저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

귀하는 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내어야 합니다.
저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer ☐
A DISSERTATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Synthesis and Properties of UV Laser Debondable Temporary Bonding and Debonding Adhesives for 3D Multi-chip Packaging Process

3D 멀티칩 패키징용 자외선 레이저 디본딩형 임시 고정 접착제의 합성과 물성

By
Seung-Woo Lee

PROGRAM IN ENVIRONMENTAL MATERIALS SCIENCE
GRADUATE SCHOOL
SEOUL NATIONAL UNIVERSITY
FEBRUARY, 2015
Recently, mobile devices with a focus on smartphone require both high performance and lightness at the same time, so TSV (Through Silicon Via) 3D multi-chip package technology was emerging. In order to realize this technique, temporary bonding and debonding adhesive is required to process silicon wafer and handling. However, using the existing adhesive handling a thin silicon wafer having a thickness of less than 50 μm is not easy. There are two main reasons for this. First, to maintain the high purity, it is required to have over 200 °C processing temperature during the process of bonding and debonding. Due to this thermal degradation, it generates low molecular weight substances and cause contamination to the thin silicon wafer. Second, while debonding, strong adhesive force can crack or cracking the thin silicon wafer and generate defects.

In this study, the perspective on temporary bonding for TSV (Through Silicon Via) 3D multichip packaging and the perspective on debonding afterwards are divided into each technique elements, and these elements are to be used to newly synthesize the adhesive. Plus, the mechanisms of curing and
debonding are to be analyzed through these property evaluations.

In this study, the non-solvent type urethane acrylic adhesive was designed and manufactured to improve the disadvantages such as the phenomenon on flowing adhesive out from the silicon wafer after the spinning coating which the conventional solvent-based adhesive have during temporary bonding, the phenomenon of uneven coating thickness by contaminated wafer surface from the solvent evaporation and the phenomenon on the contamination of the work area. During the urethane synthesis, isophorone diisocyanate was used as a hard segment and silicone-based diols (not conventional hydrocarbon-based diols) was used as a soft segment to improve the heat resistance of the polymer structure. Also, designing for dual curing adhesive that further introduce a photo-curing after thermal curing was made (rather than a single curable adhesive, such as the conventional light curing or thermal curing) to improve the heat resistance. A multi-functional acrylic monomer was end-capped to one end of the synthesized urethane oligomer and a monomer containing a fluorine was end-capped to the other end for to analyze the measurement of the number of functional groups of the multifunctional acrylic monomer, the density of the UV irradiation energy, hardening behavior, thermal stability and the peel strength depending on the amount of photoinitiator used. As a result, the number of functional acrylic monomer was in mono <di << tri, hexa order and increase on the indirect cure rate using the Gel-minute law was confirmed. This has initial reaction in the light-curing, which give an increase of the reaction sites and hence an increase in the crosslinking density. After tri-acrylate, it is confirmed that the gel fraction was not further increased by 60%, which can be interpreted that the reaction activity is falling by the radical trap of unreacted oligomers. The Gel fraction was confirmed to become constant at 60% when the UV irradiation energy density is at 400 mJ/cm² or more. To decrease the peel strength due to the increase density of the UV energy, the pulsed irradiation method, which
examine by dividing each into 100 mJ/cm², was introduced to derive the molecular weight distribution of the polymer in a state in which heterogeneous. (The steady irradiation method, which is used primarily during irradiation, is not used.) In the steady irradiation method, the PDI value is 5.9, but the pulsed irradiation method showed 16.1 of high PDI value. This characteristic allowed showing lower intensity levels on the peel strength measurement of pulsed irradiation method than the steady irradiation method, concluding that the pulsed irradiation method is more suitable considering both temporary bonding and debonding. Type and the reaction mechanism of the photoinitiator was found through the existing studies, and the purpose of this study was to evaluate and analyze by varying the amount of light curing initiator. As a result, the gel fraction became constant without any further increase when adding the binder contrast of 2 phr or more photoinitiators. This is considered as an important research data on the optimal composition ratio of the initial dose, given a side reaction due to unreacted initiator, which can occur when an excess of added photoinitiator. Thermal decomposition behavior results, seen by varying the amount of UV energy density and photo initiator for the thermal stability and by using thermogravimetric analysis, was confirmed that the thermal stability is maintained at a high temperature condition over 250 °C. This can interpret that the heat resistance was improved by the introduction of dual-cure mechanism and the adhesive synthesis containing all hybrid type of silicone-based, epoxy-based, fluorine-based functional group.

On the other hand, this study used the method of edge zone debonding, using the UV laser, to consider both temporary bonding and debonding. While the conventional method requiring a bonding temperature of 200 ~ 220 °C, this study was able to proceed the bonding at a low temperature of 80 ~ 150 °C. Furthermore, this study has done debonding within two minutes using a UV laser, rather than the conventional way in which this process takes time
over 6 hours by a penetration of the solvent. For this purpose, BTHPEMA (2-[3- (2-Benzotriazol-2-yl) -4-hydroxyphenyl] ethyl methacrylate) was introduced when preparing the adhesive. When debonding, identification (BTHPEMA playing a role of being the LTHC (light to heat conversion)) for debonding progression of the polymer film formation by the heat cure adhesive was made through thermal curing mechanism of epoxy functionality by the FTIR-ATR analysis and the gel fraction measurement. Absorbency, for a UV laser of a synthesis adhesive, was determined according to wavelength using a UV-visible spectroscopy. As a result, 355 nm in wavelength bands indicate the absorption of up to 60% of the binder prepared in accordance with the increase amount of BTHPEMA comparison 0.4 phr input, and the UV laser absorbency of the adhesive synthesized was adjustable by varying the blending ratio. Moreover, it was confirmed that the joined debonding was composed in the effective energy density conditions of the UV laser irradiation with 5.65 to 6.72 J/cm².

Keywords: Adhesives, dual-curing, 3D multi-chip packaging, temporary bonding and debonding, UV laser debonding, fluorinated urethane adhesive

Student number : 2009-21204
Contents

Chapter 1
General Introduction and Objectives .. 1

1.1. Three-dimensional (3D) Integration .. 2
1.1.1. Background .. 2
1.1.2. Application of wafer bonding for 3D integration technology 5
1.2. Temporary Bonding and Debonding for 3D Integration and Packaging • 11
1.2.1. Background .. 11
1.2.2. Temporary bonding and debonding technologies 14
1.2.2.1. Thermoplastic adhesive, slide-off debonding approach 19
1.2.2.2. Using Ultraviolet (UV) – curable adhesive and light-to-heat conversion layer .. 21
1.2.2.3. Adhesive dissolution through perforated carrier wafer 23
1.2.2.4. Using a release layer and lift-off 25
1.2.2.5. Room temperature, low-stress debonding 27
1.2.3. Concerning for temporary bonding and debonding 29
1.2.3.1. Uniform and void-free bonding 29
1.2.3.2. Protecting wafer edge during thinning and subsequent processing 30
1.3. Objectives ... 32

Chapter 2
Literature Review ... 35

2.1. UV-curing ... 36
Chapter 3
Adhesion Performance and Surface Morphology of UV-curable Interpenetrating Network Acrylates for 3D Multi-chip Packaging Process ... 42

3.1. Introduction ... 43
3.2. Experimental ... 46
 3.2.1. Materials .. 46
 3.2.2. Methods .. 48
 3.2.2.1. Synthesis of binders .. 48
 3.2.2.2. Formation of the acrylate film ... 49
 3.2.2.3. Preparation of cured acrylates ... 50
 3.2.2.4. Adhesion performance .. 53
 3.2.2.5. Field emission-scanning electron microscopy (FE-SEM) 54
 3.2.5.6. X-ray photoelectron spectroscopy (XPS) ... 55
3.3. Results and Discussion .. 56
 3.3.1. Adhesion performance ... 56
 3.3.2. Gel fraction of the acrylates with the hexafunctional monomer at different photoinitiator contents ... 63
 3.3.3. Field emission-scanning electron microscopy (FE-SEM) 65
 3.3.4. X-ray photoelectron spectroscopy (XPS) .. 67
3.4. Conclusion ... 70
Chapter 4
Adhesion Performance and Curing Behaviors of UV-curable Acrylates with 3-MPTS for 3D Multi-chip Packaging Process

4.1. Introduction ... 73
4.2. Experimental ... 75
 4.2.1. Materials ... 75
 4.2.2. Methods ... 77
 4.2.2.1. Synthesis of binders 77
 4.2.2.2. Formation of the acrylate film 78
 4.2.2.3. Preparation of cured acrylates 79
 4.2.2.4. Adhesion performance 81
 4.2.2.5. Fourier transform infrared (FTIR) spectroscopy 82
 4.2.2.6. Gel permeation chromatography (GPC) measurement 83
 4.2.2.7. Advance rheometric expansion system (ARES) analysis 84
 4.2.2.8. Field emission-scanning electron microscopy (FE-SEM) 85
 4.2.2.9. X-ray photoelectron spectroscopy (XPS) 86
4.3. Results and Discussion ... 87
 4.3.1. Adhesion performance .. 87
 4.3.2. Advance rheometric expansion system (ARES) analysis 92
 4.3.3. Fourier transform infrared (FTIR) spectroscopy 96
 4.3.4. Field emission-scanning electron microscopy (FE-SEM) 98
 4.3.5. X-ray photoelectron spectroscopy (XPS) 100
4.4. Conclusion ... 103
Chapter 5
UV-curing and Thermal Stability of Dual-curable Urethane Epoxy Adhesives for Temporary Bonding and Debonding in 3D Multi-chip Packaging Process ... 104

5.1. Introduction ... 105
5.2. Experimental ... 109
 5.2.1. Materials ... 109
 5.2.2. Methods ... 111
 5.2.2.1. Synthesis of silicone urethane methacrylate (SiUMA) 111
 5.2.2.2. Preparation of dual-curable adhesive ... 113
 5.2.2.3. Fourier transform infrared (FTIR) spectroscopy 115
 5.2.2.4. Gel fraction .. 116
 5.2.2.5. Photo-differential scanning calorimetry (photo-DSC) 117
 5.2.2.6. Thermogravimetric analysis (TGA)... 118
5.3. Results and Discussion .. 119
 5.3.1. Photo-differential scanning calorimetry (photo-DSC) 119
 5.3.2. Fourier transform infrared (FTIR) spectroscopy 121
 5.3.3. Gel fraction .. 123
 5.3.4. Thermogravimetric analysis (TGA) .. 125
5.4. Conclusion .. 128

Chapter 6
Synthesis and Properties of UV Laser Debondable Fluorinated Silicone-modified Urethane Acrylic Adhesives for Temporary Bonding and Debonding in 3D Multi-chip Packaging Process 129
6.1. Introduction ... 130
6.2. Experimental ... 136
 6.2.1. Materials ... 136
 6.2.2. Methods .. 138
 6.2.2.1. Synthesis of fluorinated silicone-modified urethane acrylates 138
 6.2.2.2. Temporary bonding and UV laser debonding condition 143
 6.2.2.3. Fourier transform infrared (FTIR) spectroscopy 151
 6.2.2.4. Gel fraction and swelling ratio ... 152
 6.2.2.5. Shrinkage ... 153
 6.2.2.6. Thermogravimetric analysis (TGA) .. 154
 6.2.2.7. Peel strength ... 154
 6.2.2.8. Optical microscopy .. 156
 6.2.2.9. Field emission-scanning electron microscopy (FE-SEM) and energy
dispersive spectroscopy (EDS) ... 157
 6.2.2.10. Atomic force microscopy (AFM) ... 158
6.3. Results and Discussion ... 159
 6.3.1. Fourier transform infrared (FTIR) spectroscopy 159
 6.3.2. Gel fraction and swelling ratio .. 161
 6.3.3. Shrinkage ... 165
 6.3.4. Thermogravimetric analysis (TGA) .. 167
 6.3.5. Peel strength .. 169
 6.3.6. Optical microscopy .. 171
 6.3.7. Atomic force microscopy (AFM) ... 173
 6.3.8. Field emission-scanning electron microscopy (FE-SEM) and energy
dispersive spectroscopy (EDS) ... 176
6.4. Conclusion .. 178
Chapter 7
Concluding Remarks 179

References .. 184

초록 ... 210
List of Tables

Table 3-1. Atomic concentration (%) of C₁s and Si₂p determined by XPS according to the UV does ..69
Table 4-1. Atomic concentration (%) of C₁s and Si₂p determined by XPS according to the UV does ... 102
Table 5-1. Blend ratio of dual-curable adhesives (unit: phr) 114
Table 5-2. Characteristic thermal decomposition data of the UV-cured adhesives .. 127
Table 6-1. Raw materials used for synthesis of fluorinated silicon-modified urethane acrylic adhesives ... 137
Table 6-2. UV laser process parameters .. 150
Table 6-3. Different UV laser processing conditions 174
List of Figures

Figure 1-1. Schematic of TSV process flows .. 4
Figure 1-2. Schematic of main wafer bonding technologies for 3D integration ... 6
Figure 1-3. Power consumption comparison flip chip (FC) PoP versus 3D system-in-package (SiP) with TSV ... 8
Figure 1-4. Beyond Moore’s law ... 9
Figure 1-5. 3D TSV platforms motivations per applications 10
Figure 1-6. Scheme of temporary bonding and debonding process 13
Figure 1-7. Schematics of via-first and via-last processes 15
Figure 1-8. Temperature requirements in process sequences 18
Figure 1-9. Process flow for slide-off debonding approach 20
Figure 1-10. Process flow for 3M wafer support system 22
Figure 1-11. Overview of single-wafer debonding process using dissolution through perforated wafer plate ... 24
Figure 1-12. Overall description of release using liftoff process 26
Figure 1-13. Overview of Brewer Science’s low-stress, room temperature debonding process .. 28
Figure 1-14. Overview of edge protection methods 31
Figure 3-1. Schematic diagram of the process on thin Si-wafer manufacture applied with acrylates .. 45
Figure 3-2. Chemical structure of the dipentaerythritol hexacrylate (DPHA) ... 47
Figure 3-3. Crosslinking of carboxylated functionality with methylaiziridine · 51
Figure 3-4. Process of producing IPN structure in UV-cured acrylates 52
Figure 3-5. Peeling strength with the curing agents at the stainless steel (SUS) and Si-wafer ... 59
Figure 3-6. Peeling strength with different hexafunctional monomer contents .. 60
Figure 3-7. Peeling strength with different photo-initiator contents 61
Figure 3-8. Effect of the UV dose on the peeling strength at different coating thickness .. 62
Figure 3-9. Gel fraction with a hexafunctional monomer at different photo-initiator contents .. 64
Figure 3-10. Field-emission scanning electron images of UV-cured acrylates at UV dose; (a) 0 mJ/cm², (b) 50 mJ/cm², (c) 100 mJ/cm², (d) 200 mJ/cm² ... 66
Figure 3-11. (a) C₁s and (b) Si₂p XPS spectra of Si-wafer surface after peeling at varying UV dose ... 68
Figure 4-1. Chemical structures of (a) the dipentaerythritol hexacrylate (DPHA) and (b) 3-methacyloxypropyl trimethoxysilane (3-MPTS) .. 76
Figure 4-2. Process of producing IPN structure in UV-cured acrylates 80
Figure 4-3. Peel strength by two types of UV irradiation 89
Figure 4-4. Probe tack by two types of UV irradiation 90
Figure 4-5. GPC measurement by two types of UV irradiation 91
Figure 4-6. Temperature dependence of storage modulus G' with different UV dose ... 94
Figure 4-7. Tan delta with different UV dose .. 95
Figure 4-8. Conversion of C=C bonds at 810 cm⁻¹ as a functional of UV dose for UV-curable groups in binders blended with an additional monomer .. 97
Figure 4-9. Field-emission scanning electron images of UV-cured acrylates at UV dose; (a) 0 mJ/cm², (b) 400 mJ/cm², (c) 800 mJ/cm², (d) 1600 mJ/cm² .. 99
Figure 4-10. (a) C₁s and (b) Si₂p XPS spectra of Si-wafer surface after peeling
Figure 6-10. Gel fraction of UV-curing adhesives with different photo-initiator contents after UV-curing.. 162

Figure 6-11. Swelling ratio of UV-curable adhesives with different photo-initiator contents after UV-curing......................... 163

Figure 6-12. Correlation between swelling ratio and gel fraction of UV-curable adhesives.. 164

Figure 6-13. Linear shrinkage of UV-curable adhesives during UV irradiation ... 166

Figure 6-14. Thermogravimetric analysis of UV-cured adhesives with different UV doses ... 168

Figure 6-15. The peel strength (N/mm) vs. out-focusing length (mm) on (a) the line spacing from 20 μm to 40 μm, and (b) the scan speed from 900 mm/s to 1100 mm/s ... 170

Figure 6-16. Microscopy observations of specimen (a) – (f). The laser beam was irradiated from top to bottom.. 172

Figure 6-17. AFM images and depth profiles after UV laser irradiation with different processing conditions (process condition (a) ~ (c)) ... 175

Figure 6-18. SEM image and atomic fraction (%) of damaged area (spot A) and undamaged area (spot B) on Si wafer after cleaning, sample (a) .. 177
Chapter 1

General Introduction and Objectives
1.1. Three-Dimensional Integration

1.1.1. Background

Three-dimensional (3D) integration is commonly defined as bonding of stacked device substrates with vertical electrical interconnects between the device layers (Garrou et al., 2008). A device layer may consist of one particular interpreted circuitry or one set of functional devices. Besides wafer thinning and through-silicon via (TSV) formation, wafer bonding is the key unit process of 3D integration technologies. The choice of wafer bonding technologies has to be made by considering the full process conditions such as temperature limitations and the sequence of the technology modules, which may vary for different applications. The large spectrum of corresponding application-specific 3D integration technologies can be reasonably classified in the following main categories:

- Stacking of packaged devices (or substrates);
- Stacking of embedded bare devices (without TSVs);
- 3D TSV technology

Most of the applications discussed here are based on TSV technologies showing the capability for volume production of high-performance products (Ramm et al., 2012).

The large variety of existing TSV processing flows is categorized, according to ITRS (Semiconductor Industry Association, 2009), explicitly corresponding to the order of TSV processing, wafer thinning, and wafer bonding. The order of TSV process with respect to device fabrication is one of the main criteria and today commonly characterized by fabrication of TSVs
(Figure 1-1):

- Prior silicon front-end-of-line (FEOL) – “via first”
- Post silicon back-end-of-line (BEOL) – “via last”
- Post FEOL but prior BEOL – “via middle” (Ramm et al., 2012)
Figure 1-1. Schematic of TSV process flows (SEMATECH, 2009).
1.1.2. Application of wafer bonding for 3D integration technology

Figure 1-2 shows the most commonly applied techniques of oxide fusion, and metal bonding for 3D TSV integration. “via last” 3D integration technologies can be used to form the vertical electrical interconnects at the bonding interface during the bonding process, while TSVs can be made at any stage of the processing flow, depending upon the applications and processing constraints. The performance and economic motivations for moving to 3D integration technology have been clear for several years. By stacking a thinned die, or circuit, on top of another it was achieved the shortest interconnect distances which results in less power required to drive a signal, because the signal has less distance to travel. In addition entire layers can be re-used, either through customization on a separate layer or by connection to other functions through an interposer. This is summarized as follows:

Performance

- Shorter nets;
- Lower capacitance interconnect;
- Wide I/O bandwidth.

Volumetric efficiency (size/density)

- Stacking separated functions.

Reduced power

- Lower cap and shorter nets;
- Fewer buffers.
Figure 1-2. Schematic of main wafer bonding technologies for 3D integration (Ramm et al., 2012)
Modularity

- IP reuse;
- Lower design cost (Ramm et al., 2012)

A comparison between an equivalent package-on-package (PoP) solution and a 3D TSV solution showed that 3D TSV solution has significant advantages (Figure 1-3) (Kwon, 2011). Once the infrastructure is in place, it is hoped that 3D IC technology will reduce both risk and cost. The 3D IC approach should create economic benefits such as: reducing the time it takes to design and verify chips at the most advanced nodes; allowing the use older analog IP blocks rather than having to develop new IP blocks at the most advanced process nodes; and allowing the mixing of normally incompatible technologies (heterogeneous integration – more than Moore; Figure 1-4) (Ramm et al., 2012).

Three-dimensional integration is recognized as a key technology for heterogeneous product, demanding for smart system integration rather than extremely high interconnect densities. According to surveys on revenue forecast by Yole Development such “more than Moore” products, for example heterogeneous microelectromechanical system (MEMS)/IC systems, may even be the main driving markets for 3D TSV integration (Zinck, 2010). Many R&D activities worldwide are focusing on heterogeneous integration for novel functionalities (Fernandez-Bolanos et al., 2010). Also, 3D TSV platforms motivations per application are introduced (Figure 1-5) (SUSS Microtec, 2012).
Figure 1-3. Power consumption comparison flip chip (FC) PoP versus 3D system-in-package (SiP) with TSV (Kwon, 2011).
Figure 1-4. Beyond Moore’s law (SEMATECH, 2009).
Figure 1-5. 3D TSV platforms motivations per applications (SUSS Microtec, 2012).
1.2. Temporary Bonding and Debonding for 3D Integration and Packaging

1.2.1. Background

The end of device scaling based on Moore’s law or the possibility of prolonging this legendary law by the next generation of lithography technology has been the subject of debate for nearly a decade. Building three-dimensional (3D) devices has recently emerged as a plausible solution to the ever-increasing challenge to make smaller and faster devices with higher functionality. Three-dimensional integration and packaging require new ways to process and handle wafers. Most commonly, making 3D structures by means of through-silicon vias (TSVs) is considered to be 3D integration, while making stacked packages and other stacked structures by means of external connections is termed 3D packaging (Garrou et al., 2008).

Numerous ways of stacking devices exist, but they all have wafer-thinning processes in common and some approaches require thin-wafer handling. Wafers thinned to a thickness of 150 μm or more have been shown to survive handling without significant damage, but these wafers need highly sophisticated and often expensive equipment to avoid chipping and breakage. However, TSV formation and filling at thickness greater than 100 μm can be challenging and costly. Additionally, interconnect delay and heat dissipation issues can be better addressed with thinner substrates. To make TSV technology viable, wafers must be thinned to thicknesses of 100 μm or less. Thinned silicon wafers are extremely fragile and tend to wrap and fold, the risk escalating with increasing wafer size. It is already highly desired for most 3D integrated circuit (IC) manufacturers to thin wafers to a thickness of 50 μm or less to realize the full benefit of 3D integration. Handling such thin
wafers demands that each wafer be temporarily bonded to a carrier or handle wafer using a temporary bonding material. Alternatively, the device wafer can be bonded permanently or mounted directly onto another device wafer face-to-face, followed by thinning and processing (Ramm et al., 2012).

Once a device wafer is attached to a carrier wafer, the wafer pair can be processed like a standard full-thickness wafer without additional modification of the processing equipment or the process flow (Puligadda, 2007; Hosali, 2008; Hermanowski, 2009; Pargfrieder, 2009; Wolf, 2008). When the backside processing is complete, the thinned wafer can be separated (released or debonded) from the carrier and attached to a dicing frame, where it is diced to create dies for the pick-and place process. Alternatively in a wafer-to-wafer scheme, the entire device wafer can be bonded permanently to another device wafer before being released from the carrier wafer (Ramm et al., 2012). A scheme of temporary bonding and debonding process is introduced (Figure 1-6) (SUSS Microtec, 2012).
Figure 1-6. Scheme of temporary bonding and debonding process (SUSS Microtec, 2012).
1.2.2. Temporary bonding and debonding technologies

Temporary bonding a device wafer to a carrier and effectively releasing the device wafer are considered to be among the most critical and enabling technologies for achieving 3D integration of devices. The requirements of the temporary bonding materials heavily depend not only on the backside processes, but also on the condition of the device wafer and the processes it has been through prior to bonding (Ramm et al., 2012). A “via-first” (Garrou et al., 2008) device wafer presents different challenges from a device wafer in a “via-last” process. In a via–first process, the TSVs are fabricated in the device wafer prior to bonding. The higher coefficient of thermal expansion of copper, tungsten, or polysilicon used to fill the TSVs compared to that of silicon causes stress in the wafer, which becomes important when the wafer is thinned to 100 μm or less. In a via–last process, the TSVs are fabricated after the device wafer is thinned and bonded to a carrier wafer. The temporary bonding agent in this case must go through many processing steps including deep via etching, electroplating, etc. Schematics of the via-first and via-last processes are shown in Figure 1-7. In addition to the backside process, requirements of the adhesives depend on the condition of the device wafer. For instance, bumps on the device side impart greater challenges than a device wafer with low topography. Additionally, bumping on the backside of the thinned wafer requires special chucking for release and further handling. Several different technology options are available today for bonding and debonding or demounting after processing. While tapes and waxes are commercially available and used industry-wide for a limited number of applications today, they typically do not survive high-temperature processes and harsh chemical environments. Additional limitations include high total thickness variation (TTV) and the presence of residues after release (Ramm et al., 2012).
Figure 1-7. Schematics of via-first and via-last processes (Ramm et al., 2012).
The key requirements for temporary bonding agents or adhesives and the related bonding and debonding processes include the following (Ramm et al., 2012).

- **Ease of application** - the process flow for application of the temporary bonding agent should enable high throughput and preferably use industry-known and accepted unit processes.

- **Low TTV** – the TTV of the adhesive is transferred to the thinned wafer during the thinning process. For a thermoplastic type of adhesive, reflow during the bonding process allows greater uniformity in the bond line.

- **Good adhesion to a wide variety of surfaces** – a typical device wafer has several different surfaces in contact with the adhesive. Poor wetting to any of these surfaces may lead to delamination or voiding in the bondline.

- **Bonding and debonding at appropriate temperature** – low bonding and debonding temperatures are advantageous for conserving thermal budgets of the device wafer. For obvious reasons, these processes should be performed below temperatures limited by device stability.

- **High thermal stability** – the adhesive layer must remain stable through the high-temperature backside process including debonding to avoid breakage failure and equipment contamination. Examples of high-temperature processes include dielectric deposition, annealing, metal deposition, permanent bonding, and solder reflow.
Furthermore, outgassing from the adhesive layer is an important consideration. Also, certain processes between temporary bonding and debonding are conducted at higher temperature atmosphere. Accordingly, the adhesive must maintain high thermal stability (Figure 1-8) (SUSS Microtec, 2012).

- **High chemical resistance to process chemicals** – the adhesive material must be resistant to process chemicals such as etchants and corrosive electroplating solutions yet remain soluble in the removal solutions after debonding.

- **Good mechanical strength to keep device wafer in place** – the mechanical stability of the adhesive become important during high-temperature processes where it must hold down the thinned, often highly stressed device wafer to prevent buckling or curling.

- **No damage to wafer during thinning, debonding, or handling** – Damage to device wafers during thinning can be mitigated to a large extent using one of the several edge protection schemes. In addition to damage that the grinding process can cause, significant damage can occur during handling after debonding if the wafer is not fully supported. Flattening or smearing of backside bumps is an additional concern and therefore requires special debonding and handling chucks.

- **No residue** – it is imperative that the bonding agents or adhesives must be completely removed from the surface of the wafer to avoid difficulties in downstream processing and to prevent negatively affecting the reliability of the device package.
Figure 1-8. Temperature requirements in process sequences (SUSS Microtec, 2012). To maintain the high purity, it is required to have over 200 °C processing temperature during the process of bonding and debonding.
1.2.2.1. Thermoplastic adhesive, slide-off debonding approach

The materials used in this approach are primarily developed by Brewer Science Inc., and were originally designed to be compatible with equipment manufactured by EV Group (EVG) (Mathias, 2007). The adhesive solution is applied to either the carrier or the device wafer by spin-coating. An important consideration for the coating process is that the adhesive thickness must exceed the height of device features to ensure complete planarization. The remaining solvent in the film is then eliminated using a baking process. The device wafer and carrier are bonded in a vacuum chamber at a temperature above the softening point of the adhesive and at pressures ranging from 5 to 20 psi. This technology can be used with silicon, glass, or sapphire carriers of the same size as the device wafer. As a result, this approach requires no medication to the lithography, etch, or deposition tools. After backside thinning and other processes on the device wafer, the wafer pair is heated to a temperature above the softening point of the adhesive, and the device wafer is separated from the carrier by sliding off the carrier wafer. The thin device wafer is completely supported on a vacuum chuck in the debonding equipment. The device wafer and carrier are then cleaned on a specially designed chuck using an appropriate remover, which is typically supplied with the adhesive. The thin device wafer is then transferred to a dicing frame or a coin stack. Other output formats such as individual carriers have also been investigated. The wafers are processed in a single-wafer-processing mode in each of these processing steps. The slide-off approach is shown in Figure 1-9. When automated, this approach requires an equipment set consisting of a bonder unit where the device wafer is coated and bonded and a debonder unit where the wafers are separated and cleaned (Ramm et al., 2012).
Figure 1-9. Process flow for slide-off debonding approach (Ramm et al., 2012).
1.2.2.2. Using Ultraviolet-curable adhesive and light-to-heat conversion layer

This approach has been developed by 3M to be used in conjunction with specially designed equipment (Kessel, 2007; Sukengwu, 2008). A liquid adhesive is applied using a spin-coating process, and the adhesive planarizes the topography on the device wafer. The device wafer is then mounted onto a glass carrier. The glass carrier is coated with a material called a light-to-heat conversion (LTHC) layer before the carrier is laminated to the wafer. The adhesive is cured using ultraviolet (UV) light to create a bond. The LTHC layer can absorb certain wavelengths of light such that irradiating this layer with a focused laser beam can generate enough heat to decompose it. As a result, the wafer detaches from the glass carrier. The backside of the device wafer is first attached to supporting tape before rastering the laser through the glass side. The cured adhesive film is peeled from the device wafer after separation of the glass carrier. An overview of 3M’s process is shown in Figure 1-10. This approach also requires an equipment set with two members, a “mounter” and a “demounter”. Additional equipment may be required for preparing the glass carrier with the LTHC layer (Ramm et al., 2012).
Figure 1-10. Process flow for 3M wafer support system (Ramm et al., 2012).
1.2.2.3. Adhesive dissolution through perforated carrier wafer

The equipment and materials needed for this approach are being developed by Tokyo Ohka Kogyo, Japan. The adhesive is spin-coated onto the device wafer, and the adhesive’s solvent is removed by baking. Following the coating process, the device wafer is bonded to a perforated support carrier. The device wafer goes through subsequent backside processing such as grinding, etching, dielectric deposition, etc. Upon completion of backside processing, the wafer is separated by dissolution of the adhesive. Solvents or removal solutions penetrate through the perforations in the carrier wafer and dissolve or etch the adhesive layer. The thin wafer is supported on a film frame through the demounting process. The thin wafer is further cleaned to remove any residue. Dedicated equipment units for mounting and demounting of the support plate are also needed for this approach. Figure 1-11 shows an overall description of the process and equipment used in this approach (Ramm et al., 2012).
Figure 1-11. Overview (Garrou, 2009) of single-wafer debonding process using dissolution through perforated wafer plate (Ramm *et al.*, 2012).
1.2.2.4. Using a release layer and lift-off

This technology, developed by Thin Materials AG, Germany, involves separating the thinned wafer from the carrier by a lift-off process. The device wafer in this approach (Garrou, 2009) is coated with a very thin (a few hundred nanometers thick) release layer. The release layer is deposited in a two-step process. First, a precursor material is spin- or spray-coated onto the wafer and it is then subjected to a plasma treatment to give it nonstick characteristics. This step is followed by spin-coating a silicon-based elastomeric material and curing at temperatures near 200°C. Following thinning and backside processing, the backside of the device wafer is attached to a film frame, and the carrier wafer is lifted off the wafer. Figure 1-12 shows a schematic of the overall process (Ramm et al., 2012).
Figure 1-12. Overall (Boudaden et al., 2008) description of release using liftoff process (Ramm et al., 2012).
1.2.2.5. Room temperature, low-stress debonding

Developed recently by Brewer Science, this approach utilizes two zones to bond the device wafer to the carrier wafer. It uses a material in the center (one of the zones) to fill in the gap while not adhesively bonding them together. The outer edge is adhesively bonded to ensure the wafers remain together during subsequent processing and to prevent corrosive process chemicals from penetrating the bond line between the wafer stack. The two zones are achieved by treating the carrier wafer to give it a nonstick quality except at the periphery. This technique allows the adhesive coated on the device wafer to adhere only to the edge zone of the carrier. Figure 1-13 shows a schematic of the process used to achieve selective adhesion at the edges. Unlike the approach described previously, the carrier wafer is peeled away after thinning and backside processing while the device wafer is supported on a vacuum chuck (Ramm et al., 2012).
Figure 1-13. Overview of Brewer Science’s low-stress, room temperature debonding process (Ramm et al., 2012).
1.2.3. Concerning for temporary bonding and debonding

1.2.3.1. Uniform and void-free bonding

Uniformity of the bond is one of the factors that affect the TTV of the thinned wafer. Contribution of temporary bonding layer uniformity to TTV can be minimized by utilizing a spin coating process to deposit the temporary bonding layer and ensuring that chucks on the bonder are flat and leveled. A drop micrometer is frequently used to measure total stack thickness at several points on the wafer to ensure low variation. A void in the bond line is a more severe problem. Scanning acoustic microscopy is an effective method to detect voids in the bonding layer. A large void trapped between the two wafers can expand in a subsequent high-temperature, low-vacuum process and cause delamination of the device wafer from the carrier. In extreme cases, it can cause breakage of the thinned wafer. Additionally, small voids can agglomerate during the high-temperature processes to make larger voids. Voids caused by air trapped during the bond process can be avoided by drawing a vacuum in the bonding chamber before bringing the two wafers into contact. Another common source of voids in the adhesive is the outgassing from the device wafer surface. This can be alleviated by treatment of the device wafers at high temperature for a limited time before coating with adhesive (Ramm et al., 2012).
1.2.3.2. Protecting wafer edges during thinning and subsequent processing

Edge chipping and breakage is one of most common failure modes for thinning processes. Grinding a device wafer from the backside creates a very sharp edge that is prone to chipping and cracking. A study conducted by Brewer Science (Bai, 2009) compared the efficacy of the most common edge protection schemes. Control wafer pairs were simply bonded and thinned. Figure 1-14 shows each of the four schemes. All four of the protection schemes showed improvement with regard to edge chipping. The size and number of chips were markedly less than those of the control pairs (Ramm et al., 2012).
Figure 1-14. Overview of edge protection methods (Ramm et al., 2012).
1.3. Objectives

Almost all of ultrathin wafers of less than 50 μm of thickness should be controlled by using the process on a temporary carrier wafer. Those carrier wafers need to be perfectly compatible with common semiconductor processes which are used during backside processing. For this, there are several technologies that the bond can be released after thinning of the device wafer. In one technique, a thermoplastic layer is used for bonding. The adhesion force of this layer is weakened on heating to elevated temperatures which allows separation of the wafers. In another method, the carrier is released by exposing the adhesive to intense laser irradiation. In a third method, the adhesion layer can be dissolved by chemicals applied through holes in a special, perforated carrier wafer. Unfortunately, the temperature range for subsequent processing may be too low for the first method, and the other approaches require expensive carrier wafer (Ramm et al., 2012).

Conventional processing temperature between temporary bonding process and debonding process is raised to more than 200 °C for high purity. So, surface contamination of thin silicon wafer is generated by low molecular substances which are induced by thermal degradation of conventional adhesives. Also, cracking or broken thin silicon wafer is presented because of bonding strength after debonding process.

In this study, an alternative newly method for temporary bonding and debonding has been developed and proposed which not only obtains advantages but also avoids drawbacks of mentioned some technologies. It is based on a released layer treated glass carrier wafer, dual curable adhesives and UV laser debonding. This means as followings;

- To synthesize dual curable adhesive for UV laser debonding
To investigate UV and thermal curing behaviors
- To optimize and evaluate UV laser debonding

Studies were proceeded as dividing to two aspects, bonding and temporary bonding and debonding.

For bonding properties, three experimentals were conducted as following objectives;

- **First experimental**
 - To employ a hexafuctional acrylic monomer for interpenetrating network structure (IPNs) for enhancing thermal stability.
 - Increasing a photo-initiator control and UV dose to control adhesion properties

- **Second experimental**
 - To synthesize an adhesive with a silicon containing acrylic monomer (as a solvent polymerization, not a blending for UV-curing) for enhancing thermal stability and decreasing adhesive manufacture steps
 - To control adhesion properties by using different UV curing methods (steady irradiation and pulsed irradiation) as an UV curing process
 - To investigate thermal stability and adhesion properties by using different concentration of a photo-initiator and UV dose

- **Third experimental**
 - To employ certain types of a silicon containing monomer and
acrylic monomers using twofold urethane reactions for 100% solid polymerization because of enhancing thermal stability and a reasonable spin coating

- To investigate dual curing (UV and thermal) for enhancing thermal stability
- To investigate thermal stability and adhesion properties by using different concentration of a photo-initiator and UV dose in this system

For temporary bonding and debonding properties, fourth experimental was conducted as following objectives;

- **Fourth experimental**
 - To employ certain types of a fluorine containing monomer, silicon containing monomer and acrylic monomers using threefold urethane reactions for 100% solid polymerization because of enhancing thermal stability and a reasonable spin coating
 - To synthesize using an UV absorbing material, which absorbs UV energy, especially approximately 40% of absorbance in the wavelength at 355 nm
 - To investigate surface morphologies, properties and debonding mechanism
Chapter 2

Literature Review
2.1. UV-curing

The use of radiation curing provides an opportunity to develop products that are highly competitive. Since often they are virtually 100% solid, generally they have less shrinkage than traditional solvent-based or water-based adhesives, and since they are cross-linked, they usually have better thermal and flow resistance than the majority of hot-melt adhesives available. They may also be used with heat-sensitive substrates since they need to be exposed to less heat than the their types, and when one considers the total economics of the system including, besides the raw-material costs, the costs of energy, pollution control and speed of throughput, they are seen to be cost competitive. Improvements in technology, performance attributes, curing characteristics and toxicity hazards have all contributed to the growth of the radiation-curable laminating adhesives (Ellerstein et al., 1993).

Adhesives that cure by exposure to a UV or light radiation have become essential to many assembly operations where high throughput or delicate components are prevalent. These adhesives require the presence of the correct wavelengths of light at sufficient intensity to form durable structural bonds. UV and light cure adhesives use photo-initiators to activate the free radical curing mechanism (Petrie, 2000).

UV-curing technology can be divided into UV-polymerization and UV-crosslinking methods. UV-polymerization are formulated with relatively low molecular weight (Mw; 400~5,000) monomers or prepolymer and photoinitiators; however, UV-crosslinkable PSAs are composed with high molecular weight (Mw; 1,000,000~20,000,000) PSA polymer containing UV-crosslinkable site in side chain. For example, hot-melt pressure-sensitive
adhesives, when heated, assume a low viscosity suitable for a homogeneous thin layer application. These polymers achieve their adhesive strength during subsequent cooling on the base material. The absence of a thinner gives this group of adhesives its high economic and ecological significantly lower space requirement, lower energy costs and emission free processing (Do et al., 2005).

UV exposition the intermolecular benzophenone derivatives H-abstractors structures are excited and react with the neighboring C-H positions of polymer side-chains (Czech, 2004).
2.2. Synthesis and UV-curable acrylate

Prepared photo-curable aliphatic epoxy acrylate with acrylic acid and 1,4-butenediol diglycidyl ether that was obtained by reacting 1,4-buteneol with epichlorohydrin. They investigated the properties of photo-curable aliphatic epoxy acrylate after the dilution with three kinds of reactive monomers: 2-hydroxyethyl acrylate, tri(propylene glycol) diacrylate, trimethylolpropanetriacrylate. Their viscosities decreased with the increased amount of reactive monomers, but increased when higher functionality of monomers were used. Also, glass transition temperature of UV-cured film shifted to higher temperatures as the functionality of monomer was increased, and thermal stability exhibited similar behavior. In addition, other physical properties such as hardness, abrasion resistance, and tensile strength of UV-cured film, increased with increased functionality of monomer, but elongation was reduced with the higher monomer functionality (Lim et al., 2003).

Three types of epoxy acrylate were synthesized. One is liquid crystalline epoxy acrylate containing the mesogenic core a-methylstilbene, the other was synthesized with 4,4’-dihydroxy-a-methylstilbene and epichlorohydrin, another epoxy acrylate oligomer was synthesized from epoxy oligomer and acrylic acid in the presence of a reaction medium and a phase transfer catalyst for 12 h. The synthesized epoxy acrylate oligomer showed smectic liquid crystalline phase from room temperature to near 50°C compared with the nematic epoxy oligomer. The synthesized epoxy acrylate showed high photo-reactivity (Kim et al., 2002).

Epoxy urethane acrylates were prepared from epoxy resins, acrylic acid and 4,4’-diphenylmethane diisocyanate using two-stage polymerization.
Synthesized epoxy acrylate is more flexible and have lower viscosity. The low molecular weight of the oligomers results in low viscosity, making it possible to use these materials as solvent less coatings (Oprea et al., 2000).

It was prepared UV-curable polyurethane acrylates from urethane-acrylate prepolymer, three types of reactive diluents, and 1-hydroxycyclohexyl phenyl ketone (Irgacure 184) as a photo-initiator. They investigated the effects of the chemical structure and the reactive diluent composition on mechanical and dynamic thermal mechanical properties of UV-cured polyurethane acrylates. Also, they investigated that the structure and properties of the film obtained from the UV photo-polymerization of urethane-acrylate prepolymer using FT-IR spectroscopy, dynamic mechanical measurement, and tensile testing (Lee et al., 1999).

It was synthesized UV-curable polydimethylsiloxane epoxy acrylate by hydrosilylation of allyl glycidyl ether with H-containing polydimethylsiloxane to give polydimethylsiloxane-type epoxy resin which modified with acrylic acid. They reported that the curing speed and the double bond conversion in the UV-cured film were influenced by the purity of PSEA using FT-IR. Also, he was characterized the substrates of this resin using 1H-NMR and FT-IR spectra (Wang, 2003).

It was prepared epoxy acrylates such as bisphenol type, propylene glycol type, and phthalic acid ester type from addition reaction between each epoxy resin and acrylic acid in the absence of solvent and in the presence of quaternary ammonium salt. They reported that the rates of photo-crosslinking of epoxy acrylates using by IR spectrophotometry. When epoxy acrylates with benzoin ethyl ether were irradiated by UV, the photo-crosslinking rates of epoxy acrylates decrease (Sun et al., 2005).
It was investigated that UV-curing behavior of an epoxy acrylate resin system comprising an epoxy acrylate oligomer, a reactive diluent, and a photo-initiator using FTIR spectroscopy. They reported that the conversion of the resin system increased rapidly at the initial stage of the UV-curing process but increased very slowly after that. The final conversion of the resin system was mainly affected by total UV dosage (Hong et al., 2005).

It was reported that a series of multiethylene glycol dimethacrylate (MEGDMA) was characterized with respect to the polymerization behavior, kinetics, and mechanism. They reported that the influence of the monomer structure was determined by studying a series of MEGDMA’s with the number of ethylene glycol units ranging from 2 to 14. For each monomer, the propagation and termination kinetic constants were quantified as a function of conversion to provide insight surrounding the controlling polymerization mechanisms. The influence of the double bond concentration diethylene glycol dimethacrylate in the presence of an inert solvent. Finally, in addition to characterizing the general reaction behavior, the influence of volume relaxation on the polymerization behavior and kinetics was studied (Anseth et al., 1995).

It was investigated the radiation curing behavior of poly(ethylene glycol 400) dimethacrylate and ethylene glycoldimethacrylate using photo- DSC as a function of temperature and photo-initiator concentration. They reported that the reaction speed of PDG400DMA and EGDMA increased as the number of ethylene glycol unit, the concentration of photo-initiator, and the reaction temperature increased (Do et al., 2003).
2.3. Fluorinated polyurethane acrylate

It was synthesized a novel fluorinated polyurethane from fluorinated polyether glycol (PTMG-g-HFP), 1,6-hexamethylene diisocyanate (HDI) or toluene diisocyanate (TDI) and 1,4-butanediol (BDO), and the structure was characterized by FT-IR and NMR. The incorporation of fluorinated polyether glycol in the polyurethane backbone showed a significant effect on the thermal stability of PU. XPS analysis results showed that there was an obvious mobility of fluorinated groups to the fluorinated polyurethane had outstanding chemical resistance and strain-hardening property compared with the conventional PU (Ge et al., 2009).

It was reported that a telechelic polyurethane end-capped with perfluoropolyether segments was prepared from polyether glycol as a soft segment, 4,4’-methylene-bis-(phenylisocyanate), and mono-functional perfluorinated oligomer. XPS results indicated that surface of the fluorine containing polyurethane was enriched with fluorine component. It exhibited a hydrophobic property with a water contact angle of 113°. The polyurethane terminated with perfluoropolyether segments shows a better. A mechanism was proposed to explain thermal decomposition of polyurethanes (Zhu et al., 2010).
Chapter 3

Adhesion Performance and Surface Morphology of UV-curable Interpenetrating Network Acrylates for 3D Multi-chip Packaging Process
3.1. Introduction

Photo-induced polymerization includes polymerization by UV light, visible light electron beam, or by laser. Photo-curing refers to polymerization that includes unsaturated inks, coatings and pressure-sensitive adhesives (PSAs) (Dufour, 1993; Joo et al., 2007). UV-curing systems involving photo-curing are used widely because of their rapid production rate in a small working place and solvent-free curing at ambient temperatures (Joo et al., 2007).

Adhesive tape is commonly adopted to tightly hold silicon wafers during the fabrication of semiconductor chips. Such adhesive tapes are called dicing tape. With the rapid development of integrated semiconductor technology, a higher reliability is needed for the manufacture of electronic devices (Ebe et al., 2003). An excessive degree of cross-linking in pressure-sensitive adhesives (PSAs) prepared from unsaturated polyester resins by electron beam irradiation results in poor adhesive strength (Ebe et al., 2003). This observation led us to establish a novel dicing process, as shown in Figure 3-1. A piece of silicon wafer was tightly held using dicing tape with strong adhesion strength, which enabled rapid and smooth dicing of the wafer. Subsequently, the adhesive layer was irradiated with UV light through the reverse side of the substrate. After UV irradiation, the adhesion strength decreased to a certain level, where it easily picked up the diced chips for a further die-bonding process. Dicing tapes developed using this process has been reported and similar suggestions have been made (Ebe et al., 2003).

On the other hand, acrylic monomers and oligomers are used widely on account of their superior properties, such as transparency, colorlessness, resistance to yellowing under sunlight and resistance to oxidation due to their saturated structures. However, they have poor thermo-mechanical stability because of their linear structure. Therefore, the cross-linking of
multifunctional acrylates is needed to increase their thermo-mechanical stability. It was reported that an adhesive shows fluid-like behavior when it is widely cross-linked. However, the creep resistance increases greatly for a more cross-linked adhesive (Joo et al., 2007; Sosson et al., 2005). Cross-linked Multifunctional acrylates produce semi-interpenetrating polymer networks (IPNs). Semi-IPN structured adhesives have advantages, such as improved heat and creep resistance (Joo et al., 2007; Sosson et al., 2005; Joo et al., 2006). In addition, it was reported that photo-polymerization was effective in obtaining networks with a high degree of interpenetration (Athawale et al., 2003).

In the fabrication of semiconductors, adhesives are used for processes other than dicing, wherein the required adhesion strength is different. Accordingly, control of the peel strength by UV-curing has the potential to facilitate the procedure and/or broaden the applications. An acrylic copolymer itself would not change its adhesion strength with UV irradiation due to the absence of a reactive site to UV irradiation (Ebe et al., 2003; Amagai et al., 1995; Ozawa et al., 2000).

In this study, IPN acrylic adhesives in a wafer manufacture process, were prepared using a hexafunctional acrylate monomer with a UV-curing system. Emphasis was placed on curing behaviors according with the curing agent contents, hexafunctional acrylate monomer contents, photo-initiator contents and coating thickness, which were examined using the 180° peel strength. The analysis by FE-SEM and XPS showed that there was little residue on the wafer after the release of adhesive layer by UV irradiation (Lee et al., 2012).
Figure 3-1. Schematic diagram of the process on thin Si-wafer manufacture applied with acrylates (Lee et al., 2010)
3.2. Experimental

3.2.1. Materials

The 2-ethylhexylacrylate (2-EHA, 99.0% purity, Samchun Pure Chemical Co., Ltd, Republic of Korea) and acrylic acid (AA, 99% purity, Samchun Pure Chemical Co., Ltd, Republic of Korea) were commercially available and used without purification. The ethyl acetate (EAc, Samchun Pure Chemical Co., Ltd, Republic of Korea) and methanol (MeOH, Samchun Pure Chemical Co., Ltd, Republic of Korea) were used as solvents. The chemical 2,2’-azobisisobutyronitrile (AIBN, Junsei Chemical, Japan) was used as a thermal initiator, a methylaziridine derivative (MAZ, DSM Neoresins, USA) was used as the cross-linking agent and dipentaerythritol hexacrylate (DPHA, Miwon Specialty Chemical, Republic of Korea) was used as the diluent monomer. Figure 3-2 shows the chemical structure of hexafunctional acrylate, which has six C=C double bonds. The compound, 2-hydroxy-2-methyl-1-phenyl-propane-1-one (Miwon Specialty Chemical, Republic of Korea) was used as the photo-initiator (Lee et al., 2012).
Figure 3-2. Chemical structure of the dipentaerythritol hexacrylate (DPHA)
3.2.2. Methods

3.2.2.1. Synthesis of binders

Acrylic monomers (2-EHA, AA) were synthesized as 95 and 5 wt% by solution polymerization. The amount of AIBN in the binders was 0.3 phr. The mixture was placed into a 500 ml four-neck flask equipped with a stirrer, condenser and thermometer, and heated to 75 °C with constant stirring. At the end of the exothermic reaction, the temperature was maintained for 30 m, and a blend of ethyl acetate and AIBN was added. The reaction was allowed to proceed for 0.5 and 2.5 h. Finally, polymerization was terminated by cooling the mixture to room temperature (Lee et al., 2012).
3.2.2.2. Formation of the acrylate film

All acrylic binders were coated onto the corona treated polyethylene terephthalate (PET, SK Chemical, Republic of Korea) film using coating bars, kept at room temperature for 1 h and then dried in an oven at 80°C for 20 m. The dried film was kept at 22±2°C and 60±5% RH for 24 h before performing the tests (Lee et al., 2012).
3.2.2.3. Preparation of cured acrylates

The acrylates were cured using two methods: the addition of a curing agent followed by UV-curing. The curing agent was the multifunctional methylaziridine. The cross-linking of the acrylates with multifunctional methylaziridine is based mainly on the carboxyl groups of the vinyl carbonic acids within the polymeric chain. The oxygen of the nucleophilic carboxyl group causes ring opening of the tense aziridine rings, whereas the hydrogen atoms accompanying the carboxyl groups protonate the nitrogen atoms (Figure 3-3) (Czech, 2007). UV-curable acrylates were prepared by blending the polymerized binders with a photo-initiator and hexafunctional acrylic monomer. The UV-curable acrylates were coated onto polyester (PET) films and cured using conveyor belt type apparatus fitted with a 100 mJ/s high pressure mercury lamp (main wavelength : 365 nm). The UV doses were measured using an IL 390C Light Bug UV radiometer (International Light, USA). Despite low molecular weights, the hexafunctional monomers in the acrylates can be photo-polymerized after a UV dose to form IPN structures (Figure 3-4). The cured samples were weighted and immersed in toluene for 24 h at 50ºC, and then screened and dried at 80ºC to a constant weight. The gel fraction of the samples was calculated using the following equation: (Lee et al., 2012).

\[
\text{Gel fraction (\%) } = \frac{W_i}{W_0} \times 100, \tag{1}
\]

Where \(W_0\) and \(W_i\) are weight of samples before and after immersion, respectively. The gel content provides information on the degree of cross-linking (Wu et al., 2010; Yang et al., 2008).
Figure 3-3. Crosslinking of carboxylated functionality with methylaziridine (Czech, 2007).
Figure 3-4. Process of producing IPN structure in UV-cured acrylates.
3.2.2.4. Adhesion performance

The peel strength was measured using a texture analyzer (Micro Stable Systems, TA-XT2i). The specimens were 25 mm in width. The specimens were pressed onto the Si-wafer substrate by 2 passes of a 2 kg rubber roller and stored at room temperature for more than 12 h. The peel strength was determined at a 180° angle with a crosshead speed of 300 mm/m at 20°C based on the ASTM D3330. The peel strength was the average force on the debonding process. The force was recorded in g unit for 10 different runs and the average force was reported as gf / 25 mm.
3.2.2.5. Field emission-scanning electron microscopy (FE-SEM)

The surface morphology of each sample after the peel strength test was measured by field-emission scanning microscopy (SUPRA55VP, NICEM at Seoul National University, Republic of Korea). The fractured samples were coated with a thin layer of gold (purity 99.99 %) prior to the FE-SEM examination to prevent electron charging.
3.2.2.6. X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS, PHI 5000 Versa Probe, Ulvac-PHI) was performed using Al Ka radiation (1486.6 eV, Anode (25W, 15kV)). The bonding energies were calibrated with reference to the C (1s) peak at 284.6 eV. For the measurement, the samples were placed into an ultra-high vacuum chamber and data analysis of the sensitivity factors of each element present, was performed (Wu et al., 2010; Song et al., 2006; Asahara et al., 2004).
3.3. Results and Discussion

3.3.1. Adhesion performance

The adhesion performance of the acrylates was determined by measuring the 180°C peel strength. The peel strength decreased sharply to approximately 150 gf / 25 mm through the use of 1 phr (in binder) of aziridine, as shown in Figure 3-5. Interfacial failure, which means that there was no residue, was observed on all samples. This was attributed to networking formation of the acrylates due to the aziridine derivative. Furthermore, the cross-linked structure indicated increased cohesion force within the acrylates. Using cross-linking agents, the increase in cohesion might be accomplished during drying step. Logically, the tackifying properties of the coating and peel adhesion should decrease (Lee et al., 2010; Czech, 2007; Czech, 2004). Two different types of substrates were used to measure the 180° peel strength. The peel strength on a Si-wafer was lower than that on SUS when less than 2 phr (in binder) of aziridine was used because the surface free energy of a Si-wafer is considered to be lower than one of stainless steel substrates, SUS (Chibowski, 2005). However, the peel strength was similar on both substrates (30～50 gf / 25 mm) when more than 2 phr (in binder) of aziridine was used. At more than 2 phr (in binder) of aziridine, all cross-linked samples affected the peel strength to a greater extent regardless of the substrate. In the debonding process of Si-wafer manufacture, the initial adhesion strength is an important factor because of the loss the fitted thin Si-wafers (Lee et al., 2010). The optimum peel strength value was attained at approximately 0.5 phr (in binder) of aziridine, as shown in Figure 3-6 (Lee et al., 2012).

Figure 3-7 shows the effect of the UV dose on the peel strength at different hexafunctional acrylate monomer contents. Soluble linear binders turned into
UV-cured insoluble IPN structured polymers by blending the hexafunctional acrylic monomer with photo-initiator (Joo et al., 2006). The hexafunctional acrylic monomer contents were 10, 15, 20 and 30 wt.% (in binder). The photo-initiator content was 2 phr (in the hexafunctional monomer) in all samples. The peel strength decreased with increasing hexafunctional monomer formed a tightly cross-linked IPN structure in the acrylates because of its short chain length. In addition, the molecular mobility could be decreased because of the over-cured hexafunctional monomer, which overly increased the cohesion of the acrylates and decreased the peel strength (Joo et al., 2006). The peel strength of the blends with monomer contents of 20 and 30 phr (in binder) decreased sharply to approximately 50 gf / 25 mm using an approximately 100 mJ/cm² of UV dose and almost leveled off. However, the peel strength of the blend with a hexafunctional monomer content of 30 phr (in binder) was lower than that with a content of 20 phr (in binder). The optimum peel strength was attained using a hexafunctional monomer content of approximately 30 phr (in binder) (Lee et al., 2012).

The influence of the photo-initiator contents on the peel strength of acrylic adhesives after UV irradiation was examined. UV light is absorbed mainly by the photo-initiator and is attenuated progressively as it passes through the sample. The penetration of the incident photons is related directly to the photo-initiator content. Therefore, photo-initiated radical polymerization is an effective process for readily cross-linking functionalized polymers (Decker et al., 2001). Figure 3-8 shows the effect of the amount of the photo-initiator on the peel strength of the samples with different UV doses. A low peel strength was obtained at a photo-initiator content > 2 phr (in the hexafunctional monomer) regardless of UV doses. The optimum peel strength was obtained with a photo-initiator content and UV doses of approximately 2 phr (in the hexafunctional monomer) and 200 mJ/cm², respectively (Lee et al., 2012).

The coating thickness of the samples is a very important factor affecting the
performance, including the peel strength. As the Si-wafers become thinner, the adhesives thickness is different from 10~20 μm can be considered (Lee et al., 2010). Figure 3-8 shows that the increase in UV dose from 0 to 200 mJ/cm² decreased the peel strength from approximately 450 to 20 gf / 25 mm at a coating thickness of 20 μm. A low peel strength was obtained at approximately < 20 μm despite the UV dose being more than 200 mJ/cm² (Lee et al., 2012).
Figure 3-5. Peeling strength with the curing agents at the stainless steel (SUS) and Si-wafer (Lee et al., 2012).
Figure 3-6. Peeling strength with different hexafuctional monomer contents (Lee et al., 2012).
Figure 3-7. Peeling strength with different photo-initiator contents (Lee et al., 2012).
Figure 3-8. Effect of the UV dose on the peeling strength at different coating thickness (Lee et al., 2012).
3.3.2. Gel fraction of the acrylates with the hexafunctional monomer at different photo-initiator contents

The photo-initiator plays a key role in controlling both the rate of initiation and the penetration of incident light (Wu et al., 2010; Decker et al., 2000). An increase in photo-initiator concentration will accelerate the cross-linking reaction, but a small excess of organic photo-initiator can be poisonous and harmful cleavage products can form during the application (Wu et al., 2010). Figure 3-9 shows the gel fraction of the acrylates with a hexafunctional monomers at different photo-initiator contents (1/2/5 phr in binder). The gel content provides information on the degree of cross-linking. The gel fraction was calculated using equation (1). The gel fraction of cross-linked the acrylates increased with increasing UV doses and photo-initiator content. However, the gel fraction of the acrylates was similar when more than 2 phr of the photo-initiator was used. This shows that the cross-linking reaction accelerates more than 2 phr of the photo-initiator contents (Lee et al., 2012). This means that the gel fraction can be controlled facilely by the UV dose and photo-initiator content (Kloosterboer, 1988).
Figure 3-9. Gel fraction with a hexafunctional monomer at different photo-initiator contents (Lee et al., 2012).
3.3.3. Field emission-scanning electron microscopy (FE-SEM)

The second aim of this study was to observe the morphology using FE-SEM (Figure 3-10) and to characterize contaminations of the polymers on the surface of the Si-wafers by XPS (Figure 3-11). The acrylates might remain on the Si-wafers after peeling after the UV dose during the process. Figure 3-10 shows the effect of the UV dose on the acrylates remaining after peeling. In the Si-wafer manufacturing process, it is important to check whether there is any acrylates remaining as the Si-wafer becomes thinner. The increase in UV irradiation indicates more cross-linking reactions (Lee et al., 2010; Decker et al., 2001). The proper UV dose in this study was found to be ~ 200 mJ/cm² (Lee et al., 2012).
Figure 3-10. Field-emission scanning electron images of UV-cured acrylates at UV dose; (a) 0 mJ/cm², (b) 50 mJ/cm², (c) 100 mJ/cm², (d) 200 mJ/cm² (Lee et al., 2012).
3.3.4. X-ray photoelectron spectroscopy (XPS)

XPS was used to determine the surface compositions of the Si-wafer after peeling at different UV doses. According to XPS, the C_{1s} core-level spectrum was curve-fitted with two peak components with binding energies at 284.6 and 288.5 eV, corresponding to the C-C/C-H and O-C=O functional groups, respectively (Song et al., 2006; Zhang et al., 2001; Severini et al., 2001; Uchida et al., 1990). In addition, a peak was observed at 283.9 eV in the C_1 spectra, which was assigned to inhomogeneous charging effect on the polymer surface due to its insulating nature (Massey et al., 2003). The above C atoms were derived from the acrylic base polymer (Asahara et al., 2004). As shown Figure 3-11, the peak at 284.6 eV, which was related directly to the characteristic of the polymer (C-C and C-H), decreased with increasing UV dose. On the other hand, the Si_{2p} peaks at approximately 100 eV and 103 eV (SiO_2) and increased with increasing UV dose. These results are in agreement with the reference values (Jin et al., 1987; Weng et al., 1995; Rimmer et al., 1991). As listed in Table 3-1, the amount of carbon on the Si-wafer surface decreased with increasing UV dose a concomitant increase in the amount of the silicon, as a result of the cross-linking of the acrylates (Lee et al., 2012).
Figure 3-11. (a) C\textsubscript{1s} and (b) Si\textsubscript{2p} XPS spectra of Si-wafer surface after peeling at varying UV dose (Lee et al., 2012).
Table 3-1. Atomic concentration (%) of C$_{1s}$ and Si$_{2p}$ determined by XPS according to the UV does (Lee et al., 2012).

<table>
<thead>
<tr>
<th>UV dose (mJ/cm2)</th>
<th>C$_{1s}$ (%)</th>
<th>Si$_{2p}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>81.55</td>
<td>1.18</td>
</tr>
<tr>
<td>100</td>
<td>67.32</td>
<td>11.72</td>
</tr>
<tr>
<td>200</td>
<td>19.49</td>
<td>39.07</td>
</tr>
</tbody>
</table>
3.4. Conclusion

In general, “multi-chip packaging” or MCP means a packaging configuration containing at most five chips, connected via wire bonds to a multilayer circuit board. It is as if all the chips were integrated into one single die and packaged as such, since the same form factor and footprint are kept to facilitate subsequent board assembly operations. For MCP, UV-curable acrylates can be used in the Si-wafer handling including both dicing and pick-up. The coating thickness has been about 40 μm so far. But as Si-wafers become ultrathin (under 50 μm), the acrylates have to satisfy the requirements such as coating thickness below about under 20 μm because of difficult Si-wafer handling (Lee et al., 2012).

This study examined the adhesion performance of polymers formed on Si-wafers from a hexafunctional acrylate monomer and photo-initiator using a UV-curing system. The IPN structured acrylates were prepared using different UV doses. The residue on the Si-wafer was also observed by FE-SEM and XPS surface analysis after peeling, according to the UV dose. In UV-curing system of acrylates, the cross-linking reaction is influenced by: the UV dose; the diluent monomers; photo-initiators; and the coating thicknesses of the acrylates. In this work, the effects of the curing agent, hexafunctional monomer and photo-initiator at a constant binder concentration, were examined. The effect of the coating thickness was assessed. Proper peel strength is needed in the process of Si-wafer manufacture whereas lower peel strength is required after UV irradiation to prevent damaging the Si-wafers. Therefore, UV-curable IPN acrylates for MCP need to show two opposite adhesion properties before and after UV irradiation. The following conclusions were made:
• The reasonable peel strength was attained at approximately 0.5 phr (binder) aziridine (curing agent) and 30 phr (binder) hexafunctional monomer content and obtained at photo-initiator contents > 2 phr (additional monomer).

• The coating thickness to achieve proper adhesion and then weak adhesion after UV-irradiation was approximately 20 μm.

• SEM and XPS presented selective UV doses for minimal residue after UV irradiation.
Chapter 4

Adhesion Performance and Curing Behaviors of UV-curable Acrylates with 3-MPTS for 3D Multi-chip Packaging Process
4.1. Introduction

Increasing market demand has driven the semiconductor industry to miniaturize all the materials used in semiconductor packaging. The adhesives that bond integrated circuit (IC) chips to substrates have also followed the market trend towards miniaturization. Film adhesives are able to satisfy this demand, and are now widely used, having replaced conventional liquid adhesives (Saiki et al., 2010). Film adhesives are generally provided as an adhesive tape composed of an adhesive layer and a base material. The film is laminated on a wafer during the semiconductor manufacturing process. The wafer is then divided into IC chips using a rotary blade. The IC chip and the attached film adhesive are peeled away from the base material using protruding needles in a process called ‘pick-up’. An excessive degree of cross-linking prepared from unsaturated polyester resins by electron beam irradiation, results in poor adhesive strength (Ebe et al., 2003). This observation led us to establish a dicing process, as shown in previous study (Lee et al., 2012). A piece of silicon wafer was tightly held using a dicing film with strong adhesion strength, which enables rapid and smooth dicing of the wafer. Subsequently, the adhesive layer was irradiated with UV light through the reverse side of the substrate. After UV irradiation, the adhesion strength decreased to a certain level, making it easy to pick up the diced chips for further die-bonding processes. Dicing tapes developed using this process has been reported (Ebe et al., 2003).

Acrylic monomers and oligomers are used widely on account of their superior properties of transparency, colorlessness, resistance to yellowing under sunlight and resistance to oxidation due to their saturated structures. However, they have poor thermo-mechanical stability because of their linear structure. Therefore, crosslinking of multifunctional acrylates is needed to
increase their thermo-mechanical stability. It was reported that an adhesive shows fluid-like behavior when it is widely cross-linked (Joo et al., 2007). However, the more cross-linked is the adhesive, the greater is the creep resistance (Joo et al., 2007; Soisson et al., 2005). Multifunctional acrylates cross-link rapidly by radical and cationic polymerization; the kinetics and properties of these polymers have been investigated (Joo et al., 2007; Auchter et al., 1999). Cross-linked acrylates produce interpenetrating polymer networks (IPNs). These IPNs are a combination of two cross-linked polymers (each made via independent reaction processes) held together by permanent entanglements and are prepared using special methods (Sperling, 1977). The absence of cross-reactions between the two networks is an important condition to ensure morphology control (Dubuisson et al., 1980; Tan et al., 1996; Dubuisson et al., 1980; Hua et al., 2000).

In this study, the IPN structured acrylates used in the Si-wafer ‘pick-up’ process were prepared using a dipentaerythritol hexacrylate, 3-methacryloxypropyl trimethoxysilane with a UV-curing system using two different types of UV irradiations. The effect of the UV-curing on the behavior, viscoelastic properties and molecular distribution were investigated using Fourier transform infrared (FTIR), gel permeation chromatography (GPC) and an advanced rheometric expansion system (ARES). Finally, field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS) revealed little residue on the wafer on releasing the film after UV irradiation (Lee et al., 2012).
4.2. Experimental

4.2.1. Materials

The compounds 2-ethylhexyl acrylate (2-EHA, 99.0% purity, Samchun Pure Chemical Co., Ltd, Republic of Korea) and acrylic acid (AA, 99.0% purity, Samchun Pure Chemical Co., Ltd, Republic of Korea) were commercially available and used without purification. Ethyl acetate (EAc, Samchun Pure Chemical Co., Ltd, Republic of Korea) and methanol (MeOH, Samchun Pure Chemical Co., Ltd, Republic of Korea) were used as solvents and 2,2’-azobisisobutyronitrile (AIBN, Junsei Chmeical, Japan) was used as a thermal initiator. Methylaziridine derivative (MAZ, DSM Neoresins, USA) was used as the cross-linking agent. Dipentaerythritol hexaacylate (DPHA, Miwon Specialty Chemical, Republic of Korea) and 3-methacryloxypropyl trimethoxysilane (3-MPTS, Dow Corning Toray Co., Ltd, USA) were used as the diluent monomer. Figure 4-1 shows the chemical structure of hexafunctional acrylate which has six C=C double bonds and silicon-modified acrylate. The compound 2-hydroxy-2-methyl-1-phenyl-propane-1-one (Miwon Specialty Chemical, Republic of Korea) was used as the photo-initiator (Lee et al., 2012).
Figure 4-1. Chemical structures of (a) the dipentaerythritol hexacrylate (DPHA) and (b) 3-methacryloxypropyl trimethoxysilane (3-MPTS) (Lee et al., 2012).
4.2.2. Methods

4.2.2.1. Synthesis of binders

Acrylic monomers (2-EHA, AA, 3-MTPS) were synthesized as 95, 4.5 and 0.5 wt.% by solution polymerization. The amount of AIBN in the binders was 0.3 phr and the solid content was 40 %. The mixture was placed into a 500 ml four-neck flask equipped with a stirrer, condenser and thermometer, and heated to 75°C with constant stirring. At the end of the exothermic reaction, the temperature was maintained for 30 m, and a blend of ethyl acetate and AIBN was added. The reaction was allowed to proceed for 0.5 and 2.5 h. Finally, polymerization was terminated by cooling the mixture to room temperature (Joo et al., 2006; Lee et al., 2012).
4.2.2.2. Formation of the acrylate film

All the acrylates were coated onto the corona treated polyethylene terephthalate (PET, SK Chemical, Republic of Korea) film using coating bars, kept at room temperature for 1 h and then dried in an oven at 80°C for 20 m. These dried films were kept at 22±2°C and 60±5 RH for 24 h before used in the experiments (Do et al., 2008) Lee et al., 2012).
4.2.2.3. Preparation of cured acrylates

The acrylates were cured with the addition of a curing agent followed by UV-curing. The curing agent was a multifunctional methylaziridine. The cross-linking involves mainly the carboxyl groups of the vinyl carbonic acids within the polymeric chain. The oxygen of the nucleophilic carboxyl group causes ring opening of the aziridine rings, whereas the hydrogen atoms of the carboxyl groups protonate the nitrogen atoms (Czech, 2007). The UV-curable acrylates were prepared by blending polymerized binders with a photoinitiator and a hexafunctional acrylic monomer. The UV-curable acrylates were coated onto polyethylene terephthalate (PET or polyester) films and cured using conveyor belt type UV-curing equipment with a 100 J/s high pressure mercury lamp (main wavelength: 365 nm). The UV doses were measured using an IL390C Light Bug UV radiometer (International Light, USA). Despite low molecular weights, the hexafunctional monomers in the acrylates can be photo-polymerized after a UV dose to form the IPN structures (Figure 4-2) (Lee et al., 2012).
Figure 4-2. Process of producing IPN structure in UV-cured acrylates

*MAZ reacts with carboxylated functionality of acrylic acid in binder (Czech, 2007)
4.2.2.4. Adhesion performance

The prepared acrylates were attached to a silicon wafer substrate and a 2 kg rubber roller was passed over them twice. The 180° peel strength was measured using a Texture Analyzer (TA-XT2i, Micro Stable Systems, UK) after the sample was left to stand at room temperature for 24 h. The peeling speed was 300 mm/m, and the average strength of peeling period was measured five times. The probe tack was measured with a 5 m diameter stainless steel cylindrical probe using the Texture Analyzer. The approaching speed of the probe was 0.5 mm/s and was in contacted with the surface of samples for 1 s at a constant pressure of 100 g/cm². The debonding speed was 0.5 mm/s and the probe tack was measured as the maximum, debonding force (ASTM D3330) (Joo et al., 2006; Lee et al., 2012).
4.2.2.5. Fourier transform infrared (FTIR) spectroscopy

The FTIR spectra were obtained using an FTIR-6100 (JASCO, Japan) installed with an attenuated total reference (ATR) accessory composed of a zinc selenium (ZnSe) crystal with a 45° angle of incidence. The spectra were recorded for 30 scans with a 4 cm⁻¹ resolution over the wavelength range 650-4000 cm⁻¹. The curing behavior of the samples were characterized by monitoring the changes in the C=O bond and carboxylic group at 810 cm⁻¹ and at 1730 cm⁻¹. All the results were confirmed by determining the level of CO₂ reduction, H₂O reduction, noise elimination, smoothing and baseline correction. The curing behavior of crosslinking with the UV dose was obtained using the FTIR-ATR (Lee et al., 2012).
4.2.2.6. Gel permeation chromatography (GPC) measurement

The samples were eluted using tetrahydrofuran (THF) at room temperature and filtered through a 0.2 μm polytetrafluoroethylene (PTFE) syringes filter. Molecular weights were measured by GPC at 35 °C using a YL-CLARITY system (Young-Lin Instrument Co., Ltd) equipped with a refractive index (RI) detector and a Polymer Labs PL-gel 10 μm column (two mixed-B). THF was used as an eluent solvent at a flow rate of 1 ml/min. The number-average \((M_n) \) and weight-average \((M_w) \) molecular weights were calculated using a calibration curve from polystyrene standards (Lee et al., 2012).
4.2.2.7. Advance rheometric expansion system (ARES) analysis

The viscoelastic properties of the acrylates were determined using an advanced rheometric expansion system (ARES, Rheometric Scientific, UK, in NICEM at Seoul National University) equipped with an 8 mm parallel plate mode. The typical temperature scan range was from 60 to 200°C, and the heating rate was 5°C/m. The frequency was 1 Hz and the gap between the plates was 1 mm. Also the tan delta curves from the temperature sweep tests suggest a glass transition temperature \(T_g \) (Lee et al., 2012).
4.2.2.8. Field emission-scanning electron microscopy (FE-SEM)

The morphology of each sample after the peel strength test was measured by field emission scanning electron microscopy (FE-SEM) (SUPRA 55VP, NICEM at Seoul National University). The fractured samples were coated with a thin layer of gold (purity 99.99%) prior to the FE-SEM examination to prevent electron charging (Kim et al., 2008).
4.2.2.9. X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS, PHI 5000 Versa Probe, Ulvac-PHI) was performed using Al Ka radiation (1486.6 eV, Anode (25W, 15kV)). The bonding energies were calibrated with reference to the C (1s) peak at 284.6 eV. For the measurement, the samples were placed into an ultra-high vacuum chamber and data analysis of the sensitivity factors of each element present, was performed (Wu et al., 2010; Song et al., 2006; Asahara et al., 2004).
4.3. Results and discussion

4.3.1. Adhesion performance

The most important factors of the UV dose cross-linked acrylates, peel strength and tack properties, can be handled by the UV dose. In a production plant the UV dose can be controlled by adjusting the power of the lamps and/or the speed at which the Si substrate is passed under lamps. The solvent borne UV-cross-linkable acrylates by UV-irradiation and in a transfer process, depending on the carrier material, to produce the adhesive properties as required (Czech et al., 2007). In this study, one of our aims was to examine the influence of the UV dose on the 180° peel strength and tack property of the samples using two types of irradiation systems. These were the steady irradiation and the pulsed irradiation of 100 mJ/cm². The results of the trials are presented in Figure 4-3 and 4-4. Cohesive failure, which means that there was little residue, was only observed on the initial peel strength and tack property test which did not involve a UV dose. The interfacial failures showed that there was no residue on the other samples. With the increase of UV dose, the peel strength and the tack property of the acrylates decreased slightly. This was still at an acceptable level because the peel strength is the sum of the energies required to break the bond deform the backing and the acrylates (Lim, 2007). UV-cross-linking promotes modulus property of the acrylates, and as a result the elongation on the acrylates was reduced after UV irradiation is attributed to the fact that the cross-link increased the stiffness of the acrylates (Wu et al., 2010). Similar results have been reported in the literature (Kim et al., 2002). The peel strength and the tack property of the pulsed UV irradiation (at 100 mJ/cm²) were lower than those of the steady irradiation as shown in Figure 4-2 and 4-3. That is, the pulsed irradiation (at 100 mJ/cm²)
indicates poorer adhesion strength which is attributed to inhomogeneous cross-linked network structures. This was confirmed by the GPC measurements shown Figure 4-5. A higher PDI (polydispersity index) was produced using the pulsed irradiation at 100 mJ/cm². Both the higher and lower molecular weight areas appear remarkable after pulsed irradiation at 100 mJ/cm². Results from this study, thus, show that the pulsed UV-irradiation method is successful and efficient (Lee et al., 2012).
Figure 4-3. Peel strength by two types of UV irradiation (Lee et al., 2012).
Figure 4-4. Probe tack by two types of UV irradiation (Lee et al., 2012).
<table>
<thead>
<tr>
<th></th>
<th>M_w (g/mol)</th>
<th>M_n (g/mol)</th>
<th>PDI (M_w/M_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady</td>
<td>201000</td>
<td>33000</td>
<td>5.9</td>
</tr>
<tr>
<td>Pulsed</td>
<td>267000</td>
<td>16000</td>
<td>16.1</td>
</tr>
</tbody>
</table>

Figure 4-5. GPC measurement by two types of UV irradiation (Lee et al., 2012).
4.3.2. Advance rheometric expansion system (ARES) analysis

The viscoelastic characteristics are important in the adhesion performance of the acrylates. In this work, the effect of the different UV doses was tested using ARES measurement. The storage modulus \(G' \) is linked with the hardness of the adhesive, and the loss modulus \(G'' \) is related to energy absorption. The values indicate the balance of the viscoelastic behavior. After UV irradiation, the adhesive strength of the acrylates composition including DPHA and 3-MTPS decreased drastically compared with other compositions. Because of the network formation due to the UV irradiation, this composition had a greater volume contraction. This could lead to micro-voids at the interface between the adhesive and the silicon wafer, resulting in a loss of adhesion. A higher storage modulus was expected to be more suitable for supporting the silicon wafer during the dicing and picking up of the diced chips, together with the adhesive layer from the face material (Ebe et al., 2003).

Figure 4-6 shows that the storage modulus of acrylates is different, particularly at high temperatures. The storage modulus of the acrylates with UV dose was higher than the acrylates without UV dose over about 25°C. It can be showed that the acrylates’ cohesion gets higher with increasing UV dose. Furthermore, the plateau area of the storage modulus in the high temperature region indicates that the acrylates formed an entanglement structure. The storage modulus at high temperatures is directly related to the thermal resistance of the acrylates. Therefore, the acrylates become more elastic at high temperatures with increasing UV dose. Figure 4-7, shows the tan delta curve of acrylates as a function of the UV dose. The \(T_g \) of the trials (temperature at tan delta peak) was similar. Moreover, the tan delta of the acrylates decreased with increasing UV dose. This suggests that the storage
modulus of the acrylates is strongly associated with the UV dose in the room temperature region. Hence, tan delta also decreased with increasing UV dose (Lee et al., 2012).
Figure 4-6. Temperature dependence of storage modulus G' with different UV dose (Lee et al., 2012).
Figure 4-7. Tan delta with different UV dose (Lee et al., 2012).
4.3.3. Fourier transform infrared (FTIR) spectroscopy

The kinetics of the photo-induced cross-linking was investigated using FTIR-ATR. After photo-initiation by UV dose at a certain wavelength, multifunctional monomers proceeded to polymerize. These monomers formed a cross-linked IPN structure. The curing behavior of functional monomers can be monitored using FTIR-ATR because the C=C twisting vibration in functional monomers participates in the cross-linking reaction (Scherzer, 2004). The FTIR spectra of UV-curable mixture composed of 2-EHA/AA/3-MTPS copolymer (2-EHA/AA/3-MTPS = 95/4.5/0.5) and DPHA and 3-MPTS (20/20 phr in binder) was determined. The conversion of C=C bond, as a function of UV dose was calculated according to the following equation: (Tasic, et al., 2004).

\[
\text{Conversion (\%)} = \left[\frac{(A_{810}/A_{1730})_0 - (A_{810}/A_{1730})_t}{(A_{810}/A_{1730})_0} \right] \times 100 \tag{1}
\]

where \((A_{810}/A_{1730})_0\) and \((A_{810}/A_{1730})_t\) denote the relative absorbance of the C=C bonds before curing and at a given curing time \(t\), respectively. The conversion of C=C bonds in the blend increased sharply as the UV dose was increased to 200 mJ/cm\(^2\) (Figure 4-8). This is because the entanglement and/or orientation of multifunctional monomer around the acrylic copolymer induced a rapid radical chain reaction, resulting in increased reactivity (Ebe et al., 2003). The conversion of C=C bonds were not 100%. The remaining C=C bonds might have remained unreacted after the action of the photo-initiator because it was possible that they were trapped in the cross-linked polymer network (Lee et al., 2012).
Figure 4-8. Conversion of C=C bonds at 810 cm\(^{-1}\) as a functional of UV dose for UV-curable groups in binders blended with an additional monomer (Lee et al., 2012).
4.3.4. Field emission-scanning electron microscopy (FE-SEM)

Another aim of this study was to observe the morphology using FE-SEM and to investigate the contaminants of the polymers on the surface of the Si-wafers by XPS. Some adhesives might remain on the Si-wafers after the releasing of the films. Figure 4-9 indicates the influence of the UV dose. In the ‘pick-up’ process, it is very important to consider whether there is the adhesives remaining, as the Si-wafer becomes thinner (Kim et al., 2008). The increase of UV dose suggests more cross-linking reactions (Decker et al., 2001). The efficient UV dose was found to be greater than 1600 mJ/cm² for all the specimen (Lee et al., 2012).
Figure 4-9. Field-emission scanning electron images of UV-cured acrylates at UV dose; (a) 0 mJ/cm², (b) 400 mJ/cm², (c) 800 mJ/cm², (d) 1600 mJ/cm² (Lee et al., 2012).
4.3.5. X-ray photoelectron spectroscopy (XPS)

Analysis by XPS was used to obtain the surface compositions of the residue on the Si-wafer after peeling at different UV doses. Figure 4-10 shows the C\textsubscript{1s} curve-fitted core-level spectrum with one major peak of binding energy of 284.6 eV corresponding to the C-C/C-H functional groups (Song et al., 2006; Zhang et al., 2001; Uchida et al., 1990). In addition, a peak was observed as 283.9 eV in the C1 spectra, which was assigned to an inhomogeneous charging effect on the polymer surface due to its insulating nature (Massey et al., 2003). The above C atoms were derived from the acrylic base polymer (Asahara et al., 2004). The peak at 284.6 eV, which was linked directly to the properties of the polymer (C-C and C-H), was decreased with increasing UV dose. On the other hand, the Si\textsubscript{2p} peaks around 100 and 103 eV (SiO\textsubscript{2}) increased with increasing UV dose. These results are in agreement with reference values (Jin et al., 1987; Weng et al., 1995; Bou et al., 1991). As listed in Table 4-1, the amount of carbon decreased with increasing UV dose while the amount of silicon increased on the surface of the silicon wafer, as a result of the cross-linking of the acrylates (Lee et al., 2012).
Figure 4-10. (a) C$_{1s}$ and (b) Si$_{2p}$ XPS spectra of Si-wafer surface after peeling at varying UV dose (Lee et al., 2012).
Table 4-1. Atomic concentration (%) of C\textsubscript{1s} and Si\textsubscript{2p} determined by XPS according to the UV does (Lee et al., 2012).

<table>
<thead>
<tr>
<th>UV dose (mJ/cm2)</th>
<th>C\textsubscript{1s} (%)</th>
<th>Si\textsubscript{2p} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31.81</td>
<td>30.01</td>
</tr>
<tr>
<td>800</td>
<td>24.46</td>
<td>34.96</td>
</tr>
<tr>
<td>1600</td>
<td>17.26</td>
<td>42.06</td>
</tr>
</tbody>
</table>
4.4. Conclusion

When working with the silicon wafer process, it is important to consider the conditions that apply when using the adhesives. Besides the UV-curing of the acrylates it is necessary to pay attention to the whole process as the silicon wafers get thinner. This study investigated the suitable condition of handling the acrylates using an interpenetrated network structure (Lee et al., 2012).

In this work the effect of UV-curing on the behavior and performance of the acrylates was obtained using FTIR and a 180° peel strength test. Two kinds of different UV-irradiation were considered in these experiments. One of them, the pulsed irradiation at 100 mJ/cm², makes the adhesion strength between adhesive layers and silicon substrates weaker than does the steady irradiation. The reason why it was investigated can be understood by considering the inhomogeneous polymer network structure which was highlighted by GPC. These results indicated that the adhesive property of acrylates depends not only on its modulus but also on the interfacial phenomena such as the local distribution of cross-linked acrylic monomer or polar segments at the interface between the adhesive layer and the silicon wafer (Ebe et al., 2005). The results from the FE-SEM and XPS studies, indicated that the required condition was little residue on the silicon wafer after releasing the adhesive film at more than the certain level of UV dose. It was shown that under such conditions, the application of the UV-curable acrylates was reasonable and easily peeled and made suitable for further processing (Lee et al., 2012).
Chapter 5

UV-curing and Thermal Stability of Dual Curable Urethane Epoxy Adhesives for Temporary Bonding and Debonding in 3D Multi-chip Packaging Process
5.1. Introduction

Wafer- and chip-level bondings are crucial process steps for three-dimensional microelectromechanical system (MEMS) integration and packaging. Today a wide variety of bonding processes are available, such as direct fusion bonding, direct plasma assisted bonding, anodic bonding, solder bonding, eutectic bonding, thermocompression bonding, and low temperature melt glass bonding. These processes have different shortcomings such as the need for high temperature, high voltage, or special surface preparation. Adhesive bonding provides an inexpensive alternative to fabricate bonds at low temperatures with a high surface roughness tolerance (Bilenberg et al., 2004).

Nowadays, the wafer thinning process has increased attention due to its promising application in device miniaturization and packaging. The key factors for thinned wafers are improved heat dissipation, three-dimensional stacking, reduced electrical resistance and substrate flexibility. A reduction in wafer thickness combined with an increasing wafer diameter produces to wrap and fold of wafer and hence creates a demand for new methods of wafer handling. The thinned substrates need to be supported during the backside grinding process and through the subsequent processes such as lithography, deposition, etc. Using temporary adhesives to bond the processed device wafer to a rigid carrier wafer offers an efficient solution and is becoming increasingly important in both integrated circuit board and MEMS applications, mainly due to its low cost, ease of processing, and adaptability. The process for temporary wafer bonding is shown in Figure 5-1 (Puligadda 2007). The front side of the carrier wafer is coated with the adhesive, and the wafer undergoes an initial bake to remove the solvent. The device wafer (possibly after the application of a protective layer) is brought into contact.
with the adhesive-coated carrier wafer under vacuum and pressure. Adhesives for the bonding process must adhere to a variety of semiconductor substrates such as silicon, gallium arsenide, indium phosphide and different metals, insulators and dielectrics. The adhesive layer between device and carrier wafers provides the mechanical strength required for thin-wafer handling. Adhesive should possess flow properties to flow into structures on the front side of the device wafer to provide good bonding properties. In addition, the adhesives must be easy to apply; have suitable mechanical strength, thermal stability and chemical resistance; and exhibit thickness variation across large wafers. Also, temporary wafer bonding requires the adhesive to be easily removed without damaging the features on the active side of the device wafer over a short debonding time. At present, a few numbers of adhesives are available for this type of application. The adhesives currently used for temporary wafer bonding have limited thermal stability at higher temperatures and can be used only up to 170-200°C (Puligadda, 2007; Moore et al., 2004; Brubaker et al., 2005; Combe et al., 2006; Kwon et al., 2005).

UV-curing technology has been considered as an alternative to traditional solvent-borne coatings, due to its eco-compatible process and excellent properties resulting from the high crosslink density. On the other hand, acrylic monomers and oligomers are used widely. However, they have poor thermo-mechanical stability. Therefore, the cross-linking of multifunctional acrylates is needed to increase their thermo-mechanical stability (Lee et al., 2012; Joo et al., 2007; Sosson et al., 2005).

However, the creep resistance increases greatly in more cross-linked adhesive (Joo et al., 2007; Sosson et al., 2005). Multifunctional acrylates cross-link rapidly by radical and cationic polymerization, their kinetics and properties have been investigated (Auchter et al., 1999). Cross-linked multifunctional acrylates produce semi-interpenetrated structured polymer
networks (semi-IPNs). Semi-IPN structured the adhesives have advantages, such as improved heat resistance (Joo et al., 2006; Sosson et al., 2005; Joo et al., 2007). It was reported that photo-polymerization was effective in obtaining networks with a high degree of interpenetration (Athawale et al., 2003). The curing kinetics and peel strength of dual curable adhesive based on acrylic resins were previously reported (Park et al., 2009; Kim et al., 2008).

To combine the functionalities of UV and heat curing in an epoxy acrylate oligomer–based system, a thermal-curing agent should be introduced. Recently, thermal latent curing agents such as dicyandiamide, which exhibit long-term stability at ambient temperature and can be transformed into activated species at high temperature, have been studied by many researchers in an attempt to obtain epoxy based resins affording one part handling and good storage stability (Udagawa et al., 1991; Chiu et al., 2003; Cho et al., 2004; Yin et al., 2007).

In this study, IPN structured urethane epoxy adhesives as temporary bonding and debonding adhesives in wafers were introduced using a hexafunctional acrylate monomer with a UV-curing system. It was obtained by using photo-DSC, FTIR-ATR spectroscopy and gel content. Also, thermal stability was studied by TGA (Lee et al., 2013).
Figure 5-1. Temporary Bonding process flow (Puligadda, 2007).
5.2. Experimental

5.2.1. Materials

Polydimethylsiloxane (PDMS, Shin-Etsu Co., Ltd., Japan) and isophorone diisocyanate (IPDI, Bayer Material Science) were dried in 100°C 12 h prior use and 2-hydroxyethylmethacrylate (2-HEMA, Samchun Pure Chemical Co., Ltd., Republic of Korea) was used without pretreatment. About 0.1 wt.% of dibutyltin dilaurate is added to proceed the reaction to take place at a rapid rate as a catalyst in urethane reaction. Dipentaerythritol hexacrylate (DPHA, Miwon Specialty chemical, Republic of Korea) was used as hexafunctional monomer (Figure 5-2). Hydroxydimethyl acetophenone (Micure HP-8, Miwon Specialty chemical, Republic of Korea) was used as the photo-initiator for UV-curing in Figure 5-3 (Chattopadhyay, et al., 2005). A diglycidyl ether of bisphenol A (DGEBA) (EEW: 184-190 g/eq) was supplied by Kukdo Chemical Co., Ltd., Republic of Korea) and triphenylphosphine (TPP, Fluka, Switzerland) were used as curing agents. All samples used in the synthesis were extra pure or reagent grade (Lee et al., 2013).
Figure 5-2. Structure of dipentaerythritol hexacrylate (DPHA).

Figure 5-3. Cleavage of hydroxydimethyl acetophenone as the photo-initiator in presence of UV light (Chattopadhyay et al., 2005).
5.2.2. Methods

5.2.2.1. Synthesis of silicone urethane methacrylate

Figure 5-4 indicates a scheme of the synthesis process of UV-curable silicone urethane methacrylate. The silicone urethane methacrylate was obtained by adding an equimolar amount of PDMS with 0.1 wt.% dibutyltin dilaurate (DBTDL) dropwise to IPDI (mole ratio, NCO:OH=2:1) under a nitrogen gas. The reaction was maintained at room temperature for 3 h. An equimolar amount of HEMA with 0.5 wt.% hydroquinone as a polymerization inhibitor has been added a dropwise to the PDMS-IPDI adduct for about 5 h. Then the absorption peak of the NCO group at 2250 cm\(^{-1}\) had disappeared completely (Lee et al., 2013).
Figure 5-4. Synthesis process of UV-curable silicone urethane methacrylate (Lee et al., 2013).
5.2.2.2. Preparation of dual-curable adhesive

Diglycidyl ether of bisphenol A (DGEBA), dipentaerythritol hexacrylate (DPHA) and a photo-initiator were blended first and then latent curing agent and curing acceleration agent were mixed using a paste mixer (Daewha Tech, South Korea) at room temperature. Table 5-1 shows the blend ratios of the various dual curable adhesives. The blending processes were performed in two steps to make a homogeneous mixture and to remove the air bubbles in the adhesives. In the first step, the stirring rate was 1200 rpm for 20 m and then in the second step it was 1000 rpm for 10 m (Lee et al., 2013).
Table 5-1. Blend ratio of dual-curable adhesives (unit: phr).

<table>
<thead>
<tr>
<th></th>
<th>Phr 1</th>
<th>Phr 2</th>
<th>Phr 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGEBA</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>DPHA</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Photo-initiator (phr in DPHA)</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Latent curing agent</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Curing acceleration agent</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
5.2.2.3. Fourier transform infrared (FTIR) spectroscopy

The IR spectra were obtained using a JSCO FTIR-6100 (Japan) equipped with an attenuated total reflectance (ATR) accessory. In order to obtain the IR spectra of dual curable adhesives, the cured adhesive samples were cut into 0.5 x 0.5 cm² pieces. The ATR prism was diamond and its refractive index at 1000 cm⁻¹ was 2.4 with a transmission range from 4000 to 650 cm⁻¹. The resolution of the spectra recorded was 4 cm⁻¹. The curing behavior of the samples were characterized by monitoring the changes in the C=C bond and carboxylic group at 810 cm⁻¹ and at 1730 cm⁻¹. All the results were confirmed by determining the level of CO₂ reduction, H₂O reduction, noise elimination, smoothing and baseline correction (Lee et al., 2012).
5.2.2.4. Gel fraction

The gel fractions of the dual-curable adhesives after UV-curing and subsequent thermal curing at different temperatures, 120 and 150°C, were determined by soaking in toluene at 50°C for 24 h. The insoluble part was removed by filtration and dried at 50°C to a constant weight. The gel fraction was calculated by applying the following equation:

\[
Gel \ fraction \ (\%) = \left(\frac{W_t}{W_0} \right) \times 100
\]

Where \(W_0 \) was the weight before filtration and \(W_t \) was the weight after filtration. The test was replicated three times (Lee et al., 2013).
5.2.2.5. Photo-differential scanning calorimetry (photo-DSC)

Photo-DSC experiments were conducted using a TA Instruments Q-200 DSC equipped with a photo-calorimetric accessory (Omnicure 2000), which used light from a 100 W middle-pressure mercury lamp with a wavelength range of 300-400. Light intensity lamp with a wavelength range of 300-400. Light intensity was determined by placing an empty DSC pan on the sample cell. UV light intensity at the sample was 15 mW/cm² over a wavelength range of 300-400 nm. The weight of the sample was about 5 mg and the sample was placed in an open aluminum DSC pan. Measurements were carried out at room temperature in flowing N₂ gas at 50 ml/m (Lee et al., 2013).
5.2.2.6. Thermogravimetric analysis (TGA)

The thermal stability and decomposition profiles of the dual curable adhesives were measured using a thermogravimetric analyzer (PerkinElmer Thermogravimetric Pyris 1 TGA model). The sample was loaded a ceramic pan, and heated from 30 to 600°C at a constant heating rate of 10°C/min in an inert nitrogen atmosphere (Lee et al., 2013).
5.3. Results and discussion

5.3.1. Photo-differential scanning calorimetry (photo-DSC)

Photo-DSC offers a simple method of characterizing the UV-curing kinetics for the photo-polymerization of UV-cured materials. By monitoring the rate at which heat is released from the photo-polymerized sample, the reaction rate can be measured. Therefore, the profiles for the heat of reaction versus time provided by Photo-DSC can be used to characterize the photo-induced kinetics and to evaluate the polymerization rate constants (Joo et al., 2006; Nelson et al., 1995; Uhl et al., 2006). Figure 5-5 shows the isothermal UV-curing heat enthalpy and conversion profiles of UV-curable PDMS-modified urethane epoxy adhesives. The heat flow (W/g) plotted in Figure 5-5(a) can be acquired by photo-DSC measurements. The photo-DSC experiments were performed at same temperature and light intensity, 25°C and 50 mW/cm². At the beginning of the reaction, the early onset of auto- acceleration by activation of radicals occurred as a steep increase. A difference in activity between photo-initiator contents was observed. Figure 5(a) shows that maximum is displaced to higher time by decreasing the photo-initiator contents. It means that the reactivity increased with increase in the concentration of radicals in the UV-curable adhesives. Because the broadening of the peak suggests that the curing has been proceeded more spread out. So a longer time was needed for its end. The exothermic area increased with increasing photo-initiator contents, as shown in Figure 5(b). Minor difference was shown between 1 and 2 phr of photo-initiator contents. The dual curable adhesives showed a higher exothermic area with increase in concentration of free radicals due to the increase in the reaction energy (Auchter et al., 1999; Lee et al., 2013).
Figure 5-5. (a) Photo-DSC thermograms and (b) exothermic area which was calculated by integration of heat flow with different contents of the photo-initiator (Lee et al., 2013).
5.3.2. Fourier transform infrared (FTIR) spectroscopy

The cure of the photo-induced cross-linking was measured by FTIR-ATR spectroscopy. After the photo-initiation of the adhesives by UV irradiation, the specific bands of the functional monomers and/or oligomers indicated that the polymerization was carried out. The curing reaction can be measured using FTIR-ATR spectroscopy because the C=C bonds in the functional monomers participate in the cross-linking reaction by photo-polymerization. Previous study showed that the absorption bands related to the C=C twisting vibration of the acrylate groups decrease with increase in UV exposure (Joo et al., 2006; Ratnam et al., 2001). These double bonds have planar conformation, but UV irradiation deforms them into an out-of-plane conformation (Park et al., 2009). FTIR spectra of the UV-curable mixture, DPHA and photo-initiator (5 phr in DPHA) were investigated, as shown in Figure 5-6(a). Providing the conversions and/or absorbance data in this method makes thickness of the samples on ATR not important. (Lee et al., 2012). The relative conversion of C=C bonds decreased sharply as the UV dose increases to 200 mJ/cm² regardless of the photo-initiator content, as shown in Figure 5-6(b). Entanglement and/or orientation of multifunctional monomers around the acrylic copolymer may induce a rapid radical chain reaction, resulting in fast reactivity (Zosel, 1991). As above mentioned, the photo-initiator content accelerates the cross-linking reaction. But the relative conversion of C=C bonds was not zero %. The remaining C=C bond might have remained unreacted after the action of the photo-initiator because they were trapped in the cross-linked polymer network (Joo et al., 2007). The uncured polymer has an effect on thermal stability of adhesive (Lee et al., 2013).
Figure 5-6. FTIR-ATR spectra of UV-curable adhesives with (a) 5 phr of photo-initiator contents, as a function of the UV dose at 810 cm\(^{-1}\), and (b) relative conversion vs. UV dose (Lee et al., 2013).
5.3.3. Gel fraction

Gel fraction determination is a convenient method of measuring the insoluble fractions, such as the fractions of cross-linked or network polymers (Park et al., 2009). In this study, hexafunctional monomer in organic solvents was turned into insoluble cross-linked structures by UV-curing. The gel fraction increased with increase in photo-initiator content, due to the cross-linking reaction of the unreacted multifunctional monomers as shown in Figure 5-7. The gel fraction was relatively constant regardless of the photo-initiator contents for UV dose higher than 400 mJ/cm². And it showed that the gel fraction of adhesives with 1 phr or photo-initiator in DPHA increased with increasing UV dose up to approximately 50% of the gel fraction as a UV dose of 1600 mJ/cm². But the gel fraction increased up to around 75% in 5 phr of photo-initiator in DPHA. In other words, at a low content of photo-initiator the gel content conspicuously increased, owing to the existence of unreacted DPHA, but the rate of increase of the gel fraction decreased with increase in the UV dose, because the amount of unreacted DPHA decreased. When a photo-initiator content of 5 phr was used to the adhesives, the gel fraction did not reach 100% irrespective of the UV dose. This indicates that the unreacted DPHA were remained in the cross-linked structure formed by UV-curing. Also, a cross-linked structure similar to an interpenetrated structured polymer network was formed by all the components (Joo et al., 2007). The initial gel fraction rate sharply increased as a UV dose of 100 mJ/cm² due to rapid cross-linking which induced free radical initiation of multifunctional monomer. Furthermore, these results corresponded to the FTIR results in that more contents of photo-initiator accelerates the cross-linking reaction among DPHA (Lee et al., 2013).
Figure 5-7. Gel fraction of UV-curable adhesives after UV-curing (Lee et al., 2013).
5.3.4. Thermogravimetric analysis (TGA)

Figure 5-8 indicates the thermal stability of UV-cured adhesives at temperatures ranging from 25 to 600°C. Table 5-2 lists the characteristic thermal decomposition data of each cured adhesives. The maximum thermal degradation peak temperatures of the samples are also listed.

\(T_o \) (initial decomposition temperature); \(T_{\text{max}} \) (temperature of maximum rate of weight loss); \(T_f \) (final decomposition temperature).

The main decomposition takes place at higher than approximately 300°C corresponding to the advanced fragmentation of the macromolecules formed in reactions of dehydrogenation, thermal cracking, disproportionation and gasification processes (Sosson et al., 2005). Major difference has been shown between 2 and 5 phr of photo-initiator content. This result suggests that thermal stability might have been dependent on photo-initiator content due to increased density of three-dimensional networks corresponding to FTIR analysis and gel fraction data above shown (Lee et al., 2013).
Figure 5-8. Thermogravimetric analysis of the UV-cured adhesives (Lee et al., 2013).
Table 5-2. Characteristic thermal decomposition data of the UV-cured adhesives (Lee et al., 2013).

<table>
<thead>
<tr>
<th>Photo-initiator contents (phr in DPHA)</th>
<th>$T_{10%}$ (°C)</th>
<th>$T_{50%}$ (°C)</th>
<th>wt% at 600 °C</th>
<th>T_o (°C)</th>
<th>T_{max} (°C)</th>
<th>T_f (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>322</td>
<td>383</td>
<td>2</td>
<td>285</td>
<td>390</td>
<td>440</td>
</tr>
<tr>
<td>2</td>
<td>338</td>
<td>397</td>
<td>2</td>
<td>292</td>
<td>399</td>
<td>451</td>
</tr>
<tr>
<td>5</td>
<td>379</td>
<td>442</td>
<td>3</td>
<td>301</td>
<td>442</td>
<td>497</td>
</tr>
</tbody>
</table>

$T_{10\%}$, 10 wt% loss temperature; $T_{50\%}$, 50 wt% loss temperature.
5.4. Conclusion

An attempt has been made to indicate how best the points can be established in assessing the performance of UV-curing bonding process in 3D multi-chip packaging process. The practical data obtained from some of the fundamental tests based on different content of photo-initiator were discussed according to certain criteria. The results show that UV-curable acrylates with different content of the photo-initiator affects not only curing behaviors on UV doses but also thermal stability. Because UV-curing behavior is mainly affected by the photo-initiator. When UV light is irradiated on the curable adhesives, both the maximum curing and the exothermic area under the thermogram curves are also affected by a photo-initiator content (Lee et al., 2013).
Chapter 6

Synthesis and Properties of UV Laser Debondable fluorinated Silicone-modified Urethane Acrylic Adhesives for Temporary Bonding and Debonding in 3D Multi-chip Packaging Process
6.1. Introduction

Bonding of two substrates or wafers has long been an important process in the fabrication of both microelectronic systems and microelectromechanical system (MEMS). Wafer bonding enables fabrication and packaging of complex three-dimensional (3D) microcomponents. Historically, some of the earliest uses of wafer bonding were in fabrication and packaging of pressure sensors (Niklaus et al., 2006; Gragg et al., 1984; Petersen et al., 1988). The main commercial applications of wafer bonding are in the fabrication of silicon-on-insulator (SOI) substrates and the packaging of the inertia and pressure sensors for automotive and consumer products (Schmidt, 1998; Tong et al., 1999; Iyer et al., 2002; Alexe et al., 2004). The wide variety of wafer bonding technique include direct bonding (Tong et al., 1999; Iyer et al., 2002; Alexe et al., 2004), anodic bonding (Tong et al., 1999; Iyer et al., 2002; Alexe et al., 2004), solder bonding (Cheng et al., 2000), eutectic bonding (Mahabiz et al., 1999), thermocompression bonding (Morrow et al., 2004), direct metal-to-metal bonding (Kim et al., 2002), ultrasonic bonding (Audet et al., 1997), low-temperature melting glass bonding, and adhesive bonding (Yacobi et al., 2002).

In adhesive bonding, an intermediate adhesive layer is used to create a bond between two surfaces to hold them together. Although successfully used in many industries, including the airplane, aerospace, and car manufacturing industries, to join various similar and dissimilar materials, adhesive bonding did not play a significant role during the initial research on semiconductor wafer bonding. There are many applications of adhesive bonding for micro electronic and photonic components, mainly related to relatively small bonding areas of chip-level bonding. In contrast to these applications, recent research on adhesive wafer bonding involves bonding of large-area substrates
using well-defined and defect-free intermediate adhesive layers. In some applications, precise wafer-to-wafer alignment of the bonded wafer-to-wafer alignment of the bonded wafer pairs is required. Recent developments of reliable and high-yield adhesive bonding processes have made adhesive wafer bonding a generic and in some cases enabling wafer bonding technique for a variety of applications (Niklaus et al., 2006).

In the most commonly used adhesive wafer bonding processes, a polymer adhesive wafer bonding processes, a polymer adhesive is applied to one or both of the wafer surfaces to be bonded. After joining the wafer surfaces that are covered with the polymer adhesive, pressure is applied to force the wafer surfaces into intimate contact. The polymer adhesive is then converted from a liquid or viscoelastic state into a solid state, typically by exposing the polymer adhesive to heat or ultraviolet light. The main advantages of adhesive wafer bonding include relatively low bonding temperatures (between room temperature and 450°C, depending on the polymer material), insensitivity to the topology of the wafer surfaces, compatibility with standard complementary metal-oxide-semiconductor (CMOS) wafers, and the ability to join practically any wafer materials. Adhesive wafer bonding does not require special wafer surface treatments such as planarization or excessive cleaning. Structures and particles at the wafer surfaces can be tolerated and offset to some extent by the polymer adhesive. While adhesive wafer bonding is a comparably simple, robust, and low-cost process, concerns such as the limited temperature stability and limited data about the long term stability of many polymer adhesives in demanding environments need to be considered. Also, adhesive wafer bonding does not provide hermetically sealed bonds towards gasses and moisture (Niklaus et al., 2006; Yacobi et al., 2002).

The process for temporary wafer bonding is shown in previous study (Bilenberg et al., 2004). The front side of the carrier wafer is coated with the adhesive, and the wafer undergoes an initial bake to remove the solvent. The
device wafer possibly after application of a protective layer) is brought into contact with the adhesive coated carrier wafer under vacuum and pressure. The adhesives used for the bonding process must adhere to a variety of semiconductor substrates, such as silicon, gallium arsenide, and indium phosphide, as well as different metals, insulators, and dielectrics. The adhesive layer between the device and the carrier wafer provides the mechanical strength required for handling thin wafers. Adhesives should possess flow properties to flow into structures on the front side of the device wafer to provide good bonding properties. In addition, the adhesives must be easy to apply, have suitable mechanical strength, thermal stability, and chemical resistance, and exhibit thickness variation across large wafers. Also, temporary wafer bonding requires the adhesive to be easily removed without damaging the features on the active side of the device wafer over a short debonding time. At present, only a few adhesives are available for this type of application. The tapes currently used for temporary wafers bonding have limited thermal stability at higher temperatures and can be used only up to 170 to 200°C (Bilenberg et al., 2004; Puligadda, 2007; Moore et al., 2004; Brubaker et al., 2005; Combe et al., 2006).

UV-curing technology has been considered as an alternative to traditional solvent-borne coatings, due to its ecocompatible process and excellent properties resulting from its high crosslink density. On the other hand, acrylic monomers and oligomers are used widely. However, they have poor thermomechanical stability. Therefore, crosslinking of multifunctional acrylates is needed to increase their thermomechanical stability (Lee et al., 2012; Joo et al., 2007; Sosson et al., 2005). It was reported that photo-polymerization was effective for obtaining networks with a high degree of interpenetration (Athawale et al., 2003). The curing kinetics and peel strength of dual-curable adhesives based on acrylic resins have been reported (Park et al., 2009; Kim et al., 2008). To combine the functionalities of UV and heat
curing in an epoxy acrylate oligomer-based system, a thermal-curing agent should be introduced (Udagawa et al., 1991; Chiu et al., 2003; Cho et al., 2004; Yin et al., 2007).

Polyorganosiloxane consists of Si-O bonds, which allow flexibility of the chain as well as good chemical resistance, corrosion resistance, water resistance, and thermal and oxidative stability (Kang et al., 2007). The interesting and useful properties of siloxane polymers are a result of the somewhat unusual molecular structure of the polymer chains, which consist of alternating silicone and oxygen atoms (Voronkov et al., 1978). Polyurethane (PU) is the chemistry involved in isocyanate reactions with macrodiols, diisocyanate, and chain extenders (Chattopadhyay et al., 2007).

Fluorinated polymers have several important properties. For instance, they are highly resistant to different thermal, chemical, and weather conditions. The presence of fluorine in the side groups of the polymer has a profound effect on nearly all the properties of these materials (Mokhtar et al., 2010; Barrales - Rienda et al., 1979; Matsumoto et al., 1998). This effect is so striking that fluoropolymers are often treated as separate and remarkable class of polymers with properties unmatched in any other system. Fluorine confers extreme hydrophobicity and water insolubility to polymers. It raises the thermal and oxidative stability. In some instances, the element generates an interchain interaction so strong that it disables the polymer from dissolving in any solvent. It is the C–F bond that grants such properties, rather than the element itself (Allcock et al., 1990). Therefore, fluorine-containing polymers have widespread applications in modern technologies ranging from the building, automotive and aerospace industries to optics and microelectronics (Sacher, 1994; Ghosh et al., 2009; Pu et al., 2002).

Whole experimental processes were described in Figure 6-1. Especially, UV laser irradiation was used for adhesives debonding. Laser processing is a
key technology in new developments in microelectronics. Also, the laser-lift-off process step comes into play as soon as the manufacturing strategy demands for a gentle separation of thin layer system (Delmdahl et al., 2013).

In order to investigate a laser effect of temporary adhesives on debonding, the adhesives were synthesized with a silicon urethane oligomer for thermal stability and with 2-[3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate for UV absorbing material which mainly reacts at wavelength of 355 nm. The morphological analysis using optical microscopy was studied to select a proper combination of the laser process parameters such as out-focusing length, line spacing, and scan speed (Lee et al., 2014).
Figure 6-1. Whole experimental processes.
6.2. Experimental

6.2.1. Materials

Table 6-1 shows the chemical structures and properties of the raw materials used for the synthesis process. Hydroxy-terminated carbinol polysiloxane (Shin-Etsu Co., Ltd) and isophorone diisocyanate (IPDI, Bayer Material Science) were dried at 100°C. 1H, 1H, 7H-dodecafluoro-1-heptanol (Tokyo Chemical Industry Co., Ltd) and pentaerythritol triacrylate were used as end-capping materials without a pretreatment. Approximately 0.1 wt.% of dibutyltin dilaurate was added to cause the reaction to take place at a rapid rate as a catalyst in a urethane reaction. Hydroxydimethyl acetophenone (Micure HP-8, Miwon Specialty Chemical) was used as the photo-initiator for UV-curing. Glycidyl methacrylate (GMA, Junsei Chemicals, Japan) was used as donating epoxy functional group with the carboxyl group of acrylic acid (AA, Samchun Chemicals) in thermal curing. 2-[3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl] ethylmethacrylate (Sigma Aldrich Korea) was used as UV absorbing material (Lee et al., 2014).
Table 6-1. Raw materials used for synthesis of fluorinated silicon-modified urethane acrylic adhesives (Lee et al., 2014).

<table>
<thead>
<tr>
<th>Function</th>
<th>Material</th>
<th>Abbreviation</th>
<th>Chemical structure</th>
<th>Molecular weight (g/mol)</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyol</td>
<td>Hydroxy-terminated carbinoi polysiloxane</td>
<td></td>
<td></td>
<td>940</td>
<td>Shin-Etsu Co., Ltd.</td>
</tr>
<tr>
<td>Isocyanate</td>
<td>Isophorone diisocyanate</td>
<td>IPDI</td>
<td></td>
<td>228</td>
<td>Bayer Material Science</td>
</tr>
<tr>
<td>End-capping agent</td>
<td>1H,1H,7H-Dodecafluoro-1-heptanol</td>
<td>DFH</td>
<td></td>
<td>332</td>
<td>Tokyo Chemical Industry Co., Ltd.</td>
</tr>
<tr>
<td>End-capping agent</td>
<td>Pentaerythritol triacrylate</td>
<td>PETA</td>
<td></td>
<td>258</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>Acrylic monomer</td>
<td>Glycidyl methacrylate</td>
<td>GMA</td>
<td></td>
<td>142</td>
<td>Junsei Chemicals</td>
</tr>
<tr>
<td>Acrylic monomer</td>
<td>Acrylic acid</td>
<td>AA</td>
<td></td>
<td>72</td>
<td>Sanechun Chemicals</td>
</tr>
</tbody>
</table>
6.2.2. Methods

6.2.2.1. Synthesis of fluorinated silicone-modified urethane acrylates

Figure 6-2 shows the synthesis process scheme of the dual-curable hydroxy-terminated carbinol siloxane-modified fluorinated urethane acrylic adhesives. The reaction time was determined by observing changes in the FT-IR peak at 2265 cm\(^{-1}\) (NCO peak), which decreased with the polyurethane reaction (Figure 6-3) and \(^1\)H NMR (Figure 6-4). Initially, IPDI was charged into a dried 300-ml round-bottomed flask equipped with a four-necked separable flask with a mechanical stirrer, thermometer and condenser with a drying tube and an N\(_2\) inlet. The temperature was maintained at room temperature with constant stirring. The hydroxy-terminated carbinol polysiloxane with some of the catalyst (dibutyltin dilaurate) was then added dropwise over a period of 5 h and was maintained for a further 1 h. The reaction temperature was increased to 50\(^\circ\)C using a constant temperature heating mantle with constant stirring. A mixture of 1H, 1H, 7H-dodecafluoro-1-heptanol, and pentaerythritol triacrylate was added dropwise over a period 1 h and was reacted for 3 h until the NCO peak had almost disappeared. After cooling to ambient temperature, GMA and AA and 2-[3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl] ethylmethacrylate were mixed. Finally, a photo-initiator was blended to initiate UV-curing (Lee et al., 2014).
Figure 6-2. Synthesis process of dual-curable fluorinated silicone-modified urethane acrylic adhesives (Lee et al., 2014).
Figure 6-3. Observing changes in the FT-IR peak at 2265 cm⁻¹ (NCO peak), which decreased with the polyurethane reaction.
Figure 6-4. Observing changes in the 1H NMR peaks for threefold urethane reactions.
6.2.2.2. Temporary bonding and UV laser debonding process

Temporary bonding process flow and dual curing mechanism were described and examined in Figure 6-5 (Lee et al., 2013) and Figure 6-6 respectively. The bonded samples were irradiated using a UV laser of wavelength as 355 nm operated in pulsed mode (AVIA 355, Coherent) as shown in Figure 6-7. The chemical reactions were investigated using FTIR-ATR during dual curing and UV laser debonding (Figure 6-8). A projective optical system directed and defocused the laser radiation on the sample surface. The morphology of a surface after debonding depends on the laser process parameters such as, laser power, line speed and laser wavelength and so on. The parameters considered for this study are shown in Table 6-2. The experimental work was carried out at ambient temperature and in an atmospheric circumstance (Lee et al., 2014).
Figure 6-5. Temporary bonding process flow (Lee et al., 2013).
Figure 6-7. UV laser debonding process flow (Lee et al., 2014).
Figure 6-8. FTIR-ATR during dual curing and UV laser debonding. Chemical reactions of UV curing and thermal curing were shown. (a) The bands of the acrylic double bond at 810 and 1638 cm$^{-1}$ are associated with UV curing in bonding properties. But the bands showed very weak intensity, so the band at 1730 cm$^{-1}$ (C=O) stretching vibration indirectly showed the UV curing reaction. (b) The bands of the epoxy functionality at 800 and 1250 cm$^{-1}$ are associated with thermal curing in bonding properties. (c) BTHPEMA plays an important role in both light to heat conversion (LTHC) reaction for UV laser debonding and UV curing. In LTHC reaction, the additional thermal curing between epoxy functionality of glycidyl methacrylate and carboxyl functionality of acrylic acid was generated like thermal curing in bonding process. (d)
Table 6-2. UV laser process parameters (Lee et al., 2014).

<table>
<thead>
<tr>
<th>Process parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser wavelength, nm</td>
<td>355</td>
</tr>
<tr>
<td>Pulse repetition rate, kHz</td>
<td>100</td>
</tr>
<tr>
<td>Average power (P), W</td>
<td>8.3</td>
</tr>
<tr>
<td>Out-focusing length (mm)</td>
<td>14 – 16</td>
</tr>
<tr>
<td>Line spacing (mm)</td>
<td>20/30/40</td>
</tr>
<tr>
<td>Scan Speed (mm/s)</td>
<td>900/1100/1300</td>
</tr>
</tbody>
</table>
6.2.2.3. Fourier transform infrared (FTIR) spectroscopy

IR spectra were obtained using a JASCO FTIR-6100 (Japan) equipped with an attenuated total reflectance (ATR) accessory. In order to obtain the IR spectra of dual-curable adhesives, the cured adhesive samples were cut into 0.5 x 0.5 cm² pieces. The ATR prism was a diamond and its refractive index at 1000 cm⁻¹ was 2.4 with a transmission range from 4000 to 650 cm⁻¹. The resolution of the spectra recorded was 4 cm⁻¹. The curing behavior of the dual-curable adhesives was analyzed by observing the changes in the C=C bonding bands. All FTIR-ATR spectra were modified by baseline correction. The conversion (%) was calculated by the equation (Tasic, et al., 2004).

\[
\text{Conversion} \; (\%) = \left[\frac{A_{810}/A_{1730}}{A_{810}/A_{1730}}_0 - \left(\frac{A_{810}/A_{1730}}{A_{810}/A_{1730}}_t \right) \right] \times 100
\]

where \((A_{810}/A_{1730})_0\) and \((A_{810}/A_{1730})_t\), denote the relative absorbance of the C=C bonds before curing and at a given curing time \(t\), respectively (Lee et al., 2014).
6.2.2.4. Gel fraction and swelling ratio

Gel fraction determination is a convenient method of measuring insoluble fractions, such as the fractions of cross-linked or network polymers (Park et al., 2009). The gel fraction is the insoluble part while the swelling ratio is the fraction of the polymer swollen by the solvent. Both are significant factors when investigating curing behaviors. The gel fraction of the dual-curable adhesives after UV-curing was determined by soaking it in toluene at 50 ℃ for 24 h. The insoluble part was removed by filtration and dried at 50 ℃ to a constant weight. The gel fraction and swelling ratio were calculated by applying the following equations, respectively:

\[
\text{Gel fraction} = \frac{W_i}{W_o} \quad (2)
\]
\[
\text{Swelling ratio} = 1 + \left\{ \frac{W_s - W_i}{W} \times \frac{p}{\rho_o} \right\} \quad (3)
\]

Here, \(W_o \) is the initial weight of the sample, \(W_i \) is the insoluble swollen part, \(W \) is the weight of the dry insoluble part, \(p \) is the density of the solvent, and \(\rho_o \) is the density of polymer (Seguchi et al., 1985). The test was replicated three times (Lee et al., 2014).
6.2.2.5. Shrinkage

To investigate the degree of linear shrinkage during the UV-curing process, 0.05 g of the dual-curable adhesives material was placed on a round stainless steel plate (φ 0.4 mm) and covered with a glass slide (75 x 25 x 1, mm³), after which UV light was irradiated for about 600 s using a spot-curing equipment. The average UV light intensity at the sample was approximately 10 mW/cm² over a wavelength range of 300~400 nm. The displacement of the samples during the UV-curing process was recorded by software (Lee et al., 2014).
6.2.2.6. Thermogravimetric analysis (TGA)

The thermal stability and decomposition profiles of the dual-curable adhesives were measured using a thermogravimetric analyzer. The samples were loaded into a ceramic pan, and heated from 30 to 500℃ at a constant heating rate of 10℃/m in an inert nitrogen atmosphere (Lee et al., 2014).
6.2.2.7. Peel strength

The bonded specimen size was 8 mm x 8 mm. The 180° peel strength was measured using a Texture Analyzer, a kind of universal tensile machine, after the sample was left to stand at room temperature for 24 h. The peeling speed was 300 mm/m, and the average strength of peeling period was measured five times (Lee et al., 2014).
6.2.2.8. Optical microscopy

Optical Microscopy (SV-55, Video microscope system, Sometech) was used for a qualitative analysis of the laser-irradiated samples (Lee et al., 2014).
6.2.2.9. Field emission-scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS)

Field emission-scanning electron microscopy (FE-SEM, JSM-7600F, JEOL, Japan) at an accelerating voltage of 10 kV was conducted to observe the surface morphology after UV laser irradiation. Prior to measurement, all samples were pre-coated with a homogeneous platinum layer (purity, 99.99 %) by ion sputtering to eliminate electron charging. Energy dispersive spectroscopy (EDS, SUPRA 55VP, Carl Zeiss, Germany) at an accelerating voltage of 15 kV was also employed to observe the samples. Prior to measurement, all samples were pre-coated with a homogeneous platinum layer (purity, 99.99 %) by ion sputtering to eliminate electron charging (Lee et al., 2014).
6.2.2.10. Atomic force microscopy (AFM)

In order to observe the change of the surface morphology of the samples after UV laser irradiation, the atomic force microscopy (AFM) programmed in XE-BiO (Park Systems, USA) was used. The surface morphology was examined by recording AFM images in non-contact mode. This mode of operation is particularly advantageous on investigation of soft materials because interaction with the AFM tip does not affect the sample surface (Krok et al., 2000; Khulbe et al., 2000). The values of the root mean square (RMS) roughness were calculated from the height values in the AFM images (Lee et al., 2014).
6.3. Results and discussion

6.3.1. Fourier transform infrared (FTIR) spectroscopy

After the photo-initiation of the adhesives by UV irradiation, the specific bands of the functional monomers and/or oligomers indicated that polymerization had occurred. The curing reaction can be measured using FTIR-ATR spectroscopy because the C=C bonds in the functional monomers participate in the cross-linking reaction by photo-polymerization (Joo et al., 2006; Ratnam et al., 2001). Figure 6-9 shows the conversion of acrylate bonds according to the FTIR-ATR spectra. It can be seen that as the UV dose was increased, the conversion of acrylate bonds increased rapidly then became constant regardless of the photo-initiator content. However, the photo-initiator content had an effect on the conversion rate. This occurred because the conversion of acrylate bonds is based on the functionality of the monomer, the more radical initiation, the faster the increase in the conversion of the acrylate bonds. Despite this, the conversion rate was not 100%. The remaining C=C bonds may have remained unreacted after the action of the photo-initiator because they were trapped in the cross-linked polymer network (Joo et al., 2007). Moreover, the unreacted monomers inhibit the thermal stability of adhesives (Lee et al., 2014).
Figure 6-9. UV-curing profiles of UV-curable adhesives with different photoinitiator contents by FTIR-ATR spectra (Lee et al., 2014).
6.3.2. Gel fraction and swelling ratio

Figure 6-10 shows the relationship between the UV dose and the gel fraction of UV-cured adhesives with different photo-initiator contents. As the UV dose increases, the concentration of free radicals increases, causing the crosslinking density to increase due to a three-dimensional crosslinked insoluble and infusible network. The gel fraction was constant regardless of the photo-initiator content for UV doses higher than 500 mJ/cm². The gel fraction with 0.5 phr of photo-initiator increased with an increase in the UV dose up to about 63% of the gel fraction at a UV dose of 2500 mJ/cm². However, the gel fraction increased to around 83% in 4.0 phr of photo-initiator. That is, at a low photo-initiator content, the gel content conspicuously increased, owing to the existence of unreacted monomer, but the rate of increase of the gel fraction decreased with an increase in the UV dose, because the amount of unreacted monomer decreased (Lee et al., 2013).

On the other hand, the swelling ratio decreases rapidly with the dose, as shown in Figure 6-11, indicating that less space between the polymer chains is available for the swelling to occur. Figure 6-12 shows nearly linear dependence between the swelling ratio and gel fraction, suggesting that the processes of, crosslinking and chain scission occur at the same time. The variation of the two parameters with the dose may be due to oxidation-induced chain scission and the loosening of the network. In high-dose samples, the radical concentration is high and more chain scission reactions are induced, continuing for some time after UV irradiation (Elzubair et al., 2003).

Considering that for higher radiation doses scission reactions are supposed to compete with crosslinking, the increase in the extent of crosslinking can be accounted for by the fact that chain scissions lead to entanglement couplings which act as crosslinks (Banik et al., 1999). The main chain degradation is ultimately accompanied by crosslinking (Lee et al., 2014).
Figure 6-10. Gel fraction of UV-curing adhesives with different photo-initiator contents after UV-curing (Lee et al., 2014).
Figure 6-11. Swelling ratio of UV-curable adhesives with different photo-initiator contents after UV-curing (Lee et al., 2014).
Figure 6-12. Correlation between swelling ratio and gel fraction of UV-curable adhesives (Lee et al., 2014).
6.3.3. Shrinkage

Figure 6-13 depicts the typical linear shrinkage of UV-curable adhesives with reference to the irradiation time. Initially, the shrinkage of each sample increased sharply regardless of the photo-initiator contents. However, as the irradiation time elapsed, the shrinkage increased slightly and then stabilized. Also, the degree of linear shrinkage was dependent on the photo-initiator content. In general, the polymerization shrinkage of monomers and oligomers is due to the conversion of the intermolecular van-der-Waals forces to covalent single bonds during the polymerization process (Atai et al., 2005). Hence, the shrinkage is the consequence of the cross-linked reaction between the multifunctional acrylic oligomer and the monomer (Lee et al., 2014).
Figure 6-13. Linear shrinkage of UV-curable adhesives during UV irradiation (Lee et al., 2014).
6.3.4. Thermogravimetric analysis (TGA)

Figure 6-14 shows the thermal stability of UV-cured adhesives at temperatures ranging from 30 to 500°C. The weight loss at the temperature under 300°C was due to the trapped volatile materials which were released (Chattopadhyay et al., 2009). The thermal decomposition of the cross-linked polyurethane than started via the degradation of the polymer side chains, occurring at about 300°C. A temperature above 450°C led to complete decross-linking and thermal degradation of the cured adhesives (Kayaman-Apohan et al., 2005). Also, thermal stability was enhanced with an increase in the UV doses due to the increased density of the cross-linked structures, corresponding to the gel fraction results shown above (Lee et al., 2014).
Figure 6-14. Thermogravimetric analysis of UV-cured adhesives with different UV doses (Lee et al., 2014).
6.3.5. Peel strength

As shown in Figure 6-15(a), (b), the peel strength can be controlled by adjusting the out-focusing length, the line spacing, and/or the speed of the laser. The laser is absorbed mainly and attenuated progressively as it passes through the samples. With the increasing of the out-focusing length, the peel strength decreased slightly regardless of the line spacing and/or the speed in all samples. This was still at an acceptable level because the peel strength is the sum of the energies required to break the bond and deform the backing and the adhesives (Lim et al., 2007; Lee et al., 2014).
Figure 6-15. The peel strength (N/mm) vs. out-focusing length (mm) on (a) the line spacing from 20 μm to 40 μm, and (b) the scan speed from 900 mm/s to 1100 mm/s (Lee et al., 2014).
6.3.6. Optical microscopy

Specimen on out-focusing lengths from 14 mm to 16 mm are reported for comparison in Figure 6-16(a)-(c). The surface of the specimen on out-focusing length at 14 mm is scratched and defected, but as increasing out-focusing length the surface of the specimen almost has been flattened. The surface roughness is clearly increased. Using laser irradiation a fraction of the laser beam energy is absorbed by the adhesives, therefore proceeding adhesives melting, surface morphological modifications. If it is compared between from Figure 6-16(c)-(e) it can be appreciated as the effect of increasing the laser spacing, on the resulting of surface morphology. For the smaller laser spacing it is not possible to distinguish the different laser scans during the process. Because the surfaces are contaminated by the remaining residue as a result of the adhesives burning. But if the spacing is increased the formation of surface patterns becomes remarkable. Finally, Figure 6-16(c) and 6-16(f) show the effect of laser speed when the spacing is held constant at 40 μm. When the speed increases from 900 to 1100 mm/s, the depth of the pattern almost decreases because the time available for the laser beam to heat substrate surface decreases (Lee et al., 2014).
Figure 6-16. Microscopy observations of specimen (a) – (f). The laser beam was irradiated from top to bottom (Lee et al., 2014).
6.3.7. Atomic force microscopy (AFM)

Figure 6-17 indicates that the surface morphology and depth profile after UV laser irradiation and Table 6-3 shows different UV laser processing conditions. This method provides image of the sample topology by scanning a sample with a sharp tip attached to a cantilever, which is deflected as the tip interacts with the studied surface. Because it is a non-contact mode of AFM, the tip is vibrating in a distance of about from 5 to 10 nm from the surface and it is responding to attractive van der Waals interactions. The images provide observation of the damaged and/or the undamaged Si wafer in form of uniformly consisting of distributed groove-like creator or any of particles. The irradiation energy has grown up with increasing defocusing length. So, the sample (a) is more severe damaged than any other sample, (b) and (c). The depth profiles of the samples with from the bottom to the top are also calculated by through AFM images. The depth of the sample (a) is the largest in all samples. This means that the surface morphology of Si wafer after UV laser irradiation has strongly depended on UV laser process conditions (Lee et al., 2014).
Table 6-3. Different UV laser processing conditions (Lee et al., 2014)

<table>
<thead>
<tr>
<th>Samples</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (W/%)</td>
<td>10 / 88.5</td>
<td>10 / 88.5</td>
<td>10 / 88.5</td>
</tr>
<tr>
<td>Pulse rate (kHz)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Wavelength (nm)</td>
<td>355</td>
<td>355</td>
<td>355</td>
</tr>
<tr>
<td>Scan speed (mm/s)</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Scan pitch (μm)</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Defocusing length (μm)</td>
<td>11.75~15.75</td>
<td>16.75~17.75</td>
<td>18.75~19.75</td>
</tr>
</tbody>
</table>
Figure 6-17. AFM images and depth profiles after UV laser irradiation with different processing conditions (process condition (a) ~ (c)) (Lee et al., 2014).
6.3.8. Field emission-scanning electron microscopy (FE-SEM) and Energy dispersive spectroscopy (EDS)

Figure 6-18 indicates that SEM image and atomic fraction (%) of damaged area (spot A) and undamaged area (spot B) on Si wafer after cleaning, sample (a). As mentioned before, it is important thing to clean Si wafer after UV laser irradiation. Because if either any residue or scratches remains after cleaning, not only it was related with damages of Si wafers but also the yield rate will be dropped apparently. So, it is necessary to analysis whether it is any damage or not if it was presented as “line” on Si wafer after cleaning process. Atomic fraction (%) on Si at both damaged area (spot A) and undamaged area (spot B) in sample (a) shows almost same result. It means the “line” might have been estimated as damaged area of the Si wafer. Hence, it always should be intended to conduct surface morphologies after cleaning by FE-SEM and/or EDS (Lee et al., 2014)
Figure 6-18. SEM image and atomic fraction (%) of damaged area (spot A) and undamaged area (spot B) on Si wafer after cleaning, sample (a) (Lee et al., 2014).
6.4. Conclusion

Handing thin wafers through packaging assembly processes are not easy since the wafers may lose the supporting strength. So, UV laser debonding has been shown to be a promising technology for the temporary adhesives bonding and debonding process because of its very fast debonding time about few seconds and irradiation stability than thermal or chemical debonding. To investigate laser debonding, the surface morphology, for various sets of the out-focusing length, the line spacing, and the scan speed, was studied by means of the optical microscopy, and peel strength. The thermal curable adhesives containing UV absorbing material were fast cured by the laser irradiation. The results showed that the laser process ensures the adhesives removal thereby removing any weak layer. Among them, the suitable conditions are 12 mm of out-focusing length, 40 mm of line spacing, and 1100 mm/s of scan speed.
Chapter 7

Concluding Remarks
Temporary bonding and debonding adhesives for three-dimensional (3D) multichip package process have been synthesized. To enhance the thermal stability, the adhesives used a fluorinated silicon urethane acrylic binder and ultraviolet (UV) curing for crosslinked network structures. Also, UV absorbing material was employed in dual curable adhesives for UV laser debonding. Focusing on different photo-initiator contents, UV doses and the functional monomer types and contents, the UV-curing behaviors and thermal stability were investigated using FTIR-ATR, gel fraction, swelling ratio, shrinkage and TGA. Furthermore, optical spectroscopy, FE-SEM, AFM and XPS were conducted to analyze Si surface morphologies after UV laser debonding.

1. Adhesion performance and surface morphology of UV-curable interpenetrating network acrylates for 3D multi-chip packaging process three-dimensional integration

UV-curable acrylates have many applications in industries. As the Si wafers become thinner, the acrylics for MCP need to show proper adhesion and leave little residue on the Si wafer after UV irradiation when released from the process. Strong adhesion is required in the process to hold the Si wafer before UV irradiation. On the other hand, weak adhesion strength is required after UV irradiation to prevent damage to the Si wafers during the “pick-up” process. This study employed interpenetrating polymer network structured acrylates in the Si wafer manufacture process. The binder contained 2-ethylhexyl acrylate (2-EHA) and acrylic acid (AA). The adhesion performance of the peel strength on a Si wafer was examined as a function of the UV dose. The results showed that the above mentioned two requirements were achieved using IPN structured acrylates using a hexafunctional acrylic
monomer and a UV-curing system. FE-SEM and XPS revealed little residue on the wafer after removing adhesives. It suggests the proper conditions for the curing agent, the additional hexafunctional monomer, photo-initiator and the coating thickness.

2. Adhesion performance and curing behaviors of UV-curable acrylates with 3-MPTS for 3D multi-chip packaging process

As Si wafers, as used in the electronic industry, become thinner and thinner, it is important to investigate the conditions which are suitable for easily peelable acrylates. In the Si wafer process, the adhesion strength decreased after UV irradiation as a result of polymer network formation. The interpenetrating polymer network (IPN) structured acrylates were investigated with two different types UV irradiation, a steady UV irradiation and a pulsed UV irradiation of 100 mJ/cm². The binder contained 2-ethylhexyl acrylate (2-EHA), acrylic acid (AA) and 3-methacryloxypropyl trimethoxysilane (3-MPTS). The hexafunctional monomer, dipentaerythritol hexacrylate (DPHA) and 3-MPTS were used as diluent monomers. The adhesion performance as related to the peel strength and the tack properties on the Si wafer substrates, was examined with increasing UV dose. The effect of UV-curing on the behavior and viscoelastic properties of the acrylates was investigated using fourier transform infrared – attenuated total reflectance spectroscopy (FTIR-ATR) and an advanced rheometric expansion system (ARES). It is also necessary to consider the contaminants on the Si wafer substrates left behind after releasing the adhesives, because of possible damage to the Si wafer and subsequent processes. Field emission-scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS) analysis revealed little residue.
on the Si wafer after removing the adhesives and after more than the specific level of UV dose.

3. UV-curing and thermal stability of dual-curable urethane epoxy adhesives for temporary bonding and debonding in 3D multi-chip packaging process

Multi-chip package (MCP) refers to a packaging configuration, connected via wirebonds to a multilayer circuit board, and protected by either a molded encapsulant or a low-cost ceramic package. As it requires high processing temperature, the adhesives for MCP need to show proper adhesion and thermal stability at high temperature. Hence, it employed interpenetrating network structured (IPNs) polymer using UV-curing with an acrylate terminated UV-curable urethane binder, a dipentaerythritol hexacrylate (DPHA), a glycidylmethacrylate (GMA) and a hydroxydimethyl acetophenone as a photo-initiator. UV-curing and thermal stability focused on different photo-initiator contents were investigated using photo-DSC, FTIR-ATR spectroscopy, gel content and TGA. The results show that different formulation with different content of a photo-initiator affects UV-curing and thermal stability.

4. Synthesis and properties of UV laser debondable fluorinated silicone-modified urethane acrylic adhesives for temporary bonding and debonding in 3D multi-chip packaging process
Using adhesives is one of the possible solutions for thin wafer handling, and how to synthesize adhesives materials and investigate debonding behaviors for temporary bonding and debonding are an important research. UV laser irradiation is considered for debonding temporary adhesives in a 3D multi-chip package process. It was required bonding temperature at 200 ~ 220 °C for a conventional method, but bonding temperature at 80 ~ 150 °C was obtained for this method. Also, short debonding time less than 2 minutes was conducted in contrast to long debonding time of a conventional method which uses solvent to dissolve adhesives for more than 6 hours. For this, the adhesives were synthesized with BTHPEMA for UV absorbing material which reacted at certain wavelength, especially 40% of absorbance at 355 nm in 0.4 phr of BTHPEMA content as measured by UV-visible spectroscopy. BTHPEMA plays an important role in both light to heat conversion (LTHC) reaction for UV laser debonding and UV curing which is conducted by a synthesized urethane acrylic binder and other curable acrylic monomers for bonding properties. In LTHC reaction, the additional thermal curing by an epoxy functionality of a glycidyl methacrylate and a carboxyl functionality of an acrylic acid was generated as measured by FTIR-ATR and gel fraction. As mentioned results and investigations, suitable UV laser debonding was presented by effective energy density of 355 nm UV laser at 5.65 ~ 6.72 J/cm².
References

Combe, S., Cullen, J., O'Keefe, M. (2006). Reversible wafer bonding: challenges in ramping up 150 mm GaAs wafer production to meet growing demand. MANTECH.

초록

최근 스마트폰을 중심으로 한 모바일 기기는 고성능화와 동시에 경박단소가 요구되기에 TSV 3D 멀티칩 패키징 기술이 대두하게 되었다. 이 기술을 실현하기 위해서는 실리콘 웨이퍼를 가공하고 핸들링 할 수 있는 임시 고정 접착제가 필요하다. 하지만 기존 접착제를 사용하여 두께 50 μm 이하의 박형 실리콘 웨이퍼를 핸들링하는 것은 쉽지 않다. 그 이유는 첫 번째로 고순도를 유지하기 위해 본딩 공정과 디본딩 공정 사이에 200 ºC 이상의 공정 온도가 요구되는데 사용되는 접착제의 열분해로 인한 저분자량 물질 발생과 이로 인한 박형 실리콘 웨이퍼의 오염이 발생되기 때문이다. 두 번째는 디본딩 시 강한 접착력으로 인해 박형 실리콘 웨이퍼의 크랙 또는 깨짐 등의 불량이 발생하게 된다.

따라서 본 연구에서는 TSV 3D 멀티칩 패키징용 임시 고정 접착제를 본딩 관점과 이후 진행되는 디본딩 관점으로 나누어 각각의 요소 기술을 이용하여 접착제를 새롭게 합성하였고 물성 평가를 통해 경화 거동 및 디본딩 메커니즘을 규명하고자 하였다.

먼저 본딩 관점에서는 본딩 시, 기존의 용제형 접착제가 갖는 스
핀 코팅 후 접착제가 실리콘 웨이퍼 밖으로 흘러내리는 현상, 용제 휘발로 인해 웨이퍼 표면이 오염되고 코팅 두께가 불균일해지는 현상, 작업장의 오염 등의 문제점을 갖는다는 단점을 개선하고자 무용 제형 우레탄 아크릴계 접착제를 설계 및 제조하였다. 우레탄 합성 시 hard segment로써 아이소포론 다이아소시아네이트를 사용하였고, soft segment로는 기존의 탄화수소계 다이올이 아닌 실리콘계 다이올을 이용하여 고분자 구조의 내열성을 향상시키고자 하였다. 또한 기존의 광 경화 또는 열 경화형과 같은 단일 경화형 접착제가 아닌 광 경화 이후 열 경화를 추가적으로 도입하는 이중 경화형 접착제를 설계하여 내열성을 향상시키고자 하였다. 합성한 우레탄 올리고머의 한쪽 말단에 다관능성 아크릴계 모노머를 end-capping 하였고, 다른 말단에는 불소기를 함유한 모노머를 end-capping 하여 다관능성 아크릴계 모노머의 관능기 개수와 조사되는 자외선 에너지 밀도, 사용되는 광개시제의 함량에 따라 달라지는 경화 거동 및 열 안정성, 박리 강도를 측정하여 분석해보았다. 그 결과 아크릴계 모노머의 관능기 개수는 mono < di << tri, hexa 순으로 점 분율법을 이용한 간접적인 경화율이 증가하는 것을 확인할 수 있었으며, 이는 광 경화 초기 반응에 있어서 반응 사이트의 증가 및 이로 인한 가교밀도의 증가로 해석할 수 있다. Tri-acrylate 이상에서는 점 분율이 60%
로 더 이상 증가하지 않은 것을 확인할 수 있었는데 이는 미반응울리고머의 라디칼 trap에 의해 반응 활성도가 떨어지는 것으로 해석할 수 있다. 조사되는 자외선 에너지 밀도는 400 mJ/cm² 이상에서 젤 분율이 60%로 일정해지는 것을 확인할 수 있었다. 자외선 에너지 밀도 증가에 따른 박리력 감소를 위해 광 조사 시 주로 사용되는 steady irradiation법이 아닌 100 mJ/cm² 썩 나누어 조사하는 pulsed irradiation법을 도입하여 고분자의 분자량 분포를 heterogeneous한 상태로 유도하고자 하였으며, steady irradiation법으로 한 경우 5.9의 PDI값을 나타낸 반면, pulsed irradiation법으로 한 경우 16.1의 높은 PDI값을 나타내었고 이러한 특성은 박리강도 측정 결과 pulsed irradiation법이 steady irradiation법보다 보다 낮은 강도 수치를 보여주는 것으로 확인되었으며, 본딩 뿐만 아니라 디본딩까지 고려한다면 pulsed irradiation법이 보다 적합한 광 조사 방법임을 알 수 있었다. 본 연구에서는 기존의 연구에서와는 달리 광개시제의 함량에 달라지는 경화 거동을 평가하고 분석해보고자 하였다. 그 결과 바인더 대비 2 phr 이상의 광 개시제 투입시 젤 분율이 더 이상 증가하지 않고 일정해지는 것을 알 수 있었는데 이는 과량의 광개시제 투입시 발생할 수 있는 미반응개시제에 의한 부반응을 고려할 때 초기 투입량에 대한 최적의 배합비 조성이 중요하다는
것을 알려준다. 열 안정성 확보를 위하여 자외선 에너지 밀도와 광개시제의 함량을 달리하여 열중량 분석법을 이용하여 열 분해 거동을 살펴본 결과 250 °C 이상의 조건에서 열 안정성이 유지되는 것을 확인 할 수 있었는데, 이는 이중경화 메커니즘의 도입과 실리콘계, 에폭시계, 불소계 작용기를 모두 갖는 하이브리드 타입의 접착제 합성으로 내열성이 보다 향상된 것으로 해석할 수 있다.

한편, 본딩 이후 디본딩을 위하여 자외선 레이저를 이용한 edge zone debonding법을 제안하였다. 기존의 방식이 200 ~ 220 °C의 본딩 온도를 요구하는 반면, 본 연구를 통해 80 ~ 150 °C의 낮은 온도로 본딩을 진행할 수 있게 되었다. 또한 디본딩 시 온도의 침투에 의해 6시간 이상의 공정 시간이 소요되는 기존 방식에 비해 자외선 레이저를 이용하여 2분 이내에 디본딩이 이루어지도록 연구하였다. 이를 위해 접착제 제조 시 2-[3-(2-Benzotriazol-2-yl)-4-hydroxyphenyl]ethyl methacrylate (BTHPEMA)를 도입하였다. BTHPEMA는 디본딩 시 Light To Heat Conversion (LTHC) 역할을 함으로써 접착제의 열 경화에 의한 고분자 필름 형성으로 디본딩이 진행됨을 FTIR-ATR 분석과 겔 분율 측정을 통한 에폭시 작용기의 열 경화 메커니즘으로 규명하였다. 합성한 접착제의 자외선 레이저에 대한 흡수도를 UV-visible spectroscopy을 이용하여 파장에 따라
측정하였으며 그 결과, 355 nm 파장에서 BTHPEMA의 함량 증가에 따라 바인더 대비 투입량 0.4 phr에서 최대 60%의 흡수도를 나타내었으며 배합비를 달리함으로써 접착제의 자외선 레이저 흡수도를 다양하게 조절할 수 있었다. 또한 자외선 레이저 조사 시 5.65 ~ 6.72 J/cm² 영역의 유효에너지 밀도 조건에서 적합한 디분딩이 이루어지는 것을 분석 기기를 통해 확인할 수 있었다.

주요어 : 접착제, 이중경화, 3D 멀티칩 패키징, 임시 고정, 자외선 레이저 디분딩, 불소화 우레탄 아크릴 접착제

학번 : 2009-21204