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Abstract

In this thesis, three problems on arithmetic of elliptic curves are considered
; Goldfeld conjecture, Stein’s conjecture about optimal curves differing by
3-isogeny, and Gross-Zagier conjecture.

At first, we find an infinite family of elliptic curves satisfying Goldfeld
conjecture. To do that, we use Dummigan’s construction [Du] which explic-
itly constructed a rational point of order [ on the optimal curve. We will
generalize his construction and applying it to Heegner points. Consequently
we find a family of elliptic curves such that a positive proportion of quadratic
twists has (analytic) rank 1.

Second conjecture is given by W. Stein and M. Watkins [SW|. They
conjectured when Xy(N)-optimal curve and the X;(V)-optimal curve of an
isogeny class differ by a 3-isogeny. We claim that torsion points on each
optimal curves has different image in Jacobians of modular curves so that we
prove the optimal curves differ.

Finally we study Gross and Zagier conjecture. Gross and Zagier conjec-
tured that if a Heegner point on elliptic curve has infinite order, then the
product of the Manin constant, Tamagawa numbers, and the square root of
the order of Shafarevich-Tate group is divisible by the order of torsion sub-
group of F(Q). In this thesis, we show that this conjecture is true if £(Q);o;
has a point of odd order.

Key words: Torsion subgroups, Goldfeld conjecture, Gross and Zagier con-
jecture, Optimal curves, Selmer groups
Student Number: 2008-30085
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Chapter 1

Introduction

Let £/Q : y? = 2®+az+b be an elliptic curve over Q of conductor N and let
L(s,E) =% a(n)n™* be its Hasse-Weil L-function defined for R(s) > 2.
The work of Breuil, Conrad, Diamond, Taylor and Wiles [B-C-D-T| [T-W]|
[Wi] implies that L(s, F') has an analytic continuation to C and satisfies a
functional equation relating the values at s and 2—s. Let € be the sign of the
functional equation of L(s, E') and f be the newform associated with E. For
each positive d | N let wy = £1 be such that Wy f = wyf, where W, is the
Atkin-Lehner involution. Then we have that e = — pr w,. Let D be the
fundamental discriminant of the quadratic field Q(v/D), and let xp = (2)
denote the usual Kronecker character. For D coprime to the conductor of F,
the Hasse-Weil L-function of the quadratic twist Ep : Dy? = 23 +a'z + 1 of
E is the twisted L-function L(s, Ep) = Y -, xp(n)a(n)n=°. Goldfeld [Go]

conjectured that

Z OrdszlL(s,ED) N% Z 1.

|D|<X |D|<X
A weaker version of this conjecture is that for r =0 or 1,
ﬂ{|D| < X‘ Ord3:1L<S, ED) = 7"} > X,

i.e, that Ords—;L(s, Ep) = r for a positive proportion of D.
In [V99], Vatsal proved that if E/Q is a semi-stable elliptic curve with
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a Q-rational point of order 3 and good reduction at 3, then for a positive
proportion of D, Ord,—; L(Ep,s) = 0. But for the case r = 1, less is known.
In chapter 3, we prove the following theorem.

Main Theorem 1. Let E/Q be an elliptic curve of square-free conductor N
with a rational point of order 31 N. If there is only one prime p|N such that
wp = —1, then

ﬂ{‘D| < X| OrdszlL(s,ED) = 1} > X,

Let X1(N) =T1(N)\H* and Xo(N) = T[o(N)\H* denote the usual mod-
ular curves with Jacobian J; (V) and Jy(N), respectively. There is a unique
curve E; € C, for i = 0, 1, and a parametrization ¢; : X;(N) — E; such that
for any F € C and parametrization ¢, : X;(N) — E, there is an isogeny
m; « By — E such that m; 0 ¢; = ¢,. For i = 0,1, the curve E; is called the
X;(N)-optimal curve [B-C-D-T| [T-W]| [Wi].

Let C denote an isogeny class of elliptic curves defined over Q of conductor
N. There are examples where they differ. For example, Fy = X,(11) and
E, = X;(11) differ by a 5-isogeny. Stein and Watkins [SW]| have made
a precise conjecture about when Ey and F; differ by a 3-isogeny, based on
numerical observation. For the 3-isogeny case, the conjecture is the following.

Conjecture 1. (Stein and Watkins) For i = 0,1, let E; be the X;(N)-
optimal curve of an isogeny class C of elliptic curves defined over Q of con-
ductor N. Then the following statements are equivalent.

(A) There is an elliptic curve E € C given by E : y* + axvy +y = x> with
discriminant a® — 27 = (a — 3)(a® + 3a +9), where a is an integer such that
no prime factors of a — 3 are congruent to 1 (mod 6) and a®> + 3a + 9 is a

power of a prime number.
(B) Ey and E; differ by a 3-isogeny.

In chapter 4, we prove the following theorem.

Main Theorem 2 Let (A) and (B) be as in the conjecture.
(i) (A) implies (B), except one case.
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(i1) If N is square-free and 31 N, then (B) implies (A).

Let ¢ be the Manin constant of E' and m = [,y m,, where m, is the
Tamagawa number of E at a prime divisor p of N. Let K be an imaginary
quadratic field with fundamental discriminant Dy, where all prime divisors
of N split in K and Og be the ring of integers in K. Then there exist
a Heegner point x of discriminant Dy of Xy(NN), which corresponds to a
pair of two N-isogeneous elliptic curves by the same O of complex multi-
plcation. The point x is defined over the Hilbert class field H of K. Put
Px= Y ¢(z)7. Then Py € E(K).

oeGal(H/K)

Let L(E/K, s) be the L-series of E over K and III(E/K) be the Shafarevich-
Tate group of E over K. Kolyvagin [Ko| proved that if Px has infinite order,
then E(K) has rank 1 and III(£/K) is finite. Gross and Zagier |G-Z| proves
that if Pk has infinite order, then the L-function L(E/K,s) has a simple
zero at s = 1 and, consequently, the first part of Birch and Swinnerton-Dyer
conjecture is true.

Gross and Zagier also obtain a formular

] *A(Px)

L'(E/K,1 —_—
(E/K,1) ud | Dy |12

(1.1)
for the derivative of L(FE/K,s) at s = 1. On the other hand, the second part
of Birch and Swinnerton-Dyer conjecture predicts that

[w|Pm*h( P ) [LL(E/K)|

, |
L(E/K,1) = |Dg|V2[E(K) : ZPk]?

From the formular (1.1), the prediction by BSD can be written by

Conjecture 2 [(2.3) Conjecture, p.311, G-Z| Let K be an imaginary quadratic
field and K # Q(i),Q(v/—3). If Px has infinite order, then the integer
c-m - |II(E/K)|z is divisible by |E(Q)ior].

In chapter 5, we prove the following theorem.

Main Theorem 3 Conjecture 2 is true if E(Q)ior has a point of odd order.



Chapter 2

Preliminaries

This chapter consists of preliminaries for later discussion.

2.1 Elliptic curves
An elliptic curve is a nonsingular curve of genus 1 with a fixed rational point.

Definition 2.1.1. A nonsingular curve E in P% is called an elliptic curve
over a field F' if E is a zero locus of an equation

y2z + a1xyz + a3y22 =13 4 angz + a4x22 + anS

where a; € F. The defining equation is called a Weierstrass equation for E.

The nonsingularity means that

flz,y) = Y? + arry + azy — 1° — apr® — ayT — ag

has nonzero gradient at any point (x,y) satisfying f(z,y) = 0. In conve-
nience, we may use an embedding F < F? U {oco} defined by [z,y, 2]
(x/z,y/z) for nonzero z and [0, 1,0] — oo. Thus, a point of an elliptic curve
is written in (x,y) or co. We define a set of L-rational point of E by

E(L) = {(z,y) € L* | y* + a1zy + asy = 2° + as2® + a4z + ag} U {o0},

4
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for any extension L/F or any subfield L C F. If L = F = Q, we call a
point in E(Q) as a rational point. As a topic of numer theory, we assume a
Weierstrass equation to be Diophantine, i.e. a; € Z or a ring of integers of a
number field.

To solve Diophantine equation, one may use “modulo method” to solve
the equation. The method does not always give solution, but often shows

many characters of the solution set. For example, 22 + y? = p does not have

2

an integral solution if p = —1 (mod 4), because —1 = z* (mod p) has no

solution if p = —1 (mod 4). In the process, we have applied the method on
2% 4+ 3% = p, not on pzr? + py? = p?, though they have same zeros. In this
manner, we have to choose a good equation.

2.2 Minimal Weierstrass equations

In this section F is defined over 7Z, i.e. aq, as, as, as, ag € Z. Applying modulo
method, we obtain an equation over F, for a prime p.

Example.
1. Let E: y*z + zyz + pyz? = 2 and F = F,. Define a map
i EQ — IP%“
(z,y,2) = (2,9,2).

where x,y, z € Z and a denotes the residue class of a modulo p. Then
(z,y,2) € p,(E(Q)) satisfies y*z + zyz = 2, which defines a singular
curve with singular point (0,0, 1).

Let g be a prime dividing 27p — 1. Define
pe: EQ — P
(x,y,2) — (Z,9,2).

Then the point (z,y,2) € p,(F(Q)) satisfies y*2 + zyz + pyz? = 23,
which is also a singular curve. However, (0,0, 1) is not a singular point

5
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in this case.

If r is a prime and 7 { p(27p — 1), then p,(E) is a nonsingular curve
3

defined by y?z + zyz + pyz? = 2°.

2. Let B : y*2' +ma'y'2' + pm3y'2? = 2 for (m,p(27p — 1)) = 1. Then
the set of integral points in E’ is isomorphic to those of £ under a map
(2',y',2") = (m*x,my, z). However, the image p,(E’'(Q)) is singular if
and only if ¢ = p, ¢|(27p — 1), or ¢|m, where p,(E(Q)) is nonsingular
for ¢|m.

Thus we have to choose a good equation, before applying reduction mod-
ulo p. We want an equation such that the p,(FE) is nonsingular as many p as
possible.

2.2.1 Minimality

Definition 2.2.1 (Discriminant). Let E : y* + a1zy + azy = x> + agx? +
asx + ag. We define the following terms depending on F,

(b, = a? + 4ay
by = a1as + 2ay4
be = a2 + 4ag (2.1)
bs = a’ag — ajazay + 4asag + a2a§ — a?

| A = —b3bg — 8b; — 27b2 + 9babybg

Apg is called the discriminant of F.

If the characteristic of base field is not 2, 3, then the discriminant can be
written as Ap = —16(4A3 + 27B?%) where F : y* = 23 + Az + B.

In one variable equation f(z) = 0, the discriminant of f determines
whether the equation has multiple roots or not. Similarly, the discriminant
of E determines whether F is singular or not.

Proposition 2.2.2. E s singular if and only if A = 0.

Definition 2.2.3 (Minimal Weierstrass equations). Let S be the set of el-
lipitic curves which are isomorphic to E over a number field F' and whose

6
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Weierstrass equations have Op-integral coefficients. For a prime p of F', we
say E' is a p-minimal model and its Weierstrass equation is a p-minimal
Weierstrass equation for E, if ordyAp = min {ord,Ap | E € S}.

If E' is minimal at all prime p, then E' is called a (global) minimal model
of E, or just (globally) minimal, and the defining equation of E' is called a
(global) minimal Weierstrass equation for E.

The p-minimal model is the best one on which we use reduction mod p.
It is known that

Proposition 2.2.4. If the base field F' has class number 1, i.e the ring of
integers Op is PID, then E has a minimal model.

Over Q, therefore, we can choose a minimal equation for any elliptic curve
E. Let f(x,y) = y* + ayzy + azy — 2° — asx* — ayx — ag = 0 be the minimal
equation, with ay, as, as, as, ag € Z.

Definition 2.2.5 (Reduction). Let p be a prime. The reduction of E at p
is a curve defined by f(z,y) = 0 over F,. We denote the set of F,-rational
point of the reduction by

E,={(z,y) €F. | f(z,y) = 0} U {oo}.

Note. E can be viewed as a scheme over Z in the sense of E(oc0) = E(Q)
and E(p) = E;, where oo is the infinite place (0) and p is the finite prime
of Z. This paper, however, is written in a variety language, not in scheme
language.

2.2.2 Singularity

Let F be a base field and f(z,y) = y*> + a12y + azy — 2% — as2* — ayx — ag €
F[z,y] such that E = {(z,y) € F | f(x,y) = 0} U {co} is a singular curve.
It is known that C' has only one singular point, say (o, ), and oo is not
the singular point. There are two kinds of singularities.

Definition 2.2.6. Let

Sl y)—f(zo,m0) = {(y — vo) — ez — 20) }{(y — wo) — Bz — 20) }— (2 —10)°

7
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for o, B € K.

o If a # (3, the singular point is called a node. In addition, if a, 5 € K
it is said to be splitting. If o, 5 ¢ K it is said to be nonsplitting.

o [f o= (3, the singular point is called a cusp.

Now let E be an elliptic curve and E; be a reduction of £ modulo p,
where the reduction is taken on the minimal Weierstrass equation for E.

Definition 2.2.7. E has multiplicative reduction(resp., additive reduction)
at p if E, has a node(resp., cusp). The reduction is said to be splitting (resp.,
nonsplitting) if E, has a splitting(resp., nonsplitting) node.

The following fact is well known (Appendix C, [Sill]).

Proposition 2.2.8. Let E be an elliptic curve over a number field F and p
be a prime in F. Let E) .= {P € E(F) | P is nonsingular}. Then E) is a
subgroup of E(F) and a quotient E(]F)/ES is a finite abelian group.

Definition 2.2.9 (Tamagawa number). Let F = Q in proposition 2.2.8.
my := |E(Q)/E| is called The local Tamagawa number. Their product

=TI m

p:prime

over all primes is called (global) Tamagawa number.

2.3 Mordell-Weil groups

An elliptic curve F is an abelian group.

2.3.1 Complex elliptic curves

Over C, with X = z + $5(af + 4as) and Y = 2y + a1z + a3, we have new
equation for F,
E : Y?=4X3%— g, X — gs.
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Definition 2.3.1 (Weierstrass P-function). Let 2,29 € C be a pair of R-
linearly independent complex numbers and A = {mqz1 + mazy | my, my € Z}
be a lattice on C. A function

weA—{0}

1s called a Weierstrass P-function. In particular, we define a meromorphic
function P := Py for A = {my + maot | my, my € Z}.

Definition 2.3.2 (Eisenstein series of weight k).

1
Gi(T) = > o+ dF

(c,d)eZ2—-{(0,0)}
for an even integer k > 2.

Let go = 60G4 and g3 = 140G4. A meromorphic function P satisfies a
functional equation

73;2 = 477f — go(T)Pr — g3(7),

which defines an elliptic curve E,(C) = {(P,(2),P.(z) | z € H} U {oc}.

Proposition 2.3.3. Fvery elliptic curve E over C can be written as E., i.e.
E is isomorphic to E, for some 7 € H.

An isomorphism refers a holomorphic map which has a holomorphic in-
verse.

With the proposition, we have a bijection between E(C) and a complex
torus C/A. Since C/A is an abelian group, E can be equipped with a group
structure induced from C/A. In other word, E(C) is a Lie group T°.

In this way, however, we have to choose another P-function for each finite
field F, where E is defined. In addition, it is not easy to know which point
R e E(C)is P+ Q for P,Q € E using P. Thus, we will define the group
structure on E in other way.
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2.3.2 Picard groups

Let E be a (or an elliptic) curve. The Picard group Pic’(E) is an abelian
group which is equipped with a natual map E — Pic’(E) via P +— (P)—(0),
where O = oo is the identity of group E as a torus.

Definition 2.3.4 (Picard group). Let Div’(E) be the group

{ Y ve-(P)| D> vp=0}

PeFE PeE

of divisors on E. Div’(E) has a subgroup consisting of principal divisors,
Princ(E) ={ divf | f: E — C, homolmorphic},

where divf =Y np - (P) if f has a zero at P with multiplicity np.
A Picard group s a factor group

Pic’(F) = Div’(E)/Princ(E).
Consider a map

1: B — Pic(E)
P — (P)—(0)

By Bezout’s theorem, for any P € E, there is unique P’ € E such that
P,0O, and P’ lie on a line z + ¢ = 0. Let f(x,y) = = + ¢ be a function on
E. Then divf = (P) + (P’') — 2(O). Thus we can choose unique P’ € E for
each P € E such that (P') — (O) = —((P) — (0)) in Pic’(E). Similary, for
any P,(Q) € E, there is unique R € E such that P, @, and R lie on same line
ar + by +c¢=0. For f(z,y) = ax + by + ¢, divf = (P)+ (Q) + (R) — 3(0)
and we know ((P) — (0)) + ((Q) — (0)) = (R') — (O) in Pic’(E). Now define
a binary operation + : ' x E — E via P+ @ = R’ where R € E is the third
point on the line through P and . Our claim is that the binary operation
+ is the addition on torus.

Theorem 2.3.5. Let E = E,. Then (E,+) is a group and is isomorphic to
(C/A.,+).

10



CHAPTER 2. PRELIMINARIES

We use two aspects of the group structures to study elliptic curves. They
provide different merit to understand the groups. Assume FE is defined over
Q. Let P, = (z,y;) € E(C) for i = 1,2,3 and P; = P, + P». Then a line L
passing through P; and P, is defined by

(2 —21)(y —y1) = (y2 — y1) (7 — 71).
Then the third point of L N E is —P;.

Proposition 2.3.6. Let y = Ax+v be the line through Py, and P,, or tangent
to E when P, = P,. Then

Py= (A +aiA—ay— a1 — 29, —(A+a))rs — v —a3).

For an elliptic curve over a field of characteristic p < oo, we can take a
group structure induced from line relations, i.e P+ Q + R = O if P,Q, R are
on a same line.

Fix QTD — C. For an elliptic curve E defined over F,, where ¢ is a power
of p, and P, () € E, we obtain an elliptic curve £’ over Q, by lifting : Choose
a, for E' : y* + ajzy + aby = 2® + dya® + ajx + ajy such that a} = a; (mod
p) for B : y? + a1zy + azy = 2° + axx® + aux + ag. Then P/, Q' € F'(Q,)
exist such that P' = P,Q" = @ (mod p). Then reduce the group structures
on E'(C) to E'(Q,) and E(F,).

As a torus, the set of torsion points are obvious. Let n be any positive
integer and F[n] = {P € E(C) | n- P = 0}. Then E|n] is isomorphic to
Z/nZ @ Z/nZ as an abelian group. If E is defined over F,, we have similar
argument.

Proposition 2.3.7. Let K be a base field of characteristic p. Then
1. En| = Z/nZ & Z/nZ if (p,n) = 1.
2. Ell] = Z/IZ or {O} ifl is a power of p.

We say E is ordinary if F[p| = Z/pZ and supersingular if E[p| = {O}.

11
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We can define the same binary operation on the reduction. In the case,
(E,+) may not be a group. If the reduction is bad, then it has a different

property.

Proposition 2.3.8. Let E be a singular curve as above and E,s denote
E —{(z0,v0)}. Then

1. If E has a node, then (E,s,+) is isomorphic to a multiplicative group
(K*,-).

2. If E has a cusp, then (E,.s,+) is isomorphic to an additive group
(K, +).

(Ens,+) is defined as the way on an elliptic curve by line relation.

2.4 Isogenies and dual isogenies

Let E and E’ be elliptic curves over C.

Definition 2.4.1 (Isogeny). Let f : E — E’ be a holomorphic map between
Riemann surfaces and a group homomorphism. Then f is called an isogeny.
If f is nonconstant, we say E' is isogenous to E.

From now on, a map between elliptic curves denotes an isogeny.

Let f : E — E’ be an isogeny. In general, f induces its dual f* on a set of
functions via f*(g) = g o f. For example, we have f* : Pic"(E') — Pic(E).
Note that Div'(E) ={n: E > Z | | {P | n(P) #0} | <oo, > n(P)=0}
is a set of functions and g o f is a function on E for any function g on F'.
Since E 22 Pic’(E), we can define an isogeny f* : B/ — E.

Definition 2.4.2 (Dual isogeny). Let f : E — E’ be an isogeny. Then

ffr BN - FE

P — ZQ

Qef~1(P)

15 called the dual isogeny of f.

12
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For an isogeny f : E — E’ of degree n, f*o f = [n| on E. [n] is the
multiplication by n map. Moreover, F is isogenous to £’ under f*. Thus the
isogenous relation on elliptic curves is an equivalence relation.

2.5 Modular curves and modular forms

“Modularity" is a keyword to understand elliptic curves. There are many
interesting results for studying ellipitic curves described in modular method.

2.5.1 Modular curves

b
From now on, for any 2 x 2 matrix v, we denote v = ( @ dv )
Cy Oy

Let 7,7" € H be conjugate, i.e. y7 = 7’ for some v € SLy(Z). Then two
elliptic curves

E, : y*=42°— go(T)x — g3(7)
E.o: y? =42 — go(r')a’ — gs(7')

are isomorphic under ' +— vz, v+ udy for u = (c,7 + d,)*/?

Thus two lattice A and A’ define isomorphic elliptic curves if they are
conjugate. In other words, SLo(Z)\H := {SLo(Z) -7 | T € H} is a family of
elliptic curves.

Proposition 2.5.1. There is one-to-one correspondence between SLo(Z)\'H
and the set of isomorphic classes of elliptic curves.

By proposition 2.5.1, elliptic curves over C can be parametrized by the
points in SLo(Z)\H. As this observation, for some special subgroup I' of
SLy(Z), T\'H presents another parametrization on elliptic curve. They are
called enhanced elliptic curves.

Let H be the upper half plane and H=HUQU {o0}. SLy(Z) acts on
H via
a b _ar+b
cd) T eatd

13




CHAPTER 2. PRELIMINARIES

Let N be a positive integer. SLs(Z) contains subgroups, called congru-
ence subgroups of level N,

I(N) = {y€SLy(Z)|y=1 (mod N)}
I'(N) = {ye€SL(Z)|a,=d,=1,¢,=0 (mod N)}
Lo(N) = {y€SLy(Z) | c,=0 (mod N)}.

These groups act on H and H. With the action, define new curves.

Y(N) = T(N\H, Yo(N)=To(N\H, Yi(N)=Ty(N\H
X(N)=T(N)\H, Xo(N)=To(N\H, Xi(N)=Ty(N\#H

Such curves are called modular curves. X (N)(respecitvely, Xo(N) and X;(V))
is a compactification of Y (N)(resp, Yo(N) and Y;(V)) with the induced topol-

ogy.

Proposition 2.5.2. Modular curves are moduli of elliptic curves defined over
C. In particular,

e Y(N)={(E,P,Q) | E is an elliptic curve}/ =
where P,QQ € E are points of order N such that e(P,Q) = e*™/N
and (E,P,Q) = (E',P',Q’) if and only if there is an isomorphism
¢ E — E' such that p(P) = P',¢(Q) = Q.

o Yi(N)={(E,P) | E is an elliptic curve}/ =
where P € E is a point of order N and (E, P) =, (E', P') if and only
if there is an isomorphism ¢ : E — E’ such that ¢(P) = P'.

o Yo(N)={(E,C) | E is an elliptic curve}/ =
where C' is a cyclic subgroup of E of order N and (E,< P >) =,
(E',< P" >) if and only if there is an isomorphism ¢ : E — E' such
that (C) = C".

The proposition for N = 1 implies proposition 2.5.1. In addition, cusps
in X(N)—-Y(N), Xy(N) =Y (N), and Xo(N) — Yy(NV) are corresponded to
singular cubic curves.

14
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Remark.(isogeny) Using Y,(V), we can describe a kind of isogeny.
1
Let E; = C/(1,7) be an elliptic curve and C' = <N> be a cyclic subgroup

of E;. Then E/C is isomorphic to an elliptic curve E' = (1,N71). E;
and E’ are isogenous. For the natural projection 7 : F — FE/C, we have
[NJ=mon*: E' = E/C.

2.5.2 Modular parametrizations

By definition, a modular curve is a set of equivalence classes of elliptic curves.
By the way, there is an interesting result on the relation between modular
curves and elliptic curves : an elliptic curve itself is similar to a modular
curves.

Theorem 2.5.3 (Modularity theorem). Let E be an elliptic curve over Q.
There is an integer N and a Q-rational surjective map

Xo(N) = E

such that (c0) — O.

This big theorem is conjectured by Taniyama and Shimura. The conjec-
ture is very famous for non-mathmatician because it implies Fermat’s Last
Theorem. A. Wiles proves Theorem 2.5.3 for squarefree integer N in , and for
general N with Brunil, Conrad, Diamond, and Tayler [B-C-D-T||T-W][Wi].

Example. Let E : y?> — 102y — 11y = 23— 1122, Then there is a holomorphic
map Xo(11) — E. In fact, Xo(11) = F = 11al.

The minimal N = Ng in theorem 2.5.3 is called an (analytic) conductor
of E.

Let E and E’ be isogenous elliptic curves. Then X,(N) — E — E’ makes
Np < Ng. Since isogenous relation is an equivalence relation, N = Ng.
Thus the conductor N is an invariant under isogenies.

Remark. F and E’ have same conductor if they are isogenous, but the
converse is false. For example, let £ = 158c1 and E’ = 158d1 in Cre-
mona’s Table. E contains a rational point of order 5 and E’ has a rational

15
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point of order 3. According to proposition 3.2.1 in next chapter, there is an
elliptic curve with a rational point of order 15 if F and E’ are isogenous.
From Mazur’s classification, we know that no elliptic curve contains a ratio-
nal point of order 15.

The modular parametrization factors through the Jacobian Jy(V).
¢ : Jo(N) — F

Proposition 2.5.4. The followings are equivalent.
1. The dual map ¢* : E — Jo(N) is injective.
2. ker ¢ is connected.

3. ¢ is universal, i.e. if there is another modular map ¢’ : Jo(N) — E,
then there is an isogeny 7 : E — E’ such that ¢’ =m0 ¢

Such (FE,¢), or E, is called an optimal curve or Xp-optimal curve. Simi-
larly, F is called an X;-optimal curve if J;(/N) — E is universal.

2.5.3 Modular forms
This section refers to Diamond-Shurman [D-S].

Definition 2.5.5. A holomorphic function f : H — C 1is called a modular
form of weight £ at level N if

1. f is holomorphic at cusps of X1(N) and
2. f(y7) = (cym +d,)*f(7) for any v € T1(N).
If f is O at cusps, then f is called a cusp form.

Example. For even k£ > 2, the Eisenstein series (see definition 2.3.2) of
weight k is a modular form of weigth k at level 1.

Note that f is a modular form (resp, a cusp form) at level N if M|N and
f is a modular form (resp, a cusp form) at level M. In this manner, we say

16
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a form f at level N is old if it is induced from a form g at level M for some
MI|N, M < N.

Let m, : H — H be a multiple by a, i.e. an action by ( g (1) > and f be

a modular form at level M. Then 7} f : 7+ f(a7) is a modular form at
level Ma. For fixed N, a multiple of M, we say f is a modular form at lavel
N with a = 1.

Definition 2.5.6. Let Si(N) be the C-space of all cusp forms of weight k at
level N. Petersson inner product is defined on Si(N) :

< 1.9>= g . SO o)
where (1) = dady/y* for T = x + iy, V(N) = fXO(N) du(T).

In general, the integration converges if one of f and g is a cusp form of
weight k and the other is a modular form of weight &, ¢(7) = f(7)g(7)(Im(7))*
is invariant under I'y(N) action, and < f, g > does not depend on N. In this
manner, when £ = 2, f can be viewed as a differential 1-form

wr = f(7)du(r).

Definition 2.5.7 (Old and new forms). Let Sp(N) be the C-space of all cusp
forms at level N and of weight k. The subspace of old forms is defined by

Se(N) = " mS(Nd ™).

d|N

The subspace of new forms Si(N)™" is defined by orthogonal complement
with respect to the Petersson inner product. In particular, a new form refers
to a normalized (i.e. a1(f) = 1) element in Si(N)"".

2.6 Hecke operators

In this section, we want to define two type of Hecke operators on the space
of modular forms.

17
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2.6.1 Double coset operators

Definition 2.6.1. Let a € SLy(Z) and I'y(M)al'y(N) be a double coset
of SLy(Z). Choose any representatives {f;}; such that I'y(M)al'y(N) =
U;I'(M)B;. The weight k I'y(M)al'1(N) operator takes a modular form f
at level N of weight k to

<a>fi= Zf[ﬂ]k,

where (f[B]x)(7) := (det B)*"H(csT + da) " f(B(7)), 7 € H.

The first type of Hecke operators is < o > for M = N and a € T'o(N).
Since

I'y(N) — Z/NZ
v dy

is a surjective group homomorphism with kernel I'; (IV), < a > is determined
by d,. Thus for any integer d,

<d>f=<a>f

is well defined for any o € I'y(N), d, = d (mod N).
Since o € T'(N) for all « € Ty(N), < d >N=1. In fact, < d > f/f
defines a character xy: (Z/NZ)* — C for (d,N) = 1.

The second type of Hecke operator is < a > for «,, where
o - 10
P 0 P

T,(f) =<a, > f.

Proposition 2.6.2. Let p and q be primes and d and e be integers such that
(d,N)=(e,N)=1.

for a prime p. Write

18
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1. Let f be a modular form at level N of weight k. Then

_ o F1(63) if pIN,
Tpf‘{ D AR (0] gt N

2. <d>,<e>T, and T, commute each other, as actions on the space
of modular forms at level N of weight k.

Now note that < d > and T}, are determined by matrix actions. In other
words, < d > and 7T}, act on a modular curve X; (V) via

<d>Ty(N)r—=Ty(N)(25)7, (42) €Ty

and

T,:T1(N)T = Y T1(N)B;,

where 3; are given in proposition 2.6.2. In particular, < d > induces an
endomorphism [d], a multiplication by d, on elliptic curves.

Let E be an elliptic curve and define ag(p) =p+1— \/Evp] for each prime
p and a(n) for n € N by

e a(l) =1,
e a(mn) = a(m)a(n) if m and n are relatively prime, and
e a(p’) = a(pHa(p) —p

For the sequence a(n), define

fe(z) =) aln)q",

where ¢ = exp(2miz). Such fg is called the associated newform, asso-
ciated to E. The Hecke operator T, on Div’(Y;(N)) acts on the set of
{fe | E : elliptic curve}, in particular, on a(q) for all prime q.

19
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Proposition 2.6.3. Let fr(z) = > as(n)q". Then for any prime p and
=1,
ap(1) = ag(p)-
The Modularity theorem, every elliptic curve is modular, can be written
by :

Theorem 2.6.4. Let E be an elliptic curve of conductor N. Then fg is a
newform at level N of weight 2.

2.6.2 The Atkin-Lehner involution
Define Wy on Sp(N) by W f = —f[( % o), ie

1 1

(Wnf)(T) = N2 (—m)~

Proposition 2.6.5. Let fg be an associated new form.

o Wy is self-adjoint with respect to the Petersson inner product

< > S5(To(N)) x So(To(N)) — C.

o W32 =id and fg is an eigenvector, i.e. Wy f = wnf for wy € {1,—1}.

The eigenvalue wy is called the root number of E. The following propo-
sition on w, and reduction type of E' is an important idea for Dummigan’s
results, introduced in the next chapter.

Proposition 2.6.6. Suppose E/Q has a multiplicative reduction at p. Then

wy, = 1 & E has nonsplitting multiplicative reduction.

2.7 Hasse-Weil L-function

Let E be an elliptic curve with associated newform f = > a(n)g¢™. Then an
~ a(n)
S =

20
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is called the L-function of E, denoted by L(FE,s).

Let A(s, E) be the modified L-function of F and A(s, E) = eA(2 — s, E).
Then € = —wy. For a prime p|N, we can also define w, via W,. Applying
W, on fg=>a(n)q", we have w, = —a(p), for any prime p||N.

21



Chapter 3

Rational torsion and quadratic
twists

When an elliptic curve F/Q of square-free conductor N has a rational point
of odd prime order [ ¥+ N, Dummigan [Du| explicitly constructed a rational
point of order [ on the optimal curve Ej, isogenous over Q to E, under
some conditions. In this chapter, we show that his construction also works
unconditionally. And applying it to Heegner points on elliptic curves, we find
a family of elliptic curves £//Q such that a positive proportion of quadratic
twists of F has (analytic) rank 1.

3.1 Construction of rational torsion points

We will find a point in Jy(V) rather than one in elliptic curves.
Let N be a positive integer, and let § denote a positive divisor of N. For
a family r = (rs) of rational numbers 75 € Q indexed by all the positive
divisors ¢ of N, define
gr = H ngé-

SIN

Such g, is called a Dedekind n-product, where ns(z) = n(dz). We will use a
propsition (cf. Proposition 3.2.1, |Li]) without proof.

Proposition 3.1.1 (Ligozat). The Dedekind n-product g, is a modular func-
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tion on the modular curve Xo(N) if and only if the following conditions are
satisfied:
1.3 v 1s0 =0 (mod 24);
2. ZMNT(;% =0 (mod 24);
3. Z(S|NT5 = 0,‘
4. Ha\N 0" is a the square of a rational number.
The I'g(N)-equivalent classes of cusps on Xy(N) are
(P) = {clcel},
(Py) = { | a.c€Z(a,eN) =1} U{oo}, and
c
(P.) = {g | a,c,r € Z,(a,cr) = 1,7 = (er, N),r # 1, N}.
cr
Given E/Q of level N, let f be the associated newform for £ and wy be

eigenvalues such that W, f = wyf, for positive d|N. Let G be the product of
those primes suth that w, = 1. Define a (cuspidal) divisor of X,(N):

Q=3 wy(Ps).
5IN/G
Q is a divisor of degree 0 if there is a prime p such that w, = —1.

3.2 Rational torsion and optimal curves

3.2.1 Known facts

Let 1(2) = ¢/ T[22 ,(1 — ¢") be Dedekind’s eta function, a 24" root of A,
and define n,4(z) = n(dz) for d|N and

r=[[0"-1 [[ -1, h:=(r,24)

plG p|N/G
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where p runs through primes. Now there is a function

24/h

F— H H ngdu(g)g
9

9G dIN/G

where p is the Mobius function.
In [Du|, Dummigan proves the following theorem.

Theorem 3.2.1. Let E/Q be an elliptic curve of square-free conductor N
with a rational point of odd prime order |t N and Eq be the Xo(N)-optimal
curve, isogenous over Q to E. If w, = —1 for at lest one prime p|N and l|n,
where n = r/h, then

1. Q is a Q-rational cuspidal divisor of degree 0,

2. g2 € Q(Xo(N)) and div(g?) = (—=1)'wn(2n)Q, where t is the number

of prime divisors of N,
3. the exact order of the rational point [Q] in Jo(N) is either n or 2n,
4. Ey has a Q-rational I-torsion point P such that 7*(P) = 2[Q].

l

In particular, for Ey and E in proposition 3.2.1, there is a rational point
of [ in Eo.

3.2.2 Generalization of Dummigan’s result

Theorem 3.2.1 assume [ 1 N and [ | n. The assumption, in fact, is relevant.

Theorem 3.2.2. Let E/Q be an elliptic curve of square-free conductor N
with a rational point of odd prime order I { N. Then w, = —1 for at least
one prime p | N, and [|n.

The key tools for the proof of proposition 3.2.2 are
e parametrizations for elliptic curves with torsion structures and

e the image of torsion under reduction.
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See Table 3, |[Ku| for the paramerization. From the image of torsion under
reduction maps, we know two facts.

Lemma 3.2.3. Let E be an elliptic curve in proposition 3.2.2 and p | A, i.e.
E’ has bad reduction at p. Assume that E has no additive reduction.

1. If an l-torsion point become a singular point under reduction modulo p,
then w, = —1 and | | ord,(A).

2. Assume that an [-torsion point become a nonsingular point under re-
duction modulo p. Then | divide the order of E(F,).s. In particular,
w, =—1if and only if | | p—1 and w, =1 if and only if | | p+ 1.

To prove this lemma, we may assume (0, 0) is a rational torsion point of
order [. If it is necessary, we can translate E’ by (z,y) — (z — o,y — 8). If
y? 4+ a1zy + azy = 23 + ayx® + ayx is a singular curve and (0, 0) is the singular
point, then we can easily know ay, = a3 = a4 = 0 and the curve is the zero
locus of F(x,y) = y? + ayjzy — 2. Since F(z,y) — F(0,0) = y(y + ayx) — 2?,
the curve has split multiplicative singularity. This proves the first part of the
lemma. The second part comes from the order of nonsingular group Ep.

From lemma 3.2.3, we know that [ | n holds if there is a prime p | A such
that [ t ord,(A) and [ # 3, and there is a prime p such that w, = —1 if a
torsion point has singular image in the reduction.

Proof of Theorem 3.2.2
[l =3,5, or 7. We prove the theorem for each case.
Case I. [ = 3.
In this case as a minimal Weierstrass equation for F, we can take

E:y*+ary+by=2° abeZ, b>0.

Since the conductor N of E is square-free, we can assume that ged(a,b) = 1.
(0,0) is a point of order 3.

Let A = b3(a® —27b) be the minimal discriminant of E. For a prime p | A
(p # 3), we have, by lemma 3.2.3,
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(1) If p|b, then w, = —1,
(2) For each p|a®* —27b, w, = =1 if p=1 (mod 3) and w, =1 if p = —1
(mod 3).

Thus if a® — 27b has two or more prime factors, then 9|r, so 3|n.

Now we consider the case that a® — 27b has only one or no prime factor.
Let b =ts, t,s € N, where for each prime p|b, p|tif p=1 (mod 3) and p|s
if p=—1 (mod 3).

Lemma 3.2.4.

(i) If a® — 27b = m? for an integer m, then there is at least one prime plt.
(ii) If a® — 27b = &1 and t = p* for a prime p, then p =1 (mod 9).
Proof:

(i) If a®>—27b = m3, then a = m (mod s) because for all p| s, p = —1( mod 3)
and 31 |(Z/sZ)*|. Let a = as +m, o € Z. Then

a® = (a®s? + 3asm + 3am?)s + m* = (27t)s + m®.

This implies « is a multiple of 3, moreover, a multiple of 9, so a = 98s + m,
B € Z. Thus

B(278%s* +9Bsm +m?) = t.

By completing the square in the second factor, we see that ¢ > 1 and
there is at least one prime p|t.
(i) Suppose that a® — 27b = &1 and t = p* for a prime p. By the same way
in (i), we have that

B(273%s* £ 98s +1) = .

Since (8,t/8) = 1 and (t/8) > 1, 8 = 1. Thus 27s>+£9s+1 = p*. Euler’s case
n = 3 of Fermat’s Last Theorem and the equation (£3s)?+ (27s* £9s+1) =
(£3s + 1)% imply that 3 cannot divide k. So p = 41 (mod 9) and by the
choice of ¢, we have that p =1 (mod 9). 0

If there are at least two primes p|t, then 9|r, so 3|n. Suppose that there
is only one prime p|t. If a® — 27b has a prime factor ¢, then ¢ — 1 or ¢*> — 1
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is divisible by 3 and p — 1 is divisible by 3, so 9|r and 3|n. If a® — 27b = =41,
then p — 1 is divisible by 9 by Lemma 3.2.4, so 9|r and 3|n. If there is no
prime p|t, then a® — 27b = ¢* for a prime ¢ and 3 { k by Lemma 3.2.4. This
implies that ¢ = £1 (mod 9). So 9|r and 3|n.

On the other hand, if b # 1, then there is a prime p | b such that w, = —1.
Ifob=1,then A =a®*—-27=(a—3)(a*+3a+9). a—3and a* +3a+9
are relatively prime. Suppose w, = 1 for a prime p|a® — 27. Since p = —1
(mod 3) and @® = 27 (mod p), we have that p|a — 3. Thus there should be
another prime ¢|a® 4+ 3a + 9 such that w, = —1. This completes the proof
of l|n for the case [ = 3.

Case II. [ = 5.
In this case, we need the following lemma, which follows from the proof
of Proposition 5.3, [V05].

Lemma 3.2.5. Let [ be an odd prime. Let Eq/Q be an optimal elliptic curve
of the minimal discriminant A and of square-free conductor N. Suppose that
[ 4 N and A be the I'®-power of a rational number. Then there is a prime
divisor p| N such that p =1 (mod ).

Proof: For an odd prime [, if A is an I*® power, then we know that El] =
(Z)1Z) @ p is a decomposable Gal(Q/Q)-module (see Proposition 4.2, [Du]).
From Theorem 1.1 [V05], we have yy C E C Jo(N) and p; C E[l] is contained
in the Shimura subgroup V' of Jy(N). Since the order of V divides ¢(N) by
Corollary 1, [L-O], there is a prime p| N, p=1 (mod [) if I*1 N. O

Let E be an elliptic curve with a point of order 5. As a minimal Weier-
strass equation for F/, we can take

E v+ (u—v)ry — v’oy = 25 — uwvr?,
with u,v € Z, (u,v) = 1 and the minimal discriminant is

A = v’ (v? — 1luv — u?).

For p | A, we know that,
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(1) If p|luv, then w, = —1.
(2) For each p|v? — 1luv — u*, w, = =1 if p =1 (mod 5) and w, = 1 if
p=—1 (mod 5).

If juv| > 1 and p | wv, then w, = —1. If |uv| = 1, then the elliptic curve
is isomorphic to y? +y = 23 — 2%, A = —11, N = 11, and wy; = —1. So
there is at least one prime p | N such that w, = —1.

Let Ey be the optimal elliptic curve, isogenous over Q to E, of the minimal
discriminant Ay. We note that Fy and E have the same n. If Ag is not the
Sth-power of a rational number, then Dummigan [Du| proved that 5 | n. If
A is the 5th-power of a rational number, then by Lemma 3.2.5, there is a
prime divisor p| N such that p =1 (mod 5). So 5 | n.

This completes the proof of the case [ = 5.

Case III. [ = 7. As a minimal Weierstrass equation for E, we can take

3 3

E:y? + (u +uww —v?)zy — v (v —u)y = 2° — w?(v — u)x
with u,v € Z, (u,v) = 1 and the minimal discriminant is

A =0"(v—u)u"(v® — 8uv? + 5uv + u?).

Proposition 4.3. in [Du] shows that 7|n. And if p | uv(v —u), then w, = —1
and there is at least one p such that w, = —1. This completes the proof of
the case [ = 7.

Now we complete the proof of Theorem 3.2.2.
(I

Example.(Proposition 5.1, [B-J-K]|) There are infinitely many m such that
(92m +1) —1)* =2Tp+g¢ (3.1)

for some prime p, q. For such triple (m, p, q), define a family of elliptic curves
{En | (m,p,q) satisfies (3.1)} where

En @ y*+(92m +1) — Dy + py = 2°.
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Then the discriminant A,, of E,, is p¢ and the conductor N,, is pq. E,,
has splitting multiplicative reduction at p and nonsplitting multiplicative
reduction at g. The sign of Atkin-Lehner involutions are w, = —1 and
w, = 1. In this case ¢ = —1 (mod 27) so the constructed point [R] is of order
3. In fact, E,, is Xo(pg)-optimal in the 3-isogeny class.

3.3 Rank one quadratic twists

Let £/Q : y? = 2°+az+b be an elliptic curve over Q of conductor N and let
L(s,E) =% a(n)n™* be its Hasse-Weil L-function defined for R(s) > 2.
The work of Breuil, Conrad, Diamond, Taylor and Wiles [B-C-D-T| [T-W]|
[Wi| implies that L(s, F) has an analytic continuation to C and satisfies a
functional equation relating the values at s and 2—s. Let € be the sign of the
functional equation of L(s, E'). Then we have that e = —H w,. Let D be the
pIN
fundamental discriminant of the quadratic field Q(v/D), and let xp = (2)
denote the usual Kronecker character. For D coprime to the conductor of F,
the Hasse-Weil L-function of the quadratic twist Ep : Dy? = a® + ax + b of
E is the twisted L-function L(s, Ep) = > 2, xp(n)a(n)n=*. Goldfeld [Go]
conjectured that

1
Z OrdszlL(s,ED) ~ 5 Z 1.
|D|<X |D|<X

A weaker version of this conjecture is that for r =0 or 1,
t{|D| < X| Ords—1 L(s, Ep) =1} > X,

i.e, that Ords—;L(s, Ep) = r for a positive proportion of D.

In [V99], Vatsal proved that if £/Q is a semi-stable elliptic curve with
a Q-rational point of order 3 and good reduction at 3, then for a positive
proportion of D, Ord,—; L(Ep,s) = 0. But for the case r = 1, less is known.
In [B-J-K], it is proved that if Ey/Q is an optimal elliptic curve of square-free
conductor N satisfying the following two conditions;
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(i) N = pq, where p,q are different primes such that w, = —1, w, = 1 and
p#3,¢=-1 (mod9),
(ii) there is an elliptic curve E, isogenous over Q to Ey and having a Q-
rational 3-torsion point,

then Ords—; L(s, Eyp) = 1, for a positive proportion of fundamental discrim-
inants D. And using a variant of the binary Goldbach problem for polyno-
mials, we proved that there are infinitely many elliptic curves satisfying the
conditions. Using Theorem 3.2.2, we will prove the following theorem.

Main Theorem 1 Let E/Q be an elliptic curve of square-free conductor N
with a rational point of order 31 N. If there is only one prime p|N such that
wp, = —1, then

¢{|D| < X| Ord,_,L(s, Ep) = 1} > X.

Examples. The elliptic curves satisfying the condition in Theorem ?? whose
conductor is less than 100 are following; 14A1, 14A2, 14A4, 14A6, 19A1,
19A3, 26A1, 26A3, 35A1, 35A3, 37B1, 37B3, 38A1, 38A3, 77B1,
77B3 in [CreT|. This list includes Vatsal’s example 19A1 in [V98] and
Byeon’s example 37B1 in [B04].

3.4 Proof of Main Theorem 1

A Dedekind eta-product g, = H ny? is said to be l-power like if g, := H d"
d|N d|N
is the [*"-power of a rational number.

Proposition 3.4.1. Let E/Q be an elliptic curve of square-free conductor
N with a rational point of odd prime order | ¥ N and Eq be the optimal
elliptic curve, isogenous over Q to E. Let P be the rational point of order |
in Theorem 3.2.1. Then the Dedekind eta-product g, corresponding to 7*(P)
is not l-power like if and only if there is only one prime p such that w, = —1.
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Proof: Let N =p;---psqq---q for primes p;,¢; (i =1,--- ;5,5 =1,--- )
with Atkin-Lehner involution sign w,, = —1,w,, = 1. Let G = ¢q;---¢;.. We
have proven s > 1 in the previous section. The g, corresponding to 7*(P) is

nwdﬂ 24/h

where h := (r,24), r == [ (qJ2 —1) Hpi (p;—1), and p is the Mobius function.
If s > 2, then

H dgwdu(g)g — H < dpag )—wdu(g)g< dg )ww(g)g =1,
dpi1p2g dprg

d|p1---ps d|p3---ps

given by [Du]

80 Gr = ([ L1410 Hd|p1_,_ps(clg])wd“(g)g)%1 =1 and g, is l-power like.
If s =1, then we have

B g u(g)g 1 w(g)g ) (1 2t
=11 = II - =(p )

N pb1g N

If [ = 3, then we know that r is always divisible by 9, in particular, by 3, so
112t and if [ = 5,7, then [ 2. Since I|(g; + 1), g, is not the I*-power of a
rational number and g, is not [-power like. O

In [B-J-K], it is proved that if an elliptic curve E/Q of conductor N
satisfies the following four conditions;

(i) the sign € of the functional equation of L(s, E) is equal to +1,

(i) E has a Q-rational 3-torsion point P,

(11i) 7 (P) is a Q-rational cuspidal divisor of order 3 in Jo(N),

(iv) the Dedekind eta-product g, such that div g, = 37*(P) is not 3-power
like,

then Ords—L(s, Ep) =1, for a positive proportion of fundamental discrim-
inants D. So from Theorem 3.2.1, Theorem 3.2.2, and Proposition 3.4.1, we
have the following proposition.
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Proposition 3.4.2. Let | = 3. Let E/Q and Ey/Q be as in Proposition
3.4.1. If there is only one prime p | N such that w, = —1, then

#{|D| < X| Ord,_1 L(s, Eop) = 1} > X.

Proof of Main Theorem 1 :

Let £/Q be an elliptic curve of square-free conductor N with a rational
point of order 3 f N. Suppose that there is only one prime p|N such that
w, = —1. Let Ej be the optimal elliptic curve which is isogenous over Q to
E. Then by Proposition 3.4.2, we have that

Jj{|D| < X| OrdszlL(S7E0D) = ].} > X,

Since the two elliptic curves F and FEj are in the same isogeny class,

L(E,s) = L(Ey, s) ia

n=1

So if D is coprime to the conductor of F, then

L(Ep,s) = L(Eop, s) Z Xp(n

Thus we also have that
t{|D| < X| Ords=1 L(s, Ep) = 1} > X,

and this completes the proof.
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Chapter 4

Optimal curves differing by a
3-1sogeny

Stein and Watkins [SW] conjectured that for a certain family of elliptic curves
E, the Xo(NV)-optimal curve and the X;(N)-optimal curve of the isogeny
class C containing E of conductor N differ by a 3-isogeny. In this chapter,
we prove that this conjecture is true.

4.1 A 3-Isogenous class over rational field

Let E be an elliptic curve and C' be a cyclic subgroup consisting of rational
points. Then a quotient map F — FE/C defines an isogeny over Q. More
precisely, choose 7 € H such that 7 € Y;(V) is an enhanced elliptic curve
(E,C), where N = |C|. Then E/C is an elliptic curve defined by 7/ = N,
ie. E/C =C/A,. Hadano [H| parametrizes the isogeny classes.

Theorem 4.1.1 (Hadano). Let E, E' be elliptic curves over Q and E — E’
be a 3-isogeny over Q, whose kernel consists of rational points. E' has a
rational point of order 3 if and only if E has a Weierstrass equation of form
y? + axy + 3y = 23. In the case, E' is defined by

y® + (a + 6t)zy + t(a® + 3at + 9t*)y = 2°.
Assume b = t?, i.e. E’ has a rational cyclic subgroup C’ of order 3.
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From Euler’s case for Fermat’s last theorem and an equation (a + 6t)% —
(a — 3t)3 = 27t(a® + 3at + 9t?), we know that t(a? + 3at + 9¢?) cannot be a
cube and E’/C" has no rational point of order 3, except when a = —6,¢ = 1.
Note that if @ = —6t and ¢ # 1, then we may take x = t2X,y = t3Y and
E : Y? -6XY +Y = X3. Thus, a 3-isogeny class is one of three cases :

1. E — FE’, where E’ has no rational torsion point of order 3, or
2. E—FE — L",
3. a=—6, E=2Ta4 : y*>— 62y +y = 2>, and

27a4 — 27a3 — 27al — 27a2

where all — is an isogeny with kernel consisting of rational porints of order
3 and O = .

Assume N is not divisible by 3%2. In the case 1, E is the optimal curve
up to 3-isogenies and is also X;(/V)-optimal. Case 2 is more complicate. F
is X1 (/V)-optimal, but need not be optimal.

Examples

1. Let £ =26a3 : y*+xy+y =23 Then E' = 26al : y*>+7zy+13y =
3

x° is optimal.
2. Let E =2170cl : y?*+13zy+y = 2. E is optimal, and the isogenous
curves are £/ = 2170c¢3 and E” = 2170c2.

3. £ =182bl : y? — 5xy + 8y = 2? is optimal, where £’ = 182b2 and
E" = 182b3.

Example 1 is an isogeny class in which Xy-optimal curve differ from
Xj-optimal curve. A conjecture in [SW] suggests a criterion to determine
whether two kinds of optimal curves differ or not.

Conjecture 1. For i = 0,1, let E; be the X;(N)-optimal curve of an
isongeny class C of elliptic curves defined over Q of conductor N. Then
the following statements are equivalent.
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(A) There is an elliptic curve E € C given by E : y* + axy +y = 23 with
discriminant a® — 27 = (a — 3)(a® 4+ 3a +9), where a is an integer such
that no prime facotrs of a—3 are congruent to 1 (mod 6) and a®+3a+9
s a power of a prime number.

(B) Eoy and E; differ by a 3-isogeny.

Using Dummigan’s construction and Mazur’s result ; theorem I and III
[Mz|, we have the following theorem.

Main Theorem 2. Let (A) and (B) be as in the Conjecture 1.
(1) (A) implies (B), except one case : C = 27a.

(ii) If N is square-free and 31 N, then (B) implies (A).

4.2 Proof of Main Theorem 2

We need following two theorems, one from [V05] and another from [Ed][Appendix,
Mz], to prove Main Theorem 2.

Theorem 4.2.1 (Vatsal). Suppose that the isogeny class C consists of semistable
curves. The étale isogeny m : Eniyw — F1 has degree a power of two.

Theorem 4.2.2 (Mazur and Rapoport). Let N = Mp = pq;---qs be a
positive square-free integer, where p > 5 and q;’s are different prime integers.
Then the order of (0) — (00) in ®prp, is

s

p—1

— i+ 1),

- E(H )
where o = 2,4,6, or 12.

Moreover, we prove two lemmas.

Lemma 4.2.3. Let E be an elliptic curve given by E : y* + axy + by = 23,
where a,b are integers such that (a,b) = 1. Let p{3 be a prime number such
that p| A = b*(a® — 27b). Then we have
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(i) If p| b, then w, = —1,
(ii) If p|a® — 27b and p =1 (mod 3), then w, = —1,
(iii) If p|a® — 27b and p = —1 (mod 3), then w, = 1.

Proof: Since ¢4 := b(a® — 24b), E has multiplicative reduction at p for
every prime factor p of A. For every prime factor p of b, F has a split
multiplicative reduction at p, so w, = —1. For every prime factor p = —1
(mod 3) of a® — 27b has a non-split multiplicative reduction at p, so w, = 1
and for every prime factor p = 1 (mod 3) of a® — 270 has a split multiplicative

reduction at p, so w, = —1 because the slopes of the tangent lines at the
node (—a?/9,a®/27) € E(F,) are (—3a £ ay/—3)/6 when p # 2. Similarly we
can show that wy = 1 if 2|a® — 270. O

Lemma 4.2.4. If an elliptic curve E is given by E : y*> + axy +y = x> with
discriminant a® — 27 = (a — 3)(a® + 3a +9), where a is an integer such that
no prime factors of a — 3 are congruent to 1 (mod 6) and a*> + 3a + 9 is a
power of a prime number, then one of the followings holds.

e a=—6,-3,0 and w3 = —1, or
e the conductor N of E is a square-free integer such that 31 N.

There is only one prime divisor p of N such that w, = —1, and ws = —1
when a = —6, —3,0.

Proof: a*+ 3a + 9 is a power of 3 if and only if a € {—6,—3,0,3}. Since
a® —27+#0,a € {—6,-3,0} or 3ta. If 3| N, then E is as in the following
table.

a E | Conductor | Atkin-Lehner w),
—6 1 27a4 | 27 =3 wsz = —1
—3|54a3 |54 =2-3% |wy =1, w3 = —1

0 ||27a3| 27 =133 wy = —1

If 31 N, then ¢; = a(a® — 24) and A = a® — 27 are relatively prime so N
is square-free.

Now suppose that an elliptic curve E is given by E : v + axy +y = 23
with discriminant a® — 27 = (a — 3)(a* + 3a + 9), where a is an integer such
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that 3 1 a, no prime factors of a—3 are congruent to 1 (mod 6), and a*+3a+9
is a power of a prime number p. Then 3 { a® — 27 and for any prime divisor of
N, E has multiplicative reduction. So the conductor N of E is a square-free
integer such that 3 { N. Suppose that > + 3a +9 = p*. Then k should be
odd except when ¢ = 5 and p = 7. So p = 1 (mod3). By Lemma 4.2.3,
w, = —1 and w, = 1 for every gla — 3. O

Now we prove Main Theorem 2.

Proof of Main Theorem 2 :

(i) Let E € C be an elliptic curve given by
E:y+ary+y=2a®

with discriminant A = ®—27 = (a—3)(a®*+3a+9), where a is an integer such
that no prime factors of a — 3 are congruent to 1 (mod 6) and a®*+3a+9 = p"
is a power of a prime integer p. If £ has a rational point () of order 6 and
2]Q = (0,0), then FE is given by

y* +2(a + b)ay + 2ab*y = 2°
with a,b € Z. This implies 2ab? = 1, a contradiction. Thus
T ={(0,0), (0, 1), 00}

is the torsion group of E(Q).
By Theorem 4.1.1, the quotient curve E’ of E by T has a rational point
of order 3 and the equation of E’ is given by

E :y*+ (a+6)xy + (¢ + 3a + 9)y = 2°.

The discriminant of A’ of E' is A’ = (a® — 27)? and T" = {(0,0), (0, —(a® +
3a +9),00} is the torsion group of order 3 in E'(Q). Since E’ also has a
rational point of order 3, we have the following étale 3-isogenies of elliptic
curves

E—FE —FE"
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Assume a # —6,—3,0. Since (a+6)>—(a—3)* = 3*(a®*+3a+9), (a*+3a+9)
cannot be a cube and E” has no rational point of order 3. So the isogeny
class C of E is
E2sp 2 g

where the horizontal arrow denotes an étale 3-isogeny. Thus E is ), in C.

By Theorem 4.2.1, F is F; in C. By Theorem 3.2.1, E” cannot be Fj in
C. To prove (i), it is enough to show that E cannot be Ey in C. Suppose that
FEis Ey in C. Let ¢ : Xo(N) — E be the modular parametrization and ¢ :
Jo(N) = E be the induced homomorphism. Then the dual ¢ : E — Jo(N)
is injective. Let E(Q,)/E,s(Q,), where E,(Q,) be the subgroup of points
which have nonsingular reduction modulo p, and ®y, be the component
groups of £ and Jy(NN) respectively. Let A : E(Q) — E(Q,)/E,s(Q,) and
N 2 Jo(N)(Q) — @y, be their canonical reduction maps. Then we have the
following commutative diagram.

A

E(Q)tors — E(Qp) /Ens (Qp)
b b (4.1)
A/
JO(N)(Q)tors — (DN,pa

where zﬂ’ is the injective homomorphism induced by 1&

By Lemma 4.2.4, the conductor N of E' is a square-free integer such that
31 N and there is only one prime divisor p of N such that w, = —1. Write
N = Mp, where M = ¢ - - - g5 and ¢; are different primes. Then ¢;|a — 3 and
¢ =2 (mod 3) foralli=1,---s.

By Theorem 3.2.1, if E'is Ej in C, then E has the point P of order 3 such
that

S

9(p) = 22D a2 ~ i(Pw) — ()]

in Jo(N), where h = (r,24) and r = (p — 1) [[;_,(¢Z — 1)(p — 1). We note

)

that 3|h. Since Py € Cp and Py € Cy, N((Py) — (Pn)) = (0) — (00).
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Theorem 4.2.2 and 31 [];_, (¢ — 1) imply that

20p—1) 1 ”

N (P)) = a7 [T+ ]](@-1DI00) - (c0)]

i=1 i=1

is not trivial in ®,. So P € E should have singular reduction mod p. But
the points (0,0) and (0,—1) in E have nonsingular reduction mod p. Thus
E cannot be Ey in C.

Thus we have £ = FE; and E' = Ey if a # —6,—3,0. If a = —3, then
E, = FE and Ey = 54al. If a = 0 or —6, then C = 27a. It completes the
proof of (i).

(ii) Suppose that Fy and F; differ by a 3-isogeny and the conductor N of
these curves is a square-free integer such that 3+ N. By Theorem 4.2.1, there
is an etale 3-isogeny from F; to Fy. So Ej has a rational point of order 3
and as a minimal model for F;, we can take

Ei:y? 4 axy + by = 2°
with a,b € Z, b > 0. The discriminant of A; of Ej is
Ay = b3(a® — 27b)

and 77 = {(0,0), (0, —b), 00} is the torsion group of order 3 in E;(Q).
By Theorem 3.2.1, Ej also has a rational point of order 3. By Theorem
4.1.1, b is a cubic number 3 with ¢ > 0 and Ej is given by

Eo:y* + (a+ 6t)zy + (a® + 3at + 9%ty = 2.
The discriminant of Ay of Ej is
Ao = (a® + 3at + 9t*)*((a + 6t)° — 27(a® + 3at + 9t)t) = t3(a® — 27¢°)?
and Ty = {(0,0), (0, —(a® + 3at + 9t*)t), 00} is the torsion group of order 3

in Eo(Q)
Consider again the commutative diagram (4.1). Let P = (0, 0) or (0, —(a*+
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3at + 9t?)t) be the point of order 3 in Fy and p be a prime divisor of
a® + 3at + 9t2. Write N = Mp; ---p,p such that for every prime divisor
q/M, w, = 1 and for every prime number p;, w,, = —1. We note that
wp, = —1. By Theorem 3.2.1,

WP = TS walPa)
d|(N/M)
2n

= ? Z (_1)v[(Ppi1“‘PivM) - (Pppil“'pivM>]7

Piq Piy |(IN/Mp)

where the number of summands is 2* and if v > 1, for the half of them,
(=1)" = 1 and for the other half of them, (—1)" = —1. Since B, .., m € Co
and Ppp¢1~~-pivM € () for any pg, - - p;,, we have

)\/((Ppil"'pivM) - (Ppp¢1~~-pi,,M)) = (0) - (OO)
for any p;, - - p;,. Thus N(¢)(P)) is trivial in @y, if u > 1. Since the point
P in E, has singular reduction modulo p, N (¢)(P)) is non-trivial in ® Np- S0
the prime number p is the only one prime number such that w, = —1.

By Lemma 4.2.3, the elliptic curve E; in C should be given by Ej :
v+ axy +y = 2 with discriminant a® — 27 = (a — 3)(a® + 3a + 9), where a
is an integer such that no prime factors of a — 3 are congruent to 1 (mod 6)
and a® + 3a + 9 is a power of the prime number p. So we complete the proof
of (ii).

O

Example. Consider the elliptic curve E : y* — 20zy + y? = 2* (8027a3 in
Cremona’s table) of conductor 8027 = 23-349 and the quotient curve E' : y?—
14zy + 349y = z* (8027al in Cremona’s table) by T = {(0,0), (0, —1), c0}.
By Main Theorem 2 and its proof, we know that Ey = E’, £y = E and they
differ by a 3-isogeny. Watkins [Wa| checked this example in another way.
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4.3 Application

Let B : v + a1zy + asy = 2% + asx? + aux + ag be an elliptic curve and f
be an associated newform. For f, we have a differential 1-form where wy. In
other hand, we can define a differential 1-form

dx

Wp = ————
B 2y—|—a1x—|—a3’

which is called Néron differential of E. A modular parametrization ¢ :
Xo(N) — E give a 1-form on Xy(N), by push-forward ; ¢.(wg).
Now we have two 1-forms on Xy(N). They have integer ratio

wr

T b(wp)

which is called Manin constant. Note that ¢ depends, in fact, on ¢. If ¢ is

replaced by [n] o ¢, then new cg is a multiple by n of original one. We will
denote cg is to be minimum among possible choice.

Let (E,C) a pairs of an elliptic curves and cyclic subgroup of order I.
Further, assume that C' consists of QQ-rational points. For an isogeny

0 . FE— E/C,
1. if Eis Xo(NV)-optimal, we have two modular maps

¢:Xo(N)— FEand 0o ¢: Xo(N)— E/C.

2. if E/C is Xo(IV)-optimal, as above, we have
¢:Xo(N)— E/C and "0 ¢ : Xo(N) — E/C
where 6 is the dual of 6.

Proposition 4.3.1. If E is as in (A) of conjecture 1, then cg/c = 3cg or
9CE.
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Chapter 5

A conjecture of Gross and Zagier

Let E/Q be an elliptic curve of conductor N, ¢ the Manin constant of FE,
and m the product of Tamagawa numbers of E at prmie divisors of N. Let
K be an imaginary quadratic field, where all prime divisors of /N split in K.
Gross and Zagier |G-Z| conjectured that if E(K) has rank 1, then the integer

c-m-|II(E/K)?|

is divisible by |E(Q)|sr|- In this chapter, we show that this conjecture is
true if F(Q);r has a point of odd order.

5.1 Heegner points

Let E be an elliptic curve over Q of conductor N and ¢ : Xo(N) — E be
a modular map. Let K be an imaginary quadratic field with fundamental
discriminant Dy, where all prime divisors of N split and a be an ideal of the
ring of integers O

Definition 5.1.1. A Heegner point (Og,n,[a]) denotes a point on Xo(N)
with coordinates j(a), j(n"a), where T is the complex conjugation and (N) =
nn s a decomposition of N in K.
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Let

PE<DK717]~> :Z¢( OK7 n, Z(b OK7 n, )7
[a [q]

where [a] runs through the ideal class group of K. Following Birch, Stephens
[B-S], and Gross |Gr|, we have P} (Dg,1,1) € E(K). Kolyvagin [Ko| proves
that if P;(Dg, 1,1) has infinite order, then E(K') has rank 1 and the Shafarevich-
Tate group III(E/K) of E is a finite group.

Let E be an elliptic curve of conductor N and K = Q(v/—D) be an
imaginary quadratic field in which all prime divisors p of N split. Let Og
be the ring of integers of K and a be an ideal of O. Such K is said to be
satisfying Heegner condition.

Definition 5.1.2 (A Heegner point on an elliptic curve). Let Pk be a point
on Xo(N) with coordinates j(a),j(n"a), where (N) = nn” and n” denotes the
complex conjugation. Pk s called a Heegner point.

Note that Py depends on the choice of K, a, and the factorization (N) =
nn”. Thus we denote such Px by (Og,n,[a]), where [a] denotes the ideal
class in the class group CI(K) of K containing a.

Let

PrDic 1) = 3 6((Omom [a]) — 3 6((Oxc,m, [a])7).

[a]eCl(K)

By Birch and Stephens [B-S| and Gross [Gr| Pj(Dg,1,1) € E(K), and
Kolyvagin [Ko| proves that if Pj(Dg, 1,1) has infinite order, then F(K) has
rank 1 and the Shafarevich-Tate group II(E/K) of E over K is finite.

Conjecture 5.1.3. Assume that D # —3,—4. If P5(Dg,1,1) has infinite

order, then
E(K): ZP:(Dg, 1, 1)\
|H_[(E/K)|:<| ( ) E( Ky, 4, )’) ’

Cgp Mg

where cg is the Manin constant of E and mg is the product of tamagawa
numbers of E.

In particular, we expect the following weak conjecture.
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Conjecture 5.1.4. Assume that D # —3,—4. If Py(Dg,1,1) has infinite
order, then

|Bior(Q)] | e - mp - [T(E/K)['.
In this chapter, we prove the following theorem.

Main Theorem 3. Conjecture 5.1.4 is true if E(Q)ior contains a point of
odd order.

5.2 Selmer groups and Shafarevich-Tate groups
Let 6 : E — E' be an isogeny with T' = ker f. There are exact sequences
0—T—F—FE —0

and

0— E'(F)/0(E(F)) HYGp,T) —2 = H (G, E)[f] —0

| | |~

0—=[TE(£)/0(E(F)) —= [ HY(G), T) —= [ H'(G, E)[0] —=0
where

e ['is a number field where F, E’, and 6 are defined,

e p denotes any place of F',

G, is a decomposition group of the prime p of K,

a: H(Gp,E) — [[ H'(G), E) is the restriction map,

F, is the completion of F' at p, and

all products runs through all primes of K.
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Definition 5.2.1 (Selmer group and Shafarevich-Tate group). From above
diagram, we define two following groups ;

1. 0-Selmer group SO (E/F) := ker(ag) o By of E over F and

2. Shafarevich-Tate group II(E/F) :=kera of E over F.

There is a short exact sequence
0— E'(F)/0(E(F)) — S9(E/F) — III(E/F)[f] — 0

where III(E/F)[0] = ker(ILI(E/F) 1N [II(E'/F)). In particular,

ISO(E/F)|
IE RN = 5 jaE )

Therefore, if we know S (E/F), then II(E/F)[f] is controlled by a
Mordell-Weil group E'(F')/0(E(F)). In general, it is not easy to understand
whole SO (E/F). In our situation, however, the isogeny 6, defined over Q,
has a nice property to construct a subgroup S (E/Q).

5.2.1 Galois cohomology and field extensions

Let £ € H'(GF, E[0]). £ defines two extensions of F.

Proposition 5.2.2. ker¢ is well defined. For each P € E[f], £1(P) is a
right coset of ker .

Proof: Let Gp:={0 € Gr | & =0¢€ E[A]}. It is easy to check that G, is
a subgroup of Gp.

Suppose 0,7 € G and & = & = P for some P € E. Then we are
enough to show that o77! € Gy, i.e.

507'—1 = (fo)771 + f‘r—l
= (&) + & =6a=0

Therefore (Gr)o = (Gp)T. 0
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CHAPTER 5. A CONJECTURE OF GROSS AND ZAGIER

In general, GG, is not a normal subgroup of Gg. In particular, L/F is
not Galois. Let A = {¢&, € E[f] | 0 € Gp} and Gy := {7 € Gp | PT =
P for all P € A}. Then M/F is a Galois extension.

Proposition 5.2.3. LM is a Galois extension of F.

Proof: We are enough to prove that Gy, = G NGy is a normal subgroup
of Gr. We can easily check that

bror1 =87 +E+&=E +6=0

and
1

0<PTO'T71) — QTUTil(PTO'Til) — (Q(P))TUT’ — 0
The second equality holds because 6 is defined over F. Therefore, o7t €
Gy for all o € Gy and 7 € Gp. O

Assume that A consists of three F-rational points. Then we have M = F
and L/F is a Galois cubic extension induced by ¢&.

In other words, every nontrivial £ € S®(E/F) is related to some Galois
cubic extension L/F.

5.2.2 A subgroup of SY(E/F)

Let F' be a number field and q be a place of F'. Let E be an elliptic curve with
F-rational point of odd prime order I. x, denotes the residue field of F' at
q. By [Sill], SO(E/F) C H' (G, E[l]; S) where S is a set of primes dividing
I[N where N is the conductor of E. In particular, we may choose a Galois
Z/1Z-extension L/K unramified outside N. For such L, we have natural
projection [ | : G — Z/l = Gal(L/K). Define a 1-cocyle (& @ o +— [0]Q
in HY(G, E)[f] where Q € kerf is a rational torsion point of order [. By
definition, £¥ # 0 in HY(G g, E[l]).

Lemma 5.2.4. Suppose that every nonzero F-rational points of E is non-
singular in any reduction. Then ¢* € SO(E/F).

Proof: Let q be a prime of F' and L, = Fy(L) be an extension of F;. Let
Aq be the residue field of L. £ and E’ are the modulo q reduction image of
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CHAPTER 5. A CONJECTURE OF GROSS AND ZAGIER

E and E', respectively. Now Ly/K, is one of three extensions ; Ly = K, L,
is a unramified extension of degree I, or L, is a ramified extension of degree
[. Each cases can be written as ; L C K, q inerts in L, or q ramifies in L,
respectively.

Suppose that L, = Fy, i.e. q completely splits in L. Then G, C Gal(Q/L)
and &*|; = 0, which is a coboundary determined by O € E'(F,).

Suppose that Ly # F, and [\ : k4] =, i.e q inerts in L. Then 6 induces a
morphism & — &', where Z-schems £ and £’ are Néron Models for E and E’,
and consequently, 6 induces a morphism on the identity component of the
special fibres

0 1 Eng(kq) = Flos(kq)

whose kernel contains Q. Note that Q is nonsingular under condition C. Since
|E(kq)| = |E'(Kq)|, there is a point R € E(F,) such that R € E,s(Fq)\ Ens ()
and O(R) € E'(ky). Since 6 : E — E' is defined over Q, R € E(F,)\E(F,)
has at most [ conjugations R, R+ @Q,--- , R+ [l — 1]Q, under the action of
Gal(F,/F,). Since R € E(k,), R has [ conjugations, i.e. R € E(Ly)\E(F,),
where L, is the unique unramified extension of F; of degree . Now

5L|q =c(o— R” - R),
where the sign ¢ € (Z/IZ)* is determined by the choice of R € E(F).

Suppose that L, is a totally ramified extension. Then [Lq : Fy] =1 and \; =
Kq, 1.e. q ramifies in L. By the condition (i), £ has splitting multiplicative
reduction at q and |E(Lg)/Ens(Aq)| = U |E(Fy)/ Ens(kq)|(see [Corollary 15.2.1
[Sil1]]), where E,s(kq) C E(Fy) and E,s(\) C E(L,) are the inverse images
of Ens(Ng) in E(F,) and E(L,), respectively. Therefore there is a component
{R} =R+ E,s(N\g) € E(Lg)/Ens(\q) such that

(R} & E(Fy)/Ens(ry), 1< e <1—=1 and [[[{R} € E(Fy)/Ens(rg).

If F has the minimal discriminant A = I'.J, where [ is a product of places
at which @ is a singular point in the reduction and J is a product of places
at which @ is nonsingular in the reduction. Then E' = E/ < ) > has the
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CHAPTER 5. A CONJECTURE OF GROSS AND ZAGIER

minimal discriminant A’ = I.J'. Since E'(Fy)/E! (kq) is a cyclic group of
order | |E(F,)/E°(k,)|, the image of E(Ly)/Ens(A,) under a map induced
from £ — E'is in E'(Fy)/E](kq) so there is a point R’ € {R} whose image
under the map £ — E’ is in E'(F;). Therefore every conjugate of R’ is
R+ [c]@ for 0 < ¢ <1 —1 and we have

Mg =clo— R" - R'),
where ¢ € (Z/IZ)* depends on the choice of {R} and R’
Therefore ¢ is locally 0 at any prime so ¢ € SO(E/F) c SO(E/F). O

If F=Qor K and [ = 3, we can calculate S® (E/F) more explicitly.
6 implies a short exact sequence of G p-modules

O—>T—>E[3]i>,u3—>0 (5.1)
where T' = ker = {0, Q,2Q}. Then we have a Galois cohomology sequence
0— HYGr,T) = H'(Gr,E[3]) & H'(Gr, 1i3).

Theorem 5.2.5. If the exact sequence (5.1) does not split, S®(E/F) =
SO(E/F). In particular, if F = Q or K then we have same result.

Proof: Let £ € S®(E/F). We want to show that 6,(¢) = 0.

Let L be the field determined by £71(0) C Gr and M = F(FE[3]). By
assumption, Gal(M/F) = S3. Choose any 7 € Gal(F/F) whose order in
Gal(M/F)is 2. Let n =4n =& +&7. Then

(E=2n)+(E—2n)"=0.

In particular, £ —2n has image on {O, R,2R}, where R € F[3] and R"+ R =
O. Thus we will assume £(Gr) has at most 3 points, i.e. L/F is an extension
whose degree is at most 3, and

0=¢62=E +6,.
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CHAPTER 5. A CONJECTURE OF GROSS AND ZAGIER

1. Assume LM /M is a cubic extension. Then LM/ F is a Galois extension
of degree 9 and an abelian extension. In fact,

Gal(LM/F) = Gal(LM/L) x Gal(LM/M) = 7./3 x 7./3.

Choose generators a € Gal(LM/L) and 8 € Gal(LM/M) such that
a(R) = R+ P and s = R. If we need, we may replace a and § to
o? and (%, respectively. Note that Gal(LM/L) = Gal(M/F). Then
§pz = 2R and g, = {5 = R+ P. It is a contradiction.

2. Therefore we have to assume LM = M, ie L C M. Since {(Gr) =
{O,R,2R}, &, = R and £,2 = 2R for a € Gal(M/F) of order 3. By
definition of M, however, {,2 = R*+ R = 2R+ Q. It is a contradiction.

Therefore, 6,(¢) = 0 and S®(E/F) = SO (E/F). Note that Q and K satisfy
the condition about G p-module E[3]. O

Example 1. Let £ = 10621cl and F' = Q. Since N = 10621 = 13-19 - 43,
we can know that S®)(E/Q) has 27 elements. Since F(Q) has rank 0 and
E(Q)[3] has 3 elements, we conclude that III(E/Q)[3] has 9 elements. BSD
predicts that III(£/Q) has 9 elements.

Example 2. Let £ = 2170cl and F = Q. Since F(Q) has rank 1 and
E(Q)or has 3 points, we know that HI(E/Q)[3] = {0}. BSD also predicts
that HI(E/Q) = {0}.

Example 3. Let F : y> + azy +y = 2% and 3 { a. TI(E/Q)[3] can be
computed by Lemma 5.2.4 and Theorem 5.2.5. III(£/Q)[3] = HI(E/Q) for
small a < 61, where III(EF/Q) is predicted by BSD conjecture.

5.3 Proof of Main Theorem 3

We will classfy elliptic curves up to their torsion subgroups and make a proof
for the theorem case by case.
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CHAPTER 5. A CONJECTURE OF GROSS AND ZAGIER

Let T'= E(Q)¢or- As the proof for the proposition 3.2.2., we will use the
order of torsions in E(Q)/E) in each p whenever we estimate the Tamagawa
number m. See proposition 2.2.8. To do that, we parametrize elliptic curves
for a point (0,0) to be a torsion point of maximum order.

Calculating ¢ - m case by case, we know that |7'| divides ¢ - m in most
cases. When T = 7Z/3Z, we need to estimate the order of Shafarevich-Tate
group. For this reason, we observe the case T' = 3 at the end.

Case I. T =7Z/6Z

The minimal equation for F is

E:y*+ (u—v)zy —uww(v+u)y =2° —v(v + u)r?,

with u,v € Z,u > 0, (u,v) = 1 and the minimal discriminant is
A =(v 4+ u)*u?(9v + u).

When p | v(v 4+ w)u, then the torsion point P = (0,0) is a singular
point in the reduction at p. More precisely, P is of order 6 in E(Q)/E,
if p| v, Pisoforder 3ifp|v+wu, and P is of order 2 if p | u. Thus
6 | mg except when u =v =1,m =3 and u = 2,v = —1,m = 2. For
these two exceptions, we need to know their Manin constant.

When v = v = 1, then the curve is labelled by 20a2 in Cremona’s
table and it has the Manin constant ¢ = 2cg,, where Ey = 20al and
cp, 1s the Manin constant for Fj.

When v = 2,v = —1, then the curve is 14a4 and it has the Manin
constatn ¢ = 3cg,, where Fy = 14al.

Thus 6 | ¢-m if T = 7Z/6Z.

Case Il. T'=7/27Z x Z/6Z

E has a minimal Weierstrass equation

E: y2 + (u—v):cy—uv(v—i—u)y = ;1;3 _'U<U+’U/)$2
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CHAPTER 5. A CONJECTURE OF GROSS AND ZAGIER

, as same as Case [, with u, v € Z, (u,v) = 1,2um(bs—t) = v(t—3s)(t+
3s) for a pair of integers (s,t) € Z* and the minimal discriminant of £

1S

A = 08w +u)*u?(9v + u).

If one of m and n is even, then the minimal discriminant is

A = (25(55 —1))%(s — t)°(t — 35)2(t + 35)%(9s — t)%.

In this case, there are at least two primes p, q | 2s(5s—t)(s—t). As case

I, we may observe the reduction of (0,0) and conclude 36 = m,m, | mg.

If both of s and t are odd, then A is minimal outside 2.

(a)

Suppose that 55 —t = 24 and s — t = 2. We may assume that
s>0and A> B. Then s = 2572248 —1) and B =2 (.- s is
supposed to be odd). If A = B + 1, then 3s = —t, i.e. s =1 and
t = —3 thus A = 0. It is a contradiction. Thus A > B + 1 and
there is an odd prime p dividing s. Since B = 2, s = ¢t + 4 and
t —3s = —2(t 4+ 6). Since t is also odd, there is an odd prime ¢
dividing ¢ + 6. Therefore, 12 divides m,m, and mg.

Suppose that one of 5s — ¢t and s — ¢ is not a power of 2. Thus
there is an odd prime p dividing (5s — t)(s —t) so 6 | my,.

If s # 1, then we choose ¢ | s so 6 | m,.

If s =1, then

A =25t —5)°(t — 1)%(t — 3)(t +3)*(t — 9)*

If both of t —3 and t 4 3 are powers of 2, then ¢t = —5, —1 (t # 1,5
because A # 0). When t = —5, we may choose p = 5,¢ = 3 so
that pg | (5s —t)(s — t) and 36 divides mg. When t = —1, our
curve is

E : y*+5xy — 6y = 2° + 322

with minimal discriminant A = 223952 and 12 = msms | mg.

Therefore, 12 | mpg in this case.
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CHAPTER 5. A CONJECTURE OF GROSS AND ZAGIER

Case IIl. T'=Z/9Z.
A Weierstrass equiation for F is
E:y? + (u® — 0 + wd)ay — uto?by = 2° — uv?ba?

with u,v € Z, (u,v) = 1, b = (v—u)(u?—uv+2v?), and the discriminant
1s

A = v (v —u)’ (W — v+ ) (u? + 3u’v — 6uv® +v?),

which is minimal at a prime p for all pluv(v —u). Since A # 0, |uv(v —

u)| > 1 for any possible u,v € Z. Thus 9 | t =[] )9 and ¢ [ m.

pluv(v—u

Case IV. T =7Z/12Z

A Weierstrass equation for E is

E oy 4 (u(u —v)? —vd)zy — wo(u —v)°eédy = 2% — v(u — v)?éda?

with u,v € Z, (u,v) =1, ¢ = (2v —u)(u? — 3uv + 3v?), d = (u® — 2uv +
20?) and the discriminant is

A = w0 (u—0)2(2v — u)’d®(u® — 6uv + 60%)(u? — 3uv + 3v?)*,

which is minimal at odd prime p dividing wv(u — v)(2v — u). If u is
odd, then A is also minimal at 2.

(a) If u is even, then u = 2,v # 1 or u > 2,v(u —v) > 1. In any
case, 12 | t = H;‘U(u_v) 12 - H;W 2. H;)|21)—u 6 and ¢ | m, where the
product H; runs through odd primes.

(b) If wis odd, then 12 [ ¢ =[],y 12 1,1 2 11 20—, 6 and ¢ | m.

Case V. T'=7/57Z A Weierstrass equation for E is

By’ + (u—v)ry — u’vy = 2° — uva?,
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CHAPTER 5. A CONJECTURE OF GROSS AND ZAGIER

Case VI.

Case VII.

with u,v € Z, (u,v) = 1 and the discriminant is
A = v’ (v? — 1luv — u?).
Thus 5 | m unless |uv| = 1. If juv| =1, E = 11a2 and ¢ = 5.
T = Z/10Z
A Weierstrass equation for E' is
E v+ (uS —vT)ry — u*0* STy = 2° — uwv*Ta?,

with u,v € Z, (u,v) =1, S = —(v? = 3uv + u?), T = (v — u)(2v — u)
and the discriminant is

A = v (u — v)0(u — 20)°(u? — 3uv + v?)?(u® + 2uv — 4v?),

which is minimal at any odd prime p dividing uv(u — v)(u — 2v). If u

is odd, then A is minimal at all prime p dividing vv(u — v)(u — 2v).

(a) If u is even, then v(u—v) > 1,10 | t = H;‘U(U_v) 10 - H;|u(u—2v) 5

H;|u2—3uv+v2 2 and ¢ | m.
(b) If wis odd, then 10 | ¢ = T 100 10 [pjutu—20) & - Tz suo o2 2
and t | m.
T=17/72

A minimal Weierstrass equation for F is
By + (v +uw — )y — v (v —u)y = 2° — w?(v — u)2®
with u,v € Z, (u,v) = 1 and the minimal discriminant is
A =0"(v—u)u"(v* — 8uv? + 5uv + u?).

Then 7 |t =] y 7and ¢ [ m.

pluv(v—u

93

T



CHAPTER 5. A CONJECTURE OF GROSS AND ZAGIER

Case VIIIL. T =7Z/3Z

For T =7/3Z, let E : y*> + axy + by = 23. If b # 1, then 3 | m. Let
E, : y* +azvy +y = 2. As Theorem 2, if a? 4+ 3a + 9 is a power of
prime and a — 3 has no prime factor p equivalent to 1 modulo 6, then
E, is not optimal and 3 | cg,.

For the case, we are enough to consider F : y* + axy +vy = 3. Note
that 3 | a if and only if I?|N. Let p | A = (a — 3)(a® + 3a +9). If
p = —1 (mod 3), then a®> = 27 (mod p) has exatly one root a € Z/pZ,
ie. pla—3. Thus p=1 (mod 3) if p | a® + 3a + 9.

Consequently, by theorem 2 and proposition 4.3.1, 3 1 cg implies that
there are at least two primes p; and py such that py, ps # —1 (mod 3)
and p; | Ng.

Suppose p # 3. Consider two extentions of K, say K, and K, defined
by
Koo = Up>1 K (ppn) and K5 = K(Een(p)),

where pi,» is a group of all p"-th roots of unity and E,,, is an elliptic
curve with complex muliplication such that Endg(E.,) = Ok. These
two extenstions are unramified outside p and their Galois groups over
K are isomorphic to Z; = ji, 1 X Z,. Since p = 1 (mod 3), we have
two cubic extensions of K unramified outside p.

Suppose p = 3. Let § : E — E/ < @ > be a natural isogeny. Choose
P € E(K) which is a generator of E(K)/ < Q >. Then K(07'(P))
is a Galois cubic extension of K unramified outside N. Note that the
extension is ramified at 3.

By lemma 5.2.4, S®(E/K) has at least 81 elements if 3 { N and at
least 27 elements if 3 | N. Since E(K)/3E(K) consists of 9 elements,
we conclude that |III(E/K)[3] is nontrivial. Since |II(E/K)[3] is a
square, |T'| divides (|III(E/K)[3])"/2.

Now we complete the proof of Main Theorem 3.
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Chapter 6

Further research

6.1 Gross-Zagier conjecture

In [Lo95|, Lorenzini obtained the following similar result using a little differ-
ent method.

Let E be an elliptic curve defined over Q with a Q -rational point of order
M. Then following statements hold with at most five explicit exceptions for
each M.
(a) If M =4, then 2 | m.
(b) If M = 5,6, or 12, then M | m.
(c) If M = 10, then 50 | m.
(d) If M = 7,8, or 9, then M? | m.

From (d), we can show that Conjecture 5.1.4 is also true if F(Q)ior =~
Z/8Z or )27 x Z,/8Z. So the remaining cases are E(Q)io, >~ Z /27, 7./ 27 x
Z7.)27, 7.]AZ, or 727 x Z/AZ for the complete proof of Conjecture 5.1.4.
In these cases, we need optimal curves differing by 2-isogeny, which is also
conjectured in [SW], and computing 2-Selmer groups. We shall treat these
cases in next paper.
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6.2 Full Shafarevich-Tate group

In chapter 5, we describe [-torsion part of Shafarevich-Tate group of a certain
family of elliptic curves using rational torsion points on elliptic curves.
For any prime [ and number field F,

HI(E/F)[I*] =2 (Q;/Z)" % (a finite Q;/Z; — module)

for some integer r. Lemma 5.2.4 and Theorem 5.2.5 give an upper bound
for r. In particular, for some elliptic curves such as Example 3 in the end of
section 5.2, Shafarevich-Tate group completely depends on rational torsion
points.

As a next topic, it is interesting to generalize Lemma 5.2.4 and Theorem
5.2.5. In particular, we may assume that E[l] is a simple Galois module or we
may find analogous statement of Lemma 5.2.4 and Theorem 5.2.5 for E[I*].
The generalization is focusing on calculating r, conjectured to be r = 0.
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