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Abstract

This thesis is composed of two parts. In the first part, we consider the Bessel pe-
riod of two automorphic representations of (U(3), U(2)) involving a non-tempered
one. For a pair of tempered representations of codimension 1 unitary groups, Gross
and Prasad conjectured that the non-vanishing of their period would be equivalent
to that of central critical L-value of their product L-function. Thereafter, Neal Harris
has formualted their conjecture in a more refined way following Ichino-Ikeda work
concerning orthogonal group. We investigate Neal Harris’s conjecture for the non-
tempered case. In the non-tempered case, the conjecture is false because the critical
L-value may have a pole at s = % and the local period may diverge. However, if we
adopt the regularised local period, there is also an analogous formula and we suggest

it for some specfic pair in the endoscopic A-packet of (U (3),U(2)).

In the second part, we study the Selberg class. The Selberg class is an axiomati-
cally defined class of L-functions which are of arithmetic interests. We prove a unique-
ness theorem for functions in the Extended Selberg Class which states that for every
¢ # 0, the functions L(s) = ZZOZI % in the class having the positive degree are

completely determined by a(1) and L1 (c).

Key words: automorphic forms, unitary groups, theta correspondence, L-functions,
period, non-tempered represenation,Extended Selberg class, Selberg class, zeros of
L-functions

Student Number: 2007-20289
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Introduction

The notion of L-functions is a central theme in number theory in that they encode
many important arithmeric information. For example, the proof of two celebrated the-
orems in number theory, Dirichlet’s Theorem on primes in arithmetic progression and
the Prime Number Theorem all have to do with special L-values.

In the first part of this thesis, we briefly introduce some conjecture which relates

special L-values and period. In 1992, Gross and Prasad gave a facinating conjec-
ture(we call it GP conejcture) which connects the central critical L-value and period.
The GP conjecture is reminiscent of a Gross-Zagier formula if we think period play a
similar role of height pairing in the formula. Although Gross and Prasad conejctured
it only for orthogonal group, a similar conjecture concerning unitary group exists and
their conjecture have been refined by Ichino, Ikeda and Neal Harris.
We consider the refined GP conjecture for unitary group. In formulating the conjec-
ture, there is some assumption such that a given pair of representations should be tem-
pered. So, we investigated how it varies for non-tempered representations and tested
it for n = 2 case taking s75 a theta lifting from U (1), which is the most well-known
non-tempered representation.

In the second part, we study the Selberg class which axiomatically generalised the
class of classical L-functions. Selberg introduced a class of meromorphic functions
satisfying five axioms. We consider its uniqueness problem when the inverse image
is specified. J.Steuding([38]) was a pioneer who first paved the way for this problem
and then Li and Ki made a subtantial progress by removing more or less complicated
assumstions in J.Steuding’s theorem. Recently, we could remove the same functional
equation condition appearing in Ki’s theorem([22]) and verified that this theorem is
optimal in the sense that the other conditions are indispensible in formulating the
theorem.

vii
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Part 1

The analogue of global
Gross-Prasad conjecture for
(U(3),U(2)) involving a
non-tempered representation
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Chapter 1

A preview of the first part

The Gross-Prasad conjecture is an outgrowth of the study of the restriction problem
in the automorphic representation of classical groups and it has generated much in-
terest in recent years. In this chapter, we first introduce its refined version, so-called
the refined Gross-Prasad Conjecture formualted in [[15] and then relate it to our result
in [[16].

Let E/F be a quadratic extension of number fields and A, A are their adele
rings respectively. Let V,, € V, .1 be hermitian spaces of dimensions n and n + 1 over
E, respectively. Consider the unitary groups U(V,,) ¢ U(V,,,) defined over F. Write
G;:=U(V;). Let 7, and i, be irreducible tempered cuspidal automorphic repre-
sentations of G, (A ) and G, (Af) respectively, and we fix isomorphisms s, =
®, 7y, and 7, = ®,7,,1 . We suppose that Homg () (7 i1, ® 7,,,,C) #0
for every place v of F.

We consider the following G, (A ) x G, (A g)-invariant functional

P (V, )@ (V, wV, )—-C

X
n+l T ptl n n

defined by

P daifif) = ([, 0@ @dg)- ([, F2@hRE) (0D

for¢p; e V, .fi € V, and [G,] = G,(F) G,(Ap).If ¢; = ¢ = ¢ and
fi =/ =f, we simply write P(p,f) := P(P1. $2;f1.f>) and we call P the global
period.

On the other hand, there is another G, (A ) x G,,(A )-invariant functional con-
structed from the local integral of matrix coefficients. To define matrix coefficients,
for each place v of F, let F), be its completion of F at v and denote G, ,, := G;(F,).
Fix the local pairings

JT[YV:JTZ.,V®‘771',V_)C

3



4 CHAPTER 1. A PREVIEW OF THE FIRST PART

so that
'%ﬂi = 1—[ .%)ﬂi,v
v

where 9 is the Petersson pairing

B, (f1:2) = J‘[GA]fl (8i)f2(8:)dg;

and the dg; is Tamagawa measures on G, (A y). For each place v, we define a G, ,, x
G,,, invariant functional

gji : (ﬂn+1,v = ﬁn+l,v) ® (ﬂn,v ® ﬂn,v)
by g)i(¢1,v’ ¢2,v;f1,v’f2,v) =

fG %ﬂn+],‘,(”n+l,v(gv)¢l,w ¢2,v)'%’77,,",(ﬂn,v(gv)fl,wflv)dgw

(Here, the dg,, are local Haar measures of G,, , such that [, dg, = dg.)
Write PPi(q&v, duifoofy) = P]’i(gﬁv,fv) and we set

Ag, LM} (1),0)

Ag,, = L,(M}(1),0)

where M (1) is the twisted dual of the motive M; associated to G; by Gross in [[12].
It is known in [|I5, Prop. 2.1] that 2% converges absolutely if the ar;, is tempered.
Furthermore, it is also known that for unramified data ¢,,f, satisfying conditions
(1) = (7) in [[15, p.6], we have

Lg (1/2,BC(, ) ®BC(7,,1.,))
b _ Ev n,v n+1l,v
Pv(nli) = Ag,, L,(1,m,,,Ad)L,(1,7,,,,.Ad)

(Here, BC (ut;) is the quadratic base-change of s; to a representation of GL;(Af))
From this observation, we can normailze 5’7’1 as
P L,(1,m,,,Ad)L,(1,m,,;,,Ad)
v Gn+1,vLEV(1/2,BC(Jrn’V) ®BC(7,11,))

Py

and call this the local period.
Then

[1#:V,,. &V, )&V, &V,)->C.
v
is also another G,,(A ) x G,,( A )-invariant functional.
The Refined Gross-Prasad Conjecture predicts that these two global G, (Af) x
G, (Ap)-functionals % and [], %, differs by only a certain constant, that is the cen-
tral L-value of the product L-function. The precise conjecture is as follows :



Conjecture 1.0.1 (Refined Gross-Prasad Conjecture for Unitary groups).

_Ag,,, Lg(1/2,BC(r,) ® BC(71,,,))
PO = 5 Lo ALy (L7, AD) U@v“”v’fv)-

(Here y ; is the conjectural L-parameter for ; and B is an integer such that 2P =

|Swn+1| . |Swn| and Swi = Centﬁi(lm(y/l-)) is the associated component group.)

Beuzart Plessis has shown that the local period %, is nonvanishing if and only if
Homg (x,) (77 ,s1,0 ® 77, C) # 0. (Theorem 14.3.1 in [31]). Thus the above refined
Gross-Prosad conjecture contains the following original Gross-Prasad conjecture,

Conjecture 1.0.2. If Homg ) (7,41, ®@ 7, ,,, C) # 0 forall all places v of F, then
the global period P is nonvanishing if and only if Lg,(1/2,BC (i, )®RBC(ir,,1)) # 0.

In [[15], N.Harris proved the above conjecture unconditionally for n = 1 using
Waldspurger formula, and conditionally for n = 2 assuming i3 is a ®-lift of a repre-
sentation on U (2). Recently, Wei Zhang proved for general case using relative trace
formula under some local conditions.[43, 44]

Our goal is to provide an analog of this conjecture for n = 2 and 5 is a theta lift of
U (1). Note that in this case, 73 is no longer tempered and so the above local periods
may diverge. So we first regularize the local period using the function appearing in
the doubling method. Once this is done, we can define a regularized local period and
this enable us to establish the following formula which can be seen as an analogue of
Refined Gross-Prasad conjecture.

Theorem 1.0.3. Let F be a totally real field and E a totally imaginary quadratic
extension of F such that all the finite places of F dividing 2 do not split in E. The uni-
tary groups we are considering here are all associated to this extension. Let o be an
automorphic characters of U(1)(Afg) and w3 = O(d),m, = O (1) be irreducible
tempered cuspidal automorphic representations of U(2)(A ) which comes from a
theta lift of o and trivial character 1, respectively. We assume that these two theta

lifts are nonvanishing and cuspidal. Then for f5 = ®f5,, € w3 and f; = ®f, , € ),

g)(f3’f2) = Cﬂ3,ﬂ2,y : l—[ gjv(f3,v’f2,v)
where

116y LG BCW3, - 05h) ® ) Resco(Lels, BC(ra) ®7))
73727 T T 93 L2(1, y) LE(%,BC((U;TIS) ® 73) ‘

(here y is a character of AL /E* such that y|s» = xgr and fori=1,2, w is the
central character of ;. The regularized local periods P, ’s are defined by

L $y(2s) 3 2 s
Py pofan) = CV'?—{% L,(s,BC(73,) ®7,) 'fwz)v %Jﬂs,v(gv)'%fnz,v(gv)'A(gv) dgy.
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(here, c, is a constant for each v defined by

Ly(, xg,/F,) - Le, (3, BC(07, ) ® 77)
C,, =
' LV(3’ ZEV/FV) ’ LEV(%’BC(Q);TIB,V ’ w;rllv) ® YV)

and B, s are the fixed local pairings of 0(0),, s.t. B, = [T, B, %";’va (gy) =
‘%‘7,“, (&y " fivsSiy) and A(g,) is some function we will define in Section 3.)
Remark 1.0.4. In ([l17]), the author showed that the normailzed local period %, in

)\ is nonvanishing if and only if Homg (i (7,41, ® 7, ,, C) # 0. Thus we have
the following corollary which can be seen as a non-tempered analogue of the original
Gross-Prasad conjecture.

Corollary 1.0.5. Under the same condition as in Theorem , if Homg (1 ) (77 ,41,®

Tnyv» C) # 0 for all places v of F, then the global period % # 0 is equivalent to
Lg(3.BC(w7} - 05)) #0.

Remark 1.0.6. The constant of propotionality between the above two global period
can be rewritten as
Agy | Lg($,BC(0) ® ) p()Le(0,7?)
i
22 550+ Cp($)L3 (1, ygyp)SF(2)LE(3,BC(0) ® ¥3)

and the limit exists because both the denominator and numerator have simple pole at
s = 0.
On the other hand, in the appendix, we shall see that

Lg(s,BC(m4) & BC(73))
Lp(s+ 3,5, Ad)Lp (s + 5,73, Ad)

would have double pole at s = % in our case. Thus the refined Gross-Prasad does not
hold even if we adopt the regularized local period instead of the original one. This
shows that the conjecture cannot be extended to the nontempered case.

Remark 1.0.7. In the SO(n) version of the conjecture, Ichino was the first who consid-
ered the non-tempered case in [l19], and recently, Yannan Qiu has brought his result
into adelic setting including the former.[33)]. Thus this article can be considered as
an analogue of [33].

The rest of the first part is organized as follows: in section @, we introduce the theta
correspondence for unitary groups, as well as the Weil representation. In section 3.2
we give several versions of the Rallis Inner Product Formula. With all these things|p
together, we prove Theorem [1.0.3in chapterg under the assumption of a lemma which

we prove in section . In the Igst chapter [, we compare two L-values in Theorem
and Conjecture .




Chapter 2

Preliminaries

This chapter consists of preliminaries for the first part.

2.1 Unitary group

We give a brief introduction of the unitary group.

Let E/F be a quadratic extension of fields (local or global) and c is the nontrivial
element in Gal(E/F). Let V be a n- dimensional hermitian space over E equiped
with a nondegenerate hermitian form

h:VxV->E

such that
h(av, pw) = a - c(fB)h(v,w)

forvw € V,a,8 € E and h(v,w) = c(h(w,v)). The unitary group of V is a
subgroup of GL(V') which preserves the hermitian form #, that is,

UWV)={{ge GL(V) | h(gv,gw) = h(v,w) for allv,w € V}.

We can easily check that this relation defines an algebraic group over F and identify
U (V) with its group of F-rational points U (V) (F).

Two hermitian vector spaces are said equivalent if there is an isomorphism be-
tween them defined over F. But for two non-equivalent hermitian spaces V, V', their
unitray groups can be isomorphic.

For two hermitian spaces V, V’, one can construct the hermitian space V @ V' in the
obvious way.

If E=C,F =R and n = 1, any hermitian form on C is equivalent to either
hl(Zl,Zz) =71 5 or hZ(ZI’ZZ) = - 5

7



8 CHAPTER 2. PRELIMINARIES

We denote the corresponding hermitian spaces by V* and V™~ respectively. Note that
U(V*) = U(V™) = U, the unit circle elements in C. Any hermitian space over C
of dimenstion of n is equal to (V*)? @& (V™) where p, ¢ are nonnegative integers
such that p + ¢ = n. We denote byU (p, ¢) the unitary group of the hermitian space of
(V*)P @ (V7)9 and we say that it has signature (p,q). Then U (p, g) and U(q, p) are
isomorphic and no two others are isomorphic. We also remark that that U (n,0) and
U (0, n) are compact unitary groups while others are non-compact Lie groups.

If E/F is a quadratic extension of p-adic fields, for n-dimensional hermitian space
(n-1)n

V over E, let discV = (=1)"2 - detV, so that discV € F*/Normgp(E™). Let
w g, r be a quadratic character of F* corresponding to the nontrival Galois character
of Gal(E/F) by the local class field theory. We define € (V) := wg,p(discV) and
call this the sign of V. It is a theorem of Landherr that there are exactly two types of
hermitian spaces and all hermitian spaces are distinguished by their ¢ sign. Denote
by V¢ for the hermitian space of sign €. The two hermitian spaces of different signs
are not equivalent.

We say that v € V is isotropic if 4(v,v) = 0 and a subspace W C V is isotropic if
h(wy,wy) = 0 for all wy,w, € W.If a subspace W C V has no isotropic vector, we
say that W is anisotropic.

Ifn = 1, V can be identified with E and we can define its hermitian form i(eq, e,) =
aeje, for some a € E*. We denote this hermitian space by E(a) and we can easily
check that E(a) = E(b) if and only ifla’ # Ng,r(E) and thus 1-dimensional hermi-
tian spaces are classifield by E*/Normpg,(E™).

For n = 2, there are two types of hermitian spaces. Fixing some basis {e, e;}
of E2, we define the hermitian form of E2 by h(ae, + be,,ce, + dey) = dad + bc
and the hermitian space with this form is called hyperbolic plane. The other type of
2-dimensionsal hermitian space is obtained by composing 1-dimensional hermitian
spaces, that is, E(a) & E(b) where —Ia’ & Normg,(E™). This is anisotropic plane
and all anisotropic planes are isomorphic.

For n = 2m + 1, there are exactly two types of hermitian spaces upto isomor-
phism. Those are V* =~ mH @& W; where H is a hyperbolic plane and Wi = E(a)
according to whether a € E*/Normg,(E™) or not. Note that U(V™) and U (V™) are
isomorphic and they are quasi-split.lﬁ].

For n = 2m, we have V* = mH and V- = (m — 1)H & W, where W, is an
anisotropic plane. In this case, U(V*) are not isomorphic to U (V™) and furthermore,
U (V) is quasi-split while U (V™) is not.

'In the context of algebraic groups, quasi-split means it has Borel subgroup defined over F.
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Now we consider the case E/F are quadratic number field extensions. Let v be a
place of F and we assume v splits in E, that is, v = wyw, in E where w, w, are places
of E. Then E, = E,, xE, =F, xF, andsoV,,the the scalar extension of V to
E,isVQrE,=VQ®I(E, ®E, )=V, &V, andcactsonV,, by swithchingtwo
components. Thus for i = 1,2, there are two hermitian forms h; : V,, xV,, - F,.
such that the extended hermitian form 4, = h ® E,, can be written

hy(x,y) = hy(x1,y1) - ha(x2,y2)

where x = x| +x; and y = y; + y,. (here x;, y; are vectors in V,,, .) Thus we can view
U(V,) as the subgroup of GL(V,, ) x GL(V,,,) and we have an isomorphism

uw,) =GL(V,)

under the projection map
(81:82) = &1

2.2 Automorphic L-function

Let F be a fixed number field, F',, denote the completion of F with respect to a place v.
If vis finite place, let 0, denote the ring of integer of F,, and ¢g,, the order of correspond-
ing the residue field. We shall write A = A for the adele ring of F. Though automor-
phic L-function can be defined for arbitrary reductive algebraic group defined over F,
we confine ourselves to general linear group GL,, and denote it by G. Then G(A) is
the restricted tensor product, over all primes v, of the groups G(F,) = GL,(F,). In
other words, G(A) is the topological direct limit of the groups

G, =[]GF,)-[]6G0,)
vesS VES
in which S ranges over all finite sets of places of F' containing the set S, of archimedean
places.
One is interested in the set [[(G(A)), the equivalent classes of irreducible, admissi-
ble representations of G(A). (here, the admissible representation of G(A) is the one
whose restriction to the maximal compact subgroup

kK= [] vmC)x[]omR)x [] GL,0,)

v:complex vireal v:finite

contain each irreducible representation of K (A ) with only finite multiplicity.) Sim-
ilarly, one has the set [[(G(F,)) of equivalence classes of irreducible admissible
representations of G(F,). It is known that any 7 € [[(G(A)) can be decomposed
into a restricted tensor product

®,7,.  m,€[](GEF,)),
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of irreducible, admissible representations of the local groups.
The unramified principal series is a particularly simple subset to describe. Suppose
that v is finite place. For Borel subgroup

bl *
B(F,) = {b = ( oo )} CG(F,)
0O - b

n

of G(F,), and for any n-tuple z = (zy,-,z,) € C",
b— y.(b) =|by[*1 - 1b,[*

gives a quasi-character on B(F,). Let 77, , be the representation of G(F),) obtained
by inducing y, from B(F,) to G(F). That means, 7, , acts on the space of locally
constant functions ¢ on G(F,) such that

n-1
2

n—1 .
p(bx) = x.(b) - ([ [ bil” ) - px).  beB(F,).xeG(F,)
i=0

and that
Ty ()(x) = $(xy)

for any such ¢. We shall assume that
Re(zy) = Re(zy) = -+ =2 Re(z,,).

Itis known that 77, . has a unique irreducible quotient i, .. The representations {sr,, _}
obtained in this way is called unramified principal representation and they are pre-
cisely the representations in [ [ (G (F,)) whose restrictions to G (o,,) contain the trivial
representation. If 77, is any representation in [ [(G(F,)) which is equivalent to some
i, .» it makes sense to define a semisimple conjugacy class which is equivalent to

‘IIZI e 0
ox)=| : -~ + |eGL,(C)
0 ces q’_lZ"

and o (sr,) does not depend on the equivalence class of i ,,.

Suppose that 7 = ®,7, is a representation in [[(G(A)). Since s is admissible,
almost all the local constituents pi, belong to the unramified principal series. Thus s
gives rise to a family {o(sr,) : v & S} of semisimple conjugacy classes in GL,,(C)
where S is some finite set containing S,. Since semisimple conjugacy class is deter-
mined by its characteristic polynomial, we define the local L-functions

L,(s,m) = L(s,m,) = det(1 — o(7,)q;%)"", seC,v¢s.
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Then the global L-function, which is developed by Jacquet, Shalika and Piatetskii-
Shapiro, is then given as a formal product

Lg(s,m) = [ | Ly (s, ). (2.2.1)
V&S

Using the doubling method of Piatetski-Shapiro and Rallis, we can also define local
L-function at v ¢ S. But it will take us to afar from our course, we will not discuss
here and refer the reader to [41].

If the global L-function is to have interesting arithmetic properties, one needs to
assume that s is L?-automorphic. We shall briefly review the notion of an automor-
phic representation.

Let & = Z(g) denote the center of the universal envelopong algebra %4(g) of the
complexified Lie algebra g of G, = GL,(C)"t x GL,(R)"> where r; and r, are the
number of complex and real embeddings of F.

Definition 1. A smooth function ¢ : G(A) - C is called a smooth automorphic
form if it satisfies:

(i) p(yzg) = @(g) forall y € G(F) and 7 € Z(A);

(ii) there is a compact open subgroup L C Ggpire = 1, .o GL,(0,) such that ¢ (gl) =
p(g) foralll € L;

(iii) there exist an ideal § C % of finite co-dimension such that S¢ = 0;

(iv) there exist a positive integer r such that for all differential operators X € 2U/(g)

Xo(g) < Cxligll".
Note that the group G (F) embeds diagonally as a discrete subgroup of
G(A)! = (g€ G(A) : |detg| = 1}.

Since smooth automorphic forms are invariant under the right regular representation
of Z(A) and G(F), we can regard it as a function on G(F)\G(A)'.
If a smooth automorphic forms ¢ satisfies

2
fG(F)\G(A)I lp(g)I7dg < oo,
we write ¢ € L2(G(F)\G(A)!).
The space of cusp forms on G(A)! consists of the functions ¢ € L?(G(F)\G(A)!)
such that

pr<F>\Np<A> ¢(mx)dn =0
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for almost all x € G(A)!, and for the unipotent radical Np of any proper, standard
parabolic group. (here, standard parabolic subgroups are subgroups of the form

pl e *
PAA)=(p=|: ~ :|:pedL,),
0 - p,

where (ny,n,,---,n;) is a partition of n). The space of cusp forms is a closed, right
G(A)!-invariant subspace of L%(G(F)\G(A)'), which is known to decompose into
a discrete direct sum of irreducible representations of G(A)!. A representation 7 €
[T(G(A)) is said to be cuspidal if its restriction to G(A)! is equivalent to an ir-
reducible constituent of the space of cusp forms. Now suppose that p € P(A) is as
above, with P a given standard parabolic subgroup, and that foreachi, 1 <i < r, 7, is
a cuspidal automorphic representation of GL,, (A). Thenp - 7 (p;) ® - ® 7,.(p,.)
is a representation of P(A), which we can induce to G(A). The automorphic rep-
resentations of G(A) are the irreducible constituents of induced representation of
this form and we denote the subset of automorphic representations in [ [(G(A)) by

1_[aut(G) :

Theorem. (Godement, Jacquet, Langlands) If 7 € Hum(G), then the product in
() converges in some right half plane. It extends to a meromorphic function on C.
When n = 1 and i is trivial, its only singularity is a simple pole at s = 1. Otherwise,
L(s, ) is entire. In both cases, L(s, i) satisfies the following functional equation
L(s,m) =w_L(1 —s, ) where 77 denotes the representation “contragradient” to m
and w ,, is of absolute value of 1.

There is another way to define automorphic L-function using the local Langlands
conjecture. Though this relies on some "big’ conjecture, it is very powerful in that it
enables us to define local L-function at every places at once while we have discussed
the local L-function only for v ¢ § in the previous argument. Thus we shall give a
brief survey of the construction of the automorphic L-function using the local Lang-
lands conjecture.

Let E/F be a quadratic extension of number fields, G be a reductive algebraic
group defined over F' and 7 = ®,o7, is an automorphic representation of G(F).
Given two datum (s, 7), where ¥ is a smooth hohomorphism y & G - GL,,(C),
we want to define L(s, o7, 7 ), where s is a complex variable. Since our main concerns
in this paper are the general linear group and unitary group, we give an ad-hoc defi-
nition of ~G for both them.

If G = GL(n), we define “G = GL,(C) and if G = U(n), we define /G =
GL,(C)xWg, where Wy is the Weil group and acts on GL,, (C) through the projection
map Wr —» Gal(E/F), and the nontrivial element ¢ of Gal(E/F) acts on GL, (C) as
follows;
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c-g:= Jlg—lj—l

where

(_1)n+1

We also give a definition of local L-groups “G,. Let v be a place of F. When v
splits in E, G, = GL,,(C) and if E, is a field, then G, = GL,(C) x Gal(F,/F,)
where Gal(F,/F,) acts on GL,(C) analogous to the global case.

Our goal is to define L(s, 7, ) and to do it, the notion of local L-function L, (s, 77, 7 )
should be proceeded. The local L-function can be defined using the local Langlands
correspondence and since it is of the central issue in the Langland program, we give
just a glimpse look here.

The local Langlands conjecture relates equivalence classes of irreducible admis-
sible representations of G, to equivalence classes of L-parameters of F,. The L-
parameter is a continuous semisimple homomorphism of the Weil-Deligne groupﬂ
WDpg to LG, under some restriction on the image of SL,(C). For the precise defi-
nition of this, we refer the reader [[l]]. We say that two L-parameters are equivalent to
each other when they are conjugate via an element of ZGY, the identity component of
LGO.

Denote the set of equivalent classes of L-parameters of F' by ®(G,) and the equiva-
lence classes of the admissible representations of G, by I1(G,,). Given an L-parameter
¢ : WDp -t G, and y L G, - GL(V), we can associate L-function

L(s, 7 o ¢) := det(1 = Frob,q~|V")

where Frob, is a geometric Frobenius element in Wy , ¢ := the cardinality of the
residue field of F, I, the inertia group of Wy and Vv is the invariant subspace of V
under the action of /. This can be seen as a generalization of the Artin L-function
developed by Deligne and Langlands.

Then we can state the local Langlands conjecture as follows;

Conjecture. There is a 'natural’ finite-to-one map between 11(G,)) - ®(G,).

The hypthetical preimage of an L-parameter ¢ is called the L-packet whose L-
parameter is ¢p. The terminology ’natural’ is perhaps the most important condition in
formulating this conjecture. Roughly, it forces the map to preserve L and e-factors.

>The Weil-Deligne group is just the Weil group W, for archimedian place and WDy = Wp
SL, (C) for non-archimedean place.
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This conjecture was completely proven for G = GL(n) by Harris-Taylor [14] and
independently by Henniart [[18] at the almost same time. Recently, this conjecture
for other classical groups was also proved by James Arthur (orthogonal, symplectic
group) and Chung Pang Mok (quasi-split unitary group) under the assumption of the
stabilization of the trace formula. So assuming this conjecture, we can give an alter-
native definition of the local L-function of GL(n) and U (n).

For G, = GL,(F,) or U(n)(F,), suppose we are given 7, an admissible repre-
sentation of G,, and y :* G, —» GL(V) for some finite dimensional complex vector
space V. Then the local L-function is defined by

L,(s,m,,y):=L,(s,70¢)

where ¢ is the corresponding L-parameter of s, via the local Langlands correspon-
dence and the RHS is the Artin L-function we defined ahead.

With this definition of the local L-function at hands, we can define the global auto-
morphic L-function by an Euler product;

L(s,7,7) = [ Lo(s. 7y, 7).
v

It is known that this global L-function is well-defined for sufficiently large s > 0
and has meromorphic continuation to whole complex plane.
Especially when G = GL(n), G, = GL,(C) and so we can take y £ G, —
GL,(C) as the tautological representation of GL, (C). We write such y as St and call
L(s, o, St) the standard L-function and briefly denote by L(s, s7). This is the same L-
function with the one given by Jacquet, Shalika and Piatetskii-Shapiro in the previous
discussion.
For G = GL, x GL,,, there is another canonical choice for y given by the tensor
product. Since £G, = GL,(C) x GL,,(C), we can take y as the tensor product rep-
resentation of LGV on V ® W where V, W are n, m-dimensional vector spaces over C
and GL,(C), GL,,(C) act on V, W respectively in a tautological way.
Using this canonical tensor product homomorphism y, ,, for two automorphic repre-
sentations i, 77, of GL(n), GL(m) respectively, we define

L(s, o, x ) = L(s, 7T, X T\, 7 1 )

and call this the Rankin-Selberg L-function.

When G = U(n), it is cumbersome to deal with the L-parameter ¢ : WDp -L G,
becuase LGV involves the Gal(F .,/ F,) action. However, there is the following useful
proposition.

Proposition 2.2.1. Restrictionto W defines a bijection between the set of L-parameters
for U(n) and the set of equivalent classes of Frobenius semisimple, conjugate-self-
dual representations ¢ : WD — GL, (C) of sign (=1L,
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For the precise definition of the terms in the above statement, we refer the reader to [5].

This proposition says that the L-parameters of F,, for unitary groups are essen-
tially L-parameter of E,, for general linear group with ’some’ property. So using this
proposition, we can transfer the standard L-function of unitary group to that of general
linear group.

The Base change

There is a natural transfer of automorphic representaion of U (n) (F,)) to that of GL(n) (F,,)
which corresponds to the restriction functor of the Galois group Gal(F /F) to Gal(E /E).
This functor is called the base change and to state our main theorem in the first part,
we require this concept. However, rather than giving a full account of this, we intro-
duce it only to the extent that meets our purpose.

Let o7, be an irreducible admissible representation of U (n) (F,) and ¢ be the cor-
responding L-parameter of sr,,. Then we can obtain another L-parameter of GL, (F,)
by restricting the domain WD of ¢ to WD . By the definition of L-parameter, ¢
composed with the projection maps from -G, to Gal(E,/F,) should commute with
the projection map from WDg to Gal(E,/F,). Thus if we restrict the domain of ¢
to WDg , we obtain ¢ : WDg - GL,(C), the L-parameter of GL,,(F,). By the
local Langlands conjecture of GL,,(F, ), there is the irreducible admissible represen-
tation BC (i) of GL,(F,) whose L-parameter is ¢ 4. Thus we associated BC (),
the representation of GL,,(F, ), to o7, and it is called the quadratic base change of uni-
tary group. Since the L-parameter of BC(zr,) is ¢ 4, we see that L-function of BC(7r)
should be

L(s,BC(sr,)) = L(s,St o q0¢)

where the LHS is the Artin L-function.

Tempered representation

In this subsection we introduce the terminology of the tempered representation. To
define it we first define the admissibility of a representation.

Definition 2.2.1. Let G be a reductive group defined over F and K a maximal compact
subgroup of G. A continuous repreentation (i,V) of G(F) on a complex Hilbert
space is called admissible if m restricted to K is unitary and each irreducible unitary
representationof K occurs in it with finite multiplicity.

Given an admissible representation sr of G(F'), we can define the matrix coefficient,
that is a function of G(F') defined by

g > B(m (), P2)
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where ¢, ¢, € .

The temperedness can be descried using this matrix coeflicients.

Definition 2.2.2. For an admissible representation i, if all matrix coefficients are in
L**€(G(F)) for any € > 0, we say that i is tempered.

Thus the temperedness is a local condition by its nature, but people abuse it in the
global situation.

Definition 2.2.3. Let F be a number field and m an automorphic representation of
an algebraic group G(A). Fix a group decomposition G(A ) = [], G(F,), mea-
sure decompostion dg = [] dg, and tensor decomposition w = ®ur,. Then with
this decompostion, we say that i is tempered when all local components ,’s are
tempered.

Remark 2.2.4. The global temperedness depends on the choice of the decomposition.



Chapter 3

The Theta correspondence for
Unitary groups

We review the Weil Representation and ®-correspondence. Most of this section are
excerpts from [[15].

3.1 The Weil Representation for Unitary Groups

In this subsection, we introduce the Weil representation. Since the constructiuons of
global and local Weil representation are similar, we will treat both of them simulta-
neously. For an algebraic group G, if the same statement can be applied to both the
local and global cases, we will not use the distinguished notation G(F,) and G(Af),
but just refer them to G.

Let (V,(,)y) and (W, (, )y ) be two hermitian and skew-hermitian spaces of dimen-
sion m, n respectively. Denote G := U(V) and H := U(W) and we regard them as an
algebraic group over F.

Define the symplectic space
W :=Resg/p VO W
with the symplectic form
Vvw, v @w )y = %trE/F (v V)y & (w,w')y ).

We also consider the associated symplectic group Sp(W) preserving (-, -)yw and the
metaplectic group Sp(W) satisfying the following short exact sequence :

1> C* - Sp(W) > Sp(W) > 1.

17
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Let X be a Lagrangian subspace of W and we fix an additive character y : A /F —
C* (globally) or y : F,, - C* (locally). Then we have a Schrodinger model of the
Weil Representation W,y of S\[)(W) on .#(X), where . is the Schwartz-Bruhat func-
tion space.

Throughout the rest of the paper, let y g, be the quadratic character of Ay /F*
or F; associated to E/F by the global and local class field theory. (For split place v,
we define y g, p the trivial character.) And we also fix some unitary character y of
A% /E* or E; whose restriction to Ay or F} is yg/p.

If we set

rv = r"
rw = 7"

then (y v, ¥y w) gives a splitting homomorphism

l}’VJ’W +GxH - S';(W)

and so by composing this to ,,, we have a Weil representation of G x H on S(X).
When the choice of w and (y v, yy) is fixed as above, we simply write

Ww,y = Wy °lyy yy-

Remark 3.1.1. For n = 1, the image of H = U(1) in S'F?(W) coincides with the
image of the center of G, so we can regard the Weil representation of G x H as the
representation of G.

The Local ®-Correspondence

In this subsection, we deal with only the local case and so we suppress v from the
notation. (Note that if v is non-split, E is the quadratic extension of F and in the split
case, E = F & F.) As in previous subsection, for non-split v, we denote y g, the
quadratic character associated to E/F by local class field theory and for the split case,
X E/F 18 trivial.

Howe Duality

Suppose that (G, G”) is a dual reductive pair of unitary groups in a symplectic group
Sp(W). (Recall that a dual reductive pair (G, G”) in Sp(W) is a pair of reductive sub-
groups of Sp(W) which are mutual centralizers, i.e. Zg,,(w) (G) = G’ and Zg,,(w,(G’) =
G)
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After fixing the characters y and y as in subsection 2.1, we obtain a Weil repre-
sentation (w,, ., #) of G x G’. For an irreducible admissible representation 7 of G,
the maximal s7-isotypic quotient of w, say .# (i), is of the form

F(mr)=aQO(m).
The Howe Duality Principle says that if © (s7) is nonzero, then
1. ®(or) is a finite-length admissible representation of G”.
2. O () has the unique maximal semisimple quotient 6 (sr) and it is irreducible.

3. The correspondence s +— 6 (i) gives a bijection between the irreducible ad-
missible representations of G and G’ that occur as the maximal semisimple
quotients of ..

The third is called the local ®@-correspondence. The Howe duality is now known
to hold for all places. (see [3])

The Explicit Local Weil representation for GL(3)(F,)

The local Weil representation of unitary groups is explicitly described in [[13]. In par-
ticular, if v splits, U(3) (F,) = {(A,B) € M5(F,) | AB = I} and so by sending (x,x™!)
to x, it is identified to GL(3)(F,). We record here the explicit local Weil representa-
tion of GL(3) (F,) for later use.

Let X = F2 be a 3-dimensional vector space over F,, with a fixed basis. Then there is
a Weil-representation w of GL(3)(F,) realized on % (F 3), which is uniquely deter-
mined by the following formula:

0(Q)f (x) = 7 (det(g))|det(g)|2f (g'x),  x € F3 G.1.1)

Since E,, = F, x F, and y, we defined in [], is trivial on F,, we can write y =
(71,77") for some unitary character y | of F,. Using the above isomorphism of U (3)
and GL(3), we can write y (det(g)) = y%(det(g)). We will use this formula in Sec-
tion. 5.

The Global ®-Correspondence

The global ®-correspondence is realized using ®-series. To do this, we first define
the theta kernel as follows. For any ¢ € £ (X(Af)), let

02 9) = Y 0w,y vy @B (@)).
L1eX(F)
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Note that this is slowly increasing function. Thus if f is some cusp form on G(A ),
it is rapidly decreasing and so we can define

0(f,9)(h) = [

. 0(g. h,@)f(g) dg (3.1.2)

where dg is the Tamagawa measure.

Then the O-lift of a cuspidal representation of G as follows:

Definition 3.1.2. For a cuspidal automorphic representation 7 of G(A ),

GV’W’YW’YVvv/(]T) = {6(f7 ¢) :f € i, (p € f(X(AF))}
is called the O-lift of o with data (yw,yv,¥).
The Howe Duality Principle implies the following. ([9], proposition 1.2)

Proposition 3.1.3. If O () is a cuspidal representation of U(V)(A), then it is irre-
ducible and is isomorphic to the restricted tensor product ®,0 (1 ,,).

Remark 3.1.4. Since we integrated f (instead of f) against the theta series, 7 and
O (51) have the same central characters.

Remark 3.1.5. In the theory of theta lift, there are two main issues, that is, the cusp-
idality and non-vanishing of the theta lift. The cuspidality issue was treated by Rallis
in terms of so-called tower property.[B3] So to make our Theorem () not vacu-
ous, we record the criterion in ] which ensures the non-vanishing of two theta lifts
3 and ;.

3.2 The Rallis Inner Product Formula

The Rallis inner product formula enables us to express the Petersson inner product of
the global theta lift with respect to the source information. Since we will need three
different version of Rallis inner product formulas, we record them for lifts from U(1)
toU(3),U(1)to U(1)and U(1) to U(2). To give a uniform description, we introduce
some related notions.

Global and Local zeta-integral

Let V be a hermitian space over E of dimension m, and W be a skew-hermitian space
of dimension n. Let V™ be the same space as V, but with hermitian form —(-, -);,. Note
that U(V) = U(V™). Let T be a irreducible cupspidal automorphic representation of
uw).

Denote G:=U(V)=U(V"),H:=UW),G°:=U(V®dV )andi: GxG - G°
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be the inclusion map U (V) x U(V™) & U(V & V7). Let v be a finite place of F
and O, the ring of integer of F, and denote by w a generator of its maximal ideal.
We fix a maximal compact subgroup K = [] K, of G such that K, := G(O,) for
finite places and K, := G(F,) n U(2m) for archimedean places. Let P be a Siegel-
parabolic subgroup of G° stabilizing V* := {(x,x) € V & V~} with Levi-component
GL(V%) and K a maximal compact subgroup of G° such that i(K x K) < K and
G® = PK.LetI(s,yy) := Indg:l@f) (yw o det) - |det|® be the degenerate principal
series representation induced from the character 7y, of A% and |det|®. (Here, we
took yy as the one we defined in [] and the determinants are taken with respect
to GL(V2) which is isomorphic to the Levi of P.)
Then for ¢, € I(y,s), we define the Eisenstein series

E®.2):= Y  &,x
xeP(F)\G*®(F)

for g € G°. Then for f},f, € T, we can define

Definition 3.2.1. The Piatetski-Shapiro-Rallis zeta integral is defined as follows:
Z(s.f1:.f2: @5 v w) i= f[GxG]f1(81)f2(82)E(‘I’s, 1(81,82)) 7w (dety y-) 82)dg dgs.

This integral converges only for Re(s) » 0. However, once the convergence is
ensured, it can be factored into the product of the local-zeta integrals. So we define
the local zeta-integrals. Assume that ¢, = ®,®,, and f; = ®,f; . Then for each
place v, the local zeta-integral is defined by

Zv(s’fl,v’fZ,w (Px,v) = f

uw, (I)x,v(i(gv’ 1))<”v(gv)fl,v9f2,v>yrvdgv

We note that the integral defining the Z,, converges for Re(s) sufficiently large.
However, Z, can be extended to all of C by meromorphic continuation. For large s,
there is a factorization theorem of the zeta integral. (See [32] for more detail)

Theorem 3.2.2. For Re(s) > 0,

Z(s’fl’fZ’ q)s’ YW) = nZv(S’fl,v’fZ,v’ (I)s,v)
v

The local-zeta integral has a simple form for unramified places. Take S to be
a sufficiently large finite set of places of F such that for all v ¢ S, the relevant
data is unramified, and the local vectors f; , are normalized spherical vectors so that
(i f2.0) 7, = 1. Recall that m = dimg V, n = dimg W and set

m—1

d, (s, yw) = l_[ L2s+m=—r, xEF)-
r=0
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It is known that for v ¢ S, Z, has the following simple form,

Ls+1/2,7® )
Zy(5:frvofam Rsp) = = (s rw)yw

(3.2.1)

and so we can normalize them defining Z# by

_ dm,v(s> }/W)
S L(s+ 12,7 ry

Zf(s7fl,v’f2,v’ (I)s,v) ) : Zv(s9fl,v’f2,v’ q’s,v)

Thus, we can rewrite Theorem m as follows:
For f,,f, € T, we have

L+ 12, 7@ yw

Z(S’fl ’f27 (ps’ YW) = d (S }/W) ) . Hzf(snfl,v’fz,v’ (I)S,V) (322)

The Siegel-Weil section

The Rallis Inner Product Formula relates the Petersson inner product of the global
theta lifts to the global zeta-integral for a special section ®; € I(s, y ), so called
Siegel-Weil section. In this section, we give the definition of the Siegel-Weil section
introducing the doubled Weil representation.

The setting for the doubled Weil representation is as follows.

We have
W = ReSE/F 2V ®E W

where 2V := V @ V~. We also denote
VVi={(v,-v):veV}icVeV .

Since VV ® W is a Lagrangian subspace of W over F, with some fixed choice of
characters y and y, we have a Schrodinger model of the Weil representation @ of
G° x H realized on & (VY @ W)).

Now, fix polarizations

V = XteY"
V- = X @Y™
and denote
X = XteoX
Y = YooY .
Then
2V=X®Y
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and so we have another Lagrangian X ® W of W.

If we set
X = X®W
Xt = Xt@W
X = X" W,

then there is a U (V) (Ag) x U(V™) (A )-intertwining map
Pmn: L (X (Ap)) @ P(X(Ap)) » P(X(Ap)) - FUVY @ W)(Afp))

where the first map is the obvious one, and the second map is given by the Fourier
transform. Furthermore, it satisfies p,, , (¢ ®¢,)(0) =< ¢, ¢, >andso (& (i(g,1))-
Pimn (@1 ® 92))(0) =< Wy v (8) - @1, 9> >.([27, p.182]) Let 5, = 5. By the ex-
plicit formula for & described in [23], there is an intertwining map [ ] : % vV e
W) = I(s,.7w) given by ® - f3"(8) = @(g)®(0). We can also extend f3” to
fs €1(s,yw) forall s € C by defining f3 := f3" - |det|* "5~ and call this the Siegel-
Weil section in I(s, y ). (Here the determinant map was taken as in .) Then we
can define the function A,, of G as A,,(g) := |det(i(g, 1))| and using A,,, we can
write the Siegel-Weil section as

Fo i@ = (@wy (&) @1,02) + Ap(g)* ™. (3.23)

Note that A,,,(g) is K x K invariant and A, (1) = 1. (For ky,k, € K, (k1gk,, 1) =
(ky,ky)- (g, 1)-(k2,k1‘1) and (k;,k;) € P, (kz,kl‘l) ek Using the similar argument
of Prop.6.4 in [32], Yamana[[#2], Lemma A.4.] computed A, (g,) explicitly for split
place v of F. We record his computation for the non-archimedean split places not
dividing 2.

Let v be a finite place of F' which splits in £ and not divide 2. Let @, be the ring
of integer of F,, and w a generator of its maximal ideal. Since v splits, U (m)(F,) =
GL(m)(F,) and by Cartan decomposition, GL(m)(F,) = K,,D},K,, where K,, =
GL(m)(®©,) and D}, = diag[w 1, ---, w®]. Then,

n

Am(g,) = |1 (3.2.4)

Remark 3.2.3. Since |a + b| # |a| + |b|, we cannot expect A, (g, l,) # A,,(g,)A,,(1,)
for central diagonal matrix |, = diag[w®, ---, w] € GL(m)(F,).

Now, we are ready to state the three versions of Rallis Inner Product formula. The
first one is as follows;



24 CHAPTER 3. THE THETA CORRESPONDENCE FOR UNITARY GROUPS

Lifting from U (1) to U(3)

Here, dimV = 1, dimW = 3 and t is a irreducible automorphic representation
of U(1)(Af). Suppose that f; = ®,f;, € 7, 91 = ®,9;, € (X" (Af)) and
92 = ®,95, € F(X(Ap)). Let &, € I(s,7?) is a holomorphic Siegel-Weil
section given by [p 3(¢| ® ¢;)]. Then,

Theorem 3.2.4.

Lg(3,BC(t) ® ?)
2 Hzﬁ(lafl,v’flv’q)l,v)

(O0(f1.91). 072 p2))oz) = L3, xg/F)

where
. L,(@3, XE,/F,)

" Lg G.BC(r) @7

Proof. This follows immediately from Theorem 2.1 in [27] and () the normal-
ization of the local-zeta integral. O

The next following two versions of Rallis Inner product formula come from Lemma
10.1 in [41]:

Lifting from U(1) to U(1)

Here, dimV = dimW = 1 and 7 is a irreducible automorphic representation of
U(1)(Af). Suppose that f; = ®,f;, € T, 91 = ®,¢0;, € (X" (Ap)) and ¢, =
®,¢2, € (X (Ap)). Let &, € I(s,y) is a holomorphic Siegel-Weil section
givenby [p; (¢ ® ¢,)]. By [#1, Theorem 4.1] and , we have

Theorem 3.2.5.
_ _ 1 Leg(3,BC(1)®7) 4
(01,9102 9200 = 3 =11 75 L2 OS10fo Bo)
where
¢ Lv(l’)(Ev/FV)

v

T L (LBCr)®r) "

Lifting from U(2) to U(1)

Here, dimV = 2, dimW = 1 and 7 is a irreducible automorphic representation
of U(2)(AF). Suppose that f; = ®.f;, € 7, ¢, = ®,9;, € (X" (Af)) and
92 = ®,9,, € F(X(Af)). Let &;, € I(s,y) be a holomorphic Siegel-Weil
section given by [p; 1 (¢ ® ¢3)]. Then,
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Theorem 3.2.6.

i : —R Lg(s,BC
<0(fl,(p1),6002’(p2)>®(r — €S O( E(S (

L(1, xg/r)

HZ# 2’f1 v’f2v’ sv

where

1 L,2s+ 1, yg /r)-&,(25)
g, L — T v WIF, v . 1
ZV( Z’fl,V’fZ,V’ (I)S,v) lim LEV (S, BC(TV) ® }/v) ZV(S 2’fl,V’f2,V’ q’x—%,v)

5s-0

Proof By Lemma 10.1 (2) in [41] and (8.2.2),

_ _ 1. Lg(s,BC(T) ® 7)
(0(1,91), 02, 92))0z) = 2 £—>0 L2s+ 1, xg/p)SF(2s)

HZ# Z’fl v’fZ Vs —7,1;)'

By Theorem 9.1 and Lemma 10.2 in [41], if 6(7T) doesn’t vanish, Lz (s, BC(T) ® 7)
has a simple pole at s = 0. Note that { (s) is the completed Dedekind zeta function
of F and it has a simple pole at s = 0. Since Res,;_o{p(s) = —1 and L(1, yg,p) is
nonzero, we get
lim Lg(s,BC(t)® y)  —Res,_o(Lg(s,BC(7) ® y))‘
S—)OL(2S+1,){E/F)§F 2S) L(l ZE/F)
For each v, d, (s — i’ Yw) - P, 1 ’V(g) is not holomorphic but good section (see,

[41]) SO by Theorem 5.2 in[#41], the quotient of L, (2s + 1, XE,F,) £,(28)-Z,(s —
5> L fivfon @ s=1 ») by Lg (s,BC(7,) ® 7,) is holomorphic.

Thus each Zf’ ! (s S1.v:f2.0 ®5,) exists and it proves theorem when 6 (7) is nonva-

nishing. When 6)( ) is zero, then Lg (s, BC(t) ® y) is holomorphic by Lemma 10.2
in [#1]], and so Res,_o(Lg(s,BC(t) ® y) is zero. So the theorem also holds in this
case. ]

The local-to-global criterion for the non-vanishing of the theta lifts
Since we will assume 775 and i, are non-vanishing, we descrive the non-vanishing
criterion of the theta lifts 75, 77, as well as from U (1) to U(1).

Theta lift from U(1) to U (3)

Let 7 be acharacter of U(1). By the [Lemma 5.3, [27]], the Euler product Lg (s, BC(T)®
¥3) absolutely converges and nonzero at s = % Then by (| ), we see that 75 =

O (7) does not vanish when the local zeta integral Z, (1, -) € Hom(I (1, }/3) RTY®T,)

is nonzero for all the places v.

Theta lift from U (1) to U(2)

Let 7 be a character of U(1). Then by [Theorem 5.10, [[15]], the theta lift 75 = @ (T)
does not vanish when Lg(1,BC(7) ® }/2) # 0 and local theta lift 6,,(7,,) # O for all
the places v.



26 CHAPTER 3. THE THETA CORRESPONDENCE FOR UNITARY GROUPS

Theta lift form U(1) to U(1)

Let V (resp, W) be a hermitian (resp, skew-hermitian) space of dimension 1 over
E. Let T be a character of U(V)(Af). Then by () and [Theorem 6.1, [|13]], the
theta lift @ (7T) is non-vanishing if and only if Lz (1, BC(7) ® ¥) # 0 and for all v,
ev(%, T, 07, W¥,) =€y €. (Here, €y, (s, ), ey (s, ) are the local root number and
€, is the sign of Vi ,Wg respectively.)



Chapter 4

Proof of Theorem 1.0.2

In this chapter, we give the proof of Theorem . We first remind the reader of our
setting.

4.1 The Setup

F is a totally real number field and E a totally imaginary quadratic extension of F.
We consider the following seesaw diagram:

UVelL) UW)xUW) 4.1.1)

UV)xU(L) Uw)

(Here, V is a 2-dimensional hermitian space over E/F and W is a 1-dimensional
skew-hermitian space over E/F and L is a hermitian line over E/F.
Using the seesaw duality, we can relate the period integral in Theorem to the triple
product integral over U(W).

We first fix the following:

e 7, = ®,,, is an irreducible, cuspidal, tempered, automorphic representation
of U(V)(Af).

* ¢ = ®0, is an automorphic character of U(W) (Af).

o u = w;lz - ¢ is an automorphic character of U(L)(Af), where ® ., is the

central character of 7, and u = @ u,, where pu,, = w;rlz L, Oy

* (Wygrw-»W) is a Weil representation of SA'ﬁ(W) (A ). (See Chapter @ for no-
tation.)

27
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We also fix local pairings B, , B, , B, suchthat[[ B, [, B, [l, B,
give the respective Petersson inner products on the global representation and
%‘#v(,uv,,uv) = %’Jv(av,av) for all places v. (Since B, (o,0) = %’ﬂ(/z,,u) =
Vol([U(1)]), these choices are possible stand with no conflict )

We take y;, 7w = v and yy, = 72, where y is a unitary character of A% /E* such
that y|4x = xpg/rand fix additive character y : Ay - C. After fixing these split-
ting data (yv, ¥y, ¥w,W¥), we can define the relevent theta lifts and denote them

@(ﬁz) = G)W’V}’Ws}’v"//(ﬁz) on U(W)(AF), @(_) = ®W VOL,y w7 v ¥ L» l//( ) on
UVeL)(Afr),and O(f) := ®W,Lyw,n,v/(ﬁ) on U(W)(Ar). We assume that all
®-lifts we consider here are non-vanishing and cuspidal.

4.2 Proof of Theorem 1.0.3

In the course of the proof, we will regard i and ¢ as automorphic forms in the 1-
dimension representations of x and o and take f,, = p, andf, = 0. Since Wy ygr =
wwy.y ® oy 1, we prove the theorem assuming ¢ = ¢ ® ¢, for ¢ € wy y and
2 € Oy,

Step 1. First, we consider another the global period
.@,ZVQ(&)@V],-Z@V# - C

defined by

2
P’ oo frasti) = [y ey f01) 08 D) fry (@) (Didgel

(Here, i is the natural embedding i : U(V) x U(L) > U(V @ L).)
By making a change of variables g — gl, we see that

o fo@ @D, @f (hdgdl = [ fo5) (gl D), (8Df, (Ddgdl.

By Remark , the central character of @ (&) is w,! = o~!. So, after observing
that (/,1) is in the center of U(V & L) and [ is in the center of U (V), we have

Jowwiwnfo (6L, () u(hdgdl

B f[U(V)xU(L)] we ) (D@, () uDfes)luw) (@)fx,(8)dgdl
- fU(V xU L)]fG)(& luwv) (&), (8)dgdl

= Vol([U(L)] )fU wyfe@luw) (8)fx, (8)ds

—2f oo v (8 f,,z(g)dg. (note that Vol ([U(1)]) = 2)
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Thus, we get P (fo 5).fr,) = }‘9”(f®((—,),f7,2,fu).
Step 2. By the global seesaw duality, we see that

(7, @) (i(8. 1), (@) p(Ddgdl = |

iy O @10, ) (Mo (h)dh

f 9
[U(V)xU(L)]

(The order change of integration is justified by the rapidly decreasing property of cusp
forms and the moderate growth of the theta series.)

Since ®(77,) and O () have central characters w;lz and p~!

respectively, we see that
PO (frys 91))5 0> 92))55) = 10(Frys 01) (DO, 92) (1) (1)2-Vol([U(W)])2.
Fort =m,orpandi=1,2,
Bo) 0z 9,0, 0:)) =10z, ) (1)I* - Vol([U(W)]) and o (1) = 1.
Thus we can write 2 (0(f,, 91)), 0(f» 92)).f,) =
By (O rys ®1):0( 7. 91)) - By (02 92),0(fris 92))-
By theorem B.2.5 and B.2.6, we see that POFrys 01)):0 (s 92)).f5) =

1 Le(3:BC(1) @ ¥) Res,_o(Lg(s.BC(7m5) ® ¥
2 L(1, xg/r) L(1, xg/r)

)
: l_[ Z\% U:uvafrrz‘ve P1,vs (p2,v)
v

where Zﬁ (fnz,vaf,uv’ P1,v (02,1/) = Zﬁ,s:_% (s’fﬂz,v’fjrsz (I)s,v) : Zé (O’f,uv’f,uv’ (I)O,v)
and

P50 = [P21(01 ®@1)] €15, 7), o, = [P1,1(92® ¢2)] €1(0, 7).
(Note that Z} oy oS, @1, 92,,) = 1 for unramified data)

Step 3. Recall the abbreviations for various matrix coefficients made in Theorem

o3
P2,y

'%}f)lwvv(gv) = '%su)w,v(c')W,V(gv)'qol,v7 wl,v) ’ ‘%jww,L(lv) = '%sa)W,L(wW,L(lv)'§02,vv (p2,v)
'%)g‘;v,v@L(gv’lv) = %MW,V@L((‘)W,VGBL(I.(gV’ 1)’lv)(pv’ (pv) and

I 3
B2 (8)) 1= Bory 8y -fuy o firn,) B (1) 1= B (Lyofe o) for T =c or .

If we unfold Zf,s: (s,fﬂlv,f”z’v, $, ) in VAS Forsi Sy 1.0 92,0), We can write

L(2S+1,}(E )(: (2S)
# _ . v WIF, v .
2o s S 9100 920) = m<1s1>130+ Lg, (s,BC(73,) ®7,)

_1
2
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f Uw) Z\E(O’fuvaf,uv’q)O,v)'%)z”)lv{/vv(gv)%JTzv (gv)AZ(gv) dgv

L3(L, xE,F,) lim £, (25)
LE (L,BC(p,) ® 7,) % (5)50+ Lg (s,BC(m3,) ® 7))

Iv(s’ P1,vs (PZ,v’fnz’V’fu‘,)
where

1, (s, D1, ¢2,v’fﬁ2v’fyv) =
f
fU(V)V (IU(L) Bia () “%J’cfvv(lv)dlv) Blo var (80) - By (8) - Aa(g,)°dg,.

s,
Set'](s7 g\;a lv9 (01,\;, ¢27V’f7rv’fﬂv '%Z)ZVVVL(I ) ‘%f (l ) ‘%Z)I‘A/VV@L (gv)'%ﬂzz”: (gv)
A5 (g,)*. Then we can write [, as a double integral,

L, (s, P1,vs (pZ,V’fn—z,‘,’f,uv) = J‘

U(V),xU(L), J (s, 8v» lv’ @1 (pZ,V’fﬂz,‘,’f,uv)dgvdIV'

Since s, is tempered, by Lemma 7.2 in [A1]], Zv(s,fﬁzyv,fﬁz’v, [p(1y ® @1,)])
absolutely converge for R(s) > —— and s0 Z,(0,f,, .f.,.[p(¢2, ® @;3,)]) does.
For R (s) > 0, I,(s) is just the product of Z, (s, fy72 ,fﬂh [p(@1, ® ¢1,)]) and
Z,00,fu,Ju,  [P(@2, ® @3 ,)]), the above doubled integral for 7, (s) absolutely con-
verges for R (s) > 0.

Step 4. By making a change of variables g, - g,/,,

I (s, Py P2 vvfrrzv fyv fU(V J(svgvlv’lw P, (p2,v’f712,‘,7f/1‘,)dgvdlv

U,
- U(V),xU(L), g]va(gv v) %ziV‘L(l ) - %;22\/‘) (gvlv) ’ '%)f/fvv(lv) : A2(gvlv)sdgvdlv
f

= Joreviy, Bowvar (80 L) - B2l () oy (L) B (1) - As(g,l,) dg,dl,

S .
U(V),xU(L) %f)‘;‘/ VoL (gv’l ) : ‘%ﬂ;: (gv) : wav(lv) : ‘%Zvv(lv) : AZ(gvlv)sdgvdlv

- U(V),xU(L), %f’vw veeL(gV’l ) %)7:22; (8v) - '%)Qrvv(lv) - As(gyl,) dg,dl,

(The last equality follows from B, (f5 .f5,) = B, (Fu,Su,))-

Step 5. Write d,,z,w},v (s) = i (S,B%((eri)vm“). By the lemma ?? in the next sec-

tion, we see that

lim By

fn N o
R(s)=0+ d”zw?’v(s)'fU(va(L) Ww.vor (8v: ) . (80)° %J v)-Ba(g k) dgydl,

772\/

f,, ;
'%j(pv (gv’ v 2v ) ‘%f " AZ gv dgvdl

lim d R
R(5) >0+ w207 (5) J‘U(V)‘,XU(L) “w.veL
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m(lsi)lllo_'_dnz,v,yv(s) J‘U(V ( fa ’fa 4 gv'(pv®(pv)]) ‘%ﬂzv (&) AZ(gv)ngv
We normalize Z, (1, f; .f5 .[p(¢, ® ¢,)]) by

L,3, xg,F,)
Lg (3/2,BC(0,) ® 73)

Zﬁ(l’fﬂv’fﬂv’ [p(¢v®¢\/)]) = Zv(l’fav’fo'v’ [p((p\/@@\/)])'

We define the local inner product By ; ) on 6,(a,) as follows:

Lg(3/2,BC(0)®y3) 4 -
oo L Wfe, fo,.[p(9, @ 6))])

for some place v

Bo(s,) (00, 00),0,(5,.0,)) =

ZE Sy o [P(0, ® §,)])
for the remaining places

Then we see that

'%)6(6)(HUFU’ (P), H(fa’ (P)) = l_[ %0(&V)(9v(fav’ (pv)’ HVOFUV’ (pv))

and By 5,10, (f5 . 9,).0,(F, .9,)) = 1 for unramified data (f, . ¢,).

(Note that the “small” local theta-lift is the maximal semisimple quotient of the "big’
theta-lift, and so we should check whether these pairings are well-defined. But since
we are assuming © () is cuspidal, it is semisimple and so B g5 (0 (Frr ), 0(f,. 0))
factors asamap g, ® 7, ® T o ver zﬁww ver ®(0) ® O(o). Thus theorem
(-) shows that %@ ,) descends to By 5 ).)

Step 6. With the things we developed so far, we see that

Lo 1, - _
g)(f@)(&)’fyrz) = Zg) (f@)(&)’fyrzafy) = Zg) (0(ij2’ (pl))ee(fp’ (pZ))afa)

1 Lg(3.BC(pt) ® ¥) Res,_o(Ly(s,BC(5) ® 7))

= ——- . = ’ * Zﬁ sJar > Vo v
2 L 2u0) LT, 1zp) [1Z5G s o 01020

_ 1 Lg(5BC(0) ®7) Res,_o(Lg(s.BC(73) ® 7)) L3, xg/F) .
23 L(1, xg/F) L(1, xg/F) Lg(3/2,BC(0) ® v3)

[12.00.F5, 0):frs0)
v
This proves the theorem.

Remark 4.2.1. Since ZE(0.f,, .fy, ®0,) - 28\ (5.fy o fory @ 1) = 1 for un-
v v s v, =3 SV vV 3

ramified vectors, our local periods P¥’s are also 1 at infinitely many places and so
the above product is indeed a finite product.
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4.3 Proof of Lemma 3.3.1

In this section, we prove the lemma upon which we developed Step 5 in the proof of
. We retain the same notations as in the previous section and since everything
occurs in local case, we suppress v from the notation. We remind the reader that s,
is given by the theta lift of the trivial character I of U(1).

Lemma 4.3.1. Let t be the order of LE(S+%§T)2)®}/) ats = 0. Then,
: t, [ . ff’z . |4 . s _ K —
sdime s [ Bl e (8D B2 (8)- B (1) (Ax(gD)' = A (9))dgdl = 0
4.3.1)

Proof. When E is quadratic field extension of F, U(L) is the centralizer of U (V) and
compact and so it is included in every maximal compact subgroup of U (V). Then
A5 (gl)* — Ay(g)® = 0 and so the lemma is immediate in this case. So we assume
E = F x F and by our hypothesis, all archimedean places do not split, and so we
consider only p-adic case.

Since E = FxF,U(n) = GL, (F) and by Cartan decomposition, GL (F) = |,., lel,

wn+m

GLy(F) = U,z men K2 w”) K,. (here, O is the ring of integer of F and

w is a uniformizer of @ and K; = GL;(O).)
Since the theta lift preserves the central character, w 5 (w) =1andlet a = o(w).
_ Vol(K;mK;

Fori = 1,2 and diagonal matrix m € GL;(F), let u;(m) := W Since GL; (F)

is abelian, p;(m) = 1 and by the Lemma 2.1 in ([34]), u,(diag(a,b)) = C - Igl for
some constant C € R .
Then the measure decomposition formula turns to show

. Z al,|w.|—m.(|w|s(\n+m+l\+|n+ll)_|w,|s(|n+m|+\n|)).](s,gD,fn_z,m’ nl) =0

o limO
(5)=0+ n,leZ,m>0

where (s, ¢, f,;,,m,n,1) =

BE . (ky diag(w™, @)Ky, w'ky) B2 (ky diag (@™, 1)K, )dk, dkdk).

J‘Kl xKoxKy “w.ver

Since ¢ and f, | are K x K-finite functions, we are sufficient to show

lim s’ - ( Z al M . (| SIntmHl+nl) _ o s(ntml+in)y | o .d ) -0
R(s)—>0+ @ (=l lof ) nm,l " “m
n,leZ ,m>0

where ¢, ., = BY,, o, (diag(@™™, w"), @') and d,, = %f;’; (diag(w@™, 1)).

Now we invoke the asymptotic fomulas of ¢, ,, ; and d,,. Recall () in Section 2.2
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and write ¢ = y?(w). (Note that |c| = 1.) Since ¢ is locally constant and has compact
support, there is /; € N such that for X,Y € F3,if X = Y| < |w| - Sup{|X| | X €
supp(@) c F3}, then ¢(X) = ¢ (Y). Thus

2n+m+l ne 1l n+m nx, 0 dX. ifl>1
e @] -fF3 @ (" xy, w"x,0) - @(x1,x5,x3)dX, if | > [
Cnm.l = 2n+m+l n+ 1t n+m n 0VdX. ifl < =1
c - || -fF3 (T xy, Ty, x3) - @(X1,X2,0)dX, if [ < 1.

Write a,, ,, = [ @(@™ X1, @"x5,0) - @ (x1, %5, %3)dX,
bym = fF3 @ ("M xy, w"xy,Xx3) - @(X1,X5,0)dX.

] .
a ifn>1
Thena,,, = " ) ' where
l&|™ - ay,,,  ifn< -1

a}!l,n’l = J‘F’g‘ (p(wn+m'xl’07 0) . (p(x19x2,x3)dxa
o = [pa @(@"x1,%5,0) - 9(x1,0,23)dX

by s ifn>1
and b, , =1 ™" BT Shere
’ l@|™ b2, ifn<-—I.

Dim = [z @(@"7x1,0,%3) - 9 (x1,X,,0)dX,
bam = Jps 9(@""x1,20,53) - 9 (x1,0,0)dX.

. {kg ifn+m>1,
Again a;, ,, =

. and
|er |~ () khy ifn+m< -1

: k. ifn+m>1 S
bi . = { 3 ' for some constants {k! NN NPT

|cr |~ +m) -ki ifn+m< -1

Note that in codimension 0, 1 case, the theta lift sends a tempered representation to a
tempered one. Thus we know that s, is tempered and by [Prop.8.1, [5]], we see that
it is the irreducible unitary induced representation B( y%, y]z) of GL(2)(F). (here,
since ¥y = (71, r7!), if we regard y as a character of F* using the isomorphism of
U(1) and GL(1), y(x) = y%(x).) Then by ([34], Lemma 3.9), if we take /; large
enough, we assume that form > [y, d,, = Iml% -(cy - ™ +cy-c7™) where ¢, ¢, are
constants.

If o is an unramified representation of U (W,,) and 6 (sr) is the theta lift of s to
U(V,.1),thenBC(6(r)) = BC()y '@y by (8.1.2)in [40]. Recall that GU, (A f)
= (D*xE*)/AF* where D is the quaternion division algebraover F and GU | (A ) =
(GL, (F) x EX)/AF*. Since GL,(F) and D* have the strong multiplicity one theo-
rem and global theta lift is the product of local theta lifts, the unramified computa-
tions of the local theta lifts completely determine the global theta lift from U(1) to
U(2) not at the level of individual represenations but of L-parameters. Thus since
a4 is the theta lift of the trivial representation, we have the L-parameter relation
BC(m,) = BC(]I);/‘1 @ y for all places and so Lg(s,BC(75) ® y) = (1—151*3')2 .
1—y%(1m)q-~v e (Recall y = (y,77") for some unitary character y; of




34 CHAPTER 4. PROOF OF THEOREM 1.0.2

F.) Thus if y2(w) = 1, Lg(s,BC(7,) ® ¥) has a quadruple pole at s = 0 and if
y%(w) # 1, then it has double pole at s = 0.) So in any cases, we have t > 1.

Now, we introduce two notation that we will use in this argument :

o If two meromorphic functions f;,f, differ by a constant multiplication, we write

J1 = fo.

o For two meromorphic functions f1,f, and m € N, if limg 5,04 5™ - (1 () =f2(5)) =
0, we write f; * f> and if f} 2 |2, we simply write f] ~ f>.

Since the integral in the Lemma absolutely converges on R(s) > 0, to prove it, it
suffices to show that each component of the integral

n-m L
Z c2n+m|w.| 5 dman,m . ( Z clal|w|2 (|w|s(\n+m+l\+|n+l|) _ |w.|s(\n+m|+\n\))
neZm=0 i1,

(4.3.2)

Z |W|_mdm . ( Z al(|w|s(|n+m+l|+|n+l|) _ |w|s(|n+m\+\n|)) Cpm l) (4.3.3)

neZ,m=0 -l <l

n-m L
Z c2n+m|w| 5 dman,m . ( Z clal|w|2 (|w.|s(\n+m+l\+|n+l|) _ |w.|s(\n+m|+\n\))
neZm=0 1571,

4.3.4)
are all * 0.

We will first show ()l 0. To do this, we write

L
rl,m,n(s) — clal|w|2 (|w.|s(\n+m+l\+|n+l|) _ |w.|s(\n+m|+\n\))

and decompose () into three component.

n-mn
2 e Ryt () nals)

neZ,m=0 1214 ,l1<—(n+m)

+ Z c2”+m|wln_%d a ( Z r (s))
mn,m l,m,n

neZ,m=0 2]} ,—(n+m)<l<-n

2n+m ”—%d .
+ c || i @nm rl’m,n(s)
ne”Z,m=0 1>11,l>—n

and show each component is Lo.
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For fixed m € N and small %X (s) > 0,

Z c2”+’"|w‘|n_%d a . Z r (s) =
m%n,m lm,n
nez 1=l ,l<—(n+m)

_2¢)—m(L
62n+m | |n(l 2s) m(2+s)d T (fl (S) fzm,n(s))
n<—(m+Il;+1)

where 1 X
(calw|2 ) (calw|?)h
fi(s) = ey T+ and
l-calw|2 & 1-calwl?
1_ 1
sy = (calml? )=ntm) (cglgr|2 )= (nrm)
: _ _

1_9, 1
1l -calw|2™"* 1 -calw|?

Note that f;, /""" ~ 0.
Since

1
Sy gty
m>0 n<—(m+l;+1)

=Y dutda (Y (@l 2

m=0 n<—(m+I;+1)

_1
d,(c w7 2)m
1 - C—2|w|1+2s

~ (=2 1+2s5y/;+1
= (¢l | )

m=>0

_ -1 _
(C 2|w.|1+25)ll+1 1 |w|sll (C 2|w|5)ll )

— -1 s=4\m
= '((de(c lz|” 2) )+01'1_—|w|s+02

1 - C_2|w|1+25 = 1 - C_2|w|5

1-2s)-m(L 1
and so (Zmzo ZnS—(m+ll+l) c2nvm |w|n( s) m(2+S)dman,m) fi(s) Lo.

Furthermore,
%—23 —(n+m) % —(n+m)
C2n+m.|w|n(1—2s)—m(%+s)d ((calwl ) _(calwl )
mY“n,m 1_o 1
m=0 n<—(m+l;+1) 1 -calw|2™" 1 - calw|?
3 3
- -2)m -5 ,—1\n (=s-2)m *5*25 -1\n\| _
Yodwa( Y @PM(cdm 2 (o] (el 2 ) =
m=0 n<—(m+Il;+1)
1113 N +1 113 N +] .
(c|w|2a) (c|w|2a) d (=53 ym ~
- ) D P
1 -clw|2a 1-c w2 a  m20
3 3
(cNwl2a)t*! (¢ Ho|2a)ht! | |1 (c 2wl
3 342 '(1'ﬁ CZ'ﬁ)N
l-clwl2a 1-clwl?™a 1= lw| ol

A -2t 8w
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Thus we see that
Z 02”+m|w|"_%dman,m - ( Z Frmn(8)) Lo.
ne”Z,m=0 [>1y,l<—(n+m)
Next we will show
Yyl E Y Al Y. (calm2)(m e i) Lo,
meN ne”z 1>11,—(n+m)<I<-n
Let
1
Pum(s) = @ a,,, - > (calm|2)! - (| |m — |@|sIn+mi=n)),
I=l],—(n+m)<Il<-n
Then
Z pn,m(s) =
nez
(Ca|w.|%)max{ll,—(n+m)} _ (Calwl%)‘”
Z c2n|w.|nan,m‘(|w|sm_|w|(72n7m)5)‘ S
n<min{-1,—m} 1 - calw|?
and so to show . cmdm|w|_% 2nez Pum(8) L0, it is suffcient to check
Y mdyel (Y puw() L0 (43.5)
0<m<l, -1y -m<n<-1I,
m -z 1
Y md w0 pum(s) L0 (4.3.6)
0<m<l; n<—Ily-m
m -z 1
Z c"d,|w| 2 - ( Z Pnm(s)) ~0 4.3.7)
m=1l,y -l —-m<n<-m
Y () pam(9) Lo (43.8)
lel nS*llfm
ForeachO<m < [,-l; —-m <n < -1,
cmdmlwl_%pn,m(s) Lo
and so () easily follows.
Foreachm € N,
1
> () = (2T gy (5) — (calw 2™ gy ()
n<-ly-m
where
-1 3\ -1 3+25\1 -1 3\l -1 3+25\1
21 (s) = (calw|2)" (¢ alw|2 )" 2, (s) = (calw|2)t (¢ alw|?2 )"
: I—c2m|  1-c2m|l> 52 l-clalm|? 1-clalw?™
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and so () and () follow from this.

For each -/ < k < 0, note that

> a1 o (s) =

lel

(1= [@2) - Y (e + 5 (c2wl)2m) - ((calw|P) ~ (calm|?)mF) ~ 0
m=1,

and so we have ().

To prove

m
- 1
Z c"d,,|lw| 2 Z cznlwlnan’m Z T1mn(8) ~ 0,

meN nez [21,l1>—n

we first decompose -, cwlay,,, lel] I5—n TL.m.n(s) for fixed m into three com-
ponents

142s

1
I 2y
calw|2 1 calw|?2)1
Z C2n|w|nanm . |w.|s(2n+m)( (calw| ]32 _ (calw|?) 1 )
’ 2 +2s 1
n=0 1 -calw|? 1 -ca|lw|2
+
142 [ 1 max{l,,-n}
(calo|2 ™" )maxily.—n (calw|2)maxth.—n
Z C2n|w|nan’m(|w|s(2n+m). o — || -
-m<n<0 1-calw|2™™ 1-calw|?
+
1+2s 1y,-n} 1 max{l,,-n}
, (calg|2 "7 )maxili.—n _ (calw|2)maxtin.=n
Z C2n|w|nan’m(|w|3(2n+m), - —|w| s(2n+m) -
nSm 1 -calw|? 1 -calwl|?

Using the asymptotic formulae of d,,, and a,, ,,,, one can easily see that

14250 1
_m , calw|? ! caj@|?)"!
Z cd, || 2 Z 62n|w|nanm . |w.|5(2n+m)(( || 1 ) _ (calw|?) : ) 1 0.
> >+2s 5
meN n=0 1 -calw|? 1 -calw]|?
Write pl ,,,(s) =
1i2s l,,-n} 1 max{/;,—n}
o (calwIZ )max{ 1,—n (CO!|ID'|2) 1.—h
c’”dmlwl 2C2n|w|nan’m(|w|s(2n+m). T —|@ [ T
1 -calw|? 1-calw|?

and note that p},’m (s) ~ 0. The second sum is decomposed into

YooY pa Y D Phal+ Y D phals)

0<m<l; —m<n<0 l1<m —1,<n<0 [ <m -m<n<-I;
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and since ZO<m<ll Y <n<oPum(s) is a finite sum, it is L0. Foreach -1, <n <0,

one can easily check 3, _, Pjm(5) L0 and so Y <m 2ty <n<o Prm ($) Lo.
Ifn< _ll’

1 1
(Ca|w|§+25)maX<ll,—n} (ca|w|? )max(li,—n}

= @™ - =0

|w.|s(2n+m) .
Lios

I I
1-calw|? 1 -calw|?

and so ZIISm Z_m$n<_ll Ph n(s) = 0. Thus the second sum 2 meN Z_mmsop}l,m(s) =
0.

To show the third sum is L 0, write p2 ,,,(s) =

l‘*‘23')1113.)({11 ,—n}

) (calw]|2 )max(ll,—n}

1
_|w|—s(2n+m), (calw|?

n—m
cm+2ndm|w.| > an’m(|w|s(2n+m T

1
1 —calw|? 1 -calw]|?

We decompose

Yo p2a=> Y pRas)+ Y PRl

meN n<-m meN —m—-1;<n<-m meN n<—

Write k = m + n and for each -/} < k <0,

Y P =Y PR () = Kei (calml) + cx(c alw )™ - gi(s) L 0

meN mEll

where 1 1
(calm|?)™*  (calw|Z™)7*

1.9,
1- cotlwrl2+23

Thus ZmEN Z‘4—m—l|<n<—mp’%sm(s) =0.

8k (s) = T
1 -ca|w|?

Next, for each m € N, some calculation shows that
_m 1
Y PRa(s) =cMd w7 k3 (T alw T g(s) where
n<-m-I,

g(s) = (e aler )" _ (¢ alm| T2
(1-calw?*®)(1 = clalw?) (1 -calw|?)(l - calw|>*%)

andso ), an_m_ll P2 m(s) ~ 0. Thus we have showed ()i 0.

Now, we will show () L 0. To do this, for each ~1; < [ < [;, we decompose

Y @y, al () gy ¢,

neZ,m=0
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into three summands )

is L 0.

meN,n>[; + ZmeN,—ll<n<ll + ZmEN,nS—ll and show that each

Write f,, 1 (s) = |@|™"d,, - a'(|g|sirtm+lisintl) _ g s(nemisinhy . and note
that for each fixed n,m, [, f, ,,; ~ 0.
For each -1 < I < Iy, we see that

Z fn,m,l(s) ~ ( Z (C2|w.|l+2s)n).( Z Cl'(C2|‘lﬂ'|s)m+C2|‘w’|sm)'(|1D'|213—1) 1 0.

meN,n>[, n>l, meN

For all —/; < n,l < I, there exists N; € N such that N; > 2/, and if m > N, then
1

Cpmy = (clw|2)™ - f,, ; for some constants f, ;. Thus

Z fn,m,l(s) = Z fn,m,l(s)+
m>0,-1, <n<ly 0<m<Ny,-l;<n<ly
Z c (62|w.|s)m + C2|w.|sm) . (|w.|s(n+l+\n+l\) _ |w.|s(n+\n|))al 'fn,l

m>=N1,-1l<n<l;

and so

m20,-1;<n<ly

Z fn,m,l

m=>0,n<-1;

Next we decompose

into four summands

+ Z + Z +

n<—ly ,m+n>max{-1,0} n<-Il;,-I<m+n<0 n<-11,0<m+n<-1 n<-Il,m+n<min{-1,0}

IA

The first sum is zero. The second sumis }° ,_, . Zm>k+ll Sk—m.m.; and for each —[
k < 0, there exists N, € N such that N, > [, and if m > N,, then c;_,,

le% -¢7™. Thus
Z Z fk—m,m,l ~

—1<k<0 m=k+1,

(Y feemmp) + ((A=1@172K) Y (eql@™ + el 2a™)) Lo
k+1y<m<N, m=N,

Q

Similarly, we can show the third sum Lo.
The fourth sum is decomposed into

fn,m,l + Z fn,m,l

n<-Iy,-ly <m+n<min{-/,0} n<-ly,m+n<-I,

and as we have done in the above, it is easy to see

1
fn,m,l ~ 0.

n<-Ily,-ly <m+n<min{-7,0}
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Note

Z fn,m,l = Z fn,m,l + Z fn,m,l'

n<-Il|,m+n<-I; 0<m<l|,n<-1y ,m+n<-1I, m>ly ,n<—l;,m+n<-1,

Foreach 0 < m < [,

S fumi = dulela ) (g2 1) Y (|29 Lo,

n<—-Il,-m n<-ly-m

Z Z fn,m,l

m=ly n<—Il;-m

~ (|w|—21s _ 1)(Cl (c2|w.|—(l+s))m + C2|w|—(1+s)m) . Z (C2|w|—(l+2s))n
n<-Il{-m

On the other hand,

= (2|2 (w2 =) (Y e[ e (e )) Lo,
m=1,

Thusve see that the fourth sum Zn<_ll mtn<min{1,0)Jn.m.1 15 also L 0 and we showed

®.3.3) Lo.

_1 v
Last, we will show () L 0. To do this, write Zk_ll clallw| 2 (e |sintm+i+inll) _
|w|s(|n+m|+\n|) as

1 _ _
Z (Cilail|lﬂ|2)l . (|w|s(|n+m ll+|n=1)) _ |w|s(|n+m\+|n|)
i1,

and decompose it into three summands

((c71a71|w|%+25)l X |w.|fs(2n+m) _ (071(171|‘(D'|%)l X |w|s(|n+m|+\n|))

[=1,I>(n+m)

1
Z (C—la—l|w|§)l (| - |m|s(|n+m\+|n|))

[=2] ,n<I<n+m

Z ((C—la—l|w|%*25)l . |w|s(2n+m) _ (C—la—l|w|%)l . |w.|s(2n+m)).

[2ly,lsn

We write M,, ,,, = max{l;,m + n + 1}. Then for fixed m,n € N and small R (s) > 0,

1 1
((C—la—1|w,|2+25)l . |w|—s(2n+m) _ (C‘_ll)l_l|w|2)l . |w|s(|n+m\+|n|)) —

=1y ,I>(n+m)

|w.|fs(2n+m) (cfl a-! |w|%+2s)Mn,m |w|s(|n+m\+|n|) (C71 a-! |w|%)Mn,m

1 I
1—clal|@m|2™ 1 -cla w2



4.3. PROOF OF LEMMA 3.3.1

Denote

2n+ n-%
cn m|w| zdman,m'(

41

|w|—s(2n+m)(C—la—1|w|%+25)Mn,m |W|S(|n+m\+\n|)(C—la—l|w|%)Mn,m

1
1—clglw|z™

by g,,.m(s) and note g,, ,,,(s) ~ 0. We shall show 3 o - &nm(5) Lo.

Decompose Y (s) into

m=>0,neN En,m

Z gn,m(s) + Z gn,m(s) + Z gn,m(s)

m=>0,n>0 m=>-n,n<0 m<-n,n<0

and the first sum decomposes again into

Gum(s) + Y

0<m<l;-10<n<l;-m-1 0<m<ly-11;-m<n [1<m0<n

Y um®+ YD Gumls

)-

1
1-cla w2

Since the first term in the above is a finite sum, 3, ;1 X 0<p<t, -1 8nm(s) ~ 0.

ForeachO < m < I; =1, %, . 8um() ~ X, o, 8m(s) = dy(a @)™ -

anll g} (s) where

_ 3 1 142, _ 342 1
(ca Y 2) (¢ la N @2™)  (ca w|2") (e la o]

%+2x)

1 —
8n($) = Li2s

I
1-cla lw|2 1-clalw|2

and note that anll g} (s) ~ 0. Thus the second term ZOsmsll 71 lefmgn 8nm(8) ~

0.

The thirdterm 3", _, >0, 8nm ()18 2, <y Do<nar, 8nam )+ 2p, <o 21y <n 8nm (9)-

_ lig -1 - lis
ForeachOSn<ll,legmgn’m = (legmcl(ca e |2™) 1oy (e La~ a2 7)™).

g% (s) where

_ _ 1 _ _ 1.2 T 1.2 _ _ 1
(cla Na2) (cla Hw2™) (e la w27 (c e |w|2)

2 —
g"(s) N ( %+23

I
1 -cla lw| 1 -cla w2

Thus legm 205n<11 gn.m(s) ~ 0and

).

YN g = (Y 8h)( Y crtcalmT ) ey (e a @ 2™ ~ 0.

li<ml<n nxly l1<m

Since the above three components of ) (s) are all ~ 0,

m=0,n>0 8n,m

Z &nm(s) ~ 0.

m=>0,n>0

)
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Next we divide Z‘4m2—rz,rz<0 gn,m (S) = Zmz—n,—ll <n<0 g”,m (S) + Zmz—n,ns—ll gﬂ’m (S) :
For each —[; < n <0,

1 1
-1..-1 5+2s ~1,.,-1 >
c o w2 cla w2 L 1
Y Eum(®) = ( - )k (e La e 2)",(s)
mz—n+l, 1 -cla w2 1 -cla w2
where k, = [, (0, @"x,,0) - ¢ (xy,x;,x3)dX and
1i¢ log
£1(s) ci(a Vw2 ™) th + ey (c2aw|2™)th
n S) = 1 1
1-a 2™ 1-c2¢ w|2™
Thus

Z gn,m(s) = Z gn,m(s) + Z gn’m(s) ~ 0.

m=-n,—1; <n<0 —n<m<-n+ly,—-1;<n<0 m=-n+ly,-1,<n<0

Next, we divide

Y gumls) = Yo o)+ Yo gum(s)

m<-n,n<0 n<-1y,0<sm<-n-1; n<0,-n—l;<m<-n
Again,
gn,m(s) ~ Z gn,m(s) + Z 8n,m
n<-[y,0<m<-n-I, n<-21,,0<m<l, n<=-21y,ly<m<-n-1,

and foreachO <m <1y, 3, _ > &um =

140, 1 1
(cla Nw2™)h (7 la N w|2)h

1
E+Zs 1

dm(C|W|_%_S)m'( ) Z (02|w|—1—2s>n ~ 0.

1
1 -cla o] —cla llm|Z2 w2y

Note that Y’

n<-21y 1y <sm<-n—1; 8n.m =

1 . 1425y -1,,-1 1
(cla w20 (e la Nw|2)h i
- f2(s) - (Pla|~1725)n

>+2s

1 1/
1 -cla w2 1 -cla w2 ni2y

where

. (02|w.|7lfs)ll _ (c2|w.|flfs)—n—ll e (|w.|flfs)ll _ (|w.|717s)—n—ll
1= ca|1=s > 1—|w| 1

2(s) = ¢

&1

| 7=

=

!

11’
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1 1
Thus 3, 5/, 1, <men—t, Gnm(8) ~Oandso ¥, o &nm($) ~ 0.

To show Y. Cn—ly <m<—n &n.m(8) L 0,let k = n + m and for each -1, < k < 0, we

will check ¥ o gx-n(s) 2 0.

D Enken(S) = Y Gugenls) = (1 ) |2 ey > (2lar| "2y

n<0 n<-2I0 n<-21I4 n<-2I,
where 1 ]
sy < (e lwEP (e )
n >, = 1ios 1
l-claVwZ™ 1-cla w2

Thus Zn<0,—n—11§m<—n 8 (S) L0 and so we checked

) 1
((c*1()1*1|w|2+ N |s@rrm) _ (e~ lg=1|z(2)! . || ntmi+inl)y Lo.
121, ,I>(n+m)

Next we turn to show

n-m 1 1
Z 62n+m|w.| zdman,m'( Z (C 10{ 1|w|2)l‘(|w|sm_|w|s(\n+m|+|n\))) ~0.
neZ,m=0 121 ,n<I<n+m

Itequals 3. cmdm|w|_% 2 s0fnm(s) where

1
Fum(s) = c*w"a,,,, - ( Z (cla w2 (lom - IWISQ”””))).
[2] ,n<l<n+m
Then
an,m(s) = Z fn,m(s) + an,m(s)
n>0 O<n<l-1 li<n
and

Z cmdm|w|_%( Z fn,m(s)) ~ Z Cmdm|w|_%( Z fn,m(s)) =

m=0 0O<n<l -1 m>21, 0<n<l -1

1 1
-1,-1 sy _ (1,1 s \yn+m+1
5 5 (s=Lym (cTra 'wm|?) (cra 'wm|?)
E c ot (1-w|7™) E cdylw |72 ay, T .
0<n<l;-1 m>21, 1 - 6‘710{71|‘07|2

ForeachO<n </ -1,

1 1
(c‘la‘1|w|2 )ll _ (c‘la‘1|w|2 )n+m+1

(s—=Lym
Z 'd, w2 ay, , T
m>21, 1-clalw|2
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and so

Y M wE( D fua(9) L0,

m=>0 0<n<ly-1

Foreachm € N,

Y pn = @ (1= (e @ 2)7) - (Y (ea @) - (ca Nl F ),

nxl; nxl;

Thus )’ mdmlwl_% anllfn,m L0 and so we showed

m=0 ¢

_m 1
Yo e (Y (@ a w) (e i ) Lo,

neZ,m=0 121 ,n<l<n+m

Finally, we investigate the last sum

; o1 1_ 1
Z 62n+m|wl(1+25)n+(3 2)mdman,m'( (cla Vw|2 25)1—(c“a‘1|w|2)l).
neZ.,m>0 L1 <l<n
(4.3.9)
It equals

ki - Z dm(clwls_%)m( Z (|w|'*2%)" - g, (s)) where

m=>0 }’lEZl

gn(s) =

1 1l 9 1 1 9 1 1 1 1
(C la 1|CD'|2 S)l] ( 1 ]|CD'|2 S)n+l ~ (C la l|w|2)l1 —(C la 1|w|2)n+1
— -2s ’

1 1y —1(pr|5
1-clalw|2 1-cla Y ow|?

Thus Zn>l (@ |*25)" . g, (s) ~ 0 and Y 50 dm (clz|®” ) 2 (), and so we see

thatt.3.9 L 0.

We have checked (-) 0.

Putting all these things together, we verified our claim ().

&) 8



Chapter 5

The comparison of two L-values

In this chapter, for 73 = ®(o) and 7, = @ (1), we shall show that the L-function in
the Refined Gross-Prasad conjecture

Lg(s,BC(,) R BC(73))
Lp(s+ 4,75, Ad)Lp(s + £, 73,Ad)

would have double pole at s = % and relate this to our L-value

- Lg(5,BC(0) ® )¢ p(s)Lp(0, 7?)
520+ {p($)L3(1, xg/p)$p(2)Lg(3,BC(0) ® ¥3)

appearing in Remark [1.0.6.

Since BC(0,(0,)) is non-tempered for almost all places, by Theorem 5.1.1 in [[7],

there exists a set of finite places S such that for v ¢ S, BC(0,,(g,)) has L-parameter
1

1 _1
v 11z ®BC(a,) - y2ey-|- |g> as arepresentation of WD(E,,). We also know
that the L-parameter ofBC(Hv(]_IV)) is BC(]_IV)}/‘1 By.

On the other hand, by results in [6], if 77 is an automorphic represenation of U (n) (A 1),

then
Ly (s, m,Ad) = Lg(s,BC(r), Asai™"").

(Here, we view BC (sr) as arepresentation of GL(n) (F') viarestriction of scalar Resg,
and RHS L-function is ‘Asai’ (if n is even) or ‘twisted Asai’ (if n is odd) L-function.)

Then for v ¢ S, we can easily check the following
(I)LFV(S, 0,(0,),Ad) = LFV(S +1, )(EV/FV) ‘LF‘,(S -1, )(E‘,/FV) ‘LFV(S, ){EV/FV)3'
1 - 73 1 - 73
Lg (s+ E,BC(O‘V)}/ ) - Lg, (s — E,BC(O‘V)}/ )

45
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() Lp, (5,0,(L,),Ad) = Ly, (s, xg,/r,)* - Le, (5, 7%,
(3) Lg, (5, BC(0,(5,)) ®BC(0,(L,))) = (g (s+ 1) - ¢ (s = 1)

Lg (s,BC(d,) - 7™") - Lg,(s,BC(d,) -y %) - Lg

v 2 v

Thus for s & S,

LEV(SaBC(Hv(]IV) EBC(BV(OTV)) _

Lr (s+1,0,(I,),Ad)Lg (s + 1,0,(5,),Ad)

Lp(s,BC(6,) ® y™) - Lp (s+4) - ¢p (5= 1) Ly (s = 1.9?)

1 1
(S+ 5,72 -Lg (s - 5 72).

LEV(S + l,BC(O'_V) . }/_3) ‘LFV(S - %, ZEV/FV) . LFV(S + %, ZEV/FV)S ‘LFV(S +
and so the partial L-function

L3.(s,BC(0(I) ® BC(0(5))
Li(s+1,0(I),Ad) - Ly(s + 1,0(5),Ad)

3

2°

)(EV/FV)

has at most double pole at s = 1 and so does the complete L-function because all local

2
L-factors are holomorphic and nonzero there.

By Lemma 3.5 in [§], we see that
1 _ _1 1
LEV(E’BC(UV) ®y )= LEV(E’BC(JV) ® y) and

Lg (s+1,BC(d,) - y™3) =Lg (s + 1,BC(a,) - 7).

Thus our partial L-value in Remark can be written as the limit of

L35Gs, xgyr) - LS(s + 1, xgyp)* - LS(s + 2, x gyr)
£S(s) - S5+ 1) - &S(s+2)

X

Li(s+ 1,BC(6(I) 8 BC(0(5))
Ly(s+ 1,0(I),Ad) - L3 (s + 1,0(5), Ad)

as s goes to 0.



Part 11

A uniqueness theorem for
functions in the extended Selberg
class
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Chapter 6

A preview of the second part

Most L-functions used in number theory share some common analytic properties such
as meromorphic continuation and functional equation and Euler product. Further-
more, they are also expected to satisfy certain Riemann hypothesis type conjectures.
This observations push to make an axiomatic definition of a class which contains all
these L-functions. In [B6] A. Selberg introduced a class of meromorphic functions
L(s), now called the Selberg class and denoted by .#, satisfying the following five
axioms:

(1) (Dirichlet series) L(s) has a Dirichlet series representation

L(s) = i ar(;l)
n=1

which is absolutely convergent for ¢ > 1.

(2) (Analytic continuation) There is a nonnegative integer m such that (s — 1) L(s)
is an entire function of finite order.

(3) (Functional equation) L(s) satisfies a functional equation of the form

(s =0 +it)

®(s) = wd(1 -53),

where
K

®(s) = Q° [ T (A + pj)L(s)
j=1
with Q > 0, Aj >0,Reuj > 0and |w| = 1.
(4) (Ramanujan hypothesis) For every € > 0, we have a(n) «, n¢.
(5) (Euler product) For all sufficiently large o,

L(s) = HGXP(Z b(pk) ),

pks

where the product is over all primes p and b(p*) « p*? for some fixed 6 < %

49
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It is sometimes convenient to consider the wider class of functions that satisfy
axioms (1)—(3) above and do not vanish identically. J. Kaczorowski and A. Perelli [23]
call this set the extended Selberg class and denote it by & #. For L(s) in either class,
we define the degree of L(s) to be

A=2) 4, (6.0.1)
J

Given a Dirichlet series L(s) and a complex number ¢, we let L~1(c) denote the preim-
age of ¢ under L, that is, L Y¢)={se C:L(s) =c}. Itis relatively straightforward
to show that if two Dirichlet series L, (s) and L, (s) satisfy axioms (1)—(3), have con-
stant coefficients a;(1) = 1 and a,(1) = 1, and take a value c at exactly the same
points with the same multiplicities, then L; (s) = L, (s) (see J. Steuding [38, p. 152]).
However, if we drop the requirement that all multiplicities match, this becomes a more
difficult problem. Let Ny (T') denote the number of zeros of L(s) — ¢ in the rectangle
0 < Res < 1, [f| £ T counting multiplicities, and let NE(T) denote the number of
distinct zeros in this rectangle. J. Steuding [38, p. 152] proved the following theorem.

Theorem A. Suppose that two Dirichlet series Ly (s) and L, (s) satisfy axioms (1)—(4),
share the same functional equation, and have leading coefficients a; (1) = a,(1) = L.
Suppose also that L7! (¢j) = L3 1 (¢j) for two distinct complex numbers ¢y and c,, and
that for either j = 1 or 2 we have

NNy
lim inf —= & > 5
7= Ny!(T) + Np(T)

(6.0.2)

Then Ly (s) = L, (s).

The condition () is quite difficult to verify and, as of this writing, is not known
to hold for any L-function of degree greater than 1. Thus, B. Q. Li [27] made a sub-
stantial improvement by removing it.

Theorem B. Suppose that two Dirichlet series L, (s) and L, (s) satisfy axioms (1)—(4),
share the same functional equation, and have leading coefficients a; (1) = a5 (1) = 1.
Ile‘1 (¢j) = Lgl (c]-)for two distinct complex numbers c| and c,, then L (s) = L, (s).

Recently, Ki [22] made a further improvement by showing that if L; (s) and L, (s)
have positive degree, one can dispense with axiom (4) and, more importantly, one
only needs to assume L7 ! (c) = L;!(c) for a single nonzero value of c.

Theorem C. Suppose that two Dirichlet series L (s) and L, (s) are in the extended
Selberg class, that is, they satisfy axioms (1)—(3), have positive degree, have leading
coefficients ay (1) = ay(1) = 1, and share the same functional equation. If L' (c) =
Lil (c) for a nonzero complex number c, then L (s) = L, (s).
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Our purpose is to show that one can even dispense with the condition that L, (s)
and L, (s) satisfy the same functional equation and that a; (1) = a,(1).

Main Theorem. (/|/1]) Suppose that two Dirichlet series L (s) and L,(s) are in
the extended Selberg class, have positive degree. If Ll‘1 (c) = Ly L(¢) for a nonzero
complex number c, then L (s) = L, (s).

To show that the conclusion of Main Theorem (and Theorem C) need not hold if
the L-functions have degree zero, H. Ki [22] notes that

\/_2 3\/_ 18 6\/_

Li(s) =1+ =< 45, Ly(s) =1+ 5 K g 16s

satisfy all the other conditions of Theorem 1 and that

s

Ly(s)— 1= %(Ll(s) —1)°.

Thus, Lfl (1) = Lgl(l), but L{(s) # L,(s). To see that the case ¢ = 0 must be
excluded, one can take L; (s) = L(s) and L, (s) = L(s)? for any nontrivial L(s) € PE

The question naturally arises as to what additional conditions must be imposed in
order for Theorem 1 to remain valid when ¢ = 0. We say that a nontrivial function
L(s) in the extended Selberg class S* is primitive if L(s) = L (s)L,(s) for some two
functions L (s), L, (s) € S*. then Li(s) = const or L,(s) = const. In [[1(] it was
shown that the main theorem with ¢ = 0 is true for degree 1 functions L (s), L, (s)
in the Selberg class. We conjecture that main theorem with ¢ = 0 holds for two func-
tions L, (s), L, (s) in the extended Selberg class . # provided that L (s) and L, (s) are
primitive. Indeed, there is a fundamental conjecture in this direction as follow.

Conjecture. No two distinct primitive function in the Selberg class share any non-
trivial complex zeros.

It is widely believed that it should be true, but it seems to be in a very remote
future.

This rest of the part is organized as follows. In chapter 2, we give three prominent
examples of Selberg class, Dirichlet L-functions, Artin-L-functions and automorphic
L-functions and survey some conjectures on Selberg class. In chapter 3, we first prove
3 lemmas and then prove our main theorem.
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Chapter 7

Examples and related conjectures

In this chapter, we give three examples of Selberg class. Since Jerzy Kaczorowski
made a neat exposition on them, we his treatise in [21].

7.1 Examples of Selberg class

Riemann zeta function and Dirichlet L-functions

For ¢ > 1, the Riemann zeta function is defined by the absolutely convergent

Dirichlet series
S|
g(s) = Z P
n=1

and its analytic continuation elsewhere. The only singularity is the simple pole at
s = 1 whose residue is 1. For ¢ > 1, It is well known that it has the Euler product

L) =JJa-p=" (7.1.1)

p

where p runs over primes. Furthermore, using the transformation formula of elliptic
theta series and Mellin inversion formula of it, the functional equation

_s —1l=s 1-
7 3(3)6() = 77 T D)6 (1 =)

where I’ (s) is the Gamma function.

By (), £ (s) has no zero in the half plane ¢ > 1 and by functional equation
and since the Gamma function that I'(s) has simple poles at s = 0, -1, -2, ... and no
zeros, it has trivial zeros at even negative integers. It is known that infinitely many
non-trivial zeros are in critical strip 0 < ¢ < 1 and Riemann hypothesis predicts that
1

all lie in critical line s = 5
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Riemann zeta function can be generalized to Dirichlet L-function. For an integer
k > 0, a group homomorphism y : (Z/kZ)* — S! can be extended to on integers
relatively prime to k and then whole interger if we define y (n) = O for (n,k) # 1.
These characters are called Dirichlet character (mod k) and

1 if (n,k) =1
mw={ if (n, k)

0 otherwise

is called principal character (mod k). For k’|k, there is a natural map (Z/kZ)* —
(Z/k’Z)* and if a Dirichlet character y (mod k) does not factor through »’ (mod
k") for a proper divisor k’|k, then we call y primitive Dirichlet character. Note that all
Dirichlet characters (mod 1) are trivial and is called trivial character. (i.e. y(n) = 1
for all nonzero integer n € Z and y(0) = 0)

Dirichlet L-function associated with a Dirichlet character y is defined for o > 1
by the absolute convergence series

Lis. =) £
n=1

n

and by analytic continuation elsewhere. It has Euler product

Lis, ) = [J(1 - 222
4 P

and in the case of primitive chracter y (mod k), it has functional equation

P(s, x) = w,®(l-s, %)

where ; (1)
LT B TELY 24
®(s, x) = ()2 T(—=") - Lis x),
(7) 0 if y(-1)=1
a =
X 1 otherwise,
and (7)
T
©, = ,
£ alo i
and 7(y) denotes the corresponding Gaussian sum. We have |w )(| = 1. As in the

Riemann zeta function, L(s, y) does not vanish for ¢ > 1 and for k > 1 and primitive
Dirichlet chracter y (mod k), trivial zeros occurs at points

s=-2n—-a(y), n=0.

According to Generalized Riemann Hypothesis, all non-trivial zeros lie on the critical
line.
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Artin L-function

Let K/k be a normal extension of algebraic number fields with the Galois group G
and rings of integers O and O respectively. Denote by p a finite dimensional rep-
resentation of G in a vector space V. Moreover, let y denote its character.

Given a prime p of k, we choose a prime P of K lying above p. Let Dy := {0 €
G:P? =Pland Iy := {0 € G : g(a) = a(mod)) for every a € O 4}.denote
the decomposition group and inertia group respectively. The quotient group Dy /Iy
is canonically isomorphic to the Galois group of O /p C O /P. Let oy = [KTfk]he
corresponding denote the corresponding Frobenius substitution. We write

vhvi=(veV:p(o)(v) = vfor every o € Iy}.

We define the local Artin’s L-function corresponding to a finite prime P of k by the

formula |

Lo RIE0) = QT =N plog”

(7.1.2)

where I denotes the unit matrix of dimension dimV’® and s denotes a complex num-
ber with positive real part. One checks without difficulty that the RHS of (2.2) does
not depend on the particular choice of P above p and that it is the same for all equiv-
alent representations. Therefore, L, (s, K/k, p) depends only on y and we can write
L,(s,K/k, x) instead of L, (s, K /k, p).

Let us fix a rational prime p and consider the product L, (s, K /k, ) of all local
Artin’s L-functoins taken over all finite primes p of k lying above p,

L,(s.K/k, ) = [ | L,(s. K[k, x).
plp

Suppose for simplicity that p is unramified in K/Q. Then vl = v for every plp.
Moreover, we can assume without loss of generality that p(oq) is represented by a

diagonal matrix
€1 0
( ) , (n =dimV).
0 €,

Since G is a finite group, €;’s are roots of unity. Therefore,
L,(s,K/k, x) n(l—eN —5)-1
Ifpy,pp, -, pn are all prlmes of k lying above p, then N (P;) pf foreveryj =1,---,t
and th.zl 1= ]. Hence
nlk:Q]

Ly(s,K/k, x) = [] (1=¢;,p™)"! (7.1.3)
Jj=1
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for certain roots of unity ¢; ,. So L,(s,K/k, x) is the inverse of a polynomial of
degree [k : Q]dimV at p~S. Roots of polynomial in question are roots of unity. For
the infinite number of ramifying primes p, we have a similar statement but in these
cases degress of the involved polynomials are smaller than [k : Q]dimV.

The global Artin’s L-function L(s,K /k, p) is defined as the product of all local
factors : L(s, K /k, p) = Hp L,(s,K/k, x). The product converges for Re(s) > 1 and
hence L(s, K /k, y) is holomorphic in this half plane.

Expanding local factors in (2.3), one can write L(s, K /k, y) for Re(s) > 1 as an
absolutely convergent Dirichlet series

n=1

say. Absolute values of coefficients are bounded by appropriate divisor function and
therefore the following Ramanujan condition holds

a(n) < n€
for every positie €.

Theorem. (Artin) We have
1. For two characters y | and y, of G we have

L(s,K/k, y1+ y2) =L(s,K/k, y1)L(s,K/k, ).

2. If H is a subgroup of G and E denotes the corresponding field then for every char-
acter y of H
L(s,K/k, y) = L(s,K/k, Ind' "),

where I ndg( x ) denotes the induced chracter of G.
3. If H is a normal subgroup of G then every character y of the quotient group G|/H
defines in a canonical way a character y’ of G and

L(s,E/k, x) = L(s,K/k, ")

4. (Artin’s reciprocity law) If K /k is abelian, then for every character y of G there
exists an ideal f € O and a character y* of the ideal class group Hf* such that

L(s,K/k, ) =L (s, x*)
where L (s, y*) denotes the Hecke L-function of k associated with y*.

The first property reduces study of Artin L-functions to the case of irreducible
representations. The last property provides analytic continuation of all abelian Artin
L-functions. Using 3, we can define Artin’s L-functions to every (virtual) character of
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Gal(Q/Q). Letus take H = 1 in 2. Then the induced representtion is just the regular
representation of G, and the induced chracter is Y ¥ (dim y) y, where the sum is over
all irreducible chracters of G. Since L(s, K /k, 1) is the Dedekind zeta function of K,
as a consequnce we obtain

Lx(s) = [[L(s. Kk, x)9m2.
X

Conjecture. (Artin’s conjecture) Every L(s,K /k, y), where y is the character of an
irreducible representation admits meromorphic continuation to the whole complex
plane. It is entire if y # 1 and has a simple pole at s = 1 otherwise.

The most successful approach to this conjecture uses Theorem 2 and a theorem
of Brauer that every character of a finite group is a linear combination with integer
coeflicients of characters induced by characters of degree 1. Hence by theorem 2, we
can write

J
L(s,K/k, y ]_[L”f s.K/E;, x}) (7.1.4)
Jj=

for certain intermediate fields k C E; C K, degree one characters y; of groups G; =
Gal(K /E;) and certain integers n;. Every character of degree one factors through G,
the quotient of G; by its commutative subgroup. Hence using theorem Theorem 2, we
see that the corresponding factors on the RHS of (2.4) coincide with Artin L-functions
of certain abelian extensions F;/E; with F; C K and hence, by the Artin’s reciprocity
law, they are Hecke L-functions.

Therefore we see that every Artin’s L-function can be written as a quotient of
products of Hecke L-functions associated with finite order Hecke characters of certain
intermediate fields k C E; C K. In particular, it admits meromorphic continuation to
the whole complex plane and satisfies a functional equation with multiple gamma
factors.

Let us consider the problem of functional equation with more care. Let v be a real
infinite prime of k and let w be an infinite prime of K lying above v. Let ¢, denote the
generator of the inertia group G(w) = {0 € G : ow = w}. Note that G(w) is cyclic of
order at most 2 and hence o, exists. The matrix p(o,,) has at most two eigenvalues
+1 or -1. Accordingly, V splits into the direct sum of two subspaces V = V;f & V.

For complex s, we write

gs) = 2 y(5).

9]«

Then for every infinite prime v of k, let

(s) = {g(s)dimvg(s + 1)dmYif y is complex ,

. dimVy, . .
g(5)dimVIg(s+ DY ey s real,
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We define the gamma factor of y as follows:

Yy = ]_[ 7 (5),

where the products is taken over all infinite primes of k. In order to define the gamma
factor of L(s, K /k, y) and write the functional equation we have to introduce Artin’s
conductor of y. We proceed locally. Let p be a prime of £ and let P be a prime of K
lying above p. We denote by G, (i = 0) the corresponding ramification groups. Write

(o] G.
n(y,p) = Y —~codimVYi.
2,5,

Artin proved that this is an integer. We have n( y, p) = 0 for unramified p. Hence the
following product

f(x,KJk) l_[ p (%P
is well defined and represents an ideal of k, called the Artin conductor.

Theorem. The completed Artin L-function

A(s. Kk, ) =A(x)37 , (5)L(s. K [k, y).

where
A(x) = D™V Ny o (f (1, K [k))
and D denotes the absolute discriminant of k, satisfies the following functional equa-
tion
A =s,K/k, x) =W(x)A(s,K/k, ),
for some constant W ( y) of absolute value I (the Artin root number)

As we have already seen every Artin’s L-function can be expressed as a product
of Hecke L-functions. If

J
L(s,K/k, y HLIS)(J
J=

\.

where E;’s are intermediate fields (k C E; C K), y;’s are Hecke characters of finite
order and n; ’s are integers, then

J
= H w(x j)nj .
j=1
So that the Artin root number is expressed in terms of root numbers of Hecke L-
functions and therefore in terms of generalized Gaussian sums It follows in particular
that W ( y) is always an algebraic number.

Remark 7.1.1. Theorem @ shows that the L-functions attached to cuspidal auto-
morphic satisfy the axioms of Selberg class except for Ramanujan hypothesis. It is
believed that the functions in the Selberg class would be automorphic L-functions.
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7.2 Several conjectures on Selberg class

We collect several basic properties of Selberg class. As with the Riemann zeta func-
tion, an element L of .# has trivial zeroes that arise from the poles of the Gamma factor
I'(s). The other zeroes are referred to as the non-trivial zeroes of L. All these will be
located in some strip {s € C | 1—A < Re(s) < A} for some 0 < A < 1. Selberg
showed that NB(T), the number of non-trivial zeroesof Lin {s € C | [Ims| < T}
counting multiplicity,

TlogT
a

NXUT) = y; +c¢,. T +0(logT).

where c; is a constant and y; is the degree we defined in ().
If L, and L, are in the Selberg class, then so is their product and

XLL, = XL, Y XL,-

Every function L # 1 of S can be written as a product of primitive functions. Selberg’s
conjectures 1,2, described below, imply that the factorization into primitive functions
is unique.

2
Conjecture 1. Forall Lin #, there is an integer n; such that Zpgx @ = n; loglogx+
O(1) and n;, = 1 whenever L is primitive.
Conjecture 2. For two distinctive primitive L(s),L’ (s) € %,
a,a,

Y =0

pP<x p
Conjecture 3. (Riemann hypothesis for .#)
For all L in #, the non-trivial zeros of L all lie on the line Re(s) = %

Main Theorem. (/2], [30]) We asume Selberg’s conjecture 1, 2. Then factoriazation
into primitie functions in ¥ is unique up to the order of factors.

Proof. Let Py,P5,---,P,,,01,05,-+,0, be in pairs different primitive elements of
the Selberg class such that

PS1(s) - P (s) = Q) (s) - O (s)

for certain positive integers e, e, -, e,, and fi,f>, - ,f,. Comparing p-th coeffi-
cients of both sides we have

ejap,(p) + -+ +eyap, (p) = frag, (p) + - + frag, (p).
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Multiplying aP},(p)

and summing over primes p < x, we obtain

e Z |apl i Z ap, (p)apl ») i Z 0,(p) apl( ).
j=1

pPsx psx pPsx

By the Selberg’s conjecture 1,2 , LHS is e; log xlogx + O(1) whereas RHS is O(1),
a contradiction.

IfF =P - Py is a factorization into powers of distinct primitive functions,
then Selberg’s conjecture 1,2 implies that

Z |aF —nFlogxlogx+0(1)
p<x

, where n is an integer given by the formula

m
ng = Z 352
i=1
Hence, under Selberg’s conjecture 1, 2, F' is primitive if and only if np = 1.

O]

There is also another important conjecture so called General Converse Conjecture
and we briefly introduce it.
Ford = 0, let
={FeS:dr=4d},

St = {F e St :dp = d).
Then the General converse conjecture says

Conjecture. 1.(Degree conjecture) For d ¢ N u {0}, Sﬁ, =S,=0
2. For d e Nu {0}, if F € S, then F is an automorphic L-function.

Main Theorem. Let Q > Oand forj=1,2,---,r, ;> O,,uj IS (C,Re(uj) > 0 and
w € C,|w| = 1 be arbitrary. Moreover, put

7(s) =0 [T (s + uy).
i=1

Then the functional equation
v (O)F(s) =wy (1 -§5F()

has uncountably many independent solutions in the set of Generalized Dirichlet series

Z a(n)e %  where 6,>0.
n=1



7.2. SEVERAL CONJECTURES ON SELBERG CLASS 61

Corollary 7.2.1. General Converse conjecture fails in case of the Generalized Dirich-
let series.

For now, the general converse conjecture is known to be true for 0 < d < 2 and
unknown for d > 2. In particular, ford = 1, if F € S, then F should be L(s + i6, y)
where y is primitive and § € R.
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Chapter 8

Proof of the Main Theorem

8.1 Lemmas

In this section we state some basic facts and prove the lemmas required for the proof
of the main theorem. We begin with some observations about functions with positive
degree in the extended Selberg class S*.
When L(s) has positive degree, the functional equation in axiom (3) may be writ-
ten
L(s) = y(s)L(1 —-75), (8.1.1)

where P ( )
F(A;(1-s)+pn;
x(s) = 0@ ’ ’

(8.1.2)

lw| =1, O, Aj > 0, andReuj > 0.
The Gamma function I'(s) has simple poles at s = 0,-1,-2,..., and no zeros.
Thus, for 1 <j < K, y(s) has simple poles at the points

m+ [
s=1+ 8 m=01,2,.0),
A
and zeros at the points
m+ [
s=- zh (m=0,1,2,...).

J

By () these zeros are also zeros of L(s), with the possible exception of s = 0,
which occurs if one or more of the u ;= 0. For if L(s) has a pole at s = 1, it could
cancel this zero. In any case, we call these zeros of L(s) “trivial” zeros. They all have
real part less than or equal to 0, and may have multiplicity greater than one. We shall
denote them by pq, p5, p3,..., where Re p; = Re p, = Re p3 > -+, and where each
zero is listed as many times as its multiplicity.

63 4
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The following observations will be useful.
(i) Imp,| <Bgforn=1,2,3,..., where By= max |Im ,uj|/l-;
1<j<K

(i) Dg= m;iEn P — Pyl exists and Dy > 0;
Pm#Pn

GhHEY lz(le)U+0(l):lU/2+0(1), as U - oo;

-U<Re p, <0 J<K
(iv) there is a number Ay > O such that L(s) has only trivial zeros in ¢ < —A( and
these are the same, counting multiplicities, as the zeros of y (s) in this half-plane.

To see why the last assertion is true, note that we may write

a(k)

L(s) = %5

(I+o0(1)) as o — oo,

where a(k) # Oand a(l) = Ofor/ < k. Hence, If Ay > 0 is sufficiently large, L(s) # 0
for o > Ag. It follows from this and () that L (s) only has trivial zeros in ¢ < —A,.
We have already seen that these are also zeros of y (s) with the same multiplicities.
Note that the constants Ay, By, Cy, and D depend at most on K and the x; and 4;.

For an arbitrary meromorphic function F(s), let p denote a generic one of its
zeros, and for 01, 04, T > 0 define

Np(oy,04) = Z 1

o1<Re p<o,

Np(oy,02:1) = Z L.

o1<Re p<o,
Im p|<t

Then with A, and B, as above, we clearly have
Ny (-U,-Ag) = N.(-U,-Ag;By) = AU/2 + O(1). (8.1.3)
We now proceed to our lemmas.

Lemma 8.1.1. Suppose that L(s) is in the extended Selberg class and has positive
degree. For any fixed complex number ¢ #+ 0, there exist positive constants A, By,
and Cy depending at most on K and the p; and A;, such that

(a) Ni_.(-U,-Aq) =N;_.(-U,-A{;B1) = AU/2+0(), asU — oo;

(b) each zero of L(s) — c in 0 < —A, is within |p,,|~€11°81P4l of a trivial zero p,, of
L(s);

(c) allthe zeros of L(s) — cin 0 < —A, are simple.

Proof. Let Ay > 0 be as in (iv) above, so that the only zeros of L(s) in ¢ < —A are
trivial zeros of L(s), and let p,, = B, + iy, be one of these. Then p,, is a zero of at
least one of the factors
L (2;(1-s)+7)
(28 + w;)
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in (). Using the identity

a
Lis) = I'(l-s)sinas’
we rewrite this factor as
. sin(ar (A;s + 1))
I(4,(0-9)+75) T (1= (As+p)) L (8.1.4)

T

As in (ii) above, let D, denote the minimum distance between any two distinct trivial
zeros, and let €, = {s : |s — p,| = d}, where d is fixed with 0 < d < Dy/2. Then
unless p,, and p,, coincide (so that p,, is a multiple zero), p,, is not inside or on €,,.
Now sin(ar (A;s + pj)) > d on €, so, using the estimate

[ (s) = (2or) /2712 logs=s (1 4 O (|s71)) (largs| < ar), (8.1.5)

we find that for s € €, with n is sufficiently large, () is

s d e\ A (1=Bn)=1/2)102(2;1B,lle) ,=2;B,108(2;1B,]/e)

> d e‘pnllj 108(%’|Pn\) .

Here the implied constant depends on y; and A;. Thus, there is a constant ¢; > 0
depending at most on K, the 4;, and the y;, such that for n sufficiently large and
se €,

|}((S)| > cldKQ2|pn\+le\Pn|Zj5K )vj 10g(lpn\lj)'

Next, for some k£ > 1, we have L(s) = a(k)k™*(1 + o(1)) as ¢ — oo. Thus, by
() there is a constant A; > 0 such that

|a (k)|

L) =

(I +o0(1) [x () = (2k)7] x (s)]
for 0 < —A;. We may assume that A; > Ag. Then if » is sufficiently large,
IL(s)| > (Zk)—lp"\—dcldKQZ\an—le|Pn\ i<k Ajlogp,lay) (8.1.6)

for s € €,. Now assume that n is so large that the right-hand side is > 2|c|. We
observe that L(s) — ¢ has no zeros in the intersection of the sets {s : |s — p;| = d} with
k = n, and applying Rouche’s theorem to L(s) and the function f(s) = —c, we find
that L(s) and L(s) — ¢ have the same number of zeros inside € ,, counting multiplicity.
We see that (a) follows from this and () on increasing the size of Ay, if necessary.

To prove (b) we suppose that L(s,,) = ¢ with s,, inside the open disc bounded by
€,,and setdy = |s,, — p,|- Thus dy < d. By ( )

el 2 (2k)1enl=de S QUPnl+ 1l Zyzk Ay 0B 100,
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Hence

d\1/K

dy < (ZICI(Zk)'p"+ ) / Q—%<2|p,,\+1>e—%\pn|z,’il 27108 (24l2) < | ) |=Ci loglp,,
9

(8.1.7)

where C; depends on k, ¢, K, the ;, and the y;. This proves (b).
Next we prove (c). By (-) 1f o is negative and |o| is sufficiently large, then

’

L—(s) - L5+ 0.

From this, (-) (-) and (-) we deduce that

%(s = —22/1 log(2;1s)) +nZ,1 cot(a (A;s + 1)) + O(1).

j=1

Now, if 5,, is a zero of L(s) — ¢ inside €, as in the proof of (b), then s,, = p,, +dye'%
for some real number 6. If s5,, were a zero of multiplicity m > 1, the left-hand side
of this equation would equal 0, and we would have

m
0= doe—mo + O(log|p,l).

The estimate () shows that this is impossible if n is sufficiently large. Again mak-
ing A; larger if necessary, we obtain (c). This completes the proof of the lemma.
O

Lemma 8.1.2. Let L, (s) and L,(s) be two Dirichlet series in the extended Selberg
class with positive degrees. Let their functional equations be

L(s) = 1/ (0L(1-5  (I=12),

with y;(s) as in (-) If L (c) for some nonzero complex number c,
then the degree of L (s) equals the degree of L, (s). Moreover,

X2(8) = x1(8)R(s)e”
where a is a complex number and R(s) is a rational function.

Proof. Thatthe degrees of L, (s) and L, (s) are equal follows immediately from Lemma
(a).

By (iv) above, there is a constant A, > 0 such that L, (s) and y { (s) have the same
zeros with the same multiplicities in ¢ < —A,, as do L, (s) and y,(s). Suppose, for
the moment, that we can show that L, (s) and L, (s) have the same zeros with the same
multiplicities for o < —A,. Then by (-) we would have

x1(8)  Ly(s)
x2(8)  Ly(s)




8.1. LEMMAS 67

as ¢ - —oo. Now, writing

KT (a,;(1—s)+ 0
x19) = 0,017 ] Uyl =9+ )

, (8.1.8)
=1 T (s + py)

we see that

X1(8) _ oy (&)lzsﬁ F(2,0-9)+7y) 15 T (28 + )

x208) @000 L T (Ays+py)  di T (Ag(l—9) +Tiy)

In particular, the poles of [T, T (415 + py;) and [T, T (Ro8 + ppj) in o <
—A, must exactly match, and the poles of HJ. <K, r (/11 j(L—9)+ ;1_1]) and

Hjus r (lzj(l - ) +,u_2j) must match in ¢ > A,. It follows that y;/xy,(s) is
meromorphic with only finitely many zeros and poles. It must therefore be of the
form R(s)e®* for some rational function R(s) and complex constant a. This would
prove the second assertion of the lemma, so it remains to show that L; (s) and L, (s)
have the same zeros with the same multiplicities in ¢ < —A,.

The zeros of each in this region are of the form

n+ py
Aij

G=12...K; 2;#0) (I=12)

for all sufficiently large positive integers n. Thus, there is an absolute constant D > 0
such that the distance between any two of these zeros that are distinct is > D. Assume
now that the zeros of L;(s) and L, (s), counting multiplicities, are not identical in
o < —A,. Then there is a sequence of complex numbers {g,, = b, + ig,} ~; with
—A, > by > by > --- and b,, -» —co, such that either:

(1)L;(p,) =0but L,(g,) # 0, or

(2) Ly (0,) = Ly(0,,) = 0, but the multiplicities are different.

We consider case (1) first. By Lemma (b), L; (s)—chas azero s,, within D /4 (say)
of g, for all n sufficiently large. Since L; (s) — ¢ and L, (s) — ¢ have exactly the same
7eros, s,, is also a zero of L, (s) —c. Therefore L, (s) must have a zero within D/4 of g,,.
However, its closest zero is at least a distance D away from s,,, a contradiction. Now
consider case (2). Let g,, be a common zero of L;(s) and L, (s) with multiplicities
my and m,, respectively, with m; # m,. By Lemma (b) and (c), L; (s) — ¢ has
m; simple zeros within D/4 of g,,, and L, (s) — ¢ has m, such zeros. But L (s) — ¢
and L; (s) — ¢ have the same zeros, a contradiction. Thus, L, (s) and L, (s) have the
same zeros with the same multiplicities in ¢ < —A,. This completes the proof of
Lemma .

O]

Lemma 8.1.3. Let L (s) and L, (s) be two different Dirichlet series in the extended
Selberg class with positive degree. Ile_l (c) = Lil (c) for some nonzero complex
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number c, then there exist constants Ay > 0 and B3 > 0 such that
Np,r,(=U,-A3;B3) = AU/2 + O(1)
as U — oo.

Proof. By () and Lemma , we have

Ly(s) = Li(s) =x1(s)(e“R(s)Ly(1 —=5) =L, (1 =3)) = y1($)F(s),  (8.1.9)

say. By () there are constants Ay > Oand By > Osuchthat y; (s) has AU /2+0(1)
zeros for —U < o < —Ag and |Ims| < By. Thus, it suffices to prove that there exist
positive constants Az and B3 such that F (s) has no zeros in ¢ < —A5 and [Im 5| < Bs.

For L (s) and L, (s), let k; and k, be such that a;(k;) # 0,a;(/) = Ofor! < k;
and a,(k,) # 0, a,(l) = 0 forl < k,. We will prove Lemma 3 only when k; = k,
because the proof for the case k; # k, is similar. So assume that k = k; = k. We
consider a number of cases.

case 1. |R(s)] » oo or|R(s)| = 0 as |s| = oo.
Then
e*R(s)] > oo or 0

as ¢ — —oco with |Ims| < Bs. Hence,

Fls) = eR(s)ay (k)kS™H(1 + 0(1)) if [eR(s)| - oo,
a0k + o(1)) if [e“R(s)| - 0.

In either case F(s) does not vanish for ¢ negative with |o| sufficiently large and
|Im S| < B3.

case 2. R(s) - ras|s| - oo, where r is a nonzero complex number.
Then either
|e*R(s)] > o0 or 0O or r

as 0 — —oo with [Ims| < Bj. The first two cases are handled exactly as in case 1.
For the third case, we observe that a must be pure imaginary, say a = i6 for some real
number 6. That is,

eSR(s) = e'95R(s).

Thus, we have
22(5) = €05R(s) 11 (s). (8.1.10)
We next show that § = 0. Suppose that 6 # 0. Without loss of generality, we can
assume that 6 > 0. From () it follows that for any fixed complex numbers vy, v,
we have

?Eiii;; =s172(1+0(sI 7)) (larg(s+v)l < ar, i =1,2).
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We use t), and () with s = —it, t > 0. Taking absolute values of both

sides in (| (J), we deduce that

K> K,

O, [[t22)* = (r+0(t71)) Qe [Jta)* (1> ).

j=1 J=1
By Lemma
Ky K>
Z Ay = Z Aoy = A2,
j=1 j=1
so we see that
K, K,
e = (r+0(t™)Q07 [[(Ap ™ [[(2p)™*Y (1 > o).
j=1 J=1

This is clearly impossible, so 6 = 0.
We now have that § = 0, so

x2(5) = R(s) x1(s)

and R(s) » r # 0 as ¢ - —oo with [Ims| < Bs.
subcase a. If r # a; (k) /a, (k), then we have

ray (k) —ay (k)
klfs
Thus, there are no zeros of F(s) in ¢ < —Az, [Ims| < By if A5 is sufficiently large.

subcase b. Next suppose that r = a;(k)/a, (k) and R(s) = r. If L{(s) # L, (s), there
is a least integer N > 0 such that

(e™R(s)Lr(1 =5) =L, (1 -5%) = (1+0(1)) (0 = —o0).

Li(s) —Ly(s) = (a1 (N) —a(N))N~*(1 + o(1)) (0 = o),
where a; (N) # a,(N). Thus,

F(s) = e®R(s)Ly(1 =5)-L{(1=5) =Ly(1 =5)-Ly(1-7%) = ﬁ%l_jv(l+o(l))

as ¢ — —oo. Again, there is an A3 > 0 such that F(s) is nonzero when o < —A5 and
Ims| < Bs.

subcase c. Finally, assume that r = m/ m and R(s) # r. Then there is a nonzero
complex number b and a positive integer m, such that

R(s) =r+bs7™(1 +0(1)) (|s] = o0).

Furthermore, L; (s) = a1 (k)k™*+O((k+1)7%) and L, (s) = ar(k)k*+O((k+1)77)
as ¢ — oo. Thus, for any fixed B3 > 0 we have

F(s) = eR(s)L,(1 =5) —L;(1-75) = bef) (slm + 0(<k2 1) )) (1+o0(1))
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for 0 - —oo, [Ims| < B3. Thus, in this case also, there is an A3 > 0 such that F(s) is
nonzero in ¢ £ —A3 and [Ims| < B;.
This completes the proof of the lemma. O

8.2 Proof of the Main Theorem

Observe that for j = 1,2, Lj(s) and Lj(s) — ¢ cannot have any zeros in common.
Moreover, any common zero of L (s) — ¢ and L, (s) — c is a zero of L, (s) — L;(s).
Also, by ( ) the zeros of y(s) are zeros of L,(s) — L;(s) in o < —-Az if A5 >
0 is sufficiently large. Moroever, for A5 large enough these are also zeros of L (s)
and L, (s). Let B; = max{By, B;}, where B, and B; are as in observation (1) and
Lemma (a). Then it is easy to see that

Ny, 1, (~U,~A3:B3) > Ny, (~U,~A3; B3) + N}, _.(~U,~A3;B3) + O(1),

where Nzl _o(=U, =Aj3; B3) is the number of distinct zeros of L, (s) — ¢ in the region
-U < 0 < -Aj3,[Ims| < B;. By Lemma and () we now find that

Nzl_c(—U, -A3;B3) = O(1).
On the other hand, by Lemma (a) and (c),
Nzl_c(—U, —Ajz) = oo, T - oo.

It follows that L, (s) = L, (s). This completes the proof of the main theorem.



Bibliography

(3]

[4]

[5]

[6]

[7]

[8]

[10]

[11]

Armand Borel, Automorphic L-functions, Proceedings of Symposia in Pure
Mathematics, 33:27-61,1979

J.B. Conrey, A.Ghosh, On the Selberg class of Dirichelt series : small de-
grees, Duke Math. J. 72 (1993), 673-693

Wee Teck Gan, Shuichiro Takeda. A proof of the Howe duality conjecture,
preprint

Wee Teck Gan, Yannan Qiu and Shuichiro Takeda. The regularized Siegel-
Weil formula and the Rallis inner product formula, to appear in Inventiones

Wee Teck Gan, Benedict Gross and Dipendra Prasad. Restrictions of repre-
sentations of classical groups, Asterisque 346, 111-170

Wee Teck Gan, Benedict Gross and Dipendra Prasad. Symplectic local root
numbers, central critical L-values, and restriction problems in the represen-
tation theory of classical groups, Asterisque 346, 1-110

Gelbart, S., Rogawski, J. L-functions and Fourier-Jacobi coefficients for the
unitary group U(3), Inventiones. 105, 445-472 (1991)

Gelbart, S., Rogawski, J. Exceptional representations and Shimura’s integral
for the local unitary group U(3), In Festschrift in honor of Piatetski-Shapiro,
volume 2, pages 19-75. Israel Math. Conf. Proc., (1990)

Gelbart, S., Rogawski, J., Soudry, D. On the periods of cusp forms and alge-
braic cycles for U(3), Israel Journal of Mathematics 83 (1993), 213-252

R. Garunkstis, J. Grahl and J. Steuding, Uniqueness theorems for L -functions,
Comment. Math. Univ. St. Pauli 60 (2011), no. 1-2, 15-735.

Steven M. Gonek, Jaeho Haan, and Haseo Ki, A uniqueness theorem for func-
tions in the extended Selberg class, To appear in Mathematische Zeitschrift

71



72

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

BIBLIOGRAPHY

Benedict Gross. On the motive of a reductive group, Inventiones mathemati-
cae, (1997)

M. Harris, S. Kudla, and W. J. Sweet. Theta dichotomy for unitry groups,
J.LAM.S, no.4, 941-1004 (1996)

M. Harris and R.Taylor, The geometry and cohomology of some simple
Shimura varieties, Princeton University Press, 2001

Neal Harris. The Refined Gross-Prasad Conjecture for Unitary groups,
IMRN (2012)

Jaeho Haan. The Bessel Period of U(3) and U(2) involving a non-tempered
representation, http://arxiv.org/pdf/1403.5061v5.pdf

Jaeho Haan. The restriction problem for a non-tempered Arthur packet and
local theta correpondence for (U(1), U(3)) involving a non-tempered repre-
sentation, http://arXiv:1501.00885

Guy Henniart, Une preuve simple des conjectures de Langlands por GL,, sur
un corps p-adique, Inventiones mathematicae, 139(2):439-455, 2000

Atsushi Ichino. Pullbacks of Saito-Kurokawa lifts, Inventiones mathemati-
cae, 162:551-647, (2005)

Atsushi Ichino and Tamotsu Ikeda. On the periods of automorphic forms
on special orthogonal groups and the Gross-Prasad conjecture, Geometric
Functional Analysis,19(5):1378-1425, (2010)

J. Kaczorowski, Axiomatic theory of L-functions: The Selberg class, Analytic
Number Theory Lecture Notes in Mathematics Volume 1891, (2006), 133-
209 .

H. Ki, A remark on the uniqueness of the Dirichlet series with a Riemann-type
function equation, Advances in Mathematics 231 (2012), 2484-2490

J. Kaczorowski and A. Perelli, On the structure of the Selberg class 0 < d <
1, Acta Math. 182 (1999), no. 2, 207-241.

S. Kudla. On the local theta correpondence, Inventiones mathematicae,
83:229-255 (1986)

S. Kudla. Splitting metaplectic covers of dual reductive pairs, Israel J. Math.
84:361-401 (1994)

Bao Qin Li, A uniqueness theorem for Dirichlet series satisfying a Riemann
type functional equation, Adv. Math. 226 (2011), no. 5, 4198-4211.



BIBLIOGRAPHY 73

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Jian-Shun Li. Non-vanishing theorems for the cohomology of certain arith-
metic quotients, J. Reine Angew. Math, 428:177-217 (1992)

C. Moeglin, M.-F. Vigneras, and Jean-Loup Waldspurger. Correspondences
de Howe sur un corps p-adique, Volume 1291 of Lecture Notes in Mathe-
matics. Springer-Verlag (1987)

C. Mok, Endoscopic classification of representations of quasi-split unitary
groups, to appear in the Memoirs of the American Mathematical Society.

K. Murty, Selberg’s conjectures and Artin L-functions, Bull. Amer. Math.
Soc., 31(1) (1994), 1-14

Beuzart Plessis, La conjecture locale de Gross-Prasad pour les représenta-
tions tempérées des groupes unitaires, http://arxiv.org/pdf/1205.2987v2.pdf

Ilya Piatetski-Shapiro, and Stephan Rallis. L-functions for the classical
groups, volume 1254 of Lecture Notes in Mathematics. Springer-Verlag
(1987)

Yannan Qiu. Periods of Saito-Kurokawa representation, IMRN (2013)
Yannan Qiu. Generalized formal degree, IMRN (2) 239-298 (2012)

S. Rallis. On the Howe duality conjecture, Composito Math. 51, 333-399,
(1984)

A. Selberg, “Old and new conjectures and results about a class of Dirichlet
series” in Collected Papers, Vol. 2, Springer-Verlag, Berlin, 1991, 47-63.

A.J. Silberger. Introduction to harmonic analysis on reductive p-adic groups,
Mathematical notes, Princeton University Press, 23 (1979)

J. Steuding, Value-distribution of L-functions, Lecture Notes in Mathematics,
vol. 1877, Springer-Verlag, Berlin, 2007.

Jean-Loup Waldspurger. Demonstration d’une conjecture de duality de Howe
dans le cas p-adique, p # 2, In Festschrift in honor of Piatetski-Shapiro,
volume 2, pages 267-324. Israel Math. Conf. Proc., (1990)

Hang Xue. The Gan-Gross-Prasad conjecture for U (n) x U(n), Adv. Math.
262, 1130?1191, (2014)

Shunsuke Yamana. L-functions and Theta Correspondence for Classical
groups, to appear in Inventiones mathematicae



74

[42]

[43]

[44]

BIBLIOGRAPHY

Shunsuke Yamana. The Siegel-Weil formula for unitary groups, Pac. J. Math
(to appear)

Wei Zhang, Automorphic period and the central value of Rankin-Selberg L-
function, to appear in J.LA.M.S

Wei Zhang, Fourier transform and the global Gan-Gross-Prasad conjecture
for unitary groups, Ann. of Math. Vol. 180 (2014), Issue 3, 971-1049



BIBLIOGRAPHY

Department of Mathematics, Seoul National University, Seoul, Korea
E-mail: lifeismath@snu.ac.kr

75



	Part I The analogue of global Gross-Prasad conjecture for (?(3), ?(2)) involving a non-tempered representation
	1 A preview of the first part
	2 Preliminaries
	2.1 Unitary group                             
	2.2 Automorphic ?-function                       

	3 The Theta correspondence for Unitary groups
	3.1 The Weil Representation for Unitary Groups             
	3.2 The Rallis Inner Product Formula                  

	4 Proof of Theorem 1.0.2   
	4.1 The Setup                               
	4.2 Proof of Theorem 1.0.3                        
	4.3 Proof of Lemma 3.3.1                        

	5 The comparison of two ?-values

	Part II A uniqueness theorem for functions in the extended Selberg class
	6 A preview of the second part
	7 Examples and related conjectures
	7.1 Examples of Selberg class                      
	7.2 Several conjectures on Selberg class                 

	8 Proof of the Main Theorem
	8.1 Lemmas                                
	8.2 Proof of the Main Theorem                      


	Bibliography
	Acknowledgement (in Korean)


<startpage>15
Part I The analogue of global Gross-Prasad conjecture for (?(3), ?(2)) involving a non-tempered representation 1
 1 A preview of the first part 3
 2 Preliminaries 7
  2.1 Unitary group                              7
  2.2 Automorphic ?-function                        9
 3 The Theta correspondence for Unitary groups 17
  3.1 The Weil Representation for Unitary Groups              17
  3.2 The Rallis Inner Product Formula                   20
 4 Proof of Theorem 1.0.2    27
  4.1 The Setup                                27
  4.2 Proof of Theorem 1.0.3                         28
  4.3 Proof of Lemma 3.3.1                         32
 5 The comparison of two ?-values 45
Part II A uniqueness theorem for functions in the extended Selberg class 47
 6 A preview of the second part 49
 7 Examples and related conjectures 53
  7.1 Examples of Selberg class                       53
  7.2 Several conjectures on Selberg class                  59
 8 Proof of the Main Theorem 63
  8.1 Lemmas                                 63
  8.2 Proof of the Main Theorem                       70
Bibliography 71
Acknowledgement (in Korean) 75
</body>

