Sweden, where the sample
and insignificant in many countries except for Sweden. The 68% probability bands include zero responses at all horizons in the UK, Canada, and Australia. The size of the maximum exchange rate responses (based on the median responses) decreases dramatically in Australia (from 1.5% to 0.2%) and substantially in the UK (from 0.8% to 0.6%) and Canada (from 0.7% to 0.3%), compared with the results of the baseline model. Furthermore, in Australia, the median response shows that the exchange rate even depreciates several months after the shock. The accumulated risk premium remains insignificant in most cases.

Second, we intend to confirm that using the small-country identification scheme developed in this study is important. As the benchmark model for comparison, the popular model developed by Scholl and Uhlig (2008) is used. Scholl and Uhlig (2008) included seven variables in the model, namely, CPI, IP, monetary aggregate, and interest rate of the home country, interest rate of the foreign country, IP of the foreign country, and exchange rate of the home country against the foreign country. Scholl and Uhlig (2008) originally developed a model to investigate the effect for the US, so they treated the US as the home country. In the present study, we treated the UK, Canada, Sweden, and Australia as the home country and the US as the foreign country.\(^6\) We use the same sign restrictions in the baseline model as those

\(^6\) Scholl and Uhlig (2008) used non-borrowed reserves of the US as monetary aggregate of home country, but we use monetary base as the monetary aggregate of the home country.
used by Scholl and Uhlig (2008), and we keep the same sign restrictions in the present study.7

Figure 5 presents the results. The exchange rate responses are small and insignificant in Canada and Sweden compared with those of the baseline model. In Canada, the median responses further show that the maximum appreciation is found within approximately one and a half years. But the accumulated risk premium is still insignificant in most cases.

Figure 6 reports the results when both potential problems are present. That is, the Scholl and Uhlig (2008) model is used for the sample period starting from the mid-1970s. In general, the exchange rate responses are extremely small and not estimated with any significance in all countries. The size of the median exchange rate responses are smaller than those of the baseline model in all countries. The probability bands for the exchange rate responses include zero responses at all horizons in all countries. But the accumulated risk premium is still small and insignificant in most cases.

Overall, these results support the idea that using the sample period for the homogenous monetary policy operating procedure and applying the identification scheme appropriate for small open economies are important to correctly infer the effects of monetary policy shocks on the exchange rates of these small open economies.8 In particular, the delay in overshooting turns

7 The sign restrictions are essentially the same as those used in the present paper, namely, (1) call rate increases, (2) monetary aggregate decreases, and (3) CPI decreases.

8 By investigating the US, Kim et al. (2015) suggest that the effects of monetary policy shocks in the country are misleadingly estimated when different monetary policy regimes are
out to be relatively short, at best six months.

1.5 Conclusion

This paper empirically investigates the effects of monetary policy shocks on the exchange rates of four small open economies by using VAR models in which sign restrictions are imposed on impulse responses to identify monetary policy shocks. The paper focuses on two controversial issues: (1) the length of the delay in overshooting and (2) whether the deviation from the UIP is significant, conditional on monetary policy shocks. The empirical model reflects the features of the small open economy. The estimation period is the recent inflation targeting period during which no substantial changes in monetary policy operating procedure have been observed.

The empirical results suggest that the delay in overshooting is relatively short, at best six months, and that the deviation from the UIP condition is insignificant in most cases. These results are in stark contrast with the long delay and significant deviation observed by Eichenbaum and Evans (1995) and more recently by Scholl and Uhlig (2008). The result is particularly interesting because the result is quite different from Scholl and

pooled and that the delayed overshooting is not observed when only the recent monetary policy regime is considered. The results of our study are in accordance with the findings of Kim et al.(2015).
Uhlig (2008), who employed VAR models with sign restrictions. Further investigation suggests that considering only the inflation targeting period (instead of the entire floating exchange rate sample period from the 1970s) and constructing the empirical model that incorporates the features of small open economies are both important to correctly infer the effects of monetary policy shocks on exchange rates.
1.6 References

1.7 Appendix. Data Sources

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Sources and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>Money market rate</td>
<td>International Financial Statistics</td>
</tr>
<tr>
<td>MB</td>
<td>Monetary base, seasonally adjusted (UK: M1)</td>
<td>Central Bank for each country, except for M1 of UK from Federal Reserve Bank of St. Louis Macro Database</td>
</tr>
<tr>
<td>CPI</td>
<td>Consumer price index, seasonally adjusted</td>
<td>Federal Reserve Bank of St. Louis, except for CPI of Canada from International Financial Statistics. Interpolation is used for CPI of Australia in which only quarterly data are available. International Financial Statistics for UK and Canada, Federal Reserve Bank of St. Louis Macro Database for Sweden and Australia. Interpolation is used for IP of Australia in which only quarterly data are available.</td>
</tr>
<tr>
<td>IP</td>
<td>Industrial production index, seasonally adjusted</td>
<td>International Financial Statistics</td>
</tr>
<tr>
<td>ERA</td>
<td>Exchange rate of domestic currency per US dollars (period average)</td>
<td>International Financial Statistics, except for ERA of UK from Federal Reserve Bank of St. Louis Macro Database.</td>
</tr>
<tr>
<td>FR</td>
<td>Foreign exchange reserve (total reserves minus gold)</td>
<td>International Financial Statistics</td>
</tr>
<tr>
<td>FFR</td>
<td>Federal funds rate</td>
<td>International Financial Statistics</td>
</tr>
<tr>
<td>USCPI</td>
<td>US consumer price index, seasonally adjusted</td>
<td>International Financial Statistics</td>
</tr>
<tr>
<td>USIP</td>
<td>US industrial production index, seasonally adjusted</td>
<td>International Financial Statistics</td>
</tr>
<tr>
<td>SPREAD</td>
<td>Moody’s seasoned Baa corporate minus 10-year US Treasury constant maturity rate</td>
<td>Federal Reserve Bank of St. Louis Macro Database</td>
</tr>
</tbody>
</table>
Figure 1.1 Impulse Responses to Contractionary Monetary Policy Shocks

UK

Canada

Sweden

Australia
Figure 1.2 Accumulated Risk Premium Conditional on Monetary Policy Shocks

UK

Canada

Sweden

Australia
Figure 1.3 Robustness

UK

(1) Six Lags for Exogenous Variables

(2) Three Lags for Exogenous Variables

(3) Spread as an Exogenous Variable

(4) Global Financial Crisis Dummy (08.7–08.12)

Canada
Sweden

(1) Six Lags for Exogenous Variables

(2) Three Lags for Exogenous Variables

(3) Spread as an Exogenous Variable

(4) Global Financial Crisis Dummy (08.7–08.12)
Figure 1.4 Estimation from mid-1970s
Figure 1.5 Model by Scholl and Uhlig (2008)
Figure 1.6 Model by Scholl and Uhlig (2008) estimated from mid-1970s

UK

Canada

Sweden

Australia
Figure 1.7 Recursive VAR estimation

UK

Canada

Sweden

Australia
Chapter 2. Effects of Monetary Policy Shocks on Exchange Rate in Emerging Countries

2.1 Introduction

The effects of monetary policy shocks on the exchange rate have always been controversial. Initial studies documented various puzzling responses that contrast with what theories have predicted. By employing recursive vector autoregression (VAR) models with US data, Eichenbaum and Evans (1995) documented that the maximum response of the exchange rate to monetary policy shocks has a substantial delay of 2–4 years, which is different from the prediction of popular “overshooting” theories such as that of Dornbusch (1976). This is called the “delayed overshooting” puzzle. Eichenbaum and Evan (1995) also reported huge, persistent, and significant deviations from the UIP condition, conditional on monetary policy shocks. This can be regarded as the “forward discount bias” puzzle, conditional on monetary policy shocks. Using a recursive VAR model for non-US G-7 countries (against the US), Grilli and Roubini (1995) documented even more puzzling responses: contractionary monetary policy shocks result in an exchange rate depreciation (instead of an exchange rate appreciation), which is inconsistent with most theories. This is called the “exchange rate” puzzle.
However, subsequent studies argued that the results are “less puzzling” than those initially found in the aforementioned studies, and that the empirical evidence is often broadly consistent with the existing theory. In particular, the “exchange rate” puzzle is not found and the delay in overshooting is relatively slight or less certain. Kim and Roubini (2000) and Faust and Rogers (2003), and Bjorland (2009) found such results using the alternative identification methods that allow a contemporaneous feedback relation between monetary policy and the exchange rate, which was not the case in Eichenbaum and Evans (1995) and Grilli and Roubini (1995). On the other hand, Scholl and Uhlig (2008) employed a relatively recent identification method that imposes sign restrictions on the impulse responses and documented a long delay in overshooting even after allowing such feedback relation. However, Kim et al. (2015) and Kim and Lim (2015) further found that the delay for the US and for the UK, Australia, Sweden, and Canada, respectively, is relatively slight when the sample period is restricted to the period of homogeneous monetary policy regime.

Most past studies investigated the effects in advanced countries, but studies on the effects in a group of emerging countries are scarce. Thus, this study investigates the effects in emerging countries. What is the effect of monetary policy shocks on exchange rates in emerging countries? Are the effects similar to those of advanced countries? Do we find more puzzles in emerging countries? The issue can be especially interesting for the emerging
countries that recently adopted new monetary policies and/or exchange rate regimes by following advanced countries. After experiencing the currency crisis in the 90s, many emerging countries began to use the interest rate as a monetary policy instrument. Moreover, they adopted inflation targeting and more flexible exchange rate regimes. In terms of monetary and exchange rate regimes, these countries may not be significantly different from advanced countries. With the adoption of monetary and exchange rate regimes that are similar to those of advanced countries, are the effects of monetary policy on the exchange rate in these emerging countries similar to those in advanced countries? Are the effects in emerging countries broadly consistent with the theory, similar to those in advanced countries as they recently adopt similar policy regimes?

This study investigates six emerging countries (Korea, Thailand, the Philippines, Mexico, Brazil, and Colombia) with the inflation-targeting period as the sample period. We use the empirical model utilized by Uhlig (2005) and Scholl and Uhlig (2008). The model imposes sign restrictions on impulse responses to identify monetary policy shocks. However, different from Scholl and Uhlig (2008) who investigated the US, we use the model to study small open economy features, which is similar to that of Kim and Lim (2015) because these emerging countries are regarded as small open economies. Kim and Lim (2015) investigated advanced countries; thus, the comparison between advanced and emerging countries is facilitated by using
a similar model for emerging countries. In the model, we consider various variables that are important to determine the exchange rate in emerging countries, such as foreign exchange reserves, VIX, and spread, to check the robustness of the main results.

In Section 2, we explain the empirical method and the empirical model. In Section 3, we present the empirical results from the baseline and the extended models. In Section 4, we compare the results with those of advanced countries. In Section 5, we conclude based on the summary of the results.

2.2 Methodology and Data

2.2.1 Structural VAR Model with Sign Restrictions

To identify exogenous monetary policy shocks and examine the effects of the identified shocks on the exchange rate, structural VAR models with sign restrictions (Uhlig 2005) are used. Past studies on the effects of monetary policy have frequently used structural VAR models, which are useful in identifying exogenous monetary policy shocks. By imposing proper sign restrictions, several puzzling responses (e.g., liquidity and price puzzles) can be eliminated.\(^9\) The identification strategy that uses sign restrictions on

\(^9\) An exogenous monetary expansion (contraction) is supposed to increase (decrease) monetary aggregates and price levels and decrease (increase) interest rates. However, in a model that uses innovations in broad monetary aggregates as monetary policy shocks, both
impulse responses is appealing because puzzling responses are often regarded as failures in identifying proper monetary policy shocks. The methodology of the structural VAR model with sign restrictions is briefly described below.

A reduced form of the VAR model is considered:

\[Y_t = B(L)Y_{t-1} + C(L)X_t + u_t, \]

(2.1)

where \(Y_t \) is an \(l \times 1 \) vector of endogenous variables, \(X_t \) is an \(m \times 1 \) vector of exogenous variables, \(u_t \) is an \(l \times 1 \) residual vector, \(E(u_t) = 0 \), \(E(u_t'u_t') = \Sigma \), and \(B(L) \) and \(C(L) \) are \(l \times l \) and \(l \times m \) matrix polynomials in lag operator \(L \).

In general, reduced-form residuals (elements of \(u_t \)) can be written as the linear combinations of structural shocks (elements of \(v_t \)) as follows:

\[u_t = Av_t, \]

(2.2)

where \(A \) is an \(l \times l \) matrix, \(v_t \) is an \(l \times 1 \) vector of structural shocks,

monetary aggregates and interest rates increase. This phenomenon is called the “liquidity puzzle.” On the other hand, in a model that uses innovations in interest rates as monetary policy shocks, both interest rates and price levels increase. This phenomenon is called the “price puzzle.” These puzzles are often regarded as indications that exogenous shocks to monetary policy are not properly identified in the model. Sims (1992), Christiano, Eichenbaum, and Evans (1999), and Kim (2013) have provided a survey of the literature.
Previous studies recovered orthogonal structural shocks from reduced-form residuals by determining A. For example, the recursive identification strategy developed by Sims (1980) recovers A as a lower triangular matrix by applying Cholesky decomposition on Σ.

Uhlig (2005) has identified structural shocks by imposing sign restrictions on impulse responses. The study has identified only one type of structural shock in particular, that is, monetary policy shock, which amounts to identifying a single column $a \in \mathbb{R}^m$ of the matrix A. Uhlig (2005) has defined the impulse vector as follows.

Definition 1. The vector $a \in \mathbb{R}^m$ is called an impulse vector if matrix A exists; thus, $AA^\prime = \Sigma$ and a is a column of A.

Uhlig (2005) has shown that any impulse vector a can be characterized by $a = \tilde{A}\alpha$, where $\tilde{A}\tilde{A}^\prime = \Sigma$ is a Cholesky decomposition of Σ and α is an l-dimensional vector of unit length. Thereafter, the vector impulse response $r_a(k)$ for a can be expressed by the following: $r_a(k) = \sum_{j=1}^{l} \alpha_j r_j(k)$, where $r_j(k) \in \mathbb{R}^l$ is the vector response at horizon k to the jth variable in a Cholesky decomposition of Σ. A list of inequality restrictions on the entries of the vector impulse response $r_a(k)$ at various horizons k is then imposed.
Following the pure sign restriction approach by Uhlig (2005), a Bayesian prior for the VAR parameters \((B, \Sigma)\) and an independent uniform prior for \(\alpha\) are assumed. Only the draws that satisfy the inequality restrictions are retained in the simulation exercise. The probability bands are calculated based on 5,000 of such draws.

2.2.2 Empirical Model and Data

The model developed in this study aims to identify monetary policy shocks in small open economies. In particular, the model is different from that of Scholl and Uhlig (2008), who have identified monetary policy shocks for the US, a country regarded as a large open economy. Different from Scholl and Uhlig (2008), we include US or the world variables as exogenous variables, to model the small open economy features of those countries. In addition, some variables, such as foreign exchange reserves, are included to consider foreign exchange intervention and reserve accumulations that are likely to have impact effects on exchange rate, especially in these emerging economies.

Six endogenous variables are included in the baseline VAR model: the call rate, monetary base, consumer price index, industrial production, exchange rate of domestic currency against the US dollar, and foreign exchange reserves. The first four variables are key macro/monetary variables.
These are included to identify monetary policy shocks. The exchange rate is the focus of this study. We also include foreign exchange reserves because exchange rate may critically depend on foreign exchange rate intervention and/or accumulation of foreign exchange reserves. In addition, omitting foreign exchange reserves in the model may lead to mismeasurement of the effect in these economies.\(^{10}\)

Three variables are also included as exogenous variables in the baseline model: the federal funds rate (FFR), industrial production of the US, and consumer price index of the US. The FFR is included to control for US monetary policy, which is likely to affect the exchange rate and/or monetary policy in each country. Industrial production and the consumer price index of the US are included because these macro fundamentals for the US could be important in determining the exchange rate against US dollars in each country. These exogenous variables are not restricted in terms of their contemporaneous effect on endogenous variables in the model [see Equation (1)].

The following sign restrictions on impulse responses are imposed to identify contractionary monetary policy shocks: (1) call rate increases, (2) monetary base decreases, and (3) CPI decreases. By imposing these restrictions, the liquidity and price puzzles are avoided by construction. Thus,

\(^{10}\) Kim (2005) has suggested that delayed overshooting can be related to foreign exchange intervention.
the impulse responses of these basic macro variables to monetary policy shocks are consistent with conventional wisdom on the effects of monetary policy. These types of restrictions are imposed by Uhlig (2005) and frequently used in past studies, such as Scholl and Uhlig (2008) and Kim and Lim (2015). The sign restrictions are imposed on the impulse responses for the first 12 months after a shock, following Scholl and Uhlig (2008) and Kim and Lim (2015).

We consider three largest (in terms of GDP) Asian emerging countries (Korea, Thailand, and the Philippines) and three largest Latin American emerging countries (Mexico, Brazil, and Colombia) that have adopted inflation targeting in recent years. Monthly data are used. Six lags for endogenous variables are assumed. To save the degree of freedom, no lags are assumed for exogenous variables in the baseline model; however, some lags are allowed in the extended models (in Section 3.2) to check the robustness of the results. For each country, we consider the sample period during which inflation targeting is adopted. The estimation periods are 1998:1–2014:9, 2000:4–2014:9, 2002:1–2014:9, 1999:1–2014:9, 1999:6–2014:9, and 1999:9–2014:9, for Korea, Thailand, the Philippines, Mexico, Brazil, and Colombia, respectively.

2.3 Empirical Results

2.3.1 Baseline Model
Figure 1 reports the (median) impulse responses to monetary policy shocks with 68% probability bands for each country. The interest rate increases in the short run, monetary base decreases, and CPI declines in all countries. The price and the liquidity puzzles are not found by construction because of the imposition of sign restrictions on the impulse responses of these variables. The effects on IP are negative with more than 84% probability in Korea, Thailand, Brazil, and the Philippines.

The exchange rate responses in many countries are puzzling. The most puzzling responses are found in Brazil. In this country, the exchange rate depreciates, which is different from zero with 84% probability. Thus, the “exchange rate” puzzle is clearly identified. In Mexico, Thailand, and Colombia, the exchange rate responses are insignificant; the 68% probability bands include zero responses at all horizons. In the Philippines, short-run appreciation is found; however, the response is different from zero with 84% probability only at the eighth month horizon. In addition, a delayed overshooting is found; the appreciation of the exchange rate is not immediate, but gradual and the maximum appreciation occurs only in eight months. Korea is the only country in which exchange rate responses are broadly consistent with theory. The exchange rate appreciation is significant at some short-run horizons. In addition, the exchange rate appreciates on impact, which is close to the maximum effect found in the next month. Thus, an
almost immediate overshooting is found.\footnote{In Korea, a LR depreciation is found in this baseline model. However, such a puzzling LR depreciation in Korea is not robust finding because it is not found in some extended models reported in Section 3.2.}

Figure 2 reports the responses of the accumulated risk premium. Following many past studies, such as Eichenbaum and Evans (1995), the risk premium or the deviation from UIP condition at \(t \) is calculated as follows:

\[
\rho_t = (i_t - i^*_t)/12 + S_t - S_{t+1}, \tag{2.3}
\]

where \(i, i^* \), and \(S \) are the domestic interest rate, foreign interest rate, and the exchange rate, respectively. We accumulate the risk premium over time based on impulse responses.

Except for Colombia and Thailand, the accumulated risk premium of the countries is significantly different from zero at some horizons based on 68\% probability bands. In Korea, the accumulated risk premium is significantly different from zero at medium- and long-run horizons. In the Philippines and Mexico, the accumulated risk premium is significantly different from zero at some short horizons. In Brazil, the accumulated risk premium is significantly different from zero at medium-run horizons.

2.3.2 Extended Models for Robustness
The baseline model is extended in various ways to check the robustness of the results. First, in the baseline model, lags of exogenous variables are not included to save the degree of the freedom. Now six lags of exogenous variables are included. Second, VIX and the spread of the US are additionally included as exogenous variables, individually. VIX represents worldwide risk condition, which may affect the capital flows and the exchange rate in these emerging countries. The spread of the US represents the unconventional monetary policy conducted in the country after the global financial crisis. Past studies, such as Baumeister and Benati (2013) and Kapetanios et al. (2012) have used the term spread to represent the unconventional monetary policy actions. Third, restrictions on impulse responses are imposed up to the 12-month horizons in the baseline model, but now imposed up to the 6-month horizons. Fourth, we include a dummy variable for the global financial crisis (2008:7–2008:12) because the exchange rate may show abnormal behavior during the global financial crisis.

Figure 3 presents the responses of the exchange rate and risk premium in each case. The results are qualitatively similar to those of the baseline model in most cases. The “exchange rate puzzle” is found in Brazil. The exchange rate responses in Thailand, Mexico, Colombia, and the Philippines are mostly insignificant. In Korea, significant short-run exchange rate appreciation and only one-month delay in overshooting are found. The accumulated excess return is significantly different from zero at some
horizons in most cases, which is similar to that in the baseline model.12

\textbf{2.4 Comparison with Advanced Countries}

We compare the results of emerging countries with those of advanced countries. Figure 4 reports the results for the UK, Canada, Sweden, and Australia. The empirical model is the same as the baseline model. Also for advanced countries, the sample period includes only inflation targeting period: 1992:10–2014:9, 1991:2–2014:9, 1993:1–2014:9, and 1993:3–2014:9 for the UK, Canada, Sweden, and Australia, respectively.13

The exchange rate puzzle is not found in any of the advanced countries; that is, the exchange rate appreciates, which is different from zero with an 84\% probability at some horizons. In addition, only a slight delay in overshooting is found. The delay is less than six months in all countries. Overall, the results of advanced countries are different from those of emerging countries. More severe puzzles are found in emerging countries than in advanced countries.

On the other hand, the accumulated excess return is significantly different from zero at some horizons even in advanced countries. This is not

12 The accumulated excess return is significant in the baseline model of Korea. However, the accumulated excess return becomes smaller and insignificant when six lags are allowed for the exogenous variables and when the global financial crisis dummy is included. This result, together with impulse responses of the exchange rate, may suggest that overall puzzles are weak in Korea.

13 Refer to Kim and Lim (2015) for detailed analysis on these advanced countries.
surprising because past studies have found the significant forward discount bias puzzle in most countries. The results may suggest that different sources can explain the forward discount bias puzzle (conditional on monetary policy shocks) and other puzzling responses (such as the exchange rate and delayed overshooting puzzles).

We also consider the sample periods from 1999 for advanced countries. In the baseline estimation, the sample periods of advanced countries are from early 1990s but the sample periods of emerging countries are from late 1990s and early 2000s. We would like to check whether the difference in the results comes from the difference in the sample periods. In Figure 5, the results are similar to those when the full sample is used. This suggests that the difference in sample periods does not explain the difference of the results between advanced and emerging countries.

Emerging countries have recently adopted inflation targeting with more flexible exchange rate regimes, following the action of advanced countries. However, emerging countries are still different from advanced countries in various aspects, which may explain the difference in the results on the exchange rate responses. We discuss some economic features of emerging and advanced countries to determine the potential factors that can explain the different results.

First, the degree of capital mobility may differ between emerging and advanced countries. When capital mobility is strongly restricted, the changes
in the interest rate may not affect capital flows and exchange rate in the standard way. For example, under capital account restrictions on capital inflows, the interest rate rise may not induce capital inflows and appreciate the exchange rate. As another example, the interest parity condition does not hold and exchange rate responses may be different from those predicted by the standard theory based on the assumption of perfect capital mobility. In this regard, we report a measure of capital control restrictions for the sample countries in Table 1. We use the measure developed by Schindler et al. (2015) who have developed such measure by assessing the capital control restrictions on both inflows and outflows of 10 categories of assets for 100 countries from 1995 to 2013 based on Schindler (2009) and the IMF’s Annual Report on Exchange Arrangements and Exchange Restrictions. A higher number shows a stronger degree of capital control. In Table 1, we report the numbers based on overall (comprising both inflow and outflow), overall inflow, and overall outflow indices. We calculate the average for the estimation period of each country.

Table 1 shows that stronger degrees of capital controls are imposed in emerging countries than in advanced countries. In four advanced countries, the numbers based on overall index range from 0.003 to 0.286. By contrast, in five emerging countries (excluding Korea), the numbers are far higher,

14 The earliest year is 1995 and the latest year is 2013 because only the data from 1995 to 2013 are available.
ranging from 0.533 to 0.875. Different from the five emerging countries, Korea shows a low number, 0.289, which is similar to that of Australia. Interestingly, Korea is the only emerging country in which severe puzzles are not found. The results are similar when we use the overall inflow index or overall outflow index. These results suggest that strong degrees of capital controls imposed in the five emerging countries may explain the puzzling exchange rate responses found in those countries. Interestingly, Kim (2015) has empirically shown that the degree of capital controls explain the cross-country differences in the effects of government consumption shocks on real exchange rate. Although we examine the effects of monetary policy shocks, the degree of capital controls may also play an important role in the transmission of monetary policy shocks to exchange rate.

In theory, relatively more rigid exchange rate system in emerging countries may result in more puzzling behaviors of exchange rates in emerging countries. However, the degree of exchange rate flexibility between emerging and advanced countries does not seem to explain the difference between emerging and advanced countries. In Table 2, we report the measure of exchange rate flexibility. First, we report the measure based on exchange rate classification of Reinhart and Rogoff (2004). A higher number shows a more flexible exchange rate regime. We calculate the average for the estimation period of each country.15 Second, we also report the exchange rate

15 The latest year is 2010 because only the data until 2010 are available.
flexibility index based on Calvo and Reinhart (2002). A higher number shows a more flexible exchange rate regime. \[16\]

Table 2 shows the degree of exchange rate flexibility across countries in our sample. Finding a clear difference between advanced and emerging countries is not easy. Regarding the first measure, Australia has the highest number, 4. The UK and Sweden are 3. Canada is 2.69. Five emerging countries (excluding the Philippines) range from 3.0 to 3.17, which is not much different from the numbers of advanced countries. The Philippines has a relatively small number, 2.33. Regarding the second measure, two advanced countries (Australia and Sweden) have the highest numbers (0.0201 and 0.0140, respectively). However, the other two advanced countries (the U.K. and Canada) have even lower numbers than three emerging countries (Thailand, the Philippines, and Brazil).

Overall, these results suggest that the degree of exchange rate flexibility does not explain the differences in the exchange rate responses between advanced and emerging countries.

In addition, we don’t find any direct evidence that foreign exchange intervention plays some role in generating the exchange rate puzzle in emerging countries. We found the exchange rate puzzle in Thailand and Brazil, but foreign exchange intervention does not help generate the puzzle.

\[16\] To construct the measure, the variance of exchange rate is divided by the sum of the variance of foreign exchange reserves and the variance of the interest rate. Monthly data is used.
In Figure 1, foreign exchange reserve falls in Thailand and Brazil, which, if any, would lead to an appreciation of exchange rate.

Finally, we examine the degree of financial market development in these countries. When the financial market is less developed, the standard monetary policy transmission mechanism may not work well. For example, when the bond market is less developed, an interest rate increase may not induce capital inflows into the bond market, and have a limited effect on exchange rate, differently from the prediction of the standard theory.

Table 3 reports two general measures of the financial market development, namely, private credit by deposit money banks to GDP and liquid liabilities to GDP.17 We also report three measures for the bond market development, namely, gross portfolio debt liabilities to GDP, gross portfolio debt assets to GDP, and corporate bond issuance volume to GDP.

Two measures of financial market development suggest that the financial market tends to be more developed in advanced countries and Korea than in the other emerging countries. However, in terms of both measures, Thailand has a higher number than Sweden, the UK, Canada, and Korea. Further, in terms of the liquid liabilities to GDP, Brazil and the Philippines have higher numbers than Sweden. Then, the gross portfolio debt liabilities to GDP and gross portfolio debt assets to GDP tend to be higher in advanced

17 These measures have been frequently used in the past studies on financial development, such as the studies on financial development and income inequality. Levine (2005) has provided a survey on the studies on financial development and income inequality.
countries than in emerging countries. However, the number for Korea is considerably smaller than those of advanced countries, and smaller than those of some emerging countries. Corporate bond issuance volume to GDP tends to be higher in advanced countries and Korea than in the other emerging countries. However, Thailand has a higher number than Australia. Overall, these measures tend to be higher in advanced countries and Korea than in the other emerging countries but some exceptions exist. It is not so easy to draw a clear conclusion, but the degree of financial market development does not seem to fully explain the difference in the effects of monetary policy on exchange rate. Therefore, the results do not clearly support the important role of financial market development.

2.5 Conclusion

This study empirically investigates the effects of monetary policy shocks on exchange rates in emerging countries by using VAR models in which sign restrictions are imposed on the impulse responses to identify monetary policy shocks. The empirical model reflects the small open emerging economy features. The estimation period is the recent inflation-targeting period in which these countries adopted new monetary policy regime and a more flexible exchange rate regime based on the experience of advanced countries.
The empirical results show the following. First, various puzzles, such as the “exchange rate,” “delayed overshooting,” and “forward discount bias” puzzles, are frequently found in these countries. Second, more severe puzzles are found in the emerging countries (except for Korea) than in small open advanced countries, when the same empirical model is applied.

The results suggest that differences exist in the transmission of monetary policy between emerging and advanced countries despite the recent adoption by the emerging countries of a new monetary and exchange rate policy regime which is similar to that of advanced countries. Further investigation suggests that the high degree of capital control imposed in emerging countries may explain the difference. Future studies should analyze more detailed transmission mechanisms of the monetary policy of emerging and advanced countries to explain why more puzzles are found in emerging countries.
2.6 References

2.7 Appendix. Data Sources

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Sources and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>Money market rate</td>
<td>International Financial Statistics</td>
</tr>
<tr>
<td>MB</td>
<td>Monetary base, seasonally adjusted (Thailand: narrow money) (Korea: Korea’s central bank)</td>
<td>International Financial Statistics</td>
</tr>
<tr>
<td>CPI</td>
<td>Consumer price index, seasonally adjusted (Thailand: core consumer price index) (Thailand and Colombia: each country’s central bank)</td>
<td>International Financial Statistics</td>
</tr>
<tr>
<td>IP</td>
<td>Industrial production index, seasonally adjusted</td>
<td>International Financial Statistics</td>
</tr>
<tr>
<td>ERA</td>
<td>Exchange rate of domestic currency per US dollars (period average)</td>
<td>International Financial Statistics</td>
</tr>
<tr>
<td>FR</td>
<td>Foreign exchange reserve (Total reserves minus gold)</td>
<td>International Financial Statistics</td>
</tr>
<tr>
<td>FFR</td>
<td>Federal funds rate</td>
<td>International Financial Statistics</td>
</tr>
<tr>
<td>USCPI</td>
<td>US Consumer price index, seasonally adjusted</td>
<td>International Financial Statistics</td>
</tr>
<tr>
<td>USIP</td>
<td>US Industrial production index, seasonally adjusted</td>
<td>International Financial Statistics</td>
</tr>
<tr>
<td>VIX</td>
<td>CBOE volatility index</td>
<td>Federal Reserve Bank of St. Louis Macro Database</td>
</tr>
<tr>
<td>SPREAD</td>
<td>Moody’s seasoned Baa corporate minus 10-year US Treasury constant maturity rate</td>
<td>Federal Reserve Bank of St. Louis Macro Database</td>
</tr>
</tbody>
</table>
Figure 2.1 Impulse Responses to Contractionary Monetary Policy Shocks

[Korea]

[Thailand]

[Philippines]
Figure 2.2 Accumulated Risk Premium Conditional on Monetary Policy Shocks

[Korea] [Thailand]

[Philippines] [Mexico]

[Brazil] [Colombia]
Figure 2.3 Robustness

[Korea] [Thailand]
Six Lags for Exogenous Variables

Adding VIX as an Exogenous Variable

Adding Spread as an Exogenous Variable

Six Month Sign Restrictions

Global Financial Crisis Dummy (08.7–08.12)
[Philippines] [Mexico]
Six Lags for Exogenous Variables

Adding VIX as an Exogenous Variable

Adding Spread as an Exogenous Variable

Six Month Sign Restrictions

Global Financial Crisis Dummy (08.7–08.12)
[Brazil] [Colombia]

Six Lags for Exogenous Variables

Adding VIX as an Exogenous Variable

Adding Spread as an Exogenous Variable

Six Month Sign Restrictions

Global Financial Crisis Dummy (08.7–08.12)
Figure 2.4 Impulse Responses to Contractionary Monetary Policy Shocks in Advanced Countries

[UK 92.10–14.9] [Canada 91.2–14.9]

[Sweden 93.1–14.9] [Australia 93.3–14.9]
Figure 2.5 Impulse Responses to Contractionary Monetary Policy Shocks in Advanced Countries: Sample Period from 1999

[UK 99.1–14.9] [Canada 99.1–14.9]

[Sweden 99.1–14.9] [Australia 99.1–14.9]
Table 2.1 Capital Control Measures by Schindler et al. (2015)

<table>
<thead>
<tr>
<th>Country</th>
<th>Overall index</th>
<th>Overall inflow index</th>
<th>Overall outflow index</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>0.003</td>
<td>0.005</td>
<td>0</td>
</tr>
<tr>
<td>Canada</td>
<td>0.051</td>
<td>0.101</td>
<td>0</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.053</td>
<td>0.091</td>
<td>0.016</td>
</tr>
<tr>
<td>Australia</td>
<td>0.286</td>
<td>0.276</td>
<td>0.296</td>
</tr>
<tr>
<td>Korea</td>
<td>0.289</td>
<td>0.244</td>
<td>0.334</td>
</tr>
<tr>
<td>Thailand</td>
<td>0.771</td>
<td>0.668</td>
<td>0.875</td>
</tr>
<tr>
<td>Philippines</td>
<td>0.875</td>
<td>0.767</td>
<td>0.983</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.543</td>
<td>0.530</td>
<td>0.557</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.533</td>
<td>0.487</td>
<td>0.580</td>
</tr>
<tr>
<td>Colombia</td>
<td>0.624</td>
<td>0.716</td>
<td>0.531</td>
</tr>
</tbody>
</table>

Notes: The numbers show the annual averages. In all countries, the sample period ends in 2013. The sample period starts from the first year of the inflation-targeting period in all countries, except for the UK, Canada, Sweden, and Australia in which the sample period starts from 1995.

Table 2.2 Exchange Rate Flexibility Measures

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>3.00</td>
<td>0.0016</td>
</tr>
<tr>
<td>Canada</td>
<td>2.69</td>
<td>0.0026</td>
</tr>
<tr>
<td>Sweden</td>
<td>3.00</td>
<td>0.0201</td>
</tr>
<tr>
<td>Australia</td>
<td>4.00</td>
<td>0.0140</td>
</tr>
<tr>
<td>Korea</td>
<td>3.15</td>
<td>0.0025</td>
</tr>
<tr>
<td>Thailand</td>
<td>3.00</td>
<td>0.0055</td>
</tr>
<tr>
<td>Philippines</td>
<td>2.33</td>
<td>0.0043</td>
</tr>
<tr>
<td>Mexico</td>
<td>3.00</td>
<td>0.0008</td>
</tr>
<tr>
<td>Brazil</td>
<td>3.17</td>
<td>0.0035</td>
</tr>
<tr>
<td>Colombia</td>
<td>3.00</td>
<td>0.0025</td>
</tr>
</tbody>
</table>

Notes:
1) The numbers show the annual averages. In all countries, the sample period ends in 2010. The sample period starts from the first year of the estimation period (inflation-targeting period) in all countries, except for the UK, Canada, Sweden, and Australia in which the sample period starts from 1998.
2) The sample period is the inflation-targeting period for each country. Monthly data is used.
Table 2.3 Financial Market Development Measures

<table>
<thead>
<tr>
<th></th>
<th>Private credit by deposit money banks to GDP (%) 1</th>
<th>Liquid liabilities to GDP (%) 1</th>
<th>Gross portfolio debt liabilities to GDP (%) 2</th>
<th>Gross portfolio debt assets to GDP (%) 3</th>
<th>Corporate bond issuance volume to GDP (%) 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>136.4</td>
<td>109.1</td>
<td>69.2</td>
<td>65.0</td>
<td>3.3</td>
</tr>
<tr>
<td>Canada</td>
<td>96.3</td>
<td>96.3</td>
<td>35.8</td>
<td>6.7</td>
<td>2.3</td>
</tr>
<tr>
<td>Sweden</td>
<td>65.9</td>
<td>51.9</td>
<td>68.6</td>
<td>25.3</td>
<td>2.4</td>
</tr>
<tr>
<td>Australia</td>
<td>92.5</td>
<td>75.2</td>
<td>50.5</td>
<td>8.9</td>
<td>1.7</td>
</tr>
<tr>
<td>Korea</td>
<td>82.9</td>
<td>64.4</td>
<td>11.6</td>
<td>3.2</td>
<td>3.9</td>
</tr>
<tr>
<td>Thailand</td>
<td>99.9</td>
<td>104.9</td>
<td>4.2</td>
<td>2.7</td>
<td>2.1</td>
</tr>
<tr>
<td>Philippines</td>
<td>27.8</td>
<td>54.8</td>
<td>16.5</td>
<td>4.7</td>
<td>1.2</td>
</tr>
<tr>
<td>Mexico</td>
<td>16.4</td>
<td>25.6</td>
<td>14.0</td>
<td>3.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Brazil</td>
<td>39.1</td>
<td>55.4</td>
<td>13.6</td>
<td>0.7</td>
<td>1.4</td>
</tr>
<tr>
<td>Colombia</td>
<td>27.7</td>
<td>19.2</td>
<td>9.8</td>
<td>7.5</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Data Source: World Bank, Global Financial Development Database

Notes: The numbers show the annual averages.

1The inflation-targeting periods, up to 2013

국문초록

통화정책의 영향과 전이에 대한 연구

본 논문은 통화정책의 영향과 전이에 대한 다음 두 가지 연구로 구성되어 있다. 1장에서는 부호제약을 이용한 구조 VAR 모형을 사용하여 통화정책 충격을 식별한 뒤 소규모 개방경제 국가들(영국, 캐나다, 스웨덴, 호주)을 대상으로 통화정책 충격이 환율에 미치는 영향을 실증분석하고 있다. 그 결과 지연된 오버슈팅이 6개월 이하에 그치고 UIP 조건과도 크게 벗어나지 않는 것으로 나타났는데 이는 Eichenbaum and Evan(1995) 및 Scholl and Uhlig(2008) 등의 연구와는 상당히 다른 것이다. 추가적인 분석을 통해 이러한 차이가 인플레이션 타케팅 시기로 분석대상 기간을 한정한 점, 소규모 개방경제 국가들의 특성을 반영한 변수선택 등에 주로 기인한 것임을 알 수 있었다. 2장에서는 주요 선진국가들(한국, 태국, 필리핀, 멕시코, 브라질, 콜롬비아)을 대상으로 1장의 실증분석을 확대해 보았고. 추정결과 1장의 선진국가들과는 달리 다양한 퍼즐(환율퍼즐, 지연된 오버슈팅 퍼즐, 선물프리미엄 퍼즐) 형태의 결과가 유도되는 것을 알 수 있었다. 국가간 주요 자료를 바탕으로 비교해본 결과 이러한 차이의 상당부분은 개별 국가들의 자본통제 정도에 있어서의 차이로 설명 가능하다는 것을 유추할 수 있었다.

핵심어: VAR, 통화정책 충격, 환율, UIP 조건, 지연된 오버슈팅
학번: 2013-30066