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Abstract

The modern cryptography has been developed based on mathematical hard

problems. For example, it is considered hard to solve the discrete logarithm

problem (DLP). The DLP is required to solve α for given g, gα, where G =

⟨g⟩. It is well-known that the lower bound complexity to solve the DLP in

the generic group model is Ω(p1/2) (EUROCRYPT 97, Shoup), where p is the

prime order of the group G. However, if the problem is given with auxiliary

informations, then it can be solved faster than O(p1/2). In the former of the

thesis, we deal with the problem called discrete logarithm problem with the

auxiliary inputs (DLPwAI). The DLPwAI is a problem required to solve α

for given g, gα, . . . , gα
d
. The state-of-art algorithm to solve this problem is

Cheon’s algorithm which solves the problem in the case of d|p± 1.

In the thesis, we propose a new method to solve the DLPwAI which

reduces to find a polynomial with small value sets. As a result, we solved

the DLPwAI when gα
k
were given, where k is an element of multiplicative

subgroup of Z×
p−1.

In the later of the thesis, we try to solve the DLP with the pairing inver-

sion problem. If one has an efficient algorithm to solve the pairing inversion,

then it can be used to solve the DLP. We focus on how to reduce the com-

plexity of the pairing inversion problem by reducing the size of the final

exponentiation in the pairing computation. As a result, we obtained the

lower bound of the size of the final exponentiation.

Key words: discrete logarithm problem, pairing inversion, Cheon’s algo-

rithm, Dickson polynomial

Student Number: 2007-20270
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Chapter 1

Introduction

In the thesis, we try to solve the discrete logarithm problem with auxiliary

inputs and the pairing inversion problem. These problems play a staple

role in the cryptography since their hardness supports the security of many

cryptosystems.

The discrete logarithm problem (DLP) is asked to compute α ∈ Fp for

given g and gα, where g is a generator of a group of prime order p. The DLP

with auxiliary inputs (DLPwAI) is the problem to compute α ∈ Fp for given

g, gα, . . . , gα
d
. Certainly, it is seemingly easier the DLPwAI than the DLP

since it is given more hints. The generic lower bound of the complexity of the

DLPwAI is smaller than the DLP by a factor
√
d for d < p1/3. This problem

is widely used to construct many cryptosystems with various functionalities,

though it has potential weakness.

The first algorithm to solve the DLPwAI was given by Cheon [11, 12] for

p±1 cases. For p−1 case, it is solved independently by Brown and Gallant [8].

Since then, several generalizations to the Φk(p) cases were given [35, 47]

following Cheon’s approach.

We consider the different approach to solve the DLPwAI. The approach

1



CHAPTER 1. INTRODUCTION

is to use the polynomial with the small value sets. Our observation leads

us to consider the Dickson polynomial and its generalization. However, the

practicality of this generalization is still remained open.

On the line of the research, we also consider the generalized version of

the DLPwAI (GDLPwAI) which is a problem to compute α ∈ Fp for given

gα
ei for i = 1, . . . , d. Our research gives a method to solve the GDLPwAI

where ei’s forms a multiplicative subgroup of Z×
p−1.

Finally, we consider the pairing inversion problem. A pairing is a non-

degenerate bilinear map e : G1 × G2 → GT . The pairing inversion problem

is to compute P (or Q) where Q (or P ) and e(P,Q) were given. It is easy

to solve the computational Diffie-Hellman problem when efficient pairing

inversion algorithm exists.

Mostly used pairing in the cryptography is the Tate pairing. The Tate

pairing is computed by the Miller step and the final exponentiation step in

the given order. Thus the inversion is followed by the exponent inversion and

the Miller inversion. Since the recent results [33, 10] show that the pairing

inversion reduces to the exponent inversion, we only consider reducing the

complexity of the final exponentiation in the Tate pairing. Our result gives

a universal approach to reduce the final exponentiation and shows that the

value is the lower bound.

2



CHAPTER 1. INTRODUCTION

Contributions

The thesis contains a joint work with Jung Hee Cheon and Yong Soo Song [14]

which appears in Selected Areas in Cryptography 2013 and a work with

Sungwook Kim and Jung Hee Cheon [38] which appears in IEEE transac-

tions on Information Theory. It also includes a prepublication with Jung

Hee Cheon [37]. A part of the article will also appear in a Chapter of the

proceeding in deGruyter [13].
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Chapter 2

Discrete Logarithm Problem

2.1 Algorithms for the DLP

In this section, we describe well-known algorithms to solve the DLP. Since

the thesis mainly deals with the DLPwAI, we leave aside more details on

basic DLP algorithms referring to [21].

2.1.1 Generic algorithms

Consider a cyclic group G of order n which is not necessarily prime. A generic

algorithm takes as input n and encodings of group elements. It is also given

access to oracle that returns encoding of binary operation or inversion of the

given group elements. In the sense of the generic group model [51], the lower

bound of the complexity solving the DLP is Ω(
√
n).

The Baby-Step Giant-Step (BSGS) technique is an algorithm to solve the

DLP deterministically in O (
√
n) time complexity. It computes α by making

two lists of elements of G and finding a collision.

Pohlig-Hellman algorithm solves the DLP efficiently when the order n has

only small prime factors. For n =
∏

i q
fi
i , the algorithm in advance solves

4



CHAPTER 2. DISCRETE LOGARITHM PROBLEM

α mod qfii for each i using the BSGS technique, and then recovers α from

the Chinese Remainder Theorem (CRT). So, the total complexity depends

on the size of the largest prime factor of n.

While the BSGS technique requires the O (
√
n) storage when it makes the

lists, the Pollard’s rho algorithm only requires the storage of the constant

size although it is probabilistic. The Pollard’s kangaroo algorithm is also

probabilistic algorithm which solves the discrete logarithm α contained in

specific interval [a, b]. Although the Pollard’s rho algorithm is more efficient

than running the Pollard’s kangaroo algorithm for the entire interval [0, n),

it is efficient when the interval is small.

These algorithms attain the generic lower bound complexity, though they

still have the exponential time complexity.

Baby-Step Giant-Step

The BSGS technique is a simple, generic and deterministic algorithm to solve

the DLP. The total complexity is O (
√
n) exponentiations in G, it also needs

to store O (
√
n)-number of elements of G.

For given g and h = gα, compute two lists

L1 = {g−ih : 0 ≤ i ≤ ⌊
√
n⌋} and L2 = {g⌈

√
n⌉j : 0 ≤ j ≤ ⌊

√
n⌋},

then compare elements of L1 and L2. If a collision g−i0h = g⌈
√
n⌉j0 occurs,

then the discrete logarithm is calculated from h = gi0+⌈
√
n⌉j0 and α = i0 +

⌈
√
n⌉j0. To show the existence of a collision, take two integers j0 = ⌊ α

⌈
√
n⌉⌋

and i0 = α − ⌈
√
n⌉j0 for 0 ≤ α < n, and check 0 ≤ i0, j0 ≤ ⌊

√
n⌋ and α =

i0 + ⌈
√
n⌉j0. Therefore, two lists L1 and L2 always have a common element.

In fact, the elements of the list L1 need not to be stored. Precomputing and

storing the list L2, collision finding can be done by computing and looking

5



CHAPTER 2. DISCRETE LOGARITHM PROBLEM

up an element of L1 with elements L2. Note that the list L2 may be used to

solve the DLP for another element h′ of G.

The Pohlig-Hellman algorithm

If all prime factors of an integer n is less than a positive real number B,

then n is called B-smooth. The Pohlig-Hellman algorithm solves the DLP

deterministically when n is a smooth number.

Let P be the set of prime divisors of n, and n =
∏

q∈P qeq be the fac-

torization. The main idea of the Pohlig-Hellman algorithm is to compute α

(mod qeq) for each q ∈ P for α = logg h. Then one can efficiently recover

α ∈ Zn by the Chinese Remainder Theorem (CRT).

Consider a prime divisor q ∈ P . There exist c0, c1, . . . , ceq−1 ∈ [0, q) satis-

fying α ≡ c0+c1q+· · ·+ceq−1q
eq−1 (mod qeq). The coefficients c0, c1, . . . , ceq−1

are determined inductively as follows. First, from the equations α ≡ c0

(mod q) and
(
g

p−1
q

)c0
= h

p−1
q , one computes c0 in O

(√
q
)
using the BSGS

technique. Note that two elements g
p−1
q and h

p−1
q are contained in H =

⟨g
p−1
q ⟩, which is a subgroup of G of prime order q. Therefore, c0 ∈ [0, q) is

uniquely determined. Inductively, the next coefficient ci is obtained from the

equations α ≡ c0+c1q+ · · ·+ciq
i (mod qi+1) and g

(c0+c1q+···+ciq
i) p−1

qi+1 = h
p−1

qi+1 ,

which is equivalent to
(
g

p−1
q

)ci
= g

−(c0+c1q+···+ci−1q
i−1) p−1

qi+1 h
p−1

qi+1 . It is done in

O
(√

q
)
exponentiations using the BSGS. Repeating this process for all q ∈ P ,

every modulus α (mod qeq) is obtained in O
(∑

q∈P eq
√
q
)
exponentiations,

and α ∈ Zn is recovered from them.

Pollard’s rho algorithm

The BSGS technique requires O (
√
n) memory. The Pollard’s rho algorithm

is one way to overcome storage.

6



CHAPTER 2. DISCRETE LOGARITHM PROBLEM

For given g and h = gα, the Pollard’s rho algorithm uses a function

f : G → G, where G is partitioned into three sets S0, S1, S2 with roughly

same sizes. The function f is constructed in a way that the exponents of g

and h are traceable, precisely, it should be easy to compute (xi+1, βi+1, γi+1)

from (xi, βi, γi) for xi+1 := f(xi) and xi = gβihγi . The typical example of the

function f(x) is as follows:

xi+1 := f(xi) =


hxi, xi ∈ S0

x2
i , xi ∈ S1

gxi, xi ∈ S2

In this case, the exponents βi and γi are traceable in the following ways:

βi+1 =


βi, xi ∈ S0

2βi, xi ∈ S1

βi + 1, xi ∈ S2

and γi+1 =


γi + 1, xi ∈ S0

2γi, xi ∈ S1

γi, xi ∈ S2

Since G is a finite set, the sequence {x1, x2, . . . } obtained by evaluating the

function f iteratively must contains a cycle. Using the Floyd’s cycle detection

algorithm, a collision xi = x2i finds a discrete logarithm with the storage of

the constant size under the assumption that f looks like a random function.

The r-adding walk method is a generalized version of the Pollard’s rho

algorithm that uses a function with G partitioned into r disjoint sets. It is

known that the 20-adding walk is very close to the random walk [52].

Pollard’s kangaroo algorithm

Pollard’s kangaroo algorithm solves the DLP when the discrete logarithm

α ∈ [0, n) is contained in a certain interval [a, b]. The choice a = 0, b = n− 1

for entire α is possible, but Pollard’s rho algorithm is more efficient in this

case.

7



CHAPTER 2. DISCRETE LOGARITHM PROBLEM

One precomputes gei , 1 ≤ i ≤ r for some small integers e1, · · · , er whose

sizes are
√
b− a approximately. Let f : G → {1, 2, · · · , r} be a pseudoran-

dom function. For a suitable integer N , compute xN as follows

x0 = gb, xi+1 = xig
ef(xi) for i = 0, 1, . . . , N − 1.

Then until a collision yj = xN is detected, compute the followings

y0 = h, yj+1 = yjg
ef(yj) for j = 0, 1, . . . , N − 1.

The sequence {x0, x1, . . . } is called a tame kangaroo and {y0, y1, . . . } a wild

kangaroo. Since the mean step size is m = (
∑r

i=1 ei)/r ≈
√
b− a, the wild

kangaroo meets the tame kangaroo with probability 1/m. The complexity of

the algorithm becomes O(
√
b− a).

2.1.2 Non-generic algorithms

In this subsection, we recall non-generic algorithms solving the DLP which

can be used only in specific groups such as Z∗
p or F∗

q for prime power q. These

algorithms exploits the specifications of the group structures bringing more

efficiency than the generic algorithms.

The index calculus is an efficient way to solve the DLP when G = Z∗
p. It

consists of two steps: sieving and decent. In the sieving phase, it precom-

putes the discrete logarithms of the factor base, usually a set of small primes,

by finding sufficiently many relations. In the decent phase, one computes the

discrete logarithm of arbitrarily given element. This algorithm runs in subex-

ponential time. The idea of the original index calculus is improved to the

number field sieve and function field sieve algorithms [1, 24, 25, 31]. In partic-

ular, the complexity becomes quasi-polynomial time when the characteristic

p is small [1, 24].

8



CHAPTER 2. DISCRETE LOGARITHM PROBLEM

Index calculus

Consider the index calculus algorithm over a multiplicative group G = Z∗
p.

The index calculus algorithm is a probabilistic algorithm based on the prime

factorization of integers. Suppose that g is a fixed generator of G. Taking

a suitable bound B, let q0 = −1, and q1 = 2 < q2 = 3 < · · · < qd be the

primes less than B. One precomputes the discrete logarithm problems of the

factor base qi as follows: for randomly chosen β ∈ Zp−1, one computes the

factorization of gβ modulo p. If gβ =
∏d

i=0 q
ei
i is a B-smooth number, we

have an equation β = e0β0 + · · · + edβd in Zp−1, if g
β was not a B-smooth

number then try it again for another β. Repeating this process many times,

we obtain d+1 number of linearly independent equations. Then the discrete

logarithms of qi are recovered from the linear algebra.

Now, for given h = gα, we choose a random element γ ∈ Zp−1 repeatedly

until hgγ (mod p) is expressed as a product of primes less than B. If we find

a such γ, then α is determined by hgγ =
∏d

i=0 q
fi
i and α = −γ +

∑d
i=0 fiβi.

The expected complexity is Ln[1/2,
√
2+ o(1)] for a suitable bound B. Here,

L-notation is defined as

Lp[θ, c] = exp
[
(c+ o(1))(log p)θ(log log p)1−θ

]
for c > 0 and 0 ≤ θ ≤ 1. Note that Lp is a polynomial function of log p when

θ = 0, and an exponential function of log p when θ = 1. The total complexity

Lp[1/2,
√
2+ o(1)] of the index calculus is a subexponential function of log p.

9



Chapter 3

Discrete Logairhtm Problem

with Auxiliary Inputs

3.1 Introduction

In the recent decades, many variants of the DLP such as Weak Diffie-Hellman

Problem (WDHP) [42], Strong Diffie-Hellman Problem (SDHP) [5], Bilinear

Diffie-Hellman Inversion Problem (BDHIP) [4] and Bilinear Diffie-Hellman

Exponent Problem (BDHEP) [7] are introduced to guarantee the security of

many cryptosystems such as the traitor tracing [42], the short signatures [5],

ID-based encryption [4], the broadcast encryption [7] and so on. The in-

stants of these problems contain additional information more than the DLP.

These problems are widely used since they enable the construction of the

cryptosystems with various functionalities, though such auxiliary informa-

tion could weaken the problems.

The first realization of the weakness of these problems is done by Cheon [11,

12] and by Brown and Gallant [8] independently. Throughout the thesis, we

mainly follow the notations from Cheon’s algorithm. Cheon realized that the

10
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problems can be considered as the problem which solves α when g, gα, · · · , gαd

are given and called this problem by Discrete Logarithm Problem with Aux-

iliary Inputs (DLPwAI). The DLPwAI can be solved efficiently in time com-

plexity O(
√

p/d) when d is a small divisor of p±1 and p is prime order of the

group G. This complexity is the same with the lower bound for the DLPwAI

in the generic group model [51]. Since the lower bound for the original DLP

is O(
√
p) in the generic group model, Cheon’s algorithm shows the evidence

of the weakness of DLPwAI in some cases.

The idea of Cheon’s algorithm is to embed the discrete logarithm α into

the finite fields Fp or Fp2 . Precisely, he exploits the fact that αd can be

embedded into an element of the small subgroup of Fp or Fp2 when d is a

divisor of p±1. After Cheon’s algorithm, Satoh [47] generalized this algorithm

using the embedding of α ∈ Fp into the general linear group GLk(Fp). The

generalization tried to solve the problem when d is a divisor of Φk(p) for

the k-th cyclotomic polynomial Φk(·), but the complexity for k ≥ 3 was not

clearly understood. Recently, Kim et al. [35] simply realized that Satoh’s

generalization is essentially the same with the embedding of Fp into Fpk and

clarified the complexity of the algorithm. Unfortunately, their result says

that in most cases the complexity of this generalization is not faster than the

current square root complexity algorithm such as Pollard’s rho algorithm [45]

for k ≥ 3.

All the above algorithms use the embedding technique of the finite field

which can be considered as the quantitative version of the reduction algo-

rithms from DLP into Diffie-Hellman problem [39, 40]. On the other hand,

we propose an algorithm to solve the DLPwAI with the polynomial mapping

instead of the embedding of the element. The idea is to choose a polynomial

f of degree d and compute two lists of gf(riα) and gf(sj) for random elements

11
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ri and sj using the fast multipoint evaluation, and find a collision between

them. For the efficiency of this approach, we should consider three things:

1. how to compute gf(riα) efficiently for given g, gα, . . . , gα
d
(Section 3.3),

2. how many to choose random ri and sj for a collision (Section 3.4), and

3. how to choose a polynomial f (Section 3.5).

We begin with the description of the previous works, Cheons’ algorithm.

This chapter includes a part of the prepublicated work [37] with Jung Hee

Cheon and the survey article to appear in deGruyter proceedings [13].

Organization This chapter is organized as follows: we recall the DLPwAI

and Cheon’s algorithm in Section 3.2. Several trials to generalize the Cheon’s

algorithm are also contained in this section. We explain our approach to solve

the DLPwAI using polynomials in Section 3.5.

3.2 The DLPwAI and Cheon’s algorithm

The DLPwAI requires to solve α ∈ Zp for given g, gα, . . . , gα
d
. In the generic

group model [51], the lower bound of the complexity solving this problem is

O(
√

p/d) when d < p1/3. It is less than O(
√
p) which is the generic lower

bound of the DLP. There are generic algorithms for the DLP achieving the

lower bound complexity, however, for the DLPwAI, only Cheon’s algorithm

achieves the lower bound in a few cases.

3.2.1 p− 1 cases

Assume that three elements g, g1 = gα and gd = gα
d
are given for a divisor d

of p− 1. The main idea of Cheon’s algorithm is to exploit the fact that αd is

12
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contained in the subgroup of Z∗
p of small order p−1

d
. By applying the BSGS

technique on this smaller group, one can recover αd. Then α is recovered in

a similar fashion.

To start Cheon’s algorithm, we choose a primitive element ξ of Zp. Since

Z∗
p is a cyclic group of order p − 1, there are exactly ϕ(p − 1)-number of

primitive elements in Zp. For a randomly chosen element in Z∗
p, it is a prim-

itive element with the probability ϕ(p−1)
p−1

≥ 1
6 log log (p−1)

, which is sufficiently

large. So it may be assumed that a primitive element ξ of Zp can be found

efficiently.

Theorem 3.2.1 ([12]). Let d be a divisor of p− 1. For given g, g1 = gα and

gd = gα
d
, one can solve α deterministically in O

(√
p−1
d

+
√
d
)
exponentia-

tions with the storage O
(
max{

√
p−1
d
,
√
d}
)
.

Proof. Consider a primitive element ξ of Zp. Define ζ = ξd andm = ⌈
√

p−1
d
⌉.

There exist two integers k1 ∈ [0, d) and k2 ∈ [0, p−1
d
) such that α = ξ

p−1
d

k1+k2 .

We will calculate k1 and k2 using two independent BSGS techniques.

First, we find k2 using the BSGS technique. From αd = ξdk2 = ζk2

and gd = gα
d
= gζ

k2 , there exist two integers 0 ≤ u2, v2 ≤ ⌊
√

p−1
d
⌋ such

that k2 = mu2 + v2, or equivalently αdζ−v2 = ζmu2 and gζ
−v2

d = gζ
mu2 .

Two integers u2 and v2 are determined in O
(√

p−1
d

)
exponentiations. After

finding k2, we again use the BSGS technique similarly, and determine k1 in

O(
√
d) exponentiations from the equation g1 = gα = gξ

p−1
d

k1+k2
. The total

complexity is O
(√

p−1
d

+
√
d
)

exponentiations with O
(
max{

√
p−1
d
,
√
d}
)

storage of elements of G.

Note that the total complexity O
(
max{

√
p−1
d
,
√
d}
)

of Cheon’s p − 1

algorithm can be lowered down to O
(
p1/4

)
when d ≈ √p. Based on Pollard’s

kangaroo algorithm, it can be run with less storage [12].

13
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He was also able to find α from g, gα, · · · , gα2d
when d is a divisor of p+1

using a quadratic extension of Fp.

3.2.2 Generalized algorithms

The idea of Cheon’s algorithm is to embed an element in Fp to an element

of an extension field of Fp. More precisely, the discrete logarithm α ∈ Fp is

embedded into an element in Fp in Φ1(p) = p− 1 case. Cheon’s algorithm is

efficient when p−1 has a small divisor d with given parameters g, gα, . . . , gα
d
.

Satoh [47] extended Cheon’s algorithm into the cases of Φk(p) for k ≥ 3 by

using the embedding of Fp into GL(k,Fp). Recently, Kim et al. [35] realized

that the Satoh’s embedding is essentially the same with the embedding of Fp

into Fpk and showed that in most cases this generalization cannot be faster

than the square-root complexity algorithms such as Pollard’s rho algorithm

when k ≥ 3.

Satoh’s generalization

The main idea of Cheon’s p + 1 algorithm is to construct an embedding of

Fp into its quadratic extension Fp[θ]. Satoh tried to generalize the Cheon’s

algorithm using an embedding of Fp into general linear group GL(k,Fp).

Definition 3.2.1. For a given positive integer ν, define the p-norm ∥ν∥p
by the sum of νi’s, where νi’s are integers satisfying 0 ≤ νi < p and ν =∑

i≤0 νip
i.

For a divisor d of Φk(p) for some k ≥ 1, we put D := Φk(p)/d. Satoh’s

algorithm solves the DLP with inputs g, gα, · · · , gαd
if it is possible to find an

integer u satisfying gcd(u, pk−1) = 1 and u(pk−1)/D ≡ ∆−δ (mod pk−1),

14
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where ∆ and δ are integers with small p-norms. The total complexity is in

the following theorem.

Theorem 3.2.2 ([47]). Suppose that d is a divisor of Φk(p) for some k ≥ 1.

Moreover, assume that an integer u satisfies gcd(u, pk − 1) = 1 and u(pk −

1)/D ≡ ∆− δ (mod pk − 1) for some integers ∆ and δ. Then one can solve

the DLPwAI in Õ
(
k2(k log p+ w + k3 +

√
D)
)
, where w = ∥∆∥p + ∥δ∥p.

This theorem is rather complicated to understand the efficiency. Kim et

al.’s generalization in the next section covers all cases of Satoh’s algorithm,

while it uses simpler notations. Moreover, they observed that the generaliza-

tion of Cheon’s algorithm is not so faster than the usual DL-solving algorithm

in most cases.

Kim et al.’s generalization

Let D = Φk(p)/d and r be an integer. Kim et al. [35] considered an embed-

ding

Fp → Fpk , α 7→ (α + θ)r(p
k−1)/D,

for an element θ ∈ F×
pk

which is not in a proper subfield and they noticed that

Satoh’s embedding of Fp into general linear group GL(k,Fp) is essentially the

same with the above embedding when r = 1. The element (α + θ)r(p
k−1)/D

is an element of the subgroup of Fpk of order D, so the idea of Cheon’s

algorithm can be applied.

Define E := (pk − 1)/D and write rE in a signed p-ary representation as

rE =
∑

i eip
i, where |ei| < p/2. For an integer ν =

∑
i νip

i with the signed

representation, a signed sum of digits is Sp(ν) := max{S+
p (ν), S

−
p (ν)} =

max{
∑

νi>0 νi,−
∑

νi<0 νi}.

15
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Consider the followings:

(α+θ)rE =
(α + θ)

∑
ei>0 eip

i

(α + θ)
∑

ei<0 |ei|pi
=

∏
ei>0(α + θp

i
)ei∏

ei<0(α + θpi)|ei|
=

f1(α)θ1 + · · ·+ fk(α)θk
h1(α)θ1 + · · ·+ hk(α)θk

,

where {θ1, . . . , θk} is a basis of Fpk for θi = θi−1, deg fi ≤ S+
p (rE) and

deg hj ≤ S−
p (rE). Since this element is in the subgroup of order D, choose

a generator ζ of this group and then apply the BSGS technique to find the

integer k ∈ [0, D) satisfying (α + θ)rE = ζk.

The total complexity of this algorithm is aboutO
(√

D + Sp(rE)
)
. Hence,

to reduce the total complexity, it is needed to find an integer r such that rE

has a low signed weight. However, by [35, Theorem 4.5], this complexity is

worse than the ordinary DL solving algorithms unless all prime divisors of

D are divisors of k or p± 1.

When k = 2, the complexity of this algorithm is meaningful. When d is

a divisor of Φ2(p) = p+ 1, put D = (p+ 1)/d and E = (p− 1)d. The signed

weight of E = dp− d is equal to d, which is sufficiently small. It corresponds

to the case r = 1 of the above algorithm. Therefore, one can solve the

DLPwAI in O
(√

p+1
d

+ d
)
exponentiations with storage O

(
max{p+1

d
,
√
d}
)

when d is a divisor of p+1, and g, gα, · · · , gαd
are given. Note that the total

complexity O
(√

p+1
d

+ d
)
can be lowered down to O(p1/3) when d ≈ p1/3.

3.3 Fast multipoint evaluation in the black-

box manner

Let f(x) be a polynomial over a field F of degree d, then it is well known

that one can compute f(r1), . . . , f(rd) in Õ(d) field operations using the fast

mulitipoint evaluation method. The fast multipoint evaluation method fol-

lows from the fast multiplication methods, the fast Fourier transformations,
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the fast polynomial divisions and so on. In this section, we shall show that

the fast multipoint evaluation is possible even when the polynomial f(x) is

given in the exponentiated form. In other words, we give a fast multipoint

evaluation method when gad , . . . , ga0 is given for f(x) = adx
d+ · · ·+a1x+a0.

This will be used in next sections to propose another approach to solve the

DLPwAI. Precisely, we shall show the followings.

Proposition 3.3.1. We are given ga0 , . . . , gad for a polynomial f(x) =

adx
d+· · ·+a1x+a0 ∈ Fp[x]. One can compute gf(r1), . . . , gf(rd) in O(d log d log log d)

group operations, where r1, . . . , rd are random elements from Fp.

In this thesis, the group operations include the exponentiations and the

multiplications in the group.

The following corollary will be useful throughout this chapter.

Corollary 3.3.1. For given g, gα, . . . , gα
d
and a polynomial f(x) ∈ Fp[x]

of degree d, we can compute gf(r1α), . . . , gf(rdα) in O(d log d log log d) group

operations.

Proof. We can obtain ga0 , (gα)a1 , . . . , (gα
d
)ad with d exponentiations from

g, gα, . . . , gα
d
and f(x). Let h(x) := f(xα) = (adα

d)xd + · · · + (a1α)x + a0

and apply Proposition 3.3.1.

The proof of Proposition 3.3.1 easily comes from the original method of

the fast multipoint evaluation. The main observation is that the multiplica-

tion/addition/subtraction in Fp replaces with the exponentiation/multiplication/division

in G. This section mainly refers to [56].

We begin with the description of the fast multiplication algorithm with

the Discrete Fourier Transform (DFT) in the blackbox manner. Let ω be

a d-th primitive root of unity. The DFTω : Fp[x] → Fd is a map given
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by
(
f(1), f(ω), f(ω2), . . . , f(ωd−1)

)
. The fast blackbox Fourier transform is

the algorithm to compute gDFTω(f) := (gf(1), gf(ω), . . . , gf(ω
d−1)) ∈ Gd from

ga0 , . . . , gad . The detail of the algorithm is described below.

Algorithm 1 Blackbox Fast Fourier Transform

Input : d = 2k ∈ N, ga0 , ga1 , . . . , gad−1 ∈ Gd for f(x) = ad−1x
d−1+· · ·+a0 ∈

Fp[x] and the powers ω, ω2, . . . , ωd−1 of a primitive d-th root of unity ω ∈ Fp

Output : gDFTω(f) := (gf(1), gf(ω), . . . , gf(ω
d−1)) ∈ Gd

1. If d = 1 then return ga0

2. gr0(x) ← (ga0+ad/2 , · · · , gad/2−1+ad−1),

gr1(x) ← (g1·(a0−ad/2), · · · , gwd/2−1(ad/2−1−ad−1))

3. call the algorithm recursively to get gDFTw2 (r0) and gDFTw2 (r1)

4. return
(
ga(1), ga(ω), . . . , ga(ω

d−1)
)

Lemma 3.3.1. Given ga0 , ga1 , . . . , gad−1 for a polynomial f(x) = ad−1x
d−1 +

· · ·+ a0 of degree < d, Algorithm 1 runs in O(d log d) group operations.

Proof. The correctness of the algorithm follows from the original Fourier

transform algorithm. Let S(d) and T (d) denote the number of exponen-

tiations and multiplications in G, respectively, that the algorithm requires

for input size d. The cost for the individual steps is: In step 2, d multi-

plications (divisions) and d/2 exponentiations by powers ω, ω2, . . . , ωd/2 in

G, in step 3, 2S(d/2) exponentiations and 2T (d/2) multiplications. Thus

S(d) = 2S(d/2) + d, T (d) = 2T (d/2) + d/2, and by unfolding the recursions

we find that S(d) = d log d and T (d) = 1
2
d log d.

Let ∗ denote the convolution map f ∗ h = f(x) · h(x) mod xd − 1 for

polynomials f and h. Then DFTω(f ∗ h) = DFTω(f) · DFTω(h), where
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· denotes the pointwise multiplication. Especially, it is easy to check that

f ∗ h(x) = f(x)h(x) when deg(f(x)h(x)) < d. The map DFTω : f(x) =

(f0, f1, . . . , fd−1) 7→
(
f(1), f(ω), . . . , f(ωd−1)

)
can be considered as multipli-

cation by the matrix

Vω :=



1 1 · · · 1

1 ω · · · ωd−1

1 ω2 · · · ω2(d−1)

...
...

. . .
...

1 ωd−1 · · · ω(d−1)2


.

We can easily verify that Vω · Vω−1 = dI, where I denotes the d× d identity

matrix. Therefore

DFT−1
ω = V −1

ω =
1

n
Vω−1 =

1

d
DFTω−1 .

With the convolution map, we can obtain the fast multiplication in the

blackbox manner.

Lemma 3.3.2. For given ga0 , ga1 , . . . , gad−1 and h(x) ∈ Fp[x] with deg(f ·h) <

d, we can compute gf(x)h(x) in O(d log d) group exponentiations.

Proof. The correctness follows from

f(x) · h(x) = DFT−1
ω (DFTω(f ∗ h)).

The cost for each step becomes: in step 1, d − 2 multiplication by ω ∈ Fp

and step 2 O(d log d) operations in Fp. In step 3 and 5, we require O(d log d)

group exponentiations by Lemma 3.3.1, in step 4 O(d) exponentiations are

needed.

Subsequently, we propose the fast polynomial division algorithm where

the coefficients of one of the input polynomial are given in the exponentiated

form. As usually, it follows from the Newton iteration method.
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Algorithm 2 Fast Convolution in Blackbox Manners

Input : gf(x) and h(x) where f(x), h(x) ∈ Fp[x], and a primitive d-th root

of unity ω ∈ Fp.

Output : gf(x)h(x) ∈ Gd.

1. compute ω2, . . . , ωd−1

2. H ← DFTω(h) =
(
b(1), b(ω), . . . , b(ωd−1)

)
3. gF ← gDFTω(f) =

(
ga(1), ga(ω), . . . , ga(ω

d−1)
)

4. gC = gDFTω(f∗h) ← (gF )H , pointwise exponentiation

5. return gDFT−1
ω (C) =

(
gDFTω−1 (C)

) 1
d

We define the reversal of a polynomial f(x) by revk(f) = xkf(1/x). Ob-

serve that if k = deg(f) then the reversal of f is simply the polynomial with

the coefficients of f reversed. We want to find polynomials q and r such that

f = hq + r with deg(r) < deg(h). By the definition of the reversal we can

easily obtain

revd(f) = revm(h)revd−m(q) + xd−m+1revm−1(r)

= revm(h)revd−m(q) mod xd−m+1

where deg(f) = d, deg(h) = m. Then revd−m(q) = revd(a)revm(h)
−1 mod xd−m+1,

and we can find revm(h)
−1 mod xd−m+1 by using Newton iteration. Conse-

quently we can obtain q and r = f − hq.

Lemma 3.3.3. Given ga0 , ga1 , . . . , gad−1 and h(x), we compute gf(x) mod h(x)

in O(d log d) group exponentiations, where deg(a) = 2d, deg(b) = d.

Proof. The cost for individual steps becomes: in step 1, O (m logm) field op-

erations, and O ((d−m) log(d−m)) group exponentiations by lemma 3.3.2
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Algorithm 3 Blackbox Polynomial Division

Input : ga(x) and b(x) where a(x), b(x) ∈ Fp[x] with deg(a) = d, deg(b) = m

(d > m)

Output : gf(x) mod h(x) ∈ Gm−1

1. Compute revm(h)
−1 mod xd−m+1 using Newton iteration.

2. Call the algorithm 2 to compute gq(x) = grevd(f)revm(h)−1 mod xd−m+1

3. Call the algorithm 2 to compute gq(x)h(x) with inputs gq(x) and h(x)

4. Return gr(x) = gf(x)/gq(x)h(x)

in step 2, and O (d log d) group exponentiations in step 3. Finally in step

4 we only require d divisions of the group elements. Especially if deg(f) =

2d, deg(h) = d, then the total cost becomes O(d log d) group exponentia-

tions.

Finally we can propose the fast multipoint evaluation algorithm by build-

ing up the sub-product tree of (x−r0)(x−r1) · · · (x−rd−1) where r0, . . . , rd−1

are values to be evaluated. Let mi := x − ri and define the recursive rela-

tions M0,j = mj, Mi+1,j = Mi,2j ·Mi,2j+1. From the fact that f(rj) = f(x)

mod mj, we can obtain the following algorithm and the lemma is just a direct

consequence. We will omit the proof of the lemma.

Lemma 3.3.4. Given gf(x) = (ga0 , ga1 , . . . , gad−1), we can compute gf(r0), · · · , gf(rd−1)

in O(d log2 d) exponentiations in group G.

Until now, we assumed that existence of a d-th primitive root of unity in

Fp, i.e. d|(p− 1) for the fast multipoint evaluation in the blackbox manner.

However, to apply this method to our algorithm solving the DLPwAI, the

divisibility of d should be unrestricted.
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Algorithm 4 Blackbox Multipoint Evaluation Algorithm

Input : ga0 , ga1 , . . . , gad−1 with f(x) ∈ Fp[x] of degree < d = 2k for some

k ∈ N and r0, . . . , rd−1 ∈ Fp

Output : gf(r0), . . . , gf(rn−1) ∈ G

1. Compute the subproduct Mi,j

2. Call the algorithm 3, gR0 ← gf(x) mod Mk−1,0 , gR1 ← gf(x) mod Mk−1,1

3. Call the algorithm recursively to compute gR0(x0), . . . , gR0(xd/2−1)

4. Call the algorithm recursively to compute gR1(xd/2), . . . , gR1(xd−1)

5. Return gR0(x0), . . . , gR0(xd/2−1), gR1(xd/2), . . . , gR1(xd−1)

The Schönhage-Straßen multiplication method does not require the ex-

istence of the d-th primitive root of unity in Fp. The similar result in the

blackbox manner can be easily obtained.

Let f(x) = ad−1x
d−1+· · ·+a0 and h(x) = bd−1x

d−1+· · ·+b0 be polynomi-

als over Fp with deg(f ·h) < d = 2k. The blackbox Schönhage-Straßen multi-

plication outputs gf(x)h(x) = (gc0 , gc1 , . . . , gcd−1) with inputs ga0 , ga1 , . . . , gad−1

and h(x) = b0 + · · ·+ bd−1x
d−1.

Let us first explain the non-blackbox version of the method. Let m =

2⌊k/2⌋ and t = d/m. Write down the polynomial as f(x) = A0 + A1x
m +

· · ·+At−1x
m(t−1) where Ai ∈ Fp[x] with degree less than m and let f ′(x, y) =

A0 + A1y + · · · + At−1y
t−1 ∈ Fp[x, y] so that f ′(x, xm) = f(x). Consider

a ring D := Fp[x]/(x
2m + 1) and let ζ ∈ D be an element corresponding

to x in Fp[x]/(x
2m + 1). Then we can view f ∗(y) = a′(ζ, y) = A0(ζ) +

A1(ζ)y+· · ·+At−1(ζ)y
t−1 ∈ D[y]. The goal is to obtain f(x)h(x) mod xd+1

which is equivalent to f ∗(y)h∗(y) mod yt + 1. However since ζ2m = −1 and
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ζ4m = 1, ζ is a 4m-th primitive root of unity in D, thus η = ζ2 if t = m

and η = ζ if t = 2m is a primitive 2t-th root of unity in D. Now we want to

compute f ∗(ηy)h∗(ηy) mod (ηy)t + 1 or f ∗(ηy)h∗(ηy) mod yt − 1, this can

be done by fast multiplication using the discrete Fourier transform with the

t-th primitive root of unity ω = η2 in D. The multiplication in D can be

done recursively with polynomial degree less than 2m. In blackbox version of

the algorithm, we simply write gf(x) = (ga0 , ga1 , . . . , gad−1) = (gA0 , . . . , gAt−1)

where gAi means (gami , gami+1 , . . . , gami+(m−1)).

Finally, we give the blackbox version of fast blackbox Schönhage and

Straßen multiplication in the following algorithm.

Algorithm 5 Blackbox Schönhgae-Straßen Multiplication

Input : d = 2k ∈ N, ga0 , ga1 , . . . , gad−1 and h(x) = bd−1x
d−1+ · · ·+ b0 where

f(x), h(x) ∈ Fp[x] with deg(fh) < d

Output : gf(x)h(x) := (gc0 , gc1 , . . . , gcd−1) ∈ Gd

1. m← 2⌊k/2⌋, t← d/m

let gf(x) = (gA0 , . . . , gAt−1) and h(x) = (B0, . . . , Bt−1) so that f(x) =∑t−1
i=0 Aix

mi, h(x) =
∑t−1

i=0 Bix
mi where degAi, degBj < m

2. let D = Fp[x]/(x
2m + 1) and ζ ← x mod (x2m + 1)

if t = 2m then η ← ζ, otherwise η ← ζ2 so that η is a primitive 2t-th

root of unity

call the algorithm 2 with ω = η2 to compute gc
∗(ηy) =

gf
∗(ηy)h∗(ηy) mod (yt−1) using algorithm 5 recursively for the multiplica-

tion in D

3. return gc
∗(y) = (gC0 , . . . , gCt−1)

Lemma 3.3.5. Let f(x), h(x) ∈ Fp[x] with deg(fh) < d. Given gf(x) and
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h(x), we can compute gf(x)h(x) in O(d log d log log d) group operations.

3.4 Balls-and-Bins Problem

In this section, we shall briefly review and discuss further on the birthday

problem which is generally called the balls-and-bins problem. The balls-and-

bins problem considers the followings: there exist balls and N bins, and we

pick up a ball and put into a bin (the ball is put into each bin with certain

probability), and iterate this process until two different balls are put into one

bin, which we call a collision. Then the problem asks the expected number

of the trials until the collision occurs. Typically, the birthday problem refers

to the balls-and-bins problem when a ball is put into N bins equiprobably.

There also have been many researches considering the balls with the several

types and finding a collision between two different types of balls when the

probability is not uniform [23, 43, 50].

Throughout the paper, we assume that the probability only depends on

the bins, not on the ball.

3.4.1 Balls-and-Bins Problem with Uniform Probabil-

ity

Suppose that each balls are put into N bins, numbered by 1, . . . , N , with

the equiprobability. Denote pi by the probability that a ball is put into the

bin numbered i. We write the vector of the probability as (p1, . . . , pN) =

( 1
N
, . . . , 1

N
). In this case, the problem is the classical birthday problem.

Let Z be a random variable that indicates the number of the trials until

the first collision occurs. The probability that no collision occurs until r
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trials, P [Z ≤ r], is given by

N

N
· N − 1

N
· N − 2

N
· · · N − (r − 1)

N
= 1− N − 1

N
· N − 2

N
· · · N − (r − 1)

N
.

From ex ≥ 1 + x, we have e−j/N ≥ 1− j
N

and

1− N − 1

N
· N − 2

N
· · · N − (r − 1)

N
≥ 1− e−1/N · · · e−(r−1)/N = 1− e−

(r−1)r
2N .

The last term is approximately close to 1 − 1/e = 0.632 · · · , when r2 ≈ N .

On the other hand, the expected number of the trials is E[Z] ≈
√

πN
2

for

N →∞.

3.4.2 Balls-and-Bins Problem with Non-Uniform Prob-

ability

In this section, we consider the non-uniform balls-and-bins problem, where

the probabilities p1, . . . , pN are not equiprobable. Suppose that we have

N bins numbered from 1 to N and for i = 1, 2, . . . , N , define pi by the

probability that a randomly chosen ball is put into a bin of the number i.

We say that a collision occurred when at least one bin contains at least two

balls in it. We say that throwing a ball into a bit as one trial. This section

is contributed by J. H. Seo.

Let Sr be the probability that a collision occurs in r trials. In this section,

we shall show that Sr is non-negligible for r ≈
√

1/
∑

i p
2
i . Define E

(r)
i by an

event that a collision occurs in a bin of a number i after r trials. Then we

have

Sr = Pr(E
(r)
1 ∪ · · · ∪ E

(r)
N ) =

N∑
k=1

(−1)k+1
∑

1≤i1 ̸=i2 ̸=···̸=ik≤N

Pr(E
(r)
i1
∩ · · · ∩ E

(r)
ik
)

≥
N∑
i=1

Pr(E
(r)
i )−

∑
1≤i ̸=j≤N

Pr(E
(r)
i ∩ E

(r)
j ).
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Unless there is no ambiguity, we shall omit the superscript (r) in E
(r)
i .

Definition 3.4.1. Consider the r-tuple b⃗ := (b1, . . . , br) ∈ [1, N ]r, where [1, N ]

is a set of integers from 1 to N . For k = 1, . . . , N , define wt(k)(⃗b) by the size

of a set {1 ≤ i ≤ r : bi = k}. Let B(i)
r,k := {⃗b = (b1, . . . , br) : wt(k)(⃗b) = i}.

Proposition 3.4.1. With the notations as above, we have

Pr(Ek) =
∑
i≥2

∑
b⃗∈B(i)

r,k

pb1 · · · pbr = 1−

 ∑
b⃗∈B(1)

r,k

pb1 · · · pbr +
∑

b⃗∈B(0)
r,k

pb1 · · · pbr


= 1−

(
r · pk · (1− pk)

r−1 + (1− pk)
r
)

= 1− (1− pk)
r−1 · (1 + (r − 1)pk).

Proof. The summation
∑

b⃗∈B(1)
r,k

pb1 · · · pbr means that only one ball is put into

a bin k until r trials, and the other summation taken over B
(0)
r,k means the

probability that no ball is thrown to any bin. Thus the results are easily

verified.

Lemma 3.4.1. Let S := 1+ 2(1− x) + 3(1− x)2 + · · ·+ (r− 1) · (1− x)r−2,

then we have

(1− x)r−1 · (1 + (r − 1)x) = 1− x2 · S.

Proof. It follows from

S − (1− x)S = 1 + (1− x) + · · ·+ (1− x)r−2 − (r − 1)(1− x)r−1

=
(1− x)r−1 − 1

(1− x)− 1
− (r − 1)(1− x)r−1

=
(1− x)r−1 · (1 + (r − 1)x)− 1

(−x)
.
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From Proposition 3.4.1 and Lemma 3.4.1, the following is easily deduced,

Pr(Ek) = p2k · [1 + 2 · (1− pk) + · · ·+ (r − 1) · (1− pk)
r−2]

≥ p2k · [1 + 2 · (1− pk) + · · ·+ (r − 1) · (1− (r − 2)pk)]

≥ p2k ·
[
(r − 1)r

2
· (1− (r − 2)pk)

]
.

Now let us consider the upper bound of Pr(Ek ∩ Eℓ).

Proposition 3.4.2. With the notations as above, we have

Pr(Ek ∩ Eℓ) =
∑
i,j≥2

∑
b⃗∈B(i)

r,k∩B
(j)
r,ℓ

pb1 · · · pbr ≤
(
r

2

)
·
(
r − 2

2

)
· p2k · p2ℓ

=
r(r − 1)(r − 2)(r − 3)

4
p2k · p2ℓ .

Proof. For any i ≥ 2 and j ≥ 2, b⃗ ∈ B
(i)
r,k ∩ B

(j)
r,ℓ is of form (b1, b2, . . . , br)

for bi = bj = k and bs = bt = ℓ with i ̸= j and s ̸= t. And in that case,

we have pb1 · · · pbr ≤ p2k · p2ℓ . The value
(
r
2

)
indicates the possible number of

two positions for k and
(
r−2
2

)
stands for the possible number of the other two

positions of ℓ.

From the above results, for r < 1/(2 ·maxk{pk}), we have the following

inequality

Sr ≥
N∑
k=1

Pr(Ek)−
∑

1≤k ̸=ℓ≤N

Pr(Ek ∩ Eℓ)

≥ (r − 1)r

4
·
∑

1≤k≤N

p2k −
r2(r − 1)2

4
·
∑

1≤k ̸=ℓ≤N

p2kp
2
ℓ

=
(r − 1)r

4
·
∑

1≤k≤N

p2k −
r2(r − 1)2

4
·


( ∑

1≤k≤N

p2k

)2

−

( ∑
1≤k≤N

p4k

) .

The last term in the above inequality is maximized by 1/16 + ϵ for ϵ =

r2(r−1)2

4
·
∑

k p
4
k, when (r− 1)r ·

∑
k p

2
k = 1/2. Thus we expect a collision with

non-negligible probability after r ≈
√

1
2(
∑

k p2k)
.

27



CHAPTER 3. DISCRETE LOGAIRHTM PROBLEM WITH
AUXILIARY INPUTS

3.5 Polynomials with small value sets

In this section, we introduce a new approach to solve the DLPwAI using the

polynomials with the small value sets.

We briefly describe the idea: first, we compute two lists {gf(r1α), . . . , gf(rmα)}

and {gf(s1), . . . , gf(sm)} for given g, gα, . . . , gα
d
and random ri, sj ∈ Fp. If

there exists a collision between two lists, say gf(riα) = gf(sj), then we solve

the equation f(riα) = f(sj) in the intermediate α. Since the degree of f(x)

is d, we obtain at most d candidates for α. Finally, we can find a solution

α by d times of exhaustive search. Hence, the important parts of the algo-

rithm are to obtain a polynomial such that the expected number of m until

collision occurs is small and to compute the list gf(r1α), . . . , gf(rmα) efficiently

for given g, gα, . . . , gα
d
.

3.5.1 An approach using the polynomial of small value

set: uniform case

In this section, we observe how to reduce the DLPwAI into finding a poly-

nomial with the small value set.

Define the value set of a polynomial f(x) ∈ Fp[x] by V (f) := {f(x) : x ∈

Fp} = {a1, . . . , av}, where t is the size of value set. We consider the balls-

and-bins problem with respect to the polynomial map by f . For randomly

chosen element r (a random ball) from Fp, we assume that the ball r is put

in a bin numbered by f(r). The collision means that there exists different

elements r and s such that f(r) = f(s).

Denote pa by the probability that a random ball r ∈ Fp takes the value

f(r) = a for a ∈ V (f). In this section, for a while, we assume that pa1 = · · · =

pav for all ai ∈ V (f) so that the probability vector is given by (pa1 , . . . , pav) =
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( 1
v
, . . . , 1

v
). Since the expected number of trials until the collision is O(

√
v),

after taking the value for m := O(
√
v) elements, we expect the collision

f(r) = f(s). Consider two lists for random ri and sj for 1 ≤ i, j ≤ m:

L1 := {gf(r1α), . . . , gf(rmα)}

and

L2 := {gf(s1), . . . , gf(sm)}.

By the birthday problem, there exists a collision with high probability. We

have a collision, say f(riα) = f(sj). It gives an equation of degree d in the

intermediate α. We can solve the equation by finding the roots of a poly-

nomial f̃(x) := f(rix) − f(sj) of degree d which costs the expected number

of O(d · log q · (log d)2 · log log d) operations in Fp [56] (we assume that the

multiplication in Fp is done by Schönhage-Straßen method). Using the fast

multipoint evaluation method described in the previous section, the list L1

can be computed in O(m log d log log d) group operations. Computing the

list L2 costs O(m log d log log d) operations in Fp and O(m) group exponen-

tiations. Thus we have the followings.

Theorem 3.5.1. Let g, gα, · · · , gαd
be given and let f(x) := f0 + f1x +

· · · + fdx
d be a polynomial over Fp of degree d. Assume that the preimage

set f−1(a) for each a ∈ V (f) is equally distributed. Then we can solve

α in O((
√
v log d + d log p(log d)2) · log log d) operations (including the field

operations and the group operations).

For fixed d and p, the complexity of Theorem 3.5.1 reduces when v be-

comes smaller. Thus, Theorem 3.5.1 says that the DLPwAI reduces to find

polynomials with small value sets. Finding such polynomials has been old

research topics in number theoretic area.

29



CHAPTER 3. DISCRETE LOGAIRHTM PROBLEM WITH
AUXILIARY INPUTS

Polynomial with Minimal Value Set

Let f(x) ∈ Fp[x] be a polynomial of degree d. For each a ∈ V (f), the

preimage f−1(a) := {x : f(x) = a} has at most d elements. If v is the size of

V (f), then

p = |f−1(a1)|+ · · ·+ |f−1(av)| ≤ d · v,

in other words v is an integer satisfying v ≥ p
d
, or equivalently v ≥ ⌊p−1

d
⌋+1.

The polynomial satisfying v = ⌊p−1
d
⌋ + 1 is said to have the minimal value

set.

Consider a polynomial f(x) = xd with d|(p − 1). From the divisibility

of p − 1 by d, we have a primitive d-th root of unity ζd in Fp and thus we

have f(ζdx) = f(ζ2dx) = · · · = f(ζddx) for any nonzero x. In other words,

x 7→ f(x) defines a d-to-1 mapping except at x = 0. Then the size of V (f)

is v = p−1
d

+ 1. Thus f(x) = xd has the minimal value set for d|(p− 1).

Applying Theorem 3.5.1 with this polynomial, we can solve the DLPwAI

in Õ
(√

p−1
d

+ d
)
which minimizes to Õ(p1/3) at d ≈ p1/3.

In [9], it is shown that polynomials of form (x + b)d + c for b, c ∈ Fp has

the minimal value set when d|(p − 1) and these are the only polynomials

with minimal value set. With these polynomials, we can solve the DLPwAI

in Õ(p1/3) operations.

Polynomials with small value set

On the other hand, it is not an easy task to find a polynomial with small

value sets. In [53], Uchiyama showed that v := |V (f)| = cdp + O(1) on the

average, where the average is taken over the monic polynomials of degree d.

Here, cd = 1− 1
2!
+ 1

3!
− · · ·+ (−1)d−1 1

d!
≈ 1

e
.

The classification of the polynomials with the value set of size less than

2p/d for d < p1/4 was given in [26].

30



CHAPTER 3. DISCRETE LOGAIRHTM PROBLEM WITH
AUXILIARY INPUTS

3.5.2 Approach using polynomials with almost small

value set: non-uniform case

Let f(x) be a polynomial of degree d with the value set V (f) = {a1, . . . , av}.

Define a set Si := {a ∈ V (f) : |f−1(a)| = i}, Ri = |Si| and R = |{(x, y) ∈

Fp × Fp : f(x) = f(y)}|, then we have the following equations,

p =
d∑

i=1

iRi, |V (f)| =
d∑

i=1

Ri, and R =
d∑

i=1

i2Ri.

Now we want to determine the value of m for two lists {f(r1), . . . , f(rm))}

and {f(s1), . . . , f(sm)} have a non-empty intersection for random ri and sj.

We consider this problem as the non-uniform balls-and-bins problem with

the probability vector,

(pa1 , . . . , pat) = (
1

p
, . . . ,

1

p︸ ︷︷ ︸
R1

,
2

p
, . . . ,

2

p︸ ︷︷ ︸
R2

, · · · , d
p
, . . . ,

d

p︸ ︷︷ ︸
Rd

).

From the analysis in Section 3.4.2, we expect a collision within r ≈√
1/2

∑
k p

2
k. Note that

∑
k p

2
k =

R
p2
. We can restate Theorem 3.5.1.

Theorem 3.5.2. Let g, gα, · · · , gαd
be given and let f(x) := f0 + f1x+ · · ·+

fdx
d be a polynomial over Fp of degree d. Let R be defined previously. Then

we can solve α in O((m log d+d log p(log d)2) · log log d) operations (including

the field operations and the group operations) for m := O(
√

p2/R).

The value of R is closely related to the number of the absolutely irre-

ducible factors of f ∗(x, y) = f(x) − f(y). The Weil’s bound implies that

R = rp + O(d2
√
p), where r is the number of the absolutely irreducible fac-

tors of f ∗(x, y). Since it is obvious that 1 ≤ r ≤ d, to reduce the complexity

it is desirable to find f(x) such that r is close to d. The typical example

satisfying r = d is the polynomial f(x) = xd for d|(p− 1) which was given as

an example in the previous section.
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The other example is given by the Dickson polynomial. For a ∈ Fp
∗ and

d ∈ Z≥1, the Disckson polynomial is defined by

Dd(x, a) =

⌊d/2⌋∑
k=0

d

d− k

(
d− k

k

)
(−a)kxd−2k.

The substitution polynomial Dd(x, a)−Dd(y, a) factorizes into

(x− y)

(d−1)/2∏
k=1

(
x2 − (ζk + ζ−k)xy + y2 + a(ζ2k + ζ−2k − 2))

)
for nonzero a ∈ Fp, where ζ ∈ Fp2 is a primitive d-th root of unity for

d|(p2 − 1). Thus it satisfies r = d
2
, and our theorem solves the DLPwAI in

Õ(
√

p
d
+ d) with the Dickson polynomial.

On the other hand, it is known that R1 = p−1
2
, Rd = p+1

2d
and Ri = 0

otherwise, when d is a divisor of p+1 and a is a quadratic non-residue [15] (the

similar result is also verified for a quadratic residue a). Consider the set

V (f) = {v1, . . . , vℓ} where f(x) = Dd(x, a), then |V (f)| = p−1
2

+ p+1
2d

. This

means that, roughly speaking, half of the elements in Fp maps d-to-1 by the

polynomial f(x), i.e. the expected number of collision is O(
√
p/2d) assuming

all the elements were chosen from that half of the domain.

3.5.3 Generalization of the Dickson Polynomial and its

value set

In this section, we consider the value set of the generalized Dickson polyno-

mial of degree d in two variable. For a fixed a ∈ Fp, consider the polynomial

fa(z) = z3 − xz2 + yz − a = (z − σ0)(z − σ1)(z − σ2).

The generalized Dickson polynomial is given by

D
(1)
d (x, y, a) := σd

0 + σd
1 + σd

2 ,
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and

D
(2)
d (x, y, a) := σd

0σ
d
1 + σd

1σ
d
2 + σd

2σ
d
1 .

Generally, the Dickson polynomial of degree in n variables is defined by

D
(i)
d (x1, x2, . . . , xn, a) = Si(σ

d
0 , σ

d
1 , . . . , σ

d
n),

where σi’s are roots of the polynomial

fa(z) = zn+1 − x1z
n + · · ·+ (−1)nxnz + (−1)n+1a

and the polynomial Si is the i-th symmetric polynomial in (n+1) variables.

The one variable case coincides with the original Dickson polynomial. The

value sets of the Dickson polynomial Dd(x, a) was given in [15].

We try to count the value sets of the (D
(1)
d (x, y, a), D

(2)
d (x, y, a)) ∈ Fp×Fp.

Unless there is an ambiguity, we simply write D
(1)
d = D1 and D

(2)
d = D2.

Consider the partition

Fp × Fp = {(x, y) : z3 − xz2 + yz − a is irreducible over Fp}

∪{(x, y) : z3 − xz2 + yz − a is reducible over Fp}.

Define the former set by Irr(a) and the later by Red(a).

From now on, assume that

d|Φ3(p) = p2 + p+ 1

so that the primitive d-th root of unity ζ := ζd exists in Fp3\Fp.

Lemma 3.5.1. The pair (x, y) ∈ Irr(a) if and only if there exists σ ∈ Fp3\Fp

such that z3 − xz2 + yz − a = (z − σ)(z − σp)(z − σp2).

Proof. Obvious from the definition, since σ, σp and σp2 are the conjugates.
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Lemma 3.5.2. Consider the pairs (x0, y0), (x, y) ∈ Fp × Fp such that

fa,0 := z3 − x0z
2 + y0z − a = (z − σ0)(z − σ1)(z − σ2)

and

fa := z3 − xz2 + yz − a = (z − τ0)(z − τ1)(z − τ2),

then D1(x, y) = D1(x0, y0) and D2(x, y) = D2(x0, y0) if and only if {σd
0 , σ

d
1 , σ

d
2} =

{τ d0 , τ d1 , τ d2 } (the set equality).

Proof. Note that

z3 −D1(x, y)z
2 +D2(x, y)z − ad = (z − τ d0 )(z − τ d1 )(z − τ d2 )

and

z3 −D1(x0, y0)z
2 +D2(x0, y0)z − ad = (z − σd

0)(z − σd
1)(z − σd

2)

by the definition of the Dickson polynomial. Since these two polynomials are

the same, the roots are the same. (Note that fz,0 and fz may be reducible

over Fp.)

Lemma 3.5.3. Fix (x0, y0) ∈ Irr(a) with the corresponding root σ ∈ Fp3,

if (x, y) ∈ Irr(a) such that D1(x, y) = D1(x0, y0) and D2(x, y) = D2(x0, y0),

then

x = xi := (σζ i) + (σζ i)p + (σζ i)p
2

and

y = yi := (σζ i) · (σζ i)p + (σζ i)p · (σζ i)p2 + (σζ i)p
2 · (σζ i),

for the primitive d-th root of unity ζ and i = 0, 1, . . . , d− 1.

Proof. Since (x0, y0) ∈ Irr(a), we write z3−x0z
2+y0z−a = (z−σ)(z−σp)(z−

σp2) for some σ ∈ Fp3 , and also similarly for (x, y) ∈ Irr(a) with τ ∈ Fp3 .
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From Lemma 3.5.2, we have τ d = σd or τ d = (σp)d or τ d = (σp2)d. In the

first case, τ = σ · ζ i for the primitive d-th root of unity and i = 0, 1, . . . , d−1

and x = (σζ i) + (σζ i)p + (σζ i)p
2
. In the second case, we have τ = σp · ζ i.

Since gcd(d, p) = 1, the value ζp is another primitive d-th root of unity, thus

we can write τ = σp · (ζp)j for some j such that ζ i = ζpj. In this case,

x = τ + τ p + τ p
2
= (σζj)p + (σζj)p

2
+ (σζj) and similarly for y. So, the

counting is duplicated. We also have the similar result for the third case.

Lemma 3.5.4. Let (x, y) and (x0, y0) be as described in Lemma 3.5.3. Let γ be

a primitive element of Fp3. Then xi = x0 and yi = y0 for some 0 < i < d if

and only if σ ∈M := ⟨γ p2+p+1
d ⟩ ∩ (Fp3\Fp).

Proof. By the same argument in Lemma 3.5.2, (xi, yi) = (x0, y0) if and only

if {σ, σp, σp2} = {σζ i, (σζ i)p, (σζ i)p2}. If σ = σζ i, it leads only trivial case

ζ i = 1, i.e. d divides i. And σp = σζ i if and only if σp−1 = ζ i, thus

σ = γ
p2+p+1

d
·i. Since d|(p2 + p + 1) and gcd(p + 1, p2 + p + 1) = 1 for prime

p, the third case also deduces that σ = γ
p2+p+1

d
·i.

Definition 3.5.1. For fixed (x0, y0) ∈ Irr(a), define the set of elements

(x, y) ∈ Irr(a) such that (D1(x, y), D2(x, y)) = (D1(x0, y0), D2(x0, y0)) by

I(x0, y0) := |{(x, y) ∈ Irr(a) : (D1(x, y), D2(x, y)) = (D1(x0, y0), D2(x0, y0))}|.

Theorem 3.5.3. For fixed (x0, y0) ∈ Irr(a), we have I(x0, y0) = d if and

only if z3 − x0z
2 + y0z − a = (z − σ)(z − σp)(z − σp2) for σ /∈M .

Proof. From Lemma 3.5.3, I(x0, y0) ≤ d. If σ ∈ M , then by Lemma 3.5.4,

there exists some 0 < i < d satisfying xi = x0 and yi = y0. So, we have

I(x0, y0) < d. Conversely, if I(x0, y0) < d, Lemma 3.5.4 asserts that xi = x0

and yi = y0 for some 0 < i < d yielding σ must be in M .
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Definition 3.5.2. Define the set of the irreducible polynomials fσ(z) =

(z−σ)(z−σp)(z−σp2) of degree 3 with σ ∈M and σ1+p+p2 = a by IrrM(a).

In other words, IrrM(a) := {fσ(z) = (z−σ)(z−σp)(z−σp2) ∈ Irr(a) : σ ∈M}.

For a ∈ Fp, we denote ι(a) := |Irr(a)| and ιM(a) := |IrrM(a)|.

The following is a direct consequence of Theorem 3.5.3.

Corollary 3.5.1. For a ∈ Fp and the Dickson polynomial (D1, D2) in two

variables of degree d, we have {(x, y) ∈ Irr(a) : I(x, y) = d} = Irr(a)\IrrM(a).

By Corollary 3.5.1, ι(a) − ιM(a) describes the size of the preimage in

Irr(a) ⊆ Fp × Fp of the two variable Dickson polynomial which maps d to 1.

Since the ratio of the irreducible polynomials over the polynomials of degree

d is approximately 1
d
, thus we have ι(a) ≈ p2

3
. The following lemma shows

that ιM(a) is relatively small compared to ι(a) when d≪ p2.

Lemma 3.5.5. For fixed a ∈ Fp, ιM(a) = d or 3d.

Proof. Let γ be a primitive element of Fp3 . Since a ∈ Fp, we write a =

γ(p2+p+1)·k for some 0 ≤ k ≤ p − 1. On the other hand, σ = γ
p2+p+1

d
·i for

some 0 ≤ i ≤ d(p− 1) since σ ∈M . And σ1+p+p2 =
(
γ

p2+p+1
d

·i
)1+p+p2

= a =

γ(p2+p+1)·k. Thus ιM(a) is the number of 0 ≤ i ≤ d(p− 1) satisfying

p2 + p+ 1

d
· i ≡ k (mod p− 1),

or, equivalently

(p2 + p+ 1) · i ≡ dk (mod d(p− 1)).

It follows ιM(a) = gcd(p2+p+1, d(p−1)) = d·gcd(p2+p+1
d

, p−1) = d or 3d.

From the above, we deduce that most of the elements in Irr(a) maps

d-to-1 by the mapping (D1, D2) : Fp × Fp → Fp × Fp.
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In this section, we investigated the value set of the generalized Dickson

polynomial, however, it still remains open to apply the generalized Dickson

polynomial to solve the DLPwAI.

Remark 3.5.1. We can also analogously generalize this method to the n-

variable Dickson polynomial. It results a map from (Fp)
n to itself, and the

map would be d-to-1 on the Irr(a) (which will be defined similarly) of ap-

proximate size pn/n, where d|Φn+1(p).
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Chapter 4

Generalized DLP with

Auxiliary Inputs

In this chapter, we define a new problem called the generalized DLPwAI (GDLP-

wAI). It is a problem to solve α for given gα
e1 , · · · , gαed , where e1, · · · , ed are

arbitrary integers. The DLPwAI can be considered as the special case of the

GDLPwAI with ei = i. In this chapter, we propose an algorithm to solve the

GDLPwAI when ei’s form a multiplicative subgroup of Z×
p−1.

This chapter includes a joint work with Jung Hee Cheon and Yong Soo

Song [14].

4.1 Multiplicative Subgroups of Z×n

Before the state of our main theorem, we introduce a new representation

for multiplicative subgroup K of Z×
n . From our observation, elements of a

multiplicative subgroup K ≤ Z×
n seem to form an arithmetic sequence in

many cases.
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4.1.1 Representation of a Multiplicative Subgroup of

Z×n

Definition 4.1.1. For any positive integer n, let S be a subset of Zn. We

define gcd (S;Zn) or gcd(S) unless confused, to be the greatest common

divisor of all integers x such that x mod n belongs to S. Given a divisor

λ of n, we define a subset Kλ of Z×
n by Kλ := (1 + λZn) ∩ Z×

n , where

1 + λZn := {1 + λm : m ∈ Zn}.

We can see that Kλ is a multiplicative subgroup of Z×
n because it is closed

under the multiplication and inverse. If K is a multiplicative subgroup of

Z×
n , then K is a subgroup of Kλ for λ = gcd(K − 1) where K − 1 = {k − 1 :

k ∈ K} ⊆ Zn.

Remark 4.1.1. For an even integer n and any multiplicative subgroup K ≤

Z×
n , every element of K is an odd integer so that gcd(K−1) is even. It shows

that

Kλ = (1 + λZn) ∩ Z×
n = (1 + 2λZn) ∩ Z×

n = K2λ

for odd λ. For this reason, we only treat the case that λ is even.

From now on, we restrict the case to n = p−1 for odd prime p. The next

proposition determines the size of Kλ in Z×
p−1 for given divisor λ of p− 1.

Proposition 4.1.1. Let λ be a divisor of p−1. Then |Kλ| = p−1
λ
·
∏

q∈Q

(
1− 1

q

)
,

where Q is the set of prime divisors of p−1 which do not divide λ. In particu-

lar, if gcd(λ, p−1
λ
) = 1, then |Kλ| = ϕ(p−1

λ
), where ϕ denotes the Euler-totient

function.

Proof. Note that 1 + λm ∈ Kλ if and only if gcd(1 + λm, p− 1) = 1, which

is equivalent to gcd(1 + λm, q) = 1 for all q ∈ Q. Consider a surjective
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homomorphism

π : Zp−1 −→ Zλ × Zq1 × · · · × Zqℓ

x 7−→ (x mod λ, x mod q1, · · · , x mod qℓ) ,

where Q = {q1, · · · , qℓ}. Then each element λm is in the set Kλ − 1 ⊆ Zp−1

if and only if π(λm) is contained in {0} × T , where T = (Zq1\{−1}) ×

(Zq2\{−1})× · · · × (Zqℓ\{−1}). Hence

|Kλ| = |Kλ − 1| = |π−1 ({0} × T ) |

= |T | · | ker(π)|

=
∏ℓ

i=1 (qi − 1) ·
(

p−1

λ·
∏ℓ

i=1 qi

)
= p−1

λ
·
∏ℓ

i=1

(
1− 1

qi

)
Moreover, if gcd

(
λ, p−1

λ

)
= 1, then Q is the set of all prime divisors of p−1

λ
.

Thus, we have |Kλ| = ϕ
(
p−1
λ

)
.

Proposition 4.1.2. If λ is an even divisor of p−1, then gcd(Kλ−1;Zp−1) =

λ.

Proof. Let us use the same notations in the proof of Proposition 4.1.1. First,

we note that an integer x such that x (mod p− 1) ∈ Kλ− 1 = π−1({0}× T )

is a multiple of λ, and gcd(Kλ − 1;Zp−1) is a multiple of λ by definition.

Let P = {pj : 1 ≤ j ≤ k} be the set of common prime divisors of λ and

p−1
λ
. Then P

.
∪ Q is the set of prime divisors of p−1

λ
. Every element q of Q

is greater than 2, and there exist integers mi for 1 ≤ i ≤ ℓ satisfying λmi

(mod qi) is not equal to 0 or −1. Using the Chinese Remainder Theorem,

we can find an integer m such that m ≡ mi (mod qi) for all 1 ≤ i ≤ ℓ and

m ≡ 1 (mod pj) for all 1 ≤ k ≤ j.

We can check that 1+λm is not divisible by q ∈ Q and 1+λm (mod p−1)

is contained in Kλ. In addition, gcd(λm;Zp−1) = λ gcd(m;Z p−1
λ
) = λ since
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m is not divisible by every prime divisor of p−1
λ
. Hence, gcd(Kλ− 1;Zp−1) is

equal to λ.

Example 4.1.1. Consider a prime p = 29 and λ = 4 be an even divisor of

p− 1. Then, we have

Kλ = K4 = {1, 5, 9, 13, 17, 21, 25} ∩ Z×
28,

and 21 is the only element which is not in Z×
28. Since p−1

λ
= 7, we can see

that the cardinality of K4 is ϕ(7) = 6 as shown in Proposition 4.1.1. Also we

can check that gcd(K4 − 1) = 4.

4.2 A Group Action on Z×p

In this section, we consider a K-group action on Z×
p and partition Z×

p into

disjoint orbits generated by group action. A group action on a set clearly

induces a partition of the set with orbits. However, what we are dealing here

is to partition Z×
p with only a few information. Namely, for a certain case,

we can represent almost all elements of Z×
p with only two elements, one fixed

point (i.e. an orbit with just one element) and the other point not a fixed

point. We begin with defining the group action on Z×
p .

Definition 4.2.1. Let K be a multiplicative subgroup of Z×
p−1. Define a

K-action on Z×
p by (k, x) 7→ xk for k ∈ K and x ∈ Z×

p . The K-orbit of x is

a set xK := {xk : k ∈ K}. The set of fixed point (Z×
p )K is a set {x ∈ Z×

p :

xk = x for all k ∈ K}.

We can easily check that Definition 4.2.1 satisfies the definition of group

action. Note that we have |xK | = |K|/|Kx| whereKx is a stabilizer of x which

is a set defined by Kx := {k ∈ K : xk = x}, thus |xK | = |K| if and only if
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|Kx| = 1. The next proposition states that if two multiplicative subgroups H

and K of Z×
p−1 satisfies gcd(H − 1) = gcd(K − 1), then the two sets of fixed

points byH-action andK-action respectively are the same. Furthermore, the

set of fixed points forms a cyclic group of order λ = gcd(H−1) = gcd(K−1).

Proposition 4.2.1. Let K be a multiplicative subgroup of Z×
p−1 and λ =

gcd(K − 1). Then, (Z×
p )K = (Z×

p )Kλ
= {z ∈ Z×

p : zλ = 1}.

Proof. The set of fixed point by K-action is denoted by (Z×
p )K = {z ∈

Z×
p : zk−1 = 1 for all k ∈ K}. Now it is easy to see that zk−1 = 1 for

all k ∈ K if and only if zλ = 1 where λ = gcd{k − 1 : k ∈ K}. Since

λ = gcd(K − 1) = gcd(Kλ − 1), we have (Z×
p )K = (Z×

p )Kλ
by the same

argument.

Let ξ be a primitive element in Zp, then ζ = ξ
p−1
λ is a generator of a cyclic

group of fixed points (Z×
p )K = ⟨ζ⟩ = {z ∈ Z×

p : zλ = 1}. Note that the orbit

generated by ζ ix satisfies (ζ ix)K = ζ ixK for all 1 ≤ i ≤ λ, since ζk = ζ for

all k ∈ K. The following proposition considers two orbits generated by ζ ix

and ζjx are disjoint for 0 ≤ i, j < λ and i ̸= j.

Proposition 4.2.2. (Disjoint Orbit Condition) Let K be a multiplicative

subgroup of Z×
p−1, ζ a generator of a cyclic group of fixed points {z ∈ Z×

p :

zλ = 1} for λ = gcd(K − 1). If gcd(λ, p−1
λ
) = 1, then two orbits ζ ixK and

ζjxK are disjoint i.e. (ζ ixK)∩(ζjxK) = ∅ for 0 ≤ i, j < λ, i ̸= j, and x ∈ Z×
p .

Proof. Note that two orbits are identical or disjoint. Suppose that (ζ ixK) ∩

(ζjxK) ̸= ∅ for some i, j. Then, ζ ixK = ζjxK and y := ζ i−j = xk1−k2 for some

k := k1−k2 ∈ K. Since (ζ i−j)
λ
= 1 and

(
xk1−k2

) p−1
λ = 1 for a non-fixed point

x ∈ Z×
p , the order of y divides both λ and p−1

λ
. In other words, it divides

gcd(λ, p−1
λ
) which equals to 1, following that y must be equal to 1.
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Example 4.2.1. Let K := K4 = {1, 5, 9, 13, 17, 25} ≤ Z×
28 and consider the

K-action on Z×
29. Then we have 4 disjoint orbits of length 6,

2K = {2, 25, 29, 213, 217, 225} = {2, 3, 19, 14, 21, 11}

4K = {4, 9, 13, 22, 6, 5}

7K = {7, 16, 20, 25, 24, 23}

8K = {8, 27, 15, 18, 10, 26},

and 4 fixed points {1, 12, 17, 28}. Note that 14 ≡ 124 ≡ 174 ≡ 284 ≡ 1

mod 29.

Since there is an one-to-one correspondence between ζ ixK and ζjxK for

all i, j, they have the same number of elements. If we define

Ox,K := xK
.
∪ ζxK

.
∪ · · ·

.
∪ ζλ−1xK ,

where
.
∪ denotes the disjoint union, we have |Ox,K | = |xK |λ for x ∈ Z×

p .

Along with the set of fixed points, we have |Ox,K ∪⟨ζ⟩| = (|xK |+1)λ number

of elements in Z×
p for a non-fixed point x ∈ Z×

p . From now on, ordp(x)

denotes the order of x modulo p.

Remark 4.2.1. The set Ox,K behaves just like an extended orbit, which

means that for x, y ∈ Z×
p , Ox,K and Oy,K are disjoint or identical. In other

words, Ox,K ∩ Oy,K ̸= ∅ implies y = ζ ixk and Ox,K = Oy,K . Therfore,

Z×
p can be expressed by the disjoint union of distinct Ox,K ’s. Moreover, if

Ox,K = Oy,K , then y = ζ ixk for some 0 ≤ i < λ, k ∈ K and yλ = xλk. It

implies that ordp(x
λ) = ordp(y

λ).

The next proposition gives a condition to satisfy |xK | = |K|.

Proposition 4.2.3. Let K be a multiplicative subgroup of Z×
p−1, λ = gcd(K−

1) and x ∈ Zp. If gcd(λ, p−1
λ
) = 1, then |xK | = |K| for x satisfying
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ordp(x
λ) = p−1

λ
. In particular, if p−1

λ
is prime, then |xK | = |K| for x /∈

(Z×
p )K.

Proof. Note that |xK | = |K| if and only if |Kx| = |{k ∈ K : xk = x}| = 1.

Suppose that xk = x for some k = 1 + λn ∈ K and 0 ≤ n < p−1
λ
. It implies

that (xλ)n = 1 for some 0 ≤ n < p−1
λ
. However, since ordp(x

λ) = p−1
λ
, n must

be zero. It follows that Kx contains only one element, k = 1.

Since (xλ)
p−1
λ ≡ 1 (mod p) for all x ∈ Zp, we have ordp(x

λ) divides p−1
λ
.

In addition, ordp(x
λ) = 1 if and only if x ∈ (Z×

p )K . Thus, if p−1
λ

is a prime,

it follows that ordp(x
λ) = p−1

λ
if and only if x /∈ (Z×

p )K .

Example 4.2.2. Note that for p = 29 and λ = 4, we have |K| = |2K | =

|4K | = |7K | = |8K | = 6 for K = K4, and ⟨17⟩ = {17, 28, 12, 1} forms a cyclic

group of fixed points. It is easily verified that 17 · 2K = 4K, 28 · 2K = 8K and

12 · 2K = 7K, thus O2,K = 2K
.
∪ 4K

.
∪ 8K

.
∪ 7K = Z×

29\⟨17⟩.

The following proposition shows how many x’s in Z×
p satisfy ordp(x

λ) =

p−1
λ
.

Proposition 4.2.4. Assume that λ is a divisor of p − 1. Then there are

exactly λϕ(p−1
λ
) elements x in Z×

p such that ordp(x
λ) = p−1

λ
.

Proof. Let ξ be a primitive element of Zp. There exists a unique 0 ≤ j < p

satisfying x = ξj for any x ∈ Z×
p . We will use the fact that ordp(ξ

i) =

p−1
gcd(i,p−1)

for all i.

From ordp(x
λ) = ordp(ξ

λj) = p−1
gcd(λj,p−1)

= p−1
λ

1

gcd(j, p−1
λ

)
, we show that

ordp(x
λ) = p−1

λ
if and only if gcd(j, p−1

λ
) = 1. Therefore, there are exactly

ϕ(p−1
λ
)-number of j’s modulo p−1

λ
satisfying gcd(j, p−1

λ
) = 1, thus λϕ(p−1

λ
)-

number of x’s in Z×
p satisfying ordp(x

λ) = p−1
λ
.

Note that λϕ(p−1
λ
) = λp−1

λ

∏
q∈Q(1 −

1
q
) = (p − 1)

∏
q∈Q(1 −

1
q
) where Q

is the set of prime divisors of p−1
λ
. Hence, if we randomly take x in Z×

p , then
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the probability that ordp(x
λ) = p−1

λ
is
∏

q∈Q(1 −
1
q
). Moreover, if p−1

λ
has

only large prime divisors, then the probability
∏

q∈Q(1 −
1
q
) will be almost

equal to 1.

Combining these results with Proposition 4.1.1, we surprisingly obtain an

immediate partition of Z×
p . Recall that for an even divisor λ of p − 1, we

defined a multiplicative subgroup Kλ = {1 + λn : n ∈ [0, p−1
λ
) ∩ Z} ∩ Z×

p−1.

Theorem 4.2.1. Let λ be an even divisor of p−1 satisfying gcd(λ, p−1
λ
) = 1

and Kλ be a multiplicative subgroup of Z×
p−1 defined as above. Consider the

Kλ-action on Z×
p . Let ζ be a generator of a cyclic group of fixed points by

the Kλ-action, {z ∈ Z×
p : zλ = 1}. Then the followings hold:

1. If p−1
λ

= µ is prime, then Z×
p = Ox,Kλ

.
∪ (Z×

p )Kλ
for x /∈ (Z×

p )Kλ
.

2. If p−1
λ

= µ1 · · ·µℓ is square-free for prime µ1, · · · , µℓ, then Z×
p =

.
∪J⊆I

OxµJ ,Kλ
for x ∈ Z×

p such that ordp(x
λ) = p−1

λ
, where I = {1, 2, · · · , ℓ} is

an index set and µJ =
∏

j∈J µj for J ⊆ I (For the convenience, define

µ∅ = 1 for the empty subset ∅ ⊆ I). In particular, OxµI ,Kλ
= (Z×

p )Kλ
.

Proof. If p−1
λ

= µ is prime, then |Kλ| = ϕ(p−1
λ
) = ϕ(µ) = µ − 1 by Propo-

sition 4.1.1. Note that Ox,Kλ
and (Z×

p )Kλ
are disjoint subsets of Z×

p for

x /∈ (Z×
p )Kλ

. Thus we have |Ox,Kλ

.
∪ (Z×

p )Kλ
| = |Ox,Kλ

|+|(Z×
p )Kλ

|. By Propo-

sition 4.2.3, we obtain |Ox,Kλ
| = |xKλ|λ = |Kλ|λ = (µ−1)λ and |(Z×

p )Kλ
| = λ.

Therefore, |Ox,Kλ

.
∪ (Z×

p )Kλ
| = p− 1 deduces that Ox,Kλ

.
∪ (Z×

p )Kλ
= Z×

p .

In the case that p−1
λ

= µ1 · · ·µℓ is square-free and ordp(x
λ) = p−1

λ
, we

have |xKλ | = |Kλ| = ϕ(p−1
λ
) = ϕ(µI) =

∏
1≤j≤ℓ(µj − 1) by Proposition 4.1.1.

For a subset J of I and y = xµJ , we first calculate |yKλ | and |Oy,Kλ
| by

using the fact that |yKλ | = |Kλ|/|(Kλ)y|, where (Kλ)y = {k ∈ Kλ : yk = y}.

Since k = 1 + λn ∈ (Kλ)y if and only if yk−1 = (xµJ )λ·n = 1 if and only

if µI\J = µI/µJ divides n, the size of (Kλ)y is equal to the number of n
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satisfying that 1 + λn ∈ Z×
p−1, 0 ≤ n < µI and µI\J divides n. Therefore, by

the similar argument in Proposition 4.1.1, we get

|(Kλ)y| =
∣∣{n ∈ [0, µI) ∩ Z : 1 + λn ∈ Z×

p−1 and µI\J |(λn)
}∣∣

=
∣∣{n ∈ [0, µI) ∩ Z : µj ∤ (1 + λn) for each j and µI\J |n

}∣∣
=

µI

µI\J
·
∏
j∈J

(
1− 1

µj

)
= µJ ·

∏
j∈J

(
1− 1

µj

)
= ϕ(µJ),

resulting |yKλ| = |Kλ|
|(Kλ)y |

= ϕ(µI)
ϕ(µJ )

= ϕ(µI\J) and |Oy,Kλ
| = λ|yKλ| = λϕ(µI\J).

Since OxµJ ,Kλ
’s are pairwise disjoint for all J ⊆ I, we have |

.
∪J⊆I

OxµJ ,Kλ
| =

∑
J⊆I |OxµJ ,Kλ

| = λ
∑

J⊆I ϕ(µI\J). Finally, using elementary

number theory, we have
∑

J⊆I ϕ(µI\J) =
∑

d|µI
ϕ(d) = µI and |

.
∪J⊆I OxµJ ,Kλ

| =

λ · µI = p− 1 deducing that Z×
p =

.
∪J⊆I (OxµJ ,Kλ

).

Note that for any given x ∈ Oy,Kλ
, there exist 0 ≤ i < λ and k ∈

Kλ satisfying x = ζ iyk. By virtue of Theorem 4.2.1, all elements in Z×
p

can be expressed with only a few information. For example, we can simply

partition Z×
p with only two elements x ∈ Z×

p − (Z×
p )Kλ

and ζ ∈ (Z×
p )Kλ

, when

gcd(λ, p−1
λ
) = 1 and q = p−1

λ
is prime, so that any of element in Z×

p is of form

ζ ixk for 0 ≤ i < λ and k ∈ K. In our example, with only x = 2 and ζ = 17,

we can express all elements in Z×
29.

In the case of p−1
λ

= µ1 · · ·µℓ is square-free and ordp(x
λ) = p−1

λ
, Re-

mark 4.2.1 says that ordp(y
λ) = µI\J if y ∈ OxµJ ,Kλ

. The converse is also

true because Z×
p =

.
∪J⊆I OxµJ ,Kλ

and y cannot be contained in OxµJ′ ,Kλ
for

J ̸= J ′ ⊆ I.
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4.3 Polynomial Construction

In this section, we will define a polynomial f(x) ∈ Zp[x] of degree d hav-

ing small value sets. Recently, the similar idea was developed by Kim and

Cheon [37] to solve the DLPwAI. Their approach exploited the fast multi-

point evaluation method, so the degree of their polynomial was restricted to

at most d ≈ p1/3 due to the efficiency issue.

The polynomial we will use in this paper is of very large degree which

might be greater than p1/3 but is sparse (all but d coefficients are zero) and

have small value sets. Thus the fast multipoint evaluation method as in [37]

seems hardly to be applied in our case. Instead, we take somewhat different

approach with the idea developed in Section 4.2. We will define a polynomial

so that it takes the same value for all elements in an orbit. In the proof of

our main theorem, we will make some lists of f(α1), · · · , f(αℓ) from f(α)

where αi’s are the representatives of distinct orbits and α is a discrete log to

find. Then we find an index j such that f(αj) = f(β) for randomly chosen

β ∈ Z×
p i.e. we find an orbit in which β is contained. For this process, f(α)

should be nonzero.

Definition 4.3.1. Let K be a multiplicative subgroup of Z×
p−1. Define a

polynomial fK(x) over Zp by fK(x) :=
∑

k∈K xk. We will simply write fK = f

if there is no ambiguity in the meaning.

By the definition, it is clear that fK takes the same value for the elements

in the same orbit defined by K-action.

Proposition 4.3.1. For any k ∈ K and x ∈ Z×
p , we have f(xk) = f(x). If

ζ i ∈ (Z×
p )K is a fixed point, then f(ζ ix) = ζ if(x).

Since the degree of f = fK might be large (approximately p), it looks hard

to evaluate f(α1), · · · , f(αℓ) in O(ℓ) time complexity for random αi’s with
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fast multipoint evaluation method. However, for a non-fixed point α ∈ Z×
p

and a fixed point (not necessarily generator) ζ ∈ (Zp)K , we can compute

f(α), f(ζα) = ζf(α), · · · , f(ζℓα) = ζℓf(α) in ℓ multiplications by ζ with

O(|K|) exponentiations for computing f(α). Furthermore, if f(α) is nonzero,

then we can deduce that all α, ζα, · · · , ζℓα are the different representatives

for distinct orbits. The following proposition calculates f(x) explicitly in

special cases.

Proposition 4.3.2. Assume that λ is an even divisor of p − 1 satisfying

gcd(λ, p−1
λ
) = 1. Let K = Kλ and f = fK be defined as aforementioned.

Then the followings hold:

1. If p−1
λ

= µ is prime, then f(x) ̸= 0 for x ∈ Z×
p .

2. If p−1
λ

= µ1 · · ·µℓ is square-free for prime µ1, . . . , µℓ, then f(x) ̸= 0 for

x ∈ Z×
p .

Proof. If p−1
λ

= µ is prime, then |K| = µ− 1 by Proposition 4.1.1. Consider

a map from Zµ to itself defined by n 7→ (1+λn). Since λ and µ are relatively

prime, this map is bijective. In other words, 1 + λn for 0 ≤ n < µ induces

complete residue modulo µ. Thus, there exists a unique 0 ≤ n0 < µ such

that 1 + λn0 is divisible by µ. Therefore,

f(x) =
∑
k∈K

xk =
∑

0≤n<µ

x1+λn − x1+λn0 = x · x
p−1 − 1

xλ − 1
− x1+λn0 = −x1+λn0

for x /∈ (Z×
p )K . Otherwise, if xλ = 1 then xk = x for all k ∈ K and

f(x) = (µ− 1)x ̸= 0.

In the case of p−1
λ

= µ1 · · ·µℓ is square-free, |K| = ϕ(µ1 · · ·µℓ) by Propo-

sition 4.1.1. By similar argument as above, for a subset J of an index set

I = {1, 2, · · · ℓ}, let µJ =
∏

j∈J µj, and define a map from ZµJ
to itself by
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n 7→ (1 + λn). Since λ and µJ are relatively prime, it also induces the com-

plete residue modulo µJ . Thus, there exists a unique 0 ≤ nJ < µJ such that

1 + λnJ is divisible by µJ (For convenience, define µJ = 1 and nJ = 0 for

empty set J = ∅). We easily check that nJ ≡ nI (mod µJ) for all J ⊆ I.

Now, ordp(x
λ) = µI0 for some I0 ⊆ I since ordp(x

λ) is a divisor of p−1
λ

= µI .

For J ⊆ I, xλµJ = 1 if and only if I0 ⊆ J .

Using the inclusion–exclusion principle, we have

f(x) =
∑
k∈K

xk =
∑
J⊆I

(−1)|J |
∑
n

x1+λn,

where n in summation runs through 0 ≤ n < µI satisfying n ≡ nJ (mod µJ).

If I0 ⊈ J ⊆ I, then xλµJ ̸= 1 and
∑

n x
1+λn = x1+λnJ xp−1−1

xλµJ−1
= 0. Other-

wise I0 ⊆ J ⊆ I, then xλµJ = 1 and
∑

n x
1+λn =

∑
n x

1+λnJ = µI

µJ
x1+λnJ =

µI\Jx
1+λnI since n in summation is equivalent to nJ modulo µJ , and nJ ≡ nI

(mod µJ).

Finally, we have

f(x) =
∑
J⊆I

(−1)|J |
∑
n

x1+λn =
∑

I0⊆J⊆I

(−1)|J |
∑
n

x1+λn

= x1+λnI

∑
I0⊆J⊆I

(−1)|J |µI\J = x1+λnI

∑
J⊆I\I0

(−1)|I\J |µJ

= x1+λnI (−1)ℓ
∏

j∈I\I0

(1− µj) ̸= 0.

In particular, if ordp(x
λ) = µI , then f(x) = (−1)ℓx1+λnI .

The above proposition says that fK(x) is not identically zero for Kλ = K

for even divisor λ of p − 1. Actually, it appears to be of form fK(x) = −xd

where gcd(d, p − 1) is large, however in our application, it is desirable that

fK(x) ̸= 0 but is not of simple form such as xd, where d has large common

divisor with p − 1, since this simple form leads us to the already known
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Cheon’s p − 1 algorithm. In many cases, for a non proper subgroup K of

Kλ, fK(x) also tends to not to be identically zero, although it seems hard to

show it.

Example 4.3.1. For K = K4 = {1, 5, 9, 13, 17, 25} ≤ Z×
28, define fK(x) =

x+x5+x9+x13+x17+x25 = −x21 ∈ Z29[x], where 21 and 28 have common di-

visor 7. For a subgroup K ′ = ⟨9⟩ = {9, 25, 1} of K, we have K/⟨9⟩ = {1, 5}.

Now consider fK′(x) = x+ x9 + x25. Then fK′(x) takes same value for x in

the same orbit. We have 8 disjoint orbits of length 3 and 4 fixed points. Note

that the fixed points for K and K ′ are same as shown in Proposition 4.2.1.

2K
′
= {2, 19, 11}, 25K

′
= 3K

′
= {3, 14, 21}

4K
′
= {4, 13, 5}, 45K

′
= 9K

′
= {9, 22, 6}

7K
′
= {7, 20, 23}, 75K

′
= 16K

′
= {16, 25, 24}

8K
′
= {8, 15, 26}, 85K

′
= 27K

′
= {27, 18, 10}.

The polynomial fK′(x) takes nonzero value 2 + 19 + 11 ≡ 3 mod 29 for all

x ∈ 2K
′
, and we can check that fK′(x) take distinct values for disjoint orbits.

Proposition 4.3.3. Assume that λ is an even divisor of p − 1 satisfying

gcd(λ, p−1
λ
) = 1. Let K = Kλ and f = fK. If

p−1
λ

= qe for some prime q and

e ≥ 2, then f(x) = 0 unless xλq = 1 in Z×
p .

Proof. Since p−1
λ

has only one prime divisor q, we can efficiently express

elements of K and compute f(x). For n ∈ Zµ, 1 + λn is contained in K

if and only if gcd(1 + λn, q) = 1. Since 1 + λn ≡ 0 (mod q) has exactly

one solution n0 ≡ −λ−1 in modulo q, there exist qe−1-number of solutions

{n0 + qm : 0 ≤ m < qe−1} in Zµ. Therefore, f(x) is computed by
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f(x) =
∑

n∈[0, p−1
λ

)∩Z,1+λn∈K

x1+λn =
∑

0≤n<qe

x1+λn −
∑

0≤m<qe−1

x1+λ(n0+qm)

= x

( ∑
0≤n<qe

xλn

)
− x1+λn0

 ∑
0≤m<qe−1

xλqm

 ,

and it is equal to zero unless xλq = 1. However, there are only λq = p−1
qe−1 -

number of such elements x in Z×
p−1.

In general, if p−1
λ

is not square-free, then fKλ
(x) = 0 for most of the

elements in Z×
p−1. Modifying the proofs of Proposition 4.3.2 and Proposition

4.3.3 easily show it. We will omit details here.

4.4 Main Theorem

By using a group action on Z×
p , we can efficiently partition Z×

p with only a

few elements. This leads us to a new algorithm that solves the GDLPwAI

efficiently. Now we can state our main theorem as follows.

Theorem 4.4.1. Let K be a multiplicative subgroup of Z×
p−1 with λ = gcd(K−

1). Assume that we are given
{(

k, gα
k
)
: k ∈ K

}
and |αK | = |K|. Then,

we can solve α ∈ Zp in O
(
p
λ

)
exponentiations in Zp and O

(
p

|K|
√
λ
+ |K|

)
exponentiations in G unless

∑
k∈K αk = 0.

Proof. We give a sketch of the proof following the next steps.

1. For given gα
k
for all k ∈ K, one computes gf(α) =

∏
k∈K gα

k ∈ G in

|K| multiplications in G. Note that gf(α) ̸= 1, since f(α) ̸= 0.

2. Take a random element β from Z×
p and compute f(β) =

∑
k∈K βk ∈ Zp

in |K| exponentiations in Zp. If β ∈ Oα,K , then there exists a unique

0 ≤ t < λ satisfying αK = ζtβK and f(α) = ζtf(β).
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3. To find such t, we use Baby-Step Giant-Step method. Let L := ⌈
√
λ⌉.

Make two lists {gf(ζL·iβ) = (gf(β))ζ
L·i ∈ G : 0 ≤ i < L} and {gf(ζ−jα) =

(gf(α))ζ
−j ∈ G : 0 ≤ j < L} in 2

√
λ exponentiations in G. If β ∈ Oα,K ,

these two lists must have a collision since there exist 0 ≤ i, j < L

satisfying t = Li+ j.

4. Repeat the steps 2 and 3 until finding a collision. The expected number

of repetitions is p
|K|λ , since the probability that β ∈ Oα,K is

|Oα,K |
p

=

|αK |λ
p

= |K|λ
p

.

5. Locate gζ
tβ from the set

{
gα

k
: k ∈ K

}
to find k0 ∈ K such that gα

k0 =

gζ
tβ. This gives α = (ζtβ)k

−1
0 in |K| comparisons in G.

We carry out the above process in |K|multiplications in G in Step 1, O
(

p
|K|λ · |K|

)
=

O
(
p
λ

)
exponentiations in Zp in Step 2 and O

(
p

|K|
√
λ

)
exponentiations in G

in Step 3 and 4, and |K| comparisons in G in Step 5. The overall complexity

is as in the theorem.

Remark 4.4.1. In the proof of Theorem 4.4.1, we may find a fake collision.

That is, some element β ∈ Zp could satisfy f(α) = ζtf(β) but ζtβ /∈ αK . If

a fake collision occurs in Step 3 and 4, there would be no element k0 ∈ K

such that αk0 = ζtβ and we can check it in Step 5. They do not affect the

total complexity.

For any multiplicative subgroupK of Z×
p−1,K is a multiplicative subgroup

of Kλ where λ = gcd(K − 1). Hence we can define κ = [Kλ : K].

Corollary 4.4.1. For a multiplicative subgroup K of Z×
p , set λ = gcd(K−1)

and define κ = [K : Kλ]. Assume that the computational cost for the multi-

plications in G is a constant times of the cost for the multiplications in Zp.

Then we can solve the GDLPwAI in O
((

κ
√
λ+ p

λ

)
log p

)
multiplications in

Zp.
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Proof. In Proposition 4.1.1, we showed that |Kλ| = p−1
λ

∏
q∈Q(1 −

1
q
) where

Q is the set of prime divisors of p − 1 not dividing λ. We may assume that∏
q∈Q(1 −

1
q
) is a constant greater than zero since

∏
q∈Q(1 −

1
q
) ≥ ϕ( p−1

λ
)

p−1
λ

≥
1

6 log log p−1
λ

and log log p−1
λ

is not so large for usual size of p. In fact,
∏

q∈Q(1−
1
q
)

is much greater than this lower bound in almost cases. Then we have |K| =
|Kλ|
κ

= O
(

p
λκ

)
and p

|K|
√
λ
= O

(
κ
√
λ
)
.

By Theorem 4.4.1, the overall complexity is O(|K| log p) = O
(
p
λ
log p

)
multiplications in Zp and O

((
|K|+ p

|K|
√
λ

)
log p

)
= O

((
κ
√
λ+ p

λ

)
log p

)
multiplications in G. By the assumption, we can put them together in one

notation.

Example 4.4.1. Consider a multiplicative group Z×
q for prime q = 1984044749.

The element g = 268435456 ∈ Z×
q generates the multiplicative subgroup

G = ⟨g⟩ of 20-bit prime order p = 70858741. Suppose that we are given{(
k, gα

k
)
: k ∈ K

}
= {(1, 368141755), (9447833, 908277040), (14171749, 1018628336),

(51963077, 651549246)} for the multiplicative subgroup K of Z×
p−1 with λ =

gcd(K;Zp−1) = 4723916. Following Theorem 4.4.1, we have gf(α) = 104646375

and f(β) = 29994755 for randomly chosen β = 27015355 in G. Using the

BSGS technique, we find t = 993142 satisfying gf(α) = gζ
tf(β) for a primitive

element ξ and a fixed point ζ = ξ
p−1
λ . Then we find out that αk0 = ζtβ for

k0 = 51963077 by comparing gζ
tβ with {gαk

: k ∈ K}. Finally, we have

α = (ζtβ)k
−1
0 = 37217684.

Example 4.4.2. We use the same notations with Example 4.4.1. Set q =

8307519720650407, g = 3814697265625 ∈ Z×
q . The element g has the order

p = 461528873369467 of 50-bit prime. We are given our instance for a mul-

tiplicative subgroup K of Kλ such that λ = 4742043558, |Kλ| = 97326, |K| =

16221. Our algorithm finds that

α = ζtβ = 55526261320836
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for ζ = 265871590696697, β = 257387303120427 and t = 275438533.

In summary, if we are given gα
k
for all k ∈ Kλ, then κ = 1 and we

can solve the GSDL problem in O
((√

λ+ p
λ

)
log p

)
. However, in this case,

gfKλ
(α) = g−d with nontrivial gcd(d, p− 1), which falls into the Cheon’s p− 1

algorithm. When we are working with |K| < |Kλ|, then we need to carry

out O
((

κ
√
λ+ p

λ

)
log p

)
multiplications, so we want κ > 1 to be sufficiently

small. The computation amount can be reduced to O
(
p1/3 log p

)
, when κ is

small enough and λ ≈ p2/3.

Remark 4.4.2. If we assume that α is chosen randomly in Z×
p , the condition

|αK | = |K| is satisfied with high probability. As we mentioned in Proposition

4.2.3 and Proposition 4.2.4, there are λϕ(p−1
λ
)-number of x’s in Z×

p such that

ordp(x
λ) = p−1

λ
, and they satisfy |xK | = |K|. Therefore, the probability is

greater than 1
6 log log(p−1)

, since
λϕ( p−1

λ
)

p−1
≥ ϕ(p−1)

p−1
and ϕ(n)

n
≥ 1

6 log logn
for all

n ≥ 5.

Remark 4.4.3. It is hard to compute the probability of
∑

k∈K αk = 0 in

general, but we can predict that fK(x) = 0 has not so many roots in Zp if

p−1
λ

is a square-free which is relatively prime to λ. Let κ = [Kλ : K] and

{k1, · · · kκ} be elements of distinct left cosets of K in Kλ. Then we have

fKλ
(x) =

∑κ
i=1 fK(x

ki). We saw in Proposition 4.3.2 that if p−1
λ

is a square-

free which is relatively prime to λ, then fKλ
is a monomial and hence it is

never zero on Zp. Therefore, we can say that the condition fK(α) ̸= 0 in

Theorem 4.4.1 is not so unnatural in this case. In the contrary, it may be

harder to satisfy the condition fK(α) ̸= 0 if p−1
λ

has prime powers. The case

of Proposition 4.3.3 is a typical example.

We have another strategy to avoid ‘bad cases’ aforementioned by ran-

domizing α. In the case of |αK | ̸= |K|, take a random element γ in Z×
p
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and compute new parameters {(gαk
)γ

k
: k ∈ K}, which can be done in |K|

exponentiations in Zp and G. We repeat this process until finding γ which

satisfies |(αγ)K | = |K|, and the expected number of repetition is less than

6 log log(p − 1). Finally, we can compute αγ in O
(

p
λ|K|(
√
λ+ |K|)

)
expo-

nentiations by Theorem 4.4.1, and get α = (αγ) · γ−1. The total number

of computations is O
(
|K| log log p+ p

λ|K|(
√
λ+ |K|)

)
, which does not have

significant difference with O
(

p
λ|K|(
√
λ+ |K|)

)
.

This strategy can be also used in the case of fK(α) = 0. We can compute

new parameters {(gαk
)γ

k
: k ∈ K} in |K| exponentiations in Zp, and check

whether fK(αγ) is equal to zero or not in |K| multiplications in G. The

expected number of repetition depends on the number of roots of fK(x) = 0

in Zp−1. This algorithm must be more efficient than the above, but the exact

complexity is not resolved yet.
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Chapter 5

The Pairing Inversion Problem

5.1 Introduction

A pairing e : G1 × G2 → GT is a non-degenerate bilinear map from two

additive groups G1 and G2 to a multiplicative group GT . A bilinearity means

e(P1 + P2, Q) = e(P1, Q) · e(P2, Q) and e(P,Q1 + Q2) = e(P,Q1) · e(P,Q2),

where P1, P2 and P ∈ G1 and Q1, Q2 and Q ∈ G2. A non-degenracy means

that e(P,Q) = 1 implies P = 0 or Q = 0.

The pairing is staple in the public-key cryptography: It has been used

to construct the cryptosystems with various functionalities, for example, the

identity-based encryption schemes [6], the one-round three partite key ex-

change protocol [30] and the broadcast encryptions [7], etc.

The security of the pairing-based cryptography relies on the hardness of

the pairing inversion problem which is required to solve Q (or, P ) from the

value of e(P,Q) and P (or, Q). And if one can solve the pairing inversion

problem in a polynomial time, then it is possible to solve the DLP since

the algorithm solving the pairing inversion gives a solution for the compu-

tational Diffie-Hellman problem. From this point, we consider the pairing
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inversion problem as a kind of the auxiliary informations which can be used

to solve the DLP. The pairing inversion problem is also considered by several

researches [22, 46, 33, 36, 10].

In the cryptographic area, it is widely used the Weil pairing and Tate

pairing, both of them are defined on the elliptic curve groups over the finite

fields. For the efficiency issues, the Tate pairing is often desirable. Therefore,

in this context we concentrate our concern to invert the Tate pairing.

Let E(Fqk) be an elliptic curve defined over Fqk for prime power q. The

value of the Tate pairing at (P,Q) ∈ E(Fqk)× E(Fqk) is given by e(P,Q) =

fr,P (Q)
qk−1

r where fr,P ∈ Fqk [x, y], which is called the Miller function, and k,

which is the smallest positive integer satisfying r|qk−1 (we call such k by the

embedding degree). The Tate pairing can be computed within the sequential

two steps: first, one computes fr,P (Q) using the Miller’s algorithm [41] and

then we finalize the computation by powering of qk−1
r

. Each step is called

the Miller step and the final exponentiation step, respectively.

The naive approach for the Tate pairing inversion is to invert the fi-

nal exponentiation step (EI: exponent inversion) and then invert the Miller

step (MI: Miller inversion). The recent works by Kanayama and Okamoto [33]

and Chang et al. [10] showed that the pairing inversion problem on the ate

pairings [27, 55, 57], variants of the Tate pairing, reduces to the exponent in-

version problem. In [10], they gave the complexity of the Miller inversion for

the optimal pairing [55]. In [54], Vercauteren showed that the complexity of

the exponent inversion problem in the ate pairing is related to the sum of the

absolute values of the coefficients of the exponent in the q-ary representation.

In this chapter, we aim our concern to reduce the complexity of the

final exponentiation step encompassing the (non-)parameterized family of

the pairing-friendly curves. This chapter includes a part of the joint work
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with Sungwook Kim and Jung Hee Cheon [38].

In the Tate pairing (or, its variants such as the ate pairing), the final

exponentiation is to raise to the power by (qk − 1)/r. For even k, we split

the exponent into three parts

(qk − 1)/r = [(qk/2 − 1)/r] · [(qk/2 + 1)/Φk(q)] · [Φk(q)/r],

where Φk(x) is the k-th cyclotomic polynomial. With the Frobenius map,

the former two parts can be computed efficiently. Thus the powering by

λ := Φk(q)/r is the hard part of the computation. Consider the well-known

exponentiation method, the multi-exponentiation technique. When we write

the hard part of the exponent as λ = λ0 + λ1q + · · · + λφ(k)−1q
φ(k)−1 in the

q-ary representation, the multi-exponentiation with the width w computes

the exponentiation by λ with log2 q squarings and (log2 q)/w + 2wφ(k) multi-

plications and O(2wφ(k)) storage. Throughout this chapter, we mainly focus

on reducing the size of maxi |λi|, since it is closely related to the number of

squarings. We also define this value by κ(λ).

With the assumption that λ behaves like the random integer for the ran-

dom curves, the value of κ(λ) is expected to have log2 q, however, inter-

estingly, we note that for most existing parameterized families of pairing-

friendly curves the value κ(λ) is much less than log2 q. For example, it is

about (log2 q)/2 for the supersingular curves with embedding degree k = 6

and 3(log2 q)/4 for the BN curves [3] which has the embedding degree k = 12.

One can observe that these values satisfy κ =
(
1− 1

ρφ(k)

)
log2 q, surprisingly

it is not a coincidence, we shall show that this value is the optimal for any

pairing-friendly curves.

Summarizing our goal in the twofold, we first investigate when the param-

eterized families of pairing-friendly curves have small κ(λ)’s and what is the

optimal value for this. For the second, we give an universal approach to at-
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tain the optimal value of the κ(λ) for any pairing-friendly curves particularly

encompassing non-parameterized pairing-friendly curves.

Our contributions

Consider pairing-friendly curves in which q and r are parameterized by

polynomials q(x) and r(x) in Q[x], and write the final exponent λ(x) :=

Φk(q(x))/r(x) as λ0(x) + λ1(x)q(x) + · · · + λφ(k)−1q(x)
φ(k)−1 with λi(x) ∈

Q[x] for all i = 0, 1, . . . , φ(k) − 1. We show that all known construc-

tion methods of parameterized pairing-friendly elliptic curves satisfy κ(λ) ≥(
1− 1

ρφ(k)

)
log2 q. The equality holds when each leading coefficients of q(x)

and λi(x) are small and maxi{deg(λi(x))} = deg(q(x))− deg(r(x))/φ(k).

Next, we propose a method to obtain a modified pairing with small κ

for any pairing-friendly elliptic curves. More precisely, our method uses lat-

tice reduction to find an integer m with gcd(m, r) = 1 such that κ(mλ) =

1
φ(k)

log2 (Φk(q)/r), which is about
(
1− 1

ρφ(k)

)
log2 q. When using a modified

Tate pairing ē(P,Q) := e(P,Q)m, we can reduce the number of squarings

in the final exponentiation by a factor of
(
1− 1

ρφ(k)

)
from the usual Tate

pairing. We remark that similar idea to use this modified pairing has been

also used in [19]. The work in [19] focuses on reducing the coefficients of

λi(x)’s in Scott et al’s technique [49] for parameterized family of curves. Our

method works for arbitrary pairing-friendly curves even when Scott et al.’s

method is not applicable. Furthermore, we find the optimality of complex-

ity for final exponentiation step. We show that κ(mλ) is lower-bounded by(
1− 1

ρφ(k)

)
log2 q − log2 φ(k) for any integer m with gcd(m, r) = 1. It is in-

teresting that this bound almost equals to the lower bound in the first part.

We verify our argument by applying it to the DEM curves [17], Cocks-Pinch

curves [16].
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Outline of the paper

This paper is organized as follows. In Section 5.2.1, we briefly introduce

some backgrounds of pairings, pairing-friendly curves, and exponentiation

method we use to analyze the number of squarings in the final exponentia-

tion step. In Section 5.3.1, we give the analysis on parameterized families

of pairing-friendly curves in the sense of the final exponentiation-efficiency.

In Section 5.3.2, we propose a general method to accelerate the final expo-

nentiation and show the number of squarings in the final exponentiation is

bounded below by
(
1− 1

ρφ(k)

)
log2 q. We present examples in Section 5.3.3

and finally conclude in Section ??.

5.2 Preliminaries

Throughout this paper, we denote log2(·) by log(·).

5.2.1 Pairings

Let E be an elliptic curve defined over Fq where q = pn for some prime p

and a positive integer n. For any extension field L of Fq, E(L) denotes the

set of L-rational points on E, i.e., the points with coordinates in L, together

with the point at infinity∞. Then E(L) forms a group with identity∞. Let

#E(L) be the order of this group. Now consider a large prime r dividing

#E(Fq). Let k be an embedding degree, i.e., the smallest positive integer

such that r | qk − 1. Consider the r-torsion subgroup E(Fqk)[r]. The Tate

pairing is a well-defined non-degenerate bilinear map

⟨·, ·⟩ : E(Fqk)[r]× E(Fqk)/rE(Fqk) → F∗
qk
/(F∗

qk
)r(

P,Q+ rE(Fqk)
)

7→ fr,P (D),
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where D is a divisor equivalent to (Q) − (∞) and fr,P is a function with

divisor

div(fr,P ) = r(P )− (rP )− (r − 1)(∞).

Since the image of the pairing is represented by a coset element, to avoid this

one can use the reduced Tate pairing

e(P,Q) = fr,P (D)(q
k−1)/r.

Furthermore, if (u∞fr,P ) (∞) = 1 for some uniformizer u∞ at∞, we say that

fr,P is normalized. In the case that fr,P is normalized one can simply work

with point Q instead of using divisor D

e(P,Q) = fr,P (Q)(q
k−1)/r.

From now on, we call the function fr,P Miller function and always assume

that it is normalized.

Miller algorithm computes Miller function in log r operations, called Miller

length. As in [27, 55], Miller length can be further reduced by defining new

pairings based on the Tate pairing. All those variations of the Tate pairing

have Miller length at least log r/φ(k). On this line of research, Vercauteren

defined the notion of optimal pairings which achieves log r/φ(k) Miller length

and proposed an algorithm to obtain a pairing with optimal Miller length

for any parametrized pairing-friendly elliptic curve. The notion of pairing-

friendly curves will be introduced in the next subsection.

5.2.2 Pairing-Friendly Elliptic Curves

For the security of pairing-based cryptosystems, the discrete logarithm prob-

lems (DLP) in the group E(Fq) and in the multiplicative group F∗
qk

must be

infeasible. To avoid DL attack on E(Fq), r must be sufficiently large where r
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is the largest prime dividing #E(Fq). And qk should be chosen large enough

so that index calculus attack is infeasible. So k needs to be large enough to

avoid index calculus attack but small enough for efficient pairing implemen-

tation in extension field arithmetic. Thus in pairing-based cryptography one

must find elliptic curves with sufficiently large subgroup of order r and small

embedding degree k. We call them pairing-friendly curves. Formal definition

is as follows.

Definition 5.2.1 ([18]). Suppose that E is an elliptic curve defined over a

finite field Fq. E is said to be pairing-friendly if

• there is a prime r ≥ √q dividing #E(Fq), and

• the embedding degree of E with respect to r is less than (log r)/8.

In the construction of pairing-friendly curves, one first finds t, r, q such

that there exists an elliptic curve E defined over Fq that has trace t and

a subgroup of order r with prescribed embedding degree k, then uses the

complex multiplication method to find an elliptic curve equation.

Definition 5.2.2 ([18]). Let t(x), q(x), r(x) be polynomials with rational

coefficients where q(x) = p(x)n for some polynomial p(x) and some positive

integer n. If there is an elliptic curve E defined over Fq(x0) with trace t(x0)

that has a subgroup of order r(x0) for some integer x0, then we say that E is

a curve in family (t, r, q) or (t, r, q) parameterizes a family of elliptic curves

with embedding degree k. Here p(x) and r(x) represent primes.

In ordinary pairing friendly curves defined over an extension field Fpn

with n > 1, result values of the Tate pairing could be contained in a smaller

embedding field (for example, Fpk in the worst case) than expected, i.e.,

Fpnk [28]. To avoid this potential security loss of the DLP in the embedding
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field ordinary pairing friendly elliptic curves are preferred to be defined over

a prime field Fp. Thus, in the remainder of this paper, we deal with only

ordinary elliptic curves defined over a prime field.

5.2.3 Exponentiation Method

The final exponent appearing in the Tate pairing is of the form (pk − 1)/r.

The exponent splits into

(pk − 1)/r = [(pk − 1)/Φk(p)] · [Φk(p)/r],

where Φk(x) is the k-th cyclotomic polynomial. By definition of the cyclo-

tomic polynomial

(pk − 1)/Φk(p) =
∏

j|k,j ̸=k

Φj(p).

Note that Φj(x) is a polynomial in x with coefficients in {−1, 0, 1} for j < 105

[29]. Thus raising to the exponent Φj(p) takes only a few Frobenius mapping

and some inversions in field arithmetic. Furthermore one can replace an

inversion of unitary element by a simple conjugations [49, 48], for example

h = gp
k/2−1 ∈ Fpk becomes unitary i.e. its norm NF

pk
/F

pk/2
(h) = 1 for even k.

Hence, the exponentiation by (pk−1)/Φk(p) is relatively easy. In this paper,

we focus on the exponentiation by Φk(p)/r.

Define λ := Φk(p)/r and express λ as base p representation λ =
∑ℓ−1

i=0 λip
i

where ℓ = ⌈logp λ⌉. Then

gλ = gλ0(gp)λ1 · · · (gpℓ−1

)λℓ−1

where the element g to be exponentiated is not a fixed element, but depends

on the input P and Q. Note that calculating gp
i
can be done easily using

Frobenius map when g is an element of a finite field with characteristic p.
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When ignoring p-power computation, computing gλ takes at most (log p)

squarings and (log p) multiplications in general. Note that 2ℓ−ℓ−1 multipli-

cations are required to compute gi0(gp)i1 · · · (gpℓ−1
)iℓ−1 where ij ∈ {0, 1}, j =

0, 1, . . . , ℓ− 1 for precomputation. In fact the number of squarings is related

to the bit length of λi’s. More precisely, an exponentiation by λ requires

maxi(log λi) squarings. Furthermore, if we use the width w sliding window

method, the number of multiplications reduces to (1/w) · log p with 2dw pre-

computed elements stored.

If we are working on the family of pairing-friendly curves such as BN

curves, then the addition chain method proposed by Scott et al. [49] gives an

efficient exponentiation method. The method computes gx, gx
2
, . . . , gx

maxi(deg λi)

and then exploits the vectorial addition chain to compute the remainder. If

the parameter x is chosen to have low Hamming weight, the exponentiation

takes only a few multiplications. However the number of squarings still re-

mains maxi(log |λi|). This leads us to a natural question, that is, how further

we can reduce the maximum size of λi and what the lower bound for this is.

5.3 Reducing the final exponentiation

5.3.1 Polynomial representation of the base-p coeffi-

cients

For any given integer λ, the coefficients of λ in the base-p representation have

almost same size with the base p on average. In this case, an exponentiation

by λ has almost log p squarings. However for many families of pairing friendly

curves the number of squarings is quite smaller than log p.

As an instance, let us consider the final exponentiation step of the BN

family of curves [3] which has embedding degree k = 12. The final expo-

64



CHAPTER 5. THE PAIRING INVERSION PROBLEM

nent λ(x) is equal to (p(x)4 − p(x)2 + 1)/r(x). Write λ(x) as the base-p(x)

representation, say λ(x) = λ0(x)+λ1(x)p(x)+λ2(x)p(x)
2+λ3(x)p(x)

3, where

λ3(x) = 1,

λ2(x) = 6x2 + 1,

λ1(x) = −36x3 − 18x2 − 12x+ 1,

λ0(x) = −36x3 − 30x2 − 18x− 2.

For the choice of x = −4647714815446351873, p is 254-bit and both λ0 and

λ1 are 192-bit (i.e., λ0, λ1 ≈ p192/254). Thus the required number of squarings

is 192, not 254. Roughly speaking, this comes from the fact that λ0(x) and

λ1(x) have small coefficients so that they are close to x3 rather than x4 for a

large number x.

The above example shows that the polynomial representations of λ(x)

may give advantages in the final exponentiation step. In this section we

examine the polynomial representations of the coefficients and investigate

the conditions of the coefficients under which the final exponentiation is

efficiently computable.

Through this section, we use notations df , LC(f), and ||f ||∞ for a poly-

nomial f(x) = f0+f1x+ · · ·+fnx
n which denote the degree of f , the leading

coefficient fn of f , and max{|f0|, . . . , |fn|}, respectively. Sometimes we sim-

ply write f as a evaluated value of |f(x)| at x = X. We also define Kf by

|fn−1|+ · · ·+ |f1|+ |f0|.

As indicated above the size of the value of f(x) at x = X for large X is

determined by its degree. The following lemma asserts this.

Lemma 5.3.1. Suppose f(x) = fnx
n+ · · ·+ f1x+ f0, fn ̸= 0. For any given

ϵ > 0, if |x| = X is large so that X ≥ Kf

ϵ|fn| > 1, then

(1− ϵ)|fn|Xn ≤ |f(x)| ≤ (1 + ϵ)|fn|Xn.
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Proof. Let |f(x)| = |x|n ·
∣∣∣fn + fn−1

x
+ · · ·+ f0

xn

∣∣∣, then by triangle inequality,

Xn
(
|fn| −

∣∣∣fn−1

x
+ · · ·+ f0

xn

∣∣∣) ≤ |f(x)|
≤ Xn

(
|fn|+

∣∣∣fn−1

x
+ · · ·+ f0

xn

∣∣∣) .
From the assumption∣∣∣∣fn−1

x
+ · · ·+ f0

xn

∣∣∣∣ ≤ |fn−1|+ · · ·+ |f0|
X

=
K

X
≤ ϵ · |fn|.

Thus

(1− ϵ)|fn|Xn ≤ |f(x)| ≤ (1 + ϵ)|fn|Xn.

If the X = |x| is sufficiently large, i.e., ϵ is close to 0, then |f(x)| becomes

asymptotically close to |fn|Xn. Thus by the lemma we can regard |f(X)| as

|LC(f)| · |X|df .

Lemma 5.3.2. Let (p(x), r(x), t(x)) be a family of pairing friendly curves

with embedding degree k. Let φ := φ(k) and λ(x) := Φk(p(x))/r(x). And let

λ0(x)+λ1(x)p(x)+· · ·λφ−1(x)p(x)
φ−1 be the base-p(x) representation of λ(x).

For any given ϵ > 0, choose x so that |x| = X ≥ max{ Kp

ϵ|LC(p)| ,
Kλ0

ϵ|LC(λ0)| , . . . ,
Kλφ−1

ϵ|LC(λφ−1)|}.

If Xαi ≤ |LC(λi)| ≤ Xβi and Xγ ≤ |LC(p)| ≤ Xδ for real αi, βi, γ and δ,

then the size of maxi |λi|, denoted by κ, is bounded as follows,

maxi{dλi+αi} logX−ϵ2

(dp+δ) logX+ϵ1
log p ≤ κ

≤ maxi{dλi+βi} logX+ϵ1

(dp+γ) logX−ϵ2
log p

where ϵ1 = log(1 + ϵ) and ϵ2 = − log(1− ϵ).

Proof. By the assumption, for sufficiently large X

Xαi ≤ |LC(λi)| ≤ Xβi ,

Xγ ≤ |LC(p)| ≤ Xδ.
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We have, by lemma 5.3.1,

(1− ϵ)Xdλi+αi ≤ |λi(x)| ≤ (1 + ϵ)Xdλi+βi ,

(1− ϵ)Xdp+δ ≤ |p(x)| ≤ (1 + ϵ)Xdp+γ.

Thus

(dλi+αi) logX−ϵ2

(dp+δ) logX+ϵ1
≤ log |λi|

log p
≤ (dλi+βi) logX+ϵ1

(dp+γ) logX−ϵ2
.

Since κ = maxi log |λi|, the remain of the proof is obvious.

Note that if αi, βi, γ and δ are sufficiently small so that |λi(x)| ≈ Xdλi

and |p(x)| ≈ Xdp , then we may assume that κ ≈ maxi{dλi}
dp

log p. Thus Lemma

5.3.2 implies that if the coefficients of λi(x) and p(x) are well-bounded then

family accelerates the computation of final exponentiation step. This let us

consider a specific class of families of pairing-friendly curves as below.

Definition 5.3.1. Let (p(x), r(x), t(x)) be a family of pairing friendly curves.

Let k be the embedding degree and λ(x) := Φk(p(x))/r(x). Let λ(x) =

λ0(x) + λ1(x)p(x) + · · ·λφ−1(x)p(x)
φ−1 be the polynomial representations of

coefficients in the base p. If κ is equal to
maxi{dλi}

dp
log p then we say that the

family is final-exponent friendly (FE-friendly).

We note that in many existing families λi(x)’s have small coefficients,

thus can be considered as FE-friendly curves. Before precisely analyzing the

final exponentiation-efficiency of polynomial representations, we give an semi

p-ary representation ∗ of λ(x) in terms of p(x), r(x) and t(x). The expression

is useful to have some intuition on in which condition the polynomial rep-

resentations show the superior final exponentiation-efficiency to numerical

representations.

∗The word ‘semi’ means that the given p-ary representation is not exact, since the

coefficients in that representation might have larger size than p.
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r is prime that divides the order of the elliptic curve group #E(Fp) =

p+1−t where t is the trace of Frobenius map. Thus we can write p+1−t = hr,

i.e., p = hr + (t − 1) = hr + u for some cofactor h. By Hasse’s bound,

|u+ 1| < 2
√
p.

Lemma 5.3.3. Let p(x) = h(x)r(x) + u(x), then

p(x)i − u(x)i

r(x)
= h(x)

i−1∑
j=0

p(x)j · u(x)i−j−1

= h(x)(p(x)i−1 + u(x)p(x)i−2 + · · ·+ u(x)i−1),

for i > 1 and p(x)i−u(x)i

r(x)
= h(x) for i = 1.

Proof. In the proof we abbreviate polynomial f(x) simply to f . The proof

uses an induction on i. If i = 1 then it is obvious. For i > 1, by induction

hypothesis,

pi+1 − ui+1

r
=

p(pi − ui) + ui(p− u)

r

= p · h(pi−1 + upi−2 + · · ·+ ui−1) + uih

= h(pi + upi−1 + · · ·+ ui−1p+ ui).

Let f(x), g(x) be polynomials with rational coefficients. We denote

by⌊f(x)/g(x)⌋ the quotient when f(x) divided by g(x). For example, ⌊ax2+bx+c
x
⌋ =

ax+b. Now we have an alternative expression of polynomial representations.

Lemma 5.3.4. Let λ(x) := Φk(p(x))
r(x)

, then

λ(x) = h(x)

(
p(x)φ−1 +

φ−1∑
i=1

⌊
Φk(u(x))

u(x)i

⌋)
+

Φk(u(x))

r
.
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Proof. Let Φk(x) := xφ+aφ−1x
φ−1+ · · ·+a1x+a0, where φ := φ(k). Simply

write f(x) as f .

Φk(p)

r
=

pφ + aφ−1p
φ−1 + · · ·+ a1p+ a0

r

=
pφ − uφ

r
+

φ−1∑
i=1

ai(p
i − ui)

r
+

Φk(u)

r

= h{pφ−1 + pφ−2 (u+ aφ−1) +

pφ−3
(
u2 + aφ−1u+ aφ−2

)
+ · · · }+

Φk(u)

r

= h

(
pφ−1 +

φ−1∑
i=1

⌊Φk(u)

ui
⌋

)
+

Φk(u)

r

The third equality is followed by Lemma 5.3.3.

We should note that λ(x) in the above lemma is not the perfect base-p

representation since the degree of ⌊Φk(u(x))
u(x)i

⌋ may exceed or be equal to the

degree of p(x) for some i. However, when φ = 2 or in some specific cases

overflow does not happen. Now let us analyze the case φ = 2, i.e., k = 3, 4, 6.

Let Φk(x) = x2 + ax + b, where a, b ∈ {0,±1}. From Lemma 5.3.4, we see

that

Φk(p(x))/r(x) = h(x)p(x) + {h(x)(u(x) + a)

+(u(x)2 + au(x) + b)/r(x)}.

Note that du < dr ≤ dp and

deg{h(x)(u(x) + a) + (u(x)2 + au(x) + b)/r(x)}

= max{dh + du, 2du − dr}

= dh + du

= (dp − dr) + du

≤ dp − 1,
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where the second equality comes from

(dh + du)− (2du − dr) = dh + dr − du = dp − du ≥ 0.

Thus if we let λ1(x)p(x)+λ0(x) be the base-p representation of Φk(p(x))/r(x),

then λ1(x) = h(x) and λ0(x) = h(x)(u(x) + a) + (u(x)2 + au(x) + b)/r(x).

So, families of the embedding degree k with φ(k) = 2 yields the efficient final

exponentiation step if LC(h) and LC(hu) = LC(h)LC(u) are both small.

For a larger φ(k), it seems hard to control LC(λi)’s because of huge

coefficients explosion and frequent overflows occurring in the computation

of Φk(u(x))/(u(x)
i)’s and Φk(u(x))/r(x) of Lemma 5.3.4. However, one can

expect that if φ(k), ||q||∞, ||r||∞, and ||u||∞ are small enough, so LC(λi)’s

are.

Now we are in a position to describe the lower bound of the number of

squarings in the final exponentiation for the polynomial representations.

Theorem 5.3.1. Suppose (p(x), r(x), t(x)) is a family of FE-friendly curves.

Let ρ := dp/dr. If max{dλi
: i = 0, 1, . . . , φ− 1} ≥ dp − dr

φ
, then

κ ≥
(
1− 1

ρφ

)
log p(x).

Proof. By Definition 5.3.1,

κ =
maxi{dλi}

dp
log p ≥ dp− dr

φ

dp
log p ≥

(
1− 1

ρφ

)
log p.

At first sight the bound in Theorem 5.3.1 may look unnatural. However,

this bound is captured in most cases. More precisely, with high probability

maxi{dλi
} = dp − 1 in most cases. And all known methods to construct the

family of pairing friendly curves use an irreducible polynomial r(x) to define
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the extension field L := Q[x]/(r(x)) in order that it contains Q(ζk) with k-th

primitive root of unity ζk. Thus φ(k) divides dr. Then,

κ = dp−1

dp
log p

=
(
1− 1

dp

)
log p

=
(
1− 1

ρdr

)
log p

≥
(
1− 1

ρφ

)
log p.

In addition we show that maxi{dλi
} < dp − dr

φ
is impossible in the next

section. Thus for any family of FE-friendly curves κ is always bounded below.

Example 1

Consider the BN family of curves again. BN curve has k = 12 and ρ = 1.

Then κ is expected to be
(
1− 1

φ(12)

)
log p = (3/4) log p. In fact as seen in

the beginning of this section, the required squarings are 192 ≈ 3
4
· 254.

Example 2

Consider the cyclotomic family of curves given by [18] (Construction 6.2)

with odd embedding degree k.

r(x) = Φ4k(x),

t(x) = −x2 + 1,

p(x) = 1
4

(
x2k+4 + 2x2k+2 + x2k + x4 − 2x2 + 1

)
.

This curve has ρ = deg(p)
deg(r)

= 2k+4
2φ(k)

= k+2
φ(k)

.

Let us compute Φk(p)/r using Lemma 5.3.4. Since u(x) = t(x)−1 = −x2

and Φ4k(x) = Φk(−x2), we have Φk(u)/r = Φk(−x2)/Φ4k(x) = 1 and

maxi{dλi
} = dh + (φ(k)− 1)du

= (2k + 4− φ(4k)) + (φ(k)− 1) · 2

= 2k + 2 < 2k + 4 = dp.
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In this case, maxi{dλi
} = dp−2. We expect κ to be

maxi{dλi}
dp

log p = k+1
k+2

log p,

and this value is correspond to
(
1− 1

ρφ(k)

)
log p. Thus this family of parame-

terized curves also already attains the minimum value for κ although it looks

seemingly arbitrary.

5.3.2 Reducing the size of base p coefficients

In this section, we propose a general method to reduce the number of squar-

ings in computing the final exponentiation by λ := Φk(p)/r for any pairing-

friendly curves no matter whether they belong to the parameterized family or

not. The main idea is to reduce the maximum size of the coefficients of base

p representation of λ since it is closely related to the number of squarings.

Since the pairing e(P,Q)m also defines a non-degenerate bilinear pairing map

with m relatively prime to r, we use the exponent mλ instead of λ. Using

lattice basis reduction algorithm one can find mλ whose coefficients in base

p representation are small. Throughout this section p, r, t are integers not

polynomials.

Observations

Since the reduced Tate pairing is non-degenerate, the map ē also defines

non-degenerate bilinear pairing

ē(P,Q) = e(P,Q)m = fr,P (Q)m(pk−1)/r,

if gcd(r,m) = 1. Let g := fr,P (Q)(p
k−1)/Φk(p), then ē(P,Q) = gmλ. We want

to find mλ with gcd(r,m) = 1 such that

mλ =
d−1∑
i=0

vip
i,

where vi’s are as small as possible. (The choice of d will be given later.)

With abuse of notations, we write
∑d−1

i=0 vip
i = (v0, v1, . . . , vd−1).
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Reducing the coefficients of base p representation

Motivated by [55], mλ with small coefficients in base p representation can be

obtained by using lattice basis reduction algorithm. Let L be the lattice of

dimension d spanned by rows of the matrix

λ 0 0 · · · 0

−p 1 0 · · · 0

−p2 0 1 · · · 0
...

...

−pd−1 0 · · · 0 1


.

It is easily verified that v := (v0, v1, · · · , vd−1) ∈ L if and only if
∑d−1

i=0 vip
i =

mλ for some integer m. Now finding mλ with small coefficients reduces

to find a short vector in lattice L. By Minkowski’s theorem, there is a

shortest vector v in L satisfies ||v||∞ ≤ |vol(L)|1/d where ||v||∞ = max{|vi| :

i = 0, 1, . . . , d − 1} and vol(L) denotes the volume of L. Then there exists

mλ =
∑d−1

i=0 vip
i with

max{|vi|} ≤ | det(L)|1/d = |λ|1/d

=
(

Φk(p)
r

)1/d
≈ (pφ(k)−1/ρ)1/d.

Since Φk(p) ≡ 0 mod λ, any powers pi for i ≥ φ(k) can be represented by

a linear combination of 1, p, . . . , pφ(k)−1 modulo λ and since Φk(p) = rλ has

small coefficients in base p representation to avoid degenerate pairing maps,

it suffices to consider the lattice with dimension d = φ(k). Thus κ reduces

to [(ρ · φ(k) − 1)/dρ] log p =
(
1− 1

ρφ(k)

)
log p. And LLL basis reduction

algorithm finds a short vector in a low dimensional lattice L.
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m is relatively prime to r

mλ with small coefficients in base p representation can be obtained efficiently

using LLL algorithm. For non-degeneracy of the pairing m must be relatively

prime to r. This is equivalent that m is not a multiple of r since r is prime.

The following lemma asserts this property.

Lemma 5.3.5. Let λ := Φk(p)/r and φ := φ(k). Suppose that r is a prime

larger than 2φ(φ+1) and p is a prime larger than 3. If mλ =
∑φ−1

i=0 vip
i with

|vi| ≤ λ1/φ and assume that m = n · r for some integer n, then n must be 0.

Proof. We will use the inequality (p − 1)φ ≤ Φk(p) ≤ (p + 1)φ for all k.

The inequality follows from |ζ| = 1 for k-th primitive root of unity ζ in C,

Φk(x) =
∏

(j,k)=1(x−ζj) , the triangular inequality |x|−1 ≤ |x−ζj| ≤ |x|+1

and φ(k) = deg (Φk(x)). First observe that(
p

p− 1

)φ

·
(
p+ 1

p− 1

)
≤ 2φ+1 < r1/φ

from p/(p− 1) < (p+ 1)/(p− 1) ≤ 2 and r > 2φ(φ+1). From this

p+ 1

r1/φ
· pφ

p− 1
< (p− 1)φ.

Then

|n|Φk(p) = |mλ| = |
∑φ−1

i=0 vip
i|

≤
∑φ−1

i=0 λ1/φpi < λ1/φ · pφ

p−1

≤
(

(p+1)φ

r

)1/φ
· pφ

p−1

= p+1
r1/φ
· pφ

p−1

< (p− 1)φ ≤ Φk(p).

Hence |n|Φk(p) < Φk(p) and n must be 0.

In the pairing based cryptosystems, for the 80-bit security r is usually

chosen to be 160 bits prime. In this case, if d = φ(k) ≤ 12 then r is always

larger than 2d(d+1). Thus the assumption in lemma holds.
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The lower bound for κ

We can reduce the κ(mλ) to Minkowski’s bound, that is 1
φ(k)

log
(

Φk(p)
r

)
for any pairing-friendly curves by finding a shortest vector in a lattice L.

Next, Lemma 5.3.7 shows that κ(mλ) is bounded below by 1
φ(k)

log
(

Φk(p)
r

)
−

logφ(k).

Lemma 5.3.6. [34, Theorem 4.4.1] Let k ≥ 2 and t be positive integers, and

let s =
∑

i sit
i with si ∈ Z. If s(x) =

∑
i six

i ̸≡ 0modΦk(x), then∑
i

|si| ≥ | gcd (s,Φk(t)) |1/φ(k).

Lemma 5.3.7. Let mλ := mΦk(p)
r

=
∑φ(k)−1

i=0 λip
i, where m is coprime to r.

Then

||mλ||∞ ≥
1

φ(k)

(
Φk(p)

r

)1/φ(k)

.

Proof. Since
∑φ(k)−1

i=0 λix
i ̸≡ 0modΦk(x), by [34, Theorem 4.4.1], we have

φ(k) · ||mλ||∞ ≥
∑

i |λi|

≥ | gcd (mλ,Φk(p)) |1/φ(k)

=
(

Φk(p)
r

)1/φ(k)
.

Thus for any pairing-friendly curves κ(mλ) is lower-bounded by log
(

Φk(p)
r

)1/φ
−

logφ, where m runs through all the integers relatively prime to r. By ap-

plying this to the FE-friendly curves, we show that Theorem 5.3.1 is always

true without the conditions on degree.

Theorem 5.3.2. Let (p(x), r(x), t(x)) be a family of FE-friendly curves with

embedding degree k and let m(x)λ(x) := m(x)Φk(p(x))
r(x)

=
∑

i λi(x)p
i. For
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given 0 < ϵ < 1, choose X so that p = p(X) ≥ KΦk

ϵ
and suppose that φ(k) <

(1− ϵ) p1/dp. Then there exists i ∈ {0, 1, . . . , φ−1} such that dλi
≥ dp−dr/φ

for any m(x) coprime to r(x).

Proof. Let φ := φ(k). At first, by Lemma 5.3.1, we have

(1− ϵ)pφ−1/ρ ≤ Φk(p)

r
≤ (1 + ϵ)pφ−1/ρ,

where ρ = log p/ log r. By taking the logarithm in the first inequality and

dividing by φ, we get(
1− 1

ρφ

)
log p− 1

φ
log

(
Φk(p)

r

)
≤ − 1

φ
log(1− ϵ).

Now suppose that there exists a curve with dλi
< dp − dr/φ for all i. Since

φ(k) divides dr (see the paragraph below Theorem 5.3.1), the inequalities

equivalent to dλi
≤ dp−dr/φ−1 for all i. If we evaluate p(x), r(x) at x = X,

then for all i

dλi

dp
log p ≤

(
1− 1

ρφ

)
log p− 1

dp
log p

≤ 1

φ
log

(
Φk(p)

r

)
− 1

φ
log(1− ϵ)− 1

dp
log p

<
1

φ
log

(
Φk(p)

r

)
− logφ.

saying that κ(mλ) =
maxi{dλi}

dp
log p < 1

φ
log
(

Φk(p)
r

)
− logφ. The last inequal-

ity comes from

φ < (1− ϵ) p1/dp < (1− ϵ)1/φ p1/dp .

However, by Lemma 5.3.7, we must have

κ(mλ) ≥ 1

φ
log

(
Φk(p)

r

)
− logφ,

which leads us to a contradiction.
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Since embedding degree k is usually small so that φ(k) < (1− ϵ) p1/dp

for a large number p, the assumption in the above theorem holds in most

cases. Therefore if (p(x), r(x), t(x)) is a family of FE-friendly curves, by

taking m(x) = 1, then κ(λ) has a lower bound,

κ(λ) ≥
(
1− 1

ρφ

)
log p.

We note that many existing parameterized families of pairing-friendly

curves already attain the prescribed lower bound without modifying λ by a

multiple of λ. In these cases, the idea that uses a multiple of λ gives a little

advantages for the final exponentiation. See example 1 and 2 in Section III

and example 6 in Section V.

5.3.3 Examples

In this section we give some examples investigated by lattice basis reduc-

tion. All results satisfy the Minkowski’s bounds well as we have shown that

theoretically. Our approach using lattice reduction reduces the number of

squarings nicely for the curves which are not in the family.

First and second example show the case when our method is applied to

DEM curves and third example gives an example applied to Cocks-Pinch

curve. Both DEM curve and Cocks-Pinch curve are the curves not in the

family.

Example 3

Dupont, Enge, and Morain proposed some parameters for pairing-friendly

curves in [17]. The following p and r parameterize the pairing-friendly curve
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for k = 5:

p = 91600022435668881297760819108273609

(117 bits),

r = 1040375393410195481 (60 bits).

Then the final exponent is of the form λ = (p4 + p3 + p2 + p + 1)/r =

a0 + a1p+ a2p
2 + a3p

3 where

a0 = 48298402242066861357969209793319103

(116 bits),

a1 = 68283809547505356824804028665198693

(116 bits),

a2 = 53294610661059016732355697881722241

(116 bits),

a3 = 88045164289610560 (57 bits).

Note that the maximum bit length of a0, a1, a2, a3 is 116 bits. The naive im-

plementation takes totally 115 squarings and 118 multiplications. However,

our method finds mλ = b0 + b1p+ b2p
2 + b3p

3 where

b0 = −2868147363431539633026293965700

(102 bits),

b1 = −179610012117759028207462943 (88 bits),

b2 = 89797974551946435080337006 (87 bits),

b3 = 14058171382122118208099 (74 bits),

m = 159670.

The implementation requires total 101 squarings and 96 multiplications.

Consequently our method reduces the number of squarings by 12% and the

number of multiplications by 18.6%.
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Example 4

Another example in [17] proposes parameters of the curves for k = 10:

p = 265838773006906750756458394131391985

334144469091740860612401985800108057

326350300019063611949402010036257572

717554080849369 (407 bits),

r = 256214560650754227295112990192149027

29542591998892393498858941 (204 bits)

where λ = (p4 − p3 + p2 − p+ 1)/r. The naive implementation requires 405

squarings and 367 multiplications. When our method is applied to the λ,

computing the final exponent needs 354 squarings and 339 multiplications

with

m = 67378873396743296140989477656

14834417013174705.

Thus our method reduces the number of squarings by 12.5% and the number

of multiplications by 7.6%.

Example 5

We apply our method to the example of Cocks-Pinch method from p. 211 of

[20] for k=12.

p = 4436167653364218931891 (72 bits),

r = 2147483713 (32 bits).

In this case, λ = (p4− p2+1)/r = a0+a1p+a2p
2+a3p

3 and a2 have 71 bits.

The reduction shows that the maximum bit length of mλ is 64 bits with

m = 73639, so reduces the number of squarings by 9.86%. Next example

shows the case when the lattice basis reduction is applied to the families of

curves.
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Example 6

Consider the BN curves with x = −4647714815446351873. These parameters

are originally suggested by Nogami et al. [44].

p = 16798108731015832284940804142231733

90988918712143906984893371542607275

3864723 (254 bits),

r = 16798108731015832284940804142231733

90975957960340475274902837886416557

0215949 (254 bits).

Let λ = (p4 − p2 + 1)/r = a0 + a1p + a2p
2 + a3p

3, then a0 and a1 have 192

bits. So the number of squarings is 191. After the lattice basis reduction we

get mλ = b0 + b1p+ b2p
2 + b3p

3 where b0 and b2 have 190 bits with

m = 129607518034317099886745702645398241283.

As we have noted in previous section, BN curves already attain Minkowski’s

bound. The example shows that there is no noticeable difference by lattice

reduction for FE-friendly curves such as BLS curves [2], KSS curves [32].
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Conclusion

In the thesis, we studied on the discrete logarithm problem with auxiliary

inputs. By analyzing the non-uniform birthday problem, we reduced the

DLPwAI into finding a polynomial with the small value set or whose substi-

tution polynomial has many absolutely irreducible factors as possible. As an

rigorous example, we found examples, f(x) = xd and the Dickson polynomial

of degree d. The complexity when it applied to these polynomials coincides

with Cheon’s algorithm.

If we relax the condition on the degree of the polynomial, it is relatively

easy to find such polynomial. With the polynomial, we could solve the gener-

alized DLPwAI efficiently. It would be also interesting to reduce the DLPwAI

into the generalized DLPwAI.

As an independent of interest, we described the value set of the generalized

Dickson polynomial. It is also of interest to apply this polynomial to solve

the DLPwAI.

Finally, we tried to solve the pairing inversion problem which can be used

to solve the DLP efficiently. We focused on inverting the final exponentiation

step by reducing the final exponentiation. We proposed an universal method
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to reduce κ(λ) to
(
1− 1

ρϕ(k)

)
log p, and showed that it is the lower bound for

κ. It seems to give another evidence of the hardness of the pairing inversion

problem.

82



Bibliography

[1] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel
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[19] Laura Fuentes-Castañeda, Edward Knapp, and Francisco Rodŕıguez-
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국문초록

현대 암호시스템은 수학적 난제의 어려움에 의하여 그 안전성이 보장된다.

예를 들어, 군 G = ⟨g⟩에서 g, gα가 주어진 경우, 이산로그 α를 찾는 문제는

대표적인암호학적난제이다. 한편, Generic군모델에서이산로그알고리즘의

복잡도 하한은 Ω(p1/2)로 주어지는데 (단, p는 주어진 군의 소수인 위수), 별

도의 부가정보를 이용하면 이보다 쉽게 해결할 수 있는 알고리즘이 존재한다

(Cheon의 알고리즘 등). 본 학위논문에서는 부가적인 입력이 주어진 경우

이산로그문제를 푸는 효과적인 알고리즘에 대하여 연구한다. 한편, 페어링

역연산 알고리즘이 이산로그 문제를 해결할 수 있다는 점에 착안하여 페어링

역연산 알고리즘 복잡도 개선에 대하여 연구한다.

주요어휘: 이산로그문제, 페어링 역연산, Cheon의 알고리즘, Dickson 다항식

학번: 2007-20270
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되고 기쁠 때 행복할 수 있었습니다. 또한, 비슷한 시기에 (간발의 차이로

늦게) 랩에 들어와 저 대신 고생 많이 했던 후배 진수, 병도와 한 연구실에서

오랜 시간 함께했던 치홍 형, 현숙, 희원, 미란, 민영, 창민, ISaC의 충훈 형,

민재 형, 가원, 병일 여러분 덕분에 좋은 추억 만들 수 있었습니다.

학부 동기로 오랜 시간 함께 한 진영, 지웅, 공, 지훈, (홍)한솔, 대학원

동기로 함께 즐거운 시간 보냈던 성준 형, 호중 형, 성환 형, 민하 형, 경석 형,

정태 형, 문창 형, 철홍 형, 형석 형, 수정 누나, 세진 형 모두 각자의 분야에서

멋지게 활약하기를 기원합니다. 이외에 지면에 미처 담지 못한 수많은 지인들

에게 너그러운 마음으로 이해를 구하며 감사의 말씀 전합니다.

긴 세월 동안 묵묵히 믿고 지켜봐주신 양가 부모님과 동생들, 처형 내외

덕분에 꿋꿋하게 힘든 시간 버틸 수 있었습니다. 끝으로 모진 남편, 아빠

때문에 고생많았던 마누라 효민과 아들 휘성에게 지금까지 곁에서 잘 지켜줘

서 고맙고 함께할 남은 평생 동안에도 서로 이해하며 슬기롭게 헤쳐나갈 수

있기를 바라는 마음으로 이 학위논문을 바칩니다.
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