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Abstract
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Derivatives
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In this thesis we deal with the most efficient methods for numerical Laplace

inversion and analyze the effect of roundoff errors. There are three issues in the

control of numerical Laplace inversion: the choice of contour, its parameteriza-

tion and numerical quadrature. We extend roundoff error control to the case

of numerical inversion for hyperbolic contour. Also in order to examine the

effect of roundoff error, computation is carried out both in double-precision

and multi-precision, the latter which provides better understanding of the nu-

merical Laplace inversion algorithms.

We analyze temperature data for Seoul based on a well defined daily av-

erage temperature and consider related weather derivatives. The temperature

data exhibit some quite distinctive features, compared to other cities that

have been considered before. Due to these characteristics, seasonal variance

and oscillation in Seoul is more apparent in winter and less evident in summer

than in the other cities. We construct a deterministic model for the aver-

age temperature and then simulate future weather patterns, before pricing

various weather derivative options and calculating the market price of risk.

i



And Laplace transform method is applicable for solving the partial differen-

tial equation of weather derivatives.

Keywords : Laplace transform, numerical contour integration, roundoff error,

multi-precision, weather derivatives

Student Number : 2010-30084
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Chapter 1

Introduction

Laplace transform method is an efficient technique which has high conver-

gence and can be easily solved in parallel. Laplace transform method has been

recently popularized and applied to solve parabolic problems [21, 22, 23, 37,

40, 41, 42, 47, 52, 53, 54]. In this thesis we first deal with numerical Laplace

inversion including roundoff error analysis. We then analyze temperature data

and consider related weather derivatives. Finally, Laplace transform method

can be applied to solve the partial differential equation for weather derivatives.

In Chapter 2 we first review and compare the most efficient methods for

numerical Laplace inversion. Several methods have been classified and inter-

preted as the contents related to the following issues: (i) the choice of contour

& its parameterization, and (ii) infinity-to-finite interval map & numerical

quadrature rule. In numerical computations the roundoff error can be a sig-

nificant factor and should be considered to achieve accurate results. There are

former researches to resolve the effect of roundoff error [36, 41, 52]. We extend
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the roundoff error model suggested by Weideman [52] to find the modified

optimal parameter for hyperbolic contour which gives great efficiency. Also

computation is carried out both in double-precision and multi-precision. An

multi-precision arithmetic environment which is developed by Fujiwara [19]

was set and it gives us more accurate results, compared to double-precision

in numerical results. From our examples, we conclude that the method which

hyperbola is used as contour is more efficient than the case of using parabola

or cotangent contour. This chapter is from a preprint with Dongwoo Sheen

[30, 31].

In Chapter 3 we consider weather derivatives which have been popular-

ized to provide against uncertain climatic change. With the rapid growth of

weather-related market, the pricing of weather derivatives have been stud-

ied by many researchers [2, 3, 4, 5, 6, 7, 9, 11, 25, 27, 55]. However there

are few investigations reported on weather derivatives and their pricing for

Asian countries, including Korea. We have extended the temperature model

suggested by Alaton et al. (2002) and Benth et al. (2007) to evaluate option

prices for the temperature at Seoul. Using a deterministic model, we price

put and call options that are based on the temperature derivatives. Since no

weather derivatives market exists in Seoul, we consider the market price of risk

(MPR) using the Korea Composite Stock Price Index (KOSPI). This part is

based on the paper [32]. Finally, we apply Laplace transform method to solve

the partial differential equation for weather-related derivatives.
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Chapter 2

Laplace Transform Methods

2.1 Introduction

Let us start to consider the evolution problem:

ut +Au = f(t), for t > 0, with u(0) = u0, (2.1)

where u0 and f(t) are given and A is an elliptic operator in a Banach space

X. We assume that the spectrum σ(A) of A satisfies

σ(A) ⊂ Σδ := {z ∈ C : | arg z| ≤ δ, z 6= 0, δ ∈ (0, π/2)}, (2.2)

and the resolvent (zI +A)−1 of −A fulfils

‖ (zI +A)−1 ‖≤M(1 + |z|)−1 for z ∈ Σπ−δ ∪B, (2.3)

where B is a small neighborhood of the origin and δ ∈ (0, π).
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Due to Bromwich [10], the solution of (2.1) is given by

u(t) =
1

2πi

∫

Γ
eztû(z)dz, (2.4)

where û(z) = (zI+A)−1(u0+ f̂(z)) and Γ is a straight line Bromwich contour

which is parallel to the imaginary axis with all singularities of û(z) being

located to the left of Γ. The straight line Bromwich contour integral (2.4), with

ℜ(z) > 0, is unstable for numerical integration since the multiplying factor ezt

is oscillatory on the Bromwich contour in case û(z) does not decay quickly

enough as the imaginary part goes to ±∞. In order to avoid this problem it

is suggested, for instance, as in [49], that the straight line Bromwich contour

be deformed such that both head and tail lie in the left half plane so that

the magnitude of ezt decays quickly which enables highly oscillatory factors in

the integrand to be negligible. Notice that the straight line contour Γ can be

deformed as long as all singularities remain to the left of it.

Such a deformed contour can be parameterized by a suitable mapping

φ : (a, b) → C, with (a, b) being possibly an infinite interval, the formula (2.4)

can be expressed as

u(t) =
1

2πi

∫ b

a
eφ(ω)tû(φ(ω))φ′(ω)dω. (2.5)

By applying a suitable numerical quadrature to approximate the resulting

integral in (2.5), one obtains a numerical inversion of Laplace transform.

In this chapter we first review and compare the most efficient methods for

numerical Laplace inversion. And then we consider an roundoff error control,

which extends the previous result (Weideman, 2010) to the case of numerical

Laplace inversion for hyperbolic contour.
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2.2 A unified framework to several numerical Laplace

inversion schemes

There are three issues in the control of the numerical Laplace inversion: (i)

the choice of contour Γ in (2.4), (ii) its parameterization φ to have the repre-

sentation (2.5), and (iii) numerical quadrature in approximating the integral

in (2.5).

In this section we examine and compare the three types of contours which

have been recently popularized: parabolas [22, 23, 54], hyperbolas [21, 37, 40,

41, 42, 47, 54] and cotangent contours (Talbot’s contour) [49, 53]. These con-

tours being infinite, the natural choice of parameterization interval is (−∞,∞).

But for computational convenience, the infinite interval may be changed to a

finite one. For instance, Sheen et al. [47] chose a hyperbola contour with pa-

rameter initially an infinite interval (−∞,∞), which is then transformed to a

finite interval (−1, 1). Finally the integral over (−1, 1) is approximated by the

composite trapezoidal rule.

Here we discuss and examine several methods which have been studied,

especially focusing on the three issues: the choice of contour shape, parame-

terization and quadrature.

2.2.1 Contours and their parameterization

Suppose that a deformed contour is represented in the following form:

Γ : z(ω) = x(ω)+iy(ω) with ω runs from −∞ to +∞ such that lim
ω→±∞

x(ω) = −∞.

We consider the following three types of contours which have been used fre-

quently in literature:

• the hyperbola-shape contours ΓH [40, 41, 47, 54];
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• the parabola-shape contours ΓP [22, 23, 54];

• the cotangent-shape contours ΓC [49, 53].

Let us describe the hyperbola and parabola types of contours first. In Carte-

sian coordinates, the general formula of a hyperbola which is symmetric with

respect to the x-axis is given by

(x− x0)
2

a2
− y2

b2
= 1. (2.6)

(H1) In [47] Sheen et al. proposed the hyperbola-type contour parameterized

by

x(ω) = γ −
√

ω2 + ν2, y(ω) = sω, −∞ < ω <∞, (2.7)

with suitable parameters γ ∈ R and ν, s > 0. Here, γ − ν means its

x-intercept and s the slope of the left branch of hyperbola.

(H2) Another type of hyperbolas introduced by M. López-Fernández & Pa-

lencia [40], M. López-Fernández et al. [41] and Weideman & Trefethen

[54] can be parameterized as follows:

x(ω) = µ(1− sinα coshω), y(ω) = µ cosα sinhω, −∞ < ω <∞,

(2.8)

with suitable parameters µ, α ∈ R.

Notice that both contours (2.7) and (2.8) can be interpreted as special forms

of (2.6). The parameters (x0, a, b) for (2.7) and (2.8) are given by (γ, ν, sν)

and (µ, µ sinα, µ cosα), respectively.
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Instead of (2.6), a hyperbola contour can be parameterized also in the

form:

x(ω) = x0 −
√

a2 + (
a

b
ω)2, y(ω) = ω, −∞ < ω <∞. (2.9)

Turn to analyze parabola contours. The general form of a parabola which

is symmetric with respect to the x-axis is

y2 = 4p(x− x0). (2.10)

(P1) The parabola-type contours introduced by Gavrilyuk & Makarov [22, 23]

are given by

x(ω) = −a0ω2 + b0, y(ω) = ω, −∞ < ω <∞, (2.11)

with suitable parameters a0, b0 ∈ R.

(P2) Weideman & Trefethen [54] analyzed the parabola-type contours of the

form

x(ω) = µ(1− ω2), y(ω) = 2µω, −∞ < ω <∞, (2.12)

with suitable µ > 0.

The parameters (x0, p) for the contours (2.11) and (2.12) are given by (b0,−4a0)

and (µ,−µ), respectively.
Parabola contours may be expressed as in the form:

x(ω) = x0 +
1

4p
ω2, y(ω) = ω, −∞ < ω <∞. (2.13)

While the hyperbola and parabola types of contours have been proposed

recently, the cotangent contour ΓC : z(ω) = x(ω) + iy(ω) was introduced as
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early as in 1979 by Talbot [49], and it was modified in [53] recently. With the

parameters γ, µ and ν,

(C1) the Talbot contour [49] is given in the form

x(θ) = γ + µ
θ

tan θ
, y(θ) = µνθ, −π < θ < π; (2.14)

(C2) the modified Talbot contour [53] is written in the form

x(θ) = γ + µ+ µ
2θ2

θ2 − π2
, y(θ) = µνθ, −π < θ < π. (2.15)

Notice that (2.14) and (2.15) are parameterized by the variable θ in a finite

range. However, one may attempt to represent them by a parameter in an

infinite range as in (2.9). In the thread of these thoughts, one can write them

in the form:

x(ω) = γ + µψ(ω), y(ω) = ω, −∞ < ω <∞, (2.16)

where ψ(ω) =
η−1
1 ( ω

µν
)

tan (η−1
1 ( ω

µν
))

for (2.14) and ψ(ω) = 1 +
2[η−1

2 ( ω
µν

)]2

[η−1
2 ( ω

µν
)]2−π2

for (2.15)

with

η1(θ) :=







1− θ
tan θ , −π < θ < 0,

θ
tan θ − 1, 0 ≤ θ < π,

and η2(θ) :=







− 2θ2

θ2−π2 , −π < θ < 0,

2θ2

θ2−π2 , 0 ≤ θ < π.

(2.17)

By using the above contour representations (2.9), (2.13) and (2.16), the

formula (2.4) takes the form

u(t) =
1

2πi

∫ ∞

−∞
ez(ω)tû(z(ω))z′(ω)dω, (2.18)
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where û(z(ω)) = (zI +A)−1(u0 + f̂(z(ω))).

2.2.2 Infinity-to-finite interval maps and quadrature rule

In the preceding subsection the integral formula (2.4) is reduced to more

tractable ones (2.18). The next procedure is to apply a change of variables

that allows the parameter variable to be in a finite interval (for instance, see

[15] also for such treatments). We want to change into the form:

u(t) =

∫ 1

−1
g(y, t)dy.

The change of variables formula used in [47] is given by ω : (−1, 1) → (−∞,∞)

defined by ω(y) = 1
τ log

1+y
1−y with the parameter τ > 0. Hence one gets

u(t) =
1

2πi

∫ ∞

−∞
ez(ω)tû(z(ω))z′(ω)dω

=
1

2πi

∫ 1

−1
ez(ω(y))t û(z(ω(y)))z′(ω(y))

dω

dy
dy

=

∫ 1

−1
g(y, t)dy, (2.19)

where

g(y, t) =
1

2πi
ez(ω(y))t û(z(ω(y))) z′(ω(y))

dω

dy
.

Let us consider the integral (2.19) and its trapezoidal approximation. We

apply the composite trapezoidal rule based on an uniform subdivision of the in-

terval [-1,1] with property that g(y, t) vanishes at end points, which enables to

apply Euler-Maclaurin type of fast convergence. The approximation of (2.19)
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is given by

uN (t) =

N−1∑

j=−N+1

g(yj , t)∆y

=
N−1∑

j=−N+1

1

2πi
ez(ω(yj))tû(z(ω(yj)))z

′(ω(yj))
dω

dy
(yj)∆y, (2.20)

where yj = j∆y, ∆y = 1
N , j = −N + 1, · · · , N − 1. Here,

z(ω(y)) = γ −
√
(1

τ
log

1 + y

1− y

)2
+ ν2 + is

(1

τ
log

1 + y

1− y

)

.

In López-Fernández et al. [41] the approximation of (2.18) by composite

trapezoidal rule is given by

uN (t) = h
N∑

j=−N

1

2πi
ez(ωj)tû(z(ωj))z

′(ωj), (2.21)

where ωj = jh.

With a parameter h, the quadrature points used in Palencia et al. [40, 41]

are as follows:

z(ω) = λ
(

1− sinα cosh
(
sinh−1(

ω

λ cosα
)
))

+ iω.

Therefore if we introduce the finite interval-to-infinity map ω : [−1, 1] →
(−∞,∞) defined by

ω(y) = λ cosα sinh(Nhy), (2.22)

then one has

z(ω(y)) = λ(1− sinα cosh (Nhy)) + i(λ cosα sinh (Nhy)), y ∈ [−1, 1].

10



Notice that the range of the map ω defined by (2.22) is the truncated interval

[− sinh(Nh), sinh(Nh)] instead of the full infinity interval (−∞,∞).

Turn to analyze the parabola-type contour. Recall that the contours [22, 54]

considered its parameterization are respectively given by

z(ω) = −a0ω2 + b0 + iω, (2.23)

z(ω) = µ
(

1−
( ω

2µ

)2
)

+ iω. (2.24)

In I. P. Gavrilyuk and V. L. Makarov [22] the Sinc quadrature formula of

(2.18) is given by

uN (t) =
N∑

j=−N

αje
zjtû(zj), (2.25)

with an appropriate parameter αj used in [22] and the approximation by

composite trapezoidal rule used the contour (2.24) in [54] is the same with

(2.21).

Also, if we introduce the finite interval-to-infinity map ω : [−1, 1] →
(−∞,∞) defined by

ω(y) = Nhy, or ω(y) = 2µNhy, (2.26)

with the parameter h used in [22, 54] we obtain

z(ω(y)) = −a0(Nhy)2 + b0 + i(Nhy),

z(ω(y)) = µ(1− (Nhy)2) + i(2µNhy),

respectively, for y ∈ [−1, 1]. As with the previous hyperbolic case, we note that

the range of the map ω defined by (2.26) is the truncated interval [−Nh,Nh]
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instead of the full infinity interval (−∞,∞).

Finally, let us examine the Talbot contours used in [49, 53]. Its composite

midpoint rule approximation of (2.18) is written by

uN (t) = h
N+1∑

j=−N

1

2πi
ez(ωj)tû(z(ωj))z

′(ω), (2.27)

where ωj = (j + 1
2)h. For the original Talbot contour [49] and the modified

Talbot contour [53] we recall that the contour (2.16) represented by a variable

in an infinite range:

z(ω) = γ + µψ(ω) + iω,

where ψ(ω) is defined by (2.17).

Then, we are able to bring in the finite interval-to-infinity map ωj : (−1, 1) →
(−∞,∞) respectively defined by

ω1(y) =







1− yπ
tan (yπ) , −1 < y < 0,

yπ
tan (yπ) − 1, 0 ≤ y < 1,

and ω2(y) =







− 2y2

y2−1
, −1 < y < 0,

2y2

y2−1
, 0 ≤ y < 1.

(2.28)

Then one gets, for y ∈ (−1, 1),

z(ω1(y)) = γ + µψ(ω1(y)) + iω1(y),

for the original Talbot contour [49], and

z(ω2(y)) = γ + µψ(ω2(y)) + iω2(y),

for the modified Talbot contour [53].

Remark 2.2.1. Note that the range of the map ω defined by (2.28) is the full
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infinity interval (−∞,∞) while the range of the maps in (2.22) and (2.26) is

not fully infinity interval, the truncated one.

So far, we have reviewed and compared several efficient methods for numer-

ical Laplace inversion suggested in the original papers [22, 23, 40, 41, 47, 49,

53, 54]. Several methods have been classified and interpreted as the contents

related to the following issues: (i) the choice of contour & its parameterization,

and (ii) infinity-to-finite interval map & numerical quadrature rule. In short,

(i) Contour & parameterization

z(ω) = x(ω) + iω, −∞ < ω <∞.

- Hyperbolic contour [40, 47, 54]: z(ω) = x0 −
√
a2 + (abω)

2 + iω,

- Parabolic contour [22, 23, 54]: z(ω) = x0 +
1
4pω

2 + iω,

- Cotangent contour [49, 53]: z(ω) = γ + µψ(ω) + iω.

(ii) Infinity-to-finite interval map & quadrature rule

- Sheen et al. (2003): z(ω(y)) = γ −
√
(
1
τ log

1+y
1−y

)2
+ ν2 + is

(
1
τ log

1+y
1−y

)
,

- López-Fernández & Palencia (2004):

z(ω(y)) = λ(1− sinα cosh (Nhy)) + i(λ cosα sinh (Nhy)),

- Gavrilyuk & Makarov (2001): z(ω(y)) = −a0(Nhy)2 + b0 + i(Nhy),

- Weideman & Trefethen (2007): z(ω(y)) = µ(1− (Nhy)2) + i(2µNhy),

- Talbot (1979): z(ω1(y)) = γ + µψ(ω1(y)) + iω1(y),

- Weideman (2006): z(ω2(y)) = γ + µψ(ω2(y)) + iω2(y),

13



for the parameter h used in original papers [22, 40, 54] and the quadrature

point N.

2.3 Roundoff error control on numerical Laplace in-

version

Using a suitable deformed contour, the formula (2.4) can be expressed as

u(t) =
1

2πi

∫ ∞

−∞
ez(ω)tû(z(ω))z′(ω)dω, (2.29)

and applying a quadrature rule (here, we employ the midpoint rule) to the

integral, it can be approximated by

u(t) ≈ h

2πi

N−1∑

k=−N

ez(ωk)tû(z(ωk))z
′(ωk), (2.30)

with ωk = (k + 1/2)h.

In numerical computations the effect of roundoff error should be considered

to achieve accurate results. We remark that there are former researches to deal

with the effect of roundoff error. In [36] Lee & Sheen discussed the roundoff

error analysis for a deforming contour which consists of the union of circles.

And for parabolic contour it was given in Weideman [52], hyperbolic contour

in López-Fernández et al. [41].

In this section we extend the roundoff error model suggested by Weideman

[52] to find the modified optimal parameter for hyperbolic contour which gives

great efficiency. And an multi-precision arithmetic environment is considered

to get more accurate results and compare the most efficient methods. First,

we briefly describe the error analysis of Weideman & Trefethen [54]. And then

the estimation of the roundoff error for hyperbola is derived. Finally several
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numerical results are presented.

2.3.1 Review of error estimation

Before presenting the roundoff error control for numerical Laplace inver-

sion, let us start with a review of error estimation in Weideman & Trefethen

(2007) that is applied to find optimal parameters for parabola and hyperbola.

They found the optimal parameters for the following scalar problem.

eλt =
1

2πi

∫

Γ

ezt

z − λ
dz. (2.31)

With a deformed contour used in [22, 23, 40, 41, 47, 52, 54] the formula (2.31)

can be expressed as

eλt =
1

2πi

∫ ∞

−∞

ez(u)t

z(u)− λ
z′(u)du, (2.32)

and applying the midpoint rule to the integral, it can be approximated by

eλt ≈ h

2πi

N−1∑

k=−N

ez(uk)t

z(uk)− λ
z′(uk), (2.33)

with uk = (k + 1/2)h.

The error can be expressed as the sum of the discretization error and the

truncation error as follows:

I − Ih,N = I − Ih
︸ ︷︷ ︸

DE

+ Ih − Ih,N
︸ ︷︷ ︸

TE

. (2.34)

Here,

I =

∫ ∞

−∞
g(u)du, Ih = h

∞∑

k=−∞
g(uk), and Ih,N = h

N−1∑

k=−N

g(uk),
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where g(u) = 1
2πi

ez(u)t

z(u)−λz
′(u). Here the discretization error, DE is considered

as the sum of two parts, DE+ and DE−. The DE+ is related the distance to

the pole λ from the contour and theDE− implies the growth of the exponential

factor ezt.

Theorem 2.3.1 (Weideman & Trefethen [54]). Let w = u+ iv, with u and v

real. Suppose g(w) is analytic in the strip −d < v < c, for some c > 0, d > 0,

with g(w) → 0 uniformly as |w| → ∞ in that strip. Suppose further that for

some M+ > 0, M− > 0 the function g(w) satisfies

∫ ∞

−∞
|g(u+ ir)|du ≤M+,

∫ ∞

−∞
|g(u− is)|du ≤M−,

for all 0 < r < c, 0 < s < d. Then

|I − Ih| ≤ DE+ +DE−,

where DE+ = M+

e2πc/h−1
, DE− = M−

e2πd/h−1
.

Remark 2.3.2. As already explained in [54], the discretization is given by

DE+ = O
(
e−2πc/h

)
, DE− = O

(
M−(d)e

−2πd/h
)
, h→ 0,

for c <∞, d = ∞. And the truncation error can be approximated by

TE = O
(
|g(hN)|

)
, N → ∞.

Using the above facts, the following error estimation can be obtained

DE+ = O
(
e−

2π
h
)
, DE− = O

(
e
− π2

µth2
+ 2π

h
)
, and TE = O

(
eµt(1−(hN)2)

)
,

in the case of parabolic contour (2.12).
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Balancing the above three error estimations, one gets

− 2π

h
= − π2

µth2
+

2π

h
= µt(1− (hN)2), N → ∞, (2.35)

and then the optimal parameters can be obtained as follows

h∗ =
3

N
, µ∗ =

π

12

N

t
. (2.36)

Let us turn to the hyperbolic contour. The error estimation of hyperbolic

contour (2.8) are given by

DE+ = O
(
e−

2π(π/2−α)
h

)
, DE− = O

(
eµt−

2πα
h
)
, and TE = O

(
eµt(1−sinα cosh (hN))

)
.

Thus,

− 2π(π2 − α)

h
= µt− 2πα

h
= µt(1− sinα cosh (hN)), N → ∞. (2.37)

From the above equalities, one can obtain the formula

hN = cosh−1
( 2α

(4α− π) sinα

)
:= A(α).

Hence, we can consider h and µ as function of α such that

h =
A(α)

N
, µ =

4πα− π2

A(α)

N

t
. (2.38)

Assume that α ∈ (π/4, π/2). Then, the error convergence rate of DE+ is

O
(
e
−π2

−2πα
A(α)

N)
, and −π2−2πα

A(α) has a maximum at α∗ = 1.1721. Finally, the

optimal parameters of α, h, µ can be calculated

α∗ = 1.1721, h∗ =
1.0818

N
, µ∗ = 4.4921

N

t
. (2.39)
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As already mentioned in [52], the effects of roundoff errors should be consid-

ered when these optimal parameters (2.36), (2.39) are used to compute the

numerical integration (2.33). We examine those in the next subsection.

2.3.2 Roundoff error control for hyperbolic contour

In this subsection, we briefly give an overview of the method of roundoff

error control for parabolic contour (see [52] for details) and then develop the

result for the hyperbolic contour.

Consider

Ih,N,ǫ = h
N−1∑

k=−N

g(uk)(1 + ǫk), (2.40)

where ǫk is the relative error, it is satisfied |ǫk| ≤ ǫ, for machine precision

epsilon ǫ.

Then, the total error (2.34) can be extended to

I − Ih,N,ǫ = I − Ih
︸ ︷︷ ︸

DE

+ Ih − Ih,N
︸ ︷︷ ︸

TE

+ Ih,N − Ih,N,ǫ
︸ ︷︷ ︸

RE

, (2.41)

where RE = h
∑N−1

k=−N g(uk)ǫk. For the scalar problem, one can get the fol-

lowing inequality.

|RE| ≤ ǫ
1

π
max
k

|ez(uk)t|h
N−1∑

k=0

∣
∣
∣
z′(uk)

z(uk)− λ

∣
∣
∣. (2.42)

For the parabolic contour used in [52], the roundoff error can be estimated

as

|RE| ≈ ǫeµt = elog ǫ+µt, (2.43)
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and then the error equation (2.35) is extended to

− 2π

h
= − π2

µth2
+

2π

h
= µt(1− (hN)2) = log ǫ+ µt. (2.44)

From the above equation (2.44), the modified optimal parameters are ex-

plicitly given by

µ∗ =
log3

(
1
ǫ

)

4tπ2N2
, h∗ =

2π

log
(
1
ǫ

) +
log

(
1
ǫ

)

2πN2
, (2.45)

provided machine precision epsilon and N are fixed.

From our examples in Subsection 2.4, we can conclude that the method

which hyperbola is used as contour is more efficient than the case of using

parabola. But it may be thought of poor results without considering the round-

off error. From now, we give the roundoff error analysis for hyperbolic contour.

Let us consider the following hyperbolic contour used in [54].

z(u) = µ(1 + sin (iu− α)). (2.46)

With this contour the followings hold.

(i) maxk |ez(uk)t| ≤ eµ(1−sinα)t, for α ∈ (π4 ,
π
2 ).

(ii) h
∑N−1

k=0

∣
∣
∣
z′(uk)

z(uk)− λ

∣
∣
∣ is bounded as N → ∞.

From (i),(ii) we estimate the roundoff error as follows.

|RE| ≈ ǫ eµ(1−sinα)t = elogǫ+µ(1−sinα)t, (2.47)

with a machine precision epsilon ǫ = 10−16.
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Thus, the error equation for hyperbola (2.37) can be extended to

− 2π(π2 − α)

h
= µt− 2πα

h
= µt(1− sinα cosh (hN)) = log ǫ+ µt(1− sinα).

(2.48)

Rearranging the last equality of (2.48), one knows

cosh (hN) =
h log

(
1
ǫ

)

(4πα− π2) sinα
+ 1.

And using the same notation with (2.38), we get the following:

N =
A(α)

coshA(α)− 1

log
(
1
ǫ

)

(4πα− π2) sinα

=
A(α) log

(
1
ǫ

)

π{2α− (4α− π) sinα} . (2.49)

With the original optimal parameter α∗ = 1.1721 in [54], we approximate

the value of quadrature point N ,

N∗ ≈ 13.809.

In Figure 2.1(a), the error starts to increase when N is greater than N∗.

It is well-known result due to roundoff errors. To avoid this problem, the new

optimal parameter for hyperbolic contour (2.46) should be determined.

For α∗ = 1.1721, one can easily know that the roundoff error, RE ≈
elog ǫ+0.3523N , dominates the DE− ≈ e−2.3156N for large N. Thus, the following

equation is sufficient to deal with the roundoff error.

− 2π(π2 − α)

h
= µt(1− sinα cosh (hN)) = log ǫ+ µt(1− sinα). (2.50)

From now on, we want to find optimal parameters h and µ which can help to
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Figure 2.1 Error curve in double-precision environment in approximating
e−t at t = 1 using the hyperbolic contour (2.46) with the original optimal
parameters in (2.39) (left), with the original optimal parameters in (2.39)
for N ≤ 13 and the modified optimal parameters in (2.55) for N ≥ 14
(right). Here the dash-line in left figure represents the effect of roundoff errors,
ǫeµ(1−sinα)t = ǫe0.3523N in (2.47).
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reduce the roundoff error on numerical Laplace inversion.

This can be rewritten as follows:







−2π(π2 − α)

h
= µt(1− sinα cosh (hN)),

−2π(π2 − α)

h
= log ǫ+ µt(1− sinα).

(2.51)

From the second equation of (2.51), one gets

µt = − 1

1− sinα

(2π(π2 − α)

h
+ log ǫ

)

. (2.52)

Inserting (2.52) into the first equation of (2.51), we can obtain

sinα

1− sinα

(2π(π2 − α)

h
+log ǫ

)

cosh (hN)+(1− 1

1− sinα
)
2π(π2 − α)

h
− log ǫ

1− sinα
= 0.

Finally, one can write

cosh (hN) = 1 +
(1− sinα) log ǫ

(
2π(π

2
−α)

h + log ǫ
)

sinα
.

Let hN := R. Then,

h∗ =
R

N
, µ∗ =

log ǫ

t(1− coshR) sinα
, (2.53)

satisfying

coshR = 1 +
(1− sinα) log ǫ

(

2π(π2 − α)NR + log ǫ
)

sinα
. (2.54)

Now, let us find solution R of the equation (2.54). To simplify the above

equation, we assume that coshR can be approximated to 1 + cR2, with a
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suitable constant c.

=⇒ cR2 =
(1− sinα) log ǫ

(

2π(π2 − α)NR + log ǫ
)

sinα
,

=⇒ R2 +
(π(π − 2α)

log ǫ
N
)

R− (1− sinα)

c sinα
= 0.

That is,

R =
1

2

(

− π(π − 2α)

log ǫ
N +

√

(π(π − 2α)

log ǫ
N
)2

+ 4
(1− sinα)

c sinα

)

≈ π(π − 2α)N

log
(
1
ǫ

) +
(1− sinα)

c sinα

log
(
1
ǫ

)

π(π − 2α)N
.

Hence, the modified optimal parameters h∗, µ∗ are given by, for large N,







h∗ =
π(π − 2α)

log
(
1
ǫ

) +
(1− sinα) log

(
1
ǫ

)

cπ(π − 2α) sinα

1

N2
,

µ∗ =
log

(
1
ǫ

)

t
(

cosh
(π(π − 2α)

log
(
1
ǫ

) N +
(1− sinα) log

(
1
ǫ

)

cπ(π − 2α) sinα

1

N

)
− 1

)

sinα

,

(2.55)

where α = α∗ = 1.1721, and a suitable constant c. Hence, modified optimal

parameters can be obtained.

h∗ = −2.5051

log ǫ
− 0.0571

log ǫ

N2
, µ∗ =

1.0851 log ǫ
(

1− cosh
(2.5051

log ǫ
N + 0.0571

log ǫ

N

))

t

.

(2.56)

Remark 2.3.3. Since we know R ≈ 1 from (2.39), we can assume that coshR

can be approximated to 1 + cR2, and choose c as 0.5946.
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Type Machine precision (ǫ) Estimated N (N∗)

Single 10−7 6.041

Double 10−16 13.809

Multi 10−39 33.659

Multi 10−58 50.059

Table 2.1 Test environment

With these new parameters in (2.56), we found that the effect of roundoff

error can be removed when N is large. (See Figure 2.1(b).)

So far, all computations are limited to an double-precision environment.

Here we apply several arbitrary-precision arithmetic environment to check our

modified optimal parameters in (2.55) work well. Two basic format (single,

double) and two high-precisions are considered. With (2.49) the values of N∗

which involve roundoff errors can be calculated on each of precisions (Table

2.1). To adopt multi-precision calculation we use Fujiwara’s EXFLIB [19, 20].

All results are shown that error curves do not increase when N is large and

remain at machine precision epsilon level when N is larger than N∗.

2.4 Numerical examples

In this section, we give some numerical examples. To avoid the effect of

roundoff error all computations were implemented in multi-precision arith-

metic environment and to compare the most efficient methods we consider

several methods which are based on different contours: parabola [22, 23, 54] ,

hyperbola [40, 41, 42, 47, 54] , and cotangent contour [49, 53]. Here we compute

discrete L2-errors for 0 ≤ t ≤ 10, i.e.,

E =

√
√
√
√

100∑

j=1

(
u(tj)− uN (tj)

)2
/10, where tj = j/10, j = 0, 1, · · · , 100
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Figure 2.2 Error curve in different-precision environment in approximating
e−t at t = 1 using the hyperbolic contour (2.46) with the original optimal
parameters in (2.39) for N ≤ N∗ and the modified optimal parameters in
(2.55) for N > N∗.
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Figure 2.3 Error curve in different-precision environment in approximating
e−t at t = 1 using the hyperbolic contour (2.46) with the original optimal
parameters in (2.39) for N ≤ N∗ and the modified optimal parameters in
(2.55) for N > N∗.
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Example 2.4.1 (Exponential function). We start to consider a simple differ-

ential equation. In case of A=I, f(t)=0 for (2.1). i.e.,

ut + u = 0, for t > 0, with u(0) = 1,

whose solution and its Laplace transform are given by u(t) = e−t and û(z) =

(z+1)−1, respectively. Since the only singularity of û(z) = (z+1)−1 is −1, one

can easily apply several contours and obtain the original function without any

difficulties. However, one can observe that the error starts to grow as N gets

larger in Table 2.2, which is due to the roundoff error. In order to resolve this

problem, we adopted a multi-precision calculation using Fujiwara’s EXFLIB

[19, 20]. Improved results are shown in Table 2.3.

Example 2.4.2 (Several test functions). Next, we tested several functions

in Table 2.4, taken from Davies and Martin [14]. In the Laplace inversion

we used the modified Talbot‘s contour [53], the parabola contour [54], and

the hyperbola contour [47, 54]. The parameters used in our calculation are

taken from [53, 54]. Numerical results in multi-precision using again Fujiwara’s

EXFLIB are shown in Table 2.5, Figures 2.4 – 2.8. We observe from Table

2.5 that the hyperbola is more efficient than both the parabola and Talbot’s

contour at least when we used the parameters suggested in [53, 54].
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N Hyperbola Parabola Talbot’s

10 9.081E-11 7.855E-10 1.994E-07
20 8.613E-13 7.028E-15 3.150E-14
40 7.314E-10 2.945E-12 4.192E-12
80 2.351E-03 1.422E-07 1.460E-07

Table 2.2 Example 2.4.1: L2-Errors in double-precision in approximating an
exponential function

N Hyperbola Parabola Talbot’s

10 9.076E-11 7.853E-10 1.992E-07
20 7.283E-21 6.291E-19 3.424E-14
40 4.742E-41 3.365E-37 1.531E-27
80 3.619E-81 1.515E-73 2.922E-53

Table 2.3 Example 2.4.1: L2-Errors in multi-precision(=100) in approximating
an exponential function
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u1(t) = 1 û1(z) = z−1

u2(t) = t û2(z) = z−2

u3(t) = sin t û3(z) = (z2 + 1)−1

u4(t) = t cos t û4(z) = (z2 − 1)(z2 + 1)−2

u5(t) = te−t û5(z) = (z + 1)−1

u6(t) = e−t/2 û6(z) = (z + 1/2)−1

u7(t) = e−0.2t sin t û7(z) = ((z + 0.2)2 + 1)−1

u8(t) = 2e−4/t(πt3)−1/2 û8(z) = e−4z1/2

u9(t) = (πt)−1/2 cos (2t1/2) û9(z) = z−1/2e−z−1

u10(t) = (e−t/4 − e−t/2)(4πt3)−1/2 û10(z) = (z + 1/2)1/2 − (z + 1/4)1/2

Table 2.4 Example 2.4.2: List of test functions used in the example

Test Hyperbola Parabola Talbot’s
function N=40 N=80 N=40 N=80 N=40 N=80

u1 3.767E-40 2.166E-80 2.659E-36 1.093E-72 1.710E-27 2.872E-53
u2 6.473E-37 7.661E-77 5.038E-33 4.162E-69 2.109E-28 6.147E-55
u3 9.654E-18 3.139E-48 1.748E-12 7.106E-39 3.954E-10 1.014E-38
u4 3.177E-16 1.030E-46 7.603E-11 8.500E-37 1.401E-08 7.164E-37
u5 5.315E-40 4.006E-80 3.947E-36 2.277E-72 2.086E-28 5.249E-55
u6 7.994E-41 4.457E-81 5.749E-37 2.167E-73 1.619E-27 2.898E-53
u7 6.238E-21 2.461E-52 9.772E-16 8.537E-43 6.671E-13 3.681E-42
u8 1.369E-46 8.429E-88 1.032E-41 7.817E-79 1.200E-29 9.659E-59
u9 3.589E-35 1.890E-73 6.251E-31 1.209E-65 5.131E-27 3.900E-52
u10 1.070E-41 6.399E-82 6.843E-38 2.740E-74 5.903E-28 4.882E-53

Table 2.5 Example 2.4.2: L2-Errors in multi-precision(=100) environment in
approximating several test functions in Table 2.4
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Figure 2.4 Example 2.4.2: Approximation of several test functions listed in
Table 2.4 in double precision
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Figure 2.5 Example 2.4.2: Approximation of several test functions listed in
Table 2.4 in double precision
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Figure 2.6 Example 2.4.2: Approximation of several test functions listed in
Table 2.4 in double precision
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Figure 2.7 Example 2.4.2: Approximation of several test functions listed in
Table 2.4 in double precision
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Figure 2.8 Example 2.4.2: Approximation of several test functions listed in
Table 2.4 in double precision
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Example 2.4.3 (Bessel function J0(t)). We consider the Bessel’s differential

equation

t2y
′′

+ ty′ + t2y = 0, (2.57)

for which the Bessel function J0(t) of the first kind of order zero is one of the

solutions. The Laplace transform of J0(t) is given by û(z) = 1√
z2+1

.

In case the branch cut of
√
z2 + 1 is not treated carefully, the numerical

Laplace inversion with a hyperbola contour would lead to the solution shown in

Figure 2.9(a). which certainly deviates from the original Bessel function J0(t),

especially at the numerical approximation would not reproduce the exact value

one at t = 0.

This deviation is because of the choice of wrong branch cut adopted in

the standard environment in programming languages, where the branch cut

of square root function is given along the negative axis. To fix the choice of

wrong branch cut problem, we defined the Laplace transform û(z) of the Bessel

N Hyperbola Parabola Talbot’s

10 0.391 0.453 0.668
20 1.588E-05 2.016E-02 0.261
40 8.324E-10 3.631E-12 2.611E-11
80 2.665E-03 1.684E-07 1.755E-07

Table 2.6 Example 2.4.3: L2-Errors in double-precision in approximating the
bessel function in the choice of right branch cut

N Hyperbola Parabola Talbot’s

10 0.391 0.453 0.668
20 1.588E-05 2.016E-02 0.261
40 7.658E-19 1.689E-13 2.470E-11
80 3.643E-49 2.319E-39 5.858E-40

Table 2.7 Example 2.4.3: L2-Errors in multi-precision in approximating the
bessel function in the choice of right branch cut
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Figure 2.9 Example 2.4.3: The significance in the choice of branch cut in
approximating J0(t): in both figures the points and lines represent the exact
and numerical solutions in double precision, respectively.
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function in the following form;

û(z) :=







1√
z2+1

ℜz > 0,

− 1√
z2+1

ℜz < 0.

Then applying the numerical inverse Laplace transform using a hyperbola, we

could recover the original bessel function J0 very successfully. The numerical

results, still in double precision, are shown in Figure 2.9(b).

At a certain large time t, the numerical solution starts to be oscillatory and

unstable, which is due to the roundoff error as shown in Figure 2.10(a). We

again calculated using the Fujiwara’s EXFLIB multi-precision package. The

numerical result shown in Figure 2.10(b) is quite satisfactory at least up to

t = 100.

Example 2.4.4 (Square wave). So far we have examined only continuous

functions. We now explore the case of discontinuous functions. We look at

one of the typical discontinuous functions, namely, the square wave, whose

Laplace transform, û(z) = 1/(z(1 + e−z)), has an infinite number of poles

(0,±πi,±2πi, · · · ) on the imaginary axis. When we apply several approaches

in double precision in obtaining its inverse Laplace transform, roundoff er-

rors are dominating factors to produce unacceptable solutions as shown in

Table 2.8. In order to cure this problem, the calculations in multi-precision

showed significant progress compared to those in double-precision. However,

even though we employ multi-precision (=100) environment, numerical solu-

tions begin to converge to the target function as a sufficiently large number of

quadrature points N are chosen (see Table 2.9 and Figure 2.12). This improve-

ment comes from the fact that the larger N is chosen, the more singularities

of its Laplace transform are contained in the left side of the contour which
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Figure 2.10 Example 2.4.3: The consequence of roundoff error in approximating
J0(t): the left figure calculated in double precision starts to deviate around
t = 20 while that in multiple precision stays in good agreement at least until
t = 100.
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we are considering. This produce more accurate calculation. However roundoff

errors increase as the number of quadrature points N increases, as shown in

the case of N = 1280. But this problem may be alleviated by using higher

precision.

39



N Hyperbola Parabola Talbot’s

10 1.393 1.386 NaN
20 1.122 1.273 NaN
40 NaN NaN NaN

Table 2.8 Example 2.4.4: L2-Errors in double-precision in approximating a
square wave

N Hyperbola Parabola Talbot’s

10 1.384 1.377 1.423
20 1.111 1.263 1.474
40 0.543 0.925 1.034
80 0.338 0.397 0.421
160 0.159 0.247 0.306
320 0.102 0.111 0.140
640 4.458E-02 6.886E-02 9.472E-02

1280 5.034E+81 1.127E+30 8.664E+23

Table 2.9 Example 2.4.4: L2-Errors in multi-precision(=100) in approximating
a square wave

40



-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5  6  7  8  9  10

numerical
exact

(a) N=80

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5  6  7  8  9  10

numerical
exact

(b) N=160

Figure 2.11 Example 2.4.4: The approximation in multiple precision of a square
wave with increasing number of quadrature points
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Figure 2.12 Example 2.4.4: The approximation in multiple precision of a square
wave with increasing number of quadrature points
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Chapter 3

Weather Derivatives

3.1 Introduction

On January 4, 2010 there was a 25.8 centimeters snowfall in the central area

of Korea encompassing the Capital Region and Gangwon-do, a record-breaking

event since 1937. This heavy snowfall temporarily paralyzed transportation in

that large area, and caused numerous accidents on the icy roads. Many agri-

cultural facilities, including the ginseng greenhouses, were also broken by the

weight of the piled-up snow. The loss of property caused by this snowfall was

estimated to total 10.6 billion won. Apart from heavy snowfalls, the extreme

weather events in Korea include unexpectedly intensive typhoons, heavy rains

and heat waves in summer, and very cold winters. The cost of the annual

average weather damage during the last ten years has been estimated to be

more than 2 trillion won, so financial losses due to weather risks should be

covered by adequate weather-related insurances and derivatives. However, the

Korean insurance market is rather stagnant, especially in regard to weather
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risks. According to the General Insurance Association of Korea, the number

of weather-related contracts was thirty-six in 2002, twenty-seven in 2003, and

forty-one in 2004. Although the market may be growing, it is restricted to

contingency insurance where the insurance companies compensate the insured

for damages that actually happen, and the proper estimation of total losses

between the policyholders and the companies remains highly controversial.

The importance of weather risk has been recognized in most developed

countries, where it is fast becoming customary to provide against uncertain

climatic change. The typical provision includes the introduction of weather

derivatives and associated Risk Management. An early weather transaction

was executed by Aquila Energy, which structured a dual-commodity hedge for

the Edison Company in 1996. Over-the-counter (OTC) weather derivatives

have been traded since 1997, and at the Chicago Mercantile Exchange (CME)

since the summer of 1999. In September 2003, the CME launched seasonality

products for ten new cities, and then monthly for a list of twelve cities in the

USA that was expanded to include five European cities. The CME now offers

temperature products for twenty-four cities in the USA, six in Canada, eleven

in Europe, three in Australia, and three elsewhere in the Asia-Pacific — cf.

Tables 3.1 and 3.2). In addition to the increasing number of cities covered at

the CME, the volume of weather derivative contracts issued has significantly

increased — from 630,000 in 2005 to 798,000 in 2006, and to nearly 1,000,000

in 2007 [13, 43]. Although the volume did fall by about 16 % in 2008, that

occurred during the onset of the current global financial crisis.

With the rapid growth of weather-related industries, relevant futures prices

have been studied extensively [2, 3, 4, 5, 6, 9, 12, 16, 25, 34, 38, 24, 26, 29, 39,

46, 48, 50, 51, 55]. Since weather derivatives are non-tradable, no-arbitrage

models (such as the Black-Scholes model) are inapplicable to pricing weather
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options, directly. In 2000, Dornier & Querel [16] used mean-reverting Itô dif-

fusions based on a standard Brownian motion to model Chicago temperature

data. Brody et al. [9] proposed another dynamical model based on a fractional

Brownian motion, and Alaton et al. [2] applied the Ornstein-Uhlenbeck process

with a monthly variation to analyze the temperature at the Bromma Airport,

Stockholm. Benth et al. [4, 5] generalized Dornier & Querel’s approach by em-

ploying continuous autoregressive (CAR) models to analyze temperature data

at Stockholm; and Härdle & Cabrera [25] also applied the CAR approach to

Berlin temperature data, but they considered a nonzero market price of risk

(MPR). To date no significant research for Korean weather derivatives and

pricing has been reported, and a weather market has yet to be introduced.

However, in order to keep pace with the growth of world-wide weather mar-

kets, the Financial Supervisory Commission of Korea now seems to favour the

introduction and development of weather derivatives. The Korea Meteorolog-

ical Administration (KMA) has also recently announced it intends to develop

a weather index effective from 2012, to serve as one basic reference.

In this chapter we analyze the Seoul temperature data and then price

related weather options, using the approach adopted in Refs. [2], [5] and [25].

This chapter is organized as follows. In Section 3.2, we construct our Seoul

temperature model based on observed data. Put and call options are then

priced in Section 3.3, based on temperature derivatives. Finally, in Section

3.4 the market price of risk (MPR) is calculated, using the Korea Composite

Stock Price Index (KOSPI).
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Table 3.1 Weather product: Temperature on CME (December, 2012).

Product name Region
U.S. Cooling (Monthly/Seasonal) Atlanta, Chicago, Cincinnati

U.S U.S. Heating (Monthly/Seasonal) New York, Dallas, Philadelphia
U.S. Weekly Weather Las Vegas, Boston, Houston, etc.

Canada CAT (Monthly/Seasonal) Calgary, Edmonton
Canada Canada Cooling (Monthly/Seasonal) Montreal, Toronto

Canada Heating (Monthly/Seasonal) Vancouver, Winnipeg
Europe Europe CAT (Monthly/Seasonal) London, Paris, Amsterdam, Berlin

Europe Heating (Monthly/Seasonal) Stockholm, Essen, Barcelona, Rome, etc.
Australia Australia Cooling (Monthly/Seasonal) Bankstown, Sydney

Australia Heating (Monthly/Seasonal) Brisbane Aero, Melbourne
Asia-Pacific Asia-Pacific (Monthly/Seasonal) Hiroshima, Osaka, Tokyo

Table 3.2 Weather product on CME (December, 2012).
Index Product name Region

Hurricane Gulf Coast, Florida, Southern Atlantic Coast
Hurricanes Hurricane Seasonal Northern Atlantic Coast, Eastern U.S.

Hurricane Seasonal Maximum Cat-In-A-Box, Florida Gold Coast
Frost Frost (Monthly/Seasonal)

Snowfall Snowfall (Monthly/Seasonal) Boston, New York Central Park, Chicago, etc.
Rainfall Rainfall (Monthly/Seasonal) Chicago O’Hare International Airport
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Figure 3.1 Daily average temperature from 1954.01.01to 2009.12.31 at Seoul,
Korea.

3.2 Modelling of Seoul temperature

We investigate the temperature data for Seoul in a somewhat different way

from previous analyses for other places. Firstly, most researchers [2, 3, 5, 6, 16,

25] have defined the daily mean temperature as the average of the maximum

and minimum temperatures for that day, but we adopt the following definition

for the daily average temperature.

Definition 3.2.1 (Daily average temperature (DAT )). From the year 1997,

the daily average temperature Tt is defined to be the average temperature of

8 observed temperature values at the 03, 06, 09, 12, 15, 18, 21, 24 hour times

during the day t; and before 1997, Tt is defined as the average temperature of

4 observed values at the 03, 09, 15, 21 hour times during the day t.

We begin with the 20440DAT data recorded for the 56 years from 1954.01.01

to 2009.12.31 at Seoul, Korea (Fig. 3.1) obtained from the KMA [44]. Leap-year

day data are excluded. These data, which basically contain seasonal periodic-
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ity and an increment trend due to global warming, are to be interpreted as a

function in time in the mathematical analysis. It seems natural to try to fit the

yearly periodicity with a cosine polynomial and the global warming property

with a linear term [2, 5, 25]. However, we assume

Λt = λ0 + λ1t+ λ2 cos
2π(t− λ3)

365
+ λ4 cos

4π(t− λ5)

365
, (3.1)

and remark that the difference between the form used by Benth et al [5] and

Eq. (3.1) is the fourth term representing a half-year period. We include this

term so that the ACF analysis in Section 3.3.2 works when seasonality in

the squared residuals remains apparent, as will be seen in Fig. 3.8(d). This

seasonality is a distinct feature of the temperature at Seoul, compared to the

other cities that have been considered elsewhere [2, 5, 7, 25].

Using the method of least squares, we get the coefficients λ0 = 11.1897,

λ1 = 0.0001, λ2 = 13.9112, λ3 = −161.2643, λ4 = 1.3705, and λ5 = −92.7957.

The fitted function and DAT are plotted in Fig. 3.2(a). The blue line is the

daily average temperature, while the red one is a fitted form using Eq. (3.1).

Fig. 3.2(b) also depicts these data and fitted function, during the 10 years from

2000.1.1 to 2009.12.31. The coefficient λ2 represents half of the temperature

difference between the highest DAT in summer and the lowest DAT in winter,

which is approximately 28◦C — cf. Table 3.3. Compared to European cities

(Berlin [25] and Stockholm [2]) and other Asian cities (Tokyo, Osaka, Taipei

[7]), this value is much higher. The second term in Eq. evidently reflects the

greenhouse effect, with the annual average temperature rising as seen in Table

3.4.
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Table 3.3 Temperature differences between the highest DAT in summer and
the lowest DAT in winter.

Seoul Berlin Stockholm Tokyo Osaka Taipei
27.8◦C 19.6◦C 20.8◦C 20.7◦C 23◦C 13.6◦C

Table 3.4 Monthly average temperatures during the 1950-1959 and 2000-2009
decades.

1 2 3 4 5 6 7 8 9 10 11 12 Annual
1950’s -4.3 -1.0 3.5 10.6 16.4 20.6 23.9 25.1 20.1 13.0 6.6 -0.5 11.2
2000’s -1.6 1.0 6.0 12.8 18.3 22.5 24.9 25.7 21.6 15.3 7.5 0.4 12.9

3.3 Temperature Derivatives

There are three types of temperature indices used at the CME – HDD,

CDD and CAT . TheHDDn and CDDn indices usually measure temperatures

over a period starting from day u1 to day un, with regard to heating and

cooling when the DAT is below and above 18◦C, respectively. The CAT index

accounts for the accumulated average temperature over day u1, day u2, · · · ,
day un. Specifically, these three types are defined as follows:

HDDn =
n∑

i=1

max (18− Tui , 0) ,

CDDn =
n∑

i=1

max (Tui − 18, 0) ,

CATn =
n∑

i=1

Tui .

As shown in Table 3.1, the HDD and CDD indices are used in the USA,

Canada and Australia. In Europe, the CAT index substitutes for the CDD

index utilizing the HDD–CDD parity — thus

CDDn −HDDn = CATn − 18n. (3.2)
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(a) 1954.01.01–2009.12.31

(b) 2000.01.01–2009.12.31

Figure 3.2 Seasonality effect and daily average temperatures for Seoul: the
blue lines represent daily average temperatures (DAT), and the red lines fitted
functions given by Eq. (3.1).
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Similar to Japan, in Korea we may define the accumulated temperature index

to be the sum over the period day u1, day u2, · · · , day un of daily average

temperatures, averaged over temperatures observed 8 times daily — i.e.

CATn =
n∑

i=1

Tui , (3.3)

where Tui =
∑8

j=1 T̃ui,j/8 involves the temperature T̃ui,j measured at hour 3j

on day ui, j = 1, · · · , 8.

3.3.1 Option pricing for temperature derivatives 1: HDD and

CDD

In order to calculate option pricing for the HDD and CDD, we follow

the scheme of Alaton et al. [2] where the mean temperature Tt follows the

Ornstein-Uhlenbeck process with mean reverting rate a — i.e.

dTt = a(Tm
t − Tt) dt+ σt dWt , (3.4)

where Tm
t is the equilibrium or mean temperature value given by the expected

temperature at day t from the past historical data for the temperature. We

normally choose Tm
t = Λt, where Λt is given by Eq. (3.1). In Eq. (3.4), σt

represents the degree of volatility around Tm
t , and Wt the Brownian motion

on the probability space (Ω,F , P ) with a filtration {Ft}.
To satisfy a mean-reverting property, we should add the term dTm

t /dt

to Eq. (3.4) – cf. Dornier & Querel [16]. We then arrive at the stochastic

differential equation

dTt =

{
dTm

t

dt
+ a(Tm

t − Tt)

}

dt+ σt dWt (3.5)
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Table 3.5 The quadratic variation σ̂µ given by Eq. (3.7).

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
3.079 2.718 2.404 2.356 2.139 1.758 1.592 1.472 1.540 2.036 2.887 3.143

with solution given by

Tt = (x− Tm
s )e−a(t−s) + Tm

t +

∫ t

s
e−a(t−τ)στ dWτ , (3.6)

where x = Ts is the temperature observed at the starting day s. We need an

estimation of both a and σ in Eq. (3.6). For j = 1, · · · , 365, let T j denote the

average temperature of DATj+365(k−1) where k = 1, · · · , 56 – i.e. the average

of all DAT ’s at the jth day of each year from 1954 to 2009. We then introduce

an estimator σ based on the quadratic variation of Tt – i.e.

σ̂µ =

√
√
√
√ 1

Nµ

Nµ−1
∑

j=0

(

T j+1+sµ − T j+sµ

)2
, (3.7)

where µ denotes a specific month (µ = 1, · · · , 12) of the year and Nµ the

number of days in that month, and sµ indicates the number of days up to the

last day of the previous month (µ− 1).

Table 3.5 shows the quadratic variation σ̂µ of each month, where it is

notable that the variations in winter are about twice as large as those in

the summer. As previously noted, there are cycles of three cold days and four

warm days during winter, and the hot temperature in summer does not change

significantly – and such characteristic features in the Korean peninsula should

be taken into account in modelling relevant weather derivatives and option

pricing. With σ̂µ from Table 3.5, we obtain the mean-reversion parameter

value ân = 0.2748, based on the martingale estimation functions method [8]
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where

ân =

∑n
i=2 Yi−1

{

Ti − Ti−1 − dTm
i−1/dt

}

∑n
i=2 Yi−1{Tm

i−1 − Ti−1}
, (3.8)

with Yi−1 = (Tm
i−1 − Ti−1)/σ

2
i−1 (i = 2, · · · , n) and σj = σ̂k if the j-th day

starting from 1 January 1954 lies in the k-th month in some year.

Considered a martingale measure Q, characterized by the market price of

risk θ, the temperature satisfies the following stochastic differential equation:

dTt =

{
dTm

t

dt
+ a(Tm

t − Tt)− θσt

}

dt+ σt dW
θ
t . (3.9)

Proposition 3.3.1. The solution of the above stochastic differential equation

(3.9) can be represented by

Tt = (x− Tm
s )e−a(t−s) + Tm

t −
∫ t

s
θe−a(t−τ)στ dτ +

∫ t

s
e−a(t−τ)στ dWτ ,

where x = Ts is the temperature observed at the starting day s.

Proof. Let f(Tt, t) = Tte
at. Then,

df(Tt, t) = eatdTt + aTte
atdt

= eat
[{

dTm
t

dt
+ a(Tm

t − Tt)− θσt

}

dt+ σt dWt

]

+ aTte
atdt

= eatdTm
t + aeatTm

t dt− θeatσtdt+ eatσt dWt.

Integrating over [s, t], one can get

Tte
at − Tse

as = eatTm
t − easTm

s −
∫ t

s
θeaτστ dτ +

∫ t

s
eaτστ dWτ ,
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and then,

Tt = Tm
t + (x− Tm

s )e−a(t−s) −
∫ t

s
θe−a(t−τ)στ dτ +

∫ t

s
e−a(t−τ)στ dWτ .

In order to price call and put options for the HDD, we first compute the

conditional expectation and variance. Let us consider option prices under a

martingale measure Q characterized by the MPR θ, which is equivalent to P .

From the Girsanov theorem, the expectation changes under the measure Q

but the variance does not. Therefore we have the following propositions.

Proposition 3.3.2 (Alaton et al. [2]). Assume that the temperature Tt sat-

isfies the stochastic differential equation (3.9) under a martingale measure Q.

Then,

EQ[Tti |Ft] = (Tt − Tm
t )e−a(ti−t) + Tm

ti − θσi
a

(

1− e−a(ti−t)
)

,

V arQ[Tti |Ft] =
σ2i
2a

(

1− e−2a(ti−t)
)

,

CovQ[Tti , Ttj |Ft] = e−a(tj−ti)
σ2i
2a

(

1− e−2a(ti−t)
)

,

for 0 ≤ t ≤ ti ≤ tj .

On setting

βn = (K − µn)/γn , µn = EQ[HDDn|Ft] = 18n−
∑

EQ[Tti |Ft], (3.10)

where γ2n = V arQ[HDDn|Ft], we find the price of the HDD call option given
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Table 3.6 Option prices: Market Price of Risk (MPR)=0, r = 0.036, and the
trading date is the first of December for the HDD and the first of July for
the CDD, respectively.

Index HDD call HDD put CDD call CDD put

Strike price 600 600 220 220
Measurement Period Jan. 2011 Jan. 2011 Aug. 2011 Aug. 2011

Price 23.25 16.25 9.97 8.75

by

HDDcall(t) = exp [−r(tn − t)] EQ
[

max (HDDn −K, 0)|Ft

]

= exp [−r(tn − t)]

(

(µn −K)Φ(−βn) +
γn√
2π

exp
(

− β2n
2

))

,

(3.11)

where Φ is the cumulative distribution function for the standard normal dis-

tribution. Further, the price of the HDD put option is likewise given by

HDDput(t) = exp [−r(tn − t)] EQ[max (K −HDDn, 0)|Ft]

= exp [−r(tn − t)]

[

(K − µn)

(

Φ(βn)− Φ
(

− µn
γn

))

+
γn√
2π

(

exp
(

− β2n
2

)

− exp
(

− µ2n
2γ2n

))]

. (3.12)

The formulae for CDD call and put options can be derived analogously,

and are quite similar to Eqs. (3.11) and (3.12). It is notable that θ in Eq. (3.10)

represents the market price of risk (MPR), discussed in detail in Section 3.4.

From these equations, we get the option prices shown in Table 3.6, assuming

that θ = 0. The HDD and CDD call and put option prices with r = 0.036

are illustrated in Fig. 3.3, 3.9 for January and August of 2011, respectively.
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(a) HDD call

(b) HDD put

Figure 3.3 Option prices: Market Price of Risk (MPR) = 0, r = 0.036, for the
HDD call and put options calculated for the months of January 2011. The
measurement period is the entire month of January and the trading date is
the first of December.

56



(a) CDD call

(b) CDD put

Figure 3.4 Option prices: Market Price of Risk (MPR) = 0, r = 0.036, for
the CDD call and put options calculated for the months of August 2011. The
measurement period is the entire month of August and the trading date is the
first of July.
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3.3.2 Option pricing for temperature derivatives 2: CAT

In this subsection, we estimate the CAT -futures price and its option value,

using the Benth et al. [5] temperature dynamics model, continuous time AR

models (CAR). Letting Wt denote the Brownian motion on the probability

space (Ω,F) with a filtration {Ft}0≤t≤τmax , we now consider the vectorial

Ornstein-Uhlenbeck process

dXt = AXt dt+ epσt dWt , (3.13)

where ek is the k-th unit vector in R
p, k = 1, · · · , p. and A is the p× p matrix

A =














0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−αp −αp−1 −αp−2 · · · −α1














.

Further, denoting by Xqt the q-th coordinate of the vector Xt, q = 1, · · · , p we

have

Tt = Λt +X1t , (3.14)

whence from Ito’s lemma the temperature dynamic process is described as

follows.

Lemma 3.3.3. The stochastic process Xt in Eq. (3.13) can be expressed as

Xs = eA(s−t)Xt +

∫ s

t
eA(s−u)epσu dWu ,

for s ≥ t ≥ 0.
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We now proceed to consider the difference between the DAT and the sea-

sonal behaviour

Xt = Tt − Λt . (3.15)

The partial autocorrelation function (PACF) for Xt is plotted in Fig. 3.5,

showing that the AR(3)-process [5] is suitable for the analysis of our data.

The fitted autoregressive process using MATLAB corresponds to

Xt+3 = 0.9385Xt+2 − 0.3472Xt+1 + 0.1132Xt + σtǫt , (3.16)

where the seasonal variance σ2t and the residual ǫt are computed as follows.

We first compute the residuals ǫ̂t = Xt+3 − 0.9385Xt+2 + 0.3472Xt+1 −
0.1132Xt, as plotted in Figs. 3.6(a) and 3.6(b) together with their squares ǫ̂t

2.

The ACF of the residuals and the squared residuals of AR(3) are plotted in

Figs. 3.8(a) and 3.8(c), showing that the residuals are close to zero but the

squared residuals exhibit a high seasonality pattern. To avoid this problem,

we consider the seasonal variance function σ2t in Eq. (3.17). We also use the

least squares method to get the parameters cj ’s in the following formula:

σ2t = c1 +

4∑

j=1

(

c2j cos
2jπt

365
+ c2j+1 sin

2jπt

365

)

, (3.17)

where c1 = 4.4823, c2 = 2.5635, c3 = 0.7150, c4 = 0.8952, c5 = −0.5473,

c6 = 0.3197, c7 = −0.3531, c8 = −0.1315 and c9 = −0.0055. After dividing ǫ̂t
2

by the seasonal variance function σ2t , as shown in Fig. 3.8(d) we find that the

plot of the squared residuals results in much smaller values than before – and

moreover, it presents a non-seasonal pattern.

For p = 1, Xt = X1t and dX1t = −α1X1t dt + σt dWt, and for p = 2,

X1(t+2) ≈ (2 − α1)X1(t+1) + (α1 − α2 − 1)X1t + σt(Wt+1 −Wt). And by the
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finite difference approximation,

X1(t+3) ≈ (3− α1)X1(t+2) + (2α1 − α2 − 3)X1(t+1) (3.18)

+(α2 + 1− α1 − α3)X1t + σt(Wt+1 −Wt),

for p = 3. Consequently, using the equation (3.18) we obtained values for the

coefficients of CAR(3) – α1 = 2.0615, α2 = 1.4701, α3 = 0.2955 (cf. Benth et

al. [5]).

Here, we assume that all equivalent measures Q will be risk-neutral proba-

bilities. To compute arbitrage free price of temperature, we consider a parametrized

class of a risk-neutral probability measure Q, i.e. W θ
t =Wt −

∫ t
0 θudu. Here θ

represents the market price of risk. By Girsanov theorem, Wt is a Brownian

motion. And the stochastic process under Qθ is given by

dXt = (AXt + epσtθt)dt+ epσt dW
θ
t . (3.19)

The futures price for the CAT with the temperature measurement period

[τ1, τ2] is

FCAT (t,τ1,τ2) = EQθ

[∫ τ2

τ1

Tsds
∣
∣Ft

]

, (3.20)

where the price of the futures FCAT (t,τ1,τ2) is Ft-adapted.

In Benth et al. [5], explicit formulae for the CAT futures price and the call

option price are as given in the following Propositions:

Proposition 3.3.4 (Benth et al. [5]). For 0 ≤ t ≤ τ1 < τ2, the CAT futures

price is

FCAT (t,τ1,τ2) =

∫ τ2

τ1

Λu du+ at,τ1,τ2Xt +

∫ τ1

t
θuσuat,τ1,τ2ep du

+

∫ τ2

τ1

θuσue
T
1A

−1
[

exp[A(τ2 − u)]− Ip

]

ep du ,
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Figure 3.5 Partial autocorrelation function (PACF) for Xt during 1954.01.01
to 2009.12.31.

(a) Residuals (b) Squared residuals

Figure 3.6 Residuals ǫ̂t and squared residuals ǫ̂t
2 for the AR(3) during

1954.01.01 to 2009.12.31.

Figure 3.7 Seasonal variance: daily empirical variance and fitted squared
volatility function, represented by the smoothed curve.
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(a) Residuals (b) Residuals after

(c) Squared residuals (d) Squared residuals after

Figure 3.8 ACF Residuals ǫ̂t and squared residuals ǫ̂t
2 for the AR(3) during

the period 1954.01.01 to 2009.12.31.

Table 3.7 CAT call option prices: Market Price of Risk (MPR)= 0, r = 0.036,
and the measurement period the whole month of August, with the trading
date the first of July.

Exercise time (τ) K=650 K=700 K=750

25. August 2011 138.64 92.25 45.87
28. August 2011 137.40 91.43 45.46
31. August 2011 136.17 90.61 45.05

where at,τ1,τ2 = e′1A
−1(exp (A(τ2 − t))− exp (A(τ1 − t))).

Proposition 3.3.5 (Benth et al. [5]). The price of the CAT call option at

t ≤ τ is

CCAT (t,τ,τ1,τ2) = exp [−r(τ − t)]×
{(
FCAT (t,τ1,τ2) −K

)
Φ(w(t, τ, τ1, τ2))

+

∫ τ

t
Σ2
CAT (s, τ1, τ2) dsΦ

′(w(t, τ, τ1, τ2))
}

,
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with the strike price K at the exercise time τ ≤ τ1, the measurement period

[τ1, τ2], and w and ΣCAT given by

w(t, τ, τ1, τ2) =
FCAT (t,τ1,τ2) −K

√
∫ τ
t Σ2

CAT (s, τ1, τ2) ds
,

ΣCAT (t, τ1, τ2) = σ(t)e′1A
−1(eA(τ2−t) − eA(τ1−t))ep .

3.4 Estimating the Market Price of Risk (MPR)

In Eq. (3.10) and Proposition 3.3.4, θ represents the market price of risk

(MPR). Many researchers [11, 25, 27] have shown that the MPR has a sig-

nificant effect on pricing options, so it must be determined to calculate the

option prices for the HDD, CDD and CAT . In order to estimate the MPR

value, information on the actual price for the weather derivatives would be

needed if we were to proceed as Härdle & Cabrera [25] did to infer the MPR

from the actual option price for Berlin – but in Korea there is no weather

market. Consequently, we computed the MPR of the Korea Composite Stock

Price Index (KOSPI), and used this value as the MPR for the Korean weather

derivatives. Thus the assumed θ is

θ =
µ− r

σ
,

where r is the risk-free rate, µ is the return, and σ the stock volatility. From

the returns on stocks and on 3-year government bonds [17, 45], the estimation

of the MPR from the KOSPI was −0.0029, and the absolute value of the MPR

for temperature should be smaller [27].

Recalling that βn and µn in Eq. (3.10) depend upon the MPR, we pro-
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ceeded to obtain the value of θ to use in Eq. (3.10). In our calculations we

used the three MPR values 0, −0.0029 and 0.0029, and evaluated the corre-

sponding βn and µn values (denoted by βjn and µjn, j = 0,−,+) using θ = 0,

−0.0029 and 0.0029, respectively. Fig. 3.9 shows the dependency of the HDD

and CDD option prices on the MPR.

Remark 3.4.1. For the HDD call option, we get the inequalities µ−n < µ0n <

µ+n , β
+
n < β0n < β−n and µ−n −K < µ0n−K < µ+n −K in Section 3.1; the inequal-

ity HDD−
call < HDD0

call < HDD+
call follows because Φ and the exponential

function are monotonic increasing functions – cf. Fig. 3.9(a). The CDD call

option is quite similar. Thus since µn =
∑
EQ[Tti |Ft]−18n for the CDD, we

obtain µ+n < µ0n < µ−n , β
−
n < β0n < β+n and µ+n −K < µ0n −K < µ−n −K such

that CDD+
call < CDD0

call < CDD−
call – cf. Fig. 3.9(c).

Tables 3.8 and 3.9 show the prices of CAT call options based on Proposi-

tions 3.3.4 and 3.3.5 with nonzero MPR. These results imply that the option

prices depend on both the exercise time and the MPR, decreasing as the mea-

surement period gets closer or when the MPR is larger.
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(a) HDD call (b) HDD put

(c) CDD call (d) CDD put

Figure 3.9 Option prices. For r = 0.036, The calculated HDD and CDD
options for the months of January and August 2011, respectively – the mea-
surement period is the whole month of August, with the trading date being
the first of July.
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Table 3.8 CAT call option prices: Market Price of Risk (MPR)=0.0029, r =
0.036, and the measurement period the whole month of August, with the
trading date the first of July.

Exercise time (τ) K = 650 K = 700 K = 750

25. August 2011 139.06 92.68 46.29
28. August 2011 137.82 91.85 45.87
31. August 2011 136.58 91.02 45.46

Table 3.9 CAT call option prices. Market Price of Risk (MPR)=-0.0029, r =
0.036, and the measurement period is the whole month of August, with the
trading date the first of July.

Exercise time (τ) K = 650 K = 700 K = 750

25. August 2011 138.22 91.83 45.44
28. August 2011 136.98 91.01 45.04
31. August 2011 135.75 90.19 44.63
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Chapter 4

Pricing Weather Derivatives

using Laplace Transform Methods

4.1 Pricing option for weather sensitive asset

In [18] they derived PDEs for pricing option of weather sensitive asset with

assumption that the asset price is a deterministic function of temperature. Let

x(t) be the asset price at time t, and Tt the temperature at t. Here we also

consider the Ornstein-Uhlenbeck process with mean reverting rate a > 0,

dTt = a(µ− Tt)dt+ σdWt, (4.1)

where µ is mean temperature value and Wt is the Brownian motion.

Theorem 4.1.1 (Filar et al. [18]). Assume that the temperature Tt follows the

Ornstein-Uhlenbeck process (4.1) and the weather sensitive asset x is given by

a quadratic form or exponential function of the temperature Tt. For risk-free
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interest rate r, the option price u(x, t) of the weather sensitive asset x is as

follows:

(i) Quadratic form: x = T 2
t ,

∂u

∂t
− rx

∂u

∂x
− 2σ2x

∂2u

∂x2
+ ru = 0, (4.2)

(ii) Exponential form: x = e−aTt

∂u

∂t
− rx

∂u

∂x
− 1

2
a2σ2x2

∂2u

∂x2
+ ru = 0, (4.3)

for (x, t) ∈ (0,∞)× (0, T ].

Note that both PDEs (4.2), (4.3) are similar with the Black-Scholes equa-

tion. Following [1, 33], we can analyze the solvability of the Laplace trans-

formed equation of the above PDEs. Here we focus on the equation (4.3) in

the case of a European put option. Taking the Laplace transform of (4.3), the

following equation is given

zû− rx
∂û

∂x
− 1

2
a2σ2x2

∂2û

∂x2
+ rû = u0, (x, z) ∈ R+ × Γ. (4.4)

Following the notation in [33], we denote the weighted Sobolev space V.

Definition 4.1.2 (The weighted Sobolev space).

V = {v ∈ L2(R+)|x
∂v

∂x
∈ L2(R+)},

The semi-norm and norm are given by

|v|V =
(∫ ∞

0

∣
∣
∣x
∂v

∂x

∣
∣
∣

2
dx

)1/2
, ||v||V =

(∫ ∞

0
|v|2 +

∣
∣
∣x
∂v

∂x

∣
∣
∣

2
dx

)1/2
.
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The Laplace transformed equation (4.4) can be given the following variational

formulation: For each z ∈ Γ,

Find û ∈ V such that az(û, v) = (u0, v) ∀v ∈ V, (4.5)

where

az(u, v) = z(u, v) +
1

2

∫ ∞

0
a2σ(x)2x2

∂u

∂x

∂v̄

∂x
dx

+

∫ ∞

0

(
− r(x) + a2σ(x)2 + xaσ(x)

∂σ

∂x

)
x
∂u

∂x
v̄dx+

∫ ∞

0
r(x)uv̄dx.

Assumption 4.1.3. Assume that σ is sufficiently regular. Moreover, we as-

sume that

1. There exists positive constants, σ, σ̄ such that for all x ∈ R+,

0 < σ ≤ σ(x) ≤ σ̄.

2. There exists a positive constants, Cσ such that

∣
∣
∣x
∂σ

∂x

∣
∣
∣ ≤ Cσ.

Under Assumption 4.1.3, one can obtain the following results which are

similar with those in [33].

Lemma 4.1.4. Under Assumption 4.1.3, the bilinear form az is continuous.
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Proof. If u, v ∈ V, then

∣
∣
∣
1

2

∫ ∞

0
a2σ(x)2x2

∂u

∂x

∂v̄

∂x
dx

∣
∣
∣ ≤ a2σ̄2

2
|u|V |v|V ,

∣
∣
∣

∫ ∞

0

(
− r(x) + a2σ(x)2 + xaσ(x)

∂σ

∂x

)
x
∂u

∂x
v̄dx

∣
∣
∣ ≤ 2(R+ a2σ̄2 + Cσaσ̄)|u|V |v|V ,

∣
∣
∣

∫ ∞

0
(z + r(x))uv̄dx

∣
∣
∣ ≤ (|z|+R)|u|V |v|V ,

where R = ||r||L∞(R+). Hence, the bilinear form az is continuous.

Lemma 4.1.5. Under Assumption 4.1.3, there exist a constant λ ≥ 0, which

is independent of u and z, such that for all u ∈ V

ℜ{az(u, u)} ≥ a2σ2

4
|v|2V − (|z|+ C)||u||2L2(R+).

Proof. If u ∈ V, then

∣
∣
∣
1

2

∫ ∞

0
a2σ(x)2x2

∂u

∂x

∂ū

∂x
dx

∣
∣
∣ ≥ a2σ2

2
|u|2V ,

∣
∣
∣

∫ ∞

0

(
− r(x) + a2σ(x)2 + xaσ(x)

∂σ

∂x

)
x
∂u

∂x
ūdx

∣
∣
∣ ≤ (R+ a2σ̄2 + Cσaσ̄)|u|V ||u||L2(R+)

≤ a2σ2

4
|v|2V + λ||u||2L2(R+),

∣
∣
∣ℜ{

∫ ∞

0
(z + r(x))uūdx}

∣
∣
∣ ≤ (|z|+R)||u||2L2(R+),

where λ = (R + a2σ̄2 + Cσaσ̄)
2/(aσ)2, and R = ||r||L∞(R+). Using these in-

equalities, one can get

ℜ{az(u, u)} ≥ a2σ2

4
|v|2V − (|z|+ C)||u||2L2(R+).

Thus, by Lax-Milgram theorem, we obtain the following theorem.
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Theorem 4.1.6. Under Assumption 4.1.3, the weak problem (4.5) has a

unique solution û ∈ V.

4.2 Pricing weather option using weather swaps

Here we consider another PDE which is dealt with swap. As shown by

Jewson [28], the following PDE can be obtained.

Proposition 4.2.1 (Jewson [28]). Assume that the swap is tradable without

transaction cost and is used to delta hedge the option. With the swap price

process, dSt = rStdt+ er(t−T )dWt := rStdt+ σsdWt, the equation for weather

swaps trading with premium S is given by

∂V

∂t
+

1

2
e2r(t−T )σ2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (4.6)

Proof. Suppose that we have the option, a short position ∆ in premium, and

an amount of cash cB invested in a risk-free bond B with interest rate r. Then,

total value, Π is

Π = V −∆S + cB.

Here V (S, t) is the option value, and ∆ is the number of premium-based swaps,

and B is the value of the bond. Then one gets

dΠ = dV −∆dS − Sd∆+ cdB +Bdc.

With the property of self-financing of the portfolio, it is written as

dΠ = dV −∆dS + cdB,
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and then it simplifies to

dΠ = dV −∆dS + crBdt. (4.7)

Applying Ito’s lemme to V (S, t), we obtain the following equation.

dV =
∂V

∂t
dt+

∂V

∂S
dS +

1

2
σ2s
∂2V

∂S2
dt.

With the assumption of swap price process, one gets

dV =
(∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2s
∂2V

∂S2

)

dt+
(

σsS
∂V

∂S

)

dWt.

Inserting into (4.7), the change in the portfolio becomes

dΠ =
(∂V

∂t
+rS

∂V

∂S
+
1

2
σ2s
∂2V

∂S2
−rS∆+crB

)

dt+
(

σsS
∂V

∂S
−σs∆

)

dWt. (4.8)

Choosing ∆ as S ∂V
∂S , it is represented as

dΠ =
(∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2s
∂2V

∂S2
− rS∆+ crB

)

dt. (4.9)

Since the return on the portfolio have to be same to one on safe bonds, dΠ =

Πrdt. It gives

(∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2s
∂2V

∂S2
− rS∆+ crB

)

dt = (V −∆S + cB)rdt,

and we then derive the equation (4.6).

Since the equation (4.6) has time-dependent coefficients, Laplace trans-

form method is not applicable directly. In order to deal with this problem, we

consider the frozen coefficient method in [35].
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The equation (4.6) can be rewritten in the form

∂V

∂t
+ (α(t)A1 +A2)V = 0, t ∈ (0, T ], (4.10)

where α(t) is time-dependent coefficient, A1 and A2 are spatial operators.

We define A(t) := α(t)A1 + A2 with α(t) = 1
2e

2r(t−T )σ2, A1 = ∂2

∂x2 , and

A2 = rx ∂
∂x − rI. Following the notation used by Lee et al. [35], the following

commutativeness can be easily checked,

A(t)(tÃt − sÃs) = (tÃt − sÃs)A(t) 0 ≤ s ≤ t ≤ T,

where Ãt0(x) = 1
t0

∫ t0
0 A(x, τ)dτ. Given t0 ∈ (0, T ], the problem (4.10) is re-

formulated to the following evolution problem which has a time-independent

coefficient,
∂V

∂t
+ Ãt0V = 0, t ∈ (0, T ]. (4.11)

One can then apply the Laplace transform method to solve (4.11).

Usually the time-marching methods and Monte Carlo simulation have been

used for solving the equations (4.2), (4.3) and (4.6). To apply the Laplace

transform method gives us more efficient results compared to other approaches.
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국문초록

본 논문에서는 역 라플라스 변환의 효율적인 계산 방법과 이 때 발생하는

반올림 오차 에러를 분석한다. 역 라플라스 변환의 수치 해법은 경로의 선

택, 매개화 그리고 수치구적법의 세 가지 관점에서 살펴본다. 그리고 쌍곡선

경로에서 발생하는 역 라플라스 변환의 반올림 오차 에러를 분석한다. 또한

배정밀도 환경과 다중정밀도 환경에서 역 라플라스 변환의 수치적 계산을

하였으며, 다중정밀도 환경에서의 계산이 보다 효율적인 결과를 제공한다.

서울의기온데이터를분석하고이와관련된날씨파생상품을다룬다.서울

의 기온데이터는 이전의 연구에서 살펴본 도시와는 다른 특징을 지니는데 특

히 계절적 변동이 뚜렷하게 나타난다. 날씨파생상품의 가격을 평가하기 위해

평균 기온 데이터의 결정 모형을 구성하고 시뮬레이션한다. 그리고 날씨파생

상품과 관련된 편미분방정식의 효율적인 풀이를 위해 라플라스 변환 방법을

적용한다.

주요어: 라플라스 변환, 경로적분, 반올림 오차, 다중정밀도, 날씨파생상품

학번: 2010-30084
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