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Abstract

α-Gauss Curvature Flows and
Free Boundary Problems

Lami Kim

Department of Mathematical Sciences

The Graduate School

Seoul National University

In this dissertation, we study the deformation of the n-dimensional strictly

convex hypersurface in Rn+1 whose speed at a point on the hypersurface is

proportional to an α-power of positive part of Gauss curvature. For 1
n
< α ≤

1, we show that there exist a strictly convex smooth solutions if the initial

hypersurface is strictly convex and smooth and the solution hypersurfaces

converge to a point. We discuss the asymptotic behavior of the rescaled

hypersurfaces, in other words, the rescaled manifold converges to a strictly

convex smooth manifold. Moreover, there exists a subsequence whose limit

satisfies a certain equation. For the convex surfaces in R3 with the velocity

given by α-Gauss curvature and 1
2
< α ≤ 1, by using a certain estimate

different from the one that we use in the n-dimensional case, we establish

that there are smooth solutions if the initial surface is smooth and strictly

convex. In addition, there is a viscosity solution with a C1,1-estimate before

the collapsing time if the initial surface is only convex. We also discuss that

there is a waiting time effect which means a flat spot of the convex surface will

persist for a while. Furthermore, we show that the interface between a flat side

and a strictly convex side of the surface remains smooth for 0 < t < T0 under

certain necessary regularity and non-degeneracy initial conditions, where T0

is the vanishing time of the flat side.

Key words: gauss curvature flows, deformation of hypersurfaces, regularity

of α-gauss curvature flows, free boundary problems, nonlinear parabolic par-

tial differential equations

Student Number: 2006-20289
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Chapter 1

Introduction

The theory of Partial Differential Equations and their applications are the

study of solutions of equations describing natural phenomena and social phe-

nomena, which use multivariable calculus as the tool of study. In particular,

nonlinear parabolic partial differential equations are one type of second order

partial differential equations, which contains nonlinear terms and describes

the objects changing over time in the field of science and mathematics. Cur-

vature flows are such nonlinear parabolic partial differential equations which

describe the deformation of manifolds, which is an object of geometry. The

study for these geometric flows not only contributes to the analysis of the

existence, uniqueness and regularity that are typically dealt within the field

of partial differential equations, but also has close academic connections with

other fields like convex geometry, affine geometry, topology and many more.

For example, Ricci curvature flows have provided important ideas to solve

the Poincaré conjecture and the research of minimal surfaces using mean

curvature flows and the classification of singularities using geometric flows

are actively being studied in the fields of mathematics. Also, the contribu-

tion of curvature flows extends to other fields. Many of the basic issues in

Image Analysis are being approached by utilizing curvature flows. For in-

stance, noise can be removed by controlling a level set using the curvature

flow expressed as a function describing given image and this curvature func-

tion can be used in order to obtain a better image. In addition, curvature

flows are widely used in the study of the description of rolling stones at the
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CHAPTER 1. INTRODUCTION

beach, the strengthening of alloys, flame propagation, and in the theory of

relativity.

Basically, curvature flows are written in the form of a parabolic partial

differential equation of the following form:

∂X(x, t)

∂t
= −f(λ(W)) ν

X(x, 0) = X0(x) .

In other words, when an n-dimensional hypersurface is represented by an

embedding X(·, ·) : Σ × [0, T ) → Rn+1 and ν is the unit outward normal

vector, a family of hypersurfaces evolves under curvature flow if the velocity

of which a point on the hypersurface moves is given by the curvature of the

hypersurface. Then, if a smooth symmetric function f is given by the sum of

the eigenvalues of the Weingarten mapW , where the eigenvalues are denoted

by λ1, λ2, · · · , λn, this flow becomes a mean curvature flow, or if f is given

by the product of λi, then this flow will be a gauss curvature flow. Also,

f can be provided by scalar curvature, harmonic mean curvature, and so

on. Especially, Gauss curvature flows describe the deformation of a compact

convex body moving under impact from any random angle. A stone hit by

waves is one such example. W. Firey who introduced Gauss curvature flows

suggested the following conjecture in 1974 [22]:

Convex surfaces moving by their gauss curvature become

spherical as they contract to points.

In this dissertation, we are concerned with the regularity of the α-Gauss

curvature flow, which is the curvature flow of a generalized version of the

conjecture formed by W. Firey. This flow explains the deformation of an

n-dimensional compact convex body Σ in Rn+1 moving with collision from

any random angle. An example can be a stone on a beach impacted by the

sea, where the probability of impact at any point on the hypersurface Σ is in

proportion to the α-Gauss curvature Kα. Let X(·, ·) : Σ× [0, T )→ Rn+1 be

an embedding and set Σt = X(Σ, t). Then the hypersurface evolves by the

2



CHAPTER 1. INTRODUCTION

following flow:

∂X

∂t
(x, t) = −Kα(x, t) ν(x, t)

X(x, 0) = X0(x)
(1.0.1)

where ν denotes the unit outward normal to Σt and α > 0.

Now we shall summarize the known results for the evolution of the strictly

convex hypersurfaces following (1.0.1). Let (0, T ∗] be the maximal interval in

which vol(Σt) is nonzero.

For the case α = 1, if the initial surface in R3 is smooth and strictly

convex and has central symmetry, then the solution Σt converges to a point

as spherical shapes [22]. Also Tso, [37], showed existence and regularity of

the solution when the initial hypersurface embedded in Rn+1 is smooth and

strictly convex. In other words, the solution Σt preserves the smoothness and

convexity in the time interval (0, T ∗]. For a smooth, compact, and strictly

convex initial surface in R3, the solution surface Σt converges to a point and

the rescaled solution surface Σ̃t approaches the round sphere with normalized

volume and for a non-smooth initial surface, the viscosity solution has C1,1-

regularity in the time interval (0, T ∗) and C∞ regularity for t ≥ t0 where t0
depends on the volume and diameter of the initial surface Σ0 [1].

For α = 1
n+2

, the solution, Σt, is known as an affine normal flow. There

exists a unique, smooth and convex solution such that the hypersurfaces Σt

converge to a point and the rescaled solution converges to an ellipsoid if the

initial hypersurface is a compact, smooth, and strictly convex [4].

For 1
n+2

< α ≤ 1
n

or 0 < α ≤ 1
n

under the assumption that the isoperi-

metric ratios are bounded, there exist a smooth, strictly convex solution con-

verging to a point and a rescaled solution satisfying a certain equation [2]. In

addition, for α = 1
n
, the rescaled solution converges to a sphere and this holds

for α ≥ 1
n

if the initial hypersurface is very close to a sphere [10]. Various

applications of (1.0.1) have been studied: the affine normal flows (α = 1
n+2

[35, 36]), the gradient flows of the mean width in Lp-norm (α = 1
p−1

[2]), and

image process (α = 1
4

[5]).

We also study the regularity of the α-Gauss curvature flow with flat sides,

which is associated to the free boundary problem. As a type of partial differ-

ential equations, free boundary problems describe various situations in the

3



CHAPTER 1. INTRODUCTION

fields of mathematics and science. Many problems such as phase transitions,

fluid dynamics, and finance problems can be modeled as free boundary prob-

lems. Now we discuss the deformation of the hypersurface Σ described by

the flow (1.0.1) for the case when the initial hypersurface Σ0 is convex and

smooth. For α > 0, there is a viscosity solution, Σt, for 0 < t < T0 which has

a uniform Lipschitz bound [2]. The convex viscosity solution, Σt, has a uni-

form C1,1-estimate for 0 < t < T0, for α = 1 and n = 2 [1], or for 1
2
< α ≤ 1

and n = 2 [29]. For α = 1 and n = 2, the C∞δ -regularity of the strictly convex

part of the surface and the smoothness of the interface between the strictly

convex part and flat spot have been proved in [19].

The dynamics and degeneracy of the diffusion vary depending on α. If

α is smaller than 1
n
, hypersurface becomes more singular and the solution

gets regular instantaneously. On the other hand, if α is greater than 1
n
, it

becomes degenerate and has a waiting time effect which means that the flat

spot of the hypersurface stays for a while [2, 9]. Waiting time and finite

speed of propagation caused by the degeneracy have been studied in other

well-known degenerate equations: the Porous Medium Equation

ut = ∆um (u ≥ 0, m > 1),

and Parabolic p-Laplace Equation

ut = ∇ · (|∇u|p−2∇u).

For strictly convex and smooth initial hypersurfaces and 1
n
< α ≤ 1, we

establish the regularity of solutions of the flow (1.0.1) and the asymptotic

behavior of the rescaled hypersurfaces. Also, for the convex surfaces in R3

and 1
2
< α ≤ 1, we show the regularity of the solutions before the collapsing

time and the interface between the flat side and the strictly convex side.

Each chapter in this dissertation will be organized as follows. In Chapter

1, we introduce Gauss curvature flow and the known results. In Chapter

2, we state the definitions of a metric, the second fundamental form, some

curvatures and the support function. In addition, we obtain the evolution

equations for the geometric quantities. In Chapter 3, we discuss α-Gauss

curvature flows of an n-dimensional compact strictly convex hypersurfaces.

We prove that the hypersufaces preserve the strict convexity and we also

4



CHAPTER 1. INTRODUCTION

get the uniform bound of curvatures of hypersurface Σ. An integral quantity

plays the key role in getting the asymptotic behavior of hypersurface and

C1,1-regularity of the rescaled solution. Also, the curvature bounds of the

rescaled hypersurfaces will be introduced. In the last part of this chapter,

we shall discuss the existence of solutions and the asymptotic behavior of

the rescaled hypersurfaces. In Chapter 4, we consider the deformation of the

2-dimensional convex surfaces moving under the α-Gauss curvature flows.

We show that the solution is smooth away from the flat spot and the flat

spot has a waiting time effect. We also establish that the free boundary has

non-degenerate and finite speed and the second derivatives have the bounds.

In addition, Aronson-Bénilan type estimate and global optimal regularity are

derived. Finally, we shall show that the interface between a strictly convex

part and a flat part is smooth for all time. Throughout the whole chapter, we

consider the case 1
n
< α ≤ 1 unless there is some explicit assumption on α.

We will also assume that Σt is smooth whenever we prove a priori-estimates.

5



Chapter 2

Preliminaries

2.1 Definitions and terminology

2.1.1 Metric, the second fundamental form and curva-

ture

Let {x1, · · · , xn} be the local coordinates of Σt and ν be the outward unit

normal vector to Σt. Then the induced metric and the second fundamental

form are defined by

gij =

〈
∂X

∂xi
,
∂X

∂xj

〉
and hij = −

〈
∂2X

∂xi∂xj
, ν

〉
.

Also the Weingarten mapWp : TpM → TpM for the hypersurface M ⊂ Rn+1

can be given by

hij = gikhkj,

where (gij) denotes the inverse matrix of (gij), and then

• σk =
∑

1≤i1<···<ik≤n λi1λi2 · · ·λik ,

• H = trace(hij) = σ1 =
∑

1≤i≤n λi,

• K = det(hij) = σn = λ1λ2 · · ·λn, and

• |A|2 = hijh
ij = λ2

1 + · · ·+ λ2
n,

6



CHAPTER 2. PRELIMINARIES

where λ1, · · · , λn are the eigenvalues of the Weingarten map at p.

2.1.2 Support function

The support function S(z, t) of the strictly convex surface is given by

S(z) = 〈z,X(ν−1(z), t)〉, for z ∈ Sn, (2.1.1)

where Sn denotes a unit sphere. Then X(z) can be written as

X(z) = S(z)z +∇S(z)

from the definition of the support function, (2.1.1), and∇iS(z) = 〈X(z),∇iz〉
for the connection of the standard metric g on Sn. We also have

∂z

∂xi
= hikg

kl∂X

∂xl
(2.1.2)

from the relationship between the tangent vector and the normal vector and

the definition of the second fundamental form. In addition,

hij = ∇i∇jS + Sgij (2.1.3)

where gij is the metric on Sn, which this can be obtained by taking covariant

derivatives of (2.1.1), [40].

We define the width, the inner radius and the outer radius of the convex

hypersurface as follows:

• the inner radius rin = sup{r : Br(y) is enclosed by X for some y ∈ Rn+1}

• the outer radius rout = inf{r : Br(y) encloses X for some y ∈ Rn+1}

• the width of the convex surface w(z) = S(z) + S(−z) for z ∈ Sn

• the maximum width wmax = maxz∈Sn w(z)

• the minimum width wmin = minz∈Sn w(z)

• the maximum support Smax = maxz∈Sn S(z)

• the minimum support Smin = minz∈Sn S(z)

7



CHAPTER 2. PRELIMINARIES

2.2 Evolutions of the geometric quantities

2.2.1 Evolutions of metric, the second fundamental form,

and curvature

The evolutions of the metric, the second fundamental form, and curvature

are the following. Throughout this dissertation, the symbol 2 will be used

in place of the operator Kα(h−1)kl∇k∇l. The proofs follow the same line as

those in Chapter 2 of [40].

Lemma 2.2.1. Let Σ0 be convex and Σt = X(Σ, t) be smooth. For the α-

Gauss curvature flow, we have

(i)
∂gij
∂t

= −2Kαhij

(ii)
∂ν

∂t
= gij

∂Kα

∂xi
∂X

∂xj
= ∇jKα ∂X

∂xj

(iii)
∂hij
∂t

= ∇i∇jK
α −Kαhjkh

k
i

= α2hij + α2Kα(h−1)kl(h−1)mn∇ihkl∇jhmn

−αKα(h−1)km(h−1)nl∇ihmn∇jhkl+ αKαHhij−(1+nα)Kαhjlh
l
i

(iv)
∂K

∂t
= α2K + α(α− 1)Kα−1(h−1)ij∇iK∇jK +Kα+1H

(v)
∂Kα

∂t
= α2Kα + αK2αH

(vi)
∂H

∂t
= α2H+α2Kα−2gij∇iK∇jK−αKαgij(h−1)km(h−1)nl∇ihmn∇jhkl

+αKαH2 + (1− nα)Kα|A|2

(vii)
∂|X|2

∂t
= 2|X|2 − 2Kα(h−1)klgkl + 2(n− 1)Kα〈X, ν〉

8



CHAPTER 2. PRELIMINARIES

2.2.2 Evolutions with respect to the standard metric

gij on Sn

Now we have the following relationships and the evolution equations.

Lemma 2.2.2. Let Σ0 be strictly convex and X(ν−1(z), t) be smooth, where

z ∈ Sn. For the α-Gauss curvature flow, we have

(i) gij = hikg
klhlj and gij = (h−1)ikgkl(h

−1)lj

(ii) hij = (h−1)ikgkj

(iii) H = gik(h
−1)ki, |A|2 = gklgkl and K = det(hij) =

det(gij)

det(∇i∇jS + Sgij)

(iv) Set Sk be the k-th symmetric polynomial of hij while σk is the k-th sym-

metric polynomial of hij. Then Sn = K−1.

The following lemma gives us the evolution equations of the support function,

second fundamental form, and curvatures for the standard metric gij on Sn.

Lemma 2.2.3. Let Σ0 be strictly convex and X(ν−1(z), t) be smooth, where

z ∈ Sn. For the α-Gauss curvature flow, we have

(i)
∂S

∂t
= −Kα = −K−α or

(
− ∂S

∂t

)
Kα = 1 , where K = K−1

(ii)
∂hij
∂t

= −∇i∇jK
α −Kαgij = −

(
∇i∇jK−α +K−αgij

)
(iii)

∂H

∂t
= gij

(
∇i∇jK

α +Kαgij
)

(iv)
∂|A|2

∂t
= 2gijh

ijKα

9



CHAPTER 2. PRELIMINARIES

(v)
∂K

∂t
= K(h−1)ij

(
∇i∇jK

α +Kαgij
)

= K(h−1)ij∇i∇jK
α +Kα+1H

(vi)
∂Kα

∂t
= αKα(h−1)ij∇i∇jK

α + αK2αH

(vii)
∂K
∂t

= −K(h−1)ij
(
∇i∇jK−α +K−αgij

)
Proof. Taking the time derivative of (2.1.1) gives us

∂S

∂t
=
〈
z,∇X · ∂ν

−1

∂t
+
∂X

∂t

〉
and then (i) comes from (1.0.1). Also we can obtain (ii) and (iv) by the

definitions of hij and |A|2, respectively.

We know that

∂

∂t
H = gij(h

−1)ik(h−1)lj(∇k∇lK
α + gklK

α)

= gkl(∇k∇lK
α + gklK

α)

by (ii). From the evolution equation of the second fundamental form, we get

the evolution equation of K:

∂K

∂t
= −Kgjmhmigjn(h−1)nk(h−1)li

∂

∂t
hkl

= K(h−1)kl∇k∇lK
α +Kα+1H,

which implies (vi). Also (vii) is obtained directly from the definition of K.

In addition, S satisfies, as in [37],

− St(z, t)
[

det(∇̄i∇̄jS(z, t) + S(z, t)δij)
]α

= 1 for (z, t) ∈ Sn × (0, T ∗),

(2.2.1)

which comes from Lemma 2.2.2 (iii) and Lemma 2.2.3 (i).

10



Chapter 3

α-Gauss Curvature Flows of an

n-Dimensional Compact

Strictly Convex Hypersurface

3.1 Main theorem

Let us denote the rescaled Σ and a support function S by Σ̃ and S̃ respectively

so that the volume enscribed becomes normalized. We state the first main

theorem.

Theorem 3.1.1.

Let Σ0 = X(Σ, 0) be a compact, connected, strictly convex smooth manifold

in Rn+1. Assume 1
n
< α ≤ 1. Then

(i) there exist a time T ∗ and a strictly convex smooth solution {Σt =

X(Σ, t)} satisfying (1.0.1) for t ∈ [0, T ∗), and Σt converges to a point

as t approaches to T ∗.

(ii) The principal curvatures of the rescaled hypersurfaces Σ̃ have the uni-

form upper and lower bounds. In other words, let us denote the eigen-

values of (h̃ij) by λ̃k for k = 1, · · · , n and the smallest and largest one

by λ̃min and λ̃max, respectively. Then we have

1

M
≤ λ̃min ≤ λ̃max ≤M

11
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for some constant 0 < M <∞.

(iii) For any sequence τi → ∞, there exists a subsequence τik such that

the rescaled manifold Σ̃τik
converges to a strictly convex manifold Σ̃T ∗

uniformly in C∞-norm.

(iv) In addition, the limit, S̃∗(·), of the volume normalized solution S̃(·, τik)
satisfies the equation K̃α

∗ = C̃∗S̃∗ a.e. for some positive constant C̃∗,

where K̃∗ is the gauss curvature of Σ̃T ∗.

3.2 Curvature estimates

Now we shall show that the strict convexity of Σt will be preserved under

the flow.

Lemma 3.2.1.

If Σ0 is strictly convex, Σt = X(Σ, t) is also strictly convex for t > 0 as long

as it is smooth. We also have

inf
x∈Σ

K(x, t) ≥ inf
x∈Σ

K(x, 0) > 0.

Proof. Let Z(t) = infx∈Σ K(x, t) and assume that the minimum is achieved

at X = X(x, t). Then, at X, we have

∇i∇jK ≥ 0 and ∇iK = 0 ,

and hence we get

∂K

∂t
= α2K + α(α− 1)Kα−1(h−1)ij∇iK∇jK +Kα+1H

≥ Kα+1H.
(3.2.1)

Now, H ≥ nK1/n implies

∂Z

∂t
≥ nZα+1+1/n.

By the maximum principle, we can get Z(t) ≥ Z(0) > 0 which gives the

positive lower bound of K for t > 0, and then the strict convexity of Σt.

12
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We have the following lemma (cf. [2]). We shall use the idea of Lemma 3.5

in [40].

Lemma 3.2.2.

Let Σ0 be convex, Σt = X(Sn, t) be smooth for t in [0, T ∗), and α > 0. Also

let us consider the sphere with radius rin(T ∗ − δ) and center at the origin

contained in ΣT ∗−δ and set ρ0 = 1
2
rin(T ∗−δ) where δ is any positive constant

satisfying δ < T ∗. Then there is a constant C > 0 such that

sup
z∈Sn, 0≤t≤T ∗−δ

Kα(z, t) ≤ C = max

(
sup
z∈Sn

Kα(z, 0),
(nα + 1

nαρ0

)nα)
.

Proof. We consider the function ϕ = Kα

S−ρ0 , where S is the support function.

Here S(z, t) = (z,X(ν−1(z), t)) and then

∂S

∂t
=

(
z,
∂X

∂t

)
=
(
z,−Kαν

)
= −Kα.

Let us assume that ϕ has its maximum at (z0, t0) for t0 ≤ T ∗− δ. Then,

at (z0, t0), we get

ϕt ≥ 0, ∇iϕ = 0 and ∇i∇jϕ ≤ 0.

Now we have 0 = ∇iϕ = (S−ρ0)∇iKα−Kα∇iS
(S−ρ0)2

= ∇iKα

S−ρ0 −
Kα∇iS
(S−ρ0)2

, so ∇iK
α =

Kα∇iS
S−ρ0 . Since

0 ≥ ∇i∇jϕ = ∇i

(∇jK
α

S − ρ0

− Kα∇jS

(S − ρ0)2

)
=
∇i∇jK

α

S − ρ0

− ∇jK
α∇iS

(S − ρ0)2
− ∇iK

α∇jS +Kα∇i∇jS

(S − ρ0)2

+
2Kα∇jS∇iS

(S − ρ0)3

=
∇i∇jK

α

S − ρ0

− Kα∇i∇jS

(S − ρ0)2
,

13
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we also have ∇i∇jK
α ≤ Kα∇i∇jS

S−ρ0 . Therefore ϕ satisfies, at (z0, t0),

0 ≤ ∂

∂t
ϕ =

1

S − ρ0

(
αKα(h−1)ij∇i∇jK

α + αK2αH +
K2α

S − ρ0

)
≤ 1

S − ρ0

{
αKα(h−1)ij

(Kα∇i∇jS

S − ρ0

)
+ αK2αH +

K2α

S − ρ0

}
.

From Lemma 2.2.2, we can derive

0 ≤ αKα(h−1)ijKα

S − ρ0

(hij − Sgij) + αK2αH +
K2α

S − ρ0

=
K2α

S − ρ0

(
nα− αρ0H + 1

)
,

which means

0 ≤ (nα + 1)− αρ0H.

If nα+1
αρ0

< H, that is, H > C
ρ0
> C

rin
> C

rout
, where C = nα+1

α
, we get a con-

tradiction. Therefore H is bounded, so Kα is bounded since Kα ≤ n−nαHnα.

Now we conclude that

sup
z∈Sn, 0≤t≤T ∗−δ

Kα(z, t) ≤ C = max

(
sup
z∈Sn

Kα(z, 0),
(nα + 1

nαρ0

)nα)
.

Now we consider the eigenvalues of the reverse second fundamental form.

Lemma 3.2.3.

Let Σ0 be strictly convex, Σt = X(Σ, t) be smooth, and 1
n
< α ≤ 1. Also set

H = (h−1)ijgij. Then there is a constant C > 0 such that

sup
x∈Σ
H ≤ C = max

(
nα− 1

α
K−1/n, sup

x∈Σ
H(x, 0)

)
for t > 0 as long as it is smooth.

14
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Proof. First we have the evolution equation for H:

∂H
∂t

= α2H− 2αKα(h−1)γβ(h−1)ip(h−1)kq(h−1)ljgij∇γhkl∇βhpq

− α2Kα(h−1)ik(h−1)lj(h−1)mn(h−1)pqgij∇khmn∇lhpq

+ αKα(h−1)ik(h−1)lj(h−1)mp(h−1)nqgij∇khmn∇lhpq

− αKαHH + n(1 + nα)Kα − 2nKα

since we can obtain

α2H =− α(h−1)ik(h−1)ljgij2hkl

+ 2αKα(h−1)γβ(h−1)ip(h−1)kq(h−1)ljgij∇γhkl∇βhpq
(3.2.2)

from the second derivatives of H and we also have the Codazzi identity and

symmetry of hij. Then at a maximum point we get

∂H
∂t
≤ −2αKα(h−1)kl(h−1)ip(h−1)mq(h−1)njgij∇khmn∇lhpq

+ αKα(h−1)ik(h−1)lj(h−1)mp(h−1)nqgij∇khmn∇lhpq

− αKαHH + n(nα− 1)Kα

≤ −αKα(h−1)kl(h−1)ip(h−1)mq(h−1)njgij∇khmn∇lhpq

− αKαHH + n(nα− 1)Kα

≤ −
(
αHH− n(nα− 1)

)
Kα

≤ −
(
αnK1/nH− n(nα− 1)

)
Kα.

since H ≥ n(K)1/n ≥ c0 > 0 for some positive constant c0. On the other

hand, we have a contradiction if H > nα−1
αK1/n at a maximum point. Hence

H ≤ nα−1
α
K−1/n. Then the result follows.

3.3 Integral quantity and asymptotic behav-

ior of hypersurface

We shall define the volume V (t) and the area A(t) enclosed by convex surface

Σ as follows:

15
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• the volume function V (t) = 1
n+1

∫
Σ
〈X, ν〉 dσΣ = 1

n+1

∫
Sn

S
K
dσSn

• the area function A(t) =
∫

Σ
dσΣ =

∫
Sn

1
K
dσSn

Lemma 3.3.1. For the strictly convex and smooth solution Σt = X(Sn, t) of

α-Gauss curvature flow (1.0.1), we have

∂

∂t
V (t) = −

∫
Sn

1

K1−α dσSn .

Proof. First observe that from Lemma 2.2.2 and Lemma 2.2.3, we have∫
Sn
SKt dσSn =

∫
Sn
SK(h−1)ij(∇i∇jSt + Stgij) dσSn

=

∫
Sn
StK(h−1)ij(∇i∇jS + Sgij) dσSn

=

∫
Sn
StK(h−1)ijhij dσSn = n

∫
Sn
StK dσSn

since ∇iK(h−1)ij = 0. Hence we have

∂

∂t
V (t) =

1

n+ 1

∫
Sn

(KSt + SKt) dσSn

=

∫
Sn
KSt dσSn = −

∫
Sn

1

K1−α dσSn .

Now let us consider the rescaled solution

X̃(τ) :=
X(t)

V (t)1/(n+1)
(3.3.1)

and also assume that the normalized volume Ṽ (τ) = 1
n+1

(∫
Sn

S̃
K̃
dσSn

)
= 1

where τ(t) = − log
(
V (t)
V (0)

)
. For the rescaled solution, we have the rescaled

metric, second fundamental form, and curvatures as follows:

16
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• g̃ij = V (t)−
2

n+1 gij and h̃ij = V (t)−
1

n+1hij

• H̃ = V (t)
1

n+1H and K̃ = V (t)
n
n+1K

• S̃ = V (t)−
1

n+1S and η̃ = V (t)
n(α−1)
n+1 η where η(t) =

∫
Sn

1

K1−α dσSn .

Then we obtain the following corollary.

Corollary 3.3.2. For the strictly convex and smooth rescaled solution Σ̃τ =

X̃(Sn, τ) of α-Gauss curvature flow, we have the evolution equation of X̃:

∂X̃

∂τ
= −K̃

α

η̃
ν̃ +

1

n+ 1
X̃ on Sn × [0,+∞),

where K̃ is the gauss curvature and ν̃ is the unit outward normal of Σ̃τ .

Proof. Lemma 3.3.1 implies

V (t) = V (0)−
∫ t

0

η(s) ds.

Since ∂X̃
∂τ

= ∂X̃
∂t

dt
dτ

= − KαV
ηV 1/(n+1) ν̃ + 1

n+1
X̃ , we get the result

∂X̃

∂τ
= −K̃

α

η̃
ν̃ +

1

n+ 1
X̃ . (3.3.2)

Now we introduce an integral quantity to analyze the asymptotic behavior

of the rescaled hypersurface Σ̃.

Lemma 3.3.3. Let us define the integral quantity Ĩ as follows:

Ĩ(τ) =



(∫
Sn

1

S̃
1
α
−1
dσSn

)sgn(α−1)

for α > 0 and α 6= 1

∫
Sn

log S̃ dσSn for α = 1

(3.3.3)
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Then it satisfies
∂

∂τ
Ĩ(τ) ≤ 0. (3.3.4)

Moreover, the equality holds if and only if K̃α = CS̃ a.e. for some positive

constant C.

Proof.

Case 1. Let us assume that 0 < α < 1.

By the definition of the rescaled support function S̃ and (3.3.2), we know

that

K̃−α

(
∂S̃

∂τ
− 1

n+ 1
S̃

)
= −1

η̃
. (3.3.5)

Multiplying both sides of the equation (3.3.5) by S̃−β, where β will be chosen

later on, implies

1

S̃β

(
∂S̃

∂τ
− 1

n+ 1
S̃

)
= − K̃

α

η̃S̃β
,

from the derivation of Ĩ(τ) with respect to τ , we have

α

1− α
(I(τ))−2 ∂

∂τ
Ĩ(τ) =

∫
Sn

S̃τ

S̃β
dσSn

=
1

n+ 1

∫
Sn
S̃1−β dσSn −

∫
Sn

K̃α

η̃S̃β
dσSn ≤ 0 .

(3.3.6)

Since η̃(τ) is positive, (3.3.6) is non-positive if

1

n+ 1

(∫
Sn
S̃1−β dσSn

)(∫
Sn

1

K̃1−α
dσSn

)
≤
∫
Sn

K̃α

S̃β
dσSn , (3.3.7)

which implies non-positivity of the evolution equation of Ĩ(τ). Hence it will

suffice to show that inequality (3.3.7) holds. First, notice that we have∫
Sn
S̃1−β dσSn =

∫
Sn

(
S̃−βK̃α

)β−1
β
(
K̃−α

)β−1
β
dσSn

≤
(∫

Sn
K̃αS̃−β dσSn

)β−1
β
(∫

Sn

1

K̃α(β−1)
dσSn

) 1
β

(3.3.8)
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for α(β−1) = 1−α. That is, β = 1
α

from the Hölder inequality, which implies∫
Sn

1

S̃
1
α
−1
dσSn ≤

(∫
Sn
K̃αS̃−

1
α dσSn

)1−α(∫
Sn

1

K̃1−α
dσSn

)α
. (3.3.9)

We also have∫
Sn

1

K̃1−α
dσSn =

∫
Sn

(
S̃

K̃

)1−α

S̃−(1−α) dσSn

≤

(∫
Sn

S̃

K̃
dσSn

)1−α(∫
Sn

1

S̃
1
α
−1
dσSn

)α
.

(3.3.10)

Now from (3.3.8) and (3.3.10), we get(∫
Sn

1

S̃
1
α
−1
dσSn

)(∫
Sn

1

K̃1−α
dσSn

)1−α

≤
(∫

Sn
K̃αS̃−

1
α dσSn

)1−α(∫
Sn

1

K̃1−α
dσSn

)
≤
(∫

Sn
K̃αS̃−

1
α dσSn

)1−α
(∫

Sn

S̃

K̃
dσSn

)1−α(∫
Sn

1

S̃
1
α
−1
dσSn

)α
and then(∫

Sn

1

S̃
1
α
−1
dσSn

)(∫
Sn

1

K̃1−α
dσSn

)
≤
(∫

Sn
K̃αS̃−

1
α dσSn

)(∫
Sn

S̃

K̃
dσSn

)

= (n+ 1)

(∫
Sn
K̃αS̃−

1
α dσSn

)
(3.3.11)

since the normalized volume Ṽ (τ) = 1
n+1

(∫
Sn

S̃
K̃
dσSn

)
= 1. The last inequal-

ity (3.3.11) completes the proof of the desired result.

Case 2. Assume α = 1.

Since S̃ satisfies the equation S̃τ = K̃
|Sn| +

1
n+1

S̃ where |Sn| means the volume

of Sn, ∂Ĩ(τ)
∂τ

=
∫
Sn

S̃τ
S̃
dσSn ≤ 0 is equivalent to

|Sn|2

n+ 1
≤
∫
Sn

K̃

S̃
dσSn . (3.3.12)

19



CHAPTER 3. α-GAUSS CURVATURE FLOWS OF AN
N-DIMENSIONAL COMPACT STRICTLY CONVEX HYPERSURFACE

Then, we know that

|Sn| ≤

(∫
Sn

K̃

S̃
dσSn

) 1
2
(∫

Sn

S̃

K̃
dσSn

) 1
2

= (n+ 1)
1
2

(∫
Sn

K̃

S̃
dσSn

) 1
2

(3.3.13)

from the Hölder inequality and Ṽ (τ) = 1. This implies (3.3.12) directly.

In addition, the equality in (3.3.4) holds if and only if the equalities hold

in (3.3.9) and (3.3.13), which implies the equation K̃α = CS̃ a.e. for some

positive constant C.

We can observe that Ĩ is bounded below from [22] for α = 1 and Ĩ ≥ 0 for

α > 0 and α 6= 1. Lemma 3.3.3 for the evolution equation of Ĩ gives us the

following convergence.

Corollary 3.3.4. For the integral quantity Ĩ(τ) given by (3.3.3), we have

lim
τ→∞
Ĩ(τ) = Ĩ0

for some constant Ĩ0, moreover

lim
τ→∞

∂

∂τ
Ĩ(τ) = 0.

Lemma 3.3.5. Let us assume that Σ̃1 and Σ̃2 are n-dimensional hypersur-

faces embedded in Rn+1 and monotone quantities of Σ̃1 and Σ̃2 are Ĩ1 and

Ĩ2, respectively. If Σ̃1 ⊂ Σ̃2, then we have

Ĩ1 ≤ Ĩ2.
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Proof. Let us S̃1(z) and S̃2(z) be the support functions of Σ̃1 and Σ̃2, respec-

tively. We know that if Σ̃1 ⊂ Σ̃2, then S̃1(z) ≤ S̃2(z). Then by definition of

Ĩ, we have

Ĩ−1
1 =

∫
Sn

1

S̃
1
α
−1

1

dσSn =

∫
Sn

1

〈z, X̃1(ν−1(z))〉 1α−1
dσSn

≥
∫
Sn

1

〈z, X̃2(ν−1(z))〉 1α−1
dσSn =

∫
Sn

1

S̃
1
α
−1

2

dσSn = Ĩ−1
2 for z ∈ Sn .

Now we shall show that Σ̃(τ) has a finite width.

Lemma 3.3.6. Let us consider an ellipsoid E(τ) such that rmin(τ) is equal to

half of the minor axis and rmax(τ) is equal to half of the major axis. Assume

that E(τ) has a fixed volume V (τ). If rmax(τ) goes to infinity, then Ĩ(τ) is

also infinity.

Proof. Set r1 · · · rn+1 = C where C is some positive constant. The equation

for the ellipsoid is

g(x1, . . . , xn) :
x2

1

r2
1

+ · · ·+
x2
n+1

r2
n+1

= 1

where r1 = rmin, rn+1 = rmax and r1 ≤ r2 ≤ · · · ≤ rn+1. Then an ellipsoid

can be parameterized by:

X = (r1q1, . . . , rn+1qn+1)

where q = (q1, . . . , qn+1) ∈ Sn. We also can obtain a normal vector N =
1
2
∇g =

(
x1
r21
, . . . , xn+1

r2n+1

)
, a unit normal vector ν = N

‖N‖ , and the support

function S̃ = X̃ · ν̃ = 1
‖N‖ . Now we have xi

r2i
= N i = ‖N‖νi = ‖N‖zi = 1

S̃
zi

where z = (z1, . . . , zn) ∈ Sn, and then

xi
ri

=
ri

S̃
zi.
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Since 1 =
x21
r21

+ · · ·+ x2n+1

r2n+1
=

r21
S̃2 z

2
1 + · · ·+ r2n+1

S̃2 z
2
n+1 , we get

S̃2 = r2
1z

2
1 + · · ·+ r2

n+1z
2
n+1

and we also have

Ĩ−1 =

∫
Sn

1

S̃
1
α
−1
dσSn =

∫
Sn

1(√
r2

1z
2
1 + · · ·+ r2

n+1z
2
n+1

) 1
α
−1
dσSn .

We consider the following case in general: there is 1 ≤ k ≤ n + 1 such that

rn+1 ≥ · · · ≥ rk � rk+1 ≥ · · · ≥ r1 with r1 · · · rn+1 = C, where C is some

positive constant. Then we have

C1r
1− 1

α
n+1 ≤

∫
Sn∩{ 1

2
≤zn+1≤1}

1(√
n+ 1

√
r2
n+1z

2
n+1

) 1
α
−1
dσSn

≤ Ĩ−1 ≤
∫
Sn

1(√
r2
n+1z

2
n+1

) 1
α
−1
dσSn ≤ C2r

1− 1
α

n+1 ,

where C1 and C2 are positive constants. Since Cr
1− 1

α
n+1 goes to zero for α < 1

as rmax(τ) goes to infinity, Ĩ(τ) is also infinite. Similarly, for α = 1, since

c1 log rn+1 ≤ Ĩ =

∫
Sn

log S̃ dσSn ≤ c2 log rn+1

for some positive constant c1 and c2, Ĩ(τ)→∞ as rmax(τ)→∞.

Now we shall introduce a theorem called John’s Theorem.

Theorem 3.3.7 (John’s Theorem, [6]). Let K be a convex body in Rn. Then

there exists a unique ellipsoid E of maximal volume which is contained in

each K. This ellipsoid E is Bn
2 =

{
x ∈ Rn :

∑n
1 x

2
i ≤ 1

}
if and only if the

following conditions are fulfilled:

(i) Bn
2 ⊂ K.
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(ii) There are positive numbers (ci)
m
1 and Euclidean unit vectors (ui)

m
1 on

the boundary of K such that
∑m

i=1 ciui = 0 and
∑m

i=1 ci〈x, ui〉2 = |x|2
for all x ∈ Rn.

We define the width of the convex surface by the function w̃(z) = S̃(z) +

S̃(−z) for z ∈ Sn and let w̃max = maxz∈Sn w̃(z) and w̃min = minz∈Sn w̃(z).

Similarly, set S̃max = maxz∈Sn S̃(z) and S̃min = minz∈Sn S̃(z). Then we have

the following.

Corollary 3.3.8. For the rescaled hypersurface Σ̃ with the normalized vol-

ume, there exist some positive constants 0 < c ≤ C <∞ such that

c ≤ w̃min ≤ w̃max ≤ C

for all τ ∈ [0,∞).

Proof. We know that there exists a unique ellipsoid En of maximal volume

enclosed by the given convex body Σ̃ by Theorem 3.3.7. Thus we can set up

Σ̃ between two ellipsoids by using an affine transformation. In other words,

En ⊂ Σ̃ ⊂
√
nEn .

Then if the maximum radius of ellipsoid En is infinite, the monotone quantity

Ĩ for En is also infinite by Lemma 3.3.6. This fact and Lemma 3.3.5 give us

that Σ̃ does not have the finite monotone quantity Ĩ. It is a contradiction

to Corollary 3.3.4. Then this implies the desired conclusion for the rescaled

hypersurface Σ̃ with the normalized volume.

Corollary 3.3.9. For the rescaled hypersurface Σ̃ with the normalized vol-

ume, we have

c̃ ≤ S̃min ≤ S̃max ≤ C̃

for some constants 0 < c̃ ≤ C̃ <∞ and all τ ∈ [0,∞).
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Proof. From Corollary 3.3.8, we get S̃max ≤ C̃ for some positive constant C̃,

which implies S̃min ≥ c̃ > 0 for some constant c̃ since Ṽ (τ) = 1.

Lemma 3.3.10.

If Σ̃0 is strictly convex, then there is a constant C > 0 such that

sup
z∈Sn, 0≤τ

K̃α(z, τ) ≤ C = max

(
sup
z∈Sn

K̃α(z, 0),
(nα + 1

nαρ̃0

)nα)
where ρ̃0 = 1

4
w̃min.

Proof. From the evolution equation of Kα, we have

∂K̃α

∂τ
=
α

η̃
2̃K̃α +

α

η̃
K̃2ααH̃ − nα

n+ 1
K̃α

where 2̃ = K̃α(h̃−1)ij∇i∇j. By Corollary 3.3.8, we can consider ρ̃0 = 1
4
w̃min

and then apply the maximum principle to the function ϕ̃ = K̃α

S̃−ρ0
. Let us

assume that the maximum of ϕ̃ is achieved at the interior point P̃0 of X̃.

Then we have the following properties

ϕ̃τ ≥ 0, ∇iϕ̃ = 0 and ∇i∇jϕ̃ ≤ 0

at P0. Using the evolution equations of K̃α and S̃ and calculating by the

similar way to Lemma 3.2.2 implies

0 ≤ αK̃2α(n− S̃H̃
η̃(S̃ − ρ̃0)

+
α

η̃
K̃2αH̃ +

K̃2α

η̃(S̃ − ρ̃0)
− nαK̃α

n+ 1
− K̃αS̃

(n+ 1)(S̃ − ρ̃0)

≤ K̃2α

η̃(S̃ − ρ̃0)

(
nα− αρ̃0H̃ + 1

)
at P0, which gives us that

0 ≤ (nα + 1)− αρ̃0H̃ + 1.

Following the same line of the last argument in Lemma 3.2.2, we get

sup
z∈Sn, τ≥0

K̃α(z, τ) ≤ C = max

(
sup
z∈Sn

K̃α(z, 0),
(nα + 1

nαρ̃0

)nα)
.
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Lemma 3.3.11. There is a uniform constant 0 < Λ <∞ such that

(i)
1

Λ
≤ S̃ ≤ Λ ,

(ii)
1

Λ
≤ η̃ ≤ Λ and

(iii)
1

Λn
≤ K̃ ≤ Λn.

Proof. (i) 1
Λ1
≤ S̃ ≤ Λ1 comes from Corollary 3.3.9 for some Λ1 > 0.

(ii) From Lemma 3.3.10, we can derive that η̃(τ) ≥ 1
Λl

for some positive

constant Λl > C
1−α
α |Sn|−1, where |Sn| is the volume of Sn and C is the upper

bound of K̃α. In addition, by the Hölder inequality and Ṽ = 1, we have

η̃ =

∫
Sn
K̃α−1 dσSn ≤

(∫
Sn

1

K̃
dσSn

)1−α

· |Sn|α ≤
(
(n+ 1)Λ1

)1−α|Sn|α < Λu

(3.3.14)

for some positive constant Λu. Then we get 1
Λ2
≤ η̃ ≤ Λ2 by selecting Λ2 =

max
(
Λl, Λu

)
.

(iii) Let us consider the evolution of S = µS̃ for µ > 0. Let K and H be the

gauss curvature and mean curvature of the hypersurface given by the support

function S, respectively. Then K = 1
µn
K̃, H = 1

µ
H̃, (h−1)

ij
= 1

µ
(̃h−1)

ij

, and

η = µ(1−α)nη̃. Let Z(τ) = infz∈Sn K(z, τ). Then we assume that the interior

minimum of Z(τ) is achieved at P̃0 = (z0, τ0). From the evolution equation

of Z(τ), we have, at P̃0,

∂Z

∂τ
=
αµn+1

η
Z
α
(h−1)

ij
∇i∇jZ +

α(α− 1)µn+1

η
Z
α−1

(h−1)
ij
∇iZ∇jZ

+
µn+1

η
Z H − n

n+ 1
Z

≥ µn+1

η
Z H − n

n+ 1
Z

≥ nµn+1

η
Z

1+1/n − n

n+ 1
Z

≥ nZ
(µn+1

Λ2

Z
1/n − 1

n+ 1

)
,
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where Λ2 = µn(1−α)Λ2. Set Q(τ) = µn+1

Λ2
Z

1/n
(τ) − 1

n+1
and choose µ >(

Λ2

n+1

) 1
nα (

Z̃(0)
) − 1

n2α for Z̃(τ) = infz∈Sn K̃(z, τ) and Z(τ) = 1
µn
Z̃(τ), which

tells us Q(0) > 0. Then the evolution equation of Q(τ) is

∂Q

∂τ
=
αµn+1

η
Z
α
(h−1)

ij
∇i∇jQ+

(
α− 1

n

)αnΛ2

η
Z
α− 1

n (h−1)
ij
∇iQ∇jQ

+
Λ
n−1

2

µ(n+1)(n−1)

(
Q+

1

n+ 1

)n(
µn+1

nη
H − 1

n+ 1

)

≥ Λ
n−1

2

µ(n+1)(n−1)

(
Q+

1

n+ 1

)n(
µn+1

nη
H − 1

n+ 1

)

≥ Λ
n−1

2

µ(n+1)(n−1)

(
Q+

1

n+ 1

)n

Q

at the interior minimum point since nZ
1
n ≤ nK

1
n ≤ H. By the maximum

principle, we have

Q(τ) ≥ Q(0) > 0

for all τ > 0, which implies ∂Z
∂τ
> 0 at P̃0 and then it gives us contradiction.

Hence we obtain

inf
z∈Sn

K(z, τ) ≥ inf
z∈Sn

K(z, 0) > 0,

and we also have the desired result infz∈Sn K̃(z, τ) ≥ infz∈Sn K̃(z, 0) > 0 for

all τ . Combining with Lemma 3.3.10 implies 1
Λn3
≤ K̃ ≤ Λn

3 for some positive

constant Λ3. Now we select Λ = maxi=1,2,3 Λi.

To obtain the regularity of the solution around the maximal time T ∗, let us

consider the evolution equation (3.3.2). Then the evolution equation for S̃ is

∂S̃

∂τ
= −K̃

α

η̃
+

1

n+ 1
S̃, (3.3.15)

so ( 1

n+ 1
S̃ − S̃τ

)[
det (∇i∇jS̃ + S̃δij)

]α
=

1

η̃
. (3.3.16)
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Now we shall derive C1,1-estimates for the solution of (3.3.16) as in [23] and

[25].

Lemma 3.3.12. Suppose that S̃ ∈ C4 is a solution of the equation (3.3.16).

Then we have ∣∣∇2
S̃
∣∣ ≤ C on Sn × [0,∞)

where C is a positive constant depending on S̃ and the first derivative of S̃

in time and space.

Proof. Let

v(z, τ) =
∣∣S̃(z, τ)

∣∣(∇ζ∇ζS̃(z, τ) + S̃(z, τ)
)

exp
(1

2
µ
∣∣∇ζS̃(z, τ)

∣∣2 − ρS̃(z, τ)
)
,

where µ and ρ are positive constants. If the maximum of v is achieved at the

initial time, we are done. So we assume that v has its space-time maximum at

some interior point P0 = (z0, τ0) and for some unit vector ζ. We can assume

ζ = (1, 0, . . . , 0) by choosing an orthonormal frame about z0 and then the

matrix {∇i∇jS̃(z0)} is diagonal. Then

v(z, τ) =
∣∣S̃(z, τ)

∣∣(∇1∇1S̃(z, τ) + S̃(z, τ)
)

exp
(1

2
µ
∣∣∇1S̃(z, τ)

∣∣2 − ρS̃(z, τ)
)
.

Let L be the linearized operator at P0

L =
1(

S̃τ − 1
n+1

S̃
)

(P0)

∂

∂τ
+ αFij(∇k∇lS̃ + S̃δkl)∇i∇j.

Then {∇k∇lS̃ + S̃δkl} is diagonal.

We know that for F (M) = log(detM) where M is a positive definite matrix,

(Fij) =
∂F

∂Mij

= M−1 and
∂2F

∂Mij∂Mkl

= Fij, kl = −FikFjl.

Let

w = log v(z, τ)

= log
∣∣S̃(z, τ)

∣∣+ log
(
∇1∇1S̃(z, τ) + S̃(z, τ)

)
+

1

2
µ
∣∣∇1S̃(z, τ)

∣∣2 − ρS̃(z, τ)
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which also attains its maximum at P0, so ∇̃w(P0) = 0, ∇i∇jw(P0) ≤ 0, and

wτ (P0) ≥ 0.

Since ∇i∇jS̃ + S̃δij > 0 from the strict convexity of Σ̃, (Fij((∇i∇jS̃ +

S̃δij)(z0))) is diagonal, so

L(w)(P0) =
1

(S̃τ − 1
n+1

S̃)(P0)

∂w

∂τ
(P0) + αFii((∇k∇lS̃ + S̃δkl)(P0))∇i∇jw(P0)

≤ 0.

From now on, we will use the notation ∇ij in place of ∇i∇j for convenience.

We have that at P0

∇iw =
∇iS̃

S̃
+
∇i11S̃ +∇iS̃

∇11S̃ + S̃
− ρ∇iS̃ = 0 for i = 2, . . . , n . (3.3.17)

In addition, we get

∇i∇iw =
∇iiS̃

S̃
−
(
∇iS̃

)2

S̃2
+
∇ii11S̃ +∇iiS̃

∇11S̃ + S̃
− (∇i11S̃ +∇iS̃)2

(∇11S̃ + S̃)2
+ µ(∇i1S̃)2

+ µ∇1S̃∇ii1S̃ − ρ∇iiS̃ ≤ 0 for all i ,

(3.3.18)

and

wτ =
S̃τ

S̃
+
∇11S̃τ + S̃τ

∇11S̃ + S̃
+ µ∇1S̃∇1S̃τ − ρS̃τ ≥ 0 (3.3.19)

at the point P0. Then

L(w)(P0) =
1

(S̃τ − 1
n+1

S̃)(P0)

(
S̃τ

S̃
+
∇11S̃τ + S̃τ

∇11S̃ + S̃
+ µ∇1S̃∇1S̃τ − ρS̃τ

)

+ αFii((∇k∇lS̃ + S̃δkl)(P0))

(
∇iiS̃

S̃
−
(
∇iS̃

)2

S̃2
+
∇ii11S̃ +∇iiS̃

∇11S̃ + S̃

− (∇i11S̃ +∇iS̃)2

(∇11S̃ + S̃)2
+ µ(∇i1S̃)2 + µ∇1S̃∇ii1S̃ − ρ∇iiS̃

)
≤ 0.

(3.3.20)
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Since
(

1
n+1

S̃− S̃τ
)[

det (∇i∇jS̃ + S̃δij)
]α

= 1
η̃
, after differentiation and then

some calculations, we have

1
n+1
∇1S̃ −∇1S̃τ
1

n+1
S̃ − S̃τ

+ αFii
{
∇1iiS̃ +∇1S̃

}
= 0 at P0. (3.3.21)

Once again the differentiation implies

1
n+1
∇11S̃ −∇11S̃τ

1
n+1

S̃ − S̃τ
−

( 1
n+1
∇1S̃ −∇1S̃τ )

2

( 1
n+1

S̃ − S̃τ )2
+
α(∇11iiS̃ +∇11S̃)

∇iiS̃ + S̃

− α(∇1ijS̃ +∇1S̃ δij)
2

(∇iiS̃ + S̃)(∇jjS̃ + S̃)
= 0 at P0.

(3.3.22)

We use the properties of covariant derivatives:

∇kjiS̃ = ∇jikS̃ + δik∇jS̃ − δij∇kS̃ (3.3.23)

and

∇lkjiS̃ = ∇jilkS̃ + 2δkl∇jiS̃ − 2δij∇lkS̃ + δil∇jkS̃ − δkj∇liS̃. (3.3.24)

After using the formulas (3.3.21)-(3.3.24) and the following properties

α(∇ij1S̃ + δj1∇iS̃)2

(∇iiS̃ + S̃)(∇jjS̃ + S̃)

=
α(∇i11S̃ +∇iS̃)2

(∇iiS̃ + S̃)(∇11S̃ + S̃)
+

n∑
i=1

n∑
j=2

α
(
∇ij1S̃

)2

(∇iiS̃ + S̃)(∇jjS̃ + S̃)

and
αµ(∇11S̃ + S̃)∇1S̃ δi1∇iS̃

∇iiS̃ + S̃
= αµ(∇1S̃)2

and several computations, (3.3.20) can be simplified to
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0 ≥ − S̃τ (∇11S̃ + S̃)

S̃
(

1
n+1

S̃ − S̃τ
) − S̃τ +∇11S̃

1
n+1

S̃ − S̃τ
+

(
1

n+1
∇1S̃ −∇1S̃τ

)2(
1

n+1
S̃ − S̃τ

)2 +
α(∇11S̃ −∇iiS̃)

∇iiS̃ + S̃

+
n∑
i=1

n∑
j=2

α
(
∇ij1S̃

)2

(∇iiS̃ + S̃)(∇jjS̃ + S̃)
+
α∇iiS̃(∇11S̃ + S̃)

S̃(∇iiS̃ + S̃)

−
α
(
∇iS̃

)2
(∇11S̃ + S̃)

S̃2(∇iiS̃ + S̃)
− αµ(∇1S̃)2 −

µ
n+1

(∇11S̃ + S̃)(∇1S̃)2

1
n+1

S̃ − S̃τ

+
ρ(∇11S̃ + S̃)S̃τ

1
n+1

S̃ − S̃τ
+
αµ(∇11S̃ + S̃)(∇i1S̃)2

∇iiS̃ + S̃
− αρ(∇11S̃ + S̃)∇iiS̃

∇iiS̃ + S̃
.

(3.3.25)

In addition, since

n∑
i=1

n∑
j=2

α
(
∇ij1S̃

)2

(∇iiS̃ + S̃)(∇jjS̃ + S̃)
−
α
(
∇iS̃

)2
(∇11S̃ + S̃)

S̃2(∇iiS̃ + S̃)

=
n∑
i=2

n∑
j=2

α
(
∇ij1S̃

)2

(∇iiS̃ + S̃)(∇jjS̃ + S̃)
+

n∑
i=2

2αρ
(
∇1i1S̃

)
∇iS̃

∇iiS̃ + S̃

−
n∑
i=2

αρ2(∇11S̃ + S̃)
(
∇iS̃

)2

∇iiS̃ + S̃
−
α
(
∇1S̃

)2

S̃2

(3.3.26)

from (3.3.23) and (3.3.17), we have

0 ≥ − S̃τ (∇11S̃ + S̃)

S̃
(

1
n+1

S̃ − S̃τ
) − S̃τ +∇11S̃

1
n+1

S̃ − S̃τ
+

(
1

n+1
∇1S̃ −∇1S̃τ

)2(
1

n+1
S̃ − S̃τ

)2 +
α∇11S̃

S̃

+
n∑
i=2

n∑
j=2

α
(
∇ij1S̃

)2

(∇iiS̃ + S̃)(∇jjS̃ + S̃)
+

n∑
i=2

2αρ
(
∇1i1S̃

)
∇iS̃

∇iiS̃ + S̃

−
n∑
i=2

αρ2(∇11S̃ + S̃)
(
∇iS̃

)2

∇iiS̃ + S̃
−
α
(
∇1S̃

)2

S̃2
−

µ
n+1

(∇11S̃ + S̃)(∇1S̃)2

1
n+1

S̃ − S̃τ

− αµ(∇1S̃)2 +
ρ(∇11S̃ + S̃)S̃τ

1
n+1

S̃ − S̃τ
+ αµ

(
∇11S̃

)2 − αρ(∇11S̃ + S̃)∇iiS̃

∇iiS̃ + S̃
.

(3.3.27)
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Let γi = ∇iiS̃ + S̃. Then (3.3.27) can be written as

0 ≥ − α− S̃τγ1

S̃
(

1
n+1

S̃ − S̃τ
) − γ1

1
n+1

S̃ − S̃τ
+
αγ1

S̃
+

n∑
i=2

αρ
(
∇iS̃

)2
γ1

γi

(
ρ− 2

S̃

)

−
α
(
∇1S̃

)2

S̃2
− αµ(∇1S̃)2 −

µ
n+1

(∇1S̃)2γ1

1
n+1

S̃ − S̃τ
+

ρS̃τγ1

1
n+1

S̃ − S̃τ
+ αµγ1

2

− 2αµS̃γ1 + αµS̃2 − αργ1 +
αρS̃γ1

γi
(3.3.28)

at P0. We obtained the lower and upper bounds of S̃ on [0,∞) in Lemma

3.3.11, and |∇iS̃| also is bounded for i = 1, . . . , n since Σ̃ is strictly convex. In

addition, since 1
n+1

S̃ − S̃τ has the positive lower bound from Lemma 3.3.11,

choosing µ and ρ such that

0 ≥Aγ1
2 +Bγ1 + C1,

where A is a positive constant and B and C1 are some constants, give us the

desired result.

Corollary 3.3.13. There exist some positive constants C such that

sup
x∈Σ̃,τ≥0

H̃ ≤ C.

Moreover, λ̃min ≥ C1 > 0 for some constant C1. Here λ̃min = λ̃1 ≤ · · · ≤
λ̃n = λ̃max where λ̃′is are the eigenvalues of (h̃ij).

Furthermore, combining Lamma 3.3.10 and Corollary 3.3.13 implies the fol-

lowing Corollary.

Corollary 3.3.14. All curvatures on the rescaled hypersuface Σ̃ are bounded

above and below by the uniform constants. In other words there exists some

constant 0 < M <∞ such that

1

M
≤ λ̃min ≤ λ̃max ≤M.
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3.4 Existence of solutions and proof of main

theorem

3.4.1 Short time existence

Let us assume that Σt is smooth. Then we get the uniform C1,1 estimates of

the coefficient of our equation (2.2.1) and this equation becomes uniformly

parabolic. Thus the regularity theory of uniform parabolic equations and

application of the implicit function theorem give us the short time existence

as in [33].

3.4.2 Long time existence

Let λi be the eigenvalues of (hij). We know that λi is positive by the strict

convexity. Also we have K = λ1 · · ·λn ≤ C1 and H = 1
λ1

+ · · · + 1
λn
≤ C2

from Lemma 3.2.2 and Lemma 3.2.3, where λ1 ≤ λ2 ≤ · · · ≤ λn and C1 and

C2 are some positive constants. These give us, for each i = 1, . . . , n,

0 <
1

C2

≤ λi

from 1
λi
< 1

λ1
+ · · ·+ 1

λn
≤ C2 and also

0 < λi ≤
C1

Πj 6=iλj
≤ C1C

n−1
2 ,

which imply there are 0 < λ ≤ Λ <∞ satisfying

λ|ξ|2 ≤ Kα(h−1)ijξiξj ≤ Λ|ξ|2.

Then we know that the support function S(z, t) satisfies a uniformly parabolic

equation in Σt. Hence S(z, t) is C2,γ and then C∞ in Σt through the stan-

dard bootstrap argument using the Schauder theory. If there is a 0 < T1 < T ∗

such that Σt is smooth on [0, T1) but not smooth after T1, the uniform C2,γ-

estimate for S(z, t) implies that ΣT1 is C2,γ, and therefore C∞. From the short

time existence and uniqueness, Σt is C∞ on [0, T1 + δ). It is a contradiction.

Therefore T1 = T ∗ for some small δ > 0 and there is a smooth solution Σt
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on [0, T ∗). Also, the solution Σt will be strictly convex by Lemma 3.2.1.

Proof of Theorem 3.1.1. We have the uniform bounds of curvature and

all of the higher derivatives of the second fundamental form to the rescaled

manifold by Corollary 3.3.14 and then the equation (3.3.16) will be uniformly

parabolic. In addition, we have C1,1-regularity of the solution S̃ from Lemma

3.3.12. By applying the Harnack inequality to the linearized equation satisfied

by S̃τ , we obtain that S̃τ is Hölder continuous through a similar argument

as in [23]. We can apply Evans-Krylov theorem and Schauder estimates (see

[7]) to the concave operator obtained by taking exponent 1
nα

to the equation

(3.3.16), which implies C2,γ-regularity of S̃ for 0 < γ < 1. And then we have

the smooth and strictly convex rescaled solution by the standard bootstrap

argument using Schauder theory and Corollary 3.3.14. In other words, for

every sequence of τk →∞, we can find a subsequence τki such that S̃(·, τki)→
S̃∗(·). Also the integral quantity

Ĩ(τ)



(∫
Sn

1

S̃
1
α
−1
dσSn

)sgn(α−1)

for α > 0 and α 6= 1,

∫
Sn

log S̃ dσSn for α = 1

satisfies the monotonicity d
dτ
Ĩ(τ) ≤ 0, and equality holds if and only if

K̃α = CS̃, for some positive constant C, holds for a choice of origin. For

the limit manifold Σ̃T ∗ of the volume rescaled manifold Σ̃τik
, following the

same argument as in Theorem 16, [2], Ĩ(τ) → −∞ if Σ̃T ∗ does not satisfy

K̃α
∗ = C̃∗S̃∗ a.e. for some positive constant C̃∗, which gives a contradiction.

Therefore the proof is complete.
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Chapter 4

α-Gauss Curvature Flows with

Flat Sides and Free Boundary

Problems

In this chapter, we shall study the regularity of the solutions Σt of α-Gauss

curvature flows (1.0.1) for the initial surface Σ0 in R3 with a flat spot and
1
2
< α ≤ 1.

4.1 Preliminaries

4.1.1 The balance of terms

We will assume for simplicity that the initial surface Σ0 has only one flat

spot, namely that at t we have Σt = Σ1
t ∪ Σ2

t where Σ1
t is the flat spot and

Σ2
t is strictly convex part of Σt. The intersection between two regions is the

free boundary Γt = Σ1
t ∩Σ2

t . The lower part of the surface Σ0 can be written

as a graph z = f(x). And similarly we can write the lower part of Σt as

z = f(x, t) for x ∈ Ω ⊂ Rn where Ω is an open subset of Rn.

The function f(x, t) satisfies α-Gauss Curvature flow:

ft =
[det(D2f)]α

(1 + |∇f |2)
α(n+2)−1

2

. (4.1.1)
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Let us first consider the rotationally symmetric case to see the balance

between terms for n = 2. If f = f(r) is rotationally symmetric, (4.1.1) can

be written as

ft =
fαr f

α
rr

rα(1 + f 2
r )

4α−1
2

(4.1.2)

Let r = γ(t) be the equation of the free boundary Γ(f) = ∂{f = 0}. The

speed of the boundary is given by

γt = −ft
fr

= − fα−1
r fαrr

rα(1 + f 2
r )

4α−1
2

.

The regularity comes from the non-degenerate finite speed of the free

boundary before the flat spot converges to a lower dimensional singularity at

a focusing time. When f = (r − 1)β+ at a given time t, for r ≈ 1,

|γt| = s(α−1)(β−1)sα(β−2) ≈ 1

for s = r − 1, which implies β = 3α−1
2α−1

.

For a general f = f(x, y, t), let f = 1
β
gβ for β = 3α−1

2α−1
. The equation for

this pressure g will be

gt =
[g det(D2g) + θ(α)(g2

xgyy + g2
ygxx − 2gxgygxy)]

α

(1 + g2β−2|∇g|2)
4α−1

2

(4.1.3)

for θ(α) = β − 1 = α
2α−1

.

Assuming gτ = 0 at the boundary, the speed of the boundary will be

γt = − gt
gν

= −θ(α)α g2α−1
ν gαττ (4.1.4)

for a tangential direction τ and a normal direction ν to ∂Ω.

4.1.2 Conditions for f

Condition 4.1.1. Set Λ(f) = {f = 0} and Γ(f) = ∂Λ(f).
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(I) (Non-degeneracy Condition) Our basic assumption on the initial sur-

face is that the function f vanishes of the order dist(X,Λ(f))
3α−1
2α−1 and

that the interface Γ(f) is strictly convex so that the interface moves

with finite non-degenerate speed. Namely, setting g = (βf)
1
β , we as-

sume that at time t = 0 the function g satisfies the following non-

degeneracy condition: at t = 0,

0 < λ < |Dg(X)| < 1

λ
and 0 < λ2 < D2

ττg(X) <
1

λ2
(4.1.5)

for all X ∈ Γ0 and some positive number λ > 0, where D2
ττ denotes

the second order tangential derivative at Γ. Then the initial speed of

free boundary has the speed, at t = 0,

0 < λ4α−1 < |γt| <
1

λ4α−1
. (4.1.6)

(II) (Before focusing of flat spot) Let T be any number on 0 < T < T0, so

that the flat side Σ1
t is non-zero. Since the area is non-zero, Σ1

t contains

a disc Dρ0 for some ρ0 > 0. We may assume that

Dρ0 =
{
X ∈ R2 : |X| ≤ ρ0

}
⊂ Σ1

t for 0 ≤ t ≤ T0. (4.1.7)

(III) (Graph on a neighborhood of the flat spot Σ1
t ) We will also assume,

without loss of generality, throughout this chapter that

max
x∈Ω(t)

f(·, t) ≥ 2, 0 ≤ t ≤ T0 (4.1.8)

where Ω(t) = {X = (x, y) ∈ R2 : |Df |(X, t) <∞}. Set

ΩP (t) =
{
x ∈ R2 : f(x, y, t) ≤ f(P )

}
. (4.1.9)

4.1.3 The concept of regularity

Let us assume P0 = (x0, y0, t0) is an interface point and t0 is sufficiently

small. Then condition (4.1.5) is satisfied at t0 for a small constant c. We can

assume

gx(P0) ≥ c > 0 for some c > 0 (4.1.10)
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by rotating the coordinates. Also by transforming the free-boundary to a

fixed boundary near P0, we can obtain the map x = h(z, y, t) where (z, y, t)

is around Q0 = (0, y0, t0) and then the free-boundary g = 0 is transformed

into the fixed boundary z = 0. From the calculation on g(h(z, y, t), y, t) = z,

we have the fully nonlinear degenerate equation

ht = −
{
z (hzz hyy − h2

zy)− θ(α)hzhyy
}α{

z2(β−1) + h2
z + z2(β−1) h2

y

} 4α−1
2

, z > 0 (4.1.11)

implying that under (4.1.5) and initial regularity conditions, the linearized

operator

h̃t = z a11h̃zz + 2
√
z a12h̃zy + a22h̃yy + b1h̃z + b2h̃y (4.1.12)

where (aij) is strictly positive and b1 ≥ ν > 0 for some ν > 0.

Definition 4.1.2. For the Riemannian metric ds with ds2 = dz2

z
+ dy2,

let the distance between Q1 = (z1, y1) and Q2 = (z2, y2) in the metric s

be s(Q1, Q2) = |√z1 −
√
z2| + |y1 − y2| and the parabolic distance between

Q1 = (z1, y1, t1) and Q2 = (z2, y2, t2) be s(Q1, Q2) = |√z1−
√
z2|+ |y1− y2|+√

|t1 − t2|. Then we define Cγ
s , γ ∈ (0, 1), as the space of Hölder continuous

functions with respect to the metric s and C2+γ
s as the space of all functions

h with

h, hz, hy, ht, z hzz,
√
z hzy, hyy ∈ Cγ

s .

Remark 4.1.3. When we consider the equation

ht = z hzz + hyy + ν hz (4.1.13)

on the half-space with ν > 0, which does not have the other condition of h

on z = 0, the Riemannian metric ds decides the diffusion of the equation.

Remark 4.1.4. If the transformed function h ∈ C2+γ
s , we say that g ∈ C2+γ

s

around the interface Γ.
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4.2 Main theorems

Now we shall state the main theorems.

Theorem 4.2.1. Let us assume 1
2
< α ≤ 1. If Σ0 is convex, then any viscos-

ity solution Σt of (1.0.1) is C1,1 for 0 < t < T0. Moreover the strictly convex

part, Σ2
t , is smooth for 0 < t < T0.

The following short time existence of C∞s -solution with a flat spot has been

essentially proved in [15] since the linearized equation for h, (4.6.3), is in the

same class of operators considered in [15] because of the conditions, (4.1.5),

as in [15]. Therefore the Schauder theory can be applied to (4.6.3) and then

the application of the implicit function theorem gives the short time existence

as in [15].

Theorem 4.2.2 (Short Time Regularity, [15]). For 1
2
< α ≤ 1, assume that

g = (βf)
1
β is of class C2+γ up to the interface z = 0 at time t = 0, for

some 0 < γ < 1, and satisfies Conditions 4.1.1 for f . Then there exists a

time T > 0 such that the α−Gauss Curvature Flow (1.0.1) admits a solution

Σ(t) on 0 ≤ t ≤ T . In addition the function g = (βf)
1
β is smooth up to the

interface z = 0 on 0 < t ≤ T . In particular the junction Γ(t) between the

strictly convex and the flat side will be a smooth curve for all t in 0 < t ≤ T .

One of the main results in this chapter is the following long time regularity

of the solution.

Theorem 4.2.3 (Long Time Regularity). Under the assumptions of Theo-

rem 4.2.2, the function g = (βf)
1
β remains smooth up to the interface z = 0

on 0 < t < T for all T < T0. And the interface Γt between the strictly convex

and the flat side will be a smooth curve for all t in 0 < t < T0.

To show Theorem 4.2.3, we follow the main steps in [19]. However, the expo-

nent α creates a large number of nontrivial terms, especially in the estimate

of the second derivatives. New quantities have been considered to absorb the
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effect of terms depending on (1−α) in Lemma 4.5.3. Optimal regularity and

Aronson-Bénilan type estimate have been proved in Lemmas 4.5.4 and 4.5.5.

4.3 Convex surfaces

4.3.1 Curvature estimates

Now we shall show the regularity of Σt. The following lemma was proved in

[2, 29].

Lemma 4.3.1. Let Σ0 be strictly convex and α > 0. Then:

(i) There is a constant C > 0 such that

sup
x∈Σ, 0<t<T0

Kα(x, t) ≤ C = max

(
sup
x∈Σ

Kα(x, 0),

(
2α + 1

2αρ0

)2α
)
.

(ii) infx∈Σ, 0<tK
α ≥ infx∈Σ K

α(x, 0) > 0 as long as it is smooth.

(iii) There is a unique viscosity solution Σt.

Lemma 4.3.2. Set ψ(x, t) = 〈x, ν〉 and let BR0(0) be a ball of radius R0

about the origin and P = H
ψ+4R2−|x|2 , where Σ0 is contained in BR0(0) and

R2 = max(R0
2, R0). Then there exists a positive constant C for 1

2
< α ≤ 1

such that

sup
x∈Σ, 0≤t<T0

H(x, t) ≤ C,

where C = C(supx∈Σ, 0≤t<T0 K
α, R) > 0.

Proof. Since |x| is decreasing, ψ + 4R2 − |x|2 is positive and then we have

∂

∂t
|x|2 = 2|x|2 + 2Kα〈x, ν〉 − 2Kα(h−1)klgkl.
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By using ∇iP = 0 at the maximum point, we can obtain

α2P =
α2H

ψ + 4R2 − |x|2
+

αH2|x|2

(ψ + 4R2 − |x|2)2
− αH2ψ

(ψ + 4R2 − |x|2)2

and then since ∇i∇jP ≤ 0 at the maximum point, we get

∂

∂t
P ≤ (1− α)H2|x|2

(ψ + 4R2 − |x|2)2
+
H
(
(2α + 1)Kα + 2Kαψ

)
(ψ + 4R2 − |x|2)2

− H2(αKαψ + 2Kα−1)

(ψ + 4R2 − |x|2)2

+
αKα

ψ + 4R2 − |x|2

(
αgij(h−1)kl(h−1)mn∇ihkl∇jhmn

− gij(h−1)km(h−1)nl∇ihmn∇jhkl

)
+

1

ψ + 4R2 − |x|2
(
αKαH2 + (1− 2α)Kα|A|2

)
(4.3.1)

at the maximum point. Now, we can estimate the fourth term of (4.3.1) by

the following inequality

αgij(h−1)kl(h−1)mn∇ihkl∇jhmn − gij(h−1)km(h−1)nl∇ihmn∇jhkl

=(α− 1)
[(

(h−1)11∇1h11 + (h−1)22∇1h22

)2
+
(
(h−1)11∇2h11 + (h−1)22∇2h22

)2
]

+ 2(h−1)11(h−1)22
{
∇1h11∇1h22 +∇2h11∇2h22

}
− 2(h−1)11(h−1)22

{
(∇2h11)2 + (∇1h22)2

}
≤ 2(h−1)11(h−1)22

{
− (∇1h22)2 − P∇1h22(∇1|x|2 −∇1ψ)− (∇2h11)2

− P∇2h11(∇2|x|2 −∇2ψ)
}

≤ 2(h−1)11(h−1)22
(

1− h̃

2

)2(
|x|2 − 〈x, ν〉2

)
P 2
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where h̃ = min {h11, h22}. Hence

∂

∂t
P ≤

[
2αKα−1

(
1− h̃

2

)2

ψ + 4R2 − |x|2
(|x|2 − ψ2) + (1− 2α)Kαψ

+Kα
{

4(1− α)R2 − (1− α)|x|2 − 2Kα−1
}]
P 2 +

2(2α− 1)Kα+1

ψ + 4R2 − |x|2

+
1

ψ + 4R2 − |x|2

[
(1− α)2|x|2 +

{
2ψ + (2α + 1)

}
Kα

]
P.

For 1
2
< α ≤ 1, we can make the coefficient of P 2 negative, which can be

achieved if η is small enough. The reason is if we begin with ηΣ0 for any

given Σ0, we can make K ≥ C0

η2
where C0 is some constant depending on

initial surface, which comes from Lemma 4.3.1, and |x|2 ≤ η2, R2 ≤ η2,

and ψ ≤ η for sufficiently small η. Then the first term and second term of

coefficient of P 2 are O(η2−2α) and the third term is negative with Kαψ =

O(η1−2α) for η small enough. This implies ∂P
∂t
≤ −1

2
P 2 + C where C =

C(supx∈Σ, 0≤t<T0 K
α, R) and then if −1

2
P 2 + C < 0, it is a contradiction. So

P is bounded and hence H is bounded before Σ shrinks to a point.

4.3.2 Strict convexity away from the flat spot

To apply the Harnack principle, let us introduce new coordinates defined

on the sphere Sn. If Σt is strictly convex, ν(x, t) is a one-to-one map from

Σt to Sn, which means that for each z ∈ Sn, there is X(x, t) = ν−1(z, t).

K(z, t) denotes Gauss curvature K at ν−1(z, t). If Σt is convex, we still use

the same coordinates (z, t) for the strictly convex part Σ2
t by using strictly

convex surfaces as approximations. Also the support function S(z, t) of the

strictly convex surface is given as

S(z, t) = 〈z,X(ν−1(z), t)〉, for (z, t) ∈ Sn × [0, T0].
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Lemma 4.3.3. Assume that the flat spot, Σ1
0, is a part of the plane orthogonal

to en+1. For any η > 0, there is a constant cη > 0 such that

Kα(z, t) ≥ cη

for z ∈ Sη := {z ∈ Sn and ‖z + en+1‖ ≥ η > 0}.

Proof. We can immediately obtain the result from the Harnack estimate in

[12]:

For any points z1, z2 ∈ Sη and times 0 ≤ t1 < t2

Kα(z2, t2)

Kα(z1, t1)
≥ e−Θ/4

(
t2
t1

)−(1+(2α)−1)−1

where Θ = Θ(z1, z2, t1, t2) = infγ
∫ t2
t1
|dtγ(t)|2m(t)dt and the infimum is taken

over all paths γ in Σ whose graph (γ(t), t) joins (z1, t1) to (z2, t2). The short

time existence of smooth surfaces implies that, for z ∈ Sη, X(z, t) is the

strictly convex part, Σ2
t , for 0 ≤ t ≤ δ0 for some δ0 > 0. Therefore we can

take 0 < δ0 ≤ t1 < t2 ≤ T , which implies Kα(z2, t2) ≥ c1K
α(z1, t1) ≥ cη for

some c1, cη > 0 and then the conclusion.

We finally know (4.1.1) is uniformly parabolic, which comes from Lemmas

4.3.1-4.3.2. Therefore we can show that Σt is C∞ on the point being away

from flat spot.

Corollary 4.3.4. Under the conditions of Lemma 4.3.3, Σ̃2
t := {X(z, t) ∈

Σ2
t : z ∈ S2η} is smooth.

Proof. Let λi be the eigenvalues of (hij). From the convexity, λi ≥ 0. And

from the upper bound of Mean Curvature and the lower bound of Gauss

Curvature, λ1 + · · ·+ λn < C1 and K = λ1 · · ·λn > c2. Now we have

C1 ≥ λi ≥
c2

Πj 6=iλj
≥ c2

Cn−1
1

> 0.

It implies there are 0 < λ ≤ Λ <∞ such that

λ|ξ|2 ≤ Kα(h−1)ijξiξj ≤ Λ|ξ|2
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and the support function S(z, t) satisfies a uniformly parabolic equation in

Σ̃2
t . Therefore S(z, t) is C2,γ and then C∞ in Σ̃2

t through the standard boot-

strap argument using the Schauder theory.

4.3.3 Proof of Theorem 4.2.1

Recall that |A|2 is the square sum of principle curvatures of a given surface.

First, we approximate the initial surface Σ0 with strictly convex smooth

functions, Σ0,ε whose |A0,ε|2 is uniformly bounded by 2|A0|2 of Σ0. Then there

are smooth solutions Σt,ε of (1.0.1) [29], and |A0,ε|2 ≤ 2H2
ε < 8|A0|2 < C

uniformly. As ε→ 0, Σt,ε converges to a viscosity solution Σt as in [1]. |At|2
of Σt will be uniformly bounded, which implies that Σt is C1,1. And for any

X ∈ Σ2
t , there is a small η > 0 such that ‖νX + en+1‖ ≥ η > 0 and then

X ∈ Σ̃2
t . Since Σ̃2

t is smooth at X, so is Σ2
t .

4.3.4 A waiting time effect

We will now show that the flat spot of the convex surface persists for some

time.

Lemma 4.3.5. Let Σ0 be convex. For 1
2
< α ≤ 1, there is a waiting time of

the flat spot: if P0 ∈ intn(Σ0 ∩ Π) where Π is an n-dimensional plane and

intn(A) is the interior of A with respect to the topology in Π, there is t0 > 0

such that P0 ∈ intn(Σt ∩ Π) for 0 < t < t0.

Proof. Let h+ = C+
|X−P0|µ
(T−t)γ for µ = 4α

2α−1
, γ = 1

2α−1
, and C+ =

(
γ

µ2α(µ−1)α

) 1
2α−1

.

Then h+ is a super-solution of (4.1.1). Now we compare the solution f

with h+. From C1,1-estimates of f , ft is bounded and then there is a ball

Bρ0(P0) ⊂ intn(Σ0∩Π) and t0 > 0 such that f(X, t) ≤ h+(X, t) on ∂Bρ0(P0)

for 0 ≤ t ≤ t0 and f(X, 0) ≤ h+(X, 0). From the comparison principle,

we have f(X, t) ≤ h+(X, t) for (X, t) ∈ Bρ0(P0) × [0, t0), which implies
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f(P0, t) = 0 and P0 ∈ Σt for 0 < t < t0.

4.4 Optimal gradient estimate near free bound-

ary

4.4.1 Finite and non-degenerate speed of level sets

From using the differential Harnack inequalities, we can show that the free-

boundary Γ(t) has finite and non-degenerate speed as in [19]. As in Theorem

4.2.2, we assume that z = f(x, t) is a solution of (4.1.1) and C1,1 on Ω(t) for

all 0 < t ≤ T and g = (βf)
1
β is smooth up to the interface Γ(t) on 0 < t ≤ τ

for some τ < T .

Let us consider the function

fε(x, t) =
(1− Aε)(4α−1)/2 (1 + ε)4α

(1 +Bε)2α−1
f((1 + ε)x, (1− Aε)t) (4.4.1)

and then the results of [19] can be applied to our equation in a similar way.

We may assume condition (4.1.7) and let r = γ(θ, t) be the interface Γ(t) and

r = γε(θ, t) be the ε-level set of the function f with 0 ≤ θ < 2π by expressing

in polar coordinates. Then

Lemma 4.4.1. There exist constants A,B,C > 0 and Ã, B̃, C̃ > 0 such that

e−
t−t0
B+AT γ(θ, t0) ≥ γ(θ, t) ≥ e

− t−t0
Ct0 γ(θ, t0) (4.4.2)

and

e
− t−t0
B̃+ÃT γε(θ, t0) ≥ γε(θ, t) ≥ e

− t−t0
C̃t0 γε(θ, t0) (4.4.3)

for all 0 < t0 ≤ t ≤ T , 0 ≤ θ < 2π. In particular, the free-boundary

r = γ(θ, t) and the ε-level set r = γε(θ, t) of f for each ε > 0 move with

finite and non-degenerate speed on 0 ≤ t ≤ T .
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4.4.2 Gradient estimates

Throughout this subsection, we will assume that g = (βf)
1
β is a solution of

(4.1.3) and smooth up to the interface on 0 ≤ t ≤ T , and satisfies condition

(4.1.5) and

max
x∈Ω(t)

g(x, t) ≥ 2, for 0 ≤ t ≤ T, (4.4.4)

which comes from (4.1.8). We will now show that the gradient |Dg| has a

bound from above and below.

Lemma 4.4.2 (Optimal Gradient estimates). With the same assumptions

as in Theorem 4.2.2 and (4.4.4), there is a positive constant C0 such that

|Dg| ≤ C0 , on 0 ≤ g(·, t) ≤ 1, 0 ≤ t ≤ T.

Moreover if (4.1.7) is satisfied and if g is smooth up to the interface on

0 ≤ t ≤ T , then there is a positive constant c0 such that

|Dg| ≥ c0 , on g(·, t) > 0, 0 ≤ t ≤ T.

Proof. (i) First, we shall show the upper bound of ∇g. Suppose that f is

approximated by fε of (4.1.1) which is a decreasing sequence of solutions

satisfying the positivity, strictly convexity and smoothness on {x ∈ R2 :

|Dfε(x)| <∞} for 0 ≤ t ≤ T . Set gε = (βfε)
1
β . We can choose the fε’s such

that |Dgε| ≤ C0 at t = 0, on {x : 0 ≤ gε ≤ 1 } and |Dgε| ≤ C0 at gε = 1,

0 ≤ t ≤ T , for some uniform constant C0. Then the last estimate comes from

(4.1.8) and (4.4.4).

Let us denote gε by g for convenience of notation, where g = (βf)
1
β is a

strictly positive and smooth solution of (4.1.3) with convex f . Let us apply

the maximum principle to X = |Dg|2
2

=
g2x+g2y

2
and assume X has an interior

maximum at the point P0 = (x0, y0, t0). By rotating the coordinates, we can

assume gx > 0 and gy = 0 at P0. Then we have Xt ≤ 0 by using the facts

that Xx = Xy = 0, Xxx ≤ 0 and Xyy ≤ 0 are satisfied at P0. On the other

hand |∇g| is bounded at t = 0 from the condition on the initial data and on

{g = 1}, |∇g| = |∇f |
gβ−1 = |∇f | is bounded since f is convex. Hence X ≤ C̃, on

0 ≤ g ≤ 1, 0 ≤ t ≤ T , provided that X ≤ C̃ at t = 0 and g = 1, 0 ≤ t ≤ T

so that

|Dg| ≤ C0, on 0 ≤ g(·, t) ≤ 1, 0 ≤ t ≤ T.
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(ii) Now we shall show the lower bound of the gradient. Consider

X = x gx + y gy.

Using the maximum principle as in (i), we have that

Xt ≥ −C X (4.4.5)

where C is a constant depending on ρ0 and

d

dt
X(γ(t), t) ≥ −C X (4.4.6)

at an interior or boundary minimum point P0 of X. Then

min
{g(·,t)>0}

X(t) ≥ min
{g(·,0)>0}

X(0) e−Ct

for all 0 ≤ t ≤ T by Gronwall’s inequality, and it implies the desired estimate.

Theorem 4.4.3. Under the same assumptions as in Lemma 4.4.2, there

exist positive constants C1, C2 and ε0, depending only on ρ0 and the initial

data, for which

−C2 ≤ (γε)t(θ, t) ≤ −C1 < 0, for 0 ≤ t ≤ T and 0 < ε < ε0. (4.4.7)

4.5 Second derivative estimates

Throughout this section, we will assume that g = (βf)
1
β is a solution of

(4.1.3) and smooth up to the interface on 0 ≤ t ≤ T , and satisfies conditions

(4.1.7) and (4.1.8).
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4.5.1 Decay rate of α-Gauss curvature

Under the same conditions as in Sections 4.4.1 and 4.4.2, we will show a

priori bounds of the Gauss curvature K = det(D2f)/(1 + |Df |2) and the

second derivatives of f and g.

Lemma 4.5.1. With the same hypotheses as in Theorem 4.2.2 and (4.1.7),

there exists a positive constant c such that

c ≤ Kα

g
α

2α−1

≤ c−1, on 0 ≤ t ≤ T (4.5.1)

for K = detD2f/(1 + |Df |2).

Proof. We will only consider the bound of (4.5.1) around the interface. It

suffices to show the bound of gt from gt = Kα/
(

(1 + |Df |2)
2α−1

2 g
α

2α−1

)
be-

cause |Df | is bounded around {g = 0}. For r = γε(θ, t) which is the ε-level

set of g in polar coordinates,

gt = −gr · γ̇ε(θ, t)

since g(γε(θ, t), θ, t) = ε. Then since the level sets of g is convex, we know

that c < gr < c−1 and −C2 ≤ γ̇ε(θ, t) ≤ −C1 < 0 for 0 ≤ t ≤ T from Lemma

4.4.2 and Theorem 4.4.3 implying that C1 c < gt < C2 c
−1, so the proof is

complete.

Corollary 4.5.2. Under the assumptions of Lemma 4.5.1, the solution g of

(4.1.3) satisfies the bound

c ≤ gt ≤ c−1. (4.5.2)

4.5.2 Upper bound of the curvature of level sets

Lemma 4.5.3. With the assumptions of Theorem 4.2.2 and condition (4.1.7),

there exists a constant C > 0 such that

0 < gττ ≤ C

with τ denoting the tangential direction of the level sets of g.
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Proof. Strict convexity of the level sets of g directly implies gττ > 0. We will

obtain the bound from above by using the maximum principle on

X = g2
ygxx − 2gxgygxy + g2

xgyy +
(
g(gxx + gyy) + θ|∇g|2

)
. (4.5.3)

Let ν and τ denote the outward normal and tangential direction to the level

sets of g respectively. Then we can write X as

X = (g + g2
ν) gττ + (g gνν + θg2

ν) (4.5.4)

since gτ = 0. We also know that

0 < c ≤ gν ≤ c−1 on g > 0, 0 ≤ t ≤ T

for some c > 0, depending on ρ0 and the initial data. Also, g(gxx+gyy)+θ|∇g|2
is bounded since f ∈ C1,1. Hence an upper bound on X will imply the desired

upper bound on gττ . We will apply the maximum principle on the evolution

of X. The term
(
g(gxx + gyy) + θ|∇g|2

)
on X will control the sign of error

terms. Corollary 4.5.2 implies

X ≤ C at g = 0,

since we know that X = 1
θ
g

1
α
t + θ|∇g|2 at the free-boundary g = 0. Then

we can assume that X has its space-time maximum at an interior point

P0 = (x0, y0, t0). Let us assume that

gτ = gy = 0 and gν = gx > 0 at P0 (4.5.5)

without loss of generality, since X is rotation invariant. Also let us consider

the following transformation

g̃(x, y) = g(µ, η)

where µ = x and η = y − ax with a = gµη(x0,y0,t0)

gµµ(x0,y0,t0)
, which is similar in

the transformation to Proposition 4.1 of [34]. Then we can obtain g̃x =

gµ − gηgµη
gηη

= gµ > 0, g̃y = gη = 0, and

(g̃ij) =

 gµµ −
g2µη
gηη

0

0 gηη


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at P0. Here g̃yy = gηη > 0 and g̃xx < 0 at P0. Hence the equation is unchanged

under this change of coordinates. We can also drop the third derivative term

of g̃ because it is changed under the perfect square of the third derivative of

g. Hence we can assume

g̃xy = 0 (4.5.6)

at P0 without loss of generality. We will proceed with the function g instead

of g̃ for notation purposes. From (4.5.3), we get

X = (g + g2
x)gyy + (ggxx + θg2

x), at P0.

At the maximum point P0, we also have Xx = 0 and Xy = 0 implying that

gxyy = −ggxxx + 2gx detD2g + (2θ + 1)gxgxx + gxgyy
g + g2

x

and gyyy = − ggxxy
g + g2

x

.

(4.5.7)

We shall compute the evolution equation ofX from the evolution equation

of g to find a contradiction saying that

0 ≤ Xt < 0 at P0,

when X > C > 0 for some constant C. This implies that X ≤ C, on

0 ≤ t ≤ T .

First we will consider the following simpler case that f satisfies the evo-

lution

ft = (detD2f)α

for the convenience of the reader. Then g = (βf)
1
β satisfies the equation

gt =
(
g detD2g + θ

(
g2
ygxx − 2gxgygxy + g2

xgyy
))α

. (4.5.8)

We differentiate (4.5.8) twice to obtain the evolution of X. Set

Kg = g detD2g + θ
(
g2
ygxx − 2gxgygxy + g2

xgyy
)
,

I = 1 + g2β−2|∇g|2, and J = g + |∇g|2.

Let L denote the operator

LX := Xt−αKα−1
g

{(
ggyy+θg

2
y

)
Xxx−2

(
ggxy+θgxgy

)
Xxy+

(
ggxx+θg

2
x

)
Xyy

}
.
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Then after many tedious calculations, we have that at the maximum point

P0,

LX = A+
1

(1 + 2γ)2(g + g2
x)

2K2
g

B (4.5.9)

where γ = θ − 1 and

A = −4g2g2
xxy −

4g3

g2
x + g

(
gxxx +

6gxgxx + 3gxgxxgyy
g

)2

+
g2
yy

g2
x + g

{
− (2g2

x − ggxx)2 + 3gxx(g
2
x + g)(g2

x − ggxx)
}
.

(4.5.10)

In addition, B = 0 if γ = 0, otherwise

B = −B1g
2(g2

x + g)g2
xxy − g3B1(gxxx +B11)2 +

(
(1 + 2γ)2(g + g2

x)
2K2

g

)E1

E2

.

(4.5.11)

Here

B1 =4(1 + 2γ)2K
2+3γ
1+2γ
g

(
1 + γ

1 + 2γ
−K

γ
1+2γ
g

)
+ γ(1 + γ)K

1+γ
1+2γ
g

(
(g2
x + g)gyy

−
{
ggxx + (1 + γ)g2

x

})2

and set Z = g2
xgyy so that

E2 = 4(1 + 2γ)3gg6
x(g

2
x + g)2K

6+13γ
1+2γ
g Z4

(
(1 + γ)(1 + 3

2
γ)

(1 + 2γ)2
−K

γ
1+2γ
g

)
+ gγ(1 + γ)(1 + 2γ)g2

x(g
2
x + g)3K

5+11γ
1+2γ
g Z6 + l.o.t.

≥ g
(
E11Z

4 + γE12Z
6 + l.o.t.

)
,

where l.o.t. means lower order terms. We may assume that P0 lies close

to the free-boundary and that K
γ

1+2γ
g < 1

2
by considering a scaled solution

gλ(x, t) = λ−
1

γ+2 g(λx, λ
4γ+3
2γ+1 t) as g at the beginning of the proof with λ

4γ+5
γ+2 ≤

1
||Kg ||L∞

(
1
2

) 1+γ
γ . Then on g ≤ 1, we have A is negative in (4.5.10) since gxx
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is negative and E11, E12 ≥ δ0(gx, Kg) > 0 uniformly, which implies E2 is

positive. And we also have, in (4.5.11),

E1 = −γ(1 + γ)(g2
x + g)2K5

gZ
8C8 + γ(Z7C7 + l.o.t.)

with C8 =
(

(1 + γ)2(g2
x + g)(2γg + 3(5 + 4γ)g2

x) + γ(1 + 2γ)K
γ

1+2γ
g g2

− (1 + 2γ)(15 + 2γ(7 + 2γ))K
γ

1+2γ
g gg2

x − 3(1 + γ)(1 + 2γ)(5 + 4γ)K
γ

1+2γ
g g4

x

)
.

Now we can show C8 ≥ δ1(gx, Kg) > 0 uniformly and then E1 < 0 for

sufficiently large Z. Therefore B is negative. Hence we obtain desired result.

We now return to the case of the α-Gauss Curvature Flow. Let us set

I = 1+g2β−2 |Dg|2, J = g+ |Dg|2 and Q = (g detD2g+θ(g2
ygxx−2gxgygxy +

g2
xgyy))

α. Also let C = C(‖g‖C1 , ‖f‖C1,1) denote various constants and L̃X

denote the operator

L̃X :=Xt − αKα−1
g I−

4α−1
2 { (ggyy + θg2

y)Xxx − 2(ggxy + θgxgy)Xxy

+ (ggxx + θg2
x)Xyy }.

We find, after several calculations, that at the maximum point P0, where

(4.5.5) and (4.5.6) hold, X satisfies the equality

L̃X = I−
4α−1

2 LX − 4α− 1

2
(g + g2

x)I
− 4α+1

2 QIyy − (4α− 1)gx(θ + gyy)I
− 4α+1

2 QIx

+ g
{
− (4α− 1)I−

4α+1
2 QxIx −

4α− 1

2
I−

4α+1
2 QIxx +

16α2 − 1

4
I−

4α+3
2 QI2

x

}
+ I−

4α+1
2 Qgxx
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and from (4.5.9) and some computation we obtain that

L̃X ≤ I−
4α−1

2 A+
I−

4α−1
2

(1 + 2γ)2(g + g2
x)

2K2
g

{
−B1g

2(g2
x + g)g2

xxy

− g3B1(gxxx +B11)2 +
(
(1 + 2γ)2(g + g2

x)
2K2

g

)E1

E2

}

− 8γ(γ + 1)

(1 + 2γ)2
I−

4α+1
2 Kα−1

g g2γ+3 gx
g + g2

x

{
((γ + 1)g2

x + ggxx)
2

− (g + g2
x)Kg

}
gxxx + g2γ+1 · l.o.t.+ I−

4α+1
2 Kα

g gxx

≤ I−
4α−1

2 A+
I−

4α−1
2

(1 + 2γ)2(g + g2
x)

2K2
g

{
−B1g

2(g2
x + g)g2

xxy

− g3B1(gxxx +B11 +O(g))2 +
(
(1 + 2γ)2(g + g2

x)
2K2

g

)E1

E2

+O(g)

}
+O(g) + I−

4α+1
2 Kα

g gxx.

Here O(g) denotes various terms satisfying |O(g)| ≤ Cg with constant C.

We know that the first term and the second term are negative as in the case

of LX and provided that X > C is sufficiently large. Then L̃X < C with C

depending on ||f ||C1,1 and ||g||C1 on g ≤ 1, which implies that (X−Ct)t < 0.

Applying the evolution of X̃ = X−Ct with a simple trick implies the desired

contradiction. Hence X̃ ≤ C where C is a positive constant.

4.5.3 Aronson-Bénilan type estimate

Lemma 4.5.4. Under the assumptions of Theorem 4.2.2 and condition (4.1.7),

there exists a constant C > 0 for which

det(D2g) ≥ −C

for a uniform constant C > 0.
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Proof. To establish the bound of det(D2g) from below, we will use the max-

imum principle on the quantity

Z =
detD2g

g2
xgyy + g2

ygxx − 2gxgygxy
+ b | ∇g |2

with some positive constant b on { g(·, t) > 0, 0 ≤ t ≤ T }. Let us assume

that Z becomes minimum at the interior point P0. We can assume gy = 0,

gx > 0 and gxy = 0 at P0 by using a similar transformation and the change

of coordinates as in Lemma 4.5.3 at P0. Then we have

aijZij ≤ 0

for

(aij) =

 αKα−1
g ggyy(1 + g

2α
2α−1 g2

x)
1−4α

2 0

0 αKα−1
g (ggxx + θg2

x)(1 + g
2α

2α−1 g2
x)

1−4α
2


(4.5.12)

and Zx = Zy = 0 at the minimum point P0 implying that

Zt ≥ B1(gxyy +B2)2 + A0 +
1

(α + 1)(2α− 1)3
O(g)Z +O(Z2) (4.5.13)

where

B1 =
α

(1− 2α)2g2
xgyy

(
1 + g

2α
2α−1 g2

x

) 1
2
−2α

Kα−2
g

[
αg2

x + (2α− 1)ggxx
]

·
[
(4α− 2)Kg + (α− 1)

{
αg2

x + (2α− 1)ggxx
}
gyy

]
and

A0 = A0,0g
2b4 + E0 + A0,5(α− 1)g3b5 + (α− 1)E1

with

A0,0 =
g10
x gyy(24 + 12g2g2

x − 21g4g4
x)

2(1 + g2g2
x)

7/2
(4.5.14)
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and

A0,5 = −
30g1+ 1

2α−1 (1− 2α)2g14
x (g

2α
1−2α + g2

x)(1 + g1+ 1
2α−1 g2

x)
− 1

2
−2αKα−1

g g2
yy

(4α− 2)Kg + (α− 1)αg2
xgyy

where E0 = O(b3, g2) and E1 = O(b4, g3). Here we can also show A0,0 ≥
δ1(gx, gyy) > 0 uniformly and we have

(4α− 2)Kg + (α− 1)αg2
xgyy = (4α− 2)(ggxxgyy + θg2

xgyy) + (α− 1)αg2
xgyy

= (4α− 2)ggxxgyy + {θ(4α− 2) + α2 − α}g2
xgyy

> 0

(4.5.15)

on g ≤ 1 since 1
2
< α ≤ 1. Then (α − 1)A0,5 is nonnegative so that A0 is

positive for sufficiently large b � 1. Also, we know that B1 is positive on

g ≤ 1 from (4.5.15). This implies

Zt > 0 > −aZ

with a positive constant a. By Grönwall’s inequality, we have

Z ≥ Z0e
−ãt

where Z0 is initial data of Z at t = 0 and ã is constant, which concludes the

proof.

4.5.4 Global optimal regularity

Let us consider the quantity

Z = max
γ

(gDγγg + θ|Dγg|2). (4.5.16)

Now we will show that Z is bounded from above in the next lemma.
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Lemma 4.5.5. With the assumptions of Theorem 4.2.2 and condition (4.1.7),

there exists a positive constant C = C(θ, ρ, λ, ‖g‖C2(∂Ω)) with

max
Ω(g)
Z ≤ C

where Ω(g) = {x|g(x) > 0}.

Proof. First, we know that Z is nonnegative from Z = β
2−β
β f

2−β
β fγγ and

convexity of f . Also Lemma 4.4.2 implies

Z ≤ C(θ, ρ, λ, ‖g‖C2(∂Ω)) at g = 0,

since Z = θ|Dγg|2 at the free-boundary g = 0. Then we can assume that

Z has its maximum at an interior point P0 ∈ Ω(g) and in a direction γ. To

show the bound of Z, we consider γ as γ = λ1ν+λ2τ with λ2
1 +λ2

2 = 1, where

ν, τ denote the outward normal and tangential directions to the level sets of

g respectively. Then Z(P0) = gDγγg + θ|Dγg|2 and (4.1.3) can be rewritten

as

Z(P0) = g[λ2
1gνν + 2λ1λ2gντ + λ2

2gττ ] + θλ2
1g

2
ν

and (ggνν + θg2
ν)gττ = gg2

ντ + {gt(1 + g2β−2g2
ν)

4α−1
2 }

1
α .

(4.5.17)

Here, if ggνν is not sufficiently large at P0, we have

Z(P0) ≤ C(θ, ρ, λ, ‖g‖C2(∂Ω))

from Lemma 4.4.2, Corollary 4.5.2 and Lemma 4.5.3 implying the desired

result immediately. On the other hand, if θg2
ν ≤ ggνν at P0, then we get

gg2
ντ ≤ 2ggννgττ ≤ C(θ, ρ, λ, ‖g‖C2(∂Ω))ggνν

implying gντ ≤ C(θ, ρ, λ, ‖g‖C2(∂Ω))
√
gνν . Then we know that Z(P0) is maxi-

mum when λ2 = 0 from Lemma 4.5.3 and (4.5.17) so that Z(P0) = ggνν+θg2
ν .

Also we get ggντ + θgνgτ = 0 at P0 implying that gντ = 0 at P0. Here by a

similar transformation as in Lemma 4.5.3, we can assume

gτ = gy = 0, gν = gx > 0 and gxy = 0 at P0.
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Then we have

aijZij ≤ 0

with (4.5.12) at the maximum point P0. And since gxxx = −gxgxx−2θgxgxx
g

and

gxxy = 0 at P0, we obtain

Zt = gtgxx + ggxxt + 2θgxgxt

≤ −
(
1 + g

2α
2α−1 g2

x

)− 1+4α
2

[
(1− 2α)2(α− 1)(g

1
1−2α + gg2

x)
]−1[

gyy(θg
2
x + ggxx)

]α
·

[
g

2α
2α−1α(4α− 1)

(
2α(2αθ − 3θ + α + 1) + 2θ − 1

)
g6
x

+ (1− 2α)2(α− 1)gxx

{
g

1
1−2α (α− 1) + (4α− 1)g2gxx

}
+ (2α− 1)gg2

xgxx

{
(α− 1)(16α2 − 5α + 1) + 3α(8α2 − 6α + 1)g

4α−1
2α−1 gxx

}
+ αg4

x

{
(4α2 − 5α + 1)

(
θ(4α− 2) + 1

)
+ 6α(10α2 − 9α + 2)g

4α−1
2α−1 gxx

}]

at the point P0. Also from gxx = Z−θg2x
g

, we have

Zt ≤
(
1 + g

2α
2α−1 g2

x

)− 3+4α
2 (Zgyy)α

g(α− 1)(2α− 1)

[
−Z(2α2 − 3α + 1)

{
(4α− 1)Zg

2α
2α−1 + α− 1

}
+ g

4α
2α−1 g2

x

{
g

4α
1−2α (α− 1)2α− (α− 1)(8α2 − 3α + 1)Zg

2α
1−2α

− 3α(8α2 − 6α + 1)Z2 + α(α− 1)g2
x(2(α− 1)g

2α
1−2α − 6αZ + (α− 1)g2

x)
}]

≤ (1− 4α)
(

1 + g
2α

2α−1 g2
x

)− 3+4α
2
gαyyZ2+αg

1
2α−1 +O

(
Z2+α

)
g

2α+1
2α−1

+O
(
Z1+α, g

1
2α−1

)
.

Then on g ≤ 1, Zt < 0 at P0 since 1− 4α < 0. Hence we obtain the desired

result.
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4.5.5 Decay rates of second derivatives

Corollary 4.5.6. With the hypotheses of Lemma 4.5.3, there exists a positive

constant c depending on ρ0 and the initial data such that

(i) c ≤ gττ ≤ c−1,

(ii) c ≤ fνν
gβ−2

,
fττ
gβ−1

≤ c−1 and
|fντ |

g(2β−3)/2
≤ c−1 for uniformly small g

with τ denoting the tangential direction to the level sets of g.

Proof. (i) The upper bound of gττ comes from Lemma 4.5.3. Now we show

the lower bound. From Lemma 4.5.1, we have

detD2f ≥ c g
1

2α−1 = c g2β−3,

which implies

fννfττ ≥ c g2β−3 + f 2
ντ ≥ c g2β−3 (4.5.18)

and then

fττ ≥
c g2β−3

fνν
≥ c̃ gβ−1

since fνν ≤ Cgβ−2 from Lemma 4.5.5. Since fττ = gβ−1 gττ + (β − 1)gβ−2 g2
τ ,

we conclude that

gττ =
fττ
gβ−1

≥ c̃,

for some positive constant c̃ depending only on the initial data and ρ0.

(ii) fττ = gβ−1 gττ and the bound on gττ tell us

c ≤ fττ
gβ−1

≤ c−1.

(iii) From Lemma 4.5.5, we have fνν ≤ Cgβ−2 for uniformly small g, so we

shall show

fνν + fττ ≥ cgβ−2.

Let us denote by λ1, λ2 the two eigenvalues of the matrix detD2f such that

λ1 ≥ λ2. Then, from Lemma 4.5.1, we have

c ≤ λ1λ2

g2β−3
≤ c−1
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and λ2 ≤ fττ ≤ c−1 gβ−1, implying that λ1 ≥ cgβ−2 for some positive con-

stant c. Hence fνν + fττ ≥ λ1 + λ2 ≥ cgβ−2 > 0 as desired.

(iv) The convexity of f says 0 ≥ f 2
ντ −fνν fττ . By using the bound of fνν and

fττ , we obtain

f 2
ντ ≤ fνν fττ ≤ c−1 g2β−3.

4.6 Higher regularity

4.6.1 Local change of coordinates

For any point P0 = P0(x0, y0, t0) at the interface Γ with 0 < t0 ≤ T , let us

assume that n0 is the unit vector in the direction of the vector P0 = OP0

and n0 satisfies

n0 :=
P0

|P0|
= e1 (4.6.1)

by rotating the coordinates. Then we will have the following lemma as Lemma

4.6 in [19].

Lemma 4.6.1. There exist positive constants c and η, depending only on the

initial data and the constant ρ0 in (4.1.7), for which

c ≤ gx(P ) ≤ c−1 and c ≤ fxx(P ) ≤ c−1

at all points P = (x, y, t) with f(P ) > 0, |P − P0| ≤ η and t ≤ t0 under

(4.6.1).

4.6.2 Class of linearized equation

In this subsection, we shall show that our transformed function h from g near

the free boundary satisfies the same class of operators considered in [19] so
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that all the results in [19] can be applied to our equation by using similar

methods.

Throughout this subsection, we will assume that at time t = 0 the func-

tion g = (β f)
1
β satisfies the hypotheses of Theorem 4.2.3 and that g is smooth

up to the interface on 0 ≤ t ≤ T for T > 0 satisfying condition (4.1.7).

We will state the results of uniform C1,γ
s -estimates in [19], where the

reader also can find detailed proofs.

Let P0 = (x0, y0, t0) be a point on the interface curve Γ(t0) at time t = t0,

for 0 < t0 ≤ T . We may assume, without loss of generality, that τ ≤ t0 ≤ T ,

for some τ > 0. From the short time regularity of Theorem 4.2.2, we know

that solutions are smooth up to the interface on 0 ≤ t ≤ 2τ , for some

τ depending only on the initial data. Also we may assume that condition

(4.6.1) holds at the point P0 by rotating the coordinates. By Lemma 4.6.1,

gx(P ) > 0 for all points P = (x, y, t) with t ≤ t0, sufficiently close to P0 and

then from (4.1.11) (see in [15], Section II),

ht = −
{
z (hzz hyy − h2

zy)− θ(α)hzhyy
}α{

z2(β−1) + h2
z + z2(β−1) h2

y

} 4α−1
2

, z > 0. (4.6.2)

Set Kh = z (hzzhyy − h2
zy) − θ(α)hz hyy and J = z2(β−1) + h2

z + z2(β−1) h2
y.

By linearizing this equation around h, we can obtain the equation

h̃t =
αKα−1

h

J
4α−1

2

{
−z hyyh̃zz + 2z hzy h̃zy +

(
θ(α)hz − z hzz

)
h̃yy

}
+

( 4α− 1) z2(β−1)Kα
h hy

J
4α+1

2

h̃y

+
( 4α− 1)Kα

h hz + αKα−1
h θ(α)(h2

z + z2(β−1)(1 + h2
y))hyy

J
4α+1

2

h̃z.

(4.6.3)

Let us denote by Bη the box

Bη = { 0 ≤ z ≤ η2, |y − y0| ≤ η, t0 − η2 ≤ t ≤ t0 }

around the point Q0 = (0, y0, t0). We can obtain a priori bounds on the

matrix

A = (aij) = αKα−1
h

 −hyy
√
z hzy

√
z hzy

(
θ(α)hz − z hzz

)

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and the coefficient

b =
( 4α− 1)Kα

h hz + αKα−1
h θ(α)(h2

z + z2(β−1)(1 + h2
y))hyy

J
4α+1

2

.

Therefore we obtain the following.

Lemma 4.6.2. There exist positive constants η, λ and ν, depending only on

the initial data and the constant ρ0 in (4.1.7) such that

λ |ξ|2 ≤ aij ξi ξj ≤ λ−1 |ξ|2, ∀ξ 6= 0

and

|b| ≤ λ−1 and b ≥ ν > 0 on the box Bη.

Notice that b ≥ ν > 0 comes from the decay rates of the second deriva-

tives, Corollary 4.5.6, and Aronson-Bénilan type estimate, Lemma 4.5.4. Sim-

ilarly, we can get the bound of Ã := (ãij) and b̃i, i = 1, 2, to be the coefficients

ãij =
aij

(z2(β−1) + h2
z + z2(β−1) h2

y)
4α−1

2

and

b̃1 = b− αKα−1
h Jhyy

J
4α+1

2

and b̃2 =
(4α− 1) z2(β−1)Kα

h hy

J
4α+1

2

of Eq. (4.6.3).

Lemma 4.6.3. There exist constants η > 0, λ > 0 and ν > 0, depending

only on the initial data and the constant ρ0 in (4.1.7), for which

λ |ξ|2 ≤ ãij ξi ξj ≤ λ−1 |ξ|2, ∀ξ 6= 0

and

|b̃i| ≤ λ−1 and b̃1 ≥ ν > 0 on the box Bη.
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4.6.3 Regularity theory

Recall Definition 4.1.2. Then Lemma 4.6.3 tells us the linearized equation

(4.6.3) is in the same class of operators considered in Lemma 5.2 of [19] and

[18].

We are now in a position to show the uniform Hölder bounds of the first

order derivatives ht, hy and hz of h on Bη. In [19], the authors have obtained

the C2,γ
s regularity of h in the box.

Lemma 4.6.4. There exist numbers γ and µ in 0 < γ, µ < 1, and positive

constants η and C, depending only on the initial data and ρ0, such that

‖hy‖C2+γ
s (B η

2
) ≤ C, ‖ht‖C2+γ

s (B η
2

) ≤ C, and ‖hz‖Cµs (B η
2

) ≤ C.

Following the proof Theorem 6.10 of [19], we will have the following the-

orem.

Theorem 4.6.5. With the assumptions of Theorem 4.2.2 and condition

(4.1.7) which satisfies at T < Tc, there exist constants 0 < α0 < 1, C < ∞
and η > 0, depending only on the initial data and ρ0, for which x = h(x, y, t)

fulfills

‖h‖C2+γ
s (Bη) ≤ C

on Bη = { 0 ≤ z ≤ η2, |y − y0| ≤ η, t0 − η2 ≤ t ≤ t0 } for P0 = (x0, y0, t0)

with 0 < τ < t0 < T , which is any free-boundary point holding condition

(4.6.1).

Proof of Theorem 4.2.3. From the short time existence of Theorem 4.2.2,

there exists a maximal time T > 0 such that g is smooth up to the interface

on 0 < t < T . Assuming that T < T0, we will show that at time t = T , the

function g(·, T ) is of class C2+γ
s , up to the interface z = 0, for some γ > 0, and

satisfies the non-degeneracy conditions (4.1.5). Hence by Theorem 4.2.2, there

exists a time T ′ > 0 such that g is of class C2+γ
s , for all τ < T +T ′, and hence

C∞ up to the interface, by Theorem 9.1 in [15]. This will contradict the fact
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that T is maximal, proving the theorem. From Lemma 4.4.2 and Corollary

4.5.6, the functions g(·, t) satisfy conditions (4.1.5), for all 0 ≤ t < T , with

constant c independent of t. Hence, it will be enough to establish the uniform

C2+γ
s regularity of g, on 0 ≤ t ≤ T , up to the interface, whose proof follows

the same line of argument as in [19].

62



Bibliography

[1] B. Andrews, Gauss Curvature Flow: The Fate of the Rolling Stones,

Invent. Math. 138 (1999), 151–161.

[2] B. Andrews, Motion of hypersurfaces by Gauss curvature, Pacific J.

Math. 195 (2000), 1–34.

[3] B. Andrews, Harnack inequalities for evolving hypersurfaces., Math.

Z., 217 (1994), 179–197.

[4] B. Andrews, Contraction of convex hypersurfaces by their affine nor-

mal., J. Differential Geom., 43 (1996), 207–230.

[5] L. Alvarez, F. Guichard, P. L. Lions and J. M. Morel, Axioms and

fundamental equations of image processing, Arch. Rat. Mech. Anal.

123 (1993), 199–257.

[6] K. Ball, An Elementary Introduction to Modern Convex Geometry,

Flavors of geometry, 58, Math. Sci. Res. Inst. Publ., 31, Cambridge

Univ. Press, Cambridge, 1997.
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국문초록

본 학위논문은 알파 지수 가우스 곡률을 속력으로 갖는 n+1차원 유클리

드 공간에 있는 n차원 순볼록 초곡면의 변형을 연구한다. 알파의 범위가
1
n
< α ≤ 1일 때 초기 초곡면이 순볼록이고 매끄러우면 순볼록인 매끄러운

해들이 존재하고 한 점으로 수렴한다. 또한, 척도변환된 초곡면의 점근적

행동에 대하여 토론한다. 즉, 척도 변환된 다양체는 순볼록 매끄러운 다

양체로 수렴한다. 더욱이, 극한값이 어떤 방정식을 만족하는 부분수열이

존재한다. 1
2
< α ≤ 1의 범위에 있는 알파에 대하여 알파 가우스 곡률에 의

해주어진속력을갖는 3차원유클리드공간에있는볼록곡면에대하여, n

차원의 경우에서와는 다른 어떤 추정값을 이용하여 초기 곡면이 매끄럽고

순볼록일 때 매끄러운 해들이 존재한다는 것을 보인다. 게다가, 만약 초기

곡면이단지볼록인경우에축소시간전에 C1,1 측도값을갖는 viscosity해

가 존재하며, 볼록 곡면의 평탄면이 한동안 지속된다. 또한 비퇴화의 초기

조건과 어떤 정칙성 아래에서 곡면의 평탄한 부분과 순볼록 부분 사이의

접촉면이 평탄면이 사라지는 시간 전까지 매끈함을 유지한다는 것을 보인

다.

주요어휘: 가우스 곡률 흐름, 알파 가우스 곡률 흐름의 정칙성, 자유 경계

문제, 비선형 포물형 편미분 방정식

학번: 2006-20289
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