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ABSTRACT

Statistical inference in time series models with
nonstandard mean and variance structure

Hwansik Jung
The Department of Statistics

The Graduate School
Seoul National University

In this thesis, we consider inferences in time series model with non-
standard mean and variance structure. First, an alternative GARCH model is
proposed to handle the asymmetric leverage effect. The conditional variance
of the proposed model consists of past conditional variances and squares of
past transformed residuals. The Yeo-Johnson transformation is employed to
model asymmetric leverage effect. Consistency and asymptotic normality of
maximum likelihood estimator(MLE)s are derived. Real data is analyzed and
the performance of the proposed model is compared with other GARCH-type
models.

Second, the generalized method of moment(GMM) estimation is proposed
for the cointegrated vector autoregressive(VAR) process of integrated order 1
where the process consists of endogenous variables and exogenous variables.
Ahn et al. (2015) considered the MLE and the least squares estimation(LSE)
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of the cointegrated VAR processes assuming that the non-stationary exoge-
nous variables are cointegrated. The same model considered by Ahn et al.
(2015) was studied by the iterative GMM estimation method. The asymp-
totic properties of the GMM estimators are derived and the finite sample
properties of the estimators are examined through a Monte Carlo simulation.

Keywords: Asymmetric GARCH, Yeo-Johnson transformation, Leverage
effect, Cointegration, Generalized method of moments, Exogenuous variable
Student Number: 2009− 20254
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Chapter 1

Introduction

A time series is a collection of random variables observed sequentially in
time. Unlike many statistical models, which are developed assuming that
the observations are independent, a time series analysis is concerned with
describing the dependence among the elements of a sequence of random vari-
ables. Therefore, many time series models are developed based on an assump-
tion of stationarity, meaning that the behavior does not depend on when we
start to observe it. However, many economic time series data exhibit an non-
stationary behavior, such as a stochastic trend or non-homogenous variances.
In order to handle these nonstationary phenomena, many researchers have
suggested the transformations of data, such as difference or a log transforma-
tion. In this thesis, we propose models for the inference of time series data
with nonstandard mean and variance structures.

An autoregressive conditional heteroscedastic(ARCH) model was first in-
troduced by Engle (1983) to explain heteroscedastic properties, e.g., cluster-
ing and time-varying properties of volatility. Bollerslev (1986) generalized it
to propose a generalized ARCH(GARCH) model which is analogous to the
extension of AR to ARMA models. Many researchers, however, have found
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that this model sometimes fails to capture the asymmetric property that is
called the leverage effect. This led to the use of non-normal distributions,
Student’s t and skewed Student’s t, within many non-linear extensions of the
GARCH model, the exponential GARCH(EGARCH) of Nelson (1991), the
GJR of Glosten et al. (1993) , and the asymmetric power ARCH(APARCH)
of Ding et al. (1993), to better model the fat-tail(the excess kurtosis), the
skewness, and the leverage effect. These models have been relevant in esti-
mating and forecasting volatility as well as capturing asymmetry in volatility.
However, Allen et al. (2014) studied the issue of asymmetry and leverage in
conditional volatility models and showed that the leverage is not well handled
in the GJR and EGARCH models. The APARCH model also has the same
limitations as the Box-Cox transformation, which is the boundness and the
positiveness of the transformed variables.

When we analyze vector time series data which are integrated we usually
take a difference of the data. But if some of the linear combination of the
series is stationary, a vector time series is said to be cointegrated. Granger
(1981) and Engle and Granger (1987) proposed the concept of cointegration
and developed a vector error correction model(VECM). Johansen (1988) and
Ahn and Reinsel (1990) proposed a maximum likelihood estimation(MLE)
based on the reduced rank approach, Phillips (1994) and Engle and Granger
(1987) suggested the regression approach, and Quintos (1998), Kleibergen
(1997), and Park et al. (2011) proposed GMM estimation methods. Descrip-
tions and applications of these methods can be found in many financial em-
pirical research. Recently, a cointegration model with exogeneity has received
the attention of many authors. Since Hunter (1990) defined the cointegrating
exogeneity, many researchers have developed new structural models. Pradel
and Rault (2003) studied the strongly exogenous case, while Johansen (1992),
Harbo et al. (1998), and Pesaran et al. (2000) studied the weakly exogenous
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case, Mosconi and Giannini (1992) studied the case of non-causality. But they
used only the sufficient condition of exogenous assumptions and did not con-
sider the case in which exogenous variables are cointegrated.Ahn et al. (2015)
generalized the previous results and proposed MLE and LSE when the exoge-
nous variables are cointegraed. However,according to Phillips (1994) MLE
does not work properly when the data is huge and high-dimensional since the
distributional assumption is easily violated and extraordinary outliers are eas-
ily encountered in the finite sample. Unlike the MLE, the GMM estimation
does not need a distributional assumption and only requires the specification
of moment conditions. Therefore, the GMM estimation is computationally
convenient for the inference of a complex model.

In this thesis, a new asymmetric GARCH-type model is proposed to han-
dle the leverage effect and the GMM estimation method is proposed for esti-
mation of the cointegration model with exogenous variables.

The remainder of the thesis is organized as follows. Chapter 2 reviews
the basic concepts that will aid the reader in understanding the models and
methods used in this thesis. In chapter 3, an asymmetric GARCH, named
YJ-GARCH, is proposed, and the asymptotic properties of the proposed
model are derived. Real data is analyzed to compare the performance of
the YJ-GARCH with other GARCH-type models in chapter 3. Chapter 4
contains the parameterization of the parameter sets and the iterative GMM
estimation based on Ahn et al. (2015). Asymptotic properties of the iterative
GMM estimators derived and the performance with MLE and LSE in finite
samples are compared through a Monte Carlo simulation. Chapter 5 contains
some concluding remarks.
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Chapter 2

Literature Review

In this chapter, basic concepts useful to understand the models and methods
used in this thesis are reviewed. Section 1 introduces the conditional het-
eroscedasticity and the family of transformation is summarized in section 2.
In section 3, the concept of cointegration and the cointegrated model with
exogenous variables are reviewed. Finally, we present the GMM estimation
in section 4.

In the followings, p−→ and d−→ denotes convergence in probability and in
distribution, respectively. vec(·) stacks the columns of a matrix into a column
vector and ⊗ operator is a kronecker product.

2.1 Conditional heteroscedastic models

Consider an autoregressive process of order p, AR(p), for the observed vari-
able Xt

Xt = µ+ ϕ1Xt−1 + · · ·+ ϕpXt−p + ϵt,
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where ϵt is a white noise process with

E(ϵt) = 0

E(ϵiϵj) =

σ
2 if i = j

0 if i ̸= j.
(2.1)

The process is covariance-stationary provided that the roots of

1− ϕ1z − ϕ2z
2 − · · · − ϕpz

p = 0

are outside the unit circle. The optimal linear forecast of the level of Xt for
an AR(p) process is

E(Xt|Xt−1, Xt−2 · · · ) = µ+ ϕ1Xt−1 + · · ·+ ϕpXt−p, (2.2)

where E(Xt|Xt−1, Xt−2 · · · ) denotes the linear projection of Xt on a constant
and (Xt−1, Xt−2 · · · ). While the conditional mean of Xt changes over time
according to (2.2), provided that the process is covariance-stationary, the
unconditional mean of Xt is constant

E(Xt|Xt−1, Xt−2 · · · ) = µ/(1− ϕ1 − ϕ2 − · · · − ϕp).

In the analysis of financial time series, investors often require higher expected
returns as a compensation for holding risk assets. Since volatility means the
conditional variance of the underlying asset, the modeling of the variance is
as much important as the level of the series Xt. A variance that changes
over time also has implications for the validity and efficiency of statistical
inference about the parameters (µ, ϕ1, ϕ2, · · · , ϕp) that describe the dynamics
of the level of Xt.

Although the unconditional variance of ϵt, σ2, is constant in (2.1), the
conditional variance of ϵt evolves over time. One approach to describe the
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behavior the conditional variance is denoting the square of ϵt as an AR(m)
process

ϵ2t = α0 + α1ϵ
2
t−1 + α2ϵ

2
t−2 + · · ·+ αmϵ

2
t−m + wt, (2.3)

where wt is a new white noise process:

E(wt) = 0

E(wiwj) =

ξ
2 if i = j

0 if i ̸= j.

Since ϵt is an error in forecasting Xt, (2.3) implies that the linear projection
of the squared error of a forecast of yt on the previous m squared forecast
errors is given by

E(ϵ2t |ϵ2t−1, ϵ
2
t−2 · · · ) = α0 + α1ϵ

2
t−1 + α2ϵ

2
t−2 + · · ·+ αmϵ

2
t−m. (2.4)

A white noise process ϵt satisfying (2.3) is described as an autoregressive con-
ditional heteroscedastic process of order m, ARCH(m), which is introduced
by Engle (1983). Since ϵt is random and ϵ2t cannot be negative, this is a
sensible representation only if (2.4) is positive and (2.3) is nonnegative for
all realizations of ϵt. This can be ensured only if wt is bounded from below
by −α0 with α0 > 0 and αi ≥ 0 for i = 1, 2, · · · ,m. In order for ϵ2t to be
covariance-stationary, we further require that the roots of

1− α1z − α2z
2 − · · · − αmz

m = 0

lie outside the unit circle, which is equivalent to

α1 + α2 + · · ·+ αm < 1, (2.5)

if αi’s are nonnegative. When this condition is satisfied, the unconditional
variance of ϵt is given by

σ2 = E(ϵ2t ) = α0/(1− α1 − α2 − · · · − αm).
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Let ϵ̂t+s|t denote a s−period-ahead linear forecast

ϵ̂t+s|t = E(ϵ2t+s|ϵ2t , ϵ2t−1, · · · ).

This can be calculated iteratively. Then the s−period-ahead forecast ϵ̂t+s|t
converges in probability to σ2 as s→ ∞, assuming that wt has finite variance
and the condition (2.5) is satisfied.

It is often convenient to use an alternative represenation of an ARCH(m)
process that imposes slightly stronger assumptions on the serial dependence
of ϵt. Let

ϵt =
√
htet,

where et is an i.i.d. sequence with zero mean and unit variance, then ht

evolves according to

ht = α0 + α1ϵ
2
t−1 + · · ·+ αmϵ

2
t−m, (2.6)

where α0 > 0 and αi ≥ 0 for i > 0. The coefficients αi must satisfy these
regularity conditions to ensure that the unconditional variance of ϵt is finite.

Although (2.3) and (2.6) are useful to describe the behavior of volatility,
a relatively long lag is needed in the applications. To avoid this problem
Bollerslev (1986) introduced a useful extension of ARCH known as a GARCH
model as follows:

ht = α0 + α1ϵ
2
t−1 + · · ·+ αmϵ

2
t−m + β1ht−1 + · · ·+ βsht−s,

where α0 > 0, αi ≥ 0, βj ≥ 0, and
∑max(m,s)

i=1 (αi+βi) < 1. The last constraint
on αi+βi ensures the finite unconditional variance of ϵt. The simple structure
of GARCH model, however, has important drawbacks. GARCH models need
an nonnegativity constraint on the parameters and does not accommodate
the asymmetric relations in returns and volatility changes, for example. To
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accomodate the asymmetric effects between positive and negative residuals,
Nelson (1991) proposed the EGARCH model

g(et) = θet + γ

(
|et| − E

(
|et|
))

(2.7)

log(ht) = α0 +
(1 + α1B

1 + · · ·+ βaB
a)

(1− β1B1 − · · · − βbBb)
g(et−1),

where θ and γ are real constants. In (2.7), both et and |et| − E(|et|) are
i.i.d. random variable with mean zero. The EGARCH model differs from
the GARCH model in several ways. First, it uses log conditional variance
to relax the positiveness constraint of model coefficients. Second, the use
of g(et) enables the model to separate asymmetrically positive and negative
lagged values of ϵt.

Another volatility model commonly used to handle the leverage effect is
the threshold GARCH(TGARCH) model; see Glosten, Jagannathanm and
Glosten et al. (1993) and Zakoian (1994). A TGARCH(m,s) model assumes
the form

ht = α0 +
s∑
i=1

(αi + γiNt−i)ϵ
2
t−1 +

m∑
j=1

βjht−j ,

where Nt−i is an indicator for negative ϵt−i such that

Nt−i =

1 if ϵt−i < 0

0 if ϵt−i ≥ 0,

αi, βi, and γi are nonnegative parameters satisfying conditions similar to
those of GARCH model. Depending on whether past residual lies above or
below zero, it has a different effect on the volatility model.

Even though EGARCH and TGARCH models are useful and simple for
reflecting the leverage effect of positive and negative past residuals to volatil-
ity, however, when the data has a non-symmetric behavior these GARCH-
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type models do not work well. To avoid this weakness, transforming non-
normal data to nearly normal before fitting GARCH-type model has been
proposed. Asymmetric-power autoregressive conditional heteroscedastic(A-
PARCH) introduced by Ding et al. (1993) is one of the ARCH family model
which is useful to handle the asymmetry. The power term estimated within
the A-PARCH is the means by which the data is transformed. The power
term captures the volatility clustering, which is the influence of the outliers.
Traditionally, data transformations involve a square term. But when data
is non-normal or when it is not possible to characterize the distribution by
the mean and variance, the use of a squared power transformation is not
appropriate and other power transformations which use higher moments to
adequately describe the distribution are needed.

2.2 Family of Power Transformations

Many statistical models are developed under the strong assumptions about
the structure of data. In practice, these assumptions often fail to hold. One
of the solution is to develope flexible alternatives which do not depend on
the strong assumptions. Another is to transform data so that they satisfy
the assumptions. The family of power transformation is reviewed in this
section. Tukey (1957) introduced a family of power transformation such that
the transformed values are a monotonic function of the observations over
some admissible range and indexed by

X
(λ)
t =

 Xλ
t if λ ̸= 0

log(Xt) if λ = 0,
(2.8)
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for Xt > 0. This transformation was modified by Box and Cox (1964) to take
account of the discontinuity at λ = 0 as follows:

X
(λ)
t =

 (Xλ
t − 1)/λ if λ ̸= 0

log(Xt) if λ = 0.
(2.9)

It is noted that Box-Cox transformation is valid only for Xt > 0, hence
modification is negative observations. Box and Cox (1982) proposed the
shifted power transformation with the form

X
(λ)
t =

 [(Xt + λ2)
λ1 − 1]/λ1 if λ ̸= 0

log(Xt + λ2) if λ = 0,
(2.10)

where λ1 is the transformation parameter and λ2 is chosen such that Xt >

−λ2. The families (2.9) and (2.10) have the advantage that they are continu-
ous functions of λ1 and λ2, respectively. Also, Box and Cox (1982) converted
the selection of λ = (λ1, λ2) into an estimation problem. Draper and Cox
(1969) attempted to derive the asymptotic properties of maximum likelihood
estimator, λ̂, in (2.9). Andrews et al. (1971) and (Velilla (1993),Velilla (1995))
discussed the transformation of multivariate observations. The transforma-
tion (2.10) is discussed in detail in Atkinson (1985) and Atkinson and Pericchi
(1991).

Manly (1976) suggested another alternative which can be used with neg-
ative observations

X
(λ)
t =

 [exp(λXt)]− 1/λ if λ ̸= 0

Xt if λ = 0.

He claimed that it is effective at transforming skewed unimodal distributions
into nearly symmetric normal-like distributions. John and Draper (1980) in-
troduced the so-called modulus transformation which is considered to normal-
ize distributions already possessing some measure of approximate symmetry
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and carries the form

X
(λ)
t =

 sign(Xt)[(|Xt|+ 1)λ − 1/λ] if λ ̸= 0

sign(Xt)log(|Xt|+ 1)λ.
(2.11)

It is important to note that the range of X(λ)
t in (2.8)-(2.10) and (2.11) is

restricted according to whether λ is positive or negative. This implies that
the transformed values do not cover the entire range (−∞,∞), hence their
distributions are of bounded support. Consequently, only approximate nor-
mality is to be expected. But they are not appropriate for skewed data and
change the prime properties of distribution like increase or sign.

Yeo and Johnson (2000) proposed an alternative family of power trans-
formation which has properties similar to the Box-Cox transformation, in
particular, convexity on the whole real line and is appropriate for reducing
the skewness as follows:

ψ(λ,Xt) =



(Xt + 1)λ − 1

λ
, if λ ̸= 0, Xt ≥ 0

log(Xt + 1), if λ = 0, Xt ≥ 0

−(−Xt + 1)2−λ − 1

2− λ
, if λ ̸= 2, Xt < 0

−log(−Xt + 1), if λ = 2, Xt < 0.

(2.12)

This transformation has the same form as Box-Cox transformation on the
positive part, except the shift constant 1 in contained. The properties of the
transformation are summarized in the following lemma.

Lemma 2.1. (Yeo and Johnson, 2000) The transformation function ψ(·, ·)

defined in (2.12) satisfies

(1) ψ(λ,Xt) ≥ 0 for Xt ≥ 0 and ψ(λ,Xt) < 0 for Xt < 0.

(2) ψ(λ,Xt) is convex in Xt for λ > 1 and concave in Xt for λ < 1.
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(3) ψ(λ,Xt) is continuous function of (λ,Xt).

(4) Let ψ(k) =
∂k

∂λk
ψ(λ, xt). Then for k ≥ 0

ψ(k) =



(Xt + 1)λlogk(Xt + 1)− kψ(k−1)/λ if λ ̸= 0,Xt ≥ 0

logk+1(Xt + 1)/(k + 1) if λ = 0,Xt ≥ 0

−(−Xt + 1)2−λ
(
− log(−Xt + 1)

)k − kψ(k−1)/(2− λ) if λ ̸= 2,Xt < 0(
− log(−Xt + 1)

)k+1
/(k + 1) if λ = 2,Xt < 0

is continuous in (λ,Xt). Here ψ(0) ≡ ψ(λ,Xt).

(5) ψ(λ,Xt) is increasing in both x and λ.

(6) ψ(λ,Xt) is convex in λ for Xt > 0 and concave in λ for Xt < 0.

From Lemma 1, we can see that Yeo-Johnson transformation is monotone,
continuous, and differentiable. These properties are useful to obtain the con-
sistency and asymptotic results of the asymmetric GARCH model proposed
in chapter 3.

In this thesis, a GARCH model with Yeo-Johnson transformation is pro-
posed. In asymmetric GARCH modelling, we focus on the lagged error terms
instead of independent or dependent terms. If all error terms are positive or
vice versa, then some of asymmetric GARCH models just discriminate the
sign of value and lead to the loss the information in error terms. For this rea-
son, we suggest an alternative type of asymmetric GARCH model which can
modify the distribution of error by Yeo-Johnson transformation and thus is
useful in converting a skewed distribution to approximately symmetry. And
it has quite satisfactory performance in transforming a near symmetric distri-
bution to a normal distribution. As is well known, if a distribution of errors
is normal then the skewness and the excess-kurtosis (i.e. kurtosis minus 3)
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are identical to zero. Thus a distribution of errors in financial time series
which are far from normal would mean that at least one of the skewness
or excess-kurtosis measures is significantly different from zero. Since Yeo-
Johnson transformation would show good performance in skewness case, we
expect that the proposed model(YJ-GARCH) specification can improve the
estimates of the forecast intervals.

2.3 Cointegration model

Consider an m−dimensional vector process Xt generated by an autoregres-
sive process of order p, VAR(p), given by

Φ(L)Xt = (Im −
p∑
j=1

ΦjL
j)Xt = ϵt, (2.13)

where Φ1, · · · ,Φp are m×m coefficient matrices and L is a lag operator such
that LXt = Xt−1. ϵt is a m-dimensional white noise vector with mean 0 and
nonsingular covariance matrix Ωϵ.

VAR process is stable or called covariance-stationary if the characteristic
polynomial equation det(Φ(L)) = 0 has m characteristic roots which are
outside the unit circle. When some roots of det(Φ(L)) = 0 lie on or inside
the unit circle, the VAR process is nonstationary. For details of the properties
of VAR process, see Hamilton (1994) and Brüggemann and Lütkepohl (2005)
among others. In general, any linear combination of nonstationary Xt will
be also nonstationary. However, if there exists a vector B such that B′Xt is
stationary, then Xt is cointegrated, following Engle and Granger (1987).

In this thesis, the cointegration models with exogenous variables are stud-
ied. Assume that det(Φ(L)) = 0 has d (0 < d < m) unit roots and the
remaining roots are outside the unit circle, i.e., rank(Φ(1)) = r(= m − d).
This assumption implies that the Im − Φ(1) =

∑p
j=1Φj has d liearly inde-
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pendent eigenvectors associated with eigenvalue 1. Under this assumption,
the first difference of each component of Xt is stationary, while at least d
components are integrated processes of order 1, denoted by I(1). Then (2.13)
can be represented as a vector error correction model(VECM) introduced by
Engle and Granger (1987) as follows:

Φ∗(L)(1− L)Xt = −Φ(1)Xt−1 + ϵt, (2.14)

where Φ∗(L) = Im −
∑p−1

j=1 Φ
∗
jL

j with Φ∗
j = −

∑p
k=j+1Φk.

If r = m − d > 0, then, since det(Φ(L)) = 0 has d unit roots, there
are m × m matrices P and Q = P−1 such that Q(

∑p
j=1Φj)P = J , where

J = diag(Id,Λr) is the Jordan canonical form of
∑p

j=1Φ. We can easily
see that Φ(1) = Im −

∑p
j=1Φj = P (Im − J)Q = P2(Ir − Λr)Q

′
2 when we

partition Q′ = [Q1, Q2], Q′
1 = [Q′

11, Q
′
12], Q′

2 = [Q′
21, Q

′
22], P = [P1, P2],

P1 = [P11, P12]
′, and P2 = [P21, P22]

′ such that Q1 and P1 are m× r, Q′
11 and

P11 are r × d, and Q′
12 and P21 are d × d, Q′

21 and P12 are r × r, and Q′
22

and P22 are d× r matrices. The rank of the m×m matrix Φ(1) is a reduced
rank r. Let C = −Φ(1) = AB′, then (2.14) can be written as

∆Xt = −Φ(1)Xt−1 +

p−1∑
j=1

Φ∗
j∆Xt−j + ϵt

= AB′Xt−1 +

p−1∑
j=1

Φ∗
j∆Xt−j + ϵt, (2.15)

where ∆ is the difference operator such that ∆Xt = Xt −Xt−1. CXt−1 is
called the error correction term which adjusts for over-differencing. C = AB′

is a full rank factorization of C since m× r matrices A and B have full rank
r by the definition of A and B.

Ahn and Reinsel (1990) showed that B′Xt−1 is stationary if A = P2(Ir−

Λr)Q
′
21 and B = Q′−1

21 Q
′
2. Since B′Xt−1 is a r−dimensional stationary pro-

cess, Xt is cointegrated with cointegrating rank r. The matrix B′ is called

14



the cointegrating matrix and A is called the adjust matrix, or loading matrix.
Note that B′ is the coefficient matrix of non-stationary process Xt−1 and A
can be treated as a coefficient matrix of stationary process B′Xt−1.

In (2.15), there is no unique identification as C = AB′ and C = A∗B′∗ =

AMM−1B′ for some r × r matrix M . In order to avoid this problem, many
researchers considered different identifying conditions. Johansen (1988) pro-
posed a method which is motivated by the canonical correlation analysis.
B′ΩϵB = Im is used as an identifying condition based on the MLE procedure
and a closed form solution of maximum likelihood equation exists. It can be
done in two steps. In the first step, ∆Xt and Xt−1 are regressed on ∆Xt−j ’s
and residuals are obtained. Residuals of the regression of ∆Xt are regressed
on those of Xt−1 in the second step.

On the other hand, Ahn and Reinsel (1990) developed a method which
is motivated by the reduced rank regression analysis. This method uses
the identifying condition of the form B′ = [Ir, B

′
0]. Based on this method,

adjusted term is expressed as B′Xt−1 = X1,t−1 + B′
0X2,t−1. It can be par-

titioned as Xt = [X ′
1,t,X

′
2,t] where X1,t is r × 1 matrix and X2,t is d × 1

matrix. For this normalization, it is assumed that Xt are arranged so that
X2,t is purely nonstationary, that is, not cointegrated.

Unlike Johansen (1988), Ahn and Reinsel (1990) developed an estimation
procedure with LSE and MLE simultaneously using the Newton-Rahpson
algorithm. Ahn and Reinsel (1990)’s LSE is given by

F̃ =
( T∑
t=1

∆XtU
′
t−1

)( T∑
t=1

U t−1U
′
t−1

)
, (2.16)

where F = [C,Φ∗
1, · · · ,Φ∗

p−1] and U t−1 = [X ′
t−1,∆X ′

t−1, · · · ,∆X ′
t−p+1]

′.
Ahn and Reinsel (1990) also obtained MLE using the Newton-Raphson algo-
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rithm as follows:

η̂(i+1) = η̂(i) −
(∑ ∂ϵ′t−1

∂η
Ω−1
ϵ

∂ϵt−1

∂η

)
η̂(i)

(∑ ∂ϵ′t−1

∂η
Ω−1
ϵ ϵt

)
η̂(i)
,

where η = (B′, θ′)′, B = vec(B′
0), and θ = vec[A,Φ∗

1, · · · ,Φ∗
p−1]. The gradient

vector ∂ϵ′t/∂η is driven as

∂ϵ′t
∂η

=

 X2t ⊗A′

˜U t−1 ⊗ Im

 ,
where ˜U t−1 = [(B′Xt−1)

′,∆X ′
t−1, · · · ,∆X ′

t−p+1]
′. The initial estimator η̂(0)

can be obtained using LSE F̃ . Then the initial estimators of A and B are
obtained as

Ã = C̃1

and

B̃′
0 = (Ã′Ω̃−1

ϵ Ã)−1Ã′Ω̃−1
ϵ C̃2,

where C̃ = [C̃1, C̃2], C̃1 and C̃2 are m × r and m × d matrices, respectively
and Ω̃−1

a is a sample variance of the regression residuals using (2.16). Ahn
and Reinsel (1990) also derived the asymptotic distributions of the above
estimators. The key in the derivation of the asymptotic distribution of the
estimators is the Lemma 1 of Ahn and Reinsel (1990) as follows:

Lemma 2.2. (Ahn and Reinsel) Let Zt = QXt = [Z ′
1,tZ

′
2,t]

′ and at =

[a′
1,t,a

′
2,t]

′ = Qϵt such that Z1,t and a1,t are d × 1 and Z2,t and a2,t are
r × 1 with Ωa = QΩϵQ

′ and Ωa1 = [Id, 0]Ωa[Id, 0]
′. In addition, define

Ψ11 = [Id, 0]Ψ[Id, 0]
′ with Ψ =

∑∞
k=1Ψk, Ψk are the infinity moving average

coefficients in the representation ut =
∑∞

k=1Ψkat−k for the stationary process
ut = Q(∆Xt − CXt−1) = Zt − diag(Id,Λr)Zt−1, and Bm(u) and Bd(u) =

Ω
−1/2
a1 [Id, 0]Ω

1/2
a1 Bm(u) be standard Brownian motions of dimensions m and d
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repectively. Under the assumption of model (2.14), the following distributional
results hold:

(1) T−2
∑T

t=1Z1,t−1Z
′
1,t−1

d−→ Ψ11Ω
1/2
a1

∫ 1
0 Bd(u)Bd(u)

′duΩ
1/2
a1 Ψ′

11 =: Bzz.

(2) T−1
∑T

t=1 atZ
′
1,t−1

d−→ Ω
1/2
a

[ ∫ 1
0 Bd(u)dBm(u)

′
]′
Ω
1/2
a1 Ψ′

11 =: Baz.

(3) T−3/2
∑T

t=1U t−1Z
′
1,t−1

p−→ 0.

(4) T−1
∑T

t=1U t−1U t−1
p−→ ΓU = Cov(U).

(5) T−1/2
∑T

t=1 vec(atU
′
t−1)

d−→ N(0,ΓU ⊗ Ωa).

The asymptotic distribution of LSE F̃ and MLE B̂0 and θ̂ are summa-
rized in Theorem 1 and Theorem 2 of Ahn and Reinsel (1990).

Consider the case where the cointegrated model Xt consists of enogenous
and exogenous variables. Assume that Xt = [Y ′

t,Z
′
t]
′, where Y t is an my−

dimensional vector process of endogenous variables and Zt is an mz− di-
mensional vector process of exogenous variables with my + mz = m. ’Zt

is exogenous’ means that Zt is not affected by Y t while Y t is affected by
Zt. Exogeneity is sometimes mixed up with causality. However, ’exogene-
ity’ and ’causality’ were perfectly distinguished by mathematical definition
of Engle et al. (1983). They defined that Zt is exogenous if and only if the
conditional probability density function(pdf) of Xt given past information
(Xt−1, · · · ,X1) can be represented as

f(Xt|Xt−1, · · · ,X1; θ) = f(Y t|ZtXt−1, · · · ,X1; θ1)

× f(Zt|Zt−1, · · · ,Z1; θ2), (2.17)

where θ1 and θ2 are variation free. In the cointegration anaylsis, (2.17)
should be modified, since Xt = [Y ′

t,Z
′
t]
′ does not have a pdf since Xt is
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assumed as I(1) process.

f(∆Xt|Xt−1,∆Xt−1, · · · ,∆X1; θ)

= f(∆Y t|∆Zt,Xt−1,∆Xt−1, · · · ,∆X1; θ1)

× f(∆Zt|Zt−1,∆Zt−1, · · · ,∆Z1; θ2).

Ahn et al. (2015) considered the cointegrated model with exogenous vari-
able Zt. The coefficient matrix C,Φ∗

j , ϵt, and Ω in (2.15) are separated so
that they are conformable to Xt = (Y ′

t,Z
′
t)
′ as follows:

C =

Cyy Cyz

0 Czz

 ,Φ∗
j =

Φ∗yy
j Φ∗yz

j

0 Φ∗zz
j


ϵt = (ϵ′yt, ϵ

′
zt)

′,Ω =

Ωyy Ωyz

Ωzy Ωzz

 .
They also left-multiplyed I −ΩyzΩ

−1
zz

0 I


on both sides of (2.14) and obtain∆Y t

∆Zt

 =

Cyy Cyz − ΩyzΩ
−1
zz Czz

0 Czz

Y t−1

Zt−1

+

ΩyzΩ−1
zz

0

∆Zt

+

p−1∑
j=1

Φ∗yy
j Φ∗yz

j − ΩyzΩ
−1
zz Φ

∗zz
j

0 Φ∗zz
j

∆Y t−j

∆Zt−j


+

ϵyt − ΩyzΩ
−1
zz ϵzt

ϵzt

 .
Then the conditional model of ∆Y t and the marginal model of ∆Zt are

∆Y t = (Cyy, Cyz)Xt−1 − ΩyzΩ
−1
zz CzzZt−1 +ΩyzΩ

−1
zz ∆Zt

+

p−1∑
j=1

Hj∆Xt−j + eyt (2.18)
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and

∆Zt = CzzZt−1 +

p−1∑
j=1

Φ∗zz
j ∆Zt−j + ϵzt, (2.19)

where Hj = (Φ∗yy
j ,Φ∗yz

j − ΩyzΩ
−1
zz Φ

∗zz
j ) and eyt = ϵyt − ΩyzΩ

−1
zz ϵzt which is

uncorrelated with ϵzt.
If Czz = 0 and Φ∗zy

j ̸= 0, the model (2.18) and (2.19) are variation free
and Zt is weakly exogenous. This assumption implies that the exogenous
variables do not cointegrate among themselves and the marginal model (2.19)
becomes

∆Zt =

p−1∑
j=1

[
Φ∗zy
j ,Φ∗zz

j

]
∆Xt−j + ϵzt. (2.20)

Johansen (1992), Harbo et al. (1998), and Pesaran et al. (2000) studied the
estimation of parameters and cointegrating rank test procedure based on the
models (2.18) and (2.20). Mosconi and Giannini (1992) developed the esti-
mating method and testing procedure for model (2.15) with only Φ∗zy

j = 0

and Czy = 0. If Φ∗zy
j and Czz are zero matrices, Zt is strongly exogenous

process. Pradel and Rault (2003) considered the case of strongly exogenous
Zt where exogenous variables do not cointegrated among themselves.

Ahn et al. (2015) considered the cointegrated models where nonstationary
exogenous variables are cointegrated themselves based on (2.18) and (2.19).
Since the entire process Xt and exogenous process Zt have d = m − r and
dz = mz − rz unit roots, repectively, they could have the Jordan canon-
ical form of

∑p
j=1Φj = Im − Φ(1) as Q

(∑p
j=1Φj

)
P = J , where J =

diag(Imy−ry ,Λry , Imz−rz ,Λrz), and ry = r − rz, Λry and Λrz are diagonal
(Jordan block) matrices whose elements are the stationary roots of the au-
toregressive operator. Since C = −Φ(1) is an upper block triangular matrix,
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there exist upper block triangular matrices P and Q such that

P =

Py Pyz

O Pz


Q = P−1 =

Py Pyz

O Pz

 =

P−1
y −P−1

y PyzP
−1
z

O P−1
z

 ≡

Qy Qyz

O Qz

 =

Qy −QyPyzQz
O Qz


Φ(1) =

Φyy(1) Φyz(1)

0 Φzz(1)

 =

−Cyy −Cyz
0 −Czz

 ,
which can be partitioned as follows:

Q =

Qy Qyz

O Qz

 =


Q′
y1 Q′

yz1

Q′
y2 Q′

yz2

0 Q′
z1

0 Q′
z2

 , P =

Py Pyz

O Pz

 =

Py1 Py1 Pyz1 Pyz2

0 0 Pz1 Pz2

 ,

where Q′
yz = −[Q′

zP
′
yzQy1, Q

′
zP

′
yzQy2], Qy1 and Py1 are my×dy, Qy2 and Py2

are my × ry, Qyz1 and Pyz1 are my × dz, Qyz2 and Pyz2 are my × rz, and Qz1
and Pz1 are mz × dz, and Qz2 and Pz2 are mz × rz matrices, respectively.
Using the Jordan canonical form Φ(1) can be represented as

Φ(1) = P (Im − J)Q

=

Py2 Pyz2

0 Pz2

Iry − Λry 0

0 Irz − Λrz

Q′
y2 Q′

yz2

0 Q′
z2


=

Py2(Iry − Λry)Q
′
y2 Py2(Iry − Λry)Q

′
yz2 + Pyz2Irz − Λrz)Q

′
z2

0 Pz2(Irz − Λrz)Q
′
z2


=

Py2(Iry − Λry)Q
′
y2 Py2(Iry − Λry)Q

′
y2PyzQz + Pyz2(Irz − Λrz)Q

′
z2

0 Pz2(Irz − Λrz)Q
′
z2

 .
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and (2.18) and (2.19) can be rewritten as follows:

∆Y t =− Py2(Iry − Λry)Q
′
y2Y t−1

+
[
Py2(Iry − Λry)Q

′
y2PyzQz − Pyz2(Irz − Λrz)Q

′
z2

]
Zt−1

−DPz2(Irz − Λrz)Q
′
z2Zt−1 +D∆Zt +

p−1∑
j=1

Hj∆Xt−j + eyt

=− Py2(Iry − Λry)Q
′
y2[Imy ,−PyzQz]

Y t−1

Zt−1

− Pyz2(Irz − Λrz)Q
′
z2Zt−1

+D(∆Zt − Pz2(Irz − Λrz)Q
′
z2Zt−1 +

p−1∑
j=1

Hj∆Xt−j + eyt, (2.21)

∆Zt =− Pz2(Irz − Λrz)Q
′
z2Zt−1 +

p−1∑
j=1

Φ∗∗
j ∆Zt−j + ϵzt, (2.22)

where D = ΩyzΩ
−1
zz . Q′

y2(Imy ,−PyzQz)Xt−1 and Q′
z2Zt−1 are stationary by

a similar argument in Ahn and Reinsel (1990).
If we define A = −Py2(Iry −Λry)Q

′
y21,B′ = Q

′−1
y21Q

′
y2[Imy ,−PyzQz], A2z =

−Pyz2(Irz −Λrz)Q
′
z21, Az = −Pz2(Irz −Λrz)Q

′
z21 and Bz = Q

′−1
z21Q

′
z2 and also

conformable partition

Qy =

Q′
y1

Q′
y2

 =

Q′
y11 Q′

y12

Q′
y21 Q′

y22

 , Qz =

Q′
z1

Q′
z2

 =

Q′
z11 Q′

z12

Q′
z21 Q′

z22

 ,
where A and B are my × ry matrices, A2z is my × rz matrix, Az and Bz are
mz × rz matrices, Q′

y21 is ry × ry matrix, and Q′
z21 is rz × rz matrix. Then

model (2.21) and (2.22) can be rewritten again as

∆Y t = AB′Xt−1 +A2zB
′
zZt−1 +D(∆Zt −AzB

′
zZt−1) +

p−1∑
j=1

Φ∗
j∆Xt−j + et

(2.23)
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and

∆Zt = AzB
′
zZt−1 +

p−1∑
j=1

Φ∗∗
j ∆Zt−j + ϵzt. (2.24)

Note that A and Az are coefficient matrices of stationary process of
B′Xt−1 and B′

zZt−1, respectively. A2z is a coefficient matrix which repre-
sents the effect of long run variation of exogenousZt to conditional model. On
the other hand, D is a coefficient matrix which represents the effect of purely
short run variation of exogenous Zt to conditional model. If A2z −DAz = 0,
then the parameters in the conditional model and those in the marginal model
are variation free as mentioned above.

Ahn et al. (2015) also reparameterized B and Bz using the same pa-
rameterization in Ahn and Reinsel (1990) which assumes that the last d =

m − r components do not cointegrate. To this end, they considered X∗
t =

(Y ′
1,t,Z

′
1,t,Y

′
2,t,Z

′
2,t) which is a rearrangement of Xt such that X2,t =

(Y ′
2,t,Z

′
2,t)

′ is a d−dimensional purely nonstationary component of Xt. The
matrix of the cointegrating vector associated with X∗

t is of the form B∗ =

(Ir, B
∗
0) which can be partitioned so that it is conformable with Y 2,t and Z2,t.

They rearrange Xt to form X∗
t and the column matrices corresponding to

Y 1,t and Y 2,t and finally obtain the following matrix of cointegration vectorsIry B′
10 Ory B′

20

O O Irz B′
z0,

 ,
where B10 is (my − ry)× ry, B20 is (mz − rz)× ry, and Bz0 is (mz − rz)× rz

matrices of parameters.
Note that B′

zZt−1 = Z1,t−1+B
′
z0Z2,t−1 is the cointegrating combinations

of the exogenous variable only and B′Xt−1 = Y 1,t−1+B
′
10Y 2,t−1+B

′
20Z2,t−1

is cointegrating combinations of both endogenous variable Y t−1 and exoge-
nous variable Zt−1. If some of the rows of B′

20 are zero or linearly dependent,

22



then the components corresponding to these rows are cointegrating combi-
nations of Y t−1 only. For more details, see Ahn et al. (2015)

2.4 Generalized method of moment estimation

The generalized method of moments(GMM) was first introduced by Hansen
(1982). Various types of GMM estimators have been proposed. Unlike the
ML estimator, the GMM estimator does not need a distributional assump-
tion and only requires the specification of moment conditions. Therefore, the
GMM estimation is computationally convenient for the inference of a com-
plicated model.

Mátyás (1999) and Hall et al. (2005) introduced a full details of estimators
based on the GMM. In this section, we briefly review the GMM estimation
in Mátyás (1999). The method of moment estimates the unknown param-
eters by matching the population moments with the corresponding sample
moments. Suppose that we have an observed sample {xt : t = 1, · · · , T}

from which we want to estimate an unknown p×1 parameter θ with the true
value θ0 ∈ Θ. In this case, the moment conditions are based on the set of q
population orthogonality conditions below,

E
[
mt(xt,θ)

]
= 0

and the corresponding sample moment equation

m̄T (θ) =
1

T

T∑
t=1

mt(xt,θ).

If q = p, i.e., the number of equations is the same as the number of unknown
parameters, the system is exactly identified, and we can obtain θ̂T by solving
the system of the following moment equation

m̄T (θ̂T ) = 0.
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If q > p, i.e., the number of equations are larger than the number of unknown
parameters, the system is overidentified. Since there are more equations than
unknown parameters, we can not find a vector θ̂T that satisfies m̄T (θ) = 0.
Instead, we will find the vector θ̂T that makes m̄T (θ) as close to zero as
possible using objective function and the GMM estimator is used in this
situation.

Now consider the objective function of GMM estimator. For any q × q

positive definite weighting matrix WT (θ) which assigns a relative weight to
each moment, define the objective function QT (θ) as

QT (θ) =
[
m̄T (θ)

]′
WT

[
m̄T (θ)

]
.

Then the GMM estimator of θ is

θ̂T = argmin
θ∈Θ

QT (θ)

and we minimize the objective function based on the sum of square constraint
violations. In some cases numerical optimization such as Gauss-Newton is
needed.

Consider a linear regression model with q > p valid instruments zt, yt =
x′
tβ + ϵt, the moment conditions are E(ztϵt) = E(zt(yt − x′

tβ)) = 0. The
sample moments are

m̄T (β) =
1

T

T∑
t=1

zt(yt − x′
tβ) = T−1(Z ′y − Z ′Xβ),

where Z, y, and X are T × q, T × 1, and T × p, respectively.
Since this is exactly the overidentified case. If we choose weighting matrix
WT ,

WT =
[ 1
T

T∑
t=1

ztz
′
t

]−1
= T (Z ′Z)−1
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and assume that T−1(Z ′Z) converges in probability to a constant matrix W,
i.e., the weak law of large numbers holds for ztz′

t. The objective function is

QT (β) = T−1(Z ′y − Z ′Xβ)′(Z ′Z)−1(Z ′y − Z ′Xβ).

By differentiating QT (β) with respect to β and solving the first order condi-
tions, we obtain β̂T as follows:

β̂T =
(
X ′Z(Z ′Z)−1Z ′X

)−1
X ′Z(Z ′Z)−1Z ′y.

This is the standard instruments variable(IV) estimator for the case where
there are more instruments than the regressors.

For the asymptotic properties of the GMM estimator we need the follow-
ing assumptions.

Assumption. 1. (Mátyás)

(1) gt(θ) = E(mt(θ)) exists and is finite forall θ ∈ Θ and for all t.

(2) There exists a θ0 ∈ Θ such that vecgt(θ) = 0 for all t if andonly if
θ = θ0.

(3) Θ is compact.

(4) Each q elements of m̄T (θ) − gT (θ) converge in probability to 0 on Θ

where gT (θ) = T−1
∑T

t=1 gt(θ).

(5) Each q elements of m̄T (θ) are stochastically equicontinous and each q
elements of gT (θ) are equicontinuous.

(6) There exists a non-random sequence of positive definite matrices W̄T

such that WT − W̄T
p−→ 0.

Under the assumption.1 , supθ∈Θ|QT (θ) − Q̄T (θ)|
p−→ 0 where Q̄T (θ) =

gT (θ)
′W̄TgT (θ). Since θ̂T minimizes QT (θ) and θ0 minimizes Q̄T (θ), θ̂T is

converge in probability to θ0.
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Assumption. 2. (Mátyás)

(1) mt(θ) is continuously differentiable with respect to θ ∈ Θ.

(2) For any sequence θ∗
T such that θ∗

T
p−→ θ0, FT (θ∗

T ) − F̄t
p−→ 0, where

FT (θ
∗
T ) =

∂m̄T (θ)

∂θ′

∣∣
θ∗

T
and F̄T is a sequence of (q× p) matrices that do

not depend on θ.

(3) mt(θ) satisfies a central limit theorem, so that V̄ −1/2
T

√
Tm̄T (θ0)

d−→

N(0, Iq) where V̄T is sequence of (q × q) non-random positive definite
matrices defined as V̄T = Tvar(m̄T (θ0)).

Under the assumptions 1 and 2
√
T (θ̂T − θ)

d−→ N(0, VGMM ),

where VGMM = (F̄ ′
T W̄T F̄T )

−1F̄ ′
T W̄T V̄T F̄T F̄

′
T W̄T F̄T )

−1.

Even though the GMM estimator θ̂T has good asymptotic properties such
as the consistency and the asymptotic normality, however, since arbitrary
weighting matrix was used to obtain the initial estimator, those of GMM
estimator do not ensure the efficiency. For any given symmetric positive
definite matrix WT asymptotic covariance matrix of the GMM estimator is
satisfied with the following algebraic inequality:

(F̄ ′
T W̄T F̄T )

−1F̄ ′
T W̄T V̄T W̄T F̄T (F̄

′
T W̄T F̄T )

−1 ≥ (F̄ ′
T V̄

−1
T F̄T )

−1.

Therefore, choosing weighting matrix WT such that WT
p−→ V̄ −1

T . We can
obtain the efficient GMM estimator which has the smallest asymptotic co-
variance matrix for the given orthogonal moment condition. By substituting
the weighting matrixWt by V̂ −1

T , the objective function is obtained as follows:

Q∗
T (θ) = [m̄T (θ)]

′V̂ −1
T [m̄T (θ)].
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Then the efficient GMM estimator of θ is

θ̂
∗
T = argmin

θ∈Θ
Q∗
T (θ)

and the asymptotic distribution of the efficient GMM estimator is

√
T (θ̂

∗
T − θ0)

d−→ N(0, (F̄ ′
T V̄

−1
T F̄T )

−1).

Hansen (1982) suggested two step procedure for estimating the weight
matrix V̂T . For simplicity, consider the situation where the moment con-
dition is serially uncorrelated. In the first step, using the weight matrix
WT = Iq, we obtain the consistent estimator θ̂

(1)

T of θ. Then, estimate
V̂T with V̂T = 1

T

∑T
t=1mt(θ̂

(1)

T )mt(θ̂
(1)

T )′. In the second step, we again ob-
tain the GMM estimator θ̂

(2)

T using WT = V̂ −1
T . The iterative GMM es-

timation repeats this process until the GMM estimator converges. Hansen
et al. (1996) proposed another estimator which is known as the continuous-
updating estimator. The continuous-updating estimator uses the objective
function QT (θ) = [m̄T (θ)]

′V̂T (θ)
−1[m̄T (θ)]. In this case, the weight matrix

VT is also a function of the unknown parameter θ. The GMM estimators
for three methods have the same asymptotic properties but the continuous-
updating estimator performs better than the other methods in a finite sample.
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Chapter 3

Asymmetric GARCH model
via Yeo-Johnson
transformation

3.1 Introduction

Financial time series often have reveal the conditional variance that evolves
over time depending on the past observations. The autoregressive condi-
tional heteroscedasticity(ARCH) model by Engle (1983) and the Generalized
ARCH(GARCH) model by Bollerslev (1986) have been widely used to model
financial time series having the volatility clustering property.

A number of researchers have found the leverage effect in financial time
series. However, ARCH and GARCH can not describe it. Because of the
square of lagged residuals, it means that positive and negative residuals have
the same effect on the model, i.e., only the size, not the sign, of lagged residual
effects conditional variance. For this reason, various asymmetric volatility
models were recommended to overcome the weaknesses of the ARCH and
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GARCH models.
Although one of the most important features of the linear ARCH and

GARCH models is that it postulates a nonlinear relationship between the
present and the past values of a time series, current evidence suggests that
it is not nonlinear enough to model some financial time-series data. For ex-
ample, Hsieh (1989) found that the GARCH model cannot fit some exchange
rates satisfactorily; Scheinkman and Scheinkman and LeBaron (1989) found
evidence that volatility in stock market data cannot be captured completely
by the linear expression.

As these limitations, many authors mentioned alternative methods. Well-
known asymmetric GARCH models which have been also found to be ex-
tremely useful in applications are nonlinear ARCH(NARCH), exponential
GARCH(EGARCH), threshold ARCH(TARCH) and ARCH-in-the-mean(ARCH-
M) (see Bera and Higgins (1993) for an excellent survey of GARCH models)
and power ARCH(PARCH) models.

In this chapter we propose to describe the strong non-linearity and non-
normal in some financial time-series data by suggesting a different approach
in which instead of assuming arbitrary specifications for the conditional vari-
ance, Box-Cox family of power transformation which was reviewed in Chapter
2 and called Yeo and Johnson transformation, used in variance part at resid-
uals. This transformation has traditionally been used to linearize otherwise
non-linear models without restrictions on the variable. This has also been
used for reducing heterogeneity and achieving symmetric distribution of the
transformed variable. And it has many of the good properties of the Box and
Cox (1964).

The remainder of this chapter is organized as follows. In section 2,
suggested GARCH, named YJ-GARCH is described and devoted to infer-
ence: maximum likelihood and some of the estimation’s main properties
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(consistency, asymptotic) are developed. we consider the forecasts of the
YJ-GARCH model in section 3. Section 4 contains some real data analyze
for comparisons with previous studies of GARCH-type models. Section 5
contains the concluding remarks. The proofs are given in the appendix.

3.2 Yeo and Johnson GARCH model

Let {Xt} be a stationary sequence of time series and let It denote an increas-
ing sequence of the sigma fields generated by Xt, Xt−1, . . . . In this thesis, we
assume that {Xt} is generated by the GARCH(1,1)-type process as follows:

Xt = µt + εt, εt =
√
htet, and ht = α0 + α1ε

2
t−1 + β1ht−1,

where µt = E(Xt|It−1) is the conditional mean of Xt given It−1 and ht =

V ar(εt|It−1) is the conditional variance of εt given It−1. Here {et} is a
sequence of iid random variables with mean zero and variance unity.

In financial time series, the volatility tends to respond asymmetrically
to the sign of the shocks. In other words, good and bad news have differ-
ent effects on the volatility. However, the GARCH model does not describe
the leverage effect since it uses the squared term of εt−1 in ht. In order to
handle leverage effect, extensions of the GARCH model such as the exponen-
tial GARCH(EGARCH) model and the threshold GARCH(TGARCH) model
have been proposed and reviewed in chapter 2.

We introduce an alternative GARCH model to handle the leverage effect
and to make a smooth transition around zero. The conditional variance of
the proposed model is written as

ht = α0 + α1ψ(λ, εt−1)
2 + β1ht−1, (3.1)

where ψ is The Yeo-Johnson transformation in (2.12). Domain of Yeo-
Johnson transformation is well defined on whole real line in λ and Yeo-
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Johnson transformation is continuous in (λ, ε) and differentiable. Note that
ψ reduces to the identity function for λ = 1 and so (3.1) includes the stan-
dard GARCH as a special case. We call this the Yeo-Johnson GARCH(YJ-
GARCH) model.
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Figure 3.1: News Impact Curves for α1 = 0.3 and λ = (0, 1, 1.5)

Figure 3.1 shows news impact curves of the YJ-GARCH when α1 = 0.3

and λ =0, 1, and 1.5. The curve for λ = 1 is symmetric around zero and
others are asymmetric. We see that, for λ < 1, negative shocks have larger
impacts on the volatility or vice versa.
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3.3 Estimation and Asymptotics

The main scope of this chapter is to investigate the impact of the alterna-
tive variance equation specifications on volatility. For high-frequency data,
(Nelson (1991), Nelson (1992)) shows that the effect of misspecification of
the conditional mean does not particularly affect the conditional volatility.
Hence we simply assume that {Xt} is generated by YJ-GARCH(p,q) with a
constant mean such as

Xt = µ+ εt, εt =
√
htet, and ht = α0 +

p∑
i=1

αiψ(λ, εt−i)
2 +

q∑
j=1

βjht−j .

(3.2)
To make the conditional variance strictly positive for all realizations of εt, we
complete the model with the positivity constraints assume as GARCH-type
parameters, α0 > 0, αi ≥ 0, βj ≥ 0,

∑p
i=1 αi +

∑q
j=1 βj ≤ 1.

The standardized error term et is usually assumed to be normally dis-
tributed. In practice, we can also use a Student-t distribution to further
enhance the robustness of the results. Let f(·) be a presumed density func-
tion of et and let θ be the vector of parameters in the model (3.2). Then the
likelihood function of θ given the data X1, X2, . . . , Xn is written as

Ln(θ) =

n∏
t=1

p(Xt|Ft−1) =

n∏
t=1

f((Xt − µ)/
√
ht)h

−1/2
t , (3.3)

where p(Xt|Ft−1) denotes a conditional density function of Xt given Ft−1.
The maximum likelihood estimator θ̂ is obtained by solving S(θ) = 0, where
S(θ) is the score function given by

S(θ) =
∂ logLn(θ)

∂θ
=

n∑
t=1

∂ log f((yt − µ)/
√
ht)

∂θ
− 1

2ht

∂ht
∂θ

Let θ0 be the vector of true parameters. If the true likelihood is different
from the presumed likelihood in (3.3), θ0 is the minimizer of the Kullback-
Leibler information between the true density and the presumed density in
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the parameter space Θ. Let

∇lt(θ0) =

(
∂

∂θi
lt(θ)

∣∣∣∣
θ=θ0

)

be the gradient of the loglikelihood function of one observation for θ and let

∇2lt(θ0) =

(
∂2

∂θi∂θj
lt(θ)

∣∣∣∣
θ=θ0

)

be the Hessian of the loglikelihood function.

Theorem 3.1. Suppose the parameter space Θ, the true density function
g(·) and the log-likelihood function lt(θ) satisfy the following conditions

(c.1) the parameter space Θ is a compact set

(c.2) Eg[lt(θ;Xt)] has a unique global maximum at θ0,

(c.3) sup
i
E[I(Xi≥0)X

4b
i ] <∞ and sup

i
E[I(Xi<0)(−Xi)

4(2−a)] <∞,

Then,

(A) lim
n→∞

sup
θ∈Θ

1

n

n∑
t=1

l1(θ;Xt) = sup
θ∈Θ

Eg[l1(θ|Xt)] with probability one.

(B) The MLE θ̂ is a strongly consistent estiamtor of θ0.

Furthermore, if

(c.5) θ0 is an interior point of Θ,

(c.6) sup
i
E[IXi≥0X

6b
i log

4(Xi + 1)] <∞ and

sup
i
E[IXi<0(−Xi)

6(2−a)log4(−Xi + 1)] <∞,

(c.7) Eg[∇l1(θ0;Xt)] = 0,

(c.8) Eg[∇2l1(θ0;Xt)] is non-singular,
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(c.9) An(θ) =
1

n

n∑
t=1

∂2lt(θ)

∂θ∂θ′ → A(θ) and Bn(θ) =
1

n

n∑
t=1

∂lt(θ)

∂θ

∂lt(θ)

∂θ′ →

B(θ) and both A(θ), B(θ) are positive definite matrix

Then,
√
n(θ̂ − θ0)

d−→ N(0,Σ(θ0)),

where the covariance matrix Σ(θ0) is given by

Σ(θ0) = V (θ0)W (θ0)V (θ0)
T

V (θ0) = Ef [∇2lt(θ0)]
−1

W (θ0) = Ef [∇lt(θ0){∇lt(θ0)}T ].

The details of the proof under the normal assumption are given in Ap-
pendix.

3.4 Forecast Interval

One of the main targets in time series analysis is to forecast future observa-
tions. LetXt(k) and ht(k) denote the k-step ahead forecast of the observation
and the conditional variance at time t. We assume that {Xt} follows the YJ-
GARCH(1,1) model with constant mean, that is,

Xt = µ+ εt, εt =
√
htet, and ht = α0 + α1ψ(λ, εt−1)

2 + β1ht−1,

The mean square error(MSE) is a common criterion to select an optimum
forecast and the conditional expectation E[Xn+k|Fn] = µ+E(

√
hn+ken+k|Fn) =

µ is the minimum MSE forecast for the k-step ahead value at time n.
For 1-step ahead forecast for the conditional variance, we have

ht+1 = α0 + α1ψ(εt, λ)
2 + β1ht,
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where εt and ht are known at the time index 1 ≤ t ≤ n. So for 1 ≤ t ≤ n,
the 1-step ahead forecast is

ht(1) = α0 + α1ψ(εt, λ)
2 + β1ht.

In order to derive general k-step ahead forecast, we consider the Taylor ex-
pansion of ψ(εt, λ)2 at arbitrary e0 as follows:

ψ(εt, λ)
2 = ψ(

√
htet, λ)

2

≈ ψ(
√
hte0, λ)

2 + (et − e0)2ψ(
√
hte0, λ)ψ

′(
√
hte0, λ)

+(et − e0)
2

[
ψ(
√
hte0, λ)ψ

′′(
√
hte0, λ) +

{
ψ′(
√
hte0, λ)

}2
]

≡ ψ̂(εt, λ)
2,

where

ψ′(
√
hte0, λ) =


√
ht(

√
hte0 + 1)λ−1, if e0 ≥ 0

√
ht(−

√
hte0 + 1)1−λ, if e0 < 0.

Then, the 2-step ahead forecast at the time n can be written as

ht+2 = α0 + α1ψ(εt+1, λ)
2 + β1ht+1 ≈ α0 + α1ψ̂(εt+1, λ)

2 + β1ht+1

Here, setting e0 = E(et) = 0, we obtain

E
[
ψ(εt, λ)

2
]
≈ E

[
ψ̂(εt, λ)

2
]
= E(e2t )ht = ht

because ψ(0, λ) = 0 and

ht+2 ≈ α0 + (α1 + β1)ht+1

In general, we have

hn(k) ≈ α0 + (α1 + β1)hn(k − 1), k ≥ 2.

The forecast error in the constant mean model is εn(k) = Xn+k −Xn(k) =

εn+k and
Xn+k −Xn(k)√

hn+k
= en+k ∼ f(·).
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The 100(1− α)% forecast interval for Xn+k is estimated as follows:

[L̂(n, k, α/2), Û(n, k, α/2)] =
[
µ̂+ zα/2

√
hn(k), µ̂+ z1−α/2

√
hn(k)

]
(3.4)

where zα denotes the αth quantile of f(·).

3.5 Real Data Analysis

In this section, we compare the performance of the YJ-GARCH model with
other GARCHmodels such as the GARCH, the EGARCH, and the TGARCH
model by forecasting future returns of assets. Let Pt be the price of an asset
at time t and let Xt be the log return, that is Xt = 100 log(Pt/Pt−1). Data
sets consist of 4054 daily returns of IBM stock price from January 2000 to
Febuary 2016. We compute the mean square prediction error(MEPE) and
coverage probabilities of each model to compare performances. We divide the
whole period into subperiods of size n by sliding window as follows:

Xj+1, Xj+2, . . . , Xj+n, j = 0, . . . ,m− 1.

From a preliminary analysis, we conclude that the constant mean model
with order p = 1 and q = 1 is a proper choice as the analyzing model
in most periods. For each j = 0, . . . ,m − 1, we obtain the k-step ahead
forecast X̂j+n(k) and prediction intervals [L̂(j + n, k, α/2), Û(j + n, k, α/2)].
In risk management, the one-sided prediction interval is more important and
so we also compute [L̂(j + n, k, α),∞) and (−∞, Û(j + n, k, α)]. Here we
use k = (1, 5, 10), α = (0.01, 0.05), and n = 500. Student t-distribution is
employed as distribution of f(·) and so z in (3.4) depends on the estimated
degree of freedom and is varying for each j.

The MSPE for k-step ahead forecast is defined as

MSPE(k) = 1

m

m−1∑
j=0

(
Xj+n+k − X̂j+n(k)

)2
,
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Table 3.1: MSPE of IBM stock price
Model MSPE(1) MSPE(5) MSPE(10)

GARCH 2.209 2.211 2.215
EGARCH 2.207 2.210 2.215
TGARCH 2.208 2.211 2.215
YJ-GARCH 2.208 2.211 2.215

Table 3.2: 95% Coverage Probability for forecast intervals of IBM stock price
CP GARCH EGARCH TGARCH YJ-GARCH

CP(1,1) 0.944 0.941 0.944 0.945
CP(1,2) 0.935 0.936 0.937 0.946
CP(1,3) 0.957 0.953 0.957 0.951
CP(5,1) 0.947 0.930 0.945 0.945
CP(5,2) 0.937 0.932 0.938 0.945
CP(5,3) 0.958 0.943 0.953 0.948
CP(10,1) 0.945 0.920 0.943 0.941
CP(10,2) 0.936 0.930 0.942 0.942
CP(10,3) 0.955 0.935 0.951 0.943

and the coverage probability for k-step ahead forecast interval is

CP(k, l) = 1

m

m−1∑
j=0

I(Xj+n+k ∈ Vl(j + n, k)),

where

V1(n, k) = [L̂(n, k, α/2), Û(n, k, α/2)]

V2(n, k) = [L̂(n, k, α),∞)

V3(n, k) = (−∞, Û(n, k, α)].
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Table 3.3: 99% Coverage Probability for forecast intervals of IBM stock price
cp GARCH EGARCH TGARCH YJ-GARCH

cp(1,1) 0.988 0.986 0.988 0.989
cp(1,2) 0.988 0.987 0.987 0.988
cp(1,3) 0.991 0.991 0.990 0.990
cp(5,1) 0.986 0.983 0.986 0.985
cp(5,2) 0.987 0.985 0.986 0.985
cp(5,3) 0.989 0.989 0.989 0.989
cp(10,1) 0.986 0.983 0.986 0.986
cp(10,2) 0.986 0.984 0.985 0.986
cp(10,3) 0.990 0.988 0.989 0.989

Table 3.1 shows that MSPE of each model. As Nelson(Nelson (1991),
Nelson (1992)) considered, conditional mean shows very similar results for
all models. Tables 3.2-3.3 summarize the coverage probability of each model
for each forecast interval at specific levels which is 95% and 99%, respec-
tively. TGARCH and EGARCH fail to converge 5 times for all periods,
while YJ-GARCH and GARCH are stable. We discard these cases from the
summary tables. For Table 3.2, we can see that YJ-GARCH stably keeps
the level in coverage probability of one-sided forecast intervals, while others
does not. Although performances of multi-step-ahead forecast is similiar to
other GARCH-type models, YJ-GARCH with 1-step-ahead forecast confirms
the superior performance of the YJ-GARCH model over other GARCH-type
models. It is worth to mention that YJ-GARCH model can handle the non-
constant structure of asymmetry when the relative impacts of negative and
positive shocks on the current volatility are not the same.
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Chapter 4

Generalized method of
moments estimation of
cointegration model with
exogenous variables

4.1 Introduction

Since the GMM was first introduced by Hansen (1982), class of GMM esti-
mators have been broadly applied to financial and economic data analysis.
Unlike the MLE, GMM does not need a distributional assumption, but only
requires specification of moment conditions. Therefore, the GMM estima-
tion is a computationally convenient method, especially for the inference of
a complicated model.

Kitamura and Phillips (1997) introduced GMM estimation of a nonsta-
tionary regression model and Quintos (1998) and Kleibergen (1997) extended
it to cointegration model. Park et al. (2011) suggested two iterative GMM
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estimation with identification condition for the parameters in cointegration
model.

Since Granger (1981) introduced the idea of cointegration, several esti-
mation methods for cointegration models have been proposed. These include
ordinary least squares(OLS) by Engle and Granger (1987), nonlinear least
squares(NLS) by Stock (1987), MLE by Johansen (1988) and reduced rank
approach by Ahn and Reinsel (1990). Johansen (1992), Harbo et al. (1998),
and Pesaran et al. (2000) considered inference of the processes which was
cointegrated vector autoregressive process of integrated order 1, where the
process consists of endogenous and exogenous variables, assuming that the
nonstationary exogenous variables are not cointegrated. Ahn et al. (2015)
considered the more general condition that nonstationary exogenous vari-
ables are cointegrated themselves.

However, due to strong parametric assumptions of MLE, it should be
checked before real data analysis. Since collected data is huge and high-
dimensional, Those of MLE are easily violated. Therefore, many researchers
are recently been searching for other estimation methods which are free from
assumptions. As mentioned above, an alternative method satisfying this req-
uisite is GMM.

In this thesis, we consider GMM estimate on the basis of the process by
Ahn et al. (2015). Following part is organized as follows, section 2 contains
the parameterization of the parameter sets. In section 3, parameters are esti-
mated by the iterative GMM based on Park et al. (2011) method. Asymptotic
properties of the iterative GMM estimators are presented in section 3. Section
4 examines the finite sample properties of the estimators through a Monte
Carlo simulation and a relatively simple numerical example to illustrate the
methods in section 2. Conclusions are in Section 5.
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4.2 VECM with exogenous variables

We consider m−dimensional vector autoregressvie(VAR) process of order p
with cointegrating(CI) rank r. The vector error correction model(VECM)
form is expressed as

∆Xt = CXt−1 +

p−1∑
j=1

Φ∗
j∆Xt−j + at. (4.1)

Let the process be decomposed asXt = (Y ′
t,Z

′
t)
′, where Y t is anmy−dimensional

vector process of endogenous variables with and Zt is an mz−dimensional
vector process of exogenous variables with my +mz = m. The error term at

is also decomposed as at = (ϵ′yt, ϵ
′
zt) where ϵyt, ϵzt has the same dimension

as Y t and Zt respectively. Then, the covariance matrix Ω = Cov(at) are
denoted by

Ω =

 Cov(ϵyt) Cov(ϵyt, ϵyt)

Cov(ϵzt, ϵyt) Cov(ϵzt)

 =

Ωyy Ωyz

Ωzy Ωzz

 .
When Zt is subcointegrated with cointegration rank rz < r, the VECM

in (4.1) can be represented as the following conditional model of ∆Y t and
marginal model of ∆Zt as in Ahn et al. (2015)

For simplicity of exposition, we consider the case with p = 1 as follows:

∆Y t = AB′Xt−1 +A2zB
′
zZt−1 +D(∆Zt −AzB

′
zZt−1) + eyt (4.2)

∆Zt = AzB
′
zZt−1 + ϵzt, (4.3)

where D = ΩyzΩ
−1
zz , eyt = ϵyt −Dϵzt. Note that B′ = [Iry , B

′
10, Ory×ry , B

′
20]

and B′
z = [Irz , B

′
z0] is expressed as normalization by Ahn and Reinsel (1990)

for the identifying condition where ry = r − rz. This condition is motivated
by the regression analysis since, B′Xt−1 = Y 1,t−1 + B′

10Y 2,t−1 + B′
20Z2,t−1

with partitioning Xt = [Y ′
1,t,Y

′
2,t,Z

′
1,t,Z

′
2,t] where Y 1,t is ry × 1 and Y 2,t
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is (my − ry)× 1 and Z1,t is rz × 1 and Y 2,t is (mz − rz)× 1.
The models in (4.2) and (4.3) can be rewritten in compact form as follows:

∆Y t = Π1ξt−1 + eyt (4.4)

∆Zt = Π2ut−1 + ϵzt, (4.5)

where
ξt−1 = [X ′

t−1, (B
′
zZt−1)

′, (∆Zt −AzB
′
zZt−1)

′]′, ut−1 = [Z ′
t−1]

′,

Π1 = [Π′
11,Π

′
12]

′,Π11 = vec(B′
0),Π12 = vec(A,A2z, D)

Π2 = [Π′
21,Π

′
22]

′Π21 = vec(B′
z0),Π22 = vec(Az)

B′
0 = [B′

10, B
′
20]

′ and A is my × ry, A2z is my × rz, Az is mz × rz, B10 is
(my − ry)× ry, B20 is (mz − rz)× ry, Bz0 is (mz − rz)× rz.

4.3 GMM estimation of VECM

In order to estimate the parameters of Az and BZ both in (4.4) and (4.5), we
consider the iterative GMM. In the first stage, we estimate the parameters in
(4.5). In the second stage, we estimate the parameters in (4.4) with estimated
parameters in (4.5). One set constitutes the parameters of the marginal model
(4.5), Π′

21,Π
′
22. The other set constitutes the parameters of conditional model

(4.4), Π′
21,Π

′
22.

We can obtain the simple orthogonal condition that the regressor of the
processes ξt−1, ut−1 are orthogonal to the error terms eyt, ϵzt respectively.
Thus, in this setting, moment conditions become

E[m(Π1)] = E[vec(eytξ
′
t−1)]

E[m(Π2)] = E[vec(ϵztu
′
t−1)].

Since we consider the cointegrated model of the reduced rank structure
following Ahn and Reinsel (1990), the number of unknown parameters is
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smaller than the number of equations. In this case, no parameters satisfy the
moment condition. But, we can find the parameters which make the moment
conditions close to zero using the quadratic form of the objective function
below:

Q(Π1) = Tvec
( 1
T

T∑
t=1

eytξ
′
t−1

)′
V̂ −1
T vec

( 1
T

T∑
t=1

eytξ
′
t−1

)
,

Q(Π2) = Tvec
( 1
T

T∑
t=1

ϵztu
′
t−1

)′
V̂ ∗−1
T vec

( 1
T

T∑
t=1

ϵztu
′
t−1

)
.

To secure the efficiency of the GMM estimator we use the following
weighting matrix V̂T =

(
1
T

∑T
t=1 ξt−1ξ

′
t−1

)
⊗Ω̂e and V̂ ∗

T =
(
1
T

∑T
t=1 ut−1u

′
t−1

)
⊗

Ω̂ϵ with a consistent estimators Ω̂e and Ω̂ϵ for Ωe and Ωϵ respectively. Then
we obtain GMM estimator of parameters from the minimization of objective
functions.

The iterative GMM estimation method also divides unknown parameters
into two parameter sets as cointegrated parameters and adjustment parame-
ters in each stage. In total, it consists of four steps. At each step, we consider
GMM estimator of the parameters and their asymptotic distributions.

In the first step, we assume that the initial estimators of Π22(vec(Az))

and Ωϵ are given by Π̃22 and Ω̃ϵ. Then the model in (4.5) can be represented
as

∆Żt = ÃzB
′
zZ2,t−1 + ϵzt for ∆Żt = ∆Zt − ÃzZ1,t−1. (4.6)

The objective function is

Q∗
T (Π21) = T

( 1
T

T∑
t=1

vec(∆Żtu
′
t−1)−

1

T
K1Π21

)′
V̂ −1
T

×
( 1
T

T∑
t=1

vec(∆Żtu
′
t−1)−

1

T
K1Π21

)
, (4.7)

43



where V̂T = (uu′/T⊗Ω̃ϵ),K1 =
∑T

t=1(ut−1Z
′
2,t−1⊗Ãz), and u = [u1, · · · ,uT−1].

Then the efficient GMM estimator for Π21 is given by

Π̃21 =
(
(J ′

2ZZ ′J2 ⊗ Ã′
zΩ̃

−1
ϵ Ãz)

)−1
vec
(
A′
zΩ̃

−1
ϵ ∆ŻZ ′J2

)
, (4.8)

where J ′
2 = [O(mz−rz)×rz , I(mz−rz)], ∆Ż, and Z are a matrix form represen-

tation as u.
In the second step, we use the initial estimator of Π21 and the updataed

Ω̃ϵ are obtained in the first step. Then the efficient GMM estimator for Π22

is obtained by the same process of the first step as follows:

Π̃22 =
(
(ω̃ω̃′ ⊗ Ω̃−1

ϵ )
)−1

vec
(
Ω̃−1
ϵ ∆Zω̃′), (4.9)

where ω = [ω0, · · · ,ωT−1] with wt−1 = [(B′
zZt−1)

′]′.
In the third step, we use the estimator of Π2 obtained in the first and

second step and assume that the initial estimators of Π12(vec(A,A2z, D))

and Ωe are given by Π̃12 and Ω̃e. Then VECM (4.4) can be represented as
follows:

∆Ẏ t = ÃB′X∗
2,t−1 + eyt for (4.10)

∆Ẏ t = ∆Y t − ÃX∗
1,t−1 − Ã2zB̃

′
zZt−1 −D(∆Zt − ÃzB̃

′
zZt−1).

where X∗
2,t−1 = [Y 2,t−1,Z2,t−1]. Similarly, in the first and the second step,

the efficient GMM estimator for Π11 and Π12 is

Π̃11 =
(
(J ′

1X
∗X∗′J1 ⊗ Ã′Ω̃−1

e Ã)
)−1

vec
(
Ã′Ω̃−1

e ∆Ẏ X∗′J1
)
, (4.11)

where J ′
1 = [O(m−r)×r, I(m−r)], ∆Ẏ and X∗ are matrix represenation and

Π̃12 =
(
(η̃η̃′ ⊗ Ω̃−1

e )
)−1

vec
(
Ω̃−1
e ∆Y η̃′), (4.12)

where η̃ = [η̃0, · · · , η̃T−1] with η̃t−1 = [(B̃′Xt−1)
′, (B̃′

zZt−1)
′, (∆Zt−ÃzB̃′

zZt−1)
′]′.

These four steps are repeated until the objective functions or estimates
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converge. In each step, estimators of iterative GMM are closed form solution.
For this reason, iterative GMM has simple and easy computation and more
useful when m and p are large.

We also obtain the asymptotic results in the following theorem using by
application of lemma 1 of Ahn and Reinsel (1990) and functional of stochastic
integrals of vector Brownian motions.

Theorem 4.1. Let Π̃ denote the iterative GMM estimator for Π,Ωe,Ωϵ using
the equation as above. When an initial consistenct estimators of Π12 and Π22

is given, the asymptotic distribution of the Π̃ is given by

(1)

T
(
Π̃21 −Π21

) d−→ (Rzz ⊗A′
zΩ

−1
ϵ Az)

−1vec(A′
zΩ

−1
ϵ B′

zϵ)

(2)

T 1/2
(
Π̃22 −Π22

) d−→
(
Ωω ⊗ Ω−1

ϵ )−1N(0,Ωω ⊗ Ω−1
ϵ )

(3)

T
(
Π̃11 −Π11

) d−→ (Rxx ⊗A′Ω−1
e A)−1vec(A′Ω−1

e B′
ye)

(4)

T 1/2
(
Π̃12 −Π12

) d−→
(
Ωη ⊗ Ω−1

e

)−1
N(0,Ωη ⊗ Ω−1

e )

where

(a) 1
T 2

∑T
t=1X2,t−1X

′
2,t−1

d−→ Ψ22Ω
1/2
a2

∫ 1
0 Bd(u)Bd(u)

′duΩ
1/2
a2 Ψ′

22 =: Rxx

(b) 1
T 2

∑T
t=1Z2,t−1Z

′
2,t−1

d−→ Ψz
22Ω

1/2
ϵ2

∫ 1
0 Bdz(u)Bdz(u)

′duΩ
1/2
ϵ2 Ψz′

22 =: Rzz

(c) 1
T

∑T
t=1X2,t−1e

′
y,t

d−→ Ψ22Ω
1/2
a2

∫ 1
0 Bd(u)dB

′
my

(u)Ω
1/2
e =: Bye
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(d) 1
T

∑T
t=1Z2,t−1e

′
y,t

d−→ Ψz
22Ω

1/2
ϵ2

∫ 1
0 Bdz(u)dB

′
my

(u)Ω
1/2
e =: Bze

(e) 1
T

∑T
t=1wtw

′
t
p−→ Ωw = cov(wt)

(f) 1
T

∑T
t=1 ηtη

′
t
p−→ Ωη = cov(ηt)

(g) 1
T 1/2

∑T
t=1 vec(ϵt−1w

′
t)

d−→ N(0,Ωw ⊗ Ωϵ)

(h) 1
T 1/2

∑T
t=1 vec(et−1η

′
t)

d−→ N(0,Ωη ⊗ Ωe),

where a′
2,t = (e′2,yt, ϵ

′
2,zt) = (e′2, ϵ

′
2), and Ψ22 = [0, Im−r]Ψ[0, Im−r]

′. Ψ =∑∞
k=1Ψk is sum of the infinite moving average coefficients of model (4.2),

Ωe2 = [O, Imy−r+rz ]Ωe[O, Imy−r+rz ]
′, and Ψz

22 = [0, Imz−rz ]Ψ
z[0, Imz−rz ]

′ with
Ψ =

∑∞
k=1Ψ

z
k is sum of the infinite moving average coefficients of model

(4.3), Ωϵ2 = [O, Imz−rz ]Ωϵ[O, Imz−rz ]
′. Let Bmy(u) Bmz(u)and Bd(u) =

Ω
1/2
a1 [Id, 0]Ω

1/2
a1 Bm(u), Bdz(u) = Ω

1/2
a1 [Id, 0]Ω

1/2
a1 Bm(u) be standard Browian

motions of dimensions.

The proof of Theorem 4.1 is given in the appendix. Ahn and Reinsel
(1990) showed that if initial estimates of adjustment parameters Π12 and Π22

are consistent, then cointergated parameters Π11 and Π21 can be obtained by
two-step estimation. Therefore, we use the initial estimator of adjustment
parameter obtained by LSE in Thorem. 4.1

4.4 Monte-carlo simulation and numerical example

In this section, we perform a simulation study to examine the properties of
ML, LS and GMM estimator for the simple 4-dimensional vector cointegra-
tion model. The objectives of the simulation are to verify the main theorem
empirically and to examine the performance of the GMM estimator in small
samples.

For the simulation we use the data generating processes suggested by Ahn

46



and Reinsel (1990) with mz = my = 2 and r = 2, rz = ry = 1. The true
parameters are

∆Y t = AB′Xt−1 +A2zB
′
zZt−1 +D(∆Zt −AzB

′
zZt−1) + et

∆Zt = AzB
′
zZt−1 + ϵzt,

where A = [−0.33, 0.66]′, B = [1,−0.4, 0,−3.2]′, A2z = [0.21 − 0.24]′, Az =

[−0.29, 0.08]′, Bz = [1,−2.5] and

at ∼ N

(
0

0

0

0




25 6.1 4 −1.2

6.1 9 1.8 3.9

4 1.8 25 5.4

−1.2 3.9 5.4 9


)

D =

 4 −1.2

1.8 3.9

25 5.4

5.4 9

−1

=

0.2169 −0.2635

0.0248 0.4482

 .
In this simulation, the length of series T = 50, 100, and 200 are used,

and 10000 replications of the sample series are generated for each value of
T . For each series, estimates of the parameters are computed by ML, LS
and iterative GMM. The empirical results from the simulation for the three
estimation procedures are summarized in Table 4.1 and 4.2 where, as the con-
ventional measures of accuracy, the means and mean squares errors(MSE’s)
of the each estimators are given. Brüggemann and Lütkepohl (2005) show
through a Monte Carlo simulation study that the LSE performed better than
the MLE in terms of smaller MSE for cointegrating vectors. However, Ahn
et al. (2015) show that the MLE performed better in terms of smaller MSE
and bias for stationary parameter. Our results are little different from their
result. The bias and MSE of GMM are quite smaller than other estimation
methods when sample size is small. In addition, GMM estimations are more
robust from distribution assumptions. Especially, MSE of GMM is smaller
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in the estimation of marginal model.

Table 4.1: Means and mean squared errors(MSE)×100 of
the GMM and MLE, LSE for various sample size in normal
distribution

GMM MLE LSE

b10 = −0.4 T = 50 mean -0.4006 -0.4010 -3.9924
MSE 0.0632 0.0645 0.0633

T = 100 mean -0.4000 -0.4001 -3.9969
MSE 0.0137 0.0137 0.0137

T = 200 mean -0.3999 -0.3999 -3.9998
MSE 0.0034 0.0034 0.0034

b20 = −3.2 T = 50 mean -3.2017 -3.2081 -3.1882
MSE 3.0199 3.0257 2.832

T = 100 mean -3.1996 -3.2005 -3.1948
MSE 0.6319 0.6262 0.6672

T = 200 mean -3.1999 -3.1999 -3.1984
MSE 0.1879 0.1638 0.1887

bz0 = −2.5 T = 50 mean -2.5060 -2.5096 -2.4896
MSE 4.4457 4.5620 3.9873

T = 100 mean -2.5005 -2.5014 -2.4952
MSE 0.9549 0.9045 0.9687

T = 200 mean -2.5001 -2.5001 -2.4283
MSE 0.3170 0.2706 0.3322

a1 = −0.33 T = 50 mean -0.3451 -0.3544 -0.4026
MSE 0.9856 1.0684 1.7390

Continued on next page
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Table 4.1 – Continued from previous page

GMM MLE LSE

T = 100 mean -0.3388 -0.3432 -0.3672
MSE 0.4422 0.4605 0.6369

T = 200 mean -0.3359 -0.3381 -0.3505
MSE 0.1980 0.2018 0.2484

a2 = −0.66 T = 50 mean 0.6644 0.6665 0.6480
MSE 0.3299 0.3359 0.4180

T = 100 mean 0.6640 0.6663 0.6570
MSE 0.1355 0.1374 0.1590

T = 200 mean 0.6637 0.6669 0.6621
MSE 0.0638 0.0641 0.0697

a2z,1 = 0.21 T = 50 mean 0.2178 0.2382 0.2433
MSE 2.6207 2.9503 2.9396

T = 100 mean 0.2151 0.2250 0.2276
MSE 1.2098 1.2892 1.2992

T = 200 mean 0.2143 0.2191 0.2210
MSE 0.5483 0.5655 0.5657

a2z,2 = −0.24 T = 50 mean -0.2371 -0.2311 -0.2298
MSE 1.0084 1.0366 1.0637

T = 100 mean -0.2400 -0.2370 -0.2372
MSE 0.4623 0.4703 0.4800

T = 200 mean -0.2423 -0.2408 -0.2411
MSE 0.2122 0.2139 0.2157

az1 = −0.29 T = 50 mean -0.2996 -0.2964 -0.3046
MSE 0.8481 0.8456 0.8535

T = 100 mean -0.2940 -0.2926 -0.2972

Continued on next page
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Table 4.1 – Continued from previous page

GMM MLE LSE

MSE 0.3814 0.3870 0.3950
T = 200 mean -0.2906 -0.2900 -0.2928

MSE 0.1715 0.1796 0.1844

az2 = 0.09 T = 50 mean 0.0965 0.0954 0.0935
MSE 0.3013 0.3028 0.3100

T = 100 mean 0.0909 0.0905 0.0885
MSE 0.1357 0.1371 0.1406

T = 200 mean 0.0909 0.0905 0.0885
MSE 0.1387 0.1371 0.1406

Table 4.2: Means and mean squared errors(MSE)×100 of the
GMM and MLE, LSE for various sample size in t-distribution
with 3 degree of freedom

GMM MLE LSE

b10 = −0.4 T = 50 mean -0.4001 -0.4004 -0.3984
MSE 0.0653 0.0666 0.0653

T = 100 mean -0.3998 -0.3998 -0.3994
MSE 0.0142 0.0142 0.0143

T = 200 mean -0.4000 -0.4000 -0.3999
MSE 0.0034 0.0034 0.0034

b20 = −3.2 T = 50 mean -3.2052 -3.2077 -3.1902
MSE 2.4716 2.7160 2.4899

T = 100 mean -3.2008 -3.2017 -3.1957
MSE 0.6202 0.6244 0.6841

Continued on next page
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Table 4.2 – Continued from previous page

GMM MLE LSE

T = 200 mean -3.1995 -3.1996 -3.1980
MSE 0.1721 0.1725 0.1972

bz0 = −2.5 T = 50 mean -2.5039 -2.5058 -2.4911
MSE 3.2128 3.7077 3.2530

T = 100 mean -2.5038 -2.5048 -2.4982
MSE 1.0431 0.9200 1.0444

T = 200 mean -2.4989 -2.4990 -2.4973
MSE 0.2583 0.2572 0.3158

a1 = −0.33 T = 50 mean -0.3444 -0.3541 -0.4032
MSE 0.9672 1.0522 1.7392

T = 100 mean -0.3380 -0.3426 -0.3670
MSE 0.4383 0.4574 0.6288

T = 200 mean -0.3348 -0.3369 -0.3491
MSE 0.2008 0.2048 0.2479

a2 = −0.66 T = 50 mean 0.6697 0.6656 0.6465
MSE 0.3235 0.3305 0.4213

T = 100 mean 0.6692 0.6674 0.6580
MSE 0.1377 0.1395 0.1592

T = 200 mean 0.6679 0.6670 0.6623
MSE 0.0645 0.0650 0.0701

a2z,1 = 0.21 T = 50 mean 0.2173 0.2388 0.2476
MSE 2.8748 3.2331 3.3443

T = 100 mean 0.2138 0.2243 0.2282
MSE 1.3172 1.3999 1.4178

T = 200 mean 0.2129 0.2179 0.2194

Continued on next page
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Table 4.2 – Continued from previous page

GMM MLE LSE

MSE 0.5738 0.5921 0.5991

a2z,2 = −0.24 T = 50 mean -0.2369 -0.2304 -0.2270
MSE 1.0615 1.0979 1.1459

T = 100 mean -0.2415 -0.2383 -0.2381
MSE 0.4671 0.4737 0.4850

T = 200 mean -0.2419 -0.2404 -0.2409
MSE 0.2196 0.2214 0.2249

az1 = −0.29 T = 50 mean -0.3008 -0.2979 -0.3049
MSE 0.9156 0.9162 0.9188

T = 100 mean -0.2954 -0.2940 -0.2985
MSE 0.4107 0.4113 0.4176

T = 200 mean -0.2903 -0.2897 -0.2925
MSE 0.1951 0.1937 0.1980

az2 = 0.09 T = 50 mean 0.0956 0.0945 0.0934
MSE 0.2962 0.2970 0.3023

T = 100 mean 0.0902 0.0898 0.0878
MSE 0.1313 0.1328 0.1373

T = 200 mean 0.0884 0.0882 0.0867
MSE 0.0627 0.0622 0.0636

We also analyze the grain-meat data which was considered in Ahn et
al.Ahn et al. (2015) and compare the performance of estimators, LSE, MLE
and GMM, using the MSPE. The grain-meat data consists of six series where
three grains are corn, soybean, and wheat and three meats are beef, pork,
and chicken. Data set consists of 131 monthly price from January 1980 to
November 2008. We divide the whole period into subperiod of size 60 by
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Figure 4.1: Grain-Meat prices

sliding window as follows:

Xj+1,Xj+2, · · · ,Xj+60, j = 0, · · · , 70

From a preliminary analysis, we conclude that the data is specified by VAR(2)
model and grain prices are exogenous by Akaike information criterion and log-
likelihood test statistics, respectively. We also identify the cointegrating rank
as 3 in grain-meat prices and 1 in grain prices. We estimate the parameters
using 60 observations, and calculate the MSPE for 1-step ahead forecast.

Let y1t, y2t, and y3t be the prices of beef, pork, and chicken and z1t, z2t,
and z3t be the prices of corn, soybean, and wheat respectively.
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Table 4.3: 1-month ahead mean squared prediction er-
rors(MSPE) of the MLE , LSE and GMM of grain-meat data

beef pork chicken corn soybean wheat

MLE 40.88 55.72 1.02 100.44 465.81 375.73
LSE 41.01 59.31 1.03 107.13 508.59 393.23
GMM 40.40 53.08 1.01 103.73 480.17 373.95

MLE and LSE estimators are obtained from in Ahn et al. (2015). We
compare the accuracy of prediction of estimation methods and summarize it
in table 3. As Brüggemann and Lütkepohl (2005) mentioned, we observed in
some, but rare, cases that the estimators fail to converge by the MLE method
in grain-meat data analysis. Table 4.3 constructed using the convergent cases
out of 9 subperiods based on MLE. Table 4.3 supports that GMM performs
a little bit better in terms of the accuracy of prediction when sample size is
relatively small.
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Chapter 5

Conclusion

In this thesis, we propose a new asymmetric GARCH-type model which can
handle the leverage effect using Yeo-Johnson transformation. We also pro-
pose a GMM estimation method to estimate the cointegration model with
exogenous variables.

In chapter 3, the YJ-GARCH model is proposed as an effective tool for
handling the leverage effect. It is already mentioned in chapter 2 that classical
ARCH and GARCH models suffer from many imposed limitations. To avoid
those limitations, many researchers have suggested alternative models such
as EGARCH, GJR, and TGARCH to name a few. However, some models are
difficult to apply to interpreting the meaning of parameters, and while others
have arbitrary specification assumptions. The proposed YJ-GARCH model is
simple to use and can easily reflect the asymmetric relations using the trans-
formation parameter λ. Its generality with respect to the treatment of asym-
metry is illustrated in the empirical examples. The empirical results confirm
the recent evidence that the volatility of stock returns reacts differently to
the increase and decrease. Although the performance of the multi-step-ahead
forecast is simillar to that of other GARCH-type models, YJ-GARCH with
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1-step-ahead forecast confirms the superior performance of the YJ-GARCH
model compared to other GARCH-type models. In some applications, it is
more appropriate to assume that et follows a heavy-tailed and skewed dis-
tribution, such as the skewed t-distribution Fernández and Steel (1998) used
in et. We also compare YJ-GARCH with other GARCH-type models con-
sidering these conditions in et. But EGARCH and TGARCH do not satisfy
stationary conditions of the parameter in most of the subperiod windows, and
the performance of the GARCH model with skewed t-distribution is similar
to those with normal distribution. It is worth to mention that YJ-GARCH
model can handle the nonconstant structure of asymmetry when the relative
impacts of negative and positive shocks on the current volatility are not the
same. Our data typically illustrates this possibility, which leads to moder-
ately skewed shocks concerning Yeo and Johnson transformation. In future
research, It would be worth considering various power parameters on variance
equation instead of 2 as Ding et al. (1993) suggested.

In chapter 4, we propose an iterative GMM estimation method for the
estimation of the cointegrated model with exogenous variables considered by
Ahn et al. (2015). Park et al. (2011) suggested the iterative GMM estima-
tion, but only considered the simple cointegrated model without exogenous
variables. In this thesis, the GMM estimation is extended to the cointegrated
model with exogenous variables. Although the GMM estimation requires the
moment conditions the calculation is simple compared to that of the ML in
the research of Ahn et al. (2015). Phillips (1994) notes that MLE on cointe-
grated model occasionally does not work or results in cointegration parameter
estimates which are far different from the true parameters in small samples. It
was observed through the Monte-Carlo simulations and numerical examples
that GMM does not show such phenomenon. It was also observed, however,
that the efficiency of the iterative GMM estimator depends on the choice of
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the weighting matrix in the objective function. For this reason, it is important
to choose the proper weighting matrix in the objective function. Hansen et al.
(1996) suggest the continuous-updating method and Imbens et al. (1995) pro-
pose an alternative method that uses the information theoretic approaches.
Further investigations in terms of new methods of weighting matrix choice re-
main in order to understand exactly when and which of these methods should
be used. With this consideration in mind, therefore, this thesis suggests the
utilization of GMM estimation in a complex cointegrated model.
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Appendix A

Lemmas

Lemma A.1. For all θ ∈ Θ

∣∣∣∂ht
∂θ

h−1
t

∣∣∣ <M∗

for θ′ = (α0, α1, β1, µ, λ), where M∗ does not depend on θ. Therefore, each
of these partial derivatives has bounded expectation and all higher moments
are bounded.

Proof of Lemma A.1. First consider the the conditional variance of ht = α0+

α1ψ(λ, ϵt−1)
2 + β1ht−1 and assume the parameter space as below

Θ =

{
θ′ = (α0, α1, β1, µ, λ)|c ≤ α0 ≤ d, a ≤ λ ≤ b, δ ≤ α1, β1 ≤ 1− δ, |µ| ≤ r

with−∞ < a < 0 < δ, c, d <∞, and 2 < b <∞
}

we can easily show that ht ≥ α0 ≥ c, so that h−1
t ≤ c−1. Differentiating the

ht with respect to each of the parameters in θ,

1. ∂ht
∂α0

= 1 + β1
∂ht−1

∂α0
=

t−1∑
i=0

βi1 + βt1
∂h0
∂α0

≤ 1

1− β1
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2. ∂ht
∂α1

= ψ(λ, ϵt−1)
2 + β1

∂ht−1

∂α0
=

t−1∑
i=0

βi1ψ(λ, ϵt−1−i)
2 + βt1

∂h0
∂α1

3. ∂ht
∂β1

= ht−1 + β1
∂ht−1

∂β1
=

t−1∑
i=0

βi1ht−1−i + βt1
∂h0
∂β1

4.
∣∣∣∂ht
∂µ

∣∣∣ = ∣∣∣− 2α1ψ(λ, ϵt−1)
∂ψ(λ, ϵt−1)

∂µ
+ β1

∂ht−1

∂µ

∣∣∣
≤ 2α1

t−1∑
i=0

βi1

∣∣∣ψ(λ, ϵt−1−i)
∂ψ(λ, ϵt−1−i)

∂µ

∣∣∣+ βt1
∂h0
∂µ

5.
∣∣∣∂ht
∂λ

∣∣∣ = ∣∣∣2α1ψ(λ, ϵt−1)
∂ψ(λ, ϵt−1)

∂λ
+ β1

∂ht−1

∂λ

∣∣∣
≤ 2α1

t−1∑
i=0

βi1

∣∣∣ψ(λ, ϵt−1−i)
∂ψ(λ, ϵt−1−i)

∂λ

∣∣∣+ βt1
∂h0
∂λ

conditioning on h0, note that ∂h0/∂θ = 0. the expressions for ∂ht/∂α0 and
∂ht/∂α1, ∂ht/∂β1 appear in the expression for ht, we have with probability
one ∣∣∣ ∂ht

∂α0
h−1
t

∣∣∣ ≤ ∣∣∣ (1− βt1)/(1− β1)

α0(1− βt1)/(1− β1)

∣∣∣ = 1

α0

Similarly, ∣∣∣ ∂ht
∂α1

h−1
t

∣∣∣ ≤ 1

α1
and

∣∣∣∂ht
∂β1

h−1
t

∣∣∣ ≤ t

β1

using the inequality |x| ≤ x2 + 1

∣∣∣∂ht
∂µ

h−1
t

∣∣∣ ≤ 2
{
2
(
ψ
(1)
µ (b, yt − r)2 + ψ

(1)
µ (a, yt + r)2

)
α0 + α1

}
α0∣∣∣∂ht

∂λ
h−1
t

∣∣∣ ≤ 2
{
2
(
ψ(1)(a, yt − r)2 + ψ(1)(b, yt + r)2

)
α0 + α1

}
α0

Since Θ is a compact parameter space and bounded function M∗s are con-
tinuous function of θ
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∣∣∣∂ht
∂θ

h−1
t

∣∣∣
are uniformly bounded, and it follows immediately that all moments and
croos moments exist and are finite.

Lemma A.2. Let Θ be tha parameter space and define that is as above (9).
Then, all the second order partial derivatives of lt(θ) are continuous in (θ,y)

and, for all θ′ = (α0, α1, β1, µ, λ),∣∣∣∣∂2lt(θ)∂θ∂θ′

∣∣∣∣ ≤ D(yt)

where the D’s are given in the proof

Proof of Lemma A.2. We list the derivatives and provide their corresponding
dominating function. Since ∂2lt(θ)

∂θi∂θj
=
∂2lt(θ)

∂θj∂θi
for θ′ = (θ1, θ2, θ3, θ4, θ5) =

(α0, α1, β1, µ, λ), we only present Dij for i ≤ j

Redifine the conditional variance ht

ht = α0 + α1ψ(λ, ϵt−1)
2 + β1ht−1 = α0

t−1∑
i=0

βi1 + α1

t−1∑
i=0

ψ(λ, ϵt−1−i)
2 + βt1h0

1.

∣∣∣∣∂2lt(θ)∂α2
0

∣∣∣∣ = ∣∣∣∣ 1h2t ∂ht∂α0

∂ht
∂α0

(1
2
− ϵ2t
ht

)∣∣∣∣ ≤ 1

c2

(1
2
+

2(y2t + r2)

c

)
= D11(yt) <∞

2.

∣∣∣∣ ∂2lt(θ)∂α0∂α1

∣∣∣∣ = ∣∣∣∣ 1h2t ∂ht∂α0

∂ht
∂α1

(1
2
− ϵ2t
ht

)∣∣∣∣ ≤ 1

cδ

(1
2
+

2(y2t + r2)

c

)
= D12(yt) <∞

3.

∣∣∣∣ ∂2lt(θ)∂α0∂β1

∣∣∣∣ = ∣∣∣∣ 1h2t ∂ht∂α0

∂ht
∂β1

(1
2
− ϵ2t
ht

)
+

1

2ht

∂2ht
∂α0∂β1

( ϵ2t
ht

− 1
)∣∣∣∣

≤ t

cδ

(1
2
+

2(y2t + r2)

c

)
+

1

2cδ

(2(y2t + µ2)

c
+ 1
)
= D13(yt) <∞
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4.

∣∣∣∣∂2lt(θ)∂α0∂µ

∣∣∣∣ = ∣∣∣∣ 1h2t ∂ht∂α0

∂ht
∂µ

(1
2
− ϵ2t
ht

)
− ϵt
h2t

∂ht
∂α0

∣∣∣∣
≤

2
{
2
(
ψ
(1)
µ (b, yt − r)2 + ψ

(1)
µ (a, yt + r)2

)
d+ (1− δ)

}
c2

(1
2
+

2(y2t + r2)

c

)
+
yt + r

c2

= D14(yt) <∞

5.

∣∣∣∣∂2lt(θ)∂α0∂λ

∣∣∣∣ = ∣∣∣∣ 1h2t ∂ht∂α0

∂ht
∂λ

(1
2
− ϵ2t
ht

)∣∣∣∣
≤

2
{
2
(
ψ(1)(a, yt − r)2 + ψ(1)(b, yt + r)2

)
d+ (1− δ)

}
c2

(1
2
+

2(y2t + r2)

c

)
= D15(yt) <∞

6.

∣∣∣∣∂2lt(θ)∂α2
1

∣∣∣∣ = ∣∣∣∣ 1h2t ∂ht∂α1

∂ht
∂α1

(1
2
− ϵ2t
ht

)∣∣∣∣ ≤ 1

δ2

(1
2
+

2(y2t + r2)

c

)
= D22(yt) <∞

Since proof (2) of Lemma A.1

7.

∣∣∣∣ ∂2lt(θ)∂α1∂β1

∣∣∣∣ = ∣∣∣∣ 1h2t ∂ht∂α1

∂ht
∂β1

(1
2
− ϵ2t
ht

)
+

1

2ht

∂2ht
∂α1∂β1

( ϵ2t
ht

− 1
)∣∣∣∣

≤ t

δ2

(1
2
+

2(y2t + r2)

c

)
+

1

2δ2

(2(y2t + r2)

c
+ 1
)
= D23(yt) <∞

Since
∣∣∣∣ ∂2ht
∂α1∂β1

h−1
t

∣∣∣∣ ≤ 1

α1(1− β1)
≤ 1

δ2
and proof (2) (3) of Lemma A.1

8.

∣∣∣∣∂2lt(θ)∂α1∂µ

∣∣∣∣ = ∣∣∣∣ 1h2t ∂ht∂α1

∂ht
∂µ

(1
2
− ϵ2t
ht

)
+

1

2ht

∂2ht
∂α1∂µ

( ϵ2t
ht

− 1
)
− ϵt
h2t

∂ht
∂α1

∣∣∣∣
≤

2
{
2
(
ψ
(1)
µ (b, yt − r)2 + ψ

(1)
µ (a, yt + r)2

)
d+ (1− δ)

}
cδ

(1
2
+

2(y2t + r2)

c

)
+

2
{
2
(
ψ
(1)
µ (b, yt − r)2 + ψ

(1)
µ (a, yt + r)2

)
d+ (1− δ)

}
cδ

(2(y2t + r2)

c
+ 1
)

+
yt + r

dδ
= D24(yt) <∞
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Since ∂2ht
∂α1∂µ

h−1
t =

1

α1

∂ht
∂µ

and proof (2) (4) of Lemma A.1

9.

∣∣∣∣∂2lt(θ)∂α1∂λ

∣∣∣∣ = ∣∣∣∣ 1h2t ∂ht∂α1

∂ht
∂λ

(1
2
− ϵ2t
ht

)
+

1

2ht

∂2ht
∂α1∂λ

( ϵ2t
ht

− 1
)∣∣∣∣

≤
2
{
2
(
ψ(1)(a, yt − r)2 + ψ(1)(b, yt + r)2

)
d+ (1− δ)

}
cδ

(1
2
+

2(y2t + µ2)

c

)
+

{
2
(
ψ(1)(a, yt − r)2 + ψ(1)(b, yt + r)2

)
d+ (1− δ)

}
cδ

(2(y2t + µ2)

c
+ 1
)

= D25(yt) <∞

Since ∂2ht
∂α1∂λ

h−1
t =

1

α1

∂ht
∂λ

and proof (2) (5) of Lemma A.1

10.

∣∣∣∣∂2lt(θ)∂β2
1

∣∣∣∣ = ∣∣∣∣ 1h2t ∂ht∂β1

∂ht
∂β1

(1
2
− ϵ2t
ht

)
+

1

2ht

∂2ht
∂β1∂β1

( ϵ2t
ht

− 1
)∣∣∣∣

≤ t2

δ2

(1
2
+

2(y2t + µ2)

c

)
+

1

2

t

δ2

(2(y2t + µ2)

c
+ 1
)
= D33(yt) <∞

By Proof (3) of Lemma A.1

11.

∣∣∣∣∂2lt(θ)∂β1∂µ

∣∣∣∣ = ∣∣∣∣ 1h2t ∂ht∂β1

∂ht
∂µ

(1
2
− ϵ2t
ht

)
+

1

2ht

∂2ht
∂β1∂µ

( ϵ2t
ht

− 1
)
− ϵt
h2t

∂ht
∂β1

∣∣∣∣
≤

2t
{
2
(
ψ
(1)
µ (b, yt − r)2 + ψ

(1)
µ (a, yt + r)2

)
d+ (1− δ)

}
cδ

(1
2
+

2(y2t − µ2)

ht

)
+

{
2
(
ψ
(1)
µ (b, yt − r)2 + ψ

(1)
µ (a, yt + r)2

)
d+ (1− δ)

}
2cδ

(2(y2t − µ2)

c
+ 1
)

+
(yt + r)t

cδ
= D34(yt) <∞

By Proof (3) (4) of Lemma A.1
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12.

∣∣∣∣∂2lt(θ)∂β1∂λ

∣∣∣∣ = ∣∣∣∣ 1h2t ∂ht∂β1

∂ht
∂λ

(1
2
− ϵ2t
ht

)
+

1

2ht

∂2ht
∂β1∂λ

( ϵ2t
ht

− 1
)∣∣∣∣

≤
2t
{
2
(
ψ(1)(a, yt − r)2 + ψ(1)(b, yt + r)2

)
d+ (1− δ)

}
cδ

(1
2
+

2(y2t + µ2)

c

)
+

{
2
(
ψ(1)(a, yt − r)2 + ψ(1)(b, yt + r)2

)
d+ (1− δ)

}
cδ

(2(y2t + µ2)

c
+ 1
)

= D35(yt) <∞

By Proof (3) (5) of Lemma A.1

13.

∣∣∣∣∂2lt(θ)∂µ2

∣∣∣∣ = ∣∣∣∣ 1h2t ∂ht∂µ

∂ht
∂µ

(1
2
− ϵ2t
ht

)
+

1

2ht

∂2ht
∂µ∂µ

( ϵ2t
ht

− 1
)
− 2ϵt
h2t

∂ht
∂µ

− 1

ht

∣∣∣∣
≤

4
{
4
(
ψ
(1)
µ (b, yt − r)4 + ψ

(1)
µ (a, yt + r)4

)
d2 + (1− δ)2

}
c2

(1
2
+

2(y2t + µ2)

c

)
+

(1− δ)

c

{
2
(
ψ(1)
µ (b, yt − r)2 + ψ(1)

µ (a, yt + r)2
)

+
(
|ψ(a, yt + r)|+ |ψ(b, yt + r)|

)
(ψ(2)

µ (b, yt + r) + ψ(2)
µ (a, yt − r))

}

+
4
{
2
(
ψ
(1)
µ (b, yt − r)2 + ψ

(1)
µ (a, yt + r)2

)
d+ (1− δ)

}
(yt + r)

c2
+

1

c

= D44(yt) <∞

By Proof (4) of Lemma A.1
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14.

∣∣∣∣∂2lt(θ)∂µ∂λ

∣∣∣∣ = ∣∣∣∣ 1h2t ∂ht∂µ

∂ht
∂λ

(1
2
− ϵ2t
ht

)
+

1

2ht

∂2ht
∂µ∂λ

( ϵ2t
ht

− 1
)∣∣∣∣

≤ 4

c2

{
2
{
2
(
ψ(1)(a, yt − r)2 + ψ(1)(b, yt + r)2

)
d+ (1− δ)

}
{
2
(
ψ(1)
µ (b, yt − r)2 + ψ(1)

µ (a, yt + r)2
)
d+ (1− δ)

}}(1
2
+

2(y2t + µ2)

c

)
+

(1− δ)

c

{(
ψ(1)
µ (b, yt − r) + ψ(1)

µ (a, yt + r)
)(
ψ(1)(a, yt − r) + ψ(1)(b, yt + r)

)
+
(
|ψ(b, yt + r)|+ |ψ(b, yt + r)|

)(
|ψ(2)
λµ (b, yt − r)|+ |ψ(2)

λµ (a, yt + r)|
)}

(2(y2t − µ2)

c
− 1
)
= D45(yt) <∞

15.

∣∣∣∣∂2lt(θ)∂λ2

∣∣∣∣ = ∣∣∣∣ 1h2t ∂ht∂λ

∂ht
∂λ

(1
2
− ϵ2t
ht

)
+

1

2ht

∂2ht
∂λ∂λ

( ϵ2t
ht

− 1
)∣∣∣∣

≤
4
{
4
(
ψ(1)(a, yt − r)4 + ψ(1)(b, yt + r)4

)
d2 + (1− δ)2

}
c2

(1
2
+

2(y2t + r2)

c

)
+

(1− δ)

c

{
2
(
ψ(1)(b, yt − r)2 + ψ(1)(a, yt + r)2

)
+
(
|ψ(b, yt + r)|+ |ψ(b, yt + r)|

)(
|ψ(2)(a, yt − r)|+ |ψ(2)(b, yt + r)|

)}
(2(y2t − µ2)

c
− 1
)
= D55(yt) <∞

Since ψ,ψ(1) and ψ(1) are continuous functions of (λ, y) according to (4)
of Lemma A. 2 in Yeo and JohnsonYeo and Johnson (2000), all the second
order partial derivative of lt(θ) are continuous in θ and y.

Lemma A.3. Let Θ and Dij be defined as in Lemma A.1, A.2. and let yt
be a random variable and assume that

E[I(yt<0)(−yt)4(2−a)log4(−yt + 1)] <∞ and E[I(yt≥0)y
4b
t log

4(yt + 1)] <∞

(A.1)

Then, E[D2
ij(yt)] is finite.

64



Proof of Lemma A.3. Fist, we recall two ineqalities (Hardy, Littlewood and
Polya Hardy et al. (1952), theorem 150 and equation (5.2.4)), log(x) ≤ x− 1

for x > 0 and
za − 1

a
<
zb − 1

b
for a < b and z > 0,

where the second follows directly from (5.2.4) and the fact that for a <

0, log(za) ≤ za − 1 or log(z) ≥ (za − 1)/a. Letting z = y + 1, x = (y + 1)−b

for b > 2 and x = (y + 1)−a for a < 0, we obtain that

0 ≤ (y + 1)alog(y + 1) ≤ (y + 1)a − 1

a
≤ log(y + 1)

≤ (y + 1)b − 1

b
≤ (y + 1)blog(y + 1), for y ≥ 0 (A.2)

Similarly, for y < 0, we let z = −y + 1 and first take x = (−y + 1)−2+b and
then x = (−y + 1)−2+a.

0 ≤ (−y + 1)2−blog(−y + 1) ≤ (−y + 1)2−b − 1

2− b
≤ log(−y + 1)

≤ (−y + 1)2−a − 1

2− a
≤ (−y + 1)2−alog(−y + 1), for y ≥ 0

By (2.12), 0 ≤ ψ(a, y) ≤ ψ(b, y) for y ≥ 0 and 0 < |ψ(b, y)| < |ψ(a, y)| for
y < 0. Consequently,

max
{
|ψ(a, y)|, ψ(b, y)

}
≤ I(y≥0)(y + 1)b/b+ I(y<0)(−y + 1)2−a/(2− a)

(A.3)

According to the expression (4) in Lemma 2 in Yeo and JohnsonYeo and
Johnson (2000),

ψ(1)(λ, y) =


[
(y + 1)λlog(y + 1)− ψ(λ, y)

]
/λ for y ≥ 0,[

(−y + 1)2−λlog(−y + 1)− ψ(λ, y)/(2− λ)
]

for y < 0,

Thus, for y ≥ 0, ψ(1)(b, y) ≥ (y+1)blog(y+1)/b and ψ(1)(a, y) ≤ (−y + 1)a − 1

−a2
≤

(y + 1)blog(y + 1)/(−a), where the last inequality follow by (A.2). Similarly
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for y < 0, ψ(1)(a, y) ≤ (−y + 1)2−alog(−y + 1)/(2 − a). Also ψ(1)(b, y) ≥
(−y + 1)2−b − 1

−(2− b)2
≤ (−y + 1)2−alog(−y + 1)/(b− 2) so we conclude that

max
{
ψ(1)(a, y), ψ(1)(b, y)

}
≤ I(y≥0)

a− b

ab
(y + 1)blog(y + 1)

+ I(y<0)
b− a

(2− a)(b− 2)
(−y + 1)2−alog(−y + 1)

Applying Lemma A.1 in Yeo and JohnsonYeo and Johnson (2000) to ϕ(λ, y)
is convex in λ for y > 0 and concave in λ for y < 0, we obtain that ψ(2) ≥ 0

if y ≥ 0 and < 0 otherwise. According to the expression (4) in Lemma 2 in
Yeo and JohnsonYeo and Johnson (2000),

ψ(2)(λ, y) =


[
(y + 1)λlog(y + 1)− ψ(1)(λ, y)

]
/λ for y ≥ 0,[

(−y + 1)2−λlog(−y + 1)− ψ(1)(λ, y)/(2− λ)
]

for y < 0,

Hence, for y ≥ 0, ψ(2)(a, y) ≤ ψ(1)(a, y)/(−a) and ψ(2)(b, y) ≤ (y+1)blog2(y+

1)/b.
Similarly, since ψ(2) < 0 for y < 0,

∣∣ψ(2)(a, y)
∣∣ ≤ (−y+1)2−alog2(−y+1)/(2−

a) and
∣∣ψ(2)(b, y)

∣∣ ≤ 2ψ(1)(b, y)/(b− 2). We conclude that∣∣ψ(2)(a, y)
∣∣ ≤ I(y≥0)2ψ(1)(a, y)/(−a)+ I(y<0)(−y+1)2−alog2(−y+1)/(2−a)

and ∣∣ψ(2)(b, y)
∣∣ ≤ I(y≥0)(y + 1)blog2(y + 1)/b+ I(y<0)2ψ

(1)(b, y)/(b− 2)

(1) Since (A.1) implies that E[y4t ] are finte andD11(yt) =
1

c2

(1
2
+
2(y2t + r2)

c

)
,

E[D2
11(yt)] =

2

c4
E
(1
4
+

4(y4t + r4)

c2

)
<∞

(2) Since (A.1) implies that E[y4t ] are finte andD12(yt) =
1

cδ

(1
2
+
2(y2t + r2)

c

)
,

E[D2
12(yt)] =

2

c2δ2
E
(1
4
+

4(y4t + r4)

c2

)
<∞
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(3) Since (A.1) implies that E[y4t ] are finte andD13(yt) =
t

cδ

(1
2
+
2(y2t + r2)

c

)
+

1

2cδ

(2(y2t + r2)

c
+ 1
)
,

E[D2
13(yt)] = E

[(
t

cδ

(1
2
+

2(y2t + r2)

c

)
+

1

2cδ

(2(y2t + r2)

c
+ 1
))2

]

≤ 2t2

c2δ2
E

[
1

4
+

4(y4t + r4)

c2

]
+

1

c2δ2
E

[
(y4t + r4)

c2
+ 1

]
<∞

(4) Since (A.1) implies that E[y4t ] are finte, so

E[D14(yt)] = E

[(
2
{
2
(
ψ
(1)
µ (b, yt − r)2 + ψ

(1)
µ (a, yt + r)2

)
d+ (1− δ)

}
c2

×
(1
2
+

2(y2t + r2)

c

)
+
yt + r

c2

)2]
<∞

(5) Since D15(yt),

E[D2
15(yt)] = E

[(2
{
2
(
ψ(1)(a, yt − r)2 + ψ(1)(b, yt + r)2

)
d+ (1− δ)

}
c2

(1
2
+

2(y2t + r2)

c

))2
]

<∞

(6) Since D22(yt),

E[D2
22(yt)] = E

[(
1

δ2

(1
2
+

2(y2t + r2)

c

))2
]
<∞

(7) Since D23(yt),

E[D2
23(yt)] = E

[(
t

δ2

(1
2
+

2(y2t + r2)

c

)
+

1

2δ2

(2(y2t + r2)

c
+ 1
))2

]
<∞
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(8) Since D24(yt),

E[D2
24(yt)] = E

[(2
{
2
(
ψ
(1)
µ (b, yt − r)2 + ψ

(1)
µ (a, yt + r)2

)
d+ (1− δ)

}
cδ

(1
2
+

2(y2t + r2)

c

)

+
2
{
2
(
ψ
(1)
µ (b, yt − r)2 + ψ

(1)
µ (a, yt + r)2

)
d+ (1− δ)

}
cδ

(2(y2t + r2)

c
+ 1
)

+
yt + r

dδ

)2
]
<∞

(9) Since D25(yt),

E[D2
25(yt)] = E

[(2
{
2
(
ψ(1)(a, yt − r)2 + ψ(1)(b, yt + r)2

)
d+ (1− δ)

}
cδ

(1
2
+

2(y2t + µ2)

c

)

+

{
2
(
ψ(1)(a, yt − r)2 + ψ(1)(b, yt + r)2

)
d+ (1− δ)

}
cδ

(2(y2t + µ2)

c
+ 1
))2

]
<∞

(10) Since D33(yt),

E[D2
33(yt)] = E

[(
t2

δ2

(1
2
+

2(y2t + µ2)

c

)
+

1

2

t

δ2

(2(y2t + µ2)

c
+ 1
))2

]
<∞

(11) Since D34(yt),

E[D2
34(yt)] = E

[(2t
{
2
(
ψ
(1)
µ (b, yt − r)2 + ψ

(1)
µ (a, yt + r)2

)
d+ (1− δ)

}
cδ

(1
2
+

2(y2t − µ2)

ht

)

+

{
2
(
ψ
(1)
µ (b, yt − r)2 + ψ

(1)
µ (a, yt + r)2

)
d+ (1− δ)

}
2cδ

(2(y2t − µ2)

c
+ 1
)

+
(yt + r)t

cδ

)2
]
<∞
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(12) Since D35(yt),

E[D2
35(yt)] = E

[(2t
{
2
(
ψ(1)(a, yt − r)2 + ψ(1)(b, yt + r)2

)
d+ (1− δ)

}
cδ

(1
2
+

2(y2t + µ2)

c

)

+

{
2
(
ψ(1)(a, yt − r)2 + ψ(1)(b, yt + r)2

)
d+ (1− δ)

}
cδ

(2(y2t + µ2)

c
+ 1
))2

]
<∞

(13) Since D44(yt),

E[D2
44(yt)] = E

[(4
{
4
(
ψ
(1)
µ (b, yt − r)4 + ψ

(1)
µ (a, yt + r)4

)
d2 + (1− δ)2

}
c2

(1
2
+

2(y2t + µ2)

c

)
+

(1− δ)

c

{
2
(
ψ(1)
µ (b, yt − r)2 + ψ(1)

µ (a, yt + r)2
)

+
(
|ψ(a, yt + r)|+ |ψ(b, yt + r)|

)
(ψ(2)

µ (b, yt + r) + ψ(2)
µ (a, yt − r))

}

+
4
{
2
(
ψ
(1)
µ (b, yt − r)2 + ψ

(1)
µ (a, yt + r)2

)
d+ (1− δ)

}
(yt + r)

c2
+

1

c

)2
]
<∞

(14) Since D45(yt),

E[D2
45(yt)] = E

[(
4

c2

{
2
{
2
(
ψ(1)(a, yt − r)2 + ψ(1)(b, yt + r)2

)
d+ (1− δ)

}
{
2
(
ψ(1)
µ (b, yt − r)2 + ψ(1)

µ (a, yt + r)2
)
d+ (1− δ)

}}(1
2
+

2(y2t + µ2)

c

)
+

(1− δ)

c

{(
ψ(1)
µ (b, yt − r) + ψ(1)

µ (a, yt + r)
)(
ψ(1)(a, yt − r) + ψ(1)(b, yt + r)

)
+
(
|ψ(b, yt + r)|+ |ψ(b, yt + r)|

)(
|ψ(2)
λµ (b, yt − r)|+ |ψ(2)

λµ (a, yt + r)|
)}

(2(y2t − µ2)

c
− 1
))2

]
<∞
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(15) Since D55(yt),

E[D2
55(yt)] = E

[(4
{
4
(
ψ(1)(a, yt − r)4 + ψ(1)(b, yt + r)4

)
d2 + (1− δ)2

}
c2

(1
2
+

2(y2t + r2)

c

)
+

(1− δ)

c

{
2
(
ψ(1)(b, yt − r)2 + ψ(1)(a, yt + r)2

)
+
(
|ψ(b, yt + r)|+ |ψ(b, yt + r)|

)(
|ψ(2)(a, yt − r)|+ |ψ(2)(b, yt + r)|

)}
(2(y2t − µ2)

c
− 1
))2

]
<∞

Therefore, E[D2
ij(yt)] <∞, for i = 1, · · · , 5 and j = 1, · · · , 5
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Appendix B

Proofs of Theorem

Proof of Theorem 3.1.

(A) We employ Lemma A. 1 in Yeo and JohnsonYeo and Johnson (2000) to
establish the result (A). Let lt : Θ ×R → R be determined a normal
likelihood after transformation as

lt(θ) = −1

2
log(2π)− 1

2
log(ht)−

ϵ2t
2ht

(B.1)

where ht = α0 + α1ψ(λ, ϵt−1)
2 + β1ht−1. Then, for all θ ∈ Θ,

|lt(θ|yi)| ≤ g(yi) = log(2π)

+log

(
1

δ

{
d+ 2(1− δ)

[
ψ(a, yt−1 − r)2 + ψ(b, yt−1 + r)2

]})

+
2(y2t + r2)

c
(B.2)

Next, recall the Cr inequality (see Loeve(1978)), |x + y|r ≤ Cr
(
|x|r +

|y|r
)
for any x, y and r ≥ 0, where Cr = 2r−1 if r ≥ 1 and Cr = 1 if
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r < 1. we obtain from (A.3)

max|ψ(λ, yt − µ)| ≤Iyt−µ≥0(yt − µ+ 1)b/b+ Iyt−µ<0(−yt + µ+ 1)(2−a)/(2− a)

≤Iyt−µ≥0Cb(yt − µ+ 1)/b

+ CaIyt−µ<0((−yt)(2−a) + µ(2−a) + 1)/(2− a)

≤Iyt−µ≥0Cb(y
b
t + rb + 1)/b

+ CaIyt−µ<0((−yt)(2−a) + r(2−a) + 1)/(2− a),

for a ≤ λ ≤ b, where Ca and Cb are given above. According to this
bound, assumption (c.3) guarantees from (B.2) that supiE[g2(Yi)] is
finite so that the first condition of Lemma 4.1 in Yeo and JohnsonYeo
and Johnson (2000) holds with φ(·) = g(·). Let SM = [−M,M ]. Be-
cause |Yi| ≤ |Y (a)

i | + |Y (b)
i |, Markov’s inequality allows us to conclude

that supi P (|Yi| > M) ≤ supiE|Yi|/M → 0 as M → ∞. Thus the
second condition is verified. Since lt(θ) is continuous in (θ′,Y ) over
the compact set Θ× SM , lt(θ) is equicontinuous in θ for Yi ∈ SM (see
KosmalaKosmala (1995)). Thus all of the conditions of Lemma 4.1 in
Yeo and JohnsonYeo and Johnson (2000) are satified. We conclude that

1

n
Ln(θ)−Πn(θ)

a.s−→ 0

uniformly in θ ∈ Θ where Πn(θ) =
1

n

n∑
t=1

E[lt(θ)]. Equivalently,

lim
n→∞

{
sup
θ∈Θ

1

n
Ln(θ)−Πn(θ)

}
= 0 (B.3)

with probability one. The result (A) follows directly since

∣∣∣∣ sup
θ∈Θ

=
∣∣∣ 1
n
Ln(θ)

∣∣∣− sup
θ∈Θ

∣∣∣Πn(θ)∣∣∣∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣ 1
n
Ln(θ)−Πn(θ)

∣∣∣→ 0

with probability one.
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(B) To establish the strong consistency of θ̂, we introduce the notation ω
for a generic outcome and A for the set where the uniform almost sure
convergence (A) holds. To obtain a contradiction, we assume that θ̂

does not converge to θ0 almost surely, so there exists a set of outcome B
where θ̂ does not converge to θ0 almost surely and P (B) > 0. Without
loss of generality, we can restrict our attention to the set C = A ∩ B

with P (C) > 0.
Since Θ is compact, for each ω ∈ C, there exists a subsequence {m} ⊂

{n} and a limit point θ∗(ω) with θ̂m(ω) → θ∗(ω) ̸= θ0, where θ̂m is
a maximum likelihood estimator based on m observations. However,
according to the definition of θ̂m,

1

m
Lm(θ̂m) ≥

1

m
Lm(θ0) for each ω ∈ C (B.4)

Also

| 1
m
Lm(θ̂m)−Π(θ∗)| ≤| 1

m
Lm(θ̂m)−Πm(θ̂m)|

+ |Πm(θ̂m)−Πm(θ∗)|+ |Πm(θ∗)−Π(θ∗)|

≤ sup
θ∈Θ

| 1
m
Lm(θ)−Πm(θ̂m)|

+ |Πm(θ̂m)−Πm(θ∗)|+ |Πm(θ∗)−Π(θ∗)|

(B.5)

For ω ∈ C, we take the limit as m→ ∞ in (B.5). The first term on the
right hand side goes to zero by (B.3), the second term also goes to zero
by lemma 2 and the fact θ̂m(ω)

a.s−→ θ∗(ω), and the last term also goes
to zero by the assumption (c.4). Intersecting this set of convergence
with C and taking limit in (B.4) as m → ∞, 1

mLm(θ0)
a.s−→ Π(θ0) by

the strong law of large numbers so we obtain Π(θ0) ≤ Π(θ∗) on a set
of positive probability. This contradicts assumption (c.4) which states
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that θ0 = arg max Π(θ), is unique. Thus

θ̂
a.s−→ θ0

(C) To establish the asymptotic normality of θ̂, we now expand the product
1/

√
n times the gradient of the log-likelihood function

1√
n

∂lt(θ)

∂θ

∣∣∣∣
θ=

ˆθ
=

1√
n

∂lt(θ)

∂θ

∣∣∣∣
θ=θ0

+
1

n

∂2lt(θ)

∂θ∂θ′

∣∣∣∣
θ=θ∗

(θ̂ − θ0) (B.6)

where θ∗ = cnθ̂+(1−cn)θ0, cn ∈ (0, 1) for n ≥ 1. Since θ0 is an interior
point of Θ and θ̂ is a strongly consistenct estimator of θ0, the left hand
side of (B.6) goes to zero in probability because 1√

n

∂t(θ)

∂θ

∣∣∣
θ=

ˆθ
= 0 at

the maximum. Consequently,

1√
n

∂lt(θ)

∂θ

∣∣∣∣
θ=θ0

+
1

n

∂2lt(θ)

∂θ∂θ′

∣∣∣∣
θ=θ∗

(θ̂ − θ0)
p−→ 0

To establish the asymptotic normality of 1√
n

∂lt(θ)

∂θ

∣∣∣
θ=θ0

, we now check
conditions of Lemma 4.3 in Yeo and JohnsonYeo and Johnson (2000).
From (B.1) and Lemma A.1, for∣∣∣∣∂lt(θ)∂α0

∣∣∣∣ =

∣∣∣∣ 1
2ht

∂ht
∂α0

(
(yt−µ)2
ht

− 1

)∣∣∣∣
≤ 1

c

(
2(y2t+r

2)
c + 1

)
.

∣∣∣∣∂lt(θ)∂α1

∣∣∣∣ =

∣∣∣∣ 1
2ht

∂ht
∂α1

(
(yt−µ)2
ht

− 1

)∣∣∣∣
≤ 1

δ

(
2(y2t+r

2)
c + 1

)
∣∣∣∣∂lt(θ)∂β1

∣∣∣∣ =

∣∣∣∣ 1
2ht

∂ht
∂β1

(
(yt−µ)2
ht

− 1

)∣∣∣∣
≤ t

δ

(
2(y2t+r

2)
c + 1

)
74



∣∣∣∣∂lt(θ)∂µ

∣∣∣∣ =

∣∣∣∣ 1
2ht

∂ht
∂µ

(
(yt−µ)2
ht

− 1

)
+ yt−µ

ht

∣∣∣∣
≤

2

{
2
(
ψ
(1)
µ (b,yt−r)2+ψ(1)

µ (a,yt+r)2
)
d+(1−δ)

}
c

×
(

2(y2t+r
2)

c + 1

)
+ yt+r

c

∣∣∣∣∂lt(θ)∂λ

∣∣∣∣ =

∣∣∣∣ 1
2ht

∂ht
∂λ

(
(yt−µ)2
ht

− 1

)
+ yt−µ

ht

∣∣∣∣
≤

2

{
2
(
ψ(1)(a,yt−r)2+ψ(1)(b,yt+r)2

)
d+(1−δ)

}
c

×
(

2(y2t+r
2)

c + 1

)

Next (c.6) implies that sup
i
E

∣∣∣∣∂lt(θ)∂θ

∣∣∣∣3∞ so that for any c ∈ R5

n∑
i=1

E

∣∣∣∣c′∂lt(θ)∂θ

∣∣∣∣3/n3/2 → 0 as n→ ∞

This conclusion and (c.6)-(c.9) allow us to apply Hoadley’s Lemma 3
to 1√

n

∂lt(θ)

∂θ

∣∣∣∣
θ=θ0

. We obtain

1√
n

∂lt(θ)

∂θ

∣∣∣∣
θ=θ0

d−→ N5(0, B(θ0))

According to Lemma A.2, ∂
2lt(θ)

∂θ∂θ′ is continuous in (θ′,Y ) and is equicon-
tinuous in θ for yi ∈ SM with SM = [−M,M ]. Using Lemma A.3, it is
easy to show that for all θ ∈ Θ, ∂

2lt(θ)

∂θ∂θ′ ≤ D(Y ) where D are defined in
Lemma A.2 and supiE[D2(Y )] is finite according to assumption (c.6).
Thus, applying Lemma 4.1 in Yeo and JohnsonYeo and Johnson (2000),
we conclude that with probability one,

lim
n→∞

sup
θ∈Θ

∥∥∥− 1

n

∂2lt(θ)

∂θ∂θ′ −An(θ)
∥∥∥ = 0 (B.7)
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Also, the difference∥∥∥∥− 1

n

∂2lt(θ)

∂θ∂θ′

∣∣∣
θ=θ∗

−An(θ0)

∥∥∥∥ ≤
∥∥∥∥− 1

n

∂2lt(θ)

∂θ∂θ′

∣∣∣
θ=θ∗

−An(θ∗)

∥∥∥∥
+

∥∥∥∥An(θ∗)−An(θ0)

∥∥∥∥+ ∥∥∥∥An(θ0)−A(θ0)

∥∥∥∥
≤ sup
θ∈Θ

∥∥∥∥− 1

n

∂2lt(θ)

∂θ∂θ′ −An(θ)

∥∥∥∥
+

∥∥∥∥An(θ∗)−An(θ0)

∥∥∥∥+ ∥∥∥∥An(θ0)−A(θ0)

∥∥∥∥
(B.8)

For each ω in the almost sure set where (B.7) holds and θ̂n(ω)
a.s−→ θn,

we take the limit as n → ∞ in (B.8). The first term on the right
hand side goes to zero by (B.7), the second term goes to zero by
Lemma 4.2 in Yeo and JohnsonYeo and Johnson (2000) and the fact
that θ̂(ω)

a.s−→ θ0, and the last term also goes to zero by assumption
(c.9). This is, − 1

n
∂2lt(θ)

∂θ∂θ′

∣∣∣
θ=θ∗

a.s−→ A(θ0). By Slutsky’s theorem, we
conclude that

√
n
(
θ̂ − θ0

)
d−→ N5

(
0, A(θ0)

−1B(θ0)A(θ0)
−1
)

Proof of Theorem 4.1. Applying the continuous mapping theorem to theo-
rem 1, we obtain following result.
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(1) using (b) and (e)

T
(
Π̃21 −Π21

)
=
( 1
T
(J ′

2ZZ ′J2 ⊗ Ã′
zΩ̂

−1
ϵ Ãz)

1

T

)−1 1

T
vec
(
Ã′
zΩ̂

−1
ϵ ϵZ ′J2

)
d−→
(
(Ψz

22Ω
1/2
ϵ2

∫ 1

0
Bdz(u)B

′
dz(u)duΨ

z′
22 ⊗A′

zΩ
−1
ϵ Az

)−1

× vec
(
A′
zΩ

−1
ϵ Ω1/2

ϵ

( ∫ 1

0
Bdz(u)dB

′
mz

(u)
)′
Ω1/2
ϵ2 Ψz′

22

)
= (Rzz ⊗A′

zΩ
−1
ϵ Az)

−1vec(A′
zΩ

−1
ϵ B′

zϵ)

(2) using (g) and (i)

T 1/2
(
Π̃22 −Π22

)
=
( 1
T
(ω̂ω̂′ ⊗ Ω̂−1

ϵ )
)−1 1√

T
vec
(
Ω̂−1
ϵ ϵω̂′)

d−→
(
Ωω ⊗ Ω−1

ϵ )−1N(0,Ωω ⊗ Ω−1
ϵ )

(3) using (a) and (d)

T
(
Π̃11 −Π11

)
=
( 1
T
(J ′

1XX ′J1 ⊗ Ã′Ω̂−1
e Ã)

1

T

)−1 1

T
vec
(
Ã′Ω̂−1

e eX ′J1
)

→d
(
Ψ22Ω

1/2
a2

∫ 1

0
BdB

′
dduΩ

1/2
a2 Ψ′

22 ⊗A′Ω−1
e A

)−1

× vec
(
A′Ω−1

e Ω1/2
e

( ∫ 1

0
Bd((u))dB

′
my

(u)
)′
Ω1/2
a2 Ψ′

22

)
= (Rxx ⊗A′Ω−1

e A)−1vec(A′Ω−1
e B′

ye)

(4) using (h) and (j)

T 1/2
(
Π̃12 −Π12

)
=
( 1
T
(η̂η̂′ ⊗ Ω̂−1

e )
)−1 1√

T
vec
(
Ω̂−1
e eη̂′)

d−→
(
Ωη ⊗ Ω−1

e

)−1
N(0,Ωη ⊗ Ω−1

e )
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ῃ문㽞⪳

⽎ 논문㠦서⓪ 평균 및 분산이 비표준형태인 시계열모형의 통계적 추론㠦

대䞮여 ἶ⩺䞮㡖┺U 㼁㱎로 비대䃃적인 지⩱대 䣾과⯒ 표䡚䞮₆ 위䟊서 과

Ệ 조Ị분산과 여-㫊㓾 ⼖환을 통䟊 ⼖환♲ 㧪㹾✺로 이⭚㰚 ㌞로㤊 형태의
조Ị부 이분산 모형을 㡆ῂ䞮㡖┺U 모형의 㾲대Ṗ⓻도 추정⨟이 㧒䂮성과

㩦⁒적정′성을Ⱒ㫇䞮⓪ộ을㯳ⳛ䞮㡖으ⳆS 㔺제㧦⬢분㍳을통䟊₆㫊의

조Ị부 이분산 모형✺과의 성⓻을 비교䞮㡖┺U

⚮㱎로 㣎㌳성 ⼖수Ṗ 䙂함♲ Ὃ적분 㹾수Ṗ 1인 䎆 Ὃ적분 모형을
㧒䢪 적⮶ 추정⻫을 이용䞮여 모수⯒ 추정䞮⓪ 㡆ῂ⯒ 䞮㡖┺U 㣎㌳성

⼖수ṖὋ적분ὖ계Ṗ㧞을➢㾲대Ṗ⓻도추정과㾲㏢제추정을ἶ⩺䞲₆㫊

㡆ῂ㠦서Ṗ정䞲모형을⺆ἓ으로⽋적인㧒䢪적⮶추정을ἶ⩺䞮㡖┺U

㧒䢪 적⮶ 추정의 㩦⁒적䔏성을 㥶도䞮㡖으ⳆS ⴂ䎢䃊⯒로 시⸂⩞이㎮을

통䟊 추정⨟의 㥶䞲 표⽎㠦서의 䔏㰫을 표䡚䞮㡖┺U

㭒㣪㠊 a 비대䃃 조Ị부 이분산모형S 여-㫊㓾 ⼖환S 지⩱대 䣾과S Ὃ적분S

㧒䢪 적⮶추정⻫S 㣎㌳⼖수

학 ⻞ a 2009− 20254
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