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GENERAL ABSTRACT 

 

Crop yield was commonly estimated by sample survey, and the method 

would require considerable costs and labor. However, remote sensing data 

would help reliable crop yield prediction with minimal costs, and also help to 

acquire and monitor timely the crop growth conditions. Two approaches 

employed for predicting crop growth and yield based on remote sensing. One 

approach is to use empirical model which represents the direct relationship 

between remote sensing data and observed yields, and another approach is to 

assimilate remote sensing data into crop growth model to improve corn yield 

prediction. In this study, a simple model for each approach was developed to 

predict regional corn yield using a minimum dataset and examined for the 

feasibility of regional corn yield. 
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A simple model was developed to predict corn yields using the MoDerate 

Resolution Imaging Spectroradiometer (MODIS) data product from two 

geographically separate major corn crop production regions: Illinois, USA and 

Heilongjiang Province, China. Corn yields and phenology data were collected 

by agricultural district (AD) in Illinois from 2000 to 2013. Corn yields were 

also compiled by county in Heilongjiang Province from 2002 to 2012. Data 

from the three years were selected to validate the model by state, and 70 and 

30% of the data from the other years were used to calibrate and validate the 

model by district, respectively. The MOD09A1 data product, which are 8-day 

interval surface reflectance data, were obtained from day of the year (DOY) 

89 to 337 to calculate the leaf area index (LAI). The sum of the LAI from early 

in the season to a given date in the season [end of DOY (EOD)] was well fitted 

to a logistic function and represented seasonal change of leaf area duration 

(LAD), which is the integral of LAI over a specific season. A simple 

phenology model was derived to estimate the dates of emergence and maturity 

using the logistic function parameters b1 and b2, which represented the rate of 

increase in LAI and the date of maximum LAI at a given site, respectively. 

The phenology model predicted emergence and maturity dates fairly well, with 

root mean square error (RMSE) values of 6.3 and 4.9 days for the validation 

dataset, respectively. Two simple linear regression models (YP and YF) were 

established using LAD as the variable to predict corn yield; the phenology 
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model (YP) model used LAD from emergence to maturity, and the yield model 

(YF) model used LAD for a predetermined period from DOY 89 to a particular 

EOD. When state/province corn yields for the validation dataset were 

predicted at DOY 321, near completion of the corn harvest, the YP model 

performed much better than the YF model, with RMSE values of 0.68 and 0.66 

t/ha for Illinois and Heilongjiang, respectively. The YP model showed a similar 

or better performance, even for the much earlier yield prediction at DOY 257. 

In addition, the model performance showed no difference between the two 

study regions with very different climates and cultivation methods, including 

cultivar and irrigation management. 

Crop growth models and remote sensing are useful tools for predicting 

crop growth and yield, but each tool has inherent drawbacks when predicting 

crop growth and yield at a regional scale. To improve the accuracy and 

precision of regional corn yield predictions, a simple approach for assimilating 

MODIS product into a crop growth model was developed, and regional yield 

prediction performance was evaluated in a major corn-producing region in 

Illinois, USA. Corn yields and phenology data were collected at state and AD 

levels from 2000 to 2013. Corn growth and yield were simulated using the 

Crop Environment Resource Synthesis (CERES)-Maize model with a 

minimum input dataset comprising planting date, fertilizer amount, genetic 

coefficients, soil, and weather data. Planting date for each grid was estimated 
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using a phenology model with a LAD logistic function that describes the 

seasonal evolution of MODIS-derived LAD. Genetic coefficients of the maize 

cultivar for each grid were determined to be the genetic coefficients of the 

mature group [included in Decision Support System for Agrotechnology 

Transfer (DSSAT) 4.6], which shows the minimum difference between the 

maximum LAI value derived from the LAD logistic function and that 

simulated by the CERES-Maize model. In addition, the daily water stress 

factors employed in CERES-Maize model were estimated from the ratio of 

daily leaf area/weight growth rate estimated from the LAD logistic function to 

the daily leaf area/weight growth rate estimated by simulating CERES-Maize 

model under an auto-irrigation condition. Corn yield predictions using only 

the estimated planting date and maturity group were very poor under rain-fed 

conditions at both the AD and state levels, whereas corn yield predictions 

improved under the auto-irrigation condition, indicating that irrigation has 

been applied in a considerable portion of cornfields in Illinois. In addition to 

assimilation of the estimated planting date and maturity group, further 

assimilation of the estimated daily LAI and water stress factors also improved 

the corn yield prediction considerably, increasing the R2 value from 0.72 to 

0.78 and decreasing the RMSE from 1.47 to 0.75 t/ha for the yearly corn yield 

prediction. In addition, an earlier corn yield prediction at DOY 257 was 

possible without decreased accuracy.  
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In conclusion, simple corn yield prediction model for each approach was 

developed using remote sensing data, and had considerable accuracy and 

precision for predicting the corn yield in study regions. However, these models 

and method need to be examined for spatial portability in more diverse agro-

climatic and agro- technology regions. 

 

Keywords: MODIS; corn yield; phenology; LAD; logistic function; crop 

growth model; water stress  
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GENERAL INTRODUCTON 

 

Among major crops, corn ranks top in the world production (FAOSTAT, 

2015) and the domestic consumption as food and livestock feed in South 

Korea. Corn which is a cereal crop grown over the world, is produced for use 

in food (e.g., organic cereals, tortillas, corn chips, snack foods, and cornmeal), 

animal feed, and industrial products such as ethanol (Ranum et al., 2014). Corn 

is representative C4 plant, and has higher water use and photosynthetic 

efficiency, and better adaptation in harsh environmental conditions (e.g., high 

temperature and dry) than C3 plants (Ashraf and Harris 2013). 

Global climate change caused by emissions of greenhouse gases is 

accelerating, and more frequently generating extreme weather events (e.g., 

heavy rainfall, high temperature, and droughts) (Rosenzweig et al., 2001; 

Trenberth, 2008). These events can negatively affect crop production for food, 

feed, or fodder (Kumar and Tuti, 2016; Sinha et al., 1988), and will change 

pattern and balance of trade for food and food products (Wheeler and Braun, 

2013). If adaptation according to climate change over the years is not, the 

impacts will become worse (Gbegbelegbe et al., 2014). Particularly, South 

Korea which has very low self-sufficiency and depend on imports, will be 

more affected on food security than the other country. Thus, predicting crop 

production and yield of major producing countries in advance is essential for 



14 

 

these countries. Early crop production and yield prediction prior to harvest can 

help to play important role in decision making for food pricing and trading 

policies (Hayes and Decker, 1996; Kouadio et al., 2012).  

Crop yield was commonly estimated by sample survey, and the method 

would require considerable costs and labor (Guannan et al., 2013). However, 

remote sensing products would help reliable prediction of crop production and 

yield with minimal costs because large datasets are open to public (Mumby et 

al., 1999), and also help to acquire and monitor timely the crop growth 

conditions (Cheng et al, 2016). Two approaches are employed for predicting 

crop growth and yield based on remote sensing (Shao et al., 2015).  

The first approach is to use empirical model which represents the direct 

relationship between remote sensing data and observed yields at selected 

region (Morel et al., 2014). Various vegetation indices (VIs) [e.g., normalized 

difference vegetation index (NDVI), wide dynamic range vegetation index 

(WDRVI), and enhanced vegetation index (EVI)] have been developed and 

evaluated with surface reflectance remote sensing product (Clevers, 1988; 

Huete et al., 2002; Nguy-Robertson el al., 2012; Rouse et al., 1973), and the 

VIs have a strong correlation with crop growth and yield. Crop growth and 

yield have been predicted with VI data using simple empirical model 

(Dadhwal, 2003; Dash and Curran, 2007; Jaafar and Ahmad, 2015; Kolotii et 

al., 2015; Lopresti et al., 2015; Rembold et al., 2013), and sophisticated 
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empirical model requiring data such as rainfall and temperature have also been 

developed to improve accuracy for predicting crop growth and yield (Prasad 

et al., 2006). However, these methods are likely that the spatial portability of 

the model would be limited. In addition to VIs, remote sensing derived LAI 

has also been used to predict crop biomass and yield (Casanova et al., 1997; 

Maki and Homma, 2014; Son et al., 2013). LAI, the one side total leaf area 

per unit of ground area (Wasseige et al., 2003), is a key biophysical variable 

to determine crop growth and yield (Bach, 1998; Noureldin et al., 2013). LAD 

is the integrated value of LAI over time, and important crop parameter that has 

a strong correlation with dry matter production and grain yield (Liu et al., 2005; 

López-Bellido et al., 2008). 

The second approach is to assimilate remote sensing products into crop 

growth models (Ma et al., 2013). Crop growth models can simulate daily crop 

state variables (e.g., LAI and biomass), nitrogen, carbon, and water cycles in 

response to cultivar characteristics, environment (e.g., solar radiation, 

temperature, and precipitation), and management practices (Huang et al, 2013; 

Yang et al., 2004). Crop growth models require many input data (e.g., 

management practices, cultivar parameters, soil properties, and weather data) 

to predict crop growth and yield (Basso et al., 2013; Machwitz et al., 2014), 

and the these constraints make it difficult to predict crop growth and yield in 

a region where cultivation information is not easily obtained (Jégo et al., 2015; 



16 

 

Motha et al., 2011). However, integration of remote sensing data and crop 

growth models made it possible to predict crop growth and yield at regional 

scale (Doraiswamy et al., 2003; Wu et al., 2011), and two strategies are mainly 

used for integrating remote sensing data into crop growth model (Moulin et 

al., 1998). The first strategy is “forcing” that updates state variables derived 

from remote sensing data into crop growth model (Dadhwal, 2003). The 

second strategy is “recalibration” that adjusts initial conditions and parameters 

of crop growth model using remote sensing data (Yuping et al., 2007). 

Ensemble Kalman Filter (EnKF) which is a representative “recalibration” 

method, has been widely used to predict crop yield by assimilating remote 

sensing data into crop growth model (Ines et al., 2013; Li et al., 2014; 

Machwitz et al., 2014; Wu et al., 2012; Zhao et al., 2013; Zhu et al., 2013). 

These methods use repetitive process which adjusts initial conditions (e.g., 

physical attributes of soil profile) and parameters of crop growth model (e.g., 

cultivar characteristics) by minimizing the difference between remote sensing-

derived value and simulated value by crop growth model (Huang et al., 2015; 

Ines et al. 2013; Jiang et al., 2014). Therefore, these methods require high 

computational cost to predict crop yield at large scale (Biniaz Delijani et al., 

2014; Lei et al., 2012) because of the repetitive process to find optimum value, 

and it would be spatially limited due to the localization in EnKF using 

calibration dataset (Anderson, 2012).  
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This dissertation focuses on the following objectives. The first objectives 

were to develop a simple approach to predict crop phenology and yield using 

a minimum set of remote sensing data products and to examine the spatial 

portability of the simple method. Reliable corn yield prediction could help 

assess the socioeconomic impact on food production at regional and global 

scales. The first study focused on predicting corn yield in major production 

areas of the USA and China. The second objectives were to develop a new 

approach to predict corn yields at large area by assimilating remote sensing 

data into crop growth model without re-initialize and re-parameterize 

processes, and to evaluate possibility of the approach by applying in a major 

production area of the USA. 
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LITERATURE REVIEW 

 

Traditional crop growth and yield prediction have relied on sampling of a 

number of fields (Guannan et al., 2013; Mosleh et al., 2015), and this method 

requires considerable labor, costs and time. However, usage of remote sensing 

data can be help a reliable and timely crop growth and yield prediction without 

sizable costs (Sharifi, 2000). Two approaches have been used for predicting 

crop growth and yield based on remote sensing (Shao et al., 2015). 

 

1. Empirical model using remote sensing data 

Various vegetation indices (VIs) [e.g., normalized difference vegetation 

index (NDVI), wide dynamic range vegetation index (WDRVI), and enhanced 

vegetation index (EVI)] have been developed and evaluated with surface 

reflectance remote sensing product (Clevers, 1988; Huete et al., 2002; Nguy-

Robertson el al., 2012; Rouse et al., 1973).  

Predicting crop yield using remote sensing data products often depends on 

an empirical approach that relates VIs alone or in combination with remote 

sensing derived meteorological variables to the reported crop yields (Bolton 

and Friedl, 2013; Li et al., 2007; Johnson, 2014; Shao et al., 2015). Bolton and 

Friedl (2013) used a simple linear regression model to predict corn and 
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soybean yield using VIs (i.e., NDVI, EVI2, and NDWI) from MODIS in the 

Central USA and concluded that the EVI2 index exhibited better ability to 

predict maize yield than the NDVI and that the use of crop phenology 

information from MODIS improved the model predictability. Johnson (2014) 

developed a regression tree model using the linear and/or exponential 

relationship of MODIS-derived NDVI and daytime land surface temperature 

with county-level yield statistics to predict corn and soybean yield for 12 states 

in central and northern USA. Shao et al. (2015) developed simple linear 

regression model using multi-temporal NDVI from MODIS to predict county-

level corn yields for the entire Midwestern USA and confirmed that using a 

digital elevation model climate data as additional model inputs slightly 

improved the performance of the regional corn yield model. Although simple 

models to predict crop yield can be developed (Huang et al., 2013; Huang et 

al., 2011), it is likely that the spatial portability of the model would be limited 

because the parameters of the empirical equation that were estimated in the 

study region would not be applicable to the other regions with different 

agroclimate and agrotechnologies. Additionally, VIs such as NDVI can detect 

inter-annual fluctuation of crop yield due to weather conditions while they 

cannot detect human-induced factors that result in increased crop yield (Huang 

et al., 2013), making the NDVI-crop yield regression model difficult to extend 

to other regions (Huang et al., 2013; Mkhabela and Mashinini, 2005). 
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Sophisticated approaches requiring data in addition to remote sensing data 

have also been developed to improve predictions of crop growth and yield 

(Huang et al., 2013; Lobell, 2013; Prasad et al., 2006). For instance, Prasad et 

al. (2006) used a piecewise linear regression model with a break point to 

predict corn and soybean yield using monthly NDVI, soil moisture, surface 

temperature, and total rainfall. Nevertheless, it is preferable to develop a crop 

yield prediction model with wide spatial portability using a small dataset 

(Zhang et al., 2012).  

In addition to VIs, remote sensing derived LAI has also been used to 

predict crop biomass and yield (Casanova et al., 1997; Maki and Homma, 2014; 

Son et al., 2013). LAI, the one side total leaf area per unit of ground area 

(Wasseige et al., 2003), is a key biophysical variable to determine crop growth 

and yield (Bach, 1998; Noureldin et al., 2013). LAD is the integrated value of 

LAI over time. Although LAD is an important crop parameter that has a strong 

correlation with dry matter production and grain yield (Liu et al., 2005; López-

Bellido et al., 2008), it has not been used in a yield prediction model using 

remote sensing data. LAD has been reported to have positive correlation with 

corn yield under water and nitrogen stress conditions imposed at different 

growth stages (Wolfe et al., 1988) and under varying planting densities of 

three maize hybrids (Alias et al., 2011), and genetic differences in 

photosynthetic duration (longer LAD) were reported to be associated with a 
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longer grain filling duration and higher yield (Russell, 1991). These findings 

suggest that LAD would have greater potential to represent corn yield 

variability in regions with diverse agroclimate and agrotechnologies compared 

to VIs and LAI at a particular crop growth stage. 

 

2. Assimilating remote sensing data into crop growth model 

Crop growth models can simulate daily crop state variables (e.g., LAI and 

biomass), nitrogen, carbon, and water cycles in response to cultivar 

characteristics, environment (e.g., solar radiation, temperature, and 

precipitation), and management practices (Huang et al, 2013; Yang et al., 

2004). Crop growth models require many input data (e.g., management 

practices, cultivar parameters, soil properties, and weather data) to predict 

crop growth and yield (Basso et al., 2013; Machwitz et al., 2014), and these 

constraints make it difficult to predict crop growth and yield in a region where 

cultivation information is not easily obtained (Jégo et al., 2015; Motha et al., 

2011). However, integration of remote sensing data and crop growth models 

is possible to predict crop growth and yield at regional scale (Doraiswamy et 

al., 2003; Wu et al., 2011), and two strategies are mainly used for integrating 

remote sensing data into crop growth model (Moulin et al., 1998). 

The first strategy is “forcing” that updates state variables derived from 

http://jxb.oxfordjournals.org/content/51/suppl_1/447.full#ref-59
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remote sensing data into crop growth model (Dadhwal, 2003). The state 

variables derived from remote sensing data were interpolated to convert daily 

time series due to temporal characteristic of remote sensing data and 

atmospheric effects (Delecolle and Guerif, 1998). Delecolle and Guerif (1988) 

estimated wheat yield by updating interpolated LAI derived from SOPT/HRV 

into AFRCWHEAT model. Bouman (1995) estimated biomass of winter 

wheat at harvest by updating LAI derived from radar remote sensing into 

SUCROS model. Although forcing strategy is simple, the initial conditions or 

parameters of crop growth model should be estimated to improve prediction 

performance (Moulin et al., 1998).  

The second strategy is “recalibration” that adjusts initial conditions and 

parameters of crop growth model using remote sensing data (Yuping et al., 

2007). Ensemble Kalman Filter (EnKF) which is a representative 

“recalibration” method, has been widely used to predict crop yield by 

assimilating remote sensing data into crop growth model (Ines et al., 2013; Li 

et al., 2014; Machwitz et al., 2014; Wu et al., 2012; Zhao et al., 2013; Zhu et 

al., 2013). For example, Li et al. (2014) assimilated LAI retrieved from ETM+ 

data into hydrology-crop growth model which links World food studies 

(WOFOST) model to better predict corn yields in study region which located 

in the middle reaches of the Heihe River basin, northwest China, and 

parameters related to maintenance respiration, rooting depth, and soil 
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hydraulic properties were adjusted using EnKF. Wu et al. (2011) used EnKF 

to assimilate MODIS-LAI into World Food Studies (WOFOST) model to 

estimate winter wheat yield in Hengshui district, Hebei Province, China. Ines 

et al. (2013) used EnKF to assimilate soil moisture and/or MODIS-LAI into 

CERES-Maize model to estimate corn yield from 2003 to 2009 in Story 

County, Iowa, USA. These methods use repetitive process which adjusts 

initial conditions (e.g., physical attributes of soil profile) and parameters of 

crop growth model (e.g., cultivar characteristics) by minimizing the difference 

between remote sensing-derived value and simulated value by crop growth 

model (Huang et al., 2015; Ines et al. 2013; Jiang et al., 2014). Therefore, these 

methods require high computational cost to predict crop yield at large scale 

(Biniaz Delijani et al., 2014; Lei et al., 2012) because of the repetitive process 

to find optimum value, and it would be spatially limited due to the localization 

in EnKF using calibration dataset (Anderson, 2012). 
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Chapter I. 

Predicting regional corn yields with MODIS data 

 

ABSTRACT 

 

A simple approach was developed to predict corn yields using the 

MoDerate Resolution Imaging Spectroradiometer (MODIS) data product from 

two geographically separate major corn crop production regions: Illinois, USA 

and Heilongjiang, China. The MOD09A1 data, which are 8-day interval 

surface reflectance data, were obtained from day of the year (DOY) 89 to 337 

to calculate the leaf area index (LAI). The sum of the LAI from early in the 

season to a given date in the season [end of DOY (EOD)] was well fitted to a 

logistic function and represented seasonal changes in leaf area duration (LAD). 

A simple phenology model was derived to estimate the dates of emergence and 

maturity using the LAD-logistic function parameters b1 and b2, which 

represented the rate of increase in LAI and the date of maximum LAI, 

respectively. The phenology model predicted emergence and maturity dates 

fairly well, with root mean square error (RMSE) values of 6.3 and 4.9 days for 

the validation dataset, respectively. Two simple linear regression models (YP 

and YF) were established using LAD as the variable to predict corn yield. The 
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yield model YP used LAD from predicted emergence to maturity, and the yield 

model YF used LAD for a predetermined period from DOY 89 to a particular 

EOD. When state/province corn yields for the validation dataset were 

predicted at DOY 321, near completion of the corn harvest, the YP model, 

including the predicted phenology, performed much better than the YF model, 

with RMSE values of 0.68 t/ha and 0.66 t/ha for Illinois and Heilongjiang, 

respectively. The YP model showed similar or better performance, even for the 

much earlier pre-harvest yield prediction at DOY 257. In addition, the model 

performance showed no difference between the two study regions with very 

different climates and cultivation methods, including cultivar and irrigation 

management. These results suggested that the approach described in this paper 

has potential for application to relatively wide agroclimatic regions with 

different cultivation methods and for extension to the other crops. However, it 

needs to be examined further in tropical and sub-tropical regions, which are 

very different from the two study regions with respect to agroclimatic 

constraints and agrotechnologies. 

 

Keywords: MODIS, yield, phenology, LAD, logistic function 
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INTRODUCTION 

 

Global warming is projected to accompany more frequent extreme weather 

events, such as heavy rainfall, high temperature, and drought (Rosenzweig et 

al., 2001; Trenberth, 2008). Although these climate changes will positively 

affect crop production in some regions, and crop production for food, feed, 

and fodder in other regions will be negatively affected by climate changes 

(Kumar and Tuti, 2016; Sinha et al., 1988), aggravating all dimensions of food 

security. Timely and reliable information on crop growth and yield at the 

regional, national, and global scales is essential for food security and trade 

policies (Hutchinson et al., 1991; Kouadio et al., 2012; Macdonald and Hall, 

1980). 

Notable advances in remote sensing have enabled reliable and timely 

prediction of crop yields (Huang et al., 2013; Kussul et al., 2009). Vegetation 

indices (VIs), which are calculated by combining the reflectance values of 

several spectral bands from multi spectral satellite systems have been used 

directly as crop yield estimators (Figueiredo et al., 2016; Huang et al., 2013; 

Li et al., 2007) and/or to estimate intermediate crop growth variables, such as 

LAI and biomass, for yield prediction (Jaafar and Ahmad, 2015; Kolotii et al., 

2015; Rembold et al., 2013; Sibley et al., 2014). In addition to VIs and crop 
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growth variables, crop phenology information is required for reliable crop 

yield prediction because the effects of environmental conditions on crop yield 

differ by growth stage (Prasad et al., 2008). Crop phenology has also been 

estimated using remote sensing data products (Islam and Bala, 2008; Qiu et 

al., 2016; Sakamoto et al., 2010). For example, Islam and Bala (2008) used 

NDVI and LAI derived from remote sensing data to identify the planting and 

ending dates of potato, Qiu et al. (2016) estimated phenological dates in 

multiple cropping regions using EVI2 of the MODIS data, and Sakamoto et al. 

(2010) applied a two-step filtering approach to detect maize and soybean 

phenology with time-series MODIS data. 

 Predicting crop yield using remote sensing data products often depends 

on an empirical approach that relates VIs alone or in combination with remote 

sensing derived meteorological variables to the reported crop yields (Bolton 

and Friedl, 2013; Li et al., 2007; Johnson, 2014; Shao et al., 2015). Bolton and 

Friedl (2013) used a simple linear regression model to predict corn and 

soybean yield using VIs (i.e., NDVI, EVI2, and NDWI) from MODIS in the 

Central USA and concluded that the EVI2 index exhibited better ability to 

predict maize yield than the NDVI and that the use of crop phenology 

information from MODIS improved the model predictability. Johnson (2014) 

developed a regression tree model using the linear and/or exponential 

relationship of MODIS-derived NDVI and daytime land surface temperature 
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with county-level yield statistics to predict corn and soybean yield for 12 states 

in central and northern USA. Shao et al. (2015) developed simple linear 

regression model using multi-temporal NDVI from MODIS to predict county-

level corn yields for the entire Midwestern USA and confirmed that using a 

digital elevation model climate data as additional model inputs slightly 

improved the performance of the regional corn yield model. Although simple 

models to predict crop yield can be developed (Huang et al., 2013; Huang et 

al., 2011), it is likely that the spatial portability of the model would be limited 

because the parameters of the empirical equation that were estimated in the 

study region would not be applicable to the other regions with different 

agroclimate and agrotechnologies. Additionally, VIs such as NDVI can detect 

inter-annual fluctuation of crop yield due to weather conditions while they 

cannot detect human-induced factors that result in increased crop yield (Huang 

et al., 2013), making the NDVI-crop yield regression model difficult to extend 

to other regions (Huang et al., 2013; Mkhabela and Mashinini, 2005). 

Sophisticated approaches requiring data in addition to remote sensing data 

have also been developed to improve predictions of crop growth and yield 

(Huang et al., 2013; Lobell, 2013; Prasad et al., 2006). For instance, Prasad et 

al. (2006) used a piecewise linear regression model with a break point to 

predict corn and soybean yield using monthly NDVI, soil moisture, surface 

temperature, and total rainfall. Nevertheless, it is preferable to develop a crop 
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yield prediction model with wide spatial portability using a small dataset 

(Zhang et al., 2012). 

In addition to VIs, remote sensing derived LAI has also been used to 

predict crop biomass and yield (Casanova et al., 1997; Maki and Homma, 2014; 

Son et al., 2013). LAI, the one side total leaf area per unit of ground area 

(Wasseige et al., 2003), is a key biophysical variable to determine crop growth 

and yield (Bach, 1998; Noureldin et al., 2013). Son et al. (2013) developed a 

regression model using MODIS-LAI and EVI as input variables used to 

predict rice yield in the Mekong delta, Vietnam. LAD is the integrated value 

of LAI over time. Although LAD is an important crop parameter that has a 

strong correlation with dry matter production and grain yield (Liu et al., 2005; 

López-Bellido et al., 2008), it has not been used in a yield prediction model 

using remote sensing data. LAD has been reported to have positive correlation 

with corn yield under water and nitrogen stress conditions imposed at different 

growth stages (Wolfe et al., 1988) and under varying planting densities of 

three maize hybrids (Alias et al., 2011), and genetic differences in 

photosynthetic duration (longer LAD) were reported to be associated with a 

longer grain filling duration and higher yield (Russell, 1991). These findings 

suggest that LAD would have greater potential to represent corn yield 

variability in regions with diverse agroclimate and agrotechnologies compared 

to VIs and LAI at a particular crop growth stage. 

http://jxb.oxfordjournals.org/content/51/suppl_1/447.full#ref-59
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The objectives of this study were to develop a simple approach to predict 

crop phenology and corn yield using a minimum set of remote sensing data 

products and to examine the spatial portability of the simple method. This 

study focused on predicting corn yield in major production areas of the USA 

and China with different agroclimates and agrotechnologies. 

 

MATERIALS AND METHODS 

 

1. Study area 

A simple approach using remote sensing data products was developed to 

predict crop yields in major crop production areas in the USA and China, 

where varieties and cultivation methods differ considerably. Illinois, USA 

(40°0′0″N, 89°0′0″W) (Figure I–1a) and Heilongjiang Province, China 

(47°50′0″N, 127°40′0″E) (Figure I–2a) were selected as the regions of interest. 

Illinois and Heilongjiang are located on opposite sides of the Earth. The 

latitude of Heilongjiang is higher than that of Illinois. Accordingly, the 

environmental conditions (e.g., temperature, precipitation, and solar radiation) 

differ between sites. The annual mean temperature in Illinois is approximately 

10 °C, while in Heilongjiang, it is −4 °C to 4 °C. These different environmental 

conditions are why different crop varieties and cultivation methods are used at 

the two sites (Eberhart and Russell, 1966).  
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(a)                                  (b) 

Figure I–1. Map of the USA showing the location of Illinois (a) and crop cover data for 

Illinois in 2013 (b) (Corn is indicated by yellow). 

 

 

   (a)                                  (b) 

Figure I–2. Map of the China showing the location of Heilongjiang (a) and crop cover data 

for Heilongjiang in 2012 (b) (Corn is indicated by yellow). 
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The corn production area and the quantity of corn produced as a proportion 

of the national total in Illinois were approximately 32% and 15% in 2013, 

respectively. The corresponding values in Heilongjiang were approximately 

9% and 12%.  

 

2. Data and processing 

2.1. Crop yield and phenology data 

Corn yields in Illinois and Heilongjiang (Figure I–3) were obtained from 

official reports provided by statistical services in each country to evaluate the 

reliability of a model for predicting corn yield. In Illinois, crop yields from 

2000 to 2013 were gathered from the National Agricultural Statistics Service 

(NASS) by agricultural district (AD) (available at 

https://quickstats.nass.usda.gov/). Crop area and total production of each crop 

were also obtained from the NASS by county and state. The unit system for 

crop yield in Illinois was converted from “bushels per acre” to “kilograms per 

hectare” to fit the unit system used in Heilongjiang. 

The yields and planted area for 2002 to 2012 in Heilongjiang Province 

were collected from the Heilongjiang Statistical Yearbook by prefecture and 

province. The corn yields in Heihe and Daxinganling prefectures in 

Heilongjiang Province were excluded from the calculation to minimize the 

computing resources because mean corn production was considerably lower 
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than in other areas of the province.  

 

 

Figure I–3. Reported corn yields from 2000 to 2013 in the central AD, Illinois and from 2002 

to 2012 in Harbin Prefecture, Heilongjiang. 

 

The data of corn emergence and maturity date for Illinois were obtained 

from weekly crop progress reports by the NASS-Illinois Field Office (IFO). 

These data which were provided by AD were only available for five ADs 

(northwest, northeast, central, western, and eastern districts) between 2003 

and 2012 due to missing data in some ADs. The dates of emergence and 

maturity were obtained. Because of the limited availability of phenology data 

in Heilongjiang Province, a model was established and validated to predict the 
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phenological stages using data only for the ADs in Illinois, USA and was 

applied to predict the phenological stages in Heilongjiang, China. 

The phenology data were used to evaluate the reliability of a model to 

predict corn phenological dates using remote sensing data. The date on which 

a given phenological stage reached 50% in the study area, e.g., an AD, was 

used to represent when a phenological stage occurred. It was assumed that the 

proportion of area in a given stage would increase linearly over a two-week 

period. The weekly data for the proportion of area in which the crop was at the 

phenological stage of interest were collected from the NASS-IFO. Those 

weekly data were used to compare the estimated dates on which a phenological 

stage occurred in the AD. For example, the day on which the corn crop reached 

a phenological stage was determined by a linear interpolation between the 

weekly proportion of area for the given phenological stage. 

 

2.2. Crop cover data 

Crop cover data for Illinois (Figure I–1b) were obtained from cropland 

data layers (CDL) provided by NASS to identify the area where a given crop 

was grown (available at 

https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php). 

Crop cover data were obtained from 2000 to 2013. The crop cover data from 

2002 to 2012 in China (Figure I–2b) were generated using remote sensing 
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(Kim et al., 2016). Crop areas were identified from the MODIS land cover 

type product (MCD12Q1). Major crops, including corn, within the crop areas 

were classified using a maximum likelihood classifier and time-series MODIS 

16-day NDVI dataset (MOD13Q1). Crop cover data, which have a spatial 

resolution of 250 m, were subjected to c using ENVI (ExelisVIS: Exelis Visual 

Information Solutions, Boulder, CO, USA). The projections of the crop cover 

maps in both regions were converted to a Universal Transverse Mercator 

(UTM) projection and WGS-84 coordinates at 1 km spatial resolution.  

  

2.3. Remote sensing data 

The MODIS surface reflectance data for 2000–2013 were obtained from 

the MOD09A1 data which have a spatial resolution of 500 m. These data were 

downloaded from Reverb, which is a web-based remote sensing data portal 

operated by the National Aeronautics and Space Administration (available at 

http://modis.gsfc.nasa.gov/). The h10v04, h10v05, h11v04, and h11v05 tiled 

grid data for Illinois were collected from DOY 89 to 329. The h26v04 and 

h27v04 tiled grid data were obtained for the same period in Heilongjiang. 

The near-infrared (NIR; band 2) and red (band 1) band of reflectance data 

were prepared to estimate LAI using a series of data tools (Figure I–4). First, 

all tiled reflectance data were mosaicked into a single dataset using interface 

description language (IDL; ExelisVIS). The projection of mosaic data was 
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converted to UTM projection at 1 km spatial resolution and WGS-84 

geographic latitude and longitude coordinates using IDL, which applies the 

triangulation wrap and nearest neighbor resampling methods. Reflectance data 

were resized to fit the size and georeference of crop cover data using FWTools, 

which is a collection of open-source GIS applications. Gridded data for the 

area where a given crop was grown by year, were prepared by extracting the 

reflectance data for the given extent to compare grids belonging to the crop of 

interest in the crop cover data using MATLAB (MathWorks Inc., Natick, MA, 

USA). 

 

 

Figure I–4. Data-flow diagram of the surface reflectance and crop cover data used to 

standardize the data. 
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Cropland was identified using the proportion of crop cover in each pixel 

of the MODIS product using a mixed problem and low resolution (Bolton and 

Friedl, 2013; Shao et al., 2015). Crop cover data were overlapped with the 

MODIS data to calculate the percentage of pixels where a given crop was 

grown in the research region. It was assumed that the crop of interest would 

be grown within pixels where the percentage of corn was > 60% and > 90%. 

Although identifying a crop using the percentage of crop cover could be used 

for pure growing regions of the crop, a percentage value was not set for the 

identification method, so the mixed problem differed by region and crop. This 

method can cause problems when integrating from a smaller to a larger scale 

due to the pixels excluded below the threshold percentage. In this study, the 

pixels for corn growing in Illinois and Heilongjiang were identified according 

to the data standardization procedure described in Figure I–4, and the number 

of identified pixel in Illinois and Heilongjiang were approximately 610,000 

and 860,000, respectively. 
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3. Estimation of LAI 

3.1. Estimation of LAI using remote sensing data 

LAI was calculated using the NIR and red bands of the reflectance data. 

Nguy-Robertson et al. (2012) suggested that the combined vegetation index 

(CVI) is more accurate than a single vegetation index set to estimate LAI. 

Instead of using the LAI products from the MODIS data, the LAI value was 

calculated as follows (Nguy-Robertson et al., 2012): 

 

LAI = {
(NDVI − 0.28)/0.28 ,   NDVI ≤ 0.7
(SR − 1.0)/3.5 ,              NDVI > 0.7 

 ----- Equation (I–1) 

 

where NDVI and SR are the normalized difference vegetation index (Rouse et 

al., 1973) and simple ratio (Jordan, 1969), respectively. NDVI and SR were 

determined as follows: 

 

NDVI = (NIR − red)/(NIR + red) ----- Equation (I–2) 

SR = NIR/red ----- Equation (I–3) 

 

where NIR and red indicate the near-infrared and red band spectra.  
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3.2. Estimation of daily LAI using a logistic function 

Various smoothing algorithms were used to reduce noise in remote sensing 

time-series data (Shao et al., 2016). The Savitzky-Golay, asymmetric Gaussian, 

double-logistic, Whittaker smoother, and discrete Fourier transformation 

smoothing algorithms have been applied to the NDVI data in the MODIS 

product. In this study, MODIS-derived LAI was smoothed using a simple 

method. It was assumed that the total sum of the LAI over time would be 

shaped like a logistic function. For example, the LAI would be negligible early 

in the season until the emergence date. However, the daily LAI sum would 

increase rapidly during the vegetative growth stage, but the sum of the LAI 

would become negative after flowering. Finally, the sum of the LAI over a 

season would remain relatively constant until harvest after physiological 

maturity (Figure I–5). 

A logistic function was used to represent the temporal change in leaf area 

duration (LAD), which is the integral of LAI over time as follows (Equation 

(I–4)): 

 

∫ 𝐿𝐴𝐼(𝑡) 𝑑𝑡 =  
𝑏3

1.0+exp [−𝑏1(𝑡−𝑏2)]
 ----- Equation (I–4) 

 

where b1 represents the rate of LAI growth, b2 represents the date of the 
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maximum LAI, b3 represents the cumulative LAI at physiological maturity, 

and t indicates days after planting. 

Although it would be preferable to determine the t as the date after the 

exact planting date, it was challenging to obtain this date in each grid cell. 

Because a logistic function was used in Equation (I–4), it was assumed that 

the t could be determined using a date earlier than the actual planting date. In 

this study, DOY 89 was used as the beginning of the cropping season, which 

was the a prior to the actual planting for the regions of interest. The order of 

the remote sensing data products since DOY 89 was used to determine the t 

and conveniently estimate the logistic function parameters. For example, t was 

2 when data production on DOY 97 was used for Equation (I–4). The simplex 

method (Nelder and Mead, 1965) was used to determine the parameter values 

of Equation (I–4) for each grid cell. The sum of the LAI derived from the 

MODIS product until a given date was compared with that obtained from 

Equation (I–4). The LAI values from 89 to 337 DOY were accumulated at 

eight-day intervals for each grid cell at a 1-km resolution. The sum of the 

square error between the observed and simulated values of cumulative LAI 

was minimized to obtain parameter values for b1, b2, and b3 in the simplex 

algorithm.  
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Figure I–5. MODIS-derived and logistic-estimated cumulative LAI for corn in Illinois. The 

X-axis denotes the order of the dates for the remote sensing data product. For example, 

products for DOY 89 and 97 are indicated by 1 and 2, respectively. 

 

The derivative of Equation (I–4) on a given date represented the LAI on 

that date. 

 

LAI =  
𝑏3∙𝑏1∙exp [−𝑏1(𝑑−𝑏2)]

{1.0+exp [−𝑏1(𝑑−𝑏2)]}2
 ----- Equation (I–5) 

 

Daily changes in LAI (Figure I–6) were determined for each grid cell. 
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Figure I–6. MODIS-derived and logistic-estimated LAI for corn in Illinois. X-axis denotes 

the order of the dates for the remote sensing data product. For example, the products for DOY 

89 and 97 are indicated by 1 and 2, respectively. 

 

4. Prediction of crop phenological dates 

The dates of emergence and maturity were estimated using a simple 

empirical equation (Equation (I–6)). It was assumed that date DP for a given 

phenology P could be determined using b1 and b2 from the LAD-logistic 

function (Equation I–5), which represent the rate of LAI increase and the date 

of maximum LAI at a given site, respectively, as follows: 

 

DP =  b2 +  τP +  ρP/b1 ----- Equation (I–6) 
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where τP and ρP are empirical coefficients, τP represents the overall time 

difference between the date of the maximum LAI and a given phenological 

stage P, and ρP  represents the impact of the increase in LAI on the 

phenological change over time. τP and ρP were estimated using the simplex 

method. The NASS-derived dates for a given phenology were compared with 

those obtained from Equation (I–5). 

 

5. Prediction of crop yield 

Daily LAD was also determined from the date of emergence to that of 

maturity for each grid cell, as follows (Power et al., 1967): 

 

LAD =  
(𝐿𝐴𝐼𝑑+1+𝐿𝐴𝐼𝑑)

2
 ----- Equation (I–7) 

 

where LAId is the LAI value on d. The sum of the LAD values was obtained 

for the growing periods, e.g., from emergence to maturity, for each grid cell. 

Then, the sum of those values was averaged by region, e.g., AD and prefecture 

in a season as follows: 

 

ALAD =  
1

𝑛
∑ ∑ 𝐿𝐴𝐷𝑑𝑐

m
d=0

n
c=0  ----- Equation (I–8) 
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where c and d represent the grid cell index in the region in which the corn was 

grown and the date index from emergence to maturity at c, respectively. 

Huang et al. (2011) reported that crop yield can be determined with the 

LAI using simple linear regression. In this study, ALAD was used as an 

independent variable in the simple linear regression to predict grain yield. The 

coefficients of the regression line were obtained for the reported yields and 

yield predictions for a given district D in a season as follows:  

 

YieldD =  αALADD + β ----- Equation (I–9) 

 

where α and β are coefficients estimated by the least square difference method.  

 

5.1. YP model using LAD accumulated from the estimated emergence 

date  

The YP model used the predicted phenological stages and smoothed LAI 

values to calculate LAD. LAI values were accumulated from the emergence 

to maturity dates predicted using Equations (I–4) and (I–6). The last date on 

which the remote sensing data products were used was denoted EOD. The 

EOD value was the date elapsed from the initial date of analysis when the 

approach was used in other regions, e.g., in the southern hemisphere. However, 

DOY was used to indicate the EOD for simplicity. The coefficients of the 
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simple linear regression for the YP model were obtained for the relations 

between the reported yields and yield estimates. No remote sensing data was 

available from EOD to maturity if the EOD was earlier than the maturity date. 

In such cases, Equation (I–5) was used to estimate daily LAI until maturity. 

 

5.2. YF model using LAD accumulated from an arbitrarily fixed date 

To estimate the dates of emergence and maturity, phenology data in the 

region of interest must be available to determine τP and ρP for Equation (I–

6). Therefore, the Yp model would not be applicable to a region where few 

phenology data are available. Instead of using the smoothed LAD values from 

the predicted emergence to maturity date, the YF model used the LAD 

accumulated with LAI values calculated from Equation (I–1) for the period 

representing the entire growing season, e.g., from DOY 89 to 337. The ALAD 

value was calculated to determine yields using Equation (I–9) between DOY 

89 and a particular EOD or between DOY 89 and 337. The coefficients of the 

simple linear regression for the YF model were obtained for the relations 

between the reported yields and yield estimates. 
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5.3. Comparison between the YP and YF models 

The YP and YF models were different with respect to the period and the 

LAI resource data used to calculate LAD. The YP model used LAD from the 

emergence to maturity dates predicted using Equations (I–4) and (I–6) and 

LAD was calculated from the LAI values smoothed using Equations (I–4 and 

I–5). The YF model used LAD from DOY 89 to a particular EOD, and LAD 

was calculated with raw LAI values derived from Equation (I–1). 

 

6. Classification of the calibration and validation datasets 

Yield data were classified into two groups for the calibration and 

validation of phenology and yield. Three years in which yield data were 

available for both Illinois and Heilongjiang were chosen randomly for 

validation of corn yield prediction at the state scale. Calibration datasets for 

predicting phenology and yield at the district scale were selected randomly 

from approximately 70% of the remaining datasets, including data for the 2000, 

2001, and 2013 seasons, during which yield data were available in either China 

or the USA. In total, 69 and 62 sets of yield data were used as the calibration 

datasets for Illinois and Heilongjiang, respectively (Figure I–7). Yield data at 

the district scale, e.g., AD and prefecture for the USA and China, respectively, 

were pooled to determine the empirical parameter values, including τP, ρP, 

α, and β. The other datasets (i.e., 30 and 26 sets in Illinois and Heilongjiang, 
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respectively) were used to validate the yield models. 

 

 

Figure I–7. Data-flow diagram showing the process used to classify the calibration and 

validation datasets. 

 

τP  and ρP  were determined for districts where phenology data were 

available in the calibration datasets. For example, all phenological dates were 

available in only five ADs in the USA for 2003 to 2012. The simplex method 

was used to determine τP and ρP for emergence and maturity, respectively. 

The crop phenology prediction model was validated with districts where 

phenology data were available in the validation datasets. Because no 

phenological data were available in China, τP and ρP obtained from the USA 
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were used to determine whether Equation (I–5) could be used to predict crop 

yield. 

 

7. Degree of agreement analysis 

The degree of agreement statistics was determined by spatial scale, season, 

and variable. The RMSE value was determined to compare the observed and 

estimated phenology dates, as follows: 

 

RMSE = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1   ----- Equation (I–10) 

 

where n represents the number of comparisons, and Pi and Oi are the estimated 

and observed data.  

Four statistics, including correlation (R2), normalized root mean square 

error (NRMSE), the concordance correlation coefficient (CCC), and RMSE 

were determined for crop yield. The yield of each grid cell was summarized 

by individual season and district, e.g., AD and prefecture to compare with the 

reported yields at the regional scale. Yields by region were aggregated to 

compare the predicted and reported yields at the state scale, e.g., Illinois and 

Heilongjiang, by season. The NRMSE was determined as follows (Soler et al., 

2007): 



61 

 

 

NRMSE = RMSE ×
100

M
 ----- Equation (I–11) 

where  M is the mean yield reported by the statistical agencies in China and 

the USA. The simulated results were considered to be either excellent 

(NRMSE < 10%), good (10% < NRMSE < 20%), fair (20% < NRMSE < 30%), 

or poor (NRMSE > 30%). The CCC value, which was used to represent 

precision and accuracy, was determined as follows (Lin, 1989): 

 

CCC =
2𝜌𝜎𝑠𝜎𝑦

𝜎x
2+𝜎y

2+(𝜇x−𝜇y)
 ----- Equation (I–12) 

 

where ρ is the correlation coefficient between the estimated and reported data, 

and σ and μ are the standard deviations and means of the estimated and 

observed data, respectively. CCC ranges from -1 to 1, where -1 and 1 represent 

perfect disagreement and agreement, respectively, and 0 represents 

independence between the estimated and reported data (Carrasco et al., 2009). 
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RESULTS 

 

1. Crop phenology 

The estimated τP and ρP in Equation (I–6) for the calibration datasets 

differed by the last date on which the remote sensing product was used (EOD) 

(Figure I–8). τP and ρP tended to group together by EOD. For example, τP 

and ρP for the emergence and maturity dates were similar after EOD 257.  

 

 

(a)                                           (b) 

Figure I–8. Estimated τP and ρP values by EOD of emergence (a) and maturity (b). The X-

axis denotes the τP values and the Y-axis denotes the ρPvalues. 

 

The RMSEs for the occurrence date of the phenological stage for the 

calibration datasets differed by phenological stage (Figure I–9). For example, 

the RMSE for maturity (<7 days) were relatively higher than those for 
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emergence (<5 days). Temporal changes in RMSE differed by phenological 

stage. Although RMSE decreased with increasing EOD until EOD 257, the 

error values after EOD 257 were relatively similar.  

 

 

Figure I–9. RMSE values by EOD for the phenology model estimates using a logistic function 

and the calibration datasets. 

 

The crop phenology prediction model was validated for EODs 209, 257, 

and 321. Corn flowering occurred on approximately DOY 209 in Illinois, and 

the corn harvest was completed near DOY 321. DOY 257 was selected to 

examine the reliability of the yield predictions in advance because the date 

was one of the earliest EODs on which maturity dates for corn were reliably 
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predicted in the calibration dataset. 

The occurrence dates of a given phenology stages were estimated within a 

reasonable range of error (Figure I–10). For example, emergence and maturity 

dates were estimated within seven days for most districts, e.g., 67% and 75%, 

respectively, when these phenological stages were estimated on EOD 257. 

 

Figure I–10. Comparison between NASS-derived and estimated phenological stages at EOD 

257. 

 

The degree of agreement tended to be higher for the estimates of the timing 

of maturity than those of emergence (Table I–1). For example, the RMSE 

values for maturity were lower than those for emergence. Temporal changes 

in the degree of agreement also differed. 
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Table I–1. Statistical indices for the phenological stage estimate model in the validation 

dataset. 

EOD 

Emergence  Maturity 

R2 RMSE 

(days) 

 

 

NRMSE 

(%) 

 R2 RMSE 

(days) 

NRMSE 

(%) 

209 0.51 5.31 3.98  0.27 7.61 2.95 

257 0.41 6.30 4.72  0.70 4.91 1.90 

321 0.35 6.29 4.72  0.78 4.43 1.71 

 

2. Crop yield at the district level 

Estimated α and β values of Equation (I-9) for the calibration datasets 

changed with EOD in the YP model (Figure I–11) and grouped together after 

EOD 257 because they depended on an estimated date for a phenological event, 

e.g., emergence or maturity. The α and β values changed over the EODs in the 

YF model using an arbitrarily fixed starting date of DOY 89 
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     (a)                                    (b) 

Figure I–11. Estimated α and β values for the YP (a) and YF (b) corn yield models. The X-

axis denotes the α values and the Y-axis denotes the β values. 

 

During calibration, the YP model had a greater degree of agreement for 

predicting crop yield than the YF model (Figure I–12). The R2 values for all 

EODs of the YP model were higher than those for the YF model when 

predicting crop yield by district. Although both models predicted differences 

in crop yield between Illinois and Heilongjiang, the YP model was more 

precise than the YF model (Figure I–13). 
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Figure I–12. R2 values by EOD for the corn yield predictive models at agricultural the 

district/prefecture level. 

 

            

(a)                                   (b) 

Figure I–13. Comparison of the reported and predicted agricultural district/prefecture-level 

corn yields at EOD 257 from the YP (a) and YF (b) models in Illinois and Heilongjiang. 
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The crop yield prediction model was validated for EODs 209, 257, and 

321. The corn flowering date occurred on approximately DOY 209 in Illinois, 

and the corn harvest was completed near DOY 321. DOY 257 was selected to 

examine the reliability of the yield predictions in advance because the date 

was one of the earliest EODs on which maturity dates for corn were reliably 

predicted in the calibration dataset. 

The YP model based on the phenology dates identified from the logistic 

function had a lower error than that of the YF model based on fixed dates 

(Table I–2). The YP and YF models predicted differences in yield between the 

two regions, and corn yield was considerably lower in Heilongjiang than in 

Illinois. Although the YP and YF models for EOD 257 had similar R2, the YP 

model had greater R2 than the YF model for EODs 209 and 321. The YF model 

always had a higher RMSE than the YP model.  

 

Table I–2. Statistical indices for the corn yield prediction models at the agricultural 

district/prefecture level in Illinois and Heilongjiang. 

EOD 

YP model  YF model 

R2 RMSE 

(kg/ha) 

 

NRMSE 

(%) 
 R2 RMSE 

(kg/ha) 

NRMSE 

(%) 

209 0.65 1158.82 13.20  0.57 1283.03 14.62 

257 0.68 1083.74 12.35  0.68 1086.66 12.38 

321 0.70 1042.43 11.88  0.66 1127.67 12.85 
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The errors in yield prediction were similar for EODs 257 and 321 in the 

YP model. The NRMSE of the crop yield prediction on EOD 257 was slightly 

greater than that on EOD 321. However, the YF model had the lowest error on 

EOD 257.  

 

3. Crop yield at the state/province level 

The statistical indices for the corn yield prediction model over 3 randomly 

selected years (2003, 2009, and 2012), are shown in Table I–3. The degree of 

agreement statistics for the YP model were high for corn yield prediction in 

Illinois and Heilongjiang. In particular, the YP model performed the best in 

Illinois, while the YF model had a similar performance in both regions. The R2 

and CCC values of both prediction models and regions, except for EOD 209, 

were > 0.87 and 0.68, respectively. The NRMSE values were 7.39–13.59. Both 

prediction models exhibited good corn yield prediction performance in the two 

regions.  
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Table I–3. Statistical indices for the yield prediction models at the state level in Illinois and 

at the province level in Heilongjiang. 

Region EOD 

YP model  YF model 

R2 RMSE 

(kg/ha) 

NRMSE 

(%) 

CCC  R2 RMSE 

(kg/ha) 

NRMSE 

(%) 

CCC 

IL 

209 0.43 1785.62 19.27 0.21  0.18 2137.85 23.07 -0.12 

257 0.87 687.68 7.42 0.93  0.99 1006.67 10.86 0.78 

321 0.95 684.72 7.39 0.91  0.94 1068.36 11.53 0.74 

HE 

209 0.99 1115.68 15.72 0.59  0.96 1008.13 14.20 0.68 

257 0.99 964.88 13.59 0.68  0.99 839.75 11.83 0.79 

321 0.99 664.07 9.36 0.87  0.99 816.82 11.51 0.79 

 IL: Illinois, HE: Heilongjiang 

 

The reported and predicted corn yields by state/province for the prediction 

models at EOD 257 in Illinois and Heilongjiang are compared in Figure I–14.  

(a)                                  (b) 

Figure I–14. Comparison of the reported and predicted state/province-level corn yields at 

EOD 257 for the YP (a) and YF (b) models in Illinois and Heilongjiang (validation dataset: 

2003, 2009, and 2012). 
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DISCUSSION 

 

Simple models were developed to predict corn phenological stages and 

yield using only the red and NIR band surface reflectance data of the MODIS 

products. Sakamoto et al. (2005) suggested that the temporal discontinuity of 

remote sensing data makes it difficult to estimate crop properties, e.g., 

phenological dates; therefore different approaches have been developed. In 

this study, the combination of Equations (I–4) and (I–5) allowed us to 

overcome data discontinuity to estimate the phenological date. The remote 

sensing data revealed fluctuations in LAI during a season, as shown in Figure 

6. However, the integrative approach using Equation (I–4) made it possible to 

identify the date of maximum LAI accurately when EOD was later than 249.  

The phenology prediction model performance for predicting emergence 

and maturity dates differed depending on EOD. The errors for predicting 

emergence and maturity were greater when an EOD before the maximum LAI 

was used. For example, a reliable and consistent value of b2 of Equation (I–4) 

could be obtained using remote sensing data only after the flowering period 

until near harvest. Because τP and ρP depend on b2, long-term data were 

used to represent the growth conditions and to obtain reliable estimates of τP 

and ρP . The phenology model accuracy for maturity date prediction was 

relatively higher than for the emergence date prediction. Although the 
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phenology including maturity date depends on the characteristics of the 

cultivar such as the physiological responses to environmental conditions like 

photoperiod, and temperature (Cutforth and Shaykewich, 1990), changes in 

phenology are closely related to changes in LAI (Biswal et al., 2014). For 

example, flowering occurs near the time of maximum LAI, which is b2 in 

Equation (I–4). Once the time of maximum LAI is predicted accurately, the 

maturity date can be reliably identified. Estimating the maximum LAI using 

remote sensing products is more accurate than measuring the LAI early in the 

season when LAI is < 1 (Heiskanen et al., 2012). Emergence dates are related 

to planting dates, and the planting date is influenced by the soil temperature 

and soil moisture and varies widely by district and season. For example, 

33.6 °C is the optimal soil temperature for corn germination (Itabari et al., 

1993). Thus, the planting date is delayed until the temperature condition is met 

in a specific field (Chen and Wiatrak, 2010; Thomison and Nielson, 2002), 

which results in large variability in the length of the effective growing season 

in a particular region. As a result, the errors in the emergence dates were 

relatively higher than the errors in the maturity dates. The present crop 

phenology prediction model based on MODIS-derived LAD-logistic function 

provided more reliable and accurate maturity date predictions than those of 

previous studies. Sakamoto et al. (2011) reported that the RMSE value of the 

maturity date for corn in Illinois was 5.9 days when using a two-step filtering 
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method and WDRVI derived from MODIS data. The RMSE value of the 

maturity date on EOD 257 was approximately 17% less than in a previous 

study. In contrast, the model resulted in greater prediction error for the 

emergence date. For example, the RMSE of the emergence date predicted on 

EOD 257 was 6.3 days, whereas the value in a previous study (Sakamoto et 

al., 2011) was 4.9 days. The phenological dates of the previous study were 

used to predict specific shape by crop. The present phenology prediction 

model, which is based on MODIS-derived LAD-logistic function and does not 

need specific shape by crop, can be applied to other crops. 

The α and β values in the YP model using the predicted phenological dates 

grouped together after EOD 257 (Figure I–11). The α and β values of the 

model depended on the reliability of b3, which represents the maximum 

cumulative LAI, LAD. When an EOD before the maximum LAI was used, b3 

was less reliable because the maximum LAI had not been reached in the field; 

thus, data up to a specific period after the maximum LAI are essential to 

reliably predict b3. Due to errors in remote sensing data, e.g., caused by clouds 

and rainfall, maximum LAI estimates can have considerable errors, even after 

the maximum LAI. Nevertheless, α and β were similar after a set of EOD, 

suggesting that a small range of α and β values could be obtained to predict 

corn yield. The α and β values for the YF model using arbitrarily fixed starting 

date depended on the last DOY (i.e., EOD) used for the LAD calculation, and 
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the error for the predicted corn yield also depended on EOD because LAI 

decreased after the maximum LAI. This model also required data up to a 

specific period (i.e., EOD 257) after maximum LAI to predict corn yield 

reliably. 

The errors for predicting corn yield in the YP and YF models at the AD 

level were relatively small. The RMSE for the YP model was 1.08 t/ha and 

1.09 t/ha at EOD 257 for 20 districts (Table I–2). In the previous studies, the 

RMSE of the predicted corn yield ranged from 1.2 t/ha to 1.7 t/ha, depending 

on the region of interest and season (Sakamoto et al., 2013; Doraiswamy et al., 

2007; Johnson, 2014). Doraiswamy et al. (2007) reported an RMSE of 1.21 

t/ha for corn yield in several Illinois counties. Because of differences in spatial 

extent and scale, e.g., district or county and extent, caution is needed when 

interpreting the differences in RMSE values between the current and previous 

studies. Nevertheless, the RMSE of both the YP and YF models tended to be 

smaller than those of the previous studies, which merits further validation in a 

variety of additional regions. 

For the validation datasets for each region, the errors for predicting corn 

yield at the state/province scale were relatively small in both the YP and Y F 

models. When yield prediction was performed after EOD 257, the YP model 

exhibited RMSE values of 0.69–0.68 t/ha in Illinois and 0.66–0.96 t/ha in 

Heilongjiang, while the YF model had RMSE values of 1.0–1.1 t/ha in Illinois 
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and 0.82–0.84 t/ha in Heilongjiang (Table I–3). Even for the validation data 

set, the two models revealed little decay in corn yield prediction performance 

compared with the calibration data set, with RMSEs of 0.84 and 0.93 t/ha 

across the two regions for YP and Y F, respectively. In addition the current 

model performances were comparable to previous studies: the RMSE values 

for predicting corn yield ranged from 0.62 to 1.45 t/ha in major USA 

production regions (Prasad et al., 2006; Shao et al., 2015), and Sakamoto et al. 

(2013) reported that the RMSE of the corn yield prediction was 0.83 t/ha in 

Illinois. The corn yield prediction errors using only LAD result from changes 

in specific leaf area (SLA) in a given season and region. SLA is the ratio of 

leaf area to leaf biomass (Setiyono et al., 2008) and is affected by 

environmental conditions (Gunn et al., 1999), such as weather and disease 

(Kim et al., 2012). As a result, SLA varies by season, even when the same 

crops are cultivated at a given site (Maki and Homma, 2014). Because remote 

sensing products represent LAI instead of biomass, the change in SLA affects 

the accuracy of the biomass and yield estimation when using LAI. Therefore, 

the inclusion of other factors affecting SLA would improve the performance 

yield prediction model using LAI and LAD as yield estimator. 

Corn management practices were different between Illinois and 

Heilongjiang. Irrigation practices have been widely adopted in Illinois, while 

rainfed cultivation is a common practice in Heilongjiang. Corn cultivars were 
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also different by latitude and temperature, and corn yield in Illinois was higher 

than corn yields in Heilongjiang. Nevertheless, the current yield prediction 

models using only LAD showed similar high performances high performance 

for the two study regions, Illinois and Heilongjiang, which have different crop 

cultivar characteristics, crop management, and environments. This result is 

due to the nature of LAD used as predictor; the fluctuation in LAD accurately 

represents the yield variation caused by environmental stress, such as drought, 

cultivation management, including nitrogen fertilization and planting density, 

and the genetic improvement of corn hybrids (Wolfe et al., 1988; Alias et al., 

2011; Russell, 1991). 
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Chapter II 

Assimilating MODIS data into a crop growth model 

improves regional corn yield predictions 
 

ABSTRACT 

 

Crop growth models and remote sensing are useful tools for predicting 

crop growth and yield, but each tool has inherent drawbacks when predicting 

crop growth and yield at a regional scale. To improve the accuracy and 

precision of regional corn yield predictions, a simple approach for assimilating 

Moderate Resolution Imaging Spectroradiometer (MODIS) product into a 

crop growth model was developed, and regional yield prediction performance 

was evaluated in a major corn-producing region in Illinois, USA. Corn yields 

and phenology data were collected at state and agricultural district (AD) levels 

from 2000 to 2013. Corn growth and yield were simulated using the Crop 

Environment Resource Synthesis (CERES)-Maize model with a minimum 

input dataset comprising planting date, fertilizer amount, genetic coefficients, 

soil, and weather data. Planting date for each grid was estimated using a 

phenology model with a leaf area duration (LAD) logistic function that 

describes the seasonal evolution of MODIS-derived LAD. Genetic 

coefficients of the maize cultivar for each grid were determined to be the 
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genetic coefficients of the mature group [included in Decision Support System 

for Agrotechnology Transfer (DSSAT) 4.6], which shows the minimum 

difference between the maximum leaf area index (LAI) value derived from the 

LAD logistic function and that simulated by the CERES-Maize model. In 

addition, the daily water stress factors employed in CERES-Maize model were 

estimated from the ratio of daily leaf area/weight growth rate estimated from 

the LAD logistic function to the daily leaf area/weight growth rate estimated 

by simulating CERES-Maize model under an auto-irrigation condition. Corn 

yield predictions using only the estimated planting date and maturity group 

were very poor under rain-fed conditions at both the AD and state levels, 

whereas corn yield predictions improved under the auto-irrigation condition, 

indicating that irrigation has been applied in a considerable portion of 

cornfields in Illinois. In addition to assimilation of the estimated planting date 

and maturity group, further assimilation of the estimated daily LAI and water 

stress factors also improved the corn yield prediction considerably, increasing 

the R2 value from 0.72 to 0.78 and decreasing the root mean square error 

(RMSE) from 1.47 to 0.75 t/ha for the yearly corn yield prediction. In addition, 

an earlier corn yield prediction at day of the year (DOY) 257 was possible 

without decreased accuracy. In conclusion, the present strategy for 

assimilating MODIS data into a crop growth model using a minimum dataset 

was successful for predicting regional yields, and it should be examined for 
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spatial portability to diverse agro-climatic and agro-technology regions. 

 

Keywords: Crop growth model, MODIS, Data assimilation, LAD, Water 

stress, Regional corn yield 
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INTRODUCTION 

 

Monitoring crop growth and predicting yield are essential for proper crop 

management, agricultural operation improvement, and food-security policy 

decision making (Li et al., 2014; Zhao et al., 2013). Crop growth modeling 

and remote sensing have been useful tools for monitoring and predicting crop 

growth and yield (Dadhwal, 2003; Yuping et al., 2007). However, each tool 

has inherent drawbacks for predicting crop growth and yield at a regional scale 

(Jeong et al., 2016; Rauff and Bella, 2015).  

Crop growth models have supported simulations of crop growth and 

development, physiological processes, and yield at the field scale since the late 

1960s (Todorovic et al., 2009), and advanced computer technology allows 

simulations close to actual crop growth, which is regulated by the complex 

interaction of many factors (Oteng-Darko et al., 2012). Despite the noticeable 

improvement in crop growth model performance, regional prediction of crop 

growth and yield using crop growth models remains challenging due the 

difficulty of obtaining many of the model input parameters at a regional scale 

and uncertainties in the parameters due to spatial variability (Grassini et al., 

2015; Paul et al., 2003; Imak et al., 2005). 

Remote sensing data provide information related to crop growth status 

(Leon et al., 2003; Xiong, 2014), and various state variables associated with 
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crop growth have been estimated using vegetation indices derived from remote 

sensing data. For example, leaf area index (LAI) is estimated with vegetation 

indices such as the simple ratio index, normalized difference vegetation index 

(NDVI), and triangular vegetation index (Nguy-Robertson et al., 2012), and 

biomass was estimated using NDVI (Kryvobok, 2000). Although remote 

sensing data provide spatial information for a specific region (Ozdogan et al., 

2010), the data are not consecutive due to temporal characteristics and 

atmospheric effects (Hadjimitsis et al., 2010; Weng, 2012). Remote sensing 

data only show symptoms; they cannot explain the cause of the spectral 

expression of a crop (Lilienthal and Schnug, 2007). 

These constraints inherent in crop growth modeling and remote sensing 

can be overcome by integrating remote sensing data into a crop growth model 

(Sehgal, 2013); “forcing” and “recalibration” strategies have been used to 

perform this integration (Moulin et al., 1998). The forcing strategy involves 

updating state variables derived from remote sensing data into a crop growth 

model (Dadhwal, 2003). The state variables derived from remote sensing data 

are interpolated to obtain daily time series data due to the temporal 

characteristic of remote sensing data and atmospheric effects (Delecolle and 

Guerif, 1998). Delecolle and Guerif (1988) estimated wheat yield by updating 

interpolated LAI derived from SOPT/HRV into the AFRCWHEAT model. 

Bouman (1995) estimated biomass of winter wheat at harvest by updating the 
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LAI derived from radar remote sensing into the SUCROS model. Although 

the forcing strategy is simple, the initial conditions and/or parameters of the 

crop growth model should be estimated to improve prediction performance 

(Moulin et al., 1998). The recalibration strategy is used to adjust the initial 

conditions and parameters of the crop growth model using remote sensing data 

(Yuping et al., 2007). The ensemble Kalman filter (EnKF), a representative 

recalibration method, has been widely used to predict crop yield by 

assimilating remote sensing data into crop growth models (Ines et al., 2013; 

Li et al., 2014; Machwitz et al., 2014; Wu et al., 2012; Zhao et al., 2013; Zhu 

et al., 2013). For example, Li et al. (2014) assimilated LAI retrieved from 

ETM+ data into a hydrology crop growth model, which links the World Food 

Studies (WOFOST) model to better predict corn yields in a study region 

located in the middle reaches of the Heihe River basin, northwest China; 

parameters related to maintenance respiration, rooting depth, and soil 

hydraulic properties were adjusted using EnKF. Wu et al. (2011) used EnKF 

to assimilate MODIS-LAI into the WOFOST model to estimate winter wheat 

yield in Hengshui district, Hebei Province, China. Ines et al. (2013) used EnKF 

to assimilate soil moisture and/or MODIS-LAI into the Crop Environment 

Resource Synthesis (CERES)-Maize model to estimate corn yields from 2003 

to 2009 in Story County, Iowa, USA. These methods use a repetitive process 

that adjusts initial conditions (e.g., physical attributes of soil profile) and 



93 

 

parameters of the crop growth model (e.g., cultivar characteristics) by 

minimizing the difference between remote sensing-derived values and 

simulated values by the crop growth model (Huang et al., 2015; Ines et al. 

2013; Jiang et al., 2014). Therefore, these methods require high computational 

cost to predict crop yield at a large scale (Biniaz Delijani et al., 2014; Lei et 

al., 2012) because of the repetitive process employed to find the optimum 

value. Furthermore, this approach would be spatially limited due to EnKF 

localization using the calibration dataset (Anderson, 2012).  

The objectives of this study were to develop a simple strategy for 

assimilating MODIS data into a crop growth model without re-initializing and 

re-parameterizing processes, and to evaluate the regional crop yield prediction 

performance in a major corn production region, Illinois, USA. 

 

MATERIALS AND METHODS 

 

1. Study area 

Illinois (Figure II-1a), USA, was selected as the region of interest because 

this state belongs to a major corn-belt region, so corn production statistics at 

the county and AD levels are easily accessible. In 2013, Illinois occupied 

about 32% and 15% of the national total corn production area and amount, 
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respectively. The annual mean temperature in Illinois is approximately 11°C, 

and annual precipitation varies from approximately 800 to 1,200 mm 

according to location. Growing degree days (GDD) of corn hybrids ranges 

from 2,200 (northern Illinois) to 2,900°C·day (southern Illinois). Corn is 

planted from mid-April to late June and harvested from early September to 

late November (Nafziger, 2009). The irrigation system in Illinois has increased 

gradually, rising to approximately 625,000 acres in 2014 (Bridges et al., 2015). 

 

 

            (a)                                      (b) 

Figure II-1. Map of USA showing the location of Illinois (a) and corn crop cover data for 

Illinois in 2013 (b) (Corn is indicated by yellow). 
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2. Data and data processing 

2.1. Corn yield and phenology data 

Corn yields from 2000 to 2013 in Illinois were obtained from the National 

Agricultural Statistics Service (NASS) by AD and state to evaluate the 

reliability of assimilation strategies for predicting regional corn yields. Planted 

and harvested area in acres and production in bushels were available at the 

national, state, and county levels. Corn yields, which are measured in bushel 

per acre in Illinois, were converted to kilogram per hectare. 

Corn phenology data in Illinois, which were provided weekly by AD and 

state, were obtained from the NASS-Illinois Field Office (IFO) to estimate 

corn planting date. Those data were available in only five ADs, including the 

Northwest, Northeast, Central, West, and East districts between 2003 and 2012 

because phenology data and ADs were not available for several years.   

The median DOY on which a given planting stage reached 50% was 

calculated using linear interpolation because the planting data by AD were 

surveyed as planted proportion by week, and the calculated median DOY 

parameter was used for comparisons with the estimated dates on which a 

certain phenological stage occurred in the AD. 
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2.2. Crop cover data 

Corn crop cover data (Figure II-1b) were obtained from cropland data 

layers used by NASS to identify a region where a given crop was grown 

(https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php). 

Crop cover data in Illinois were obtained from 2000 to 2013. The projection 

of crop cover data was converted to a Universal Transverse Mercator 

projection and WGS-84 coordinates at 1-km spatial resolution using ENVI 

(Exelis VIS; Exelis Visual Information Solutions, Boulder, CO, USA). 

 

2.3. Weather and soil data 

Weather and soil data were generated and obtained to use as input data for 

the crop growth model. 

Weather data including daily solar radiation (MJ/m2/day), maximum and 

minimum temperature (°C), and rainfall (mm) at 10-km spatial resolution from 

2000 to 2013 in Illinois were hind-casted using the PNU CGCM model and 

downscaled using the dynamic downscaling method.  

Soil data were obtained from Web Soil Survey 

(http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx) operated 

by the United States Department of Agriculture, Natural Resources 

Conservation Service of the USA, and the data were produced by the National 



97 

 

Cooperative Soil Survey. Representative soils by county were selected based 

on the map unit symbol, which accounts for the largest area of the county and 

data of representative soil related to chemical and physical properties were 

obtained. The soil data were processed using Sbuild program within DSSAT 

4.6 for subsequent use in the crop growth model. Variables related to soil water 

contents (e.g., saturated water content, drained upper limit, lower limit of plant 

extractable soil water, and root growth factor), which are dependent on 

physical soil properties, were calculated by soil layer using Sbuild. Soil 

organic carbon (OC) was calculated with soil organic matter (OM) using the 

following equation (Perie and Ouimet, 2008):  

 

Soil OC (%) = 0.4724 × soil OM (%). ----- Equation (II-1) 

 

3. Data assimilation strategy for predicting regional corn yields 

3.1. Crop growth model 

The CERES-Maize model (in DSSAT4.6), which has been widely used to 

simulate maize growth and yield (Chisanga et al., 2015), was employed for 

this study. The CERES-Maize model simulates daily changes in physiological 

processes (e.g., phenological development, crop growth, biomass partitioning, 

nutrient uptake, and water use) in response to changes in environmental 

components (e.g., solar radiation, temperature, and rainfall) and management 
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practices (e.g., planting date and amount of fertilizer) and final yield (Cabrera 

el al., 2007; Charles et al. 2015; López-Cedrón et al., 2005). 

 

 3.2. MODIS data assimilation strategies 

 Planting date and maturity group estimated using MODIS-derived LAD 

logistic function for each grid were assimilated into the CERES-Maize model 

to predict corn yields by grid, as shown in Figure II-2. Daily LAI and water 

stress factors estimated using the MODIS-derived LAD logistic function for 

each grid were additionally assimilated into the CERES-Maize model to 

predict corn yields by grid, as shown in Figure II-3. The predicted corn yields 

by grid are aggregated to the AD and state levels. 
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Figure II-2. Flowchart for assimilating the estimated planting date and maturity group.  
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Figure II-3. Flowchart for assimilating estimated daily LAI, water stress factors, estimated 

planting date, and maturity group.  

 

3.3. Estimating planting date and daily LAI  

The planting date and daily LAI value were estimated via the crop 

phenology prediction model (Ban et al., 2016) using a logistic function 

describing the seasonal changes in LAD. Instead of the LAI product provided 

directly from MODIS, this model uses LAI values calculated from MODIS 

surface reflectance data (MOD09A1) of red and near infrared bands according 

to the equations suggested by Nguy-Roberson et al. (2012). Seasonal changes 

in LAD were fitted to a logistic function, and daily LAI was estimated by 
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differentiating the LAD logistic equation in terms of time. Ban et al. (2016) 

established a crop phenology model [Equation (II-2)] using the parameters (b1 

and b2) of the LAD logistic equation as predictor variables.  

 

D =  b2 + τ +  ρ/b1, ----- Equation (II-2) 

  

where τ represents the difference between the date when LAI reaches the 

maximum value and the date of a given phenological stage, ρ represents the 

effect of an increase in LAI on phenological change over the growing season, 

and b1 and b2 represent the rate of LAI growth and the date when the LAI value 

reaches the maximum, respectively. Using the phenology data reported by 

NASS, the τ and ρ values for planting date by the end of the DOY (EOD) 

were estimated as represented in Table II-1. EOD denotes the last date of 

remote sensing data products used to fit the logistic function. 

 

Table II-1. Estimated parameters for the crop phenology prediction model for planting date 

EOD 𝞽 𝞺 

209  -4.73 0.96 

257  -10.74 0.06 

321  -8.77 0.36 

 

EODs 209, 257, and 321 were selected to evaluate corn yield predictions, 

and EODs 209, 257, and 321 are near the usual corn flowering DOY in Illinois, 
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the earliest DOY when the LAD logistic function could be established reliably, 

and the date on which the corn harvest was completed, respectively. 

 

3.4. Estimate of corn maturity group 

The CERES-Maize model was simulated to estimate corn maturity group 

by grid under auto-irrigation simulation (irrigation and water management 

simulation options are set to automatic when required). Management practices 

such as planting density, depth, and amount of fertilizer that were used to 

simulate the CERES-Maize model are shown in Table II-2. The first and 

second fertilizers were applied at the planting date and 2 weeks after planting, 

respectively. The planting date for each grid, which was estimated using the 

crop phenology model [Equation (II-2)], and the estimated parameters for the 

planting date (Table II-1) were used for the simulation. The soil and weather 

data were representative soil and weather data from the grid using Arcmap 

(Esri, Redlands, CA, USA).  

 

Table II-2. Management settings for the CERES-Maize model 

Management Unit Value 

Planting density plant/m2 7.41 

Planting depth cm 4.5 

Amount of first fertilizer kg/ha (N-P-K) 90-30-69 

Amount of second fertilizer kg/ha (N-P-K) 90-0-0 
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The cultivar coefficients for five generic corn hybrids, identified as 

PC0001–PC0005 according to growing degree days and included in DSSAT 

4.6 (Table II-3), were used to identify the maturity group of the corn cultivar 

in a given grid. The RMSE between the maximum LAI value estimated by the 

LAD logistic function and that simulated by the CERES-Maize model during 

the growing season was calculated by maturity groups (Table II-3), and the 

maturity group that had the smallest RMSE was designated the mature cultivar 

for a given grid. 

 

Table II-3. Genetic coefficients used to estimate corn maturity groups 

Maturity 

group  
VRNAME P1 P2 P5 G2 G3 PHINT 

PC0001 2500–2600 GDD 160.0 0.75 780.0 750.0 8.5 49.0 

PC0002 2600–2650 GDD 185.0 0.75 850.0 800.0 8.5 49.0 

PC0003 2650–2700 GDD 212.0 0.75 850.0 800.0 8.5 49.0 

PC0004 2700–2750 GDD 240.0 0.75 850.0 800.0 8.5 49.0 

PC0005 2750–2800 GDD 260.0 0.75 850.0 800.0 8.5 49.0 

VRNAME: Name of cultivar, P1: Thermal time from seedling emergence to the end of the juvenile phase in degree 

day, P2: Photoperiod sensitivity (0–1.0) expressed in days delayed for each hour increase in photoperiod above the 

longest photoperiod (12.5 hours) at which development proceeds at a maximum rate, P5: Thermal time from silking 

to physiological maturity in degree days, G2: Potential kernel number in no. per plant, G3: Potential kernel filling 

rate during the linear grain filling stage in mg/kernel/day, PHINT: interval between leaf tip appearances in degree. 
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3.5. Estimate of daily water stress factors 

The most crucial limitation for crop model-based crop yield prediction in 

regions where rain-fed and irrigated areas are mixed, as in Illinois, is to assess 

water stress as a critical factor for crop growth and yield. Leaf growth is very 

sensitive to inhibition by water stress (Boyer, 1968), and leaf area growth rate 

is a good indicator of water stress. The water stress factors (i.e., TURFAC and 

SWFAC) in the CERES-Maize model were estimated using the MODIS-

derived LAD logistic function. TURFAC and SWFAC variables, which are 

water stress factors for leaf area expansion and soil water stress effect on 

photosynthesis, respectively, have values ranging from 0.0 to 1.0 (Singh and 

Helmers, 2008). In the CERES-Maize model, these variables are calculated as 

the ratio of total root water uptake to potential transpiration, and if the ratio is 

less than a specific value, the variables have values <1.0 (Tsvetsinskaya et al., 

2001). The TURFAC and SWFAC variables affect the rates of crop growth 

and development (e.g., leaf expansion and senescence and crop phenology) 

(Boote et al., 2008). Finally, crop yields decrease in response to these variables 

(Heinemann et al., 2016). 

The water stress factors were estimated differently depending on the crop 

growth stage (Tables II-4 and II-5) by the ratio of daily leaf area/weight growth 

rate estimated from MODIS-derived LAD logistic function to that estimated 

by the CERES-Maize simulation under the auto-irrigation condition. 
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Water stress factors were calculated from 5 days after planting to 5 days 

before harvest, which were considered the emergence date and physiological 

maturity date, respectively. The daily water stress factors and LAI estimated 

using the MODIS-derived LAD logistic function were integrated into the 

CERES-Maize model for predicting corn growth and yield. 

 

Table II-4. Estimation equation of TURFAC and SWFAC variables by ISTAGE 

ISTAGE Estimation equation 

1,2 
TURFACest = (LAId – LAId-1 ) obs/(LAId – LAId-1 ) sim* TURFACsim 

SWFACest = TURFACest *1.5 

3 

LFWT = (LAIobs /PLTPOP/0.0001/267.0)**1.25 

TURFACest = (LFWTd – LFWTd-1 ) obs/(LFWTd – LFWTd-1 ) sim* TURFACsim 

SWFACest = TURFACest *1.5 

4,5 
SWFACest = 1.0 – (-(LAId – LAId-1 ) obs/PLAS*(1.0 – SWFACsim )) 

TURFACest = SWFACest/1.5 

Obs: Value derived from MODIS data; sim: Simulated value of CERES-Maize model; est: Estimated value; LFWT: 

Leaf weight; TURFAC: Water stress factor for expansion; SWFAC: Effect of soil-water stress on photosynthesis; 

PLAS: Rate of senescence of leaf area on one plant (cm2/day); PLTPOP: Plant population, Plants/m2; d: Current day; 

d-1: Previous day. 
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Table II-5. Description of ISTAGE variable in CERES-Maize model 

ISTAGE Description 

1 Emergence to end of juvenile stage 

2 End of juvenile stage to tassel initiation 

3 Tassel initiation to end of leaf growth 

4 End of leaf growth to beginning effective grain filling period 

5 Beginning to end of effective grain filling period 

 

4. Degree of agreement analysis 

Three types of statistics, namely R2, RMSE, and normalized RMSE 

(NRMSE), were determined for crop yields. Corn yield for each grid was 

summarized by individual season and AD/state to compare with the reported 

yields at the regional scale. Corn yields were also aggregated to compare the 

yields predicted with those reported in Illinois by season. The RMSE value 

was determined as follows: 

 

RMSE = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1   , ----- Equation (II-3) 

  

where n represents the number of comparisons, and Pi and Oi are estimated 

and reported data, respectively. The NRMSE was determined as follows (Soler 

et al. 2007): 
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NRMSE = 𝑅𝑀𝑆𝐸 ×
100

𝑀
, ----- Equation (II-4) 

 

where  M is the mean reported yield. Depending on the NRMSE value, the 

predicted results are considered excellent (NRMSE <10%), good (10% < 

NRMSE < 20%), fair (20% < NRMSE < 30%), and poor (NRMSE >30%).  

 

RESULTS  

 

1. Corn yields at the AD level 

As presented in Figure II-4, corn yields simulated under three different 

irrigation and MODIS-derived data assimilation conditions were compared 

with reported corn yields. Corn yields at the AD level were simulated under 

two water supply conditions, i.e., “rain-fed” and “auto-irrigation,” using the 

CERES-Maize model, which was assimilated with planting date and maturity 

group estimated from the LAD logistic function. In addition to the estimated 

planting date and maturity group, the estimated daily LAI and water stress 

factors were assimilated for predicting corn yields at the AD level under the 

auto-irrigation condition.  
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(a)                            (b) 

 
                 (c) 

Figure II-4. Comparison of reported and predicted corn yields at the AD level with different 

data assimilation and simulation conditions from 2000 to 2013 in Illinois, USA, at EOD 257 

[The CERES-Maize model was used for the simulation, with estimated planting date and 

maturity group under (a) rain-fed and (b) auto-irrigation conditions, and (c) simulated by 

assimilating the MODIS-derived daily LAI and water stress factors in addition to estimated 

planting date and maturity group under the auto-irrigation condition]. 

 

The simulation using the estimated planting date and maturity group under 

the rain-fed condition tended to underestimate corn yield and showed very 
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poor performance (Figure II-4a), whereas the simulation involving the same 

assimilation of the estimated planting date and maturity group under the auto-

irrigation condition tended to overestimate corn yield, but the prediction 

performance was improved compared to that under the rain-fed condition 

(Figure II-4b). These results show that irrigation is practiced in a considerable 

portion of corn fields in Illinois. In addition, further assimilation of daily LAI 

and water stress factors improved the prediction performance of corn yield 

(Figure II-4c).  

 

2. Corn yields at the state level 

Corn yields predicted at the AD level were aggregated for comparison with 

the reported corn yields at the state level, as shown in Figure II-5. The overall 

results were similar to the predicted corn yields at the AD level. Yearly corn 

yields simulated with the estimated planting date and maturity group under the 

rain-fed condition were much lower than the reported corn yields and poorly 

represented the yearly variations in corn yield at the state level, whereas yearly 

corn yields simulated with under the auto-irrigation condition were slightly 

higher than the reported corn yields and represented the yearly variation in 

corn yield fairly well. Further assimilation of daily LAI and water stress 

factors with the estimated planting date and maturity group improved 

simulation performance by predicting corn yield and representing the yearly 
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yield variation better than the simulation without additional assimilation of 

daily LAI and water stress factors was able to do.  

 

Figure II–5. Reported and predicted corn yields at the state level with different data 

assimilation and simulation conditions from 2000 to 2013 in Illinois, USA, at EOD 257. 

 

The statistical indices for the corn yields predictions at the state level are 

shown in Table II-6. The corn yield simulation using the estimated planting 

date and maturity group under the rain-fed condition showed the worst 

performance for all EODs, whereas the corn yield simulation with the same 

assimilation under the auto-irrigation condition showed much better 

performance, increasing the R2 value from 0.34 to 0.71 and decreasing the 
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RMSE from 2.98 to 1.53 at EOD 257. Additional assimilation of daily LAI 

and water stress factors to the estimated planting date and maturity group also 

resulted in further improvement of the corn yield prediction. Additional 

assimilation increased the R2 value from 0.71 to 0.78 and decreased the RMSE 

from 1.53 to 0.88 for the EOD 257 simulation. Although corn yield simulation 

with additional assimilation of daily LAI and water stress factors at EOD 209 

was worse than those for the other EODs, the level of agreement statistics for 

all EODs showed good performance, and performance improved with 

increasing EOD. The R2, RMSE, and NRMSE values for predicting corn 

yields at all EODs were >0.57, <0.91 t/ha, and 9.19%, respectively. 

 

Table II-6. Statistical indices for predicted corn yields at the state level with different data 

assimilation and simulation conditions by EOD. 

EOD 
R2  RMSE (t/ha)  NRMSE (%) 

Rain Auto Stress   Rain Auto Stress   Rain Auto Stress 

209 0.37 0.73 0.57  2.80 1.60 0.91  28.22 16.15 9.19 

257 0.34 0.71 0.78  2.98 1.53 0.88  30.02 15.42 8.91 

321 0.38 0.72 0.78   3.07 1.47 0.75   30.90 14.79 7.58 

Rain: Corn yield prediction with assimilation of estimated planting date and maturity group under the 

rain-fed condition, Auto: Corn yield prediction with additional assimilation of daily leaf area index and 

water stress factors under the auto-irrigation condition. Stress: corn yield prediction with assimilation of 

estimated planting date and maturity group under auto-irrigation condition.  
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DISCUSSION 

 

Regional crop yield predictions using a crop growth model are challenging 

due to the large uncertainty inherent in the input data and parameters (e.g., soil 

properties, initial condition, crop parameters, weather, and management 

practices) (Hansen and Jones, 2000). Although remote sensing data provide 

information related to crop growth status at a regional scale, the data are not 

consecutive. These constraints can be overcome by assimilating remote 

sensing data into a crop growth model (Jiang et al., 2014). Two strategies (i.e., 

forcing and recalibration) were used to integrate remote sensing data into crop 

growth models, and prediction performance improved through use of these 

strategies. However, crop growth and yield predictions using these strategies 

were spatially limited due to estimates of the initial conditions and/or 

parameters for the crop growth model using a calibration dataset. 

In this study, a simple data assimilation strategy was developed to improve 

regional corn yield prediction performance by integrating information on crop 

management and growth derived from MODIS data into the CERES-Maize 

model using a minimum input dataset. This method does not need to estimate 

the initial conditions and/or parameters of CERES-Maize model. Only 

planting date, maturity group, daily LAI, and water stress factors, which were 
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estimated using a MODIS-derived LAD logistic function, were assimilated 

into the CERES-Maize model to improve accuracy for predicting corn yield. 

The corn yield simulation at the AD and state levels using the estimated 

planting date and maturity group showed very poor performance under the 

rain-fed condition, whereas much improved yield prediction performance was 

observed under the auto-irrigation condition (Figure II-4 and Table II-6). This 

result suggests that irrigation has been practiced in a considerable portion of 

corn fields in Illinois. Bridges et al. (2015) reported that irrigation systems 

have increased gradually in Illinois, rising to approximately 625,000 acres in 

2014. It is most important to estimate the degree of water stress directly using 

remote sensing and consider water stress when simulating crop growth and 

yield in order to improve the corn yield prediction in a region such as Illinois, 

where irrigation is only practiced partially and rainfall is insufficient during 

the growing season. Water is one of the most important factors limiting crop 

growth and yield (Boyer and Westgate, 2004; Davis et al., 2014; Shao et al., 

2009). Leaf growth is reduced, dry matter allocation to the root is increased, 

and the root-to-shoot ratio decreases when water stress occurs in a plant (Guo 

et al., 2015; Li et al., 2009; Medeiros et al., 2012). Therefore, leaf growth rate 

is a good criterion to use in assessing the degree of water stress, and water 

stress factors can be estimated using daily crop growth rate based on the 

balance between soil water supply and crop water demand (Chisanga et al., 
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2015). Daily water stress factors employed in the CERES-Maize model were 

estimated by the ratio of daily leaf area/weight growth rate estimated from the 

LAD logistic function to the daily leaf area/weight growth rate estimated by 

the CERES-Maize model under the auto-irrigation condition shown in Table 

II-4. In addition to the estimated planting date and maturity group, the 

additional assimilation of MODIS-derived daily LAI and water stress factors 

into the CERES-Maize model further improved yield prediction performance, 

as the R2 value increased from 0.71 to 0.78, and RMSE decreased from 1.53 

to 0.88 t/ha for the corn yield prediction at EOD 257. However, the corn yield 

simulation with the additional assimilation of daily LAI and water stress 

factors showed slightly poorer performance at EOD 209 than at EOD 257 and 

EOD 321. This may have been caused by the unreliable estimate of daily LAI 

and water stress factors, which was calculated from the estimated daily LAI. 

Ban et al. (2016) reported that the MODIS-derived LAD logistic function 

parameters may not have been estimated reliably at the EOD before the date 

of maximum daily LAI, resulting in an unreliable estimate of daily LAI. 

The RMSE values for the state-level corn yields predicted with daily LAI 

and water stress factors estimated using the MODIS-derived LAD logistic 

function were 0.88 and 0.75 t/ha, respectively. Doraiswamy et al. (2005) 

predicted corn yield in McLean County, Illinois, USA, with a RMSE value of 

0.9 t/ha using a method that adjusts for crop model parameters, and Fang et al. 
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(2011) predicted corn yield in several counties in Indiana, USA, with an 

RMSE value of 0.85 t/ha using the Markov model. Although the region and 

scale in the current study differed from those in previous studies, the RMSE 

value of the predicted corn yields achieved by additional assimilation at EOD 

321 was smaller than the RMSE values reported in the previous studies. The 

two previous studies used a repetitive process that adjusted the environmental 

conditions and parameters of the crop growth model by minimizing the 

difference between remote sensing-derived values and simulated values in the 

crop growth model. For example, Fang et al. (2011) estimated planting date, 

population, row spacing, and quantity of nitrogen fertilizer by minimizing the 

difference between simulated LAI and MODIS-derived LAI. This method 

requires a high computational cost and a large input dataset, as well as local 

characteristics for the estimated parameters in the crop growth model, and 

would be spatially limited. However, the present assimilation strategy using 

minimum data (i.e., daily water stress factors, daily LAI, planting date, and 

maturity group) required only a few input parameters, without a re-

parameterization and re-initialization process. 

By assimilating daily LAI and water stress factors, the predicted yearly 

trend in the state corn yields was very close to the reported trend of yearly corn 

yields. However, corn yields were predicted to be much higher than the 

reported corn yield in 2002 and 2010 (Figure II-5), indicating that factors other 
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than water stress decreased corn yields in those years. Actual yields (i.e., 

reported yields) are largely affected by regional socioeconomic conditions, 

crop management, and disease (e.g., fertilizer and biocide use) (Marra et al., 

2012; Reidsma and Ewert, 2008). Although remote sensing data were used to 

overcome the uncertainties caused by the large scale, not all of the information 

about the actual yield loss was addressed. The accuracy of corn yield 

predictions would improve by adding reliable information about other 

components (e.g., insects, pests, and extreme weather events). 



117 

 

REFERENCES 

 

Anderson, J.L. (2012). Localization and sampling error correction in ensemble 

Kalman filter data assimilation. Mon. Weather Rev. 140(7), 2359-2371. 

Ban, H.Y., Kim, K.S., Park, N.W., Lee, B.W. (2016). Using MODIS data to 

predict regional corn yields. Remote sens. 9(1), 16. 

Biniaz Delijani, E., Pishvaie, M.R., Bozorgmehry Boozarjomehry, R. (2014). 

Distance Dependent Localization Approach in Oil Reservoir History 

Matching: A Comparative Study. Iran. J. Chem. Chem. Eng. 33(1), 75-91. 

Boote, K.J., Sau, F., Hoogenboom, G., Jones, J.W. (2008). Experience with 

water balance, evapotranspiration, and predictions of water stress effects 

in the CROPGRO model, In: Ahuja, L.R., Reddy, V.R., Saseendran, S.A., 

Yu, Q. (Eds.), Response of Crops to Limited Water: Understanding and 

Modeling Water Stress Effect on Plant Growth Processes. Advances in 

Agricultural Systems Modeling Series 1. ASA, CSSA, SSSA, Madison, 

WI, 59–103. 

Bouman, B.A.M. (1995). Crop modelling and remote sensing for yield 

prediction. Neth. J. Agr. Sci. 43, 143-143. 

Boyer, J.S. (1968). Relationship of water potential to growth of leaves. Plant 

physiol. 43(7), 1056-1062. 

 



118 

 

Boyer, J.S. and Westgate, M.E. (2004). Grain yields with limited water. J. Exp. 

Bot. 55(407), 2385–2394. 

Bridges, K., Wilson, S., Perry, R. (2015). Center Pivot Irrigation in Illinois 

2012 and 2014. Illinois State Water Survey, ISWS Publications Series: 

Maps. http://www.isws.illinois.edu/iswsdocs/maps/ISWSMS2014-03.pdf. 

Accessed 05 November 2016. 

Cabrera, V.E., Jagtap, S.S., Hildebrand, P.E. (2007). Strategies to limit 

(minimize) nitrogen leaching on dairy farms driven by seasonal climate 

forecasts. Agr. Ecosyst. Environ. 122(4), 479-489. 

Chisanga, C.B., Phiri, E., Shepande, C., Sichingabula, H. (2015). Evaluating 

CERES-Maize model using planting dates and nitrogen fertilizer in 

Zambia. J. Agr. Sci. 7(3), 79. 

Dadhwal, V.K. (2003). Crop growth and productivity monitoring and 

simulation using remote sensing and GIS. Satellite Remote Sensing and 

GIS Applications in Agricultural Meteorology, 263-289. 

Davis, R.F., Earl, H.J., Timper, P. (2014). Effect of simultaneous water deficit 

stress and Meloidogyne incognita infection on cotton yield and fiber 

quality. J. Nema. Tol. 46,108–118.  

Delecolle, R., Maas, S.J., Guerif., M., Baret, F. 1992. Remote sensing and crop 

production models: present trends. ISPRS J. Photogramm. Remote Sens. 

47:145-161. 



119 

 

Doraiswamy, P.C., Sinclair, T.R., Hollinger, S., Akhmedov, B., Stern, A., 

Prueger, J. (2005). Application of MODIS derived parameters for regional 

crop yield assessment. Remote Sens. Environ. 97(2), 192-202. 

Fang, H., Liang, S., Hoogenboom, G. (2011). Integration of MODIS LAI and 

vegetation index products with the CSM–CERES–Maize model for corn 

yield estimation. Int. J. Remote Sens. 32(4), 1039-1065. 

Grassini, P., van Bussel, L.G., Van Wart, J., Wolf, J., Claessens, L., Yang, H., 

Cassman, K.G. (2015). How good is good enough? Data requirements for 

reliable crop yield simulations and yield-gap analysis. Field Crop. Res. 

177, 49-63. 

Guo, Y., Yu, H., Kong, D., Yan, F., Liu, D., Zhang, Y. (2015). Effects of 

gradual soil drought stress on the growth, biomass partitioning, and 

chlorophyll fluorescence of Prunus mongolica seedlings. Turk. Biol. 39(4), 

532-539. 

Hadjimitsis, D.G., Papadavid, G., Agapiou, A., Themistocleous, K., 

Hadjimitsis, M.G., Retalis, A., Clayton, C.R.I. (2010). Atmospheric 

correction for satellite remotely sensed data intended for agricultural 

applications: impact on vegetation indices. Nat. Hazard. Earth Sys. 10(1), 

89-95. 

 

 



120 

 

Heinemann, A.B., Ramirez-Villegas, J., Souza, T.L.P., Didonet, A.D., Di 

Stefano, J.G., Boote, K.J., Jarvis, A. (2016). Drought impact on rainfed 

common bean production areas in Brazil. Agr. Forest Meteorol. 225, 57-

74. 

Huang, J., Ma, H., Su, W., Zhang, X., Huang, Y., Fan, J., Wu, W. (2015). 

Jointly assimilating MODIS LAI and ET products into the SWAP model 

for winter wheat yield estimation. IEEE J. Sel. Top. Appl. 8(8), 4060-4071. 

Ines, A. V., Das, N.N., Hansen, J.W., Njoku, E.G. (2013). Assimilation of 

remotely sensed soil moisture and vegetation with a crop simulation model 

for maize yield prediction. Remote Sens. Environ. 138, 149-164. 

Irmak, A., Jones, J.W., Jagtap, S.S. (2005). Evaluation of the CROPGRO-

soybean model for assessing climate impacts on regional soybean yields. 

T. ASAE 48(6), 2343-2353. 

Jiang, Z., Chen, Z., Chen, J., Liu, J., Ren, J., Li, Z., Li, H. (2014). Application 

of crop model data assimilation with a particle filter for estimating regional 

winter wheat yields. IEEE J. Sel. Top. Appl. 7(11), 4422-4431. 

Jeong, J.H., Resop, J.P., Mueller, N.D., Fleisher, D.H., Yun, K., Butler, E.E., 

Kim, S.H. (2016). Random Forests for Global and Regional Crop Yield 

Predictions. PloS ONE, 11(6), e0156571. 

 

 



121 

 

Kryvobok, O. (2000). Estimation of the productivity parameters of wheat 

crops using high resolution satellite data, Int. Arch. Photogramm. Remote 

Sens. 33(B7), 717-722. 

Launay, M. and Guerif, M. (2005). Assimilating remote sensing data into a 

crop model to improve predictive performance for spatial applications. Agr. 

Ecosyst. Environ. 111(1), 321-339. 

Lei, L., Stauffer, D.R., Deng, A. (2012). A hybrid nudging‐ensemble Kalman 

filter approach to data assimilation in WRF/DART. Q. J. Roy. Meteor. Soc. 

138(669), 2066-2078. 

Leon, C.T., Shaw, D.R., Cox, M.S., Abshire, M.J., Ward, B., Wardlaw III, 

M.C., Watson, C. (2003). Utility of remote sensing in predicting crop and 

soil characteristics. Precis. Agric. 4(4), 359-384. 

Li, F. L., Bao, W. K., Wu, N. (2009). Effects of water stress on growth, dry 

matter allocation and water-use efficiency of a leguminous species, 

Sophora davidii. Agroforest. Syst. 77(3), 193-201. 

Li, Y., Zhou, Q., Zhou, J., Zhang, G., Chen, C., Wang, J. (2014). Assimilating 

remote sensing information into a coupled hydrology-crop growth model 

to estimate regional maize yield in arid regions. Ecol. Model. 291, 15–27. 

 

 

 



122 

 

Lilienthal, H., Schnug, E. (2007). New issues for remote sensing in 

agriculture–a critical overview. Dahlia Greidinger Symposium on 

Advanced Technologies for Monitoring Nutrient and Water Availability 

to Plants, 12–13 March. Haifa, Israel, pp 87–104. Accessed at http://gwri-

ic.technion.ac.il/pdf/DG/2007/6.pdf accessed 2016 December. 

López-Cedrón, F.X., Boote, K.J., Ruíz-Nogueira, B., Sau, F. (2005). Testing 

CERES-Maize versions to estimate maize production in a cool 

environment. Eur. J. Agron. 23(1), 89-102. 

Machwitz, M., Giustarini, L., C. Bossung, D. Frantz, M. Schlerf, H. Lilienthal, 

L. Wandera, P. Matgen, L. Hoffmann, T. Udelhoven. (2014). Enhanced 

biomass prediction by assimilating satellite data into a crop growth model. 

Environ. Model. Softw. 62(0), 437–453. 

Marra, M.C., Piggott, N.E., Goodwin, B. K. (2012). The impact of corn 

rootworm protected biotechnology traits in the United States. 

AgBioForum 15, 217-230. 

Medeiros, D. B., Silva, E. C. D., Santos, H. R. B., Pacheco, C. M., Musser, R. 

D. S., Nogueira, R.J.M.C. (2012). Physiological and biochemical 

responses to drought stress in Barbados cherry. Braz. J. Plant Physiol. 

24(3), 181-192. 

http://gwri-ic.technion.ac.il/pdf/DG/2007/6.pdf
http://gwri-ic.technion.ac.il/pdf/DG/2007/6.pdf


123 

 

Moulin, S., Bondeau, A., Delecolle, R. (1998). Combining agricultural crop 

models and satellite observations: from field to regional scales. Int. J. 

Remote Sens. 19(6), 1021-1036. 

Nafziger, E.D. (2009). Corn. In: E.D. Nafziger, editor, Illinois agronomy 

handbook: 24th Edition. Department of Crop Science, University of 

Illinois at Urbana-Champaign. 13–26. 

Nguy-Robertson, A.L., Gitelson, A.A., Peng, Y., Viña, A., Arkebauer, T.J., 

Rundquist, D.C. (2012). Green Leaf Area Index Estimation in Maize and 

Soybean: Combining Vegetation Indices to Achieve Maximal Sensitivity. 

Agron. J. 104(5), 1336-1347. 

Oteng-Darko, P., Yeboah, S., Addy, S.N. T., Amponsah, S., Danquah, E.O. 

(2012). Crop modeling: A tool for agricultural research–A review. Journals 

of Agricultural Research and Development 2(1), 1-6. 

Ozdogan, M., Yang, Y., Allez, G., Cervantes, C. (2010). Remote sensing of 

irrigated agriculture: Opportunities and challenges. Remote Sens. 2(9), 

2274-2304. 

Paul, C.D., Sophie, M., Paul, W.C., Alan, S. (2003). Crop Yield Assessment 

from Remote Sensing. Photogramm. Eng. Remote Sens. 69(6), 665–674. 

Perie, C. and Ouimet, R. (2008). Organic carbon, organic matter and bulk 

density relationships in boreal forest soils. Can. J. Soil Sci. 88(3), 315-325. 

 



124 

 

Rauff, K. O., & Bello, R. (2015). A Review of Crop Growth Simulation 

Models as Tools for Agricultural Meteorology. Agric. Sci. 6(9), 1098. 

Reidsma, P. and Ewert, F. (2008). Regional farm diversity can reduce 

vulnerability of food production to climate change. Ecol. Soc. 13(1), 38. 

Sehgal, V.K. (2013). Remote sensing for crop growth and crop simulation 

modelling. http://www.iasri.res.in/ebook/GIS_TA/M4_4_RSCGCSM.pdf 

accessed 2016 July. 

Shao, H.B., Chu, L.Y., Jaleel, C.A., Manivannan, P., Panneerselvam, R., Shao, 

M.A. (2009). Understanding water deficit stress-induced changes in the 

basic metabolism of higher plants—biotechnologically and sustainably 

improving agriculture and the ecoenvironment in arid regions of the globe. 

Crit. Rev. Biotechnol. 29(2), 131–51.  

Singh, R. and Helmers, M.J. (2008). Improving Crop Growth Simulation in 

the Hydrologic Model DRAINMOD to Simulate Corn Yields in 

Subsurface Drained Landscapes. In 2008 Providence, Rhode Island, June 

29–July 2, 2008 (p. 1). American Society of Agricultural and Biological 

Engineers. 

Soler, C., Sentelhas, P., Hoogenboom, G. (2007). Application of the CSM-

CERES-Maize model for planting date evaluation and yield forecasting 

for maize grown off-season in a subtropical environment. Eur. J. Agron. 

27, 165-177. 

http://www.iasri.res.in/ebook/GIS_TA/M4_4_RSCGCSM.pdf


125 

 

Todorovic, M., Albrizio, R., Zivotic, L., Saab, M.T.A., Stöckle, C., Steduto, P. 

(2009). Assessment of AquaCrop, CropSyst, and WOFOST models in the 

simulation of sunflower growth under different water regimes. Agron. J. 

101(3), 509-521. 

Tsvetsinskaya, E.A., Mearns, L.O., Easterling, W.E. (2001). Investigating the 

effect of seasonal plant growth and development in three-dimensional 

atmospheric simulations. Part I: Simulation of surface fluxes over the 

growing season. J. climate 14(5), 692-709. 

Weng, Q. (2012). Remote sensing of impervious surfaces in the urban areas: 

Requirements, methods, and trends. Remote Sens. Environ. 117, 34-49. 

Wu, S., Huang, J., Liu, X., Fan, J., Ma, G., Zou, J. (2011, October). 

Assimilating MODIS-LAI into crop growth model with EnKF to predict 

regional crop yield. In International Conference on Computer and 

Computing Technologies in Agriculture (pp. 410-418). Springer Berlin 

Heidelberg. 

Xiong, D. (2014). Crop Growth Remote Sensing Monitoring and its 

Application. Sensors Transducers J. 169(4), 174. 

Yuping, M., Shili, W., Li, Z., Yingyu, H., Liwei, Z., Yanbo, H., Futang, W. 

(2008). Monitoring winter wheat growth in North China by combining a 

crop model and remote sensing data. Int. J. Appl. Earth Obs. 10(4), 426-

437. 



126 

 

Zhao, Y., Chen, S., Sheng, S. (2013). Assimilating remote sensing information 

with crop model using ensemble Kalman filter for improving LAI 

monitoring and yield estimation. Ecol. Model. 270, 30–42. 

Zhu, X., Zhao, Y., Feng, X. (2013). A methodology for estimating Leaf Area 

Index by assimilating remote sensing data into crop model based on 

temporal and spatial knowledge. Chinese Geogr. Sci. 23(5), 550-561. 

 

 

 

 

 

 

 

 

 

 

 



127 

 

OVERALL CONCLUSION 

 

This study was developed new and simple models to predict corn yield, 

and these models was used two approaches based on remote sensing data. One 

approach was used empirical model which represents the direct relationship 

between remote sensing data and observed yields, and another approach was 

assimilated remote sensing data into crop growth model to improve corn yield 

prediction. 

In chapter I, simple approaches to predict corn phenological stages and 

yields were developed using a minimum MODIS product dataset. Only the red 

and NIR band surface reflectance data were used to estimate the LAI. Rather 

than using the reported techniques for filtering/smoothing the LAI data, we 

fitted the LAI data summed over a cropping season (LAD) to a logistic 

function for smoothing. A phenology prediction model was established using 

the MODIS-derived LAD logistic function parameters, and it was used to 

predict emergence and maturity dates within a reasonable range of error. 

Simple linear regression models were developed to predict yield using LAD 

over the predicted period from emergence to maturity as a predictor variable 

and LAD for a predetermined period from DOY 89 to a particular EOD. Our 

results indicates that these simple models using LAD as a predictor variable 
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could predict yields for the two regions of interests with considerable precision 

and accuracy. The model including information related to phenology exhibited 

slightly better performance, and could be applied from a fairly early pre-

harvest stage of EOD 257. In addition, the model performance showed no 

difference between the two regions with very different climates and cultivation 

methods including cultivar and irrigation management. Irrigation practices 

have been widely adopted in Illinois, USA while rainfed cultivation is a 

common practice in Heilongjiang, China. The approach described in this paper 

has potential to be applied to relatively wide agroclimatic regions with 

different cultivation methods and to be extended to additional crops. However, 

it needs to be examined further in the tropical and sub-tropical regions which 

are very different from the two study regions with respect to agroclimatic 

constraints and agrotechnologies 

In chapter II, a simple approach to predict regional corn yield was 

developed by assimilating MODIS product data into the CERES-Maize model 

using a minimum input dataset. This method does not require an estimate of 

the initial conditions and/or parameters of the CERES-Maize model. A 

minimum input dataset comprising planting date, fertilizer amount, genetic 

coefficients, soil, and weather was used to simulate corn growth and yield 

using CERES-Maize model. Planting date, corn maturity group, daily LAI, 

and daily water stress factors estimated using the MODIS-derived LAD 
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logistic function were directly assimilated into the CERES-Maize model to 

predict regional corn yield in Illinois, USA. The corn yield predictions using 

only estimated planting date and maturity group performed very poorly under 

the rain-fed condition at both the AD and state levels, whereas corn yield 

prediction performance improved by simulation under the auto-irrigation 

condition. Moreover, adding the daily LAI and water stress factors into the 

MODIS-derived LAD logistic function further improved corn yield prediction 

performance. In addition, earlier corn yield prediction at DOY 257 was 

possible without degrading accuracy. This simple approach was successful for 

predicting regional corn yield with considerable accuracy and precision in 

Illinois, USA. However, this method needs to be examined in regions with 

more diverse agro-climatic and agro-technology conditions. 

In conclusion, new and simple corn yield prediction models for two 

approaches were developed based on remote sensing data, and had 

considerable accuracy and precision for study regions. However, these models 

and method must be examined for spatial portability in more diverse agro-

climatic and agro- technology regions. 
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ABSTRACT IN KOREAN 

 

Moderate Resolution Imaging Spectroradiometer 

(MODIS) 자료와 작물 생육 모델을 이용한  

지역단위 옥수수 수량 예측 

 

반호영 

작물생명과학전공 

식물생산과학부 

서울대학교 농업생명과학대학 

 

표본 조사를 하여 작물의 수량을 예측하는 데에는 상당한 

비용과 노동력이 요구된다. 하지만, 원격 탐사 자료는 최소한의 

비용으로 작물의 수량을 신뢰성 있게 예측하는데 도움을 줄 수 

있으며, 또한 시기 적절하게 작물의 생육 상태를 감시하거나 

얻는데 도움을 줄 수 있을 것이다. 작물의 생육과 수량을 

예측하는데 원격 탐사 자료를 이용하는 두 가지 접근법이 있다. 첫 

번째 접근법은 원격 탐사 자료와 관측 수량과의 직접적인 관계를 

나타내는 경험적 모델을 사용하며, 다른 접근법은 옥수수 수량 
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예측력을 높이기 위하여 원격 탐사 자료를 작물 생육 모델에 

동화하는 방법이다. 본 연구에서는 최소한의 데이터세트를 

이용하여 각 방법에 대하여 지역단위 옥수수 수량을 예측하는 

간단한 모델을 개발하고, 그 모델들의 지역단위 수량 예측력을 

평가하는 것이다.  

지리적으로 분리된 주요 옥수수 생산 지역인 미국의 

일리노이주와 중국의 흑룡강성 지역의 옥수수 수량을 예측하는 

간단한 모델을 MODIS 자료를 이용하여 개발하였으며, 

일리노이주의 옥수수 수량과 페놀로지 자료는 농업지구 단위로 

2000년부터 2013년까지 수집하였고, 흑룡강성의 옥수수 수량 

자료는 현 단위로 2002년부터 2012년까지 수집하였다. 주/성 

단위 수량 예측 모델을 검증하기 위하여 3개년을 선택하였으며, 

농업지구 단위 수량 및 페놀로지 예측 모델을 개선 및 검증하기 

위하여 나머지 년도에서 각각 70% 와 30%의 자료를 이용하였다. 

엽면적지수를 계산하기 위하여 8일 간격의 지표 반사 자료인 

MOD09A1 자료를 3월 29일 (day of year, DOY 89)부터 12월 

2일 (DOY 337)까지 수집하였으며, 시즌 초기부터 주어진 날짜 

[End of DOY (EOD)]까지의 엽면적지수의 합은 로지스틱함수로 

잘 표현되었고, 엽면적기간의 시즌 변화를 잘 나타내었다. 출아와 

성숙날짜를 예측하는 단순 페놀로지 예측 모델을 엽면적지수 증가 

속도와 최대 엽면적지수의 날짜를 나타내는 로지스틱함수의 
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파라미터인 b1과 b2를 이용하여 개발하였으며, 페놀로지 예측 

모델은 검증 데이터세트에 출아와 성숙 날짜를 각각 6.3과 4.9 

일의 root mean square error (RMSE)로 잘 예측하였다. 옥수수 

수량 예측을 위한 두 개의 단순 선형 회귀 모델들 (YP 와 YF) 을 

엽면적기간을 이용하여 설정하였다; YP 모델은 출아부터 성숙 

날짜까지의 엽면적기간을 이용하였고, YF 모델은 3월 28일 (DOY 

89)부터 특정 EOD까지의 지정된 엽면적기간을 이용하였다. 

옥수수 수확이 거의 끝나는 12월 2일 (EOD 321)에 예측된 주/성 

단위 옥수수 수량의 RMSE가 일리노이주 0.68 t/ha와 흑룡강성 

0.66 t/ha로 YP 모델이 YF 모델보다 훨씬 나은 예측력을 보였으며, 

YP 모델은 9월 13일 (DOY 257)에 아주 이른 옥수수 수량 예측에 

대해서도 비슷하거나 더 좋은 예측력을 보였다. 추가로, 모델의 

예측력은 기후와 품종과 관개를 포함한 재배 방법들이 매우 다른 

두 연구 지역간 차이가 없었다. 

작물 생육 모델과 원격탐사 자료는 작물 생육과 수량 예측에 

유용한 도구이지만, 각각은 지역단위 작물 생육과 수량을 

예측하는데 불가분의 문제점을 가지고 있다. 지역단위 옥수수 수량 

예측의 정확도와 정밀도를 향상시키기 위하여 MODIS자료를 작물 

생육 모델에 동화시키는 간단한 방법을 개발하였고, 주요 옥수수 

생산 지역인 미국의 일리노이주에 대하여 지역단위 수량의 

예측력을 평가하였다. 옥수수 수량과 페놀로지 자료는 농업지구와 
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주 단위로 2000년부터 2013년까지 수집하였으며, CERES-Maize 

모델을 이용하여 파종일, 비료 시비량, 유전 계수들, 토양 및 

기상자료로 구성된 최소한의 입력 데이터세트로 옥수수의 생육과 

수량을 모의하였다. 각 격자의 파종일은 MODIS에서 파생된 

엽면적기간의 시즌 변화를 나타내는 leaf area duration (LAD) 

logistic 함수를 이용한 페놀로지 예측 모델로 추정하였으며, 

옥수수 품종의 유전 계수들은 LAD logistic 함수에서 파생된 최대 

엽면적지수와 CERES-Maize 모델로 모의된 최대 엽면적지수 

사이의 차이가 최소가 되는 성숙군 (Decision Support System for 

Agrotechnology Transfer (DSSAT) 4.6에 포함된)의 

유전계수들로 결정하였다. 추가로, CERES-Maize 모델에 내재된 

일별 수분 스트레스 요소들은 LAD logistic 함수로부터 추정된 

일별 엽면적/중 생장 속도와 CERES-Maize 모델을 자동-

관개상태로 모의하여 추정된 일별 엽면적 생장 속도의 비율로 

계산하였다. 추정된 파종일과 성숙군만을 이용한 옥수수 수량의 

예측력은 자연관수상태에서 농업지구와 주 단위 모두 매우 낮았다. 

반면에 자동-관개상태에서 모의된 옥수수 수량의 예측력은 훨씬 

향상되었으며, 이것은 일리노이주의 옥수수 농장에 상당한 비율로 

관개가 적용되고 있는 것을 나타낸다. 일별 엽면적지수와 수분 

스트레스 요소들을 추가로 동화함으로써, 옥수수 수량의 예측력은 

또한 상당히 향상되었으며, 결정계수 (R2)가 0.72에서 0.78로 
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증가하였고, RMSE가 1.47 t/ha 에서 0.75 t/ha 로 감소하였다. 

추가로, 9월 13일 (DOY 257)에 이른 옥수수 수량 예측에도 

정확도 감소 없이 예측이 가능하다. 

본 연구는 원격탐사 자료를 이용하여 각 접근법에 대한 간단한 

모델을 개발하였고, 연구 지역들에 옥수수 수량 예측력은 상당한 

정확도와 정밀도를 보여주었다. 그러나 이 모델들은 다른 

농업기상과 기술을 가진 지역들에 대하여 수량 예측력을 평가해야 

할 것이다.  

  

주요어: MODIS; 옥수수 수량; 페놀로지; 엽면적기간; 로지스틱함수; 

작물 생육 모델; 수분 스트레스 
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