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Abstract

a-Gauss Curvature Flows and
Free Boundary Problems

Lami Kim

Department of Mathematical Sciences
The Graduate School
Seoul National University

In this dissertation, we study the deformation of the n-dimensional strictly
convex hypersurface in R"*! whose speed at a point on the hypersurface is
proportional to an a-power of positive part of Gauss curvature. For % <a<
1, we show that there exist a strictly convex smooth solutions if the initial
hypersurface is strictly convex and smooth and the solution hypersurfaces
converge to a point. We discuss the asymptotic behavior of the rescaled
hypersurfaces, in other words, the rescaled manifold converges to a strictly
convex smooth manifold. Moreover, there exists a subsequence whose limit
satisfies a certain equation. For the convex surfaces in R? with the velocity
given by a-Gauss curvature and % < a < 1, by using a certain estimate
different from the one that we use in the n-dimensional case, we establish
that there are smooth solutions if the initial surface is smooth and strictly
convex. In addition, there is a viscosity solution with a C'*!'-estimate before
the collapsing time if the initial surface is only convex. We also discuss that
there is a waiting time effect which means a flat spot of the convex surface will
persist for a while. Furthermore, we show that the interface between a flat side
and a strictly convex side of the surface remains smooth for 0 < ¢t < Ty under
certain necessary regularity and non-degeneracy initial conditions, where T
is the vanishing time of the flat side.

Key words: gauss curvature flows, deformation of hypersurfaces, regularity
of a-gauss curvature flows, free boundary problems, nonlinear parabolic par-
tial differential equations

Student Number: 2006-20289
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Chapter 1

Introduction

The theory of Partial Differential Equations and their applications are the
study of solutions of equations describing natural phenomena and social phe-
nomena, which use multivariable calculus as the tool of study. In particular,
nonlinear parabolic partial differential equations are one type of second order
partial differential equations, which contains nonlinear terms and describes
the objects changing over time in the field of science and mathematics. Cur-
vature flows are such nonlinear parabolic partial differential equations which
describe the deformation of manifolds, which is an object of geometry. The
study for these geometric flows not only contributes to the analysis of the
existence, uniqueness and regularity that are typically dealt within the field
of partial differential equations, but also has close academic connections with
other fields like convex geometry, affine geometry, topology and many more.
For example, Ricci curvature flows have provided important ideas to solve
the Poincaré conjecture and the research of minimal surfaces using mean
curvature flows and the classification of singularities using geometric flows
are actively being studied in the fields of mathematics. Also, the contribu-
tion of curvature flows extends to other fields. Many of the basic issues in
Image Analysis are being approached by utilizing curvature flows. For in-
stance, noise can be removed by controlling a level set using the curvature
flow expressed as a function describing given image and this curvature func-
tion can be used in order to obtain a better image. In addition, curvature
flows are widely used in the study of the description of rolling stones at the
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beach, the strengthening of alloys, flame propagation, and in the theory of
relativity.

Basically, curvature flows are written in the form of a parabolic partial
differential equation of the following form:

0X(x,t)
PXD _ rnom

In other words, when an n-dimensional hypersurface is represented by an
embedding X (+,-) : ¥ x [0,7) — R""! and v is the unit outward normal
vector, a family of hypersurfaces evolves under curvature flow if the velocity
of which a point on the hypersurface moves is given by the curvature of the
hypersurface. Then, if a smooth symmetric function f is given by the sum of
the eigenvalues of the Weingarten map W, where the eigenvalues are denoted
by A1, Ag, -+, Ay, this flow becomes a mean curvature flow, or if f is given
by the product of A;, then this flow will be a gauss curvature flow. Also,
f can be provided by scalar curvature, harmonic mean curvature, and so
on. Especially, Gauss curvature flows describe the deformation of a compact
convex body moving under impact from any random angle. A stone hit by
waves is one such example. W. Firey who introduced Gauss curvature flows
suggested the following conjecture in 1974 [22]:

Convex surfaces moving by their gauss curvature become
spherical as they contract to points.

In this dissertation, we are concerned with the regularity of the a-Gauss
curvature flow, which is the curvature flow of a generalized version of the
conjecture formed by W. Firey. This flow explains the deformation of an
n-dimensional compact convex body ¥ in R"*! moving with collision from
any random angle. An example can be a stone on a beach impacted by the
sea, where the probability of impact at any point on the hypersurface ¥ is in
proportion to the a-Gauss curvature K*. Let X (-,-) : ¥ x [0,7) — R™"*! be
an embedding and set 3, = X(X,¢). Then the hypersurface evolves by the
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following flow:

0X N
W(:L‘,t) = —K%z,t)v(z,t)

X(z,0) = Xo(x)

(1.0.1)

where v denotes the unit outward normal to >; and a > 0.

Now we shall summarize the known results for the evolution of the strictly
convex hypersurfaces following (1.0.1). Let (0, 7*] be the maximal interval in
which vol(3;) is nonzero.

For the case a = 1, if the initial surface in R3 is smooth and strictly
convex and has central symmetry, then the solution >; converges to a point
as spherical shapes [22]. Also Tso, [37], showed existence and regularity of
the solution when the initial hypersurface embedded in R™™! is smooth and
strictly convex. In other words, the solution >2; preserves the smoothness and
convexity in the time interval (0,7*]. For a smooth, compact, and strictly
convex initial surface in R3, the solution surface ¥; converges to a point and
the rescaled solution surface ¥, approaches the round sphere with normalized
volume and for a non-smooth initial surface, the viscosity solution has C''!-
regularity in the time interval (0,7*) and C* regularity for ¢ > ¢, where t,

depends on the volume and diameter of the initial surface ¥, [1].
1
et
exists a unique, smooth and convex solution such that the hypersurfaces ¥,

For a = the solution, ¥, is known as an affine normal flow. There
converge to a point and the rescaled solution converges to an ellipsoid if the
initial hypersurface is a compact, smooth, and strictly convex [4].

For n+r2 <a< % or 0 < a< % under the assumption that the isoperi-
metric ratios are bounded, there exist a smooth, strictly convex solution con-
verging to a point and a rescaled solution satisfying a certain equation [2]. In
addition, for a = %, the rescaled solution converges to a sphere and this holds
for a > % if the initial hypersurface is very close to a sphere [10]. Various
applications of (1.0.1) have been studied: the affine normal flows (o = —5
(35, 36]), the gradient flows of the mean width in LP-norm (a = zﬁ 2]), and
image process (o = 1 [5]).

We also study the regularity of the a-Gauss curvature flow with flat sides,
which is associated to the free boundary problem. As a type of partial differ-

ential equations, free boundary problems describe various situations in the

3



CHAPTER 1. INTRODUCTION

fields of mathematics and science. Many problems such as phase transitions,
fluid dynamics, and finance problems can be modeled as free boundary prob-
lems. Now we discuss the deformation of the hypersurface ¥ described by
the flow (1.0.1) for the case when the initial hypersurface ¥ is convex and
smooth. For a > 0, there is a viscosity solution, ¥, for 0 < ¢ < Ty which has
a uniform Lipschitz bound [2]. The convex viscosity solution, ¥, has a uni-
form C!-estimate for 0 <t < Ty, fora =1andn=2[1], or for 1 <a <1
and n = 2 [29]. For a = 1 and n = 2, the C§°-regularity of the strictly convex
part of the surface and the smoothness of the interface between the strictly
convex part and flat spot have been proved in [19].

The dynamics and degeneracy of the diffusion vary depending on «. If
« is smaller than %, hypersurface becomes more singular and the solution
gets regular instantaneously. On the other hand, if « is greater than %, it
becomes degenerate and has a waiting time effect which means that the flat
spot of the hypersurface stays for a while [2, 9]. Waiting time and finite
speed of propagation caused by the degeneracy have been studied in other
well-known degenerate equations: the Porous Medium Equation

u=Au™ (u>0,m>1),
and Parabolic p-Laplace Equation
uy =V - (|VulP2Vu).

For strictly convex and smooth initial hypersurfaces and % <a<l1, we
establish the regularity of solutions of the flow (1.0.1) and the asymptotic
behavior of the rescaled hypersurfaces. Also, for the convex surfaces in R?
and % < a < 1, we show the regularity of the solutions before the collapsing
time and the interface between the flat side and the strictly convex side.
Each chapter in this dissertation will be organized as follows. In Chapter
1, we introduce Gauss curvature flow and the known results. In Chapter
2, we state the definitions of a metric, the second fundamental form, some
curvatures and the support function. In addition, we obtain the evolution
equations for the geometric quantities. In Chapter 3, we discuss a-Gauss
curvature flows of an n-dimensional compact strictly convex hypersurfaces.
We prove that the hypersufaces preserve the strict convexity and we also

4



CHAPTER 1. INTRODUCTION

get the uniform bound of curvatures of hypersurface . An integral quantity
plays the key role in getting the asymptotic behavior of hypersurface and
CYloregularity of the rescaled solution. Also, the curvature bounds of the
rescaled hypersurfaces will be introduced. In the last part of this chapter,
we shall discuss the existence of solutions and the asymptotic behavior of
the rescaled hypersurfaces. In Chapter 4, we consider the deformation of the
2-dimensional convex surfaces moving under the a-Gauss curvature flows.
We show that the solution is smooth away from the flat spot and the flat
spot has a waiting time effect. We also establish that the free boundary has
non-degenerate and finite speed and the second derivatives have the bounds.
In addition, Aronson-Bénilan type estimate and global optimal regularity are
derived. Finally, we shall show that the interface between a strictly convex
part and a flat part is smooth for all time. Throughout the whole chapter, we
consider the case % < a < 1 unless there is some explicit assumption on a.
We will also assume that >; is smooth whenever we prove a priori-estimates.



Chapter 2

Preliminaries

2.1 Definitions and terminology

2.1.1 Metric, the second fundamental form and curva-
ture

Let {1, -+ ,x,} be the local coordinates of ¥; and v be the outward unit
normal vector to X;. Then the induced metric and the second fundamental
form are defined by

- Jox oX P 92X
95 =\ ozi* o/ M T T\ opiowi V)

Also the Weingarten map W, : T,M — T, M for the hypersurface M C R"*!
can be given by

where (g*) denotes the inverse matrix of (g;;), and then
® Op = Zl§i1<~--<ik§n AigAig *++ Aigs
o I =trace(h}) = o1 =3 i, Ny
o K =det(h}) =0, =MAy--- Ay, and

° ’A‘2:hijhij:)\%+...+)\%’
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where A1, --- , A\, are the eigenvalues of the Weingarten map at p.

2.1.2 Support function

The support function S(z,t) of the strictly convex surface is given by
S(z) = {z,X(v'(2),t)), for ze€S" (2.1.1)
where S™ denotes a unit sphere. Then X (z) can be written as
X(2) = 5(2)z + VS(2)

from the definition of the support function, (2.1.1), and V;S(z) = (X (2), V;2)
for the connection of the standard metric g on S™. We also have

0z 0X
o = ikgkl% (2.1.2)

from the relationship between the tangent vector and the normal vector and

the definition of the second fundamental form. In addition,
hij = ViV;S + 57, (2.1.3)

where g;; is the metric on S", which this can be obtained by taking covariant
derivatives of (2.1.1), [40].

We define the width, the inner radius and the outer radius of the convex
hypersurface as follows:

e the inner radius 4, = sup{r : B,(y) is enclosed by X for some y € R"1}

e the outer radius 7,,; = inf{r : B,(y) encloses X for some y € R""!}
e the width of the convex surface w(z) = S(z) + S(—=2) for z € "

e the maximum width wy., = max,esn w(2)

e the minimum width wy;, = min,ege w(z)

e the maximum support S,,,; = max,es» S(2)

e the minimum support S,,;, = min,esn S(2)
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2.2 Evolutions of the geometric quantities

2.2.1 Evolutions of metric, the second fundamental form,
and curvature

The evolutions of the metric, the second fundamental form, and curvature
are the following. Throughout this dissertation, the symbol O will be used
in place of the operator K*(h~1)kV,V,. The proofs follow the same line as
those in Chapter 2 of [40].

Lemma 2.2.1. Let 3¢ be convex and ¥y = X (X,t) be smooth. For the a-
Gauss curvature flow, we have

. 09y o
(Z) at] = —2K hij

(ii) @_ ijaKaa_X_ J a@_X
ot 7 owi 0w Oz
(iii) ag;'j — V,V,;K® — K%h;,h*

— OzDhij + 012Ka(h_l)kl(h_l)mnvihklvj'hmn
—OéKa(hil)km(hil)nlvihmnvj'hkl—i— ozKO‘Hhij—(1+na)Kahjlhé
., OK 1 —1vij +1
(iv) i a0K 4+ a(a—1)K* 7 (h )"V, KV, K+ K H

OK“
(v) T aOK® +aK*H

H - .
(vi) 80_15 = a0H+a*K* ¢V, KV; K —aK*g" (A" ()" hypn V j hrs

+aK*H? + (1 — na) K*| AJ?

o X
ot

(vii) Sl = O[X [P = 2K (g + 2(n — DE*(X,v)
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2.2.2 Evolutions with respect to the standard metric

g;; on S"

Now we have the following relationships and the evolution equations.

Lemma 2.2.2. Let X be strictly convex and X (v=1(2),t) be smooth, where

z € S". For the a-Gauss curvature flow, we have
(i) Gi; = hing™ by and g7 = (1) gy (h~")Y

(ii) b = (h™1)" gy,

, . det(7;)
iii) H =g, (h")*, |A]? = ¢"g,, and K = det(h?) = — 4

() Set Sy be the k-th symmetric polynomial of h;; while oy, is the k-th sym-

metric polynomial of h; Then S, = K71,

The following lemma gives us the evolution equations of the support function,

second fundamental form, and curvatures for the standard metric g;; on S™.

Lemma 2.2.3. Let X be strictly convex and X (v=1(z),t) be smooth, where

z € S"™. For the a-Gauss curvature flow, we have

., 08 o OSN o R
(Z)E——K =-K or<—§>l€ =1, where K=K

. . ahz NV 2] a— v T -« —a—
(i) 815] = -V,V,;K* — K°G;; = — (V;V;K~* + K~°7,;)

.., OH PSS T —
(111) W:gj(vivjl( + K gij)

|A]”
¢

(iv) 5 = 2g,;h K*
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0K -W\ij (T T . fre o— hijo S ra -~
(v) 5 = KT (ViV K + K°g;;) = K(h)IViV, K + KO H

0

K o
(vi) el aK*(h" 19V, V;K* + aK**H

oK B
(’U’L’L) E = _]C(hfl)l] (Vivj]C*a + ’Ciagij)

Proof. Taking the time derivative of (2.1.1) gives us

%:@,vx-

o L 0K
ot ot

and then (i) comes from (1.0.1). Also we can obtain (i) and (iv) by the
definitions of h;; and |A|?, respectively.
We know that

0 4 o
o H =g,;(h) (0 (ViVIK® + Gy K®)

= ¢"(V,VIK* + g, K°)

by (i¢). From the evolution equation of the second fundamental form, we get
the evolution equation of K:
— _ngmh g (hfl)nk(hfl)lighkl
mean ot
= K(h™)"V,V,K* + K" H,

oK
ot

which implies (vi). Also (vii) is obtained directly from the definition of K.
[

In addition, S satisfies, as in [37],

— Si(2, 1) [det(V;V;5(z,t) + S(z,8)0;5)]" =1 for (z,t) € S x (0,T%),
(2.2.1)
which comes from Lemma 2.2.2 (i74) and Lemma 2.2.3 (7).

10
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Chapter 3

a-Gauss Curvature Flows of an
n-Dimensional Compact
Strictly Convex Hypersurface

3.1 Main theorem

Let us denote the rescaled ¥ and a support function S by > and S respectively
so that the volume enscribed becomes normalized. We state the first main
theorem.

Theorem 3.1.1.

Let ¥ = X(X,0) be a compact, connected, strictly convex smooth manifold
in R Assume % <a<1. Then

(1) there exist a time T* and a strictly conver smooth solution {¥;, =

X(X,t)} satisfying (1.0.1) for t € [0,T*), and ¥, converges to a point

as t approaches to T™.

(i) The principal curvatures of the rescaled hypersurfaces S have the uni-
form upper and lower bounds. In other words, let us denote the eigen-
values of (h;) by \p for k =1,--- n and the smallest and largest one
by Amin and Apaz, respectively. Then we have

1 . _
— < )\mzn S )\max S M
e

11
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N-DIMENSIONAL COMPACT STRICTLY CONVEX HYPERSURFACE

for some constant 0 < M < co.

(iii) For any sequence T, — 00, there exists a subsequence T; such that
the rescaled manifold X, converges to a strictly convexr manifold Y«
uniformly in C'*°-norm.

(w) In addition, the limit, S,(-), of the volume normalized solution S(, i)

satisfies the equation f(f‘ = (S, a.e. for some positive constant C,
where K, is the gauss curvature of Yp«.

3.2 Curvature estimates

Now we shall show that the strict convexity of ¥; will be preserved under
the flow.

Lemma 3.2.1.
If ¥ is strictly convex, ¥y = X (X,t) is also strictly convex for t > 0 as long
as it 1s smooth. We also have

inf K(z,t) > ing K(z,0) > 0.
e

TEN

Proof. Let Z(t) = inf ey K(x,t) and assume that the minimum is achieved
at X = X(x,t). Then, at X, we have

VZVJK Z 0 and VzK = 07

and hence we get

0K 3
— =a0K + ala — 1)K Y (A" 9V,KV;K + K“T'H

ot (3.2.1)

> Kot g,
Now, H > nKY™ implies

a_Z > nZOH-l—i—l/n'

ot —

By the maximum principle, we can get Z(t) > Z(0) > 0 which gives the
positive lower bound of K for t > 0, and then the strict convexity of ¥;.

m

12
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We have the following lemma (cf. [2]). We shall use the idea of Lemma 3.5
in [40].

Lemma 3.2.2.

Let 3¢ be convex, ¥y = X(S",t) be smooth fort in [0,T*), and o > 0. Also
let us consider the sphere with radius r;,,(T* — 0) and center at the origin
contained in Yp«_s and set py = %Tm(T* — ) where § is any positive constant
satisfying 0 < T*. Then there is a constant C' > 0 such that

zeSn, 0<t<T*—§ 2€8n napo

1\ no
sup Ka(z,t)SC’:maX<SupK°‘(z,0),(na+ ) >

Proof. We consider the function ¢ = Sff—ao, where S is the support function.
Here S(z,t) = (2, X(v~!(2),t)) and then

05 0X
— = — ) = (2, —-K%%) = —K°.
at (Z ot ) (2= Kw)

Let us assume that ¢ has its maximum at (zg, tg) for to < 7T* — 4. Then,
at (zq, to), we get

Pt > 0, vm =0 and Vzngo < 0.

S—po)V; K*—K*V,S v, K® vy, -
( ,00) i i _ VK K V»LS SO VZKQ

Now we have 0 = V,;p =

(S—po)? T S—po  (S—p0)?’ B
KS%VZ'S. Since
PO
== = (V;K*  K%V;S
0>V,Vp=V;(=~2 — J
B ¥ <S—P0 (5—00)2)
_ ViV;K* VKV, S V,K°V;S + K°V,V;S
S = po (S = po)? (S = po)?
2K*V;SV,;S
(S = po)?

AP I A

S = po (S —po)?

13
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K%V,;V;S

we also have vﬁjf( ¢ < ==
PO

. Therefore ¢ satisfies, at (zo, o),

) 1 o K2
< — a/,—1\ijT X7 . o 2
0< 2 (aK (Y)Y V,K® + aK H+S_p0>

K°Viv,5 S) + oK™ + SKQ(; }
— FO

S = po
1
— 5= po

A

{are =y (

S = po
From Lemma 2.2.2, we can derive

K« h—l ina KZoz

K2a
= (na —apoH + 1),
S = po

0<

S = po

which means

0<(na+1)—apyH.

If ol < [ that is, H > € > £ > £ where C = "L we get a con-
apo ’ ) PO Tin Tout a
tradiction. Therefore H is bounded, so K is bounded since K% < n™"*H"?,

Now we conclude that

1\ no
sup K%(z,t) §C’:max<sup Ka(z,O),<na+ ) ) .

zeSn, 0<t<T*—§ 2SN napg

Now we consider the eigenvalues of the reverse second fundamental form.

Lemma 3.2.3.

Let 3¢ be strictly convex, ¥y = X (X,t) be smooth, and % < a < 1. Also set
H = (h™Y)4g,;. Then there is a constant C > 0 such that

-1
supH < C' = max (na K=" sup H(x,O))

€L « €L

fort >0 as long as it is smooth.

14
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Proof. First we have the evolution equation for H:

T oO# — 20k (W) ()P (b (h ) gV haa Vb

ot
i i  LI( b T P M
R (WY (0 () g5,V o Vi
— aK“HH +n(l 4+ na)K* — 2nK*
since we can obtain
aOH = — a(h™)*(h™1)4 g;;0hy (3.2.2)
+ 20K (R (R P(RH (W)Y 955V hiaV hy B

from the second derivatives of H and we also have the Codazzi identity and
symmetry of h;;. Then at a maximum point we get

T 0K (W) (Y2 (Y (03, Vi

ot
+aK (R (R (W) () G35V ki Vi,
— aK*HH +n(no — 1)K
< —aK(WHM(RT (R (BT 933V khin Vilg
—aK*HH +n(na — 1)K*
< —<aHH —n(no — 1))[(“

< —<omK1/”’H —n(na — 1)>Ka.

since H > n(K)Y" > ¢y > 0 for some positive constant co. On the other

hand, we have a contradiction if H > 07;1’/1” at a maximum point. Hence

H < %_IK /7 Then the result follows. O

3.3 Integral quantity and asymptotic behav-
ior of hypersurface

We shall define the volume V'(¢) and the area A(t) enclosed by convex surface
¥ as follows:

15
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e the volume function V(t) = =5 [(X,v) doy = 25 [., 2 dog

e the area function A(t) = [;, dos = [, &+ dos»

Lemma 3.3.1. For the strictly conver and smooth solution ¥y = X (S",t) of
a-Gauss curvature flow (1.0.1), we have

1
Dy ;

— | ——dosn.
AR o Ko 078

Proof. First observe that from Lemma 2.2.2 and Lemma 2.2.3, we have

S’Ct dO’Sn = SIC(h’l)”(Vzijt + Stﬁij) dO’Sn
Sn Sn
== / Sth(h_l)w(vzv]S + S?zg) dO‘Sn
§n
= / St,C(h_l)ijhij dO’Sn = n/ Sth dUSn
Sn n

since V,;KC(h~)% = 0. Hence we have

0 1
=V(t) = St + SKy) dogn
ot ®) n+1/Sn( ¢+ SKy) dos
1
N ! N Kl_a
]
Now let us consider the rescaled solution
; X(1)
and also assume that the normalized volume V(1) = —- ( Jn %dOSn) =1
where 7(t) = —log (%) For the rescaled solution, we have the rescaled

metric, second fundamental form, and curvatures as follows:

16
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7 _1

~ 2 3

e H=V({#)"H and K=V(@#)"K

~ 1 —_ nla— ]-
e S=V() S and 7=V() "y where 7(t) = /Sn Toiza dos

Then we obtain the following corollary.

Corollary 3.3.2. For the strictly convex and smooth rescaled solution 3, =
X(S™, 1) of a-Gauss curvature flow, we have the evolution equation of X :

0X K 1 -
=——VU+ 1X on §" x [0, 4+00),

or n n—+
where K is the gauss curvature and i is the unit outward normal of .

Proof. Lemma 3.3.1 implies

Since %—f = %—fj—j = —Wlff%ﬁ + - X, we get the result
0X = K° 1
— = ——V X. 3.3.2
or 7l * n+1 ( )

]

Now we introduce an integral quantity to analyze the asymptotic behavior

of the rescaled hypersurface X.
Lemma 3.3.3. Let us define the integral quantity I as follows:

1 sgn(a—1)
(/ T_ldagn) fora>0and a # 1
Sn

;

@

(3.3.3)

/loggdagn fora=1
\ JS™

17
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Then it satisfies

0 ~

—ZI(1) <0. 3.3.4

or () < ( )
Moreover, the equality holds if and only if K = CS a.e. for some positive
constant C'.
Proof.

Case 1. Let us assume that 0 < o < 1.
By the definition of the rescaled support function S and (3.3.2), we know

that B
~ oS 1 = 1
j(*& - — = ——=. .
(87’ n—l—ls) n (3:35)

Multiplying both sides of the equation (3.3.5) by S~ where § will be chosen

later on, implies
1 (08 1 ) K°
S8\ or n+1 N 7S8’

from the derivation of Z(7) with respect to 7, we have

0 -~ S,
@) ) = [t dows
! . o (3.3.6)
= / gl_ﬁ dUSn — = dO‘Sn S 0.

Since 77(7) is positive, (3.3.6) is non-positive if

1 - 1 K

which implies non-positivity of the evolution equation of Z (7). Hence it will
suffice to show that inequality (3.3.7) holds. First, notice that we have

B—1

[ o = [ (57T (£) T o,
" " L (3.38)

. e 1 5
< / K*S dogn / - dogn
n N KQ(IB_I)

18
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fora(f—1) = 1—a. That is, § = é from the Holder inequality, which implies

1 Lo l1-o 1 «
/n S’é—l dUSn S ( o K*S a do‘Sn) (\/STL I,’N('lfa dO‘Sn) . (339)

We also have

~ 11—«
1 -
= dosn = / (%) S=0-% dogn
sn —a n
~ -«
1 «
S( §d> (L)
Sn n a

Now from (3.3.8) and (3.3.10), we get

1 1 11—«
( = dagn) ( = dasn)
- -, -« 1
< ( K*S = dagn> ( . d0sn>
sn sn Kl—a

11—« & 1-o «a
— 5 1
S </n K*S™a dO’gn) ( - ? dO‘Sn> (/n F dUSn)

and then

1 1 -l S
</n Td()'gn) (/Sn Kl—a dO’Sn> < < - K*S™a dO’Sn) ( - ﬁd()'gn>

:(n—|—1)<

(3.3.10)

oGt do—gn)
(3.3.11)

N

since the normalized volume V() = =5 ( Jon %d0§n> = 1. The last inequal-

ity (3.3.11) completes the proof of the desired result.

Case 2. Assume o = 1. ~
Since S satisfies the equation S, = ‘S—Ifq + %HS where |S™| means the volume

of Sn, 220 _ Jen % dog. < 0 is equivalent to

or
n|2 o
"] </ B tos. (3.3.12)
n S
19
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I 3
( TdUSn)
sn S

(3.3.13)

Then, we know that

o\ e\
| |_(SnSUS><SnK US) (n+1)

from the Holder inequality and V(7) = 1. This implies (3.3.12) directly.
In addition, the equality in (3.3.4) holds if and only if the equalities hold
in (3.3.9) and (3.3.13), which implies the equation K* = C'S a.e. for some
positive constant C.

VI

[]

We can observe that Z is bounded below from [22] for « = 1 and Z > 0 for
a > 0 and o # 1. Lemma 3.3.3 for the evolution equation of Z gives us the
following convergence.

Corollary 3.3.4. For the integral quantity f(T) given by (3.3.3), we have

lim i(T) = io

T—00

for some constant Ly, moreover

lim 2f(r) = 0.

=00 OT

Lemma 3.3.5. Let us assume that 21 and ig are n-dimensional hypersur-
faces embedded in R™ and monotone quantities of X1 and 3o are I, and
I, respectively. If ¥4 C g, then we have

I, <I,.

20
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Proof. Let us S1(z) and Sy(z) be the support functions of 3, and Y, respec-
tively. We know that if Yy C 3y, then gl(z) < 52(2) Then by definition of
i, we have

- 1 1
I;l = / ~l,1dUSn = / = l71d0'gn
sn Sp s {2, Xa(vH(2)))e

2/ _ 1 . dagn:/ 1 dosn = I,
n (2, Xo(v(2)))a ! sn 525‘1

for z € S™.

Now we shall show that %(7) has a finite width.

Lemma 3.3.6. Let us consider an ellipsoid E (1) such that vy, (T) is equal to
half of the minor azis and Tywax(T) is equal to half of the major axis. Assume
that E(7) has a fized volume V(7). If rmax(T) goes to infinity, then I(T) is
also infinity.

Proof. Set ry---r,.1 = C where C is some positive constant. The equation

for the ellipsoid is

2 2

x] T4

9@, xn) 5 A ;Jr =1

1 Tnt1

where 1 = Tmin, Tna1l = Tmax and 7 < ryg < -+ < r,11. Then an ellipsoid
can be parameterized by:

X = (711Q17 s 77nn+1qn+1>
where ¢ = (q1,...,qnr1) € S™. We also can obtain a normal vector N =
%Vg = (f—%,,fgi) , a unit normal vector v = H%II’ and the support
function S = X -0 = m Now we have 7 = N; = |[|[N||lv; = [[IN||z; = %zi

where z = (21,...,2,) € S”, and then

Z; T

= =Zj.
T

21

&
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: a3 Topr _ 112 Thi1 .2
Slnce:[:%_}_... T;Lilzg_;zl—i_—'— g;zn+1aweget
n

&2 2.2 2 2
ST =1zt e

and we also have

- 1 1
Iil = / T_ldagn = / T, dO’Sn .
s Sa N ( 5 a

) 2
\/7"121 +eeet Tn+1zn+1)

We consider the following case in general: there is 1 < k < n + 1 such that
Tpal = o0 2T > Ty > --- > 1y with ry---r,01 = C, where C' is some
positive constant. Then we have

1

11 1
Clrn-ﬁ-(ll <

s"N{1<zn41<1} ( o

v+ 1\/7"721+1Zr%+1>

dUSn

= 1 1—1
SIIS/ < l_ldagn SCQrTH,(f,

2 2 «
rn+1 ZnJrl

i . -1
where C} and C; are positive constants. Since C'r,, { goes to zero for a <1

as Tmaz(7T) goes to infinity, Z(7) is also infinite. Similarly, for a = 1, since

cilogrpi < 7= / IOngUSn < cylogr,y

n

for some positive constant ¢; and ¢y, Z(T) — 00 aS Tmae(T) — 00. O

Now we shall introduce a theorem called John’s Theorem.

Theorem 3.3.7 (John’s Theorem, [6]). Let K be a convex body in R™. Then
there exists a unique ellipsoid E of maximal volume which is contained in
each K. This ellipsoid E is B} = {x eR": Y Ta? < 1} if and only if the
following conditions are fulfilled:

(i) By C K.
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(1) There are positive numbers (¢;)7" and Euclidean unit vectors (u;)* on
the boundary of K such that Y ;" c;u; = 0 and Y v, ¢z, u;)? = |z|?
for all z € R™.

We define the width of the convex surface by the function w(z) = S(z) +
g(—z) for z € S™ and let Wyax = Max,esn W(2) and Wy, = Mmin,esn W(2).
Similarly, set Spar = MaxX,egn S (z) and Sin = Mil,egn S (z). Then we have
the following.

Corollary 3.3.8. For the rescaled hypersurface & with the normalized vol-
ume, there exist some positive constants 0 < ¢ < C' < oo such that

c S wmin S wmax S C
for all T € [0,00).

Proof. We know that there exists a unique ellipsoid F,, of maximal volume
enclosed by the given convex body ¥ by Theorem 3.3.7. Thus we can set up
Y between two ellipsoids by using an affine transformation. In other words,

E,CcXC+nE,.

Then if the maximum radius of ellipsoid F,, is infinite, the monotone quantity
7T for E, is also infinite by Lemma 3.3.6. This fact and Lemma 3.3.5 give us
that & does not have the finite monotone quantity Z. It is a contradiction
to Corollary 3.3.4. Then this implies the desired conclusion for the rescaled
hypersurface 3 with the normalized volume.

O

Corollary 3.3.9. For the rescaled hypersurface $ with the normalized vol-
ume, we have
c S Smin S Smaz S C

for some constants 0 < ¢ < C' < oo and all T € [0, 00).
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Proof. From Corollary 3.3.8, we get Smax < C for some positive constant C ,
which implies S, > ¢ > 0 for some constant ¢ since V(1) = 1.

]
Lemma 3.3.10.

If Yo is strictly convex, then there is a constant C' > 0 such that

~ ~ 1\ na
sup K% z,7) < C = max (sup K%(z,0), (na + ) >

2€Sn, 0<r zeSn napo

where py = iwmm.

Proof. From the evolution equation of K%, we have

OK® . e =
:ngQ—FngaQH—
or n 7 n—+1

no KO‘

where 01 = K a(ﬁ—vl)wﬁﬁj By Corollary 3.3.8, we can consider py = i@min

and then apply the maximum principle to the function ¢ = Sfi—po. Let us
assume that the maximum of @ is achieved at the interior point Py of X.

Then we have the following properties
@ >0, V;p=0and V,;V;¢ <0

at P,. Using the evolution equations of K and S and calculating by the
similar way to Lemma 3.2.2 implies

aK*(n—SH o -, - K2 na ke K*S
< ——=— +-K“H+ —— — - —
(S —po) NS —=p) ntl  (n+1)(5—ho)
120 5
< ~~K—~<na—aﬁoH+1)
(S = po)

at Fy, which gives us that
0< (noz—i—l)—aﬁolf]—i-l.

Following the same line of the last argument in Lemma 3.2.2, we get

2€Sn, 730 2eSn nag

~ ~ 1\ no
sup K“(z,T)gC:maX<supK°‘(z,0),<na+) )
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Lemma 3.3.11. There is a uniform constant 0 < A < oo such that

1 ~
) — <5<
() ;<S<A,

Proof. (i) A% < S < A, comes from Corollary 3.3.9 for some Ay > 0.
(ii) From Lemma 3.3.10, we can derive that 7(7) > A% for some positive

constant A; > C"a"|S"|~!, where [S"| is the volume of S" and C' is the upper
bound of K“. In addition, by the Holder inequality and V' = 1, we have

11—«
- 1 .
0= / K ' dogn < < TdUS") ASMT < ((n+ 1)A1)1 IS™|* < Ay
Sn sn K
(3.3.14)

for some positive constant A,. Then we get < n < A; by selecting Ay =
max (Al, Au).
(iii) Let us consider the evolution of S = S for > 0. Let K and H be the

gauss curvature and mean curvature of the hypersurface given by the support

1
Ao

—_~—

LT ‘ Tl Tl oY _ 1Y
function S, respectively. Then K = -2 K, H = 2 H, (h7')" = (h™") , and
= u(l_o‘)nﬁ._Let Z(7) = infesn K(z, 7). Then we assume that the interior
minimum of Z(7) is achieved at Py = (zp, 7). From the evolution equation
of Z(7), we have, at P,

0Z T Ap— — D) i = — —
_:a,u_ VA (hfl)jviijjLa(a _)N 7 l(hfl)JViZVjZ
or ]
n+l .
Ty L
n n+1
n+1
>t 7" 7
n n+1
n+1
n n—+1
n+1

_ i/ 1
ZTLZ(M_—Zl/ — )7
A2 n+1

25
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n+1
A2

Zl/n(T) — 4 and choose p >

<n/f1)n (~ "o for Z(7) = inf.esn K(z,7) and Z(1) =
tells us Q(0) > 0. Then the evolution equation of Q(7) is

where Ay = p"=¥A,. Set Q(1) =
(0))

-Z(7), which

1
un

8@ _ CY,ILn—H— — i —
i 2 ) VQY,Q

—n—1 n
A2 1 Iun+1_ 1
s H —
+ p(nt1)(n=1) (Q + n -+ 1) < nn n+1

1> OzTLAQ

_1 1
at the interior minimum point since nZ" < nK"™ < H. By the maximum
principle, we have

Q(T) > Q(0) >0

for all 7 > 0, which 1mphes > 0 at P, and then it gives us contradiction.
Hence we obtain
inf K(z,7)> inf K(z,0) >0,

zESM z€ES™

and we also have the desired result inf,cgn f((z 7) > inf,egn K(2,0) > 0 for
all 7. Combining with Lemma 3.3.10 implies A7 <K< A% for some positive
constant As. Now we select A = max;—1 23 A;.

O

To obtain the regularity of the solution around the maximal time 7™, let us
consider the evolution equation (3.3.2). Then the evolution equation for S is

S, (3.3.15)

SO

(3.3.16)

S|

___;rx_-l! E CI.'II

1_'_] |
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Now we shall derive C'''-estimates for the solution of (3.3.16) as in [23] and
25].
Lemma 3.3.12. Suppose that S € C* is a solution of the equation (3.3.16).

Then we have
WQS*\ <C on S"x|[0,00)

where C' is a positive constant depending on S and the first derivative of S
i time and space.

Proof. Let
v(z,T) = ‘S’(zn‘)‘ (vﬁcé(z, T)+ 5(2,7)) exp (%u}vgg(z,r)f — pg(z, 7')),

where 1 and p are positive constants. If the maximum of v is achieved at the
initial time, we are done. So we assume that v has its space-time maximum at
some interior point Py = (zp, 79) and for some unit vector (. We can assume
¢ = (1,0,...,0) by choosing an orthonormal frame about z; and then the
matrix {V;V;5(2)} is diagonal. Then

v(z,7) = }5’(2, 7')‘ (Vﬁlé(z, T)+ 5'(2,7)) exp (%u‘vls’(z, T)|2 — pg(z,T)).

Let £ be the linearized operator at P

1 - ~ ~ -
L= ~ ” g + C(F}j(VkVZS + S(Skl>vlvj
(8- = +5) (R 97

Then {v,ﬁlé + §5kl} is diagonal.
We know that for F'(M) = log(det M) where M is a positive definite matrix,

OF 02 F
F)=— =M and ——r = F, .= —FyFy
(Fa) = Baz, W oMM, UM kO

Let
w = logv(z,T)

= log[§(z, )| + 108 (Vi¥18(2,m) + 82, 7)) + 5ulTi8(,7)[* ~ pS(=,7)

27

&

| &1

1V



CHAPTER 3. a-GAUSS CURVATURE FLOWS OF AN
N-DIMENSIONAL COMPACT STRICTLY CONVEX HYPERSURFACE

which also attains its maximum at 7, so @w(PO) =0, V;Vw(P) <0, and
w7—<P0) Z 0.
Since V;V;S + S6;; > 0 from the strict convexity of %, (F;((V;V;S +
S6:;)(20))) is diagonal, so

! O P+ aFu(Vi¥iS + $00)(Po)) ViV w(By)
(S’T—%HS')(PO)(?T 0 13 kVli kl 0 i Vj 0
<0.

L(w)(Py) =

From now on, we will use the notation V;; in place of V;V; for convenience.
We have that at F,

Vo= V2 Vs + Vi
S ViiS+ S

In addition, we get

—pViS=0 fori=2,...,n. (3.3.17)

vzzg (vlg)2 viillg + 15 (Vmg + 715“)2 — =

Vzvlw = = — = + — = ~l - — = = + Vz S 2
3 32 Vs 15 &.515p MVad)
+ lesvulg - pvug S 0 for all i,
(3.3.18)
and
S, S48 = i s -
Wr = —= VH - + /‘LVIS v1 T PST >0 (3319>

(3.3.20)
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Since (#15’ - 5}) [det (Ving + 5'51-]-)} ¢ = %, after differentiation and then

some calculations, we have

1. ¥,5-V,5,; L
T L aF (VS + Vi8S =0 at R (3.3.21)
153,

GEVS V05 a(Tuud + Vi)

%ang — VS, -
1 g_g B 1 g _ 2 Y.5 18§
R (S =57 , Vab + 5 (3.3.22)
_ oV TV _ g o
We use the properties of covariant derivatives:

and
Vlkj,;g = v]‘ilkg + 25klvﬁg — 25@'?%5’ -+ 51-173-;3 — 6k37lz§ (3324)

After using the formulas (3.3.21)-(3.3.24) and the following properties

a<vi11g+vi~)2 O a(vmg)Q

(ViS+8)(VuS+S) == (VuS+9)(V;;5+59)

and

and several computations, (3.3.20) can be simplified to
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(V1S — ViS)
ViS+ S

from (3.3.23) and (3.3.17), we have
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Let v; = VS 4+ S. Then (3.3.27) can be written as

; " ap(T:5)’
0% —a- SV +a71+zaﬂ(_)%(p_z>
(=5-35) . - 5
v.5)? — ., A (V,9) 3.
— a(g—lz) — OZ,U(V;[S)Q _ n—l—l( Nl ):71 + pN 71~ ‘|‘OZ,U'712

(@)}

apS’Yl

— 201571 + apS? — apyr +
(3.3.28)

at Py. We obtained the lower and upper bounds of S on [0,00) in Lemma
3.3.11, and | V;S| also is bounded for i = 1,..., n since X is strictly convex. In
addition, since —S S, has the positive lower bound from Lemma 3.3.11,
choosing p and p such that

0> Ay,® + By, + Cy,

where A is a positive constant and B and C are some constants, give us the
desired result.

O
Corollary 3.3.13. There exist some positive constants C' such that
sup H < C.
xei 7>0
Moreover, )\mm > Cy > 0 for some constant Cy. Here )\mm = /\1 < ... <

My = Aaa where Xs are the eigenvalues of (hl)

Furthermore, combining Lamma 3.3.10 and Corollary 3.3.13 implies the fol-
lowing Corollary.

Corollary 3.3.14. All curvatures on the rescaled hypersuface > are bounded
above and below by the uniform constants. In other words there exists some
constant 0 < M < oo such that

>/z
3
)

1 -
— < A\ < M.
S <

___;rx_-l! E CI.'II

1_'_] |
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3.4 Existence of solutions and proof of main

theorem

3.4.1 Short time existence

Let us assume that ¥, is smooth. Then we get the uniform C! estimates of
the coefficient of our equation (2.2.1) and this equation becomes uniformly
parabolic. Thus the regularity theory of uniform parabolic equations and
application of the implicit function theorem give us the short time existence
as in [33].

3.4.2 Long time existence

Let A; be the eigenvalues of (h%). We know that \; is positive by the strict
convexity. Also we have K = A\;--- )\, < C} and H = %1 +--~+ﬁ < Oy
from Lemma 3.2.2 and Lemma 3.2.3, where A\ < Ay < --- < )\, and C; and
(5 are some positive constants. These give us, for each i =1,...,n,

1
0< <\
Cy —

from/\ii<)\il+---—|—ﬁ§02andalso

C
O<)\Z§ ! 30105_1,
J#ING

which imply there are 0 < A < A < oo satisfying
M€ < K (h™)7gg; < AJEJ*.

Then we know that the support function S(z, t) satisfies a uniformly parabolic
equation in ;. Hence S(z,t) is C*? and then C* in 3; through the stan-
dard bootstrap argument using the Schauder theory. If thereisa 0 < 77 < T™
such that Y; is smooth on [0, 77) but not smooth after T}, the uniform C?7-
estimate for S(z, t) implies that Y7, is C*7, and therefore C*°. From the short
time existence and uniqueness, ¥; is C*° on [0,77 + 9). It is a contradiction.
Therefore T7 = T™ for some small 6 > 0 and there is a smooth solution ¥,
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on [0, 7). Also, the solution ¥; will be strictly convex by Lemma 3.2.1.

Proof of Theorem 3.1.1. We have the uniform bounds of curvature and
all of the higher derivatives of the second fundamental form to the rescaled
manifold by Corollary 3.3.14 and then the equation (3.3.16) will be uniformly
parabolic. In addition, we have C!-regularity of the solution S from Lemma
3.3.12. By applying the Harnack inequality to the linearized equation satisfied
by S,, we obtain that S, is Holder continuous through a similar argument

as in [23]. We can apply Evans-Krylov theorem and Schauder estimates (see
[7]) to the concave operator obtained by taking exponent - to the equation
(3.3.16), which implies C*7-regularity of Sfor 0 <~ < 1. And then we have
the smooth and strictly convex rescaled solution by the standard bootstrap
argument using Schauder theory and Corollary 3.3.14. In other words, for
every sequence of 7, — 0o, we can find a subsequence 7, such that S(-, 73,) —
S, (). Also the integral quantity

1 sgn(a—1)
(/ R 1d03n> for « > 0 and a # 1,

(

1
[

Z(7)

/ logS’daSn fora =1

satisfies the monotonicity —I( ) < 0, and equality holds if and only if
K = C8§, for some positive constant C, holds for a choice of origin. For
the limit manifold ¥7- of the volume rescaled manifold Enk, following the
same argument as in Theorem 16, 2], Z(7) — —oo if Y7+« does not satisfy
Ko = (.S, a.e. for some positive constant C,, which gives a contradiction.

Therefore the proof is complete.
O
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Chapter 4

a-Gauss Curvature Flows with
Flat Sides and Free Boundary
Problems

In this chapter, we shall study the regularity of the solutions ¥; of a-Gauss
curvature flows (1.0.1) for the initial surface 3y in R with a flat spot and
% <a<l.

4.1 Preliminaries

4.1.1 The balance of terms

We will assume for simplicity that the initial surface ¥y has only one flat
spot, namely that at ¢ we have ; = 3! U X? where X! is the flat spot and
Y2 is strictly convex part of ¥;. The intersection between two regions is the
free boundary I'y = ¥} N 2. The lower part of the surface 3y can be written
as a graph z = f(z). And similarly we can write the lower part of ¥; as
z = f(z,t) for x € Q C R™ where 2 is an open subset of R".
The function f(z,t) satisfies a-Gauss Curvature flow:
2 £\]a
f, = (et NI (4.1.1)

a(n+2)—1

(L+[Vf2) 2
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Let us first consider the rotationally symmetric case to see the balance
between terms for n = 2. If f = f(r) is rotationally symmetric, (4.1.1) can
be written as

fOC (0%
fo= s 4.1.2
e 1

Let r = ~(t) be the equation of the free boundary I'(f) = 0{f = 0}. The

speed of the boundary is given by
o ey

7:_ - a—1"*
N

The regularity comes from the non-degenerate finite speed of the free
boundary before the flat spot converges to a lower dimensional singularity at
a focusing time. When f = (r — 1)i at a given time t, for r =~ 1,

for s = r — 1, which implies g = g’gj

For a general f = f(x,y,t), let f = %gﬁ for p = 3‘1_}. The equation for

20—

this pressure g will be

g = lg det(D?g) + 0(c) (929 + gyGaz — 2929y Gry)]" (4.1.3)
t (1+ ¢*-2|Vgl2) ™5 N

for O(a) = f — 1 = 3%+.

2c
Assuming ¢, = 0 at the boundary, the speed of the boundary will be

==t = —0a) g (4.1.4)

for a tangential direction 7 and a normal direction v to 0.

4.1.2 Conditions for f
Condition 4.1.1. Set A(f) ={f =0} and I'(f) = OA(f).
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(I) (Non-degeneracy Condition) Our basic assumption on the initial sur-
3a—1
face is that the function f vanishes of the order dist(X, A(f))2e=1 and
that the interface I'(f) is strictly convex so that the interface moves
1
with finite non-degenerate speed. Namely, setting g = (8f)7, we as-
sume that at time ¢ = 0 the function g satisfies the following non-
degeneracy condition: at t = 0,
1 1
0< )< |Dg(X)| < 3 and 0< M\ < D2 g(X)< Vi (4.1.5)
for all X € Ty and some positive number A\ > 0, where D?_ denotes
the second order tangential derivative at I'. Then the initial speed of
free boundary has the speed, at t = 0,
. 1
0< )\4 ! < h/t‘ < W. (416)
(IT) (Before focusing of flat spot) Let T be any number on 0 < T' < Tp, so
that the flat side X} is non-zero. Since the area is non-zero, 3} contains
a disc D, for some py > 0. We may assume that

D,y ={X€eR”: [X|<p} CE for0<t<Ty. (4.1.7)

(IT1) (Graph on a neighborhood of the flat spot ¥}) We will also assume,
without loss of generality, throughout this chapter that

Igg(}f)f(-,t) >2, 0<t<T (4.1.8)
where Q(t) = {X = (z,y) € R? : |[Df|(X,t) < co}. Set
Qp(t) ={z e R* : f(z,y,t) < f(P)}. (4.1.9)

4.1.3 The concept of regularity

Let us assume Py = (xg, Yo, %) is an interface point and ¢, is sufficiently
small. Then condition (4.1.5) is satisfied at ¢, for a small constant c. We can
assume

gz(Py) > ¢>0 forsome c¢>0 (4.1.10)
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by rotating the coordinates. Also by transforming the free-boundary to a
fixed boundary near Fy, we can obtain the map = = h(z,y,t) where (z,y,t)
is around @y = (0, yo,to) and then the free-boundary g = 0 is transformed
into the fixed boundary z = 0. From the calculation on g(h(z,y,t),y,t) = z,
we have the fully nonlinear degenerate equation

h,.hyy —h2 ) — 0(a) hohy, t*
ht:—{z< w = Iy) ~ 6() 4;1’?1}, z2>0 (4.1.11)

{z20-D 4+ b2 + 26-1D p2} 2

implying that under (4.1.5) and initial regularity conditions, the linearized
operator

iLt =2z allﬁzz + 2\/2 algiLzy + aggilyy + blilz + bQiLy (4112)

where (a;;) is strictly positive and b; > v > 0 for some v > 0.

Definition 4.1.2. For the Riemannian metric ds with ds®> = d—f + dy?,
let the distance between Q1 = (z1,1y1) and Qs = (z2,Ys) in the metric s

be s(Q1,Q2) = |\/z1 — /Z2| + |y1 — y2| and the parabolic distance between
Q1 = (21,y1,t1) and Qa2 = (22,2, t2) be 5(Q1, Q2) = |\/21 — /22| + [y1 — y2| +
V|t1 — ta|. Then we define CY, v € (0,1), as the space of Holder continuous
functions with respect to the metric s and C*™ as the space of all functions
h with

hyhay by, hey 2 By /2 By, by, € CL.

Remark 4.1.3. When we consider the equation
hy = zh, + hyy +vh, (4.1.13)

on the half-space with v > 0, which does not have the other condition of h
on z = 0, the Riemannian metric ds decides the diffusion of the equation.

Remark 4.1.4. If the transformed function h € C?™7 we say that g € C?™
around the interface I'.
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4.2 Main theorems

Now we shall state the main theorems.

Theorem 4.2.1. Let us assume % < a < 1. If ¥y is conver, then any viscos-
ity solution 3y of (1.0.1) is CY! for 0 < t < Ty. Moreover the strictly convex
part, X2, is smooth for 0 < t < Ty.

The following short time existence of C°-solution with a flat spot has been
essentially proved in [15] since the linearized equation for h, (4.6.3), is in the
same class of operators considered in [15] because of the conditions, (4.1.5),
as in [15]. Therefore the Schauder theory can be applied to (4.6.3) and then
the application of the implicit function theorem gives the short time existence
as in [15].

Theorem 4.2.2 (Short Time Regularity, [15]). For 3 < a <1, assume that
g = (ﬂf)% is of class C*™ up to the interface = = 0 at time t = 0, for
some 0 < v < 1, and satisfies Conditions 4.1.1 for f. Then there exists a
time T' > 0 such that the a— Gauss Curvature Flow (1.(1).1) admits a solution
X(t) on 0 <t <T. In addition the function g = (5f)? is smooth up to the
interface z = 0 on 0 < t < T. In particular the junction I'(t) between the
strictly convex and the flat side will be a smooth curve for allt in 0 <t <T.

One of the main results in this chapter is the following long time regularity
of the solution.

Theorem 4.2.3 (Long Time Regularity). Under the assumptions of Theo-
rem 4.2.2, the function g = (ﬁf)% remains smooth up to the interface z =0
on0<t<T forall T <Ty. And the interface I'y between the strictly convex
and the flat side will be a smooth curve for allt in 0 <t < Tj.

To show Theorem 4.2.3, we follow the main steps in [19]. However, the expo-
nent « creates a large number of nontrivial terms, especially in the estimate
of the second derivatives. New quantities have been considered to absorb the
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effect of terms depending on (1 — «) in Lemma 4.5.3. Optimal regularity and
Aronson-Bénilan type estimate have been proved in Lemmas 4.5.4 and 4.5.5.

4.3 Convex surfaces

4.3.1 Curvature estimates

Now we shall show the regularity of ¥;. The following lemma was proved in
2, 29].

Lemma 4.3.1. Let Xy be strictly convex and o > 0. Then:
(i) There is a constant C' > 0 such that

9 1 200
sup Ko‘(x,t)gC’:maX<supK°‘(x,O),< ot ) >

z€Y, 0<t<T) zED 2apg

(11) inf,ex oot K > infiex K*(x,0) > 0 as long as it is smooth.

(11i) There is a unique viscosity solution ¥;.

Lemma 4.3.2. Set ¢(x,t) = (z,v) and let Bg,(0) be a ball of radius Ry

about the origin and P = where Y is contained in Br,(0) and

H
P+4AR? —[z[?
R? = max(Ry*, Ry). Then there exists a positive constant C for % <a<l
such that

swp H(z,t) < C,
zeXl, 0<t<Ty

where C' = C(Sup,es; o<, K R) > 0.

Proof. Since |z| is decreasing, 1) + 4R* — |z|? is positive and then we have

s,
&W = O|z|? + 2K*(z,v) — 2K*(h~")* gy
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By using V;P = 0 at the maximum point, we can obtain

aOH aHO|x|? aHOY

OpP = _
= U AR i T G AR _[2PR (0 AR — [1]P)?

and then since V;V;P < 0 at the maximum point, we get

0, (- o)HOlz]? H((2a+ 1)K*+2K*)  H*(aK%) +2K*)

ot = (Y +4R? — [x]?)? (+4R2 — 2P (Y +4R? — [2]?)?

aK*® g
* ¥+ 4R — |22 (O‘Ql](h DAYV shia VR

1
U AR [

(aK“H? + (1 — 2a)K*|AP)
(4.3.1)

at the maximum point. Now, we can estimate the fourth term of (4.3.1) by
the following inequality

(h 1 kl( )mnv hklv hmn . '(h—l)km<h—1)nlvihmnvjhkl
(@ —1) [ (B YV 1y + ()2 1ha ) + (B Vahyy + (h’1)22V2h22)2]

= 2(h ) (P (Vahn)® + (Viheo)? |
( ) h~ 1) { - (Vlh22)2 - PV1h22(V1!9€\2 - Vlw) - (V2h11)2
— PVQhH(V2|SC|2 — VQw)}

)
(
(R (A )22{v hiyVihas +V2h11V2h22}
)
i

< 2(h*1)11(h*1)22(1 _ g)zox‘z _ <x7y>2)P2
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where h = min {h11, hos}. Hence

0
—P<
ot~

2
¥+ 4AR? — [z[?

-\ 2
201 <1 _ ﬁ)

(J2l* = ¥*) + (1 = 20) K™

220 — 1)Ko+

PQ
AR [

+ K{4(1 = a) R — (1 - a)[af* — 2K°~"}

1

P.
t AR _Jap

[(1 —a)0z]* + {2¢ + 20 + 1) } K°

For % < a < 1, we can make the coefficient of P? negative, which can be
achieved if n is small enough. The reason is if we begin with n¥, for any
given X3, we can make K > (;—3 where C is some constant depending on
initial surface, which comes from Lemma 4.3.1, and |z|* < 7% R? < #2?,
and ¢ < n for sufficiently small . Then the first term and second term of
coefficient of P? are O(n*2*) and the third term is negative with K%) =
O(n'~2) for n small enough. This implies 2% < —1P? + C' where C' =
C(sup,es, o<ter, K R) and then if —3P? 4+ C' < 0, it is a contradiction. So
P is bounded and hence H is bounded before ¥ shrinks to a point.

O

4.3.2 Strict convexity away from the flat spot

To apply the Harnack principle, let us introduce new coordinates defined
on the sphere S™. If %, is strictly convex, v(x,t) is a one-to-one map from
¥; to S™, which means that for each z € S", there is X (z,t) = v™1(z,1).
K (z,t) denotes Gauss curvature K at v='(z,¢). If 3; is convex, we still use
the same coordinates (z,t) for the strictly convex part X2 by using strictly
convex surfaces as approximations. Also the support function S(z,t) of the
strictly convex surface is given as

S(z,t) = (2, X(v ! (2),t)), for (z,t)€S"x[0, Tyl
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Lemma 4.3.3. Assume that the flat spot, 3.3, is a part of the plane orthogonal
to epy1. For any n > 0, there is a constant c,, > 0 such that

K%z, t) > ¢,
for z € S, :={z € S"and||z+ e,1]| > n > 0}.

Proof. We can immediately obtain the result from the Harnack estimate in
[12]:
For any points z1, 22 € S, and times 0 < ¢; < ty

K%(29,15) g (t_g)_(1+(2a)1)1
Ka(Zl, t1> - tl

where © = ©O(z1, 29, t1,t5) = inf, fttlz |diy(t)[2,ydt and the infimum is taken
over all paths 7 in ¥ whose graph ((¢),t) joins (z1, 1) to (22,t2). The short
time existence of smooth surfaces implies that, for z € S,, X(z,t) is the
strictly convex part, X2, for 0 < t < § for some Jy > 0. Therefore we can
take 0 < 0p < t; < to < T, which implies K%(22,t2) > 1 K*(21,t1) > ¢, for
some ci, ¢, > 0 and then the conclusion.

m

We finally know (4.1.1) is uniformly parabolic, which comes from Lemmas
4.3.1-4.3.2. Therefore we can show that >; is C'"* on the point being away
from flat spot.

Corollary 4.3.4. Under the conditions of Lemma 4.3.3, X2 == {X(z,t) €
37z € Sy} is smooth.

Proof. Let ); be the eigenvalues of (h%). From the convexity, A\; > 0. And
from the upper bound of Mean Curvature and the lower bound of Gauss
Curvature, Ay +---+ A\, < Ci and K = A\ --- A\, > c2. Now we have

c c
Ci> N> — 2

> > —— >0
Mz — Ot

It implies there are 0 < A < A < oo such that
MEP < Kb 1768 < Mg

42



CHAPTER 4. o-GAUSS CURVATURE FLOWS WITH FLAT SIDES
AND FREE BOUNDARY PROBLEMS

and the support function S(z,t) satisfies a uniformly parabolic equation in
¥:2. Therefore S(z,t) is C*7 and then C* in %? through the standard boot-
strap argument using the Schauder theory.

]

4.3.3 Proof of Theorem 4.2.1

Recall that |A|? is the square sum of principle curvatures of a given surface.
First, we approximate the initial surface ¥, with strictly convex smooth
functions, X whose |Ag|? is uniformly bounded by 2|Ag|? of ¥o. Then there
are smooth solutions ¥, . of (1.0.1) [29], and |Ag.|* < 2HZ < §|Ao|* < C
uniformly. As e — 0, ;. converges to a viscosity solution ¥, as in [1]. |A4;|?
of ¥; will be uniformly bounded, which implies that ¥, is C*!. And for any
X € Y2, there is a small > 0 such that |vx + e 1| > n > 0 and then
X € 32, Since X2 is smooth at X, so is X2.

4.3.4 A waiting time effect

We will now show that the flat spot of the convex surface persists for some
time.

Lemma 4.3.5. Let X be convex. For % < a <1, there is a waiting time of
the flat spot: if Py € int, (X9 N1II) where 11 is an n-dimensional plane and
int,(A) is the interior of A with respect to the topology in 11, there is ty > 0
such that Py € int,, (X, N1I) for 0 <t <to.

1
Proof. Let ht = C. |?T:Iz‘)"f for p = 2;&17 v = ﬁ, and C', = (M—fl)a) o
Then A" is a super-solution of (4.1.1). Now we compare the solution f
with h*. From Cll-estimates of f, f; is bounded and then there is a ball
B, (Fy) C int,(XoNII) and ¢y > 0 such that f(X,t) < h*(X,t) on 0B,,(F)
for 0 < t <ty and f(X,0) < h'(X,0). From the comparison principle,
we have f(X,t) < hH(X,t) for (X,t) € B,,(Fy) x [0,tp), which implies
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f(Po,t):OandPertfor0<t<t0.

4.4 Optimal gradient estimate near free bound-

ary

4.4.1 Finite and non-degenerate speed of level sets

From using the differential Harnack inequalities, we can show that the free-
boundary I'(¢) has finite and non-degenerate speed as in [19]. As in Theorem
4.2.2, we assume that z = f(z,t) is a solution of (4.1.1) and C'*!' on 02(¢) for
all0 <t <T and g = (Bf)% is smooth up to the interface I'(t) on 0 <t < 7
for some 7 < T'.

Let us consider the function

(1 _ A€>(4a—1)/2 (1 T 6)404
(1+ Be)2e—1

fe(z,t) = F((1+ ez, (1 — Ae)t) (4.4.1)
and then the results of [19] can be applied to our equation in a similar way.
We may assume condition (4.1.7) and let » = (0, t) be the interface I'(t) and
r = 7:(0,t) be the e-level set of the function f with 0 < 6 < 27 by expressing
in polar coordinates. Then

Lemma 4.4.1. There exist constants A, B,C > 0 and A, B,C' > 0 such that

e FEAT (0, 10) 2 1(6,8) = ¢ 0 (6, ) (44.2)
and .
_t—tg _iTt

e B+AT 75(97 tO) > ’75(9a t) >e Ch 78(97 to) (443)

for all0 < tg <t < T,0 < 0 < 2mw. In particular, the free-boundary
r = v(0,t) and the e-level set r = ~.(0,t) of f for each € > 0 move with
finite and non-degenerate speed on 0 <t <T.
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4.4.2 Gradient estimates

Throughout this subsection, we will assume that g = (5f )% is a solution of
(4.1.3) and smooth up to the interface on 0 < ¢ < T, and satisfies condition
(4.1.5) and

max g(x,t) > 2, for 0 <t <T, (4.4.4)
x€2(t)

which comes from (4.1.8). We will now show that the gradient |Dg| has a
bound from above and below.

Lemma 4.4.2 (Optimal Gradient estimates). With the same assumptions
as in Theorem 4.2.2 and (4.4.4), there is a positive constant Cy such that

|Dg| < Cp, on 0<g(-t) <1, 0<t<T.

Moreover if (4.1.7) is satisfied and if g is smooth up to the interface on
0 <t<T, then there is a positive constant cy such that

|Dg| > ¢q , on g(-t)>0,0<t<T.

Proof. (i) First, we shall show the upper bound of Vg. Suppose that f is
approximated by f. of (4.1.1) which is a decreasing sequence of solutions
satisfying the positivity, strictly convexity and smoothness on {z € R? :
|IDf.(z)] <oo} for 0 <t <T.Set g. = (ﬁfe)%. We can choose the f.’s such
that |Dg.| < Cpatt =0,on {z: 0<g. <1} and |Dg.| <Cyat g. =1,
0 <t < T, for some uniform constant Cyy. Then the last estimate comes from
(4.1.8) and (4.4.4).

Let us denote g. by g for convenience of notation, where g = (3 f)% is a
strictly positive and smooth solution of (4.1.3) with convex f. Let us apply
— Do _ g:tey and assume X has an interior

2 2
maximum at the point Py = (zg, Yo, o). By rotating the coordinates, we can

the maximum principle to X

assume g, > 0 and g, = 0 at F. Then we have X; < 0 by using the facts
that X, = X, =0, X;, <0 and X,, < 0 are satisfied at F%. On the other
hand |Vyg| is bounded at ¢t = 0 from the condition on the initial data and on
{g =1}, |Vg| = ;Zfl = |V f| is bounded since f is convex. Hence X < C, on
0<¢g<1 0<t<T,provided that X <Catt=0and g=1,0<t<T
so that

|Dg| < Cp, on 0<g(,t) <1, 0<t<T.
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(ii) Now we shall show the lower bound of the gradient. Consider
X =29:+ygy
Using the maximum principle as in (i), we have that
X, > -CX (4.4.5)

where C' is a constant depending on py and

% X(y(t),t) > -CX (4.4.6)

at an interior or boundary minimum point P of X. Then

min X (t) > min  X(0)e "
{9(-t)>0} {9(-,0)>0}

for all 0 < ¢t < T by Gronwall’s inequality, and it implies the desired estimate.
m

Theorem 4.4.3. Under the same assumptions as in Lemma 4.4.2, there
exist positive constants Cp, Cy and g, depending only on py and the initial
data, for which

—Cy < (7)(0,t) < —C4 <0, for 0<t<Tand 0<e <egy. (4.4.7)

4.5 Second derivative estimates

Throughout this section, we will assume that g = (8 f)% is a solution of
(4.1.3) and smooth up to the interface on 0 < ¢ < T, and satisfies conditions
(4.1.7) and (4.1.8).
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4.5.1 Decay rate of a-Gauss curvature

Under the same conditions as in Sections 4.4.1 and 4.4.2, we will show a
priori bounds of the Gauss curvature K = det(D?f)/(1 + |Df|?) and the
second derivatives of f and g.

Lemma 4.5.1. With the same hypotheses as in Theorem 4.2.2 and (4.1.7),
there exists a positive constant ¢ such that

K« _1

c< <c

., o 0<t<T (4.5.1)

(&3

g2a—1
for K =det D*f/(1+ |Df|?).
Proof. We will only consider the bound of (4.5.1) around the interface. It
suffices to show the bound of ¢; from ¢, = K%/ ((1 + ]DfP)%gﬁ) be-

cause |Df| is bounded around {g = 0}. For r = ~.(0,t) which is the e-level
set of ¢ in polar coordinates,

gt = —Gr - ’75(0,t)

since g(7:(0,t),0,t) = . Then since the level sets of g is convex, we know
that ¢ < g, < ¢t and —Cy <4.(0,t) < —C; <0 for 0 <t < T from Lemma
4.4.2 and Theorem 4.4.3 implying that Cjc < g, < Cyc™!, so the proof is
complete.

O

Corollary 4.5.2. Under the assumptions of Lemma 4.5.1, the solution g of
(4.1.3) satisfies the bound
c<g <ch. (4.5.2)

4.5.2 Upper bound of the curvature of level sets

Lemma 4.5.3. With the assumptions of Theorem 4.2.2 and condition (4.1.7),
there exists a constant C' > 0 such that

0<g,, <C

with 7 denoting the tangential direction of the level sets of g.
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Proof. Strict convexity of the level sets of g directly implies g,, > 0. We will
obtain the bound from above by using the maximum principle on

X = 92002 — 2929y 9ay + 929y + (9(9az + gyy) + 01V g[?). (4.5.3)

Let v and 7 denote the outward normal and tangential direction to the level
sets of g respectively. Then we can write X as

X =(g9+92) grr + (9 9w + 097) (4.5.4)
since g, = 0. We also know that
()<c§g,,§c’1 ong>0,0<t<T

for some ¢ > 0, depending on py and the initial data. Also, g(gzz+9y,)+60|Vg|?
is bounded since f € O, Hence an upper bound on X will imply the desired
upper bound on g.,. We will apply the maximum principle on the evolution
of X. The term (g(gm + gyy) + 9|Vg|2) on X will control the sign of error
terms. Corollary 4.5.2 implies

X< at g=0,

1
since we know that X = %gt‘* + 0|Vg|* at the free-boundary g = 0. Then
we can assume that X has its space-time maximum at an interior point
Py = (%0, Yo, to). Let us assume that

gr = Gy = 0 and gy = Gz > 0 at PO (455)

without loss of generality, since X is rotation invariant. Also let us consider
the following transformation

g(x,y) = g(p, )

Jun(%0,Y0,t0)
up (75071/0,750) ’
the transformation to Proposition 4.1 of [34]. Then we can obtain g, =

where p = = and n = y — axr with a = which is similar in

gy — 22 =g, >0, g,=g,=0, and

Gnn
92
) Gup — ﬁ 0
(gij) =
0 Ymn
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at Py. Here gyy = ¢y > 0 and g,, < 0 at Fy. Hence the equation is unchanged
under this change of coordinates. We can also drop the third derivative term
of g because it is changed under the perfect square of the third derivative of
g. Hence we can assume

at Py without loss of generality. We will proceed with the function g instead
of g for notation purposes. From (4.5.3), we get

X = (g + g?c)gyy + (gg:wc + 992)7 at .

At the maximum point Fy, we also have X, = 0 and X, = 0 implying that

_ 9Yzax T 29, det D29 + (20 + 1)g2Gun + 9z Gyy d _ 9Y9zay
Jzyy = — B al Gyyy = — R
9+ 9z 9+ 9z

(4.5.7)

We shall compute the evolution equation of X from the evolution equation
of g to find a contradiction saying that

OSXt<O at P(),

when X > C > 0 for some constant C'. This implies that X < C, on
0<t<T.

First we will consider the following simpler case that f satisfies the evo-
lution

fi = (det D*f)*

for the convenience of the reader. Then g = (5 f )% satisfies the equation
G = (g det D*g + 0(92 9z — 2929y Guy + giQw)) : (4.5.8)
We differentiate (4.5.8) twice to obtain the evolution of X. Set

Ky =g det D*g + 0(92 900 — 2009y 92y + 929yy)
I[=1+g"Vgl, and J=g+|Vg|>.

Let L denote the operator
LX = Xt—ozK;“’l{ (99yy+09) Xaw—2(992y+0929y) Xay+(99201097) Xy, }
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Then after many tedious calculations, we have that at the maximum point
PO)
1

LX = A+ B (4.5.9)
(1+27)%(g + g2)* K2

where v =6 — 1 and

3
A= —4¢°¢* —

gty

< 692 9za + ngg:m:gyy>2

g (4.5.10)

2

g

In addition, B = 0 if v = 0, otherwise

B
B = —B1g*(97 + 9)90y — 9° B1(gawx + B11)* + ((1 +279)*(9 + 93) K2> B

(4.5.11)

Here

2 % 1 + 7 1+27 114;?7 2
By =4(1 +27)°K, i Ky + (1 + ) K, (95 + 9)9yy
2

- {ggm (14~ gm}

and set Z = g2g,, so that

wn (U +A+3Y) s

E :4 1 2 3 6/ 2 2K 1+2~ Z4 2 _K1+2'y
5411y

+g7(1+7)(1+27)g2(93 + 9)° K™ Z° + Lot

2 g(EHZ4 + 7E12Zﬁ + lOt)7

where [.0.t. means lower order terms. We may assume that P lies close
0
to the free-boundary and that Ky < 3 by considering a scaled solution

gz, t) = )fﬁg()\x, )\%t) as g at the beginning of the proof with Are <
14y

—(3) 7 . Then on g < 1, we have A is negative in (4.5.10) since g,,
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is negative and Eiq, E13 > 0o(gs, K;) > 0 uniformly, which implies Ej is
positive. And we also have, in (4.5.11),

By =—y(1+7)(g2 + 9)° K. Z%Cs + v(Z"Cr + Lot.)

with Gy = ((1+7)2(g2 + 9) (299 + 3(5 + 47)g2) +7(1 + 29) K77 ¢
= (14 29)(15 + 29(7 + 29)) K5 gg2 = 3(1+ 7)(1 +29)(5 + 47)K; " g} ).

Now we can show Cs > 6;(gs, ;) > 0 uniformly and then E; < 0 for
sufficiently large Z. Therefore B is negative. Hence we obtain desired result.

We now return to the case of the a-Gauss Curvature Flow. Let us set
I =1+¢""2|Dg|*, J = g+|Dg|*> and Q = (gdet D> +0(g; g — 2929y Gy +
G29y,))". Also let C = C(||glc1, ||f]|cr1) denote various constants and LX
denote the operator

4a—1

LX =X, — K2 7 {(ggyy + 097) Xaw — 2(992y + 09:9y) Xay

We find, after several calculations, that at the maximum point F,, where
(4.5.5) and (4.5.6) hold, X satisfies the equality

~ a— 4o — 1 o o
LX =177 LX - - (g + 9920)1_4 2HQIyy — (4a —1)g.(0 + gyy)f_4 2+1Q[oc
da+1 4 — 1 da+1 16 2 - 1 da
+ g{ ~ o - DIQL - 2 L, + O‘TI‘T“’QL?}

4o

L QG
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and from (4.5.9) and some computation we obtain that

3 I~
LX < — B1g*(g> + 9)¢?
3 2 2 2 El
— ¢°B1(Gawe + Bu1)* + (1 +27)%(9 + ¢3)°K )E2
8’)/(’7 + 1) _dafl ) Jz
~ R S R (74 )R 90
(1+27)2 g 9 g+ g2 (v +1)g7 + 9gza)?
T — Big*(93 + 9)9-
(1 +27)2(g+995)2K2 ’ w
E
— ¢°B1(Gozw + Bi1 + O(9))> + (1 +29)*(g + 93)2K§)§; + O(g)}
_datl
+O0(g9) + 172 K g

Here O(g) denotes various terms satisfying |O(g)| < Cyg¢ with constant C.
We know that the first term and the second term are negative as in the case
of LX and provided that X > C is sufficiently large. Then LX < C with C
depending on ||f||c11 and ||g||cr on g < 1, which implies that (X —Ct); <0
Applying the evolution of X = X — Ct with a simple trick implies the desired
contradiction. Hence X < C where C' is a positive constant.

]

4.5.3 Aronson-Bénilan type estimate

Lemma 4.5.4. Under the assumptions of Theorem 4.2.2 and condition (4.1.7),

there exists a constant C' > 0 for which
det(D?*g) > —C
for a uniform constant C > 0.
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Proof. To establish the bound of det(D?g) from below, we will use the max-
imum principle on the quantity

det D?g

= +0| Vg
929y + 92920 — 2929y Gy

with some positive constant b on {g(-,¢) > 0,0 <t < T'}. Let us assume
that Z becomes minimum at the interior point Fy. We can assume g, = 0,
gz > 0 and g, = 0 at Py by using a similar transformation and the change
of coordinates as in Lemma 4.5.3 at Fy. Then we have

aijZij S 0
for
2o 1-da
oKy gy, (14 g2a-1g2) 2 0
(%’) = , .
0 K (ggne +092) (1 + g2-1g2) 2
(4.5.12)

and Z, = Z, = 0 at the minimum point F, implying that

1
(a+1)(2a — 1)3

Z > Bi(Guyy + Ba2)? + Ao + 0(9)Z +0(Z%  (4.5.13)

where
B, — o (1 + g%gz)%ﬁa[(a_z [0492 + (2a _ 1)9996:5}
(1 - 2a)2g2g,, ’ ! ’
: [(4a —2)K, + (a — 1){ag? + (20 — 1)ggm}gyy}
and
AO = A07092b4 + EO + A075(Oé — 1)g3b5 + (Oé - 1>E1
with

A 9209,,(24 + 12¢g%g2 — 21g%g?)
0,0 —

4.5.14
21+ ) L
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and

309" =1 (1 - 2001 (975 + ) (1+ g™ gl G,
(4a = 2)Ky + (a = 1)agigy,

Aps = —

where Fy = O(b%,¢%) and E; = O(b*,¢%). Here we can also show Ago >
01(gzs gyy) > 0 uniformly and we have

(4o — Z)Kg + (a — 1)a9§gyy = (4o — 2)(99xx9yy + Hgigyy) + (o — 1)04912:93111
= (4&/ - 2)ggwxgyy + {9(4& - 2) + o — O‘}gigyy
>0

(4.5.15)

on g < 1 since % < a < 1. Then (a — 1)Ap; is nonnegative so that Ay is

positive for sufficiently large b > 1. Also, we know that B; is positive on
g <1 from (4.5.15). This implies

Zt >0>—as
with a positive constant a. By Gronwall’s inequality, we have
7 > Zye ™

where Z; is initial data of Z at t = 0 and a is constant, which concludes the

proof.
O
4.5.4 Global optimal regularity
Let us consider the quantity
Z = mgx(ngg +0|D,,g|?). (4.5.16)

Now we will show that Z is bounded from above in the next lemma.
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Lemma 4.5.5. With the assumptions of Theorem 4.2.2 and condition (4.1.7),
there exists a positive constant C = C(0, p, A, ||glc2(00)) with

max 2 < C
2(g)

where 2(g) = {x|g(z) > 0}.

2-8 2-8
Proof. First, we know that Z is nonnegative from Z = 377 f 7 f,, and

convexity of f. Also Lemma 4.4.2 implies
Z 00,0, M |l9llc200)) at g =0,

since £ = 0|D,g|* at the free-boundary g = 0. Then we can assume that
Z has its maximum at an interior point Py € ©(g) and in a direction 7. To
show the bound of Z, we consider v as 7 = A+ A\o7 with A2+ A2 = 1, where
v, T denote the outward normal and tangential directions to the level sets of
g respectively. Then Z(Fy) = gD,,g + 0|D,g|* and (4.1.3) can be rewritten
as

Z<P0) = g[)‘%gw/ + 2)\1)\291/7- + )\ggTT] + QA%gg

28—2 2)40‘2*1}5.

(4.5.17)
and (g9, + 092)g- = 992, + {g:(1 + g*° 2 ¢?

Here, if gg,, is not sufficiently large at F,, we have

Z(Py) < C0, p, M llgllc200)

from Lemma 4.4.2, Corollary 4.5.2 and Lemma 4.5.3 implying the desired
result immediately. On the other hand, if 8¢> < gg,, at P, then we get

gggr < 2991/1/97’7’ < 0(9707 )‘7 Hg||C’2(8Q))ggVV

implying g, < C(0,p, A, [|9]lc290))+/Gow- Then we know that Z(F) is maxi-
mum when Ay = 0 from Lemma 4.5.3 and (4.5.17) so that Z(Py) = gg,.,+0g>.
Also we get gg,. + 69,9, = 0 at F, implying that g,, = 0 at F,. Here by a
similar transformation as in Lemma 4.5.3, we can assume

gT:gy:Oa gl/:gm>0 and gxyzo at P().
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Then we have
CLZ‘]'ZZ‘J' S 0

with (4.5.12) at the maximum point P,. And since ¢ .. = %29‘%9” and

Jzay = 0 at Py, we obtain

Zt = GtGsz + 99zat + 2999:911&

1+4a «

2a — 1 -1
<-(1+g75g2) " 7 [(1=20)2 = (g™ +962)] | 900(09 + 99.)

: [922&104(40[ —1) (204(2@0 —30+a+1)+20— l)gg

+ (1= 20)(a@ = Dgeu{ 977 (a = 1) + (40 = 1)g%g.. |

+ (20 — 1)gg§gm{(a —1)(160* — 5a + 1) + 3a(8a? — 6ar + 1)932%1%}
+ ag;‘;{(4a2 —5a+1)(0(4a — 2) + 1) + 6a(10a” — 9o + 2)9333193%}]

Z—6g2

at the point Fy. Also from ¢,, = , we have

20 9 _ 344
(L+g%7g7) 2 (Z2g4)"
gla—1)(2a—1)

2y

IN

~ Z(22% — 30 + 1){(4a —1)ZgTT o — 1}

-I—g?i%lgi{g%(a —1)%’a — (a—1)(8a® — 3a + 1)29%

—3a(8a® — 6a + 1) 2% + a(a — 1)g2(2(a — 1)9% —6aZ + (o — 1)93)}]

_ 3+44a
20+1

2 g;yzz-kagﬁ + O<Z2+a)gh—1

<(1- 4a)<1 + g%gi)
+ O(zl+a7gﬁ).

Then on g < 1, Z; < 0 at B since 1 — 4a < 0. Hence we obtain the desired

result.
O]
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4.5.5 Decay rates of second derivatives

Corollary 4.5.6. With the hypotheses of Lemma 4.5.3, there exists a positive
constant ¢ depending on py and the initial data such that

(i) c< grr <71,

fl/l/ fTT
gh-2" gB-1

|forl

<c'oand = < for uniformly small g
(
g

(W) ¢ < 26-3)/2

with 7 denoting the tangential direction to the level sets of g.

Proof. (i) The upper bound of g, comes from Lemma 4.5.3. Now we show
the lower bound. From Lemma 4.5.1, we have

det D*f > chlfl =cg?3,

which implies

foker 2 g2 4 1> cg?? (4.5.18)
and then 253
frr > Cgf > gt

since f,, < Cg?~2 from Lemma 4.5.5. Since f,, = ¢° L g, + (8 —1)g° 2 ¢,

we conclude that f
gTT - gﬁfl 2

c,
for some positive constant ¢ depending only on the initial data and pg.
(ii) frr = ¢° 7! g.» and the bound on g,, tell us

o< frr <l
gh1

(iii) From Lemma 4.5.5, we have f,, < C¢?~2 for uniformly small g, so we
shall show

fov + frr = cg” 2
Let us denote by Ai, Ay the two eigenvalues of the matrix det D?f such that
A1 > Ag. Then, from Lemma 4.5.1, we have

Ao
263

¢ <

o7
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and Ao < frr < ¢ '¢%7! implying that \; > cg®~2 for some positive con-
stant c. Hence f,, + frr > M + Ao > ¢g®2 > 0 as desired.

(iv) The convexity of f says 0 > f2 — f,,, f,-. By using the bound of f,, and
frr, we obtain
2 < o o ST

4.6 Higher regularity

4.6.1 Local change of coordinates

For any point Py = Py(zo, Yo, to) at the interface I' with 0 < ¢ty < T, let us
assume that ng is the unit vector in the direction of the vector Pg = OPF,
and ng satisfies

ng := P
by rotating the coordinates. Then we will have the following lemma as Lemma
4.6 in [19].

e (4.6.1)

Lemma 4.6.1. There exist positive constants ¢ and n, depending only on the
initial data and the constant py in (4.1.7), for which

c<gP)<c! and o< fu(P) <

at all points P = (z,y,t) with f(P) > 0, |P — Py| < n and t < ty under
(4.6.1).

4.6.2 Class of linearized equation

In this subsection, we shall show that our transformed function h from g near
the free boundary satisfies the same class of operators considered in [19] so

o8
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that all the results in [19] can be applied to our equation by using similar
methods.

Throughout this subsection, we will assume that at time ¢ = 0 the func-
tiong = (6 f )% satisfies the hypotheses of Theorem 4.2.3 and that g is smooth
up to the interface on 0 < ¢ < T for T > 0 satisfying condition (4.1.7).

We will state the results of uniform C!7-estimates in [19], where the
reader also can find detailed proofs.

Let Py = (20, Yo, to) be a point on the interface curve I'(#y) at time ¢ = ¢,
for 0 <ty <T. We may assume, without loss of generality, that 7 < ¢, < T,
for some 7 > 0. From the short time regularity of Theorem 4.2.2, we know
that solutions are smooth up to the interface on 0 < ¢t < 27, for some
7 depending only on the initial data. Also we may assume that condition
(4.6.1) holds at the point Py by rotating the coordinates. By Lemma 4.6.1,
gz(P) > 0 for all points P = (z,y,t) with t < ¢y, sufficiently close to P, and
then from (4.1.11) (see in [15], Section II),

B hyy — B2 ) — 0(a) hohy, b
y = e Py = 12,) = 0(0) 43?1}, 2> 0. (4.6.2)

{22070 4 p2 4 226-1) 2} 2
Set K = 2 (hazhyy — h2,) — 0(a) ho hyy and J = 22070 4 b2 4 226-D p2
By linearizing this equation around h, we can obtain the equation

~ o K]?_l ~ ~ ~
he =" 3l {—z hyyhes + 22 hay iy + (e(a) h. — 2 hzz) hyy}

2

N (4o — 1) 22(6-1) Kp h, 1

da+1 Y
2

(4o = 1) Kt he + aKp 7' 0(a) (B2 + 22P~D(1 + h2))hy, P

4a+1 z
J3

(4.6.3)

Let us denote by B, the box
By={0<z<n ly—wol <m to—17° <t <t}

around the point Qo = (0,yo,t0). We can obtain a priori bounds on the
matrix
- hyy \/E hzy
A= (ay)=aK}!

Vz hyy (9(04) h, — thz)
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and the coefficient

(4o — 1) K he + aKp~'0(c) (b2 + 22P~D(1 + h2))hy,

da+1
2

Therefore we obtain the following.

Lemma 4.6.2. There exist positive constants n, A and v, depending only on
the initial data and the constant py in (4.1.7) such that

MEP <a &6 <ATHEP, VEAO

and
b] <A7' and b>v >0 on the box B,.

Notice that b > v > 0 comes from the decay rates of the second deriva-
tives, Corollary 4.5.6, and Aronson-Bénilan type estimate, Lemma 4.5.4. Sim-
ilarly, we can get the bound of A := (a;;) and b;, i = 1, 2, to be the coeflicients

- Qi
Q5 = da—_1
! (2208-1) 4 p2 4 22(6-1) hZ)T
and
- Ko ' Jh - 4o — 1) 22D Ko py
bl :b——a h4a+1 vy and b2 = ( & >Z4a+l h "y
of Eq. (4.6.3).

Lemma 4.6.3. There exist constants n > 0, A > 0 and v > 0, depending
only on the initial data and the constant py in (4.1.7), for which

MEP <ag &€& < AHEP, VE£0

and
|bil <A™t and by > v >0 on the box B,.
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4.6.3 Regularity theory

Recall Definition 4.1.2. Then Lemma 4.6.3 tells us the linearized equation
(4.6.3) is in the same class of operators considered in Lemma 5.2 of [19] and
[18].

We are now in a position to show the uniform Hoélder bounds of the first
order derivatives h¢, h, and h, of h on B,. In [19], the authors have obtained
the C*7 regularity of & in the box.

Lemma 4.6.4. There exist numbers v and p in 0 < v,u < 1, and positive
constants 1 and C', depending only on the initial data and py, such that

172y ]

C’?"‘”(Bg) <C, HhtHCS?M(B )

<, and Pzl cr s,y < C.
2

[SS]

Following the proof Theorem 6.10 of [19], we will have the following the-
orem.

Theorem 4.6.5. With the assumptions of Theorem 4.2.2 and condition
(4.1.7) which satisfies at T" < T, there exist constants 0 < ag < 1, C' < 0o
and n > 0, depending only on the initial data and py, for which x = h(z,y,t)

fulfills
||h||C'3+’Y(Bn) S C

on B, ={0<z<n% |ly—wol <n, to—n* <t <ty } for Py = (20,0, %)
with 0 < 17 < tg < T, which is any free-boundary point holding condition
(4.6.1).

Proof of Theorem 4.2.3. From the short time existence of Theorem 4.2.2,
there exists a maximal time 7" > 0 such that g is smooth up to the interface
on 0 <t < T. Assuming that T' < Ty, we will show that at time ¢t = T, the
function g(-, T) is of class C?>™ up to the interface z = 0, for some v > 0, and
satisfies the non-degeneracy conditions (4.1.5). Hence by Theorem 4.2.2, there
exists a time 7" > 0 such that g is of class C?™7, for all 7 < T'+T", and hence
C° up to the interface, by Theorem 9.1 in [15]. This will contradict the fact
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that 7" is maximal, proving the theorem. From Lemma 4.4.2 and Corollary
4.5.6, the functions g(-,t) satisfy conditions (4.1.5), for all 0 < ¢ < T', with
constant ¢ independent of t. Hence, it will be enough to establish the uniform
C?*7 regularity of g, on 0 < ¢ < T, up to the interface, whose proof follows

the same line of argument as in [19].
[l
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