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Abstract

We establish global Calderén-Zygmund theory for divergence type elliptic
and parabolic equations in variable exponent Lebesgue spaces. We prove that
the gradient of the unique weak solution to a given problem with the zero
Dirichlet boundary condition is as integrable as the nonhomogeneous term
of the problem in variable exponent Lebesgue space by deriving a suitable
estimate. In this thesis we consider four equations: the linear elliptic equation,
the linear parabolic equation, the nonlinear elliptic equation with variable
growth and the nonlinear parabolic equation with variable growth. We also
provide reasonable answers to minimal regularity assumptions on the variable
exponents, the coefficients and the boundary of the domain to obtain the
desired Calderén-Zygmund theory.

Key words: variable exponent Lebesgue space, gradient estimate, Calderén-
Zygmund theory, BMO-space, Reifenberg domain
Student Number: 2009-22889
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Chapter 1

Introduction

Calderén-Zygmund theory is to make an investigation on the integrability
of the gradient, or the Hessian, of solutions to partial differential equations,
and is an important and classical regularity theory. For the Poisson equation

div(Du) = Au=divF in R", n > 2.
Calderén and Zygmund [20] showed that
[Dullzs < c||F|za, for every g € (1,00),
where ¢ > 0 is the independent of u and F', which implies that
Fel' = Ducl" (1.0.1)

For a bounded domain  C R™ and a matrix function A(x) being bounded
and uniformly elliptic, Byun and Wang [13, 14] extended the above estimate
and relation to the following linear equation with the zero Dirichlet boundary
condition:

{div(A(:c)Du) = divF i 9, (1.0.2)

u = 0 on OS2,
with optimal regularity assumptions on A and the boundary of €.
On the other hand, Iwaniec [40] established Calderén-Zygmund theory
for the nonlinear equations ; p-Laplace equations, see also [22] for p-Laplace
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CHAPTER 1. INTRODUCTION

systems. Precisely, the authors showed the following: for 1 < p < 0o if u is a
weak solution to

Apu = div (|DulP7*Du) = div (|F["7*F),
then it holds that
|F|Pe LY = |Dul’ € L%, for every q € (1,00). (1.0.3)

After these pioneer works, there have been many research activities regarding
the Calderén-Zygmund theory for nonlinear elliptic equations and systems
with a constant p-growth, see [12, 15, 18, 42, 43| and references therein. It is
worthy mentioning the paper [18], in which Caffarelli and Peral proved it for
quite general type homogeneous equations with p-growth by using so called
maximal function technique, or good-A-inequality, which has been widely used
in the proofs of Calderén-Zygmund type estimates. Also, Byun and Ryu
[12] proved global Calderén-Zygmund theory for elliptic equations with the
nonlinearity being in BMO(bounded mean oscillation) function space with
respect to the space variables and the domain having a very rough boundary
which may beyond the Lipschitz category.

For the parabolic p-Laplacian type problems Acerbi and Mingione [2] first
proved the Calderén-Zygmund theory such that for n2—f2 <p<ooifuisa
weak solution to

u; — div (a(z,t)|Du|P2Du) = div (|F|P7*F)  in Qr,
then it holds the relation that

\FIP e L] (r) = |Dul’ € LL (Qr), forevery q€ (1,00), (1.0.4)

loc loc

where the coefficient function a(z,t) is assumed to be discontinuous. We
point out that the methods used in [40, 18] do not applicable to the parabolic
problems with p-growth, p # 2, anymore. The main reason is that parabolic
problems with p-growth, p # 2, do not have the following normalization
property: if u is the solution to a given equation then \u, A > 0, is also a so-
lution to a equation having the same structure to the original equation. Note
that the elliptic problems and the parabolic problems with the 2-growth have

2



CHAPTER 1. INTRODUCTION

the previous normalization property. Hence, they created a new technique,
so called mazimal function free technique or large-M -inequality which is the
only method to prove the Calderén-Zygmund theory for parabolic problems
with p-growth, p # 2, and is well working to the elliptic problems. We also re-
fer to [5, 8, 29, 49] and references therein for parabolic equations and systems
with p-growth.

Recently, equations or systems with variable growth have been received
many researchers attention. Some materials with inhomogeneities, for exam-
ple electrorheological fluids, can be modeled with sufficient accuracy in the
setting of variable exponent Lebesgue and Sobolev spaces, LP¢) and W),
where p(-) : © — (1,00) is a variable function. Indeed, theoretical advances
in the study for such variable exponent spaces have been made in the field
of electrorheological fluids [51, 53], elastic mechanics [60], image restoration
[19] and flows in porous media [3, 39]. The model equation of those is the
p(+)-Laplacian equation;

Apyu = div (|Du|p(m)_2Du) =0 inQ,
where p(-) : Q — (1,00) is a continuous function satisfying

1 < inf p(x) < supp(z) < .
z€Q zeQ

The p(+)-Laplace equation is the Euler-Lagrange equation of the functional

/ L|Dw|p(:v) dx.
o ()

For the above type problems, Acerbi and Mingione [1]| obtained the following
Calderén-Zygmund theory: if u is the weak solution to

Ayyu = div (|Duf™2Du) = div (|F[P™2F) in Q,
then we have the relation
|FPO e LL (Q) = |DufY € LL (Q), for every ¢ € (1,00), (1.0.5)

under the assumption on the variable exponent p(-) such that

lim w(r)log (%) =0, where |p(z) — p(y)| < w(|lx —yl). (1.0.6)

r—0

3



CHAPTER 1. INTRODUCTION

In the proof of the above result, the authors used the maximal function
technique and obtained a suitable comparison estimate between p(-)-Laplace
equation and py-Laplace equation on a sufficiently small ball, where ps is the
supremum of p(-) in the ball, by assuming (1.0.6). This work was extended
by Baroni and Bogelein in [4] to parabolic systems of the form

u, — div (a(z, )| Du[P™~2Du) = div (|FP“Y72F)  in Qp

with

in T, < Ssu xZ, ’
n+2 (zt)er P (x,t)E%T g

under the assumption that a(x,t) is in VMO(vanishing mean oscillation) with
respect to z. We also mention interesting works [30, 33, 36] where similar
results were obtained for irregular obstacle problems and for higher order
problems.

The main object of the thesis is to prove that the relations (1.0.1) and
(1.0.5) still holds true when ¢ changes a variable function g(-).

More precisely, let ¢(-) : R* — (1, 00) satisfy that

1 < inf ¢(z) < supq(x) < occ.
z€Q xeN

Then we first prove that
Fe LR = Duc LY(QR")

for the linear elliptic equation (1.0.2), under minimal regularity assumptions
on ¢(-), A and the boundary of Q. This is the content of Chapter 3, in which
we also treat the linear parabolic equations.(in fact, we will employ p(-),
instead of ¢(-), as the variable exponent p(-) in Chapter 3.)

On the other hand, in chapter 4 we consider elliptic p(-)-Laplacian type
equations, and show that

|FP) e LQ(')(Q) — |Du|p(') c LQ(‘)(Q)7

under the suitable assumptions on p(+), ¢(-), the nonlinearity for the space
variable and the boundary of €2. In addition, in chapter 5 we consider parabolic
p(+)-Laplacian type equations, show that

|F]PY) e L9O(Qr) = |DulfY e L0 (Qyp),



CHAPTER 1. INTRODUCTION

under the suitable assumptions on p(+), ¢(-), the nonlinearity for the space
variable and the boundary of €.

To the best of our knowledge, there is only one result related to the gradi-
ent estimate in variable exponent Lebesgue spaces. In [26] Diening, Lengeler
and Ruzicka considered Poisson equations to obtain L¢()-estimate, see also
the monograph [25]. The main approach in [26] is totally based on the har-
monic analysis frame, the boundedness of the associated kernel operators in
the variable exponent Lebesgue space L) with the assumption that ¢(-) is
log-Hélder continuous, see Definition 2.2.5. We note that the log-Holder con-
tinuity of ¢(+) is an unavoidable condition studying variable exponent spaces.
However this method dose not applicable to nonlinear problems and even
linear problems with quit general circumstance, e.g. [13].

We point out that the methods used in the earlier works [1, 4, 10] to ob-
tained L9-estimates do not directly imply L90)-estimates. The main difficulty
is that the integral identity formula

/ | Du|P®@? dz = q/ AT {z € Ut |Duf™ > A} dA (1.0.7)
U 0

can not be used when the constant ¢ is replaced by a variable function ¢(-).
Note that the maximal function technique and the maximal function free
technique generally start with (1.0.7). To overcome this, we instead use its
variant like

/ | Dufr@@) gy — g / v
B 0

where ¢_ = inf,cp q(z) and B is a small ball. We then use the log-Hélder

a(x)
{:(: € B:|Duf'" - > )\H dA,

continuity of p(-) and ¢(-), a higher integrability result of | Du[P®® and com-

parison estimates, to control the super-level sets of |Dul|” (x)%, instead of
those of |Du|P@®).

The rest of the thesis is organized as follows. In the next chapter, we
introduce basic ingredients; notations, definitions and well known facts. In
Chapter 3-5, as mentioned earlier, we prove the gradient estimate for the
weak solutions to linear elliptic/parabolic equations(Chapter 3), nonlinear el-
liptic equations with variable p(:)-growth(Chapter 4) and nonlinear parabolic
equations with variable p(-)-growth(Chapter 5).



Chapter 2

Preliminaries

2.1 Notations.

We denote basic notations used in throughout the thesis. Let n > 2 be a
natural number, and €2 be a bounded domain in R".

We first introduce the geometric notations. Let y' = (ya,...,y,) be a
point in R"™' y = (y1,v') = (y1,---, %) be a point in R", and r > 0 be a
positive number. We denote the open ball in R”(resp. R"~1) with the center
y(resp. y') and the radius r by

B,(y) :=={z € R": [x —y| < r}(resp. B/(y) = {2’ e R" " : |2’ —y/| < 1}),
and the cylinder in R™ with the center y and the radius r by
Coly) ={z eR": |z —y| <n |2’ —y| <r} = (y1 — 1,y +7) x BL(y).

For simplicity we shall write B, = B,.(0), C, = C.(0), Bf := B, N {z, > 0},
Ct = C,N{x; > 0}. Then, in Chapter 3 we define the parabolic cylinder
with the center ¢ = (y,s) € R"™! and the radius r > 0 by

Q-(C) :=Cr(y) x (s — r?, s + 7’2),
and write

Q.(y) =2NCry), Q :=QNC,, 0,8, :=00NC,,
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CHAPTER 2. PRELIMINARIES

Tr = Bv/"7 KT(C) = QT(y> X (S - T278 +T2)7 Q;r = Cj X <_T27T2)'

On the other hand, in Chapter 4 and Chapter 5 we define the parabolic
cylinder with the center w = (y, s) € R*"! and the radius r > 0 by

Qr(w) = By(y) x (s =%, s +17),
and write
Q. (y) :=QN B (y), Q. :=QNDB,, 0,02, :=900N8,,
T, := B.N{x, =0}, K. (w) :=Q(y) x (s =72, 5+7%), QF := B x(—r? r?).
In both cases, we simply write
K, = K. (0), 0,K, = 0,0, x (—=r*1%).

In addition, we define Q7 := Q x (0, 7] and the parabolic boundary of Qr by
the bottom and side of 27 such that

0pQr =00 x (0,T) U Q x {0}.

For Q,(¢) and K,(¢) we also define the parabolic boundaries 9,Q,(¢) and
0,K,(¢) in the same way. Note that 0,8 is called the parabolic boundary of
Qp. Let y,g e R", 7,7 € Rand w = (y,7),w = (§,7) € R"". We define the
parabolic distance between w and w by

dp(w, 71]) = maX{\y - g‘a V ’7— - ﬂ}a

where | - | is the standard Euclidean norm, in RY, N =1,2,....
For f € L. (RN,R™), Nym € N, f; = (f)y is denoted by the integral

loc

average of f on a bounded subet U in R¥, that is,

_ 1
Fo=(flo = ][deX _ W/deX'

Finally e € R is the Euler constant.

¥ [ -1 ==
| = Lh.
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2.2 Variable exponent spaces.
Let p(-) : RY — (1,00), N € N, be a positive function satisfying

1 < inf p(X) < sup p(X) < oo, (2.2.1)
XeRN XeRN

for a bounded subset U in RY the variable exponent Lebesgue space LPC) (U, R™),
m € N, consists of all measurable functions f : U — R™ satisfying

[ = [ 1peopeix < o
U U

with the following Luxemberg norm

i P— { ~o:
U

and the wvariable exponent Sobolev spaces is

X

a

p(X)
dX <1,

WhO(U,R™) .= {f € L"O(U,R™) : Df € LPO(U,RY™)}
equipped with the norm

Hf”WlaP(')(U,Rm) = HfHLP(‘)(U,Rm) + HDfHLP(‘)(U,RNm)-

We also denote W, (U, R™) by the closer of C(U, R™) in W1rO (U, R™),
Then, they are separable reflexive Banach spaces. For m = 1, we simply write
LPOU), WO (U) and Wol’p(')(Q). We also denote the Holder conjugate
exponent of p(-) by
p(X) -1

p(X)
Note that We we have the following norm-modular property:

P(X) =

1fllpowy <1 <= /|f|p("”) dr < 1. (2.2.2)
U

We then give p(-) a crucial condition for LP¢) and W'P() to have some
important properties.
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Definition 2.2.1. We say p(-) is log-Holder continuous in U if

p(X) —p(v)) < — &

— f NIXYeQwith|X-Y|<
S g X _ V] or a Y € Q with | | <

, (2.2.3)

N —

for some constant L > 0.

We remark that, p(-) is log-Holder continuous in U if and only if p(-) is
modulus continuous, i.e., there is a nondecreasing continuous function w :
0,00) — [0, 00) satisfying w(0) = 0 and

p(X) = p(Y)| <w([X =Y), (2.2.4)

for X, Y € U, furthermore,
1 ~ 1
w(r) log (—) <L, forallr< Y (2.2.5)
r

for some constant L > 0. If p(+) is log-Hélder continuous, then the Hardy-
Littlewood maximal operator and the Sobolev imbedding on variable expo-

nent spaces can be well understood and Poincaré’s inequality also holds in
Wol’p(')(U), that is,

Dl s @y < e, U)[ull pocs vy,

for u € VVO1 P (')(U ). For properties about variable exponent spaces with log-
Hoélder continuous exponents, we refer to [25].

For a further discussion, we refer to [25, 24, 28, 38, 44, 55| and the refer-
ences therein.

2.3 Technical background.

We start with a standard iteration lemma.

Lemma 2.3.1. (Lemma 4.3 in [37]) Let ¢ be a bounded nonnegative function
on [ry,ra]. Suppose that for any si, sy with 0 < r; < s < 89 < 719,

5!

P(s1) < H¢(32)+m

+P27
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where B, P1, Py > 0 and k € (0,1). Then there holds
Py

—— 4+ P
(7’2 — T‘l)ez + 2:| )

o(m) < ¢ [

for some ¢ = ¢(k, 5) > 0.
Lemma 2.3.2. Let U be a bounded domain in R"™'. For f € LY(U) with

q > 0, we have

/U\f|qdz _ /Ooo DUz € U | £(2)] > AYdA. (2.3.1)

For f € L®(U) with go > q1 > 0, we have

/ |f(2)|®dz = (g2 — 1) / PR / |f(2)|% dzdX.  (2.3.2)
U 0 {z€U:|f(2)|>A}

We introduce the Hardy-Littlewood mazimal operators. For f € L}, (R"),

loc

we define

M (y) = M(f)(y) = sup ][ G

r>0

and

M, f(y) = My(f)(y) = (M(|) ()7 = sup <][B’( )If(fc)l"dx) e

Then we have the following properties.

Proposition 2.3.3. (see [57])

(1) Weak type (1,1) estimate : there exists a constant ¢ = ¢(n) > 0 such
that for any A > 0

{z € R" : Mf(z) > N} g§ |f| do.

R

(2) For 1 < p < oo, there exists a constant ¢ = c¢(n,p) > 0 such that

[fIPde < [ [MfPde<ec [ |fPde.
R™ R R™

10
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(8) For1 < q<p < oo, there exists a constant ¢ = c(n,p,q) > 0 such that
fravs [ Mapas<e [ \ppae
R™ R™ R™

The following lemma is a certain of Vitali covering lemma, whose proof
can be found in a similar way as in the proof of Theorem 3 in [59].

Lemma 2.3.4. Suppose 2 is (0, R)-Reifenberg flat. Consider Qgr, = Qg, (y),
where Ry < R and y € Q. For e € (0,1), if the measurable subsets C C D C
Qg, satisfy that

1

(i) |C| < E@MRJ,

(i1) for any 7 < % and g € C, if |C N B:(y)| > €|B(y)| then Qz(y) C D,

2\ 80"

We will also use the following equivalent relation and estimate.

then

Lemma 2.3.5. (see [17]) Let f be the measurable function in a bounded
domain U C R™. Then, for A >0 and q, A > 1 we have

fELU) <= §:=) A"|{zeU:|f(zx)] > AN} <

k>1

with the estimate
¢ INIS < / |f|7dx < cN(|U|+9),
U

for some ¢ = c(A, q) > 0.

We recall the following elementary inequality:
1
t’logt < max {—B, 2% log 2} , Vte(0,2]. (2.3.3)
e

The next lemma is an estimate in L log L-space which can be found in [1]
and reference therein.

11
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Lemma 2.3.6. Let >0 and p > 1. For f € L7(U) we have

£ 1o’ ( 'f') iX < (f Ifl”dX)l,

for some ¢ = ¢(N,o,3) > 0. Note that the constant ¢(N, o, 3) is continuous
with respect to (3, where log®t := (logt)? fort > 1.

12



Chapter 3

Gradient estimates for linear
equations in variable exponent
spaces

3.1 W'rl_regularity for elliptic equations with
measurable coefficients in nonsmooth do-

mains.

3.1.1 Main result.

We recall the following linear elliptic equation in divergence form with Dirich-
let boundary condition:

(3.1.1)

div(A(z)Du) = divF in €,
u = 0 on S,

where A(z) is an n X n matrix of the coefficients which is uniformly elliptic
and bounded, see (3.1.4), and F is in L*(2, R"). The aim of this chapter is to
establish the well-posedness of the problem (3.1.1) in the variable exponent
Sobolev space VVO1 P (')(Q) under optimal conditions on A and 02 by proving

13
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that
FeLPO(Q:RY) = Due LPOQ;R), (3.1.2)

for every log-Hélder continuous function p(-) : R™ — (1, c0) satisfying
2<y <p(r) <y <oo, VreR"and Iy,7e. (3.1.3)

Since p(-) is log-Hoélder continuous, there is a modulus continuity of p(-),
w : [0,00) = [0, 00), satisfying (2.2.5) with L replaced by m > 0. The matrix
A of the coefficients is supposed to be uniformly bounded and uniformly
elliptic. That is, there exist 0 < v < A < 400 such that

A = [ay ()] = [a;i ()] and v[¢]? < A(2)6€ < AJEP, Vi, €™ (3.1.4)

We say u € H}(Q) is a weak solution of the Dirichlet problem (3.1.1) if it
satisfies that

/ A(z)DuDyp dzx = / FDy dx, Ve € Hy(S).
0 0

Then the Dirichlet problem (3.1.1) has a unique weak solution with the L*-
estimate

/ |Du|? dx < c/ |F|? du, (3.1.5)
Q Q

where ¢ is a constant depending only n, v and A, see [34].
We now state the main assumptions on A(z) and €.

Definition 3.1.1. We say that (A, Q) is (d, Ry)-vanishing of codimension 1
if the following conditions hold. For each y € Q and for each r € <0, mRo} ,
if Biagyay,(y) C €2, then there exists a new coordinate system {21, -+, 2,} in

which the origin is y; and
][C AG) - Agy, ()] d2 <6
(20v2)r

On the other hand, if dist(y,0) = |y — yo| < (20v/2)r for some y, € 09,
then there exists a new coordinate system {zj,--- ,z,} in which the origin
lies somewhere in Byy,,3,5(y0) such that

C(J;M\/?)r < 9(104\/5)7" C 0(104\/§)r N {Zn > —(208\/§)r(5}

14
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and

N ’A(z) —Ap ()] d2 <8
(104v2)r

There are a few comments on the above definition.

1. Changed coordinate systems can be obtained by rotation and transla-

tion from the original coordinate system. Since the equation (3.1.1) is
invariant under such rotation and translation, without loss of general-
ity, in new coordinate systems, we still use the same notations used in
original coordinate system, for example, z, A an F.

For sufficiently small regions B, 5,.(y), if B s, (y) lies in €, then there
exists one direction depending on y and r such that A is merely mea-
surable in this direction and has a small BMO condition in the other
directions. On the other hand, if B s, (y) intersects the boundary of €,
then there exists one direction which is normal to two parallel hyper-
planes, one lying locally inside {2 and the other locally lying outside
Q) near y; with the distance between 298v/26r, such that A is merely
measurable in this direction and has a small BMO condition in the
other directions.

Only for a technical reason, we record the numbers 20 104 which can
be easily changeable via a scaling. By the same reason, one can take R
can be any positive number while 4 is invariant under such a scaling.

One of main features of this domain is that it has the measure density
condition like

1B, ()] ( 2 )" (16>"
sup  sup < <({=
0ers—1_povee |20 By(y)] 1-6 7

104v/2

from which we discover that

0<r<—L1 Ry yeQ |Qﬂcr<y)| B 0<r< IIRO yeQ |QﬂBr(y)| N

sup sup

sup sup 7

Gl [Bys, () <(16¢§)”'

104v/2 104+/2
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We next present some necessary auxiliary results which will be employed
later on. We first provide a higher integrability result for (3.1.1). For the inte-
rior case, the proof relies on Caccioppoli inequality, Poincaré inequality and
Gehring Lemma, see Proposition 1.1, p.122, in [35]. For the boundary case,
additionally, we use the zero extension of weak solutions to the complement
of the domain and the measure density condition (3.1.6).

Lemma 3.1.2. (i) Interior case: Let u € H*(Cy) be a weak solution of
div(A(z)Du) = div F in Cy C Q.

Suppose F € L7(Cy) for some v > 2, then there exists a small positive
constant o1 = o1(n, v, \,7y) such that for all o < o7,

140
][ |Du|2(1+o)dx <ec <][ ]Du\%ix) +][ ‘F‘2(1+a)dx ,
Ch Ca Co

where ¢ = c(n, v, \,7) is a positive constant.

(ii) Boundary case: Let ) satisfy the measure density condition (3.1.6),

changed 10133/5 to 4, and u € H'(Q4) be a weak solution of

div(A(x)Du) = divF in  Qy,
u = 0 on 0,8y,

with
Cf c Q4 C Cin{z" > —86}.

Suppose F' € LV(Q4) for some v > 2, then there exists a small constant
o9 = oo(n, v, A,7y) > 0 such that for all o < o9,

1+o
][ |Du|2(1+g)dI <c <][ |Du|2dx) +][ |F|2(1+0)dl‘ ,
Ql QQ QQ

for some positive constant ¢ = c(n,v, \,v). For the sake of simplicity, we
write
0o = min{oy, 03 }.
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The next Lemma shows Lipschitz reqularity for solutions of linear elliptic
equations with the coefficients which depends on only one variable. We refer
to Lemma 5.1 and 5.6 in [14] for its proof.

Lemma 3.1.3. Let A = A(x,) : R — M, (R) be a measurable matriz with
(8.1.4). Then we have the following Lipschitz reqularity.
(i) Interior Case: Let v € H'(Cy) be a solution of

div(A(z,)Dv) =0 in Cs.

Then Dv € L*(C}) with the estimate

Dol e < of Do da
2

where ¢ 1s a positive constant depending only n, v, A.
(ii) Boundary Case : Let v € H(CY) be a solution of

div(A(x,)Dv) = 0 in Cf
v = 0 on 1.

Then Dv € L®(C}") with the estimate
2 2
D0l ey < of 1D do.
2

for some positive constant ¢ = c(n,v, A).
Now we state the result of W1P()regularity for (3.1.1).

Theorem 3.1.4. Let Ry > 0. Then there exists 6 = d(n,v, A, y1,72,w(+))
such that if (A, Q) is (0, Ro)-vanishing codimension 1 and u € Hg () is the
weak solution of (3.1.1), then there holds (3.1.2) and we have the estimate

HDUHLP(‘)(Q;R") < CHFylLP(‘)(Q;Rn)a (3.1.7)

for some constant ¢ = c(n,v, A, y1,v2,w(-), Ro, [€]).
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3.1.2 Proof of Theorem 3.1.4.

We start this section under the a priori assumption that the unique weak
solution u € H}(2) of (3.1.1) satisfies

/ | DulP®dz < oc. (3.1.8)
Q

This prescribed assumption can be removed by an approximation argument
in the last section. We further assume that (A, Q) is (6, Ry)-vanishing codi-
mension 1. where Ry is arbitrary given while ¢ is to be determined, see
(3.1.42). But, without loss of generality, we may assume that Ry < 1, be-
cause Definition 3.1.1 is stronger if R, is lager.

Our strategy is to obtain

HDUHLP(')(Q;R”) < C(?’L, V>Aa71a727w(')7R07 ’Q’) (319)

with the uniform assumption

1| o) (ummy < 1. (3.1.10)
In fact, for the solution v and the nonhomogeneous term F', consider
~ F
PN R S
||F||LP(')(Q;IR{”) ||F||LP<')(Q;IR")

Then, by applying (3.1.9) and (3.1.10) to @ and F, we get the required
estimate (3.1.7).

Hereafter, for the sake of simplicity, we denote by ¢ to mean a universal
constant which can be computed only in terms of known data n,v, A, v, 7o
and w(+) (independent of || and Ry), and so its exact value varies depending
on the lines.

We note from the norm-modulus unit ball property (2.2.2) the condition
(3.1.10) is equivalent to

/ |FP@dz <1, (3.1.11)
Q

This and the standard L?-estimate (3.1.5) yield that

/ |F|*dx < / (JFP™) +1) dz < 149 and / |Dul?dz < c(1 + [9)).
Q Q Q
(3.1.12)
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With the abbreviation
¢ = (n,v, A, y1, 72, w(+), |Q]) > 1042, (3.1.13)

we let R € (0, %} C (O, 10@%} and z € Q, and localize our interest in the

region Qsr(xp). The choice of ¢* will be clarified later in the context. We
then fix any s; and s, with 1 < s7 < s < 2. Under these assumptions and
settings, we write

2<m<p = inf pl)<p"= sup p(z) <y <400
z€Qar(x0) €9 (z0)
and
2p(x) 1 2p(x) 1
)\0:][ (|Du| P —|——|F| P )dl’—l—— > 1. (3114)
Q2r(0) 0 0

Note that from 2 < QZ—@ < p(z), (3.1.8) and F € LPO(Q;R™) the above
integral is well defined. We next define an upper-level set

E\) = {x € Qs r(zo) : |Du(x)|2z(*z) > )\} , (3.1.15)

for A large enough to satisfy

o (EE) (=)

S2 — 51

We observe from (3.1.15) that
Q,.(y) C Qagr(xo),Vy € E(N) and 0 < Vr < (sy — s1)R. (3.1.17)

Then for any fixed y € E(\), consider a continuous function @,(r), defined
by

2p(x) 1 2p(z)
P, (r) = ][Q ( <|Du! P+ 5|F’ - ) dr, 0 <r <(sy—s1)R. (3.1.18)
s y
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When the choice of y is clear from the context, we frequently omit it and
write ®(r) instead of ®,(r). In light of (3.1.17) and (3.1.18), we have

S N (s L

Q 2p(x) 2p(x)
< [$02r(w0)| (|Du|p |F|p ) x
|Qr(y)| Qaor(zo)

) 2p(z)
|Q7' (y)| QQR((JC()) 5

. (mm@>ﬂawﬂ +§Wh

(]D e 2p<z>> g
u| r - Z,
S2 — 81 ‘Qr(y” Qar(z0)

provided that

<52 — Sl)R S r S (SQ — SI)R.

1
200v/2
We recall the measure density condition (3.1.6), (3.1.14) and the selection
(3.1.16), to find that

S9 — 51
O(r) < A, forallr e R, (s —s1)R| .
") 2Ry
On the other hand, the Lebesgue differentiation theorem implies that for
almost every y € F(\), lim,_,o ®(r) > A. Consequently, we conclude that for

almost every y € E()), there exists r, = r(y) € <0, SSO}R> such that

®,(ry) = A and O, (r) < A for all r € (ry, (s2 — s1)R].
We thus infer the following lemma from the Vitali covering lemma.
Lemma 3.1.5. Assume (3.1.16). Then there exists a disjoint family {Q,, (vi) }32,

with y; € E(\) and r; € <O, ;&;}R) such that

D, (r;) = A, ©,,(r) <X for every r € (14, (s2 — 51)R] (3.1.19)

and

MCU%“W‘
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As a consequence of Lemma 3.1.5, we estimate

1 2p(x) 1 2p(@)
2wl = 5 ([ ol s [ e
A\ o) on

1 2p(x) A
1 / e DUl 7 dz+ 2|9 ()]
A Qri(yi)ﬁ{Du p >j} 4

2p(x)
P

1 A
er(yz)m{lFl P >)\6} 4

Therefore, we obtain

2 2p(z)
1 (vi)] < —(/ 2p(a) | Dul v dx
A nri<yi)m{Du| p- >A}

4

IN

1

*l'g/ 2p(a) | F|
Qu(yi)ﬂ{lFl P >§f}

2p(z)
pe=

dx). (3.1.20)

Proceeding from Lemma 3.1.5 and (3.1.20), we fix the point y; and the
scale r;. Now there are two possible cases. One is the interior case that
Blooya)r; (¥i) C §2. The other is the boundary case that By, (vi) Z €.

We first look at the interior case. Observe that (20v/2)r; < ‘/?iR <R<
101:3/5, by (3.1.13). Then since A is (4, Ry)-vanishing of codimension n — 1,
we assume that in a new coordinate system (zy,--- ,2,_1, 2,), the origin is

y; and
][C i AG)- A, (2] d2<0 (3.1.21)
(20v2)r;

We write
Cil = C(S\@)ri? Ci2 = C(1o¢§)ria C? = C(ZO\/ﬁ)rﬁ (3.1.22)
p; = inf p(z) and p;“ = sup p(2).
ZGC? ZEC?
We next recall (2.2.4) to see that

pi —p; < w(40v2r;). (3.1.23)
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In light of (3.1.18) and (3.1.19), it follows from the invariance property under
the change of the variables that

20(2) Clior, 2p(2)
][ |Du| = dz < M][ |DU,‘ = dr < \/5”/\7 (3124)
Cf | CQOﬁri 0407‘7; (yz)
and, similarly,
2p(z) n
][ |F| v dz < V276 (3.1.25)
ot
We next claim that
][ |Dul?dz < coA?i  and ][ |F|*dz < CO/\¥5%, (3.1.26)
3 3

for some universal constant ¢y > 1, being independent of i. To do this, we

first observe that
Py —p;
<][ \Du!2dz> <cg,
c?

where ¢ > 1 is a universal constant, being independent from the index .
In fact, a direct computation yields that

) pl—p; L \PER ; Pl —p;
Dul|*d = —a Du|*d
f o (en) (e

+7 —_
(3.1.22),(3.1.23) 1 nw(40v/21;) Py —D;
< C(—> / | Du|?dz
40\/57’1 c3

(3

-+

(2.2.5) Pi P
< c | Dul?dz :
c?

On the other hand, By taking ¢* > |Q| + 1 in (3.1.13), so —=— >
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2] + 1, we find that

+

( 1D dz)pi (/ Dl dz) o

“s (9] + 1)

(3.1.23)
(c[|9] + 11)“40@"“

< c < c
N (40\/57%‘) N

Recall y; < p; and use the above observation and the Jensen inequality,
to obtain that

+ — —

i Pq P;

py Py
][ \Dufdz = (f \Du|2dz> <][ |Du\2dz>
c3 cs c?
(c) (][ \Duypdz> §c<][ Dl 5 dz+1) |
o

Since A > 1, by (3.1.24), we get the first inequality in (3.1.26).
Likewise, we find that

+
2p(z) Pi
][ |F|*dz < c<][ |F| »~ dz—l—l)
c? c?

(3.1.25) P

IA

IA
Q)
o
>
3
()
2
™)

which is the second inequality in (3.1.26).
We define

ui(y) = =, Fi(y) = -
{5\/5]7’1 \/ CO/\ﬁ co/\pi
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Then @; € H'(Cy) is a weak solution of
div(A;(y)Da;) = div E; in C. (3.1.27)

It is easy to see from (3.1.21) and (3.1.26) that

][ |Di;|*dy < 1 and ][ |E52dy < 5.
Co Co
Then one can obtain compare (3.1.27) with its limiting equation as 6 — 0 by
a perturbation argument. In fact, we recall Lemma 3.1.4 and Lemma 3.1.5,
and apply Lemma 5.2 in [14], to discover that for any € € (0, 1), there exists
the v; € H'(Cy) of

div(Aig, (ya)Dt;) = 0 in Cy
and

d=0(e,n, v, A, v1,72)

such that

|D’L~Lz — D1~)Z|2dy S € and Hf}iHLoo(Cl) S C.
Ca

Scaling back and denoting v; by the translated function of v;, we conclude
that

][ |Du — Du;*dz < ecoA?t (3.1.28)
o

and

p_
Vil 7 ooy < c1A7 (3.1.29)
for some universal constant ¢; > 1, being independent of 7.

We next consider the boundary case that dist(y;, 9Q) = |y;—yo| < 20v/2r;

for some y, € 0. According to Definition 3.1.1, as 20v/2r; < R < 1012(\)/5’

there exists a new coordinate system {z1, - - , 2, }, after appropriate rotation

and translation of the coordinates, in which we denote by zy and z; to mean
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the points 4y and g; in the old system, respectively, such that the origin lies
somewhere in By,,/3.5(%0),

CJ;(M\[)” C Qoavayr € Croavay N {zn > —(208\/5)7’,6},
_ , <
o ’A(z) AB(104\/§)ri (zn)| dz < 6.
(104v/2)r;

By taking § < 104\/5, we deduce that |z;| < (20v/2 4 1)r; < (213/2)7; so

Qv (21) C Qagvay, € Laoavayn € Cooor (24)- (3.1.30)
We next write for j = 1,2, 3,

Q= Qg1 962y, O = CI N {2, > 0}, (3.1.31)

and

p; = inf p(z), p = sup p(z).
2€Q? zEQ?

Therefore, it follows from the above settings and (3.1.6) that

2p(2) 1 2p(2)
£ (10w 4 Jirer ) a:
0

|Q200ri (Zz) | 2p(2) 1
= Ouosvan Du(z)| + + S| FG) 7 ) d
(104v2)r; 1/ Q2007 (2:)
& ik ¢ Ti 2p(x)
< C’( soor,| | 200\/) : ][ (|Du 2te) —|F( I ) .
| (104v2)r; ’ ’ 200r; ZZ ‘ (200v/2)r; (yi)

( ) Yi ((200\/_)7“2'),

where ¢(n) is a constant depending only n and we recall ®,, from (3.1.18).
Then by (3.1.19) in Lemma 3.1.5 we derive that

2p(2) 2p(z)
][ 1Du()| 55 dz < e(n) and ][ F(2) 5 dz < c(n)on.
s

3
Qi

Once we have the above uniform bounds, one can find in the same spirit as
in the interior case that for some universal constant cs,

][ |Dul?dz < coA% and ][ |F|*dz < CoNTi 672 (3.1.32)
Q3 Q3
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In light of (3.1.30)-(3.1.32) and in a similar way that we have used for the
interior case, also see Lemma 5.8 in [14], to conclude that for any € € (0,1)
there exist a small positive number

0= 6(67 n,v, A7 71, 72>
and a function v; € H*(C?") such that

][ |Du — Du;dz < ecod? (3.1.33)
2

and

-
7_’_
[0ill oo 02y = Nlvill ooty < 3™ (3.1.34)
for some universal constants cs,c3, being independent of i. Here we have
extended v; by the zero from C?* to Q2.

We are now ready to obtain gradient LP()-estimates on Qz. Recall ¢; in
(3.1.29) and ¢3 in (2.3.1) and write

¢y = max{cy, 3},

which is large universal constant, being large enough and independent of the
index i. We also recall the assumption (3.1.16) on A and the notation E(-)
(3.1.15) for the upper-level sets. For the sake of simplicity and clearance, we

A= (de)) |, B= (16\/§> (400‘/§> . (3.1.35)

also write

7 S9 — 851

Then it is clear that F(AX) C E(A). Thus Lemma 3.1.8 implies that {Qs,,(y;)}

is an open covering E(AN). Therefore, we have
(2)
|E(AN)| = Haz € Qunr: > A)\H
<y {x € By, (y;) : |Dul* > (AA)&;H
i=1
< > {x € Qs (i) - |Dul? > (AN)7 >H

i:interior case

{x € Qs (y) : |Dul? >

D

i:boundary case

H (3.1.36)
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For the interior case, using the fact that |Du|? < 2|Du — Duv;|? + 2| Dv;|* and
recalling (3.1.22), (3.1.28), (3.1.29) and (3.1.35), we find that

Hz € C} : |Duf? > (A)\):@H < Hz € C} : |Du— Dy|* > co)\P?H

p_
+ {Z € Czl : |DU1“2 > Cl)\p?_ }‘
< — / |Du — Dv;|*dz
D
anr G

S Elozll S CE|O5\/§TZ-|‘

Hence the invariance of the change of variables and the fact B; ), C c}
in the z-coordinate and Qs,,(y;) = Cs,,(y;) C By 3, (vi) in the x-coordinate
imply that

Hx € s, () : | Dul* > (A)\);@)H < ce|Q, (y3)] (3.1.37)

For the boundary case, we recall (3.1.31), (3.1.33), (3.1.34) and (3.1.35).

Then we carry out the same procedure in (3.1.36) to discover that

{z e Q! |Du? > (AA)E(?)H < el
Then using the measure density condition (3.1.6), B(s, /), () N Q C Q; in

the z-coordinate and s, (v;) C Bs,/3,,(y:) N €2 in the 2-coordinate, we return
to the original z-coordinate to conclude that

Hx € Qs () : |Dul* > (A)\>&;)H < ce|Qy, (1) (3.1.38)

We next insert (3.1.37) and (3.1.38) into (3.1.36) and then apply (3.1.20).
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Then we obtain that

|[E(AN)] < C€Z|Qn(yi)|
N p(z)
“X Z:: </ﬂm(yz)ﬁ{Du2P >2}
1 2p(@)
—|——/ 2p(z) |F‘ = dx ).
0 szr,.<yi>m{|F| - >“}

Ey
Then since {2, (y;)} are nonoverlapping in €, g, we obtain the following
result.

Lemma 3.1.6. Under the same notations mentioned earlier, let || F'|| o) qrny <
land0 < R < % < ;11. Then for 0 < € < 1 fized, one can find a small number

d = d(n,v, A, y1,7v2,w(), €) such that if (A, Q) is (J, Ro)-vanishing codimen-
sion 1 andu € HJ(Q) is the weak solution of (3.1.1), then for any R € (0, £2]
and for any 1 < s1 < s9 < 2 we have

1
A QSQRO{Du P~ >*}

1 2p(z)
—i——/ 2p(2) |F|»= dx |, for all \ > B,
0 932Rm{|F| b >*j}

where ¢ depends only on n,v, \,y1,v2 and w(-).

Now we begin to prove (3.1.9). First, we estimate in a local region Qg ().
2p(x) _
We use the integral identity (2.3.1) when f(x) = |Du(x)| 7 and q =5

Direct calculation shows that

we\T e
/ | Duf? %c—/ (|Du| ) dx:p—/ N1 B()] dA
Qis sR 2 0

1

- —A/ N1 E(AN)] dA

g(A-BAO)ﬂQisH?A% AT E(AN)|dA . (3.1.39)
}I B)\o g ,
Iz
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We first estimation /; : We plug Ap in (3.1.14) and A, B in (3.1.35) into
I,. Then we have

p

Q @) 1 2@ 1) =
L < C%{][ (|Du\  + —|F| P_)dx—l——}
(s2—s1)2 |/ 0 0

Q pt =2
S C% (][ |DU|257 dx + ].)
(s —s1)72 Qon

¢ 1)”2 (/
+—7W2 = |F|p($)dl’ + |QQR|> }
(52—81)2{ (6 QR

[ 2 - !
C— g ‘DU’ p d$+1 +C(5)—m(1+ ’QQRDa
(32 - 31) 2 Qor S — 31) 2
where the inequality in the last line follow from (3.1.11).

We further assume on 0 < R < % that
W(4\/§R) S J071,

by taking ¢* large enough in (3.1.13), where oy was given in Lemma 3.1.4.

Then
_:1+p _p w(4—\/§‘R>

Pt +

<1+ <l+oo<m.

+

IN

Then Lemma 3.1.2, (3.1.11) and (3.1.12) imply that
(
c(9)
(@)% (12| + 1)

D D g
pT
ort p ort
][ |Dul"»=dz < c<][ |Du|2dx) +c][ |F|"»~ dx
QQR Q4R Q4R
1 p
/ |Du|2dx> +c (][ |F|P@) dx + 1)
[Qur| Jo Qur
ot +
Q+1\» 1 Ql+1\»
<o (o) ra | = (ar)
€| 24| jox
Therefore, we derive from the measure density condition (3.1.6) that
Lo — % (I E (9] + ) F +1Qa] + 1]
(52— s1)"2
< g . (3.1.40)

(82 —s1)2
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Using Lemma 3.1.6, we next estimate [5:

Y N : 2p(x)
I, < cp AT / AT / ey |Dul v dw
0 QS2RH{|DU| P >2}

1 2p(x)
—I——/ 2p() |F| >~ dx | dA
0 932R0{|F| P >§f}

0 )\ %72 2p(x) )\
< ceA? / (—) / 2p(2) |Du| »= dz | d (—>
0 4 952R0{|Du| P >i} 4

~~

I3

1 [ /A8 T2 2p(e) A0
02 Jo 4 QSQRQ{F P >”} 4

'

Iy

_ 2p(z)

We apply (2.3.2) to I3 when ¢ = &-, ¢ = 1 and |f(z)| = [Du(x)| »~ with
— 2p(z)

A replaced by %, to Iy when ¢ = B, ¢ = 1 and |f(z)| = |F|» with X

replaced by %‘5, respectively, to discover

bsoe [ DOt ees) [ (FPs
QSQR

QSQ R

for some universal constant ¢s5 = c5(n, v, A, 71,7, w(-)). But then (3.1.11)
imply
I, < C56/ | DulP@da + (e, 0). (3.1.41)
QSQR

Combining (3.1.39), (3.1.40) and (3.1.41), we deduce that

NI F(Q+ 17
/ Dufpo)gy < SOl (92 + 1) +c56/ \DuP@da + cfe, 5).
QSlR (52 - Sl)T QSQR

We now select a sufficiently small € = e((n, v, A, v1, 72, w(+)), in order to get

1
O<C5€<§7
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and so one can choose a corresponding
525(”7 V7A7’717’727w('))7 (3142)

being sufficiently small, from Lemma 3.1.6, to obtain

1 Qp["2(Q|+1)%
/ | Du|P®@dz < 5/ | Dul|P @ dz + c|Qp| = (|2 + 1) L
Qis

QSQR (82 . 31)722" )

forall 1 < s; < sy < 2. We then apply Lemma 5.2.9 when ¢(s) = [, . | DulP@®) dz,

ry = 1 and ry = 2, and then make simple computations along with the mea-
sure density condition (3.1.6), to finally derive

/ DuP@dz < c|Qn(zo)[=F (0] + 1) %, (3.1.43)
Qr(zo0)

where ¢ depends only on n, v, A, vy, v2, w(+).

We next derive the global estimates. It can be obtained by using stan-
dard covering argument along with the local estimates (3.1.43). Since Q
is compact, there exists finitely many points xf € Q and numbers R, =
Ri.(n,v, A, v1, 72, w(+), Ro, |2]) < %, k=1,---,N,suchthat Q = Ué;vﬂ Qr, ()
and

Qg, (zf)

where c is independent of k. Consequently, we have that for some universal
constant ¢ = ¢(n, v, A, v, 72, w(+), Ro, |2]),

N
/ | Dul|P@dz < Z/ |DulP® dx < c,
Q i Jo

Ry (k)
which is the required one (3.1.9).
Proof of Theorem 3.1.4. We have established the global WP()-estimate un-
der the a priori assumption (3.1.8) that |Du| € LP®)(£2). We next remove this

assumption via an approximation procedure to complete the proof Theorem
3.1.4.
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Let {F*12° | be a sequence in C§°(£; R"™) converging to F in LPO)(Q; R™),
needless to say, F* € L72(Q;R"). According to the earlier work [14], the
unique weak solution u* € H}(Q) of

div (A(z)Du*) = div F* in Q,
ub = 0 on 0N

satisfies the global W'72-regularity under the assumption that (A,Q) is
(0, Rp)-vanishing of codimension 1. More precisely, we have

|Du| € L?(Q) c LPV(Q).
As a consequence, we have
||Duk||LP<')(Q;R") < CHFk”LP(‘)(Q;R") < CHFHLP(‘)(Q;R”)v

where c is independent of k. From this estimate we observe that there exists
u € Wol’p(')(Q) which is the weak limit of {u*} in Wol’p(')(Q) such that

||Dﬂ||Lp<-)(Q;Rn) < C”F”LP(')(Q;R")'

Then it is easy to check that this u is the weak solution of the original problem
(3.1.1). So by the uniqueness, we conclude that v = @ almost everywhere in
Q). This completes our approximation procedure. O

Remark 3.1.7. One can consider the general case that 1 < v < p(x) <
Yo < +o0. In fact, since |F| € LPO(Q) € L (Q) C LV(Q) for 1 < v < 71,
we know that |Du| € LY() from [14]. Then with the same spirit in the case
that 2 < v < p(x) < 72 < 400, one trealt weak solutions defined in LY(§2) to

p(z)
consider {x € Qr(xo) : |Du\wp‘ > )\}.

32



CHAPTER 3. GRADIENT ESTIMATES FOR LINEAR EQUATIONS IN
VARIABLE EXPONENT SPACES

3.2 Optimal gradient estimates for parabolic

equations in variable exponent spaces.

3.2.1 Main result.

We consider the following initial and boundary value problem for a divergence
type parabolic equation

u — div (A(z,t)Du) = divF in  Qrp, (3.2.1)
u = 0 on 0y, o
to show that the following relation
Fe’YQmR") = Duc LPY(Qp,R") (3.2.2)

holds for each variable exponent p(-) = p(z,t) under an optimal regularity
assumption on the coefficient matrix A : R* x R — R™ and a minimal
geometric assumption on the bounded parabolic cylinder €2r.

Note that for f = f(z,t) : R"™! — R and F = F(z,t) : R*™ — R" we
denote by Df = D, f to mean the spatial gradient vector of f, by divF =
div, I the divergence of F' with respect to spatial variables, and by f; the
derivative with respect to time variable.

We return to the parabolic problem (3.2.1). The basic structural condition
on A is the following:

V[P < (A(x,1)€)- ¢ and |A(z,t)] <A, forallz,{ €R", t R (3.2.3)

and for some constants 0 < v < A. F': Qr — R" is a vector valued function
in L?(Qp; R™). We then say u € C°(0,T; L*(Q2)) N L*(0,T; Hy (2)) is a weak
solution of (3.2.1) if it satisfies that

/ wpy dz —/ (A(2)Du) - Dy dz :/ F-Dpdz (3.2.4)
QT QT QT

for all p € C5°(Qr) with ¢ = 0 when ¢t = T, and u(-,0) = 0 in L*(Q). Tt is
well known that (3.2.1) has a unique weak solution with the estimate

sup Hu(~,t)Hiz(Q)+/ ]Du|2da:§co/ |F|dx, (3.2.5)
Or Or

0<t<T
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where ¢y depends only on n, v and A. We refer to [34, 41] for the basic
theories mentioned above.
Suppose that p(-) is log-Holder continuous. We define

WP (Qr) == WrO(Qr) and  WphY(Qr) = WO (Qr)

with s = 1 lhogoan = 1o + 107 oz Let
W5 """ (Q) be the dual space of W;’f) O(Qr) with the pairing ({-,-)) be-
tween W;l’p(')(QT) and W;’,%/(')(QT). Then for any v € W;l’p(')(QT) there
exist G € LPO)(Qp;R™) and g € LPO)(Qr) such that

(v, w)) = /Q (G- Dw + gw) dz for all w € Wb (Qr) (3.2.6)

and HUHW;LP(.) = inf {||G|| 0> (pmmy + 91l Lo0) )} Where the infimum

(Qr)
runs over all the functions G and g satisfying (3.2.6). We next introduce

W*l,p(')<QT) — {U c W;p()(QT) S Uy c W;Lp(.)(QT)}y
where we understand u, € W b (')(QT) in the sense of distribution, that is,
((ur, ) = —/ up dz,
Qr
for every ¢ € C§°(Q2r) with ¢ =0 for t =T, with

||U’||W*1’p(')(QT) - ”u||W71>’p(')(QT) + ||U’t||W7;1’p(')(QT)'

Remark 3.2.1. Note that for the special case p(-) = 2, we obtain W;’Q(QT) =

L*0,T; HY(Q)), Wpa(Qr) = L*(0, T3 H3()) and Wy *(Qr) = L*(0,T; H™(2)),

where H™' is the dual space of H}. Then one can observe that the weak for-
mulation (3.2.4) can be written as

(o) + |

(A(z)Du) - Dpdz = —/ F-Dypdz,
Qr

Qp
for all o € L*(0,T; H}(2)), and we have from (3.2.5) and (5.2.6) that
HuHW*l’Q(QT) = |ullzzpmmro@ + HutHW;LQ(QT)
< c(IDulliz@rwe) + [ Fllzz(pzn) + [ADull 12(0p )
< d|F[lr2orrn), (3.2.7)
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where the positive constant c is independent of uw and F'. Furthermore, the
weak solution u satisfies that, for almost every time t € [0,T],

(ug(+, 1), ) —I—/QA(x,t)Du(x,t)D@/J(m) dx = —/QF(x,s)Dl/)(x) dx, (3.2.8)

for all v € HY(Q), where {-,-) is the pairing between H~ () and H ().

We now state the regularity assumptions on the coefficient matrix A and
the boundary 02 of 2 under which we essentially obtain the relation (3.2.2).
On A we impose a small BMO condition in (2, t) variables while allow to be
merely measurable in z; variable, depending on a point and a scale chosen.
On 0N we impose a d-flatness which means the boundary can be locally
trapped into two hyperplanes. These conditions on A and 02 were reported
in the earlier paper [11] where the same problem (3.2.1) is considered in the
constant exponent Lebesgue space.

In order to measure the oscillation of A in (2, t) over Q..(v', s), we consider

— 1

Ag .5 (1) :][ A(zy, 2 t)dd'dt = ——— A(xq, 2 t)d2'dt,
W) QL(y',s) |Q;°(y/> S)’ QL(y,s)

which is the integral average of A(zy,-,) in (2/,t) over Q.(y/, s) for each x;

slice.

Definition 3.2.2. Let § < . We say that (A,Q x R) is (4, R)-vanishing

codimension 1 if the followings hold: for each (y,s) € 2 x Rand 0 < r < R,

1. if dist(y,09) : inf{|ly — y'| : y' € 9Q} > /2r, then reorienting and
translating the axes, we find a new coordinate system, z = (Z,¢) =
(1, 7', 1) variables, with the origin at (y, s) such that in this system

} 1AG) - Bg (el <5

r

2. on the other hand, if dist(y,0Q) < v/2r, say y* € 90N B s,.(y) with
[yt — y| = dist(y,09), then reorienting and translating the axes again,
we find a new coordinate system, z = (Z,t) = (71,7, t) variables, with
the origin at somewhere on 9Bay,s(y') x {s} such that

O;er C Co, N C Coyyp N {J_fl > —48(57‘}
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and
][ A(2) — Kg,, (1) dz < 6.
Q3 ’

24r

There are a few comments on the above definition.

1. Changed coordinate systems can be obtained by rotation with respect
to x variables and translation with respect to (z,t) variables from the
original coordinate system. Since the equation (3.2.1) is invariant un-
der such rotation and translation, without loss of generality, in new
coordinate systems, we still use the same notations used in original
coordinate system, for example, variables x and ¢, A an F.

2. For sufficiently small regions B s, (y) x (s —r?, s +r?), if B 5,(y) lies
in 2, then there exists one direction along one of the spatial variables,
depending on y and r, such that A is merely measurable in this direc-
tion and has a small BMO condition in the other directions. On the
other hand, if B s, (y) intersects the boundary of €, then there exists
one direction along one of the spatial variables, which is normal to two
parallel hyperplanes, one lying locally inside €2 and the other locally
lying outside {2 near y; with the distance between 4847, such that A is
merely measurable in this direction and has a small BMO condition in
the other directions.

3. Only for a technical reason, we record the number 24 which can be
easily changeable via a scaling. By the same reason, one can take R
can be any positive number while § is invariant under such a scaling.

Remark 3.2.3. If (A, x R) is (0, R)-vanishing codimension 1, one can
observe that  is (0,24R)-Reifenberg flat domain, [52], that is, for each y €
0 and each 0 < r < 24R, there ezists a coordinate system y = (Y1, -, Yn)
with the origin at y such that

B.N{y, > —-oér} € B,NQ C B, N{y,>or}.

Since (0, 24R)-Reifenberg flat domains have the following property :

B, 2 \"
B na < (i5) - oty mtr 0.2,
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see [13], we observe that

1 (v)] V2'|B ()| _ (16\/§>n. (3.2.9)

sup sup —=——~—— <sup sup =
veQ 0<r<24r |Cr(Y) N Q| T yeq o<r<aar | Br(y) N QY 7

We refer to [13] for a further discussion on the d-flatness condition.
Let p(+) = p(2) : R*™! — (2, 00) with
2<m <p(z) <v2 <00 (3.2.10)

be log-Hoélder continuous, hence there exists a modulus continuity of p(+)
with respect to parabolic distance, w : [0.00) — [0, 00), satisfying (5.1.1) and
(5.1.2) with L replaced by «,. We rewrite the log-Holder condition such that

p(¢") = p(¢)] < w(dp(C, ¢)), (3.2.11)

for all ¢*,¢? € R* and

w(r)
1 1
w(r)log (;) < a, <<:> (—) < e“”) , forallre (0,1. (3.2.12)

r

Theorem 3.2.4. Let Ry > 0 be a given fized number. Then there exists a
small 6 = 6(n, v, A, v1, 72, w(+)) such that if (A, Q x R) is (3, Ry)-vanishing

codimension 1 and F' € LPO) (Qp; R") and v € C°(0,T; L*(Q))NL2(0, T; H} (Q))

is the unique weak solution of (3.2.1), then we have the estimate
[ Dull o) (@pny < €l F | o) (@ (3.2.13)
for some ¢ = c(n,v, N, y1, 72, w(-), 2, T, Rp).

Remark 3.2.5. We recall the space W*l’p(')(QT) mentioned in the previous
subsection. Then we see from (3.2.13) that

u € W*l’p() (QT>

with the estimate
llly 10605y < €l Fllzstoapny (3.2.14)
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for some ¢ = ¢(n,v, A\, v1,72,w(), Q2 T, Ry). Indeed, using Poincaré’s type
inequality in parabolic Sobolev space, see Lemma 3.9 in [30], (3.2.5) and
(3.2.13), we deduce

lullyrro g,y = Mullyreo gy + ey reoe g,
< ¢ (n7 v, N, v, 72, w(')7 Q, T, Ry, “DUHLP(‘)(QT)v HFHLP(‘)(QT))
< c (na v, Aa Y15 72, w(')» Q> T7 ROa HFHLP('>(QT)) )

Therefore, using a standard normalization argument, we obtain (3.2.14).

3.2.2 Proof of Theorem 3.2.4.

Comparison Estimates.

In what follows, we denote the letter ¢ to mean any constants which can be
computed in terms of n, v, A, vy1,7 and w(-), and so ¢ may be different line
by line.

We now introduce higher integrability of spatial gradient of weak solutions
of (3.2.1). The interior case was discussed in [35] when F' = 0, using Cac-
cioppoli estimate Sobolev-Poincaré’s inequality and Gehring Lemma. Even
if F#0and F € LP(Q2 x (0,T)), p > 2, one can also obtain higher integra-
bility in the same way. Furthermore, if Q is a (J, R)-Reifenberg flat domain,
which enjoys the measure density condition, that is, for all 0 < » < R and
for each y € 09, % > ¢(n) for some a(n) € (0,1), and so Sobolev
Poincaré’s inequality can be applicable to zero extension of the solution of
(3.2.1) in a neighborhood the boundary point. Consequently, we have higher

integrability, as we now state.

Lemma 3.2.6. Suppose that Q is (0, R)-Reifenberg flat and p > 2. Let ¢ =
(y,s) € R™, wherey € Q andr < £. There exists o9 = o9(n, v, A,p) < E—1
such that, for F' € LP(Ky.(C)) and a weak solution

ue C”(s—(2r)% s+ (2r)% L* (2 (y))NL? (s — (2r)%, s + (2r)% H (D2, (y)))
of

{ u — div (A(z)Du) = divF in K. (C),
u = 0 on awKQ’I‘(<>7 ZfOQT(y) §Z Qu
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there holds Du € L*1*90)(K,(¢)) and we have the estimate

140
][ |Du?M*)dz = ¢ (][ | Dul? dz> + c][ |F[20+9) 2,
(<) Kar(C) Kar(C)

for every o € (0,00] and for some positive constant ¢ = c¢(n,v, A, p).

We next study local estimates of solutions of the original equations (3.2.1)
by comparison with solutions of the limiting equations, which is the case when
0 goes 0 and the coefficients depend on only one of spatial variables.

Lemma 3.2.7. Let € € (0,1). There exists a small 6 = §(e,n,v,\) > 0 such
that the followings hold.

1. Interior estimates: If u € C°(—4% 4% L?(Cy)) N L*(—4%,4% HY(C))) is
a weak solution of

u — div(A(z)Du) = div F in Q4
with

][ |Dul?dz < 1 and ][ (JA(z) — Agy(x1)| + |FI?) dz < 6,

then there exists a weak solution v € C°(—2% 2% L?(Cy))NL*(—22,2% H'(Cy))
of
v — div (Ag,(x1)Dv) =0 in Q,

][ |Dvf*dz < ¢
4

][ |Du — Dv|*dz < e.

with

such that

2. Boundary estimates: Suppose § is a (0,4)-Reifenberg flat domain. If
u € CO(—4% 4% L2(Qy)) N L*(—42,42; HY(Q)) is a weak solution of

ur — div (A(z)Du) = 0 in Ky,
u = 0 on 0,Kjy,
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with
Oz_ C Q4 C 04 N {lL‘l > —85},
][ |Dul?dz < 1 and ][ |A(2) — Ag,(x1)] + |F|? dz < 6,
K4 K4
then there exists a weak solution v € C°(—32,3% L*(Q3))NL*(—3%,3% H'(Q3))

of
vy — div (KQZL(ail)DU) = 0 in K,
= 0 on 0,Ks,

with

][ |Dv|*dz < c,
K3

][ |Du — Dv|*dz < e.
K3

such that

Proof. We only prove the boundary case. The interior case can be proved in
a similar way. Let w € C%(—4% 4%, L*(Q4))NL?(—42,42; H'(€y)) be the weak
solution of

{wt—div (A(z)Dw) = 0 in Ky, (3.2.15)

w = u on O0,Ky,
and then let v € C°(—32, 3% L*(Q3)) N L?(—3% 3% H'(3)) be the weak
solution of

{Ut—diV (KQa(xl)Dv) = 0 in Ky,

3.2.16
v = w on O,K;. ( )

We next observe that u —w € C%(—42 4% L?(Qy)) N L*(—42,4% H}(Q4)) is
the weak solution of

(u—w) —div (A(z)D(u —w)) = divF in K,
u—w = 0 on 0,K,

Then from standard L? estimates for v — w and the smallness assumption
for F', we find

][ |Du — Dw|*dz < c][ |F|? dz < cd, (3.2.17)
Ky

Ky
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which also implies

][ |Dw|*dz < ¢ <][ |Dul*dz + 5) <ec. (3.2.18)
Ky Ky

On the other hand, w —v € C°(—3% 3% L*(Q3)) N L?(—32, 3% H}(£3)) is the
weak solution of

{ (w—v) —div (Ag,(z1)D(w —v)) = div((A—Ag (z1)) Dw) in K,
w—v = 0 on 0,Ks,

and so we have
f|Dw—mw@g§f\A—K%@mmmw@.
K3 K3

We now recall higher integrability, Lemma 3.2.6, to see that Dw € L1+ (Kj)
for some o0 = o(n, v, A) with the estimate

1+o
][ | Dw|?**dz < ¢ <][ |Dw|2dz) <cg,
K3 Ky

where we have used (3.2.18). Then it follows from Holder’s inequality, the
smallness assumption for A and (3.2.3) that

][ |Dw — Dv|?* dz
K3
- 140 I'LLU H’%
<o(f AR az) " (f pupe a:)
K3 K3
c + + =
< — A—Ay(z 2100dz+/ A — Ay (z)27 dz
e (/KS\Q;| o) [ 1A= Ag )

K, \OF _ T
< c Lﬂ§ﬂ+f A —Ag (11)] dz
Q7| QF

< 0T, (3.2.19)

We then combine (3.2.17) with (3.2.19) to derive

][ |Du — Dv|*dz < ¢ (5—1— 51%) <€, and so ][ |Dv*dz < c,
K3

K3
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by choosing a sufficiently small § so that the last inequality holds true. This
completes the proof. O

We next discuss a local Lipschitz regularity for a fixed limiting problem
with zi-dependent coefficients on the flat boundary.

Lemma 3.2.8. For any ¢ € (0,1) there exists a small 6 = 0(e,n,v,A) > 0
such that for any weak solution v € C°(—32, 3% L?(Q3))NL*(—32,3%; H*(Q3))
of
{ vy — div (KQ&(xl)Dv) =0 in K,
= 0 on O0,Ks,
with
Cy c Q3 € Csn{x > -8}

][ |Dv|*dz < E,
K3

for some ¢ > 0, there emists a weak solution v € C°(—2%2% L?(Cy)) N
L*(—22,2% HY(CY)) of

and

0, — div (Ag,(z1)DV) = 0 in Q5 (3.2.20)
v =0 on QyN{r; =0} o
such that
][ |Dv — Do|* dz < e, (3.2.21)
Ko

where we extend U from QF to Qs by zero.

Proof. We prove this lemma by contradiction. If not, there exists ¢y > 0 so
that for each sufficiently large | € N, there exist Q! and v; such that

Cy c Oy c C3n {:1:1 > —?}, (3.2.22)
v € CY(=3% 3% L3(Q4)) N L?(—32,3% H'(Q})) is a weak solution of

{(vz)t—div (Agy(z)Du) = 0 in Ky=0 x (=3%3), 5, o)

u = 0 on O KL
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and
][ |Duy|*dz < ¢, (3.2.24)
Kl

3

but
][ |Dv; — Do|* dz > €oé, (3.2.25)
K}

for every weak solutions v of (3.2.20). In view of (3.2.22)-(3.2.24), we observe

/ | Duy|* dz §/ |Du|*dz < é.
+ K‘é

3

Applying Poincaré’s inequality to v; for each time slice, we find

ul?dz < ul?dz < e Dy |? dz < cé.
lu[*dz < | |ul*dz < ! <
Q+ Kl Kl

3 3 3

From Section 2.3., we know v; € W1?(Q3), and by the above inequalities
{v;} is uniformly bounded in W}?(Q3), hence there exists a function vy €
W2(Q4) such that

v, — vy strongly in L*Q7)
Dv, — Dvy weakly in L*(Q7F)
(v))e — (vo);: weakly* in L*(0,T; Hfl(Bgr))

asl — oo. (3.2.26)

Note that the strong convergence in L?*(Q3) can be obtained by Aubin-Lions
Theorem, see Proposition 1.3 in [56], which is that W!?(Q7) is compactly
embedded in L?(Q27). Needless to say, this vy is a weak solution of (3.2.20).
We next extend v; and vy to Q3 by zero to claim that

Dv; — Duy as | — oo strongly in L*(Qs). (3.2.27)

But then this is contradict to (3.2.25). Thus it remains to show the above
claim. To this end, select a standard cut off function ¢ = ¢(z) € C5°(C3)
satisfying

0<¢9<1l ¢=1inC,; [Dgl<c,

and a function p = p(t) € C((— (5/2)%, (5/2)%)) satisfying
0<ps1 6=1in (-2, | <5
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Observe that for almost everywhere ¢t € [—3% 3%], ¢(-)p(t)(vi(+, t) —vo(, 1)) €
Hg(9}), and so we use this one as a test function in the weak formulations
like (3.2.8) of the equations (3.2.23), to discover that

A(zn)Duy(z, 1) D (¢(x)p(t) (i(z, 1) — vo(x, 1)) dz

= ((W)e(,1), oC)p(E) (il 1) = vo (-, 1))

for almost every t € (—32,3%) and for all sufficiently large I. Integrating the

2

above equality for ¢, we obtain

I = g A (x1)D (v, — vg) - D(vy — vo)ppdz
=/, Ay (x1)DuD(¢p(v; — vg)) dz — y Ay (x1)DugD(¢p(v; — vp)) dz
-/, KQg(xl)D(vl —v)D¢ (v — vo)pdz
32 '
= / ()¢, op(vy — vg)) dt — i Ag, (21)DugD(¢p(v; — vo)) dz
_32 L
_ » KQZL(‘%j)D(Ul — Uo)qu (Ul — Uo)de
32 ' 32 32
— [ twnopmrde— [ (@)= (o dpu)di = [ ()b di
_32 _32 —32

- /+ A, (1) Do D(¢p (v — vp)) dz
Q3
_ / | A, (z1)D(v; — vo) D (v — vo)pdz
K3
= 12_13_[4_[5_[6'

Here, we note that the underlying domain of (,) in I, respectively I3 and 1y,
is O, respectively By . From (3.2.3), we have

From (3.2.26), we see that I3, I5 — 0 as [ — co. To estimate I, for 0 < h < 1,
we consider v, the Steklov average of v;, for a sufficiently small A > 0. We
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then recall p(t) = 0in —3% <t < —g—z and g—z < t < 32, and use the definition
of a weak solution involving Steklov average, (v;):, to discover that

32
L, = —/ KDUZD(gzﬁpvl)dz

732

= — lim/ (ADv)"D(ppv]') dz = hm/ / v O (ppult) d
h—0 Ql 32 Ql

and that
[ o= [t
Q4 Q4

Therefore, by sending h to zero, we have

/ /Ql v)?op dz = = /(vl) op' dz.

Similarly, we also obtain

//(ﬁvo pdz—;/Q@owpdz

3

Thus

1
o — Iy == )2 — (v)? "dz u)2op dz b .
Iy =1 2{/%((1) (o))¢ﬂ +/Ké\Q3+(z)¢P }

From the first convergence in (3.2.26), the first integral on right-hand side

goes to zero as | goes to infinity. To estimate the second term, we note

from higher integrability for (3.2.23) that |Dv| € L*3*°)(K2), where o is
2

independent of [. We then use Poincaré’s inequality and (3.2.24) to find that

/ ()21 dz < cé.
Kl

5
2
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Thus,
/ (v)2¢p dz| < c/ (v))? dz
K\QJ KL\QE
2 2
= / () dz | K\ QF| T
KL 2 2
2
— 0 as [ — oo by (3.2.22), (3.2.28)

andso Iy — I, —+0as ! — 0.
We now estimate Ig.

[ls| <

N Ag, (21)D(v; — v9) Do (v — vo)pdz
Q3

=: Iga + I

+c/ | Dvy||v| d=
Ki\Q%
2 2

In view of (3.2.26), Is, goes to zero as [ goes to infinity. We use Holder’s
inequality, higher integrability, Poincaré’s inequality and (3.2.24), to discover

< | [ IDupi: IR AT
KL\QE K5\Q% .
2 2 2 2
< ¢|KIN\QETT = 0as | — .
2 2
Consequently, we conclude that
lim |Dv; — Dug|*dz = 0,
=00 Q
2
which is (3.2.27). O

From Lemma 3.2.7 and 3.2.8, we also have

][ |Dv|* dz < 4 <][ |Dv — Dv|* dz +][ |Dv|2dz) <ec  (3.2.29)
Q3 Ks K>

The next lemma give Lipschitz regularity of weak solutions for limiting
equations. For its proof, we refer to [11].
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Lemma 3.2.9.
1. Interior case: If v is a weak solution of
vy — div (KQQ1 (z1)Dv) =0 in Qs,

then there holds Dv € L*(Q1) and we have the estimate

[ DVl (Q1) < c][ |Du? dz.

Q2

2. Boundary case: If v is a weak solution of

@—div(K%(xl)D@) = 0 n Q5,
v =0 on @QyN{r; =0}

then there holds and we have Dv € L= (QY) the estimate

D01~ (QF) < ][ Do d.
Q7

We end this section with the following comparison estimates.

Lemma 3.2.10. Under the assumptions and conclusions of Lemma 3.2.7,

3.2.8 and 3.2.9, we find

1. Interior case:

|Dv||L(Q1) < ¢ and ][ |Du — Dvf*dz < e.
Q1

2. Boundary case:

| D1 (K1) < ¢ and][ |Du — Dv|*dz < e.

K,
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Approximation.

In this subsection we will show that Theorem 3.2.4 is proved if we once obtain
theorem 3.2.4 for any weak solutions of (3.2.1) with Du € LP()(Qp; R™). This
can be done by an approximation procedure.

To do this, we first assume that we already have estimate (3.2.14) for any
weak solution of (3.2.1) with Du € LPO)(Qz; R") under a sufficiently small
91 > 0. Note that, from the previous result in [11], we know that there exists
dy = da(n, v, A, 2) satisfying Theorem 3.2.4 for the particular case p(-) = 7s.

We next fix 6 = min{d,dy}, suppose F' € LPO)(Qp;R™), (A, Q x R) is
(8, Ro)-vanishing codimension 1 and u € W}%(Qr) is the weak solution of
(3.2.1). Choose Fy € C®(Qp;R™), k=1,2,..., such that

F, — F as k— oo in LPO(Qp;R™).
Let u; € C°(0,T; L*(2)) N L*(0,T; H3(€2)) be the weak solution of

(ug)e — div (A(z)Dug) = div F, in  Qrp,
u, = 0 on 0y{r.

Since Fj, € C®(Qr;R™) C L2 (Qr;RY) € LPO(Qp; R™), it follows from [11]
that Duy € L2 (Qp; R™) € LPO(Qp; R™). Therefore, by the a priori assump-
tion, we know that

||Duk||LP(')(QT;]R") < C||Fk||LP(')(QT;Rn)7
and so
I Dug|| 1oy g mny < llFkll ot @pmny < € (I1F || ooy gy + 1)

where ¢ is independent of k. In view of Remark 3.2.5, {u} is uniformly
bounded in W, (1) therefore there exists ug € W," (')(QT) such that

u — uy weakly in WO (Qp) € WEh(Qyr)

as k — oo up to a subsequence. In particular, Duy is weakly convergent
to Dug in LP)(Q7; R™). The weak convergence of u in W2(Qz) and the
strong convergence of I}, in L?(Qr) imply that ug is the weak solution of
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(3.2.1), and so we conclude ug = u from the uniqueness of the weak solution
to (3.2.1). On the other hand, it follows from the weak convergence of Duy
in LP0)(Qr; R™) that

HDUHLP(')(QT) < hlggiogf HDuk”LP(')(QT) < HF”LP(‘>(QT)-

The a priori estimates.

We shall derive estimate (3.2.13) for the weak solution u of (3.2.1) under the
a priori assumption

/ |Du|PPdz < co. (3.2.30)
Qr

In particular, we treat only the case that

[P0 gy < 1 ( = [ Poa<a ) (3.231)
Qr

where the above equivalence relation comes from the Norm-modular unit ball
property, see [25]. We then derive that

/ |Du|PPdz < c, (3.2.32)
Qr

for some ¢ = ¢(n,v, A, y1,72,w(-),Q, T, Ry) > 1 under a sufficiently small
d = 0(n,v, A,y1,72,w(+)) > 0. The general case for the estimate (3.2.13)
directly comes from the normalization property of the problem (3.2.1). Then,
we observe from (3.2.31) and (3.2.5) that

/|F|2dz§1+|QT| andso/ Dulds < o(1+|0r]).  (3.2.33)
QT QT

We will obtain local estimates up to the lateral boundary. To do this, take

R > 0 such that LR .
: 0
= — T . 2.34
R m1n{4,4,1+|QT|} (3.2.34)
Choose a point ¢° = (3°, s°) € Q x (0, T) satisfying (s°, —(2R)?, s+ (2R)?) C
(0,T) and consider the region Kyx(¢°) C Q7.
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For the sake of simplicity, we omit the center point to write K,(¢°) = K,.

We consider
pt = sup p(z), p = inf p(z)

ZGKQR ZGKQR

p(z) 1 p(2)
Ao ;:][ {\Duy%— + = (lFFp— + 1)] dz, (3.2.35)
Kor 0

which is well-defined from (3.2.30), where § € (0, §) is to be determined later

and

in a universal way.
We next fix s;and so with 1 < 51 < s9 < 2 and consider A > 1 satisfying

2180 \"*2 (1612 2180 \"*2 [16v2\
A > 80 6—\/_ X =: By, B:= 80 6_\/_
S9 — 81 7 S9 — 81 7
(3.2.36)

and the supper-level set
p(2)
E\) = {z € Ky |Dul*v > )\} :

The following covering lemma is a primary technical tool in our approach.

Lemma 3.2.11. For each A > B\, there exist countable disjoint parabolic
cylinders {Q.,.,(CH)}2, with ¢ = (y',s') € E(\) and 0 < r; < 25LR such

1090
that

EO) € K (¢)

(except a measure zero set),

or@ 1 op)
|Du|™»~ + 5]F| = ) dz= A (3.2.37)
r; (€9

7

and

p(2) 1 p(2)
][ (|Du|2p + Z|F)?e ) dz < X\ for everyr € (r;, (sa — s1)R].
K () 0
(3.2.38)
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Proof. We first observe that for almost every ¢ € E(\)

p(2) 22(©)
lim ][ (|Du|2p —|F| P )dz> |Du(O)[* 7 > Al
K (C)

r—0+

—

Indeed, if r is sufficiently small, then one can apply Lebesgue differentiation
theorem. On the other hand, for every ¢ € E(X\) and r € [255LR, (55 — s1)R],

we see that K,.(() C Ksg. Then it follows from (3.2.9) and (3. 2.36) that

o) 1, ap)
][ (|Du\2p‘ + = |F[* > dz
K0 (<) 0

IA

9]
8 n+2 ‘Qr

S92 — S1

) &
(20 (W)

Consequently, we conclude that for almost every ¢ € E(\), there exists ¢ =
r(¢) € (0,25 R) such that

> 1090

and
@) 1 e
][ |Du|" 7~ + —|F|" 7~ | dz,< X\ for every r € (r¢,(s2 — s1)R] .
K0 () 0

Applying the Vitali covering lemma to {Q,,(¢)}, we finish the proof. O
Remark 3.2.12. Owing to (3.2.37), we have

(2) A 1 p(x) A
][ |Du|2i’ z>—= or —][ |F|2if dz > —,
K, (1) 2 0J K., (i) 2

and therefore

K () <

>

4

217(2)
,p(2) |Dul|" 7 dz
{zEKri(Ci):|Du| P— >)‘}

1 21’(2)
+5/ e [F|" 7= d3f2.39)
{zGK”-(CZ):F| P >*5}

4
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In what follows, we continue to consider two cases, (1) Interior case
Baor,(y') C Q and (2) Boundary case Byo, (y') ¢ €.

(1) Interior case Byg, (y') C 2

We recall (A, Q) is (0, Rp)-vanishing codimension 1 and 40r; < %R <
Ry to discover from Definition 3.2.2 (1) that there exists a new coordinate
system, z = (7, %), with the origin at ¢* = (y¢, s*), such that

][ ‘A(z) —Ay  (z)]dz <. (3.2.40)
QQO\/ET‘,L- ;

In this coordinate system, we write

Q; = Qsar,5 Q7 = Qo0 P = s.ucg_)2 p(z) and p; = _ieanQp(i)
Z€Q; 2ey

and consider a localized equation of (3.2.1) in Q? like
ug(z) — divy (A(2)Dzu(2)) = divy F(2) in QF, (3.2.41)

Here, for simplicity, we abbreviate A(®(z)), u(®(2)), p(®(2)) and F(®(z))DP(Z)
to A(z), u(2), p(z) and F(z), respectively, where ® is a mapping obtained
by a proper translation and rotation from z-coordinates to z-coordinates. We
then point out that A(Z) satisfies the addressed assumptions with replaced

z by zZ. We also point out from (3.2.11) that

pi—pr < sup p(z)— inf  p(z) < w(2-40r;) and 80r; < 2R.
Z€Q4Ori (CZ) ZeQélOri (CZ)

Now according to (3.2.38) and the change of variable from z = (z,?) to
z = (z,t), we find

22(2) 1 (20v/2r)? p(E.0) _
][Q2|Du(z)| modz = —/ /C |Du(z,t)| »= dzdt

’Q20\/§T1‘ (20\/§Ti)2 20\/57‘1'
1 s5'4(40r;)? p(z.t)
< / / Du, )| dwdt
|Qaoyar, | Jsi—@or? JBuon, )
< !%On(f )| 1Du|7 dz < vV2"N (3.2.42)
20\/51”1' K4O'ri (Cl)
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and, likewise, we have

p(2) n
][ FIP dz < V2" (3.2.43)
Q7
Then next claim that
][ |Dul? dz < e; A% and ][ IF|? dz < c;0% A% (3.2.44)
Q2 Q2

for some positive constant ¢; > 1 depending only n,v, A,v1,72 and w(-).
Indeed, we note that

TPy +_p-
<][ | Dul? d,?)p p < (L ]Du|2dz>pl ;
Q? B |Q12| Qr

(3.2.33) 1+ |QT| w(80r;) (3.2.34) 1 1 w(80r;)
< C _— < C -
((20\/§r,~)n+2> (R (20\/§T1~)”+2)

(n+3)w(80ri) (3.2’12)
<ec L < e < o
807’1‘

Here, we emphasize that constant c is independent of the index i. By the
same reason, we have

p;r_p; 1+|Q | w(SOTi)
][ |F|? dz Sc(—T) <ec.
QZQ (20\/§7ai)n+2

In light of Jensen inequality and (3.2.42), we thus deduce

p;rfp; P,
7 -
][ |Dul? dz = ][ |Du|? dz ][ |Du|? dz
Q7 Q7 Q7
o\ ot "
< ¢ ][ |Du|™»~ dz <c ][ |Du|" 7~ dz +1
Q7 Q7
< AT

93
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Similarly, we find that

2 _ _
p(2) P; r_ 1 p_
][ |F|?dz < (f \F|*» dz + 1) < (SN < e A
Q? Q7
where, we used the face 6A > 0\ > 1 from (3.2.35). This establishes (3.2.44).
Lemma 3.2.13. For anye > 0, one can find a small 6 = §(n, v, A, v1, 72, w(-),€) >
0 and a function v; with Dv; € L=(Q}) such that
][ |Du — Du;|* dz < exni (3.2.45)
Qi
and -
1DV 12 0 g1y < A (3.2.46)
for some ¢ > 1 depending only on n,v, \,v1,v2 and w(-).
Proof. Let & := 5v/2r:&, t := (5v/2r;)*t and 2 := (&,1). Define

Ai,)\(‘f, f) = A(5\/§r1j7 (5\/57,@)2{) and FL,\(;Z’? g) _ F(5\/§Tzlf', (5\/57’1)21?) .

.
Cl)\pi

Then from (3.2.41) we see that
~u(5vV2r, (5v/2r)%1)

ui,,\(i",t) =
5\/§TZ' \/ Cl)\ﬁ

is a weak solution of

€ CV(—4%, 4% L*(Cy))NL*(—4%, 4%, H'(Cy))

(U,i,)\)g — lej (AZ'7)\(§)DUZ'7>\) = lej E,)\ mn Q4.

We also check from (3.2.40) and (3.2.44) that

|Duia|?d? < 1 and ][ |Fop|? d2 < 6.
Q4

][ Aun(5) A, (i) d2 < 6, ][
Q4

Q4
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We thus find by applying Lemma 3.2.10 (1) that there exists a small § =
d(n, v, A, v1,72, €) and a function v; , € C°(—22, 2% L?(Cy))NL*(—22,2% H(Cy))
such that

][ |Du;x — Dv;5|* d? < e and ||Dvi7,\H2Loo(Ql) <c
2

Consequently, we get the conclusions after scaling reversely like

o5 T t
v(Z,t) = 5\/57’1- CINP V; ( * , ) )
(7%) ! A 5v2r; (5v/2r;)?

This completes the proof. n

(2) boundary case Byg,,(y') ¢

In this case, we recall Definition 3.2.2 (2) to find that there exists a new co-
ordinate system, Z = (Z, ), with the origin at somewhere on 0B,gs,/3,. (¥"") X
{s'}, where 3! is a point on QN Byg,, (y*) satisfying |y —y| = dist(y', 00Q),
so that

C+

and

[A(z) — Ag,

v, (T dZ <6 (3.2.48)

+
Q480\/§ri

Like the interior case, we write

K} = Ky, K} = Kygoya,, D = sup p(z) and p; = H}f p(Z)
2€K; z€

and consider a localized problem of (3.2.1) near the lateral boundary

u — divz (A(2)Dzu(z)) = divy F(2) in K2,
u = 0 on 8wK12

Let 7' be the changed point of 3* by the coordinate transformation and
¢ = (7%,0). Then [7| < 40r; 4+ 480v/267; < (40 + 60v/2)r;, and so

Buor, (¥') C Biaovar (0) C Cla0v3,, (0) and 0480\/%(0) C Bogor; (0) C Bigoor, (7).
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Consequently, p;” —p; < w(2-1090r;) with 1090r; < R. By (3.2.38), (3.2.47)

and the change of variables, we discover

,p() (480/27;)?
][ | Dul* v~ < / / dx dt
K? |K480fn| (480v/2r;)2 J Biggor; (T°)N2
5P 4(480/21;)? o p(z,t)
< 1 / 7 drdt
|Q480fr ’ si—(480v2r;)2  J Biogor,; (y9)NQ

n—+2

< ‘Q1090n< )’ |Du| = dz < 2 ( 109 ) b\

|Q480\fm| Kio90r; (¢?) 48\/5

Similarly, we have

][ FP5 dz <2 (£>n+2

We then in a similar way as in the interior case, we find after additionally
using (3.2.47) that

][ |Dul?dz < esA" and ][ |F|? dz < cy6m A" | (3.2.49)
K? K?

where the constant ¢3 > 1 depends only on n,v, A, v, 72 and w(+).

We now recall Lemma 3.2.10 (2) and use (3.2.49) via a proper scaling
argument in the proof Lemma 3.2.13, to derive the following estimate.

Lemma 3.2.14. For any € > 0, there exists 6 = §(n, v, A, y1,72,w(-),€) >0
and a function v; with Dv € L=(Q;") and

51' = 0 on T4807“z‘ = Q240\/§” M {fl = 0},

in the trace sense, such that
][ |Du — Dt;|? dz < e (3.2.50)
K}

and

P
| DBill ity = 1D e ey < sV (3.2.51)

where T; is extended by zero from Qlgo,, to Kisor, = K? and the constant
cq > 1 depends only on n,v, A, v1,72 and w(-).
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At the end, from the above Lemmas we derive the following estimate for
the measure of the supper-level set E(AM\), for some A > 1.

Lemma 3.2.15. Let
a2
A= (4max{ce, cq}) . (3.2.52)

Under the same assumptions and conclusions of Lemma 3.2.11, Lemma 3.2.13
and Lemma 3.2.14, we have that for any A satisfying (3.2.36)

IE(AN)|: =

p(2)
{z € Ky p: |Dul*» > A)\H

IA
|

ce 222)
b\ / ,p(2) |D'LL| »~ dz
2€K,p:|Dul PT >2

1 222
+5/ ,p(2) [F|" 7= dz |,
{ZGKSQR:|F P >)f}
for some c = c(n,v, A, y1, 72, w(-)) > 1.

Proof. From Lemma 3.2.11, we see that E(A\) C E(\) C U2, K5, (¢%), and
so follows that

|E(AN)] < Z

{z € Ks (C') | Du(2)]* > (AA)p’kz)H . (3.2.53)

We first consider the case Byoy,(¢*) C © and recall the new coordinate sys-
tem treated in case (1). We write Q! as the transformed one of Qs,,(¢?) =
Ks,.(¢Y). Then we observe that Q! ¢ Q! and \/§n+2@ﬂ = |Q}|. In the
new coordinate system, by using (3.2.52) and the inequality that |Du|* <

2|Du — Du;|? 4 2| Dv;|?, we estimate that

{zeat:pucr > <Ax>zf’<z>}\ <

{2 € Q! [Du(3)]? > (A)\)iz;}‘

<

{2 € Q% : \Du(Z) — D'UZ(Z)’Q > 02)\1’?—}'
{Z € Qll : |DU¢‘2 > CQ)\pj—}' .

o7
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According to (3.2.45) in Lemma 3.2.13, the second term on the right hand
side of the previous inequality vanishes. So (3.2.46) in Lemma 3.2.13 imply
that

p

PP
< Q).

{ze@ | Du(z) > (AA)&;H < < / \Du — Duy2dz < ce Q1]
Q!

Therefore, in the original coordinate system, we discover

{5 € Quic) s 1Duta) > (40H || < el ()] < @ (0
(3.2.54)
On the other hand, if Byg,, ¢ 2, we apply (3.2.50) and (3.2.51), to find
that .
Hz e K!: |Du(z)]? > (A)\)WH < ce| K} < ce| K1,

in the new coordinate system considered in case (2), where K} is the
transformed one of Kj,,(¢") and we used the facts that K} C K} and
|K}| < ¢(n)|K}|. Hence, in the original coordinate system, we have

{z € Ks,.(C') : [Dul® > (A)\)sz}‘ < ce| K, (C1)] < ce| K, (C)]. (3.2.55)

We now combine(3.2.53), (3.2.54) and (3.2.55) and recall (3.2.39), to derive

[E(AN] < CGZ K (O]

e 2p(z)
< % / wir | Dul e dz
A i1 Kri(ci)m{Du P> }

>

The conclusion follows from the fact that {K,,((%)}i>1 are disjoint. O
We are ready to obtain the desired estimate (3.2.32).
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Proof of (3.2.32). We first start with a local region K,z = K4 r(¢°). Apply
p( )
(2.3.1) to f = |Dul*», ¢ = E- and U = K, g, to calculate as follows:

/ |Duff®dz = / Py
K R o 2

< (A-BX)T|Konl + / DA T B(AN)] d)
B)\o
= [2|K51R’—|—[3. (3256)

2p(2)
{z € K, pn:|Dul» > A)\H d(AN)

We recall (3.2.35), (3.2.36) and (3.2.52) to calculate

c ) 1 2p(2)
I, < —pn{][ { _+—(’F|P_ —i—l)} dz}
(82 — Sl)T Ksr 0
wt N7 1
< ;{ (][ | Dul ' dz> . (|JFPP® +1) dz}.
(32 - Sl)T Ksr 51)7 Kor

We now impose R to satisfy

p
2

w(4V2R) < oo, (3.2.57)

and so p <142 _p < 14 0. We then apply Lemma 3.2.6 for 0 = —1
to dlscover

— er —

wt O\ 7 T »t \ T
<][ | Du| »= dz) <c (][ \Du|2dz> + (][ |F| >~ dz)
KQR K4R K4R

Since 22— p < 2(14+09) <7 < p~, we apply Jensen inequality to the last term
on the above inequality to find

2 T 5 o
<][ \Du|”+dz) <c (][ ]Du|2dz) + (][ |FP®dz + 1) :
Kor Kur Kur

From (3.2.9) we know that }?‘R} < I?QTR‘ < ¢. This and (3.2.33) imply
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that

+ +

p

2 P
L < ——— | Dul dz) + ¢(6) (][ |FPHdz + 1)
(52 - SI)T K4R Kyr

p

p+
. ) 1 + |QT| L (1190
T (sp—s1)F Rn+2 Rnt2
c(9) 1+ Q7|
T (sa—s1) ( Rt ’ (3:2.58)

for some constant ¢(d) depending only on n, v, A, v, v, w(+) and .
On the other hand, using Lemma 3.2.15, it follows that

Iy = / Do A% NT Y E(AN) A
Bxo 2
2p(2)
/ AICE(/ i [Dul 7= dz
{ZEK52R2|DU,| pP— >i‘}
1 2p(z)
+5/ 2(2) |F| 7= dz |dA
{ZEKS2R:|F| P— >)f}
o0 >\ %72 2p(z) )\
LG iy o0 ()
0 {ZEKS2R:|Du| = >Z}
1 A\ T A
+— <4) / 2p(2) ’F| = dzd( > .
0= Jo {ZGKSQRJF P— >§f}

p(2) p_
Note that by (3.2.30) we know that |Du| € L*7= € L= (Ks,r). Then from
(2.3.2) and (3.2.33), it follows that
|FPEdz
KSQR

[3 S CEAA’Y72 /
KSQR

1
C5€ (/ |DulPPdz + — (1 + \Qﬂ)) : (3.2.59)
KSQR 57

IA

IA
!
g

IN
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for some positive constant c5 = cs(n, v, A, 1,72, w(+)).
We now select € = e(n, v, A, 71,7, w(:)) such that cze < %, and so find a
corresponding 6 = §(n, v, A, 71,72, w(+)) from Lemma 3.2.15. We then com-

bine (3.2.56), (3.2.58) and (3.2.59), to derive that

p+
2

1 1 Q z
| ipura: < 5[ pupas e — ( i'J')
Kis 2 KSQR (82 — Sl)T R

+c(1+ [Q7]),

for any s; and s with 1 < 51 < s9 < 2. We therefore apply Lemma 5.2.9 to
¢(s) = [o., |[DulP®dz, 71 = 1 and ry = 2, to discover that

2
/ ]Du\p(z)dz <c 1+—|QT| ’ ’
Kn - Rn+2

where R is determined from the restrictions (3.2.34) and (3.2.57). The final
estimate (3.2.32) follows from standard covering argument and the following
remark. [

Remark 3.2.16. Since we have assumed that Kyp(C®) C Q x (0,T), the
estimate can be obtained only in Q2 x (R, T — R). We therefore need to extend
the equation (3.2.1) with respect to t-variable, in order to obtain the estimate
in the hole region Qp. Indeed, we first let F* € LPO(Q x (—o0,00); R") be
the vector valued function such that F* = F in Qp and F* = 0 otherwise.
We then consider a weak solution u* of

uf — div(A(z,t)Du*) = div F* in Q x (0,00),
ut = 0 in QX% (—00,0],
uw =0 on 00 x (—o0,00).

Then by the uniqueness of weak solutions, we have that u* = u in Qr. Ap-
plying the derived estimate to the above problem in Q x (=R,T + R), we
conclude that

||DUHLP<'>(QT;R") = HDU*HLP(‘)(QT;R") < CHF*||LP(‘>(Q><(7R,T+R);R")-

Since | F*|| o) ox (- rr+R)RD) = || 100) (0 R0 We finally derive the required
estimate (3.2.14) .

61



Chapter 4

Nonlinear elliptic equations
with variable exponent growth
in nonsmooth domains

Let p(-) = p(z) : R — (1,00), n > 2, be a given function satisfying
I <y <plx) <y < oo, (4.0.1)

for some constants 71, v,. The problem under consideration in this chapter
is the following divergence type nonlinear elliptic equation with the zero
boundary condition:

{diva(Du,:c) = div (|FP®72F) in

u = 0 on 09, (40.2)

where Q) is a bounded open domain in R”, a = a({,z) : R” x R" — R” is
a given function and F' = F(z) : Q@ — R" is the nonhomogeneous term. We
assume that a is differentiable with respect to &, measurable with respect to
x and satisfies the following nonstandard growth and ellipticity conditions:
there exist 0 < v < A < 400 and 0 < u < 1 such that

p(z)—1

(1 + €°)? [ Dealé, 2)] + |a(&, @)| < AG® + (€))7, (4.0.3)
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p(z)—2

v(? 4+ €172 nl* < (Dea(, x)n,m), (4.0.4)

whenever z, £, 1 € R™(if 4 = 0, € is selected in R™\{0}). Here D¢a : R" — R
is the gradient matrix of a with respect to & and (-, -) is the standard inner

product in R™. A typical example is p(z)-Laplace equation
Ayyu = div (|Dul™2Du) =0 (4.0.5)

for the case that a(¢, z) = |¢|P®)~2¢.

The objective of this chpter is to obtain a global Calderén-Zygmund type
estimate for the problem (4.0.2) in the setting of variable exponent Lebesgue
spaces. More precisely, we will prove that the following relation

|FPPY e L1O(Q) = |Dulf¥ € LV(Q), (4.0.6)
holds true for ¢(-) = g(x) : Q — (1, 00) satisfying
1 <3 <gz) <y < oo, (4.0.7)

for some constants 3 and 7,4, by essentially deriving the related estimate, see
also Remark 4.1.9. We also present a reasonable answer as to what might be
should regularity assumptions on p(-), a(&, ) and the boundary of €2 for the
relation (4.0.6) to be valid. As far as we are concerned, our regularity result
reported here is the first one regarding Calderén-Zygmund type estimates for
nonlinear problems with a variable growth in the frame of variable exponent
Lebesgue spaces.

4.1 Whil)_estimates for elliptic equations of
p(x)-Laplacian type.

4.1.1 Main Result.
Definition 4.1.1. We say u € Wy *)(Q) is a weak solution of (4.0.4) if

/Q (a(Du, z), D) dz — /Q (FPO2F, Dy d, for all o € WO (0).

63



CHAPTER 4. NONLINEAR ELLIPTIC EQUATIONS WITH VARIABLE
EXPONENT GROWTH IN NONSMOOTH DOMAINS

We point out that from (4.0.4) one can derive the following monotonicity
ofa:

p(z)—2

v + €7 + ") "2 € =0l < (alg,2) —a(n,z), £ —n), (4.1.1)

for any x,&,mn € R™ and for some vy, = vi(v,n,71,72). In particular, for the
case p(x) > 2, it can be reduced to

y2—1

27z Vl‘g - U’p(x) S <a(€7x) - 3(77733)a5 - 77> (412)

By inserting 0 into 7 in (4.1.1) and using (4.0.3), we also have the following
coercivity of a :
vl [P < (al,x), &) + Ay, (4.1.3)

for any z,£ € R" and for some v, and A; depending only on A, v, 71,7, and
n.

By existence theory for nonlinear elliptic problems, see [56], it is well
known that if a satisfies (4.1.1) and (4.1.3), p(+) is log-Hélder continuous and
F € [P1)(Q), then the problem (4.0.2) has a unique weak solution. Moreover,
we have the estimate

/\Du|p(m) dr < co/ [|FP) +1] da, (4.1.4)
0 Q

for some constant ¢y = co(n, v, A, 7y1,72) > 1.
We additionally present our main assumptions on p(-), a(&, -), Q and ¢(+),

under which the relation (4.0.6) holds.

Definition 4.1.2. Let R > 0 and § € (0,%). We say (p(-),a,Q) is (6, R)-
vanishing if the following holds:
(1) Assumption on p(-).

p(+) has a modulus continuity w : [0, 00) — [0, 00), so that w is nonde-
creasing, lim, ,ow(r) = 0 and |p(x) — p(y)| < w(|z —y|), and it satisfies
that

sup w(r)log (1) <. (4.1.5)
0<r<R r
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(2) Assumption on a.

For U C R", write

) 7U _ a(é’?'x)” _< a(£7'> )
(a,U)(2) e (12 + €2)25~ (2 + |€2)" By (y)

(if © = 0, the above supremum runs over all £ € R™\ {0}). Then, a
satisfies

0<r<RycR"

sup sup ][ O(a, B (y))(z)dz < 6. (4.1.6)
Br(y)

(3) Assumption on 0f2.

Q is (9, R)-Reinfenberg flat, that is, for each y € 0 and for each
r € (0,R), there exists a coordinate system & = {Z,---,Z,} with
the origin at y such that

B,(0)N{Z, > dr} € B.(0)NQ C B.(0)N{i, > —or}.

Remark 4.1.3. R > 0 is arbitrary given while § € (O, %) will be selected in
a universal way so that it can be independent of the solution u and F'.

Remark 4.1.4. From (4.0.3), we see that 0 < 2A. The condition (4.1.6)

means that for each & € R™ the mapping x > Lﬁ,()_l belongs to lo-

, , . (n2+1€2) 2 .
cally BMO and its seminorm is less than or equal to 6. We clearly point out

that the condition (4.1.6) is invariant under translations and rotations of the
coordinate system. Furthermore, one can readily check that in a new coordi-
nate system obtained by a translation and a rotation from the old coordinate
system, say T = {Z1,...,Zn},

sup ][ O(a, B)(Z) dx < 44. (4.1.7)
0<r<RJ B}

Remark 4.1.5. If Q is a (0, R)-Reifenberg flat, we have

|B: (y)| ( 2 )" (16)"
sup su < <= , 4.1.8
0<r£R yeg ’Q N Br(y>’ o 1— 6 o 7 ( )
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and

inf o BN (1 _5)n > (7)n (4.1.9)

0<r<ryedQ | B,(y)| 2 16

see [13]. We also refer to [13, 52, 58] and references therein for general
concepts and properties of Reifenberg flat domains.

In addition to (4.0.7), we assume that ¢(-) is log-Ho6lder continuous in €2,
namely, there exist a nondecreasing continuous function p : [0,00) — [0, c0)
satisfying lim, o4 p(r) = 0 and p(|z —y|) < |¢(z) — q(y)|, for z,y € ©, and
a constant L.y > 0 such that

1 1
p(r)log <—) < Ly, forallr < 3" (4.1.10)
r

For the sake of simplicity, we denote by ”data” to mean all structure
constants n, v, A, v1,72,73, 74 and Ly, and write

M = / [|F|p(“) +1] dz+1, then by (4.1.4) / | Du|P@dx < coM.
Q Q
(4.1.11)

Theorem 4.1.6. Let R > 0 and q(-) satisfy (4.0.7) and (4.1.10). There ex-
ists 6 = 6(data) € (0,%) such that if (p(-),a,Q) is (6, R)-vanishing, |F| €
LPO(Q) and u € Wol’p(')(ﬂ) is the unique weak solution of (4.0.2), then
we have the relation (4.0.6) with the following estimates: there exists ¢; =
c1(data,w(-), p(+), R) > 1 such that, for any zo € Q and any Ry € (0

we have

][ ’Du|p(1’)q(l‘)d$
QR, (o)

q—
<c ][ | Du|P® dx +][ |FP@9@ gy 415 (4.1.12)
Qur, (z0) Qur, (zo0)

for some ¢ = c(data) > 0, where q— = inf {q(x) : * € Qug, (x¢)}. Moreover,
it holds

701LM]7

n(ya—1)+4

/ |Du|p(m)q(z) dr < ¢y (/ |F|p(x)q(a:) dr + 1) h 7 (4.1.13)
Q Q

for some co = co(data,w(-), p(-), R, ) > 0.
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Remark 4.1.7. The local estimate (4.1.12) can be obtained only for a suf-
ficiently small Ry which depends on M. Here we present a relation between
Ry and M that Ry is inverse proportional to M, see (4.1.91). Thanks to
this relation, we can derive the global estimate (4.1.13) with the constant cy
independent of M.

Remark 4.1.8. In the global estimate (4.1.13), the exponent W > 1
comes from a lack of normalization property of the equation (4.0.2) in the
presence of variable exponent p(-), namely, a constant multiplication of a
solution of even p(x)-Laplace equation (4.0.5) is not a solution of (4.0.5)
anymore. A similar phenomenon occurs for parabolic equations with p-growth,
p # 2, see [2]. We will show in Remark 4.1.19 that if the equation (4.0.2)
has a normalization property, for instance p(-) = p, then we can obtain more
natural estimates than (4.1.13).

Remark 4.1.9. Suppose q(-) = q(z) : Q@ — (1,00) satisfies
1 <73 <s(z) ==+ < <oo,

for some 73 and 4. If q(-) is log-Holder continuous in 2, then we deduce
from Theorem 4.1.6 that

Fe LR = Duc LOQR"). (4.1.14)

Indeed, since q(-) is log-Hélder continuous there exist a modulus continuity
function of q(-), p: [0,00) = [0,00), and Ly.) > 0 satisfying (4.1.10). Then
we easily check that

120(|7 — y|) + 2w (|z —yl)

(2) — sly)] < 229D+ el = y
71

for all x,y € Q. It follows that p : [0.00) — [0,00) is the modulus continu-

ity of s(-) and satisfies (4.1.10) with p and Ly.y replaced by p and L.

Y2 Lg(. )+72’Y4Lp( 5

= p(lz = yl),

, respectively, hence s(-) is log-Holder continuous in §). There-
fore by Theorem 4.1.6 the relation (4.1.14) follows from the relation (4.0.6)
with q(-) replaced by s(-).

Hereafter, we will denote by ¢ > 1 any universal constant depending only
on data, hence ¢ may be different in any occurrence.
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4.1.2 Auxiliary lemmas.

Higher Integrability.

Lemma 4.1.10. Let M, > 1 and |F|P©) € L(Q), where v is given by
(4.0.7). Suppose that p(-) and  satisfy the assumptions (1) and (3) in Defi-
nition 4.1.2, respectively, and that Ry > 0 satisfies

R1 1
<mind= - <
Ro_mln{2,4,2M1} and w(2Ry) <

n+1
n

—1<1.  (4.1.15)

Then there exists a positive constant oy = oo(n, v, A\, y1,72,73) < 73 — 1
such that the following holds: for any 0 < r < Ry and any y € Q, if u €
WLPL)(Q,(y)) is a weak solution of

div a(Du, z) = div (|[F|P72F) in B.(y), if Q(y) = B,(y) C L,

or
diva(Du,z) = div (|[FP®2F)  in  Q.(y), :
B, Q,
{ u = 0 on  0,-(y), i By) ¢

(4.1.16)

satisfying

/ [[DufP™) +1] dx +1 < M,
Qr(y)
then for any o € (0,00] and any Qa:(7) C Q,(y) with ¥ < § we have

][ | D@ +0) gy
(3

#(9)
(1+0)
<c { (][ | DulP®) dx) + ][ |FP@0+e) gy 4 1} :
Qo27(7) Qa7 (7)

for some ¢ = c(n,v, \,vy1,72) > 0.

Proof. Tt suffices to prove for the case that B,.(y) ¢ Q. Fix Bax(7) C B, (y),
y € . For simplicity, we omit the center § in our notation and write p; =
inf,ep,. p(r) and py = sup,cp,. p(r). We then have py — p; < w(47).
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If By C Q, by taking nP2(u — up,.) as a test function in (4.1.16), where
n € C§°(Bsr) is a cut-off function with 0 <n < 1,n=1on B and |Dp| < 2,
we derive the following Caccioppoli type inequality

][ | Du P dxﬁc(][ das+][ |Fp®) d:v—i—l) :
Bj Boi Bog

see the proof of Theorem 5 in [1] for details. We note from (4.1.15) that

p2 ntl . jus np2. np2 pL\* np2 \* _
< /% =t s, hence 5 > = > e~ and (s) > (n+p2) = po.

Applymg Sobolev—Pomcare s inequality, see [48], we find that

— P2
U — UB,;

2r

5P2

][ |DulP® dx < c(][ |Du|psldx> " —|—c<][ |F|p(z)dx+1)
T B2r BQ'r

s(p2—pr1)

c (][ [| DufP™ +1] dx) b (][ |Du|p(sx) dm)
BQT- B2r
+c (][ |F|P® dx—i—l) :
By

We next show that

p2—p1 w(4F)
(][ [\Du]p(x) +1] dx> < <][ [|Du|p(x) +1] d:c) <ec.
Boji Bor

(4.1.17)
Indeed, since 47 < 2r < 2Ry < mln{R, Ml} and w(47) < w(2rg) < 1 by
(4.1.15), we have from (4.1.5) that

1 w(47) 1 1 w(47) 1 w(4r)n 5
= =\ 75 778 <c|—= <ce’ <ec
(’B2f|) <|Bl|(27")”> (47">

w(47) " 1 w(47)
(/ [\Du]p(x) + 1} dx> < Mi”( N < (—~) <e <e.
Bos 47

Therefore, we obtain

][ |DulP® dz < ¢ (][ | Du
B: Bor

IN

and

p@m)+#mﬂmw+qM.@u&
Bor
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If Boi ¢ Q(without loss of generality we assume that g € 99), by taking
nP*u as a test function in (4.1.16) and using Sobolev-Poincaré’s inequality
with the measure density condition of € (4.1.9), we have

sw(47)

][ |DufP® dz < c<][ [|Dulr™® +1] dx) i <][ |Du|P<;> dx)
QF QQ;« QQF
+e (][ |F[P®) da + 1) .
Qof

In a similar way we have estimated (4.1.17), we have from (4.1.5), (4.1.8)

and (4.1.15) that
@ w(47) 1 w(4F) 1 (1+n)w(4r)
DulP*™ +1 da:) (—M) §c<—~)
<][92f [| | } ’Q2f| ! 4r
< celltn)d <c.

Consequently, we obtain

][ |DulP®@ dz < ¢ <][ | Du
Qf Qo

From (4.1.18) and (4.1.19), using Gehring’s lemma, see Theorem 4 in [1]
and references therein, we get the conclusion. [

IN

p(z)
S

d:v) +c][ [|FP™) +1] dv. (4.1.19)
Qo

Without loss of generality, oy given in the previous lemma is supposed to
oo < 4(m — 1), (4.1.20)
where v; is denoted by the lower bound of p(-) in (4.0.7).

Remark 4.1.11. Note that in Lemma 4.1.10 the constant o related to higher
integrability is determined in a universal way, that is, independent of M,
but Ry depends on My, which is the difference from Theorem &5 in [1]. Also,
Lemma 4.1.10 still holds even p(-) satisfies the log-Hélder continuity, instead
of the assumption A,.y. At that time, oy depends on L,y denoted in (2.2.5).
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Boundary Comparison Estimates.

We will drive local comparison estimates near the boundary by comparing the
weak solution u with a solution of an associated limiting equation which can
be obtained by § — +0 in our main assumption on (p(-), a,{2) in Definition
4.1.2.

Suppose that € is (J, R)-Reifenberg flat. Let Ry > 0 be a small number
which will be determined in Lemma 4.1.12. We fix any r € (0, %], and then
assume that a local region Qy4,.(0) = By,.(0) N Q satisfies

Bf < Q4(0) C By N{x, > —86r}. 4.1.21
4r

In this subsection, for the sake of simplicity, we omit the center point 0 in
our notation and write

p2 = sup p(zr) and p; = inf p(z).
EQy, €0y

We now introduce reference problems. Let w € W'P()(€Qy,) be the weak
solution of

{div a(Dw,z) = 0 in  Qq,

4.1.22
w = u on 0y, ( )

where u € W, (Q) is the weak solution of (4.0.2). Using w—u € Wy ()
as a test function in (4.1.22), we find

/ | Dw[P® dx < ¢ / [|[Dul[P™) + 1] da, (4.1.23)
Q4T Q4'r

for some c3 = c3(n, v, A,v1,72) > 1. Then we have from (4.1.11) that

/ [|Dw|p(:c) +1] dz < c3 (/ [|Du|p(x) +1] dz + 1) < coesM. (4.1.24)
Qur Q

From now on, we let
M1 = C()C3M, (4125)

and suppose that Ry > 0 satisfies (4.1.15) with (4.1.25).
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Then, applying Lemma 4.1.10 to v = w and F' = 0, it follows that
|Dw|Pt) € LA+90)(Q3,) with the estimate

(140)
][ | Dw[P@ A+ gy < ¢ (][ |Dw\p(w)da:) +1p, (4.1.26)
Qs Qg

for all o < gy. We further assume that Ry satisfies

P2 —p1 <w(8r) <w(2Ry) < %. (4.1.27)

Then for z € €24, we see that
P2 < p(x) (1 + %) < plx)(1+wr)) < p(x) (1 + %) (4.1.28)
1
and that, from (4.1.20),

p(1+20) < (@) +p—p) (1+2) <p@) (1+2) + (2 —pm
< p@) (1+ 2+ =) <pla) (1+ 5 +wisn)
< p(z) (1 n %) . (4.1.29)

Therefore, it follows from (4.1.26) and (4.1.28) that w € W?2(Qy,) with the
estimate

][ \DwlP de < ][ | Dup [P+ gy 4 q
Qs Q3

1+w(8r)
< c (][ \Dw|p(w)da:> +15.
Qg

We note from (4.1.15) that 8 < 2R, < R and M; < &. Then (4.1.5),
(4.1.21) and (4.1.24) imply that

w(8r) 1 w(8r) 1 (n+1)w(8r)
(o o) = () =<()
Qqp |B4T‘| 8r
C

< et <o (4.1.30)
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which yields

][ |Dw|P? dz < ¢ <][ | Dw|P® dz + 1) . (4.1.31)
Q3 Qqr
Additionally, we also have from (4.1.26), (4.1.29) and (4.1.30) that

][ D458 4y < ][ D@ 1060 gy
Qgr QST‘

1422 +w(8r)
< c{<][ | Dw[P®) dx) —I—l}
Qar
1420
< c{<][ | Dw|P® d:c) +1}. (4.1.32)
Q4r

We next define b = b(§, x) : R” x Q4. — R" by

p2—p(z) P(I)

b(¢, 2) = a(g,2)(1” + [¢]*) : (4.1.33)

Then one can check that b satisfies

po—1
(W + €3 IDeb(&, @) + (& )| < AW+ IS5 g
(Deb(§,2)n,m) = 5(p* +1€1°)
for all £,7 € R and all x € (., provided that
_ v
pe—p1 <w(8r) < w(2Rp) < min {1, ﬂ} . (4.1.35)
Indeed, it follows from (4.0.3) and (4.1.47) that
o)l < AW +[gP)™ . (4.1.36)
A direct computation yields
p2—p(z) p( )
De(b(&,x)) = (p2—p(a))(1® + [€) “HE@al o)

p2—p(z) p(

+ (1 + 1€ De(a(§, x)). (4.1.37)
Then it follows from (4.0.3), (4.1.37) and (4.1.35) that

IDe(b(&,2))] < (p2—p)(® + €)™ (e, 2)[[¢]
po2—p(z) p(z)

+ (12 + €)= [ De(a(e, 2))
< Alpe —p+ D2+ )75 < 201 + €)™
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It also follows from (4.0.4), (4.1.37) and (4.1.35) that

p2p() _1

(Deb(&,x)n,m) = (p2 — p(2)) (1 + [€]?) (€ ®a(g, z)n,n)
+ (12 + [€P)* 2 (De(alé, z))n, 1)

— (p2 — p) (i + [€2) 1|a<5 el
R 6P 0 + P > 2 |2

v — (p2 — p1)A] (&% + [€]? ) o

1 —2
FU 1€

v

v

Vv

We next denote b = b(¢) : R” — R” by the integral average of b(-, &) on

B}, such that
b= ble.a)ds
B,

Then b also satisfies the growth and elliptic conditions (4.1.34) with b(¢, z)
replaced by b(¢). Moreover, from a direct calculation we deduce that

bEs) =BEl 0 e 4138
EATEEE R e

where 0 is defined in Definition 4.1.2.
Let v € W) (Qg,) be the weak solution of

{ divb(Dv) = 0 in Qs (4.1.39)

v = w on 08,

where w is the weak solution of (4.1.22) which belongs to W?2(Qs3,.), see
(4.1.26). Then it follows from the standard energy estimate that

][ |DuP? dx < ¢ (][ | Dw|P* dx + 1) : (4.1.40)
Qar Qar

Lemma 4.1.12. Let Ry > 0 satisfy (4.1.15), (4.1.27), (4.1.35) with (4.1.25).
Fiz any A > 1 and any r < Z2. Suppose that Qy, satisfies (4.1.21). Then,
for any 0 < € < 1, there exzsts d = 6(n, A\, v,71,72,€) > 0 such that if
(p(+),a,Q) is (0, R)-vanishing, u € Wol’p(')(Q), w € WHPO(Qy,) N WhP2(Qg,.)
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and v € WhP2(Qg,) are the weak solutions of (4.0.2), (4.1.22) and (4.1.39),

respectively, with
][ |DulP® dz < X\ and ][ |F[P@) da < 6N, (4.1.41)
Q47‘ Q4'r

then we have

][ | Dw[P@ dz +][ | Dv|P? dx —|—][ |Dw|P? dz < e, (4.1.42)
Q4T QB’V‘

Q3

for some ¢ = c¢(n, A, v,v1,72) > 0,
][ |Du — DwP™ dz < e\ and ][ |Dw — DulP?dx < eX. (4.1.43)
Q47‘ Q37‘

Proof. In what follows, we will write x;, ¢ = 1,2,3,4,5, as any number in
(0,1) and ¢(k;) as any constant depending only on n, v, A, v1, 72 and &;. Note
that since 8 < 2Ry < R, we know from (4.1.5) and (4.1.7) that

w(8r) log <$) <6 and | O(a BY)(r)dr < 46 (4.1.44)
B4'r

The estimate (4.1.42) directly follows from (4.1.23), (4.1.31), (4.1.40)
and (4.1.41). We first derive the first inequality in (4.1.43). Since u — w €
Wol’p(')(Q4r), we have from the equations (4.0.2) and (4.1.22) that

][ (a(Du,z) —a(Dw,x), Du — Dw) dx = ][ (|F|P®=2F, Du — Dw) dx.
Qqrr

Q4r
(4.1.45)
By Young’s inequality, the right hand side of (4.1.45) is estimated by

][ (|F|P®=2F, Du—Dw) dz < /11][
Qqr

947« Q4r

Note that if p(x) > 2, then by (4.1.2) we have

|Du — DwP™ < ¢(a(Du, z) — a(Dw, ), Du — Dw),

)

| Du—Dw[P® dz+c(rk,) ][ |FP® da.
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and if p(x) < 2, then by Young’s inequality and (4.1.1) we have
p(2)(2—p(x))
|Du — DwPP™) = (4 + |Dul® + |Dw|?)  *

(@) (p(x)—2)
x (2 + [Dul + |Dw?)” % |Du— Dwl!®
p(z)
< ko (WP + |Dul® + |Dw|2)p2

p(

z)—2
+c(k2) (1° + |Dul” + |Dwl?) * " |Du— Duwl?
ko (14 | Du|P® + |Dw|p(’”))
+c(k2){a(Du, x) — a(Dw, z), Du — Dw).

IN

Hence, it follows that
][ |Du — Dw[P® dz < /ig][ [1+ | DuP® + \Dw|p(w)} dx
Q47‘ Q47‘

+C(l€2)][ (a(Du, x) —a(Dw, z), Du — Dw) dz
Qqr
< ks ][ [1+ |Dul® + |Dwl®)] da
Q4'r

+c(ksg) (/-11][ |Du — Dw|"™ dx + c(/-fl)][
947'

|F|p@) dx) . (4.1.46)
Q4'r'

Thus, (4.1.41) and (4.1.42) imply that

][ ]Du—Dw\p(w)de/4;204)\+c(/<:2)/-€1][ ]Du—Dw|p(z)dm+c(/<2)c(/<;1)5/\.
Q4’V‘

Q4r
for some ¢y = c4(n, v, A, v1,72) > 0. By choosing

€
Ko = —, ki

1o and § =

- 2¢(k2) 4e(ky)e(kg)

we obtain the first inequality in (4.1.43).
We next derive the second inequality in (4.1.43). Since w—v € Wy**(Qs,),
in a similar way we have estimated (4.1.46), it follows from (4.1.22) and
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(4.1.39) that

][ (b(Dw) — b(Dv), Dw — Dv) dx
Q3

and then

][ |Dw — DvP*dx <
QST

for some c5 = c5(n, v, A, v1,72) > 0.

csk3\ + C(Iig)][

cskisA + c(k3) (I + 1),

][ (b(Dw) — b(Dw, x), Dw — Dv) dx
Q3

—|—][ (b(Dw,z) — a(Dw, x), Dw — Dv) dz
Q3T

I[1—|—[2

Q3T

We now estimate I; and 5. By Young’s inequality and (4.1.38),

| < ][ b(Dw, ) — b(Dw)|| Dw — D dx
Q3T

P2

-1
< ][ 0(a, By,) (1* + |Dw|*) * |Dw — Dv|dx
Qs

< l<o4][ |Dw — Dv|P* dx + c(/{4)][ 9%(1 + | Dwl|)?? dz.
QST QSr

Using Hélder’s inequality, (4.1.21), (4.1.32), (4.1.42) and (4.1.44),

b2
][ 0r2=1(1 + | Dw|)P? dx
Q3

(/..

-

A

4

3

p2 1+og/4
0;7271 og/4

py 1tog/4

@r2—1 oo/4 d;p-}-(2A)P2*1 op/4

+
3r

) e

v1 1+09/4

71-1

og/4

-1

+
134r

7

op/4

po  1400/4 |Q3T’\B;;,|> T+oo/4 R

| Bs, |

112;4 o
9d:c—i—5} A < cdrFoo \.

og/4 1

1foq/4 1+00/4

dm) i (][ (1+|Dw|)p2(1+”°/4)dx) i
Q3r

(b(Dw) — b(Dv), Dw — Dv) dx

(4.1.47)
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Thus, we obtain
L] < /434][ |Dw — DuvlP? d:v—l—c(m)éﬁigo)\. (4.1.48)
QB’V‘

We next estimate Ir. We note from (4.0.3) and (4.1.38) that if u? +
|Dw(z)|*> = 0, p = |Dw(z)| = 0, then a(Dw(z),x) = b(Dw(z),z) = 0. Set
Q3. = {x € Q3, : p?> + |Dw(z)|? > 0}. Then, by Young’s inequality, we have

1
|Q3T| Qgr

1
< —</<a5/ |Dw — Dvl|P? dx
|Q'37" Qgr

+C<HS>/@3T H( + | Dw|?)2F - 1‘ ]a(Dw,a:)\]p;il d:v).

p2— P()

L] < (1 + [Dwl?)

- 1’ la(Dw, x)||Dw — Dv|dx

p2=p(x),

For each = € Qs,, in view of the Mean Value Theorem to (u®+ |Dw|?) ™= 1,
t € [0, 1], we have

p2—p(z) p(z) P2 —Pp 2—210(
(12 + D)2 1 = 22D (2 ) g (42 4 | Duf)

2
for some t, € (0,1), and so
P p()
(42 + | Duf?) ™ F ~ 1] ]a(Dw,2)
w(8r tz(pp—p(@))+p(@)—1
< X0 (2 4 1Duf?) T FE g (2 + Du)|.

- 2
From a direct calculation, we know that ¢?|logt| < max {%, 28 log 2} for all

t € (0,2], where § > 0. Hence, for 2 € Qs, with |Dw(z)| < 1, we obtain

P p 8r)A 2 —1
(u* + | Dwl?) A — 1 fa(Dw, )| < %max{m,szlogQ}.
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Thus,

w(87“)mp%1

I
| 2| |Q37‘|

IN

/15][ |Dw — DvlP* dx + ¢(ks)
Q3r

(10 (1wl <13+ D g (e + [Du |7 ds

Q3-N{| Dw|>1}

< 115][ |Dw — Dv|P* dx
937*

(g w(8r) T ( ][ | Dw|P? [log (e + | Dwl|P2)] 721 dw+1).
Q37‘

a'e

I3

To estimate I3, we first apply the inequality log(e+ab) < log(e+a)+log(e+b),
a,b > 0, in order to get

D |P2
I; < c{][ | Dw|P? |log _|Duwl™
Qs ‘Dw‘p2

+][ | Du|P2 [1og(e+waym )
QBT

= C(I4 + 15)

- _ _p ey _ 1.0
Applying Lemma 2.3.6 to f = |[Dw[??, B = s [y;v Mil} and o = 1+,

and using (4.1.32) and (4.1.42), we find that

1
- o
I <c <][ |Dw|p2(1+70) dm) o < e\
QST

On the other hand, since 5= > ﬁ > {M;,2} by (4.1.15), we obtain from
(4.1.24) and (4.1.31) that

log (e + (]Dw]PZ)QSJ < log {e +c <][ | Dw[P® dz + 1> }
Qs
1
<c {log + log (1 +/ [|Dw|p($) +1] dm) + 1}
|Q3T| 937'

1 1
c <log ™ + log(M;) + 1) < clog =
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which, together with (4.1.42), implies

1\t
I <c (log 8—) A
r

Consequently, from (4.1.44) we have the following estimate for I :

P2

1\ p2-1
|| < /£5][ |Dw — DvlP* dx + ¢(ks) (w(87’) log —) A
Qs 8r

< /@5][Q |Dw — Dv|P* dx + c(m5)5%)\. (4.1.49)
ar
Inserting (4.1.48) and (4.1.49) into (4.1.47), we have
][Q |Dw — Dv|P da < csks\ + c(ks) (”4][9 |Dw — Dol dx + c(kg)d 770 \
ar ar
+n5][ﬂ |Dw — Dv|P* dx + c(n5)57;21)\) .
ar

Finally, choosing k3 = &=, ky = k5 = 30(1,{3)

<o (i) () |

we get the second inequality in (4.1.43). This completes the proof. ]

and

Remark 4.1.13. In Lemma 4.1.12, the selection of 0 is independent of Ry,
the choices of r < Rf and \ > 1.

Lemma 4.1.14. For any 0 < € < 1, there exists § = d(e,n, \,v,p2) such
that if Q. satisfies (4.1.21) and if v € WHP2(Q3,.) is a weak solution of

divb(Dv) = 0 in Qs
v = 0 on 0,5,

with
][ |Dv|P?dz < A,
Q3T‘
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then there exists a weak solution v € W'P2(B3 ) of

divb(Dv) = 0 in B
" 4.1.50
{ v = 0 on T3, ( )
with
][ | Dv|P2dz < A, (4.1.51)
B},
such that

][ |Dv — Do|P2dx < e,
Qo

where U is extended by zero from By to Qy, and ¢ = c(e,n, \,v,ps) > 0.

Proof. We argue by contradiction. Suppose that there exists ¢y > 0 the fol-
lowing hold: for each k = 8,9,10,... there exist QF, v, € WP2((Qy,) such
that g

B}, c QF(0) ¢ By n{zx, > _E}’

vy is a weak solution to

divb(Dv;,) = 0 in  QF
{ ( kz)J = 0 on 8w£3)r’§r, (4.1.52)
with
][ | Dug|P? dz < 2,
QF,
but
][ |Dvy, — Do|P2dx > €A, (4.1.53)
Bar

for every weak solution v € W'P2(Bj ) to (4.1.50) with (4.1.51). Here we
extend vg(resp. ) by zero from QF (resp. v) to Ba,.

][ | Dvg|P? dz < ][ | Dog|P? dx < A,
Bs, Qk

3r

Since

Poincaré’s inequality implies that {v,} is bounded in W'P2(Bj,) hence there
exists vg € W1#2(Bs,) such that

{ v, — vy strongly in LP2(Bs,)

k — oo.
Dv, — Dvy weakly in LP?(Bs,) }as o
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Note that since vy, = 0 in Bs, \ Q% ., we have vy = 0 in Bz, N {z, < 0},
which implies that vy = 0 on T3, in the trace sense and

][ | Dvg|P? dx < 2][ | Dvg|P? dax < QIiminf][ | Dvg|P? dx < 2.
Bt Bs, k—o0 Bs,

3r
From the above result we see that vy is a weak solution to (4.1.50) with v
replaced by vy, see [50]. We next show that

klim (1° + | Dug|? + | Dy ) |ka — Duy|* dz = 0, (4.1.54)
— 00 32

which implies

lim | Dvg, — Dug|P? dx = 0,

k—o0 Bar

hence is a contradiction to (4.1.64). Let ¢ € C§°(Bs,) be a cut off function
such that ¢ =1 in By,. Then, by the monotonicity of b we have

][ (1® + | Dug|* + | Do ) Ika — Dl dx
Ba,-
< 6+ Du? + Dwf?) " (D~ Dl da
Bs,-

<ec qS(E(ka) —b(Dwy), D(vy, — vg)) d

B37‘

< c][m (b(Dvy), D(¢(vr — 10))) dx + c][ (B(Dvy), D(¢(vy, — v0))) dz

B3r
e ][ B(Dux) — B(Dvo)|| Dol v — vo| da
BS’V‘

The first term on the right hand side is zero since vy is a weak solution to
(4.1.52) and ¢ (v —vp) € Wy P2(QF). The second and third term on the right
hand side go to zero as k — oo since D(¢(vy —1y)) is weakly converge to zero
in LP2(Bs,), b(vy) and b(vy) are bounded in L%(Bg,r), and vy, is strongly
converge to vg in LP?*(Bj,). Hence we obtain (4.1.54). O

Furthermore, in view of [45, 46], we see that Dv € L*°(B;) with the
following estimate

1Dy = NP ) < (][
Bt

2r

| Dol da + 1> <ch (4.155)
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Interior Comparison Estimates.

We derive similar comparison estimates on a interior region in the same way.
Suppose that Ry > 0 satisfies (4.1.15), (4.1.27) and (4.1.35) and fix any
r< Rf with By, (y) = Q4.-(y) C Q. Write

pi= inf p(x) and py= sup p(a).
2E€Bur(y) 2€Buar(y)

For the weak solution u € W P7(Q) of (4.0.2), let w € WLPO(By,(y)) be
the weak solution of

{div a(Dw,x) = 0 in  By(y), (4.1.56)

w = u on 0By(y).

Then in a similar argument as in the boundary case, we have
/ [[Dw|P™ + 1] dz < My,
Bar(y)

where M is given by (4.1.25), and then w € W'2(Bs,.(y)). Let v € WhP2(Bs,(y))
be the weak solution of

{divB(Dv) = 0 in  Bs(y), (4.1.57)

v = w on 0B (y).

In the interior case, b : R” — R” is denoted by

pa—p(x)

b(¢) = = 2 2\ Fm—
B(e) = ][34(y)b<5,x> a1 ][34(y)a(€,x)(u Tl de.

Lemma 4.1.15. Let Ry > 0 satisfy (4.1.15), (4.1.27), (4.1.35) with (4.1.25).
Fix any A > 1 and any r < % with By, (y) C Q. Then, for any 0 < € <
1, there exists 6 = §(n, A, v,v1,72,€) > 0 such that if p(-) and a satisfy
the assumptions (1) and (2) in Definition 4.1.2, respectively, and if u €
WoP(Q), w € WO (By,(y)) N WEP2(Bs,(y)) and v € W#2(Bs,(y)) are
the weak solutions of (4.0.2), (4.1.56) and (4.1.57), respectively, with

][ | DulP® dx < )\, ][ |F[P@) da < 6,
B4T(y) B4'r(y)
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then

][ | Dw|P@® da +][ | Dwl|P? dx +][ |DulP? dz < e,
B4r(y) B3r(y) B3’!‘(y)

for some ¢ = c(n, A\, v,71,72) > 0,
][ |Du — Dw|[P®@ dx < eX and ][ |Dw — DulP* dx < eX. (4.1.58)
B4r(y) Q3T(y)

Proof. 1t is exactly same to the proof of Lemma 4.1.12. O

Also, in view of [45, 46], Dv € L*(B,(y)) and we have
[ Do (5, < € <][ | Dv|P? dx + 1) < e (4.1.59)
Bsr(y)

4.1.3 Proof of Theorem 4.1.6.

Suppose that (p(-),a,?) is (J, R)-vanishing. We first select Ry > 0 to satisfy

Ry Smin{E 1 L}

2747 2M;

w(2Ry) < min {, N 1} (4.1.60)

g0Y3 01Y3 Y3 o1 1
(2R0)<mln{ g8 7 2 ’4W4’2’2}’

where oy and M; are given by Lemma 4.1.10 with (4.1.20) and (4.1.25),

respectively, and
—1
o1 == min {7 5 1} (4.1.61)

Note that R, satisfies that (4.1.15), (4.1.27) and (4.1.35). Fix any z, € Q
and any R; < % and consider g, (7¢). For the sake of simplicity, we omit

the center x in our notations and write

g+ = sup q(z), g-:= inf q(z),
$€Q4Rl mEQ4R1
L)
M{Du(z) = (rDu\ i XQQRl)@:)
&4
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and
0)

Mo, [F)(2) = My1o, (DFV”("@—' + 1} XQQRl) (z),

where M, My, are the Hardy-Littlewood maximal operators and xq,,, is
the characteristic function on {2z, , namely, xo,, =1 on g, and xo,, =0
otherwise. For € € (0,1) and A > 1, we define

_1
1 1+07
o= ][ |DuP® dx + ][ (PP ) 118 (4.1.62)
€ Qur, Qur,

and supper-level sets : for K =0,1,2,...
Cy, = {z € Qp, : M[Du](z) > A¥" N},

Dy, = {z € Qp, : M[Du](z) > A*N} U {z € Qp, : Myso, [F](z) > A N} .

Note that € and A will be determined later as universal constants depending
only on data.

Lemma 4.1.16. There exists A = A(data) > 1 such that

€
|Ci| < W'QRJ’

forall k=0,1,2,....

Proof. Since C), C Cy for all £k = 0,1,2,..., it suffices to show for the case
k = 0. By the weak type (1,1)-estimate, Proposition 2.3.3 (1), and (4.1.8),

(z)
|CO| S C |Du|p(l‘)% dx S C|QR1| ][ |Du|p($)(1+p(8R1)) dr +1].
A Do \J o

QQRl

Since p(8R1) < p(2Ry) < g by (4.1.60), Lemma 4.1.10 with 27 = r = 4R; <
Ry implies

Q| 1+p(8R1)
1Co| < R | ][ \Du]p(‘”) dr +][ |F’p(1)(1+ﬂ(8R1)) dr + 1
AXo QuRr, Qur,
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We note from (4.1.24) and (4.1.60) that M < ¢gM < M; and 8R; < 2R, <
min{3, Mil}, then we see from (4.1.4), (4.1.8) and (4.1.10) that

p(8R1) p(8R1)
][ | DulP@® dx < ¢ and ][ |F[P® dz <ec. (4.1.63)
Qg Qg

Indeed,

p(8R1) 1 p(8R1) 1 (n+1)p(8R1)
][ |Du|p(z) dr < ¢ (—COM> <c (—)
Qur, |Q4R1 | 8R1

< Ce(n-‘rl)Lq(.) S c,

and the second estimate in (4.1.63) can be obtained in the same way.
Furthermore, since p(8R;) < p(2Ry) < % by (4.1.60), Hélder’s inequality
and (4.1.63) imply that

][ |F|P(:Jc)(1+p(8R1)) dr < ][ ’F|¥|F‘@(1+2p(8}h)) dx
Qur,

Q4R]_

1 1
2 3
< ][ |FP@) da ][ | F[P@)(1+20(8R) oy
Qury Qur,

1—2p(8Rq) 14+2p(8Rq)

2 2(1+oy)
<e ( ][ PP dx) ( ][ @) dm)
Qur, Qupr,
Tror
<c <][ | F|p@)(1+o1) d:p) .
Qupr,

Consequently, we have

T 1
Q o
Gyl < 66J4>\R1’ ][ |Du|p(a:) dr + <][ |F|p(x)(1+01) dx) +15,
0 Qur, Qar,

for some ¢ = cg(data) > 0. Applying (4.1.62), we finally obtain

Cg €
|Co| < Z€|QRl| < W'QRJ’

by taking large A = A(data) > 1. O
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Lemma 4.1.17. There ezist A = A(data) > 1 and § = §(data,€) € (0, 3)
such that for any yy € Cy and ro < % if

|C N Bry (o)| > €[ Bro (40l (4.1.64)

then Bro (yo) C Dy

Proof. Since the proof is rather long, we divide it into four steps.

Step 1. We argue by contradiction. Suppose there exist yy, € C and ry < %
such that (4.1.64) holds but
Byo(o) ¢ Di. (4.1.65)
We simply write
)\k - Ak)\o
From (4.1.65) we can find y; € B,,(yo) such that y; & Dy, thus
p(w) L)
][ |Du|™ = Xq,p, dv < Ag (4.1.66)
Br(yl)
and )
(a;)ﬂ 1401 T+oq
][ |:’F|p - + 1:| XQ2R1 dx § 6)\k7 (4167)
Br(y1)

for all » > 0. We consider the two cases, the interior case By,,(y1) C §2 and
the boundary case By,,(y1) ¢ €, separately.

Step 2. Let By, (y1) C €. Since 9rg < 63r¢9 < Ry, we see that Bg,,(yo) C
BQro (yl) C Q2R1- Set

pi:= _inf p(x), pp:= sup p(x)
€ Bsr (yo) 2€Bsr, (yo)
¢ := inf qg(z) and g := sup q(x).
weBST‘o(yO) IEBgTO(yo)
We claim that
- 9=
][ | DulP® da < c, A\ and ][ |FP@) dg < caé%i)\k” , (4.1.68)
Bsrg (yo) Bsrg (yo)
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for some ¢, = ¢,(data) > 1. Indeed, since 16r¢ < 2R; < 2Ry < min{%, M%}
by (4.1.60), in the same way we have estimated (4.1.63), we see that

p(16r0) p(1670)
][ | Du|P® dz <e¢, ][ |FP@) o <ec.
Bsrg (y0) Bsrg (y0)

Then Jensen’s inequality, (4.1.66) and (4.1.67) imply that

29 41

a2
][ |DuP® dz = ][ | Du|P® dz ][ | DuP® dz
Bsrg (y0) Bsrg (y0) Bsrg (y0)
v @z "
< ][ | Du|P® dz + 1 ][ | Dul"" = da
Bsrq (y0) Bsrg (yo)

pla) L B 0
<c | D dr +1 <A
BQ’PO (yl)

and

2)2tz) °
][ |F|p(w) dr < c ][ [|F|p( ) L= + 1] dx
B87‘0 (yO) B9r0 (y1)

19—

()M 1401 T+o1 a2 vy 9=
<c ][ {\FV” = +1} dx < b\
BQTQ(yl)

q_

Applying Lemma 4.1.15 and (4.1.59) with A, r, e and § replaced by ca)\,f?, 219, 1
and ﬁ, respectively, we can find § = §(data,n) such that

q;
][ |Dw|P™ dz < e\,
Buyrg (y0)

(5 (=
][ |Du — Dw|P® dax < n\2, ][ |Dw — Dv|P* dx < nA\?
Bary (yo) Barg (o)
and
9— 1

| DVl| oo (Bayy (4o)) < AT,
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for some ¢ = ¢(data) > 0, where w and v are the weak solutions of (4.1.56)
and (4.1.57) with r = 2r¢, respectively. Using the above results we can derive
that

a(x)

][ | Du — Dv|p(m) = dr < Eni Ny, (4.1.69)
BQT()(yO)

and

= <, (4.1.70)
L>°(Barq (y0))

for some ¢, = ¢,(data) > 1. Since we need some technical computations to
derive (4.1.69) and (4.1.70), we will show it later in Step 4.

We now estimate |Cy, N B,,(yo)|. We assert that if

A> max{Q%_l(1+éa),3"}, (4.1.71)
then
Cx N By (yo) C {x € B,y (y0) : M*[Du — Dv|(z) > A} . (4.1.72)

Indeed, let y € C, N B, (o). If 7 < ry we know that B, (y) C Bay,(yo). From
the elementary inequality (a + b)? < 2°P71(a? 4+ 0P), a,b > 0 and p > 1, we
have

a(z) a(z)

x z) L2 — ) 4®) ) 1)
‘Du(x)‘p( )q, < 2p( )q7 1 <‘DU(Q}') . Dv(x)|p( )q7 + ’D'U(Q}')‘p( )q7 > 7

for almost every =z € B,(y). Integrating both sides on B,(y) and using
(4.1.70), we obtain

pla) L) S VT .
| Dul| de <2 7w (M u—v|(y) + éAk), (4.1.73)
Br(y)

where

I~

Q

yal)
M*[Du — Dvl(y) .= M (lDu — Dv|p() - XBQTO(?JO)) (y)-

On the other hand, if r > rq we know that B,.(y) C Ba-(yo) C Bs(y1). Then,
we have from (4.1.66) that

p(x) L) n p(z) 42 n
| Dul| dx <3 | Dl dr < 3" \g. (4.1.74)
Br(y) Bsr(y1)
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Therefore (4.1.73) and (4.1.74) imply that
M[Du(y) < max {2%7271 (M*[Du — Dv|(y) + €. Ak) S”Ak} :

Since A\, = A1 and Cy = {x € Qp, : M[Du|(x) > A\p11}, we easily check
that (4.1.71) implies (4.1.72).

In view of the weak type (1, 1) estimate, Proposition 2.3.3 (1), and (4.1.69),
we finally obtain from (4.1.72) that

IC,N B <2 Du— Dol"™ 4o < et |B
k0 Bro(9o)| < |Du — Dv| @ < et | By (o)l
k B27‘0(y0)

for some ¢; = cz(data) > 0. By taking sufficiently small n = n(data,€) > 0,
hence 0 = d(data,€) > 0 is also determined, we have

|Ok N By, (y0)| < €|Bro(y0)|7
which is the contradiction to (4.1.64).

Step 3. Let By, (y1) Z . Since 63ry < Ry < % < %, from the assumption

(3) in Definition 4.1.2, one can find coordinate system, denoted by still z =
(x1,...,x,) variables, such that
Bg—%o C Q52r0 (0) C B527~0(O) N {[L’n > —104(SRO} (4175)

Then, in this new coordinate system, we have |y;| < 107y and so

Qory (Y0) C Qsro (Y1) C Q30 (0), Q521,(0) C Qo2rg (Y1) C gy (Yo) C Qap, -

(4.1.76)
Set
pri= _inf q(z), pp:=  sup p(z),
z€Bs2r( (0) ( ) € Bpar (0) ( )
¢ := inf g(z) and ¢ := sup q(z).
zeBszro(O) € Bs2r (0)

In a similar way we have estimated (4.1.68), we infer from (4.1.10), (4.1.66),
(4.1.67), (4.1.75) and (4.1.76) that

][ |DuP® dx < e\ and ][ |FP®) dy < cbﬁ)\kg,
Q52,4 (0) Q52,4 (0)
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for some ¢, = ¢y(data) > 1. Therefore, Applying Lemma 4.1.12, Lemma

4.1.14 and (4.1.55) with X, 7, € and § replaced by ¢\ , 137, and 5%2, we
can find § = §(data,n) and v € W1*°({3,,) such that

][ IDwlP@ dz < e\ (4.1.77)
Q5214 (0)

]l | Du—Dw[P® dx < n)\> ][ |Dw—Do|P2 dz < np\> (4.1.78)
Q1314 (0) Q131 (0)

and
a— 1

DD Lo (@50 0) < A 72, (4.1.79)
for some ¢ = c¢(data) > 0, where w is the weak solutions of (4.1.22) with
r = 13ry. Using the above results we can derive that

][ |Du — Dv\p(x)‘f dx < Eni\, (4.1.80)
Q1314 (0)

and
yal)
Va < Ges (4.1.81)
L2 (Q13r4(0))
for some &, = é&/(data) > 1. We will also show (4.1.80) and (4.1.81) in Step

4.

H|Dv|p(

Proceeding as in Step 2, it follows from (4.1.66) and (4.1.81) that
Cr N Qo (y0) C{y € Qo (o) : M*[Du — Dv](y) > A},

by selecting sufficiently large A = A(data) > 1. Here we write

a(-)

M*[Du — Dtl(y) :== M <|Du — Do xa,, (yo>) (y)-

Therefore, in view of the weak type (1,1) estimate, Proposition 2.3.3 (1),
(4.1.75) and (4.1.80) we obtain

|Ck N Bry(yo)l = Hy € Qy(yo) : M*[Du— Dvf(y) > Ay}
C _ p(z) L2
— |Du — Dv|™ - dx

Ak S04 (40)

Br ) L2) 1
ol Bro| |Du — Dol = dx < esnt|Byy (yo),
Ak Q1374(0)

<

IN
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for some cg = cg(data) > 0. By choosing n = n(data, €) > 0 sufficiently small,
hence 0 = d(data,€) > 0 is also determined, we have

|Ok‘ N By, (y0)| < €|Bro(y0)|’
which is the contradiction to (4.1.64).

Step 4. It remains to derive the estimates (4.1.69) and (4.1.70) in Step 2
and (4.1.80) and (4.1.81) in Step 3. We only prove the estimates (4.1.80) and
(4.1.81). The estimates (4.1.69) and (4.1.70) can be obtained in the same way.
In this step, for the sake of simplicity, we write Qy35,, = Q13;1,(0), 7 =1, 2.

Note that the estimate (4.1.81) directly follows from (4.1.79). We now
derive (4.1.80). Since 1047y < 2R, < min{%,Mil} by (4.1.60), in a similar
way we have estimated (4.1.30) and (4.1.63), one can find that

p(104r9)
][ [|Du|p(“”) + |Dw|p(””)] dx <ec (4.1.82)
Qs2rg

By Holder’s inequality, we have

) 4@ (@) ppy(a=) 1
][ |Du — Dw["”"= da :][ Du— Du| = P04 gy
QIST‘O

9137‘0
1

? 2 (29@) _
< ][ |Du — Dw|P® dx ][ |Du — Dw\p( (52-1) dr | (4.1.83)
Ql?’TO Ql37‘0

Applying (4.1.78) and (4.1.82), the first term on the right-hand side of
(4.1.83) is estimated by

3
][ |Du — Dw[P® dx
Qi3r,

1o 9= g2 92—q1
9— 91 9— 91
= ][ |Du — Dw|P® dx ][ |Du — Dw|P® dx
Qi3r Q137
92 92791

1 24 5(104r0)
AN p() p() E
<c|n\; . [[DuP'™ + | Dw[P™] dz + 1
52TO

142 92—4q1 19— a2—aq1 19— 492—q1

s 1
S an o q )\; 92 q1 S Cng)\; 92 q1

N
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For the last inequality, we have used the fact £ < 12 p(104rg) <
lgp(QRo) < 1 which is obtained by (4.1.60).

We next estimate the second term on the right-hand side of (4.1.83). We
note from (4.1.60) that p(8R;) < p(2Ry) < min { L0y, Loy}, and so

DRI IO NP (el SUP PV GLL DR {1+4 1—1—01}

q- q- 73

Then, applying Lemma 4.1.10 to u and w and Hélder’s inequality, we obtain
from (4.1.67), (4.1.68), (4.1.75) and (4.1.77) that

][ | Du — Dw[ (52 dx
Qi3rg

<o (][ (D62 1 )] 1)
Qi3rg

212

q_
c ][ | DufP® + | Dw[P® dx +][ |F|p(x)<2c%*1> dr +1
Qa26rg Qa26rg
2= 9 (1401) 1+1U1 %(2%71>
<ed N P+ ][ \F| Vdx +1
Q36 (Y1)

2— 292 1—
gc(Ak g q1+1).

IN

Therefore, we conclude

p(z)12) o (i By
][ |Du — Dw|™ = do < 64)\ N B Y AV S |
Qi3rg
_ Cei (}\;qquﬂ +)\ ,lq;+%‘;g +>\é(f1; qquﬂ)
< cei g (4.1.84)
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On the other hand, we obtain from Hélder’s inequality and (4.1.78) that

2 a@)
][ |Dw — D6|p( Vi dr
Q3rg

: p(z) g(z) _
< ][ |Dw — Dv|P* dx ][ | Dw — Dv|p2< 1) dx
ngro QlBro

1
1 q q 2
< c(mé)z <][ [|Dw|p2(2q2—1) i \Dm”2(2q2‘1>} da:+1> . (4.1.85)
Qi3rg

We know from (4.1.20) and (4.1.60) that p(8R;) < p(2R,) < %0 < 60i=l)
and w(104r¢) < w(2Ry) < %, so that we find that

p (22 1) < at) (22 - 1)+ Gu) (142250

< (2— - 1> + w(10470)7
o (2

1
2

22 14 w(1047“0)> < p(x) (1 + %) :

Thus (4.1.26), (4.1.30), (4.1.75) and (4.1.77) imply that

][ ]Dw]m(zqq%_l) dx < ][ | Dwl” p(a) (232 ~1-(104r0)) dr +1
913’"0 QSQTO

2%—1+w(104r0)
<c ][ | Dw|P@®) da +1
Q527‘0

2492 _

q— 2_(1;
<c ][ | Dw|P@® da +1p<eh, ®. (4.1.86)
Q527

Also, we have from (4.1.79) that

][ DEPCE Y g < enl (4.1.87)
Qi3rg
Inserting (4.1.86) and (4.1.87) into (4.1.85), we obtain
) q9— % 27(;; % 1
][ | Dw — Dv| dr <c (77)\ q2> A ) <emrXg. (4.1.88)
Qi3r,
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Consequently, (4.1.84) and (4.1.88) imply the estimate (4.1.80). O

In view of Lemma 2.3.4, Lemma 4.1.16 and Lemma 4.1.17, we finally have
the following power decay estimate.

Lemma 4.1.18. There exist A = A(data) > 1 and § = 6(data,€) € (0, 3)
such that

80"
|Ck:|§6(7> |Dk|’ k:071a27

Moreover, by an iteration argument we have
[{z € Qp, : M[Du](z) > AN\ }| < €} [{z € Qr, : M[Du](z) > Ao}

k
+3 € o € O, Mugo, [Fl(2) > 54N}, (4.1.89)
=1

where €, = € (%)n.

Now, we prove the estimates in Theorem (4.1.6).

Local Estimates : Proof of (4.1.12).
Consider

Y

S = iAkq [{z € Qr : M[Du](z) > A* X}

then according to (4.1.89),

S < Y Al [{z € Qp, : M[Dul(z) > Ao}|
k=1

k

+ > AR " € Qg t Mygo, [Fl(x) > 64 A} |
k=1

i=1

IN

Q) (A% er)*
k=1

+D (AT e) Y CATED [z € Qpy Mg, [F(z) > AF6A}
=1 k=i
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Applying Lemma 2.3.5 and (2) of Proposition 2.3.3, we have

Y ATED |{a € Qp, - Mugo, [Fl(x) > AM0N }|

C q—
S ‘QRll + (5/\0)(17 /]Rn (M1+01 [F]) dx

¢ p(a) L) -
§|QR1|+W [F77 = + 1) Xaue | da

< ||+ / PP 4 1] da.
R W -

Thus

1 o0
- p(z)q(z) v
S<c (574)\8_ /QQR1 [|F| +1] dz + |QR1|) k§:1 (Avep)F
At this stage, we take € = €(data) > 0 such that

80\" 1
(7) Ar=adt=5

hence we also determine the constant § depending only on data by Lemma
4.1.18. Consequently, we obtain

1
S<ec (AT/ [| P 1] da + \QRI\> : (4.1.90)
0 QR

By Lemma 2.3.5, (4.1.62) and (4.1.90), we get

/ |DufP@1@) gy < [ M[Du]™ da < A (|Qg, | + S)
QRI QRl

c |QR1|A3+/ FP@ 4 1] do
QR

- =
< ¢|Qpg, | ][ ’Du‘P(x) dr + ][ ‘F|p(x)(1+al) dr
Q4r, Qur,
n ][ PP gy 1 4
QUr,
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Since 1+ 07 < 3 < ¢_ by (4.1.61), we finally obtain

q,
][ | DufP@ gy < ¢ ][ DuP®@ dz |+ ][ PP gy 41
Qr, Qur, Q4R

for some ¢ = ¢(data) > 0, which is the desired estimate (4.1.12). Furthermore,
we see from (4.1.25) and (4.1.60) that the above estimate holds for any Ry €
(0, 1] with

1 = min{
Cl(data’v LU('), :0(')7 R) -

where

. n+1 oy VvV . ) 00Y3 0173 7?? o 1
dy = min -1, —,— ¢, dy=min{ —, YTy TR S
n 47 2A 8 2 Ay 272

o (4.1.91)

w(0) :=sup{0 <r < 1:w(r) <0} and p '(0) :=sup{0 <7 < 1:p(r) <0},

for > 0. Note that w=! and p~! are well defined since w and p are nonde-
creasing continuous functions with lim, o, w(r) = lim, o4 p(r) = 0.

Global Estimates : Proof of (4.1.13).

The estimates (4.1.13) can be obtained by using a standard covering ar-
gument with the local estimates (4.1.12). We first construct a covering of
Q. Let Ry = QLM where ¢, is given by Theorem 4.1.6. Since € is compact,
we can find a finite covering which consists of balls centered in ) with ra-

dius %. Then Vitali’s covering lemma implies that there exists a disjoint

N _
set {Bﬁ(yk)}k , N € N and y, € Q such that {BRl(yk)}szl covers §).
3 1

Note that there exists c(n) depending only on the dimension n such that

N
D k=1 fgml () S 4T < c(n) Jo fdx.
Then, applying the estimate (4.1.12) with o = yx, £ = 1,2,..., N, we
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have

N
/ DUy < 5 / | DufP) g
Q k=1 Y Ry (V)

N Y4
<Y ¢ {R? (][ [| DulP®) + 1] dm)
k=1 Q4Rl (yx)
n / [|FP@® 4 1] de
Qur, (Yx)

"
<c {RT(I_M) (/ [| DulP™) + 1] dx) —|—/ [|FPe)at@) 1] dx} :
Q Q

Replacing R; by

c11M and using (4.1.4) and Hélder’s inequality, we finally
obtain

/ |Du|p(m)q(w) dr
Q

n(ya=1)+7v4
< c{c?ml) (/ [|FP) + 1] dx) +/ [| PP 1] da + 1}
Q Q

n(ya—1)+v4

(r3=1)(n(yg—=1) )
gc{|§z|w BT (/ FPPE 4 1]7 da:) b
Q

+/ [|F [Pt 4 1] dx+1}
Q

n(ya—1)+v4

(r3=1)(n(ya—1)+v4)
<c (|Q| 73 + 1) (/ [|F[Pe®) 1] da + 1)
Q

n(ya—1)+74

= Cy (/ |:|F|p(33)Q(1') + ]_] dr + 1) 8 ’
Q

for some ¢y = co(data,w(-), p(+), R,2) > 0. This completes the proof of The-
orem 4.1.6.

Before ending the chapter, we would like to mention two remarks.

Remark 4.1.19. If p(:) is a constant function, we can derive a natural
estimate in terms of norms on LPV)10)_spaces. We first note that, when p(z) =
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T =72 =: p, the equation (4.0.2) has the following scaling property: for any
a > 0 if we let

i) =MD pyZ FE) s - 206D)

« « ap~1

Y

where u € Wy P(Q) is the weak solution of (4.0.2), then we see that a sat-
isfies (4.0.3) and (4.0.4) with a, p(x) and p replaced by a, p and fi := £,
respectively, (a,p, Q) is (0, R)-vanishing, Definition 4.1.2 with p replaced by
fi, and @ € WyP(Q) is the unique weak solution of

(4.1.92)

diva(Du,r) = div <|F|p’2]5> in
u = 0 on  Of.

Set
a = ||F[| pra) ,rmy + 1

(without loss of generality we assume ||F||ppoc) () > 0). Then we know 0 <
<1 and HFHLM.)(Q) < 1. From the following fact

1 1

Y Y

min, ([ 1000 00) " < Ul < s ([ i)
ve{pys.prat \Jq ' ve{pvs.pral \Jq

(4.1.93)

see lemma 3.2.5 in [25], we have [ |F|P1®) dox < 1. Consequently, applying
Theorem 4.1.6 to the equation (4.1.92), we obtain

/ |DaP!®) dg < ¢,
0

for some constant ¢ = c(n,v, A, p, ¥, V1, Loy, p(+), R, ) > 1. Note that all
the constants and estimates in Theorem 4.1.6 are independent of the choice
of p € [0,1]. Consequently, by (4.1.93) we have

_1
I DaHLP‘I(‘)(Q,R") < s,
equivalently,

1
[ Dul| o) (rmy < €78 (HF||Lm<->(Q,Rn) + M) :
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. . . Ly G 1,pq(-
Moreover, in view of Poincaré’s inequality in W, P )(9)7 we also have

HU“Wqu(J(Q) <c (HF|]LW<.>(Q7R,1) + M) :
for some ¢ > 0 depending only on n,v, A, p, 73774,Lq(.),p(-),R and €.

Remark 4.1.20. Theorem 4.1.6 can be extended to p(-)-Laplace systems. Let
F: Q — R"™ belong to LPY)(Q,R"™) and a : R — R satisfy

0<v<a(r) <A<oo.

Consider the unique weak solution u € Wol’p(')(ﬂ, R™) of the following p(x)-
Laplace system

. p(z)—2 — i p(z)—2 '
{dzv (a(z)|Du| Du) div (|F| F) in (4.1.94)

u =0 on Of).

Then, with the same spirit as in the (4.0.2), one can obtain the same result
to Theorem 4.1.6 for (4.1.94), that is,

F c PVI0O(Q R"™) = Duc [PV (Q R™)

with the estimates (4.1.12) and (4.1.13) replaced v and F by u and F, re-
spectively, under the sufficiently small 6 > 0. At that case, we denote by

M:/ [|[FP® +1] dx + 1,
Q

and the assumption (2) in Definition 4.1.2 is replaced by

sup sup ][ la(x) — ap,(y)| de < 6.
yeR" 0<r<Ro J B, (y)

4.2 Global gradient estimates for elliptic equa-
tions of p(x)-Laplacian type with BMO

nonlinearity.

We consider the sepecial case of the result in Section 4.1 that the variable
function ¢(-) is a constant, ¢(-) = ¢. In this case, we present a different proof.
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4.2.1 Main result.

We recall notations used in Section 4.1.1.

Theorem 4.2.1. [9] Let u € Wol’p(')(Q) be the weak solution of (4.0.2).
Suppose that |F|PY) € LI(Q) for some q € (1,00). Then there exists & > 0
depending only on n,y1,v2, v, A, q,w(-), M, such that the following holds: For
every o € (0,d), there exists 6 = §(n,y1, Y2, v, A\, q) > 0 such that if (a,$) is
(0, R)-vanishing for some R > 0 and p(-) satisfies

, 1
lgr(l)w(r) log (;) =0,

then we have that |DulP") € L9(Q) with the estimates

1/q 1/q
(/ |Du|p(ac)q dx) < cM° (/ [|F|p(m)q + 1} dx) :
Q Q

where ¢ = c(n, v, N\, y1,71,w(:), R, q,0,9).

4.2.2 Proof of Theorem 4.2.1.

In this section let us fix any point zy € (2 and concentrate on the small region
Qry = Qg (z0) = 2N Bry (),
by assuming that

R1 1 n+1

Ry < min{g, 7 2—]\41} and w(2Ry) < e 1 <1 (4.2.1)
Covering argument.
We write X
Ao = ][ [yDu\P@) + —]FW] dr + 1 (4.2.2)
Qaog, 0
and
E(\) = {y € Qg, : |Du(y)|’¥ > A}, (4.2.3)
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where \ is any number satisfying

4 n
A > <$> Do, (4.2.4)

where § is to be determined later. Given a fixed point y € E()), we define a
continuous function G, : (0, Ry] — [0, 00) by

1
G, (p) :][ []Du|p<x> + —\pr@)} dx. (4.2.5)
() 0
Then it follows from Lebesgue’s theorem, (4.2.3) and (4.2.5) that
1
lin G, (0) = [ Du(u)P® + S[F)P® > Du(p)P? >3, (4.26)
p—

for almost everywhere y € E(\). On the other hand, from (4.1.8) and (4.2.4),

for any p € [12 Ry

Gup) = f[IDur & §FP] do
Qp(y) 0

[Qaro| ][ {’Du‘p(aﬁ) + llpyp(x)} dx
Qaog, 0

]
| Baro| |Bo(y)] <2R0)" <16)"
Ao < | — — 1] X
1B,(y)] 1€2,(y)] P 7
4 n
S (g) )\0 S A. (4.2'7>
Since G, is a continuous map, by (4.2.6) and (4.2.7), one can see that for

almost every y € E()) there exists a number p, € (0, £2) such that

Gy(py) =X and Gy(p) < A for all p € (py, Rol.
Applying Vitali’s covering Lemma, we obtain the following:

Lemma 4.2.2. Under the same notation and assumptions in (4.2.1)-(4.2.5),
there exists a family of disjoint balls {Q,, (y:)}io, with y; € E(X\) and p; =

py: € (0, %) such that

Gy.(pi) =X and Gy (p) <X forall p e (p;, Ryl (4.2.8)
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and
E(\) C UQE,pi(yi) U negligible set.

i>1

We now focus on the points y; € E()A) and p; € (0, 1) selected in Lemma

4.2.2. In the following we concentrate our attention on €2, (y;). Firstly, let us
estimate €2, (y;)|. According to (4.2.5) and (4.2.8),

1
)‘|Qm (yz)| = / {|DU|P(“?) + S|F|p(ﬂ»‘) dr
Qpi(yi)

A
< | Du(a) "™ da + 719%: (9]

/{xeﬂm(yn:Du(wnmI»:}
1

A
+3 |F ()P de + 2192, (3.
{2€Qp, ()i F(2) [P > 82}

Consequently,

p 1
19, ()] < —(/ | DufP™ dz + _/ \F|p(~"3)d$).
A\ J{zeq,, (i) Dulp) > 21 0 J{zeqy, ()| Fp@>22)
(4.2.9)

Our next argument for comparison estimates depends on
whether BQOpi (:%) C Q, or, B20p¢ (yz) NQ §£ BZOpi (yz)

The former is the interior case and the latter is the boundary case.
For the interior case, for simplicity, we use the following notation:

Note that 0 < p; < 5jp; < 20p; < 2E, to see from (4.2.5) and (4.2.8) that

1
][ [‘Du|p(x) + 5yF\p@f) dr < M.

B
For the boundary case, one can find a boundary point 7; with

Y; € BQOpi(yi) N o and Qm(%) - Q25Pi (E) (4211)
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Then from the (9, Ro)-Reifenberg flatness condition, see (3) of Definition
4.1.2 when r = 150p; < R < Ry, there exists a new coordinate system in

z=2(i) = (2!, -+, 2")-variables so that in this coordinate system,
yi = 2, Ui + 1250p;(0,--- , 1) is the origin,
s ; (4.2.12)
Bl%pi C Q125,01' C 3125/,1. M {Z > _2505pz}
We select § so small, in order to get
1
b < — 4.2.13
< = (1.213)
which assures that
Qsp,(21) C Qa5,(0), (4.2.14)
in this z-coordinate system.
We next write
OV = Q. (1), Y = Qs (0), 7=1,2,34,5, (4.2.15)
and observe from (4.2.11)-(4.2.15) that
BT =B, C Q C B, N{z" > —2500p;} (4.2.16)
and
Qz C 9125pi C QlSOpi (Zz) (4217)
Then it follows from (4.2.15) and (4.2.17) that
1
L [puare + §ipepe)a:
QJ 0
Q1500 (2:
< |50, (=2) ][ DDu‘p(z) + 1|F|p(Z)} dz
|QQ5ﬂi | Q15O/’i (Zl) 5
< M [|Du|p(2) + 1|F|p(Z)] dz
‘BQSM Qis0p, (2:) 0

1
<2 5"][ {|Du|p(z) + —|F|p<2>] dz.
Qus0p, (2:) 0
Employing (4.2.8) and change of variable like (4.2.12), we deduce

][ | [|Du(z)|p<z) + %|F(z)|f?<z>] dz < 25" (4.2.18)
(9%

7
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Comparison maps.

We now mainly treat the boundary case. For the interior case, one can find
similar results by applying, in a similar but a much simpler way, the ideas
and the techniques that will be used for the boundary case. In this case, with
a proper translation and rotation of the original coordinates, as in (4.2.11)-
(4.2.12), the related quantities are still invariant under such rotation and
translation. For this reason, we keep using the same coordinates.

We select o so small that

log 2
< 5 = mi Ay — 1), —B2 42,19
o< ommin{en tn -1, gt 2

where ¢y M is given by (4.1.11). Recall the conditions on w(-), the modulus
continuity of p(-), to choose R small enough that

W(2R) < % <L (4.2.20)
We set
. 2
p1 = min p(z), p» = maxp(z) and r; = 100p; (S —R) . (4.2.21)
xGQ? reQ? 3

Then we have

pe—p1 <w(2r;) <w(2R) <

o
—. 4.2.22
<2 (42.22)

A direct computation yields, for every x € Qf,

p2=pi+ (02 =) S pi(1+ (2 — 1)) < p() (1+w(20) < plo) (1+ 7).

4
(4.2.23)
Moreover, it follows from (4.2.20)-(4.2.23) that
o o
) < ‘ Z
p(147) < (nreem) (147
o
< e ‘
< n (1 + 4> +w(2ri)m
o
< — .
< pla) (145 +wn))
o
< = . 2.
< p(x) <1+ 2) (4.2.24)

105



CHAPTER 4. NONLINEAR ELLIPTIC EQUATIONS WITH VARIABLE
EXPONENT GROWTH IN NONSMOOTH DOMAINS

For the boundary case that By, C {2, by similar a computation in Lemma
4.1.15 and (4.1.59), we have the following lemma. For the detail proof, see
[9]-

Lemma 4.2.3. Let u be the weak solution of (4.0.2). Then for any 0 <
e < 1, there exists § = (e, n, 1,72, ,A), R = R(e,n,v,%, v, A, o,w(+)),
w; € WHPO(QH N Whe2(Q3), v; € Whe2(Q3) N WH2(Q)) such that

][ | Du — Dw;[P® dz —i—][ | Dw; — Dv|P?dz < e K7\
B B3

and

HD@HIEM(B%) < M K7,

where
K= | |Duff®dz+1,

4
Bi

and the universal constant \; € (1,00) is independent of u, F' and i.

On the other hand, for the boundary case that By, ¢ (2, by similar
computations in Lemma 4.1.12 and Lemma 4.1.14 and (4.1.55), we have the
following lemma. For the detail proof, see [9].

Lemma 4.2.4. Let u be the weak solution of (4.0.2). Then for any 0 <
e < 1, there exists § = (e, n, 1,72, ,A), R = R(e,n,v,%,v, A\, o,w(+)),
w; € WHOQH nWhe2(Q2), v; € WhP2(Q3) and v; € WhP2(Q2) N W= (Q})
such that

][ |Du — Dw;[P@da + ][ | Dw; — Du;|P2dx + ][ |Dv; — DT;|P2dx < e K7\
ol o2 02

and
|| D | iio(fzg) < M KT,
where

K;= [ |Duff®dz + 1
o

and the universal constant Ay € (1,00) is independent from u, F and i.
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A priori estimates.

We prove the a priori estimate. More precisely, we essentially obtain
/ | DuP®9 dy < cM"q/ (|F|p(z)q +1) dz, (4.2.25)
Q Q
under the a priori assumption
/ | DulP® dx < o0, (4.2.26)
Q

where ¢ < G as in (4.2.19) and M is the number given by (4.1.11). This
assumption can be removed by a standard approximation argument, see cite-
BOR2.

We recall the standard inequality

1
\meE:¢@>AH5;X/g@mm (4.2.27)
E
We now fix any point z € (2. Then we select a universal constant
Ro = Ro(e,nyy1, 72, v, A, o,w(+), R) > 0 (4.2.28)

so that the prescribed conditions (4.2.1), (4.2.20), Lemma 4.2.3 and Lemma
4.2.4 hold true for such a small Ry. Hereafter we mainly focus on the domain
Qar, = Qary (7).

In the previous section we have made a covering argument on the A\-upper
level set of | Du(-)[P") for any sufficiently large number A with (4.2.4) and have
made comparison estimates there based on the regularity assumptions on the
nonlinearity and the boundary of the domain.

According to Lemma 4.2.2, there exists a family of disjoint members
{Q,,(y;) };=, such that E(A) C J;»; Qsp, (y;) without a measure zero set. In
the interior case that B} = B20pi(2;z‘) C 2, we find from Lemma 4.2.3 that
for any € € (0, 1), there exists a small 6 = d(e, v, A, n,7v1,72) > 0 such that

f WWJMWWM+f‘WW—Dm%de¢A (4.2.20)
B} B2

and
DTl e 51y < AMKT A, (4.2.30)
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where p;, = max__zzp(x). On the other hand, for the boundary case B} ¢
), we find from Lemma 4.2.4 that for any € € (0,1), there exists a small
d =d(e,v, A,n,v1,72) > 0 such that

][ |Du — Dw; [P@da + ][ | Dw; — Du;|P2dx + ][ |Dv; — DT;[P2dx < e K7\
o o2 Q2

(4.2.31)
and
HDUZHLoo(Qzl) S Ale)\, (4232)
where pj; = max__gz p(z). Consequently, there exists
d=4d(e,v, A,n,v1,72) >0 (4.2.33)
such that (4.2.29) - (4.2.32) hold.
We now write
Ao = max{\,\;} and K = (|DufP™) + 1) dz + 1. (4.2.34)
QR
Then we observe from the standard LP®)-estimate (4.1.11) that
Ki S C()M.
Also we observe that
E (58" Xy (coM)7A) € E(A) C | s, () (4.2.35)

1>1

Using (4.2.34) and (4.2.35), we separate the resulting estimation into the
interior and boundary cases, to derive that

|E (5 : 871_1)\2 (C()M)G )\) |
= {y € Qg : [Du()[" = 58" Xy(coM)7\}|
<D HY € ()« [Du)PY > 587 ha(coM)7 A}

i>1

= Y Hy €y : [Du(y)lP® =581 N K7A}|

i:interior case

+ Y Hy € Qs () ¢ [Du()P®) > 5- 87 A KA}, (4.2.36)

i:boundary case
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In the interior case, it follows from (4.2.10), (4.2.27), (4.2.29), (4.2.30) and
(4.2.34) that

{y € B} : [Du(y)"¥ > 5- 8" 1A K7 A
< [{y € B! : [Du(y) ¥ > 4" X\ K7 A}
< |{y € B! : |Du — Dw;|"™ > X\ K?\}|
+{y € B} : |Dw; — Dvg|P? > M KZ A} + |{y € B} : |Dvi|P2 > A\ K7 \}|

1
/ (|Du — Dw; "™ + |Dw; — Dv;|P?) da
B}

< =
MK
< €| B}| =20"¢ |BY|. (4.2.37)

In the boundary case, it follows from (4.2.14), (4.2.15), (4.2.27), (4.2.31),
(4.2.32) and (4.2.34) that

{y € Qs () £ |1 Du(y)P¥) > 5- 817 XK A}
= [{z € Qs5,,(21) : [Du(2)["® = 5- 877 A K7 A}
< [{z €0l : [Du(z)P?) > 58"\ K7 A}
< |{z € Q! : |Du— Dw|P® > \ K \}|
+ {z € Q} : |Dw; — DuglP? > M K7 \}|
+ [{z € ¢ [Dv; — DUl > MK7A} + [{z € Q7+ [DT,[P2 > M K7 A}

1
/ (\Du — Dw;["'® + | Dw; — Dv; piz) d»
o

<
= MK7A
16\" |
= 1257 |B,,[ < 125" ( — | €[]. (4.2.38)

pi2 + ’D'UZ — D@l

< €]0)| < €| Biasy,

At the last inequality, we recall the measure density condition on the Reifen-
berg flat domain, see (4.1.8). We now combine (4.2.36), (4.2.37) and (4.2.38),
to derive that

E(5- 8" Ng(coM)7X) < ce Y |9, (yi)l.

i>1
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Using Lemma 4.2.2 and (4.2.9), we conclude that

1
E(5 . 871—1>\2<COM)0'/\) S ce— /
A i>1 Qpi(yi)ﬁ{lDu|P(z)2%}
+ e /
CE—
oA i>1 Qpi(yz‘)ﬂ{lﬂp(w)z%}

| Du P dz

|F|p(”3)dx

1
< ce—

A /{IEQQRO :|Du|P(I)Z%}

1
+ ce— |FP® dz, (4.2.39)

OA Jiaetsny (Fip®>2)

| Du|P® dx

where we have used the fact that {€2,,(y;)} is disjoint for the last inequality.
For the sake of simplicity, we write

4 n
A=5-8"") (qeM)” and B = <$) . (4.2.40)

Now, we start the local estimate of | Du[P®)?, By (2.3.1), we have

/ ]Du|p(x)qu - / <|Du|p(x)>qu
Qg Qg

< / q(ANTH{z € Qp, : [Du'™ > AX}| d(AN)
0
< Aq/ g A" [{z € Qp, ¢ |DulP™ > AN} dA
OB/\O
< Aq/ g A" [{z € Qp, ¢ |DulP™ > AN} dA
0

+ A /Oo g\ |{z € Qp, : |Du™ > AN}| dX
= I + II,. . (4.2.41)
Estimate for I1;:
B)\o
II, = Aq/ g\ [{x € Qp, 1 |DulP™ > AN} dX < (A B+ Xo)?|Qg,|.
’ (4.2.42)
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Estimate for I1y: Applying in turn (2.3.2) and (4.2.39), we derive

m, = Aq/ QA [{z € Qg ¢ [DulP® > AN} dA

BXo

< che/ N2 / |DulP@da | dA
0 {2€QaR,:[Dulp®) >3}
- Fip@
—i—che/ \4—2 / |F| PRAPR
0 (2€Qapy |Flr@) >822y 0

et (e / | DuP@1dz + (e, 6) / FP@agy | - (4.2.43)
Qop, Qog

We combine (4.2.40), (4.2.41), (4.2.42) and (4.2.44), to derive

IN

/ |DuP®@4dy < cM"qe/ | Du P4y
Qg Qn,

K|, | + cle, )M / | FP@gy,

QQRO

From (4.2.19), we observe that
M9 < (coM)7? < 2,

We then take € = €(n, q, 71,72, v, A) > 0 small enough, in order to obtain

1
/ |Dulf@dz <~ / | DulP®dz
Qn, 2

QR

+ KU\ Qpg, | + K / | F|P@da(4.2.44)

QQRO

Once the selection of € is made, one can find a corresponding 6 = §(n, ¢, 71,72, v, A)
and R = R(n,q,v1,72, v, \,0,w(-), Ry), see (4.2.28) and (4.2.33), for which
the relevant results in the previous section hold.
We now replace R and 2R by s; R and sy R, respectively, where 1 < 51 <
sy < 2, and repeat the procedure we have made for (4.2.44), as shown in [7],
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to discover

/ |Du|p(x)qd:1: < 1/ |Du|p(w)qu
QSIR 2 QszR
An)?
+ cK”q%mRJ + cK”q/ |F|p(3’)qu.
(s2 = s1) Quyr

By Lemma 5.2.9 and (4.2.2), we find

/ |DuP™idz < KU\ Qpg, | + cK / | F|Pdy

QQRO

q
cK71 ][ | Du P da + ][ |FP@de +1 | |Qg,|
QR Q2R

+ cK°1 / |F[P@a gy,
Qaog,

IA

from which we arrive at
7
][ | Du|P™)dy
Qr,
q

< cK° ][ | DulP® dx + ][ (JFP® 4 1) dx | | (4.2.45)
Qap, Q2R

This is the local estimate up to the boundary. Note that the constant ¢ in
the above inequality is dependent only on n,q, 1,72, v, and A.

We next use the standard covering argument, to obtain the global a priori
estimate (4.2.25). Since € is bounded in R", there exists N € N and x}, € )
for k=1,---, N such that

N

Q| Br(z).

Then we have

N
/|Du|p(””)qu < Z/ | Du|P@dz, (4.2.46)
Q k=1 QRo(mk)
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Now the estimate (4.2.45) implies

/ |Du|p(x)qu
QRo(xk)
q
< cM?7? DQR()(Ik)P_q(/Q o |Du|p($)dx)
2Ry \Tk
+/ (|FP®a 4 1) dx}
Qap, (k)
q
< cM? [[QRO(:E;C)II_Q</ |Du|p(z)dx> —I—/ (|F P 4-1) dx}
Q Q
q
< cM1 {IQRO(m)Il‘q ( / (IF[P™) + 1) da:)
Q
+/ (|FP™7 4+ 1) dx}
Q

< M (|Qp, (zx) QT + 1) / (PP 4+ 1) de. (4.2.47)
Q

We finally combine (4.2.46) and (4.2.47), to discover from (4.1.8) that

N

/Q DupDids <3 Mo (|, ()0 + 1) /Q (IFP@7 4 1) do
k=1
< cNM"q(|BR|1‘q]Q|q_1+1)/ (|FP®4 4 1) da
Q
< cM"q/(|F\p(x)q+1) dx,
Q

where ¢ = ¢(n, v, A, v, 72, w(+), R, q,0,). This claims (4.2.25).

113

¥ [ -1 ==
| = Lh.



Chapter 5

Nonlinear parabolic equations
with variable exponent growth
in nonsmooth domains

In this chapter, we are concerned with the following divergence type Dirichlet
parabolic problem with variable growth:

1 — ] p((E,t)—Q ]
{ uy — diva(Du, z,t) div (|F| F) in o Qp, (5.0.1)

u = 0 on 0,{p.

Here, we assume that the variable function p(z) = p(x,t) : R* x R — R

tisfi
satisfies on

n+2
for some constants ; and 79, the nonlinearity a(§, z) = a(, z,t) : R" x R™ x
R — R™ is measurable and differentiable almost everywhere with respect to
¢, and has the following variable growth and elliptic conditions: There exist
0<v<A<ooand 0<pu<1such that

<7 <p(z) <y <00 (5.0.2)

p(z)—1
)

(1 + €% [ Deals, 2)] + [a(€, 2)| < A(p® + [¢[*) " (5.0.3)

p(z

V(i + €177 nl? < (Deal€, 2)n) -, (5.0.4)

114



CHAPTER 5. NONLINEAR PARABOLIC EQUATIONS WITH
VARIABLE EXPONENT GROWTH IN NONSMOOTH DOMAINS

whenever z € R &0 € R*(if u = 0, £ is selected in R™ \ {0}), and
F(2) : Q7 — R™ belongs to the variable exponent Lebesgue space LPU) (Qg).
We will introduce the definition and some properties of variable exponent
Lebesgue spaces later in Section 5.1.1.

We establish global Calderéon-Zygmund theory in variable exponent Lebesgue

spaces to the parabolic equation (5.0.1), that is, we show the following rela-
tion:

IFPY e L10(Qr) = |DulPVY € 19O (Qy), (5.0.5)
by deriving a corresponding estimate, where ¢(z) = ¢(z,t) : R* x R — R
satisfies

1 <93 <q(2) <y <o (5.0.6)

for some constants 3 and 4, with an estimate. We also present minimal
assumptions on p(+), q(+), a(&, -,t) and the boundary of Q to satisfy (5.0.5).

5.1 Main Result.

5.1.1 Notations and log-Holder continuity for parabolic
problems.

We start with introducing some basic notations which will be used in this
chpater. Let y e R", 7 € R, w = (y,7) € R""' r > 0. B,(y) is the open ball
in R" centered at y with radius r. the parabolic cylinder @Q,.(w) is denoted
by Q(w) := B,(y) X (1 —r?, 7 +r?), and for A > 1, the intrinsic parabolic
cylinder Q)N w) is denoted by

2—p(w) 2—p(w)

QMNw) := B, (y) x (1 — A7) 72 7 4 A5 1?),

Recalling the underlying domain 2 C R", we write
0 (y) =B, (y) NQ, K, (w) = Qu(w) N, K)w) := Q) (w) N Qp,

0w (y) := Bo(y) N0, 0y K, (w) := K,(w) N {0 x (0,T)}
and Oy KMw) := K} w) N {02 x (0,T)} .
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In particular, for the sake of convenience, if w = 0 we simply write B, =
B.(0), Q, = Q,(0), K} = K}(0) and so on. Moreover we write

2—p(0)

2-p(0)
BY :=B.n{z, >0}, Q) =B x (_)\ 50 2 X500 7?)

2—p(0)

and T;\ = (B, N{x, =0}) x (=A p(0> r2 DO 7«2)

We next check that the log-Holder continuity of p(-) in U is equivalent
to the following condition: there exists a nondecreasing continuous function
w: [0,00) = [0, 00) with w(0) = 0 such that

Ip(2) — p(2)| < w(dy(z,2)), forany z, zeU, (5.1.1)
and
1 - _
sup w(r)ln— < L, for some L > 0. (5.1.2)
0<r<i r

Indeed, we first suppose that p(-) satisfies (2.2.3). Set a nondecreasing con-
tinuous function w such that

w(r) :=sup{|p(z) —p(2)| : dp(z,2) <r, 2z, z2€U}
then it holds (5.1.1). Furthermore, for r < 1, consider z, %z € U such that 7 :=
d,(z,%) <r, then we have |z — 2| < ‘[r and solnt<Ini< In — _~| —i—ln\f
Consequently applying (2.2.3) we get

|zi2| —l—ln\/?g) §L—|—w(1/4)lné

p(z) — PO s < [p(2) — p(2) (m /

hence N
1 ) 1
w(r)ln- < L+w(1l/4)In DR for any r < 7
r

which implies (5.1.2). Conversely, suppose that there is w : (0,00) — (0, 00)
satisfying (5.1.1) and (5.1.2). Then one can find L; > 0 such that

1 - 1
w(r)ln- < L;, foranyr < —

r V2
For z,Z € U with |z — Z| = r < 3, since dj(z, 2) < /1, we have
1 1 ~
() = (D)0 gy <V = 2(vi) In = < 2
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Note that w is actually modulus of continuity of p(-), and the condition
(5.1.2) can be replaced by

limsup w(r)In - < oo.
r—0+ r

5.1.2 Main result.
We denote a Banch space W) (Qr) by
WO (Qr) = {f € L"Y(Qr) : Df € LV (Qp,R™)}
equipped the following norm:
I fllweer o = 1f leer ) + 1Dl o0 @p r7)s
and its subspace Wé)(')(QT) = WPO(Q,RN)NLY0, T; W, ' (Q)). We then say

ue C0,T; L2(Q)) N WY (Qr) is a weak solution of (5.0.1) if it holds

/ upr dz —/ a(Du, z) - Do dz :/ |F|PR"2F . Dpdz
Qr Qr Qr

for every ¢ € C§°(Q2r), and u(-,0) = 0. In the next section we will discuss
about the weak solutions of parabolic equations with variable growth.

Let ¢(-) : R™™ — (1, 00) satisfy (5.0.6). In addition, we assume that q(-)
is log-Holder continuous in )7, hence there is a nondecreasing continuous
function p : [0,00) — [0, 00) with p(0) = 0 such that

lq(2) — q(2)] < p(dy(z,2)), forevery z,z € Qp, (5.1.3)

and ]
sup p(r)ln— < L;, for some L; > 0. (5.1.4)

0<p<i r

We next introduce the regularity assumptions on p(-), a(&, -, t) and the
boundary of €.

Definition 5.1.1. Let § € (0,1/8) and R € (0,1). We say (p(-),a(¢, -, t),)
is (9, R)-vanishing if
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(1) For p(-), there exists a modulus of continuity w : (0,00) — (0,00) of

p(+) such that

1
sup w(r)ln—- <. (5.1.5)
0<r<R r

(2) The nonlinearity a satisfies

2
sup  sup sup f][ 0(a, B.(y))(z,t)dxdt <6,
t1 'r(y)

t1,t2€Rt1 <ty yeR™ 0<r<R

({,x,t) a(ﬁ,-,t)
0(a,U)(x,1) = sup | —— ‘( )
(2 + [€[2) (12 + €)= ),

EER™

where

and U C R"™.

(3) For each y € 00 and 0 < r < R there exists a coordinate system, still
say © = (z1,...,x,) coordinate, with the origin at y such that

B, n{xz, >or} c Q. Cc B.N{x, > —dr}.

Here are some remarks related to the above definition..
Remark 5.1.2.

(1) For 0 < 1 < ro, if (p(-),a(&,-,t),Q) is (9,72)-vanishing then it is
(0,71 )-vanishing.

(2) It is easy to check that if p(-) satisfies the condition (1) of Definition
5.1.1 then it is log-Holder continuous in Q.

(8) Generally speaking, the condition (2) of Definition 5.1.1 means that the

map T a(E—pt()t)_l has a small BMO semi-norm that is less than

(2+le2) 2
or equal to & uniformly on & € R™ and t € R.

(4) If Q satisfies the condition (3) of Definition 5.1.1, then we sat € is a
(0, R)-Reifenberg flat domain. Note that (J, R)-Reifenberg flat domains
have the following measure density conditions:

1B, (y)] ( 2 >” (16)”
sup su < <|\= . 5.1.6
veo e [0y = \1-0) =\7 (5.1.6)
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inf inf L0 BWI (1_5>n > (7>n (5.1.7)

yeorr<k | B, (y)] 2 16

We refer to [13, 52, 58] for further discussion about Reifenberg flat
domains.

We now state the main results in this chapter. We first define

) — % it p(w) > 2,
dy = d(w) = d(p(w)) := { p(w)?zg))% i 2 < pu) <2, (5.1.8)
dy = sup d(w), (5.1.9)
'LUGQT
= min{l,ylw—ﬁ}, (5.1.10)
4 2
and

M= [ (|[FPP1) +1) do + 1. (5.1.11)

Qr

Theorem 5.1.3. Let p(-) satisfy (5.0.2). Assume that q(-) satisfies (5.0.6),
(5.1.3) and (5.1.4). There exist small 6 = 6(n,v, N, vy1,%2,73, Vs, L1) > 0

and & = 6(n, v, A, v1, 72,73, 74, w(-), p()) > 0 such that if (p(-),a(E, -, t),Q)
is (0, R)-vanishing for some R € (0,1), |F|PY) € LI)(Qr) and u is a weak
solution of (5.0.1), then the following hold:

(1) (Local estimate) For any r < min{0Ra M~C"="*V \/T/16} and w =
(y,7) € Qr we have

][ Dufp) 4 < ][ Dufr® dz
Kr(w) K4r('w)

1 1+dw(g(w)—1)
quw
+ <][ | F|p(=)az) dz) +1 ,(5.1.12)
Ky (w)

fOT’ some ¢ = c(”?U7A>717727737747p(')) > 0.
(2) (Global estimate) We have

do
/ |DulP@1®) dz < ¢ ( / |F\p<2>q<2>dz> +1p, (5.1.13)
QT QT
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for some ¢ = c(n,v, A, v1, 2,73, Y4, w(+), p(+), R, Q, T), where
3 1+d —1 1+d —1
do = (n+2) {n+ n 1] [74( tdu(ys—1)) 1 Jr74( + M2(73 )
« V3 73
Therefore, there holds (5.0.5).

Remark 5.1.4. Suppose s : R"™ — (1,00) is bounded and strictly bigger
than p(+), that is, there exist 1 < 3 < y4 < 0o such that

s(2)

1<y < —=5 <y < oo

p(2)

If s(+) is log-Hélder continuous in Qr, then Theorem 5.1.3 implies
|F| e L*V(Qr) = |Du| € L*Y(Qy)

with the estimates (5.1.12) and (5.1.13), where q(-) = % Indeed, since

s(+) is log-Hélder continuous, there exists a modulus of continuity of s(-),

p:(0,00) = (0,00), satisfying (5.1.4) with p replaced by p. Set q(x) := ;Ei)

N>

then we easily check that 1 < 3 < q(x) < 4 and

o) — gz < 200 s|>7+%74w<|z ) ST

for all z,zZ € Qp. Consequently, p: (0.00) — (0,00) satisfies (5.1.4).

Remark 5.1.5. We will prove the estimate (5.1.12) only for the regions
K (w) satisfying (1 — 1602, 74 16r%) C (0,T). In fact, if Q}.(w) touches the
bottom or the top of Qr, i.e., (1 — 16r%, 7 + 16r?) ¢ (0,T), we consider the
extended equation such that

i — diva(Da,z,t) = div (|F|p<wvt>—2ﬁ) in Qx(-T,2T]
u = 0 on  0,(2 x (=T,2T],
(5.1.14)
where

a(é, x,t) = a(§, x,2T—t), p(x,t) = p(z,2T—t), §(z,t) == q(z,2T—t), ift > T,
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and
W(x,t) = u(x,2T —t), F(x,t):= F(x,2T —t), if T <t<2T,
w(z,t) == u(z,t), F(x,t) := F(z,t), if 0<t<T,
(x,t) =0, F(z,t) =0, if —T<t<0.

Note that a, p(-), p(-) and F satisfy the same assumptions of a, p(-), p(-)
and F in Theorem 5.1.3, and (7 — 1672, 7+ 16r%) C (=T, 2T). Consequently,
applying (5.1.12) in Theorem 5.1.83 to the equation (5.1.14) for the region
K (w) = Q.(w) N {Q x (=T,27T]} with w € Qp, we have

][ D[P g
K, (w)

1 I4dw(g(w)—1)
~ ~ o~ ~ qw
<e ][ D) dz + (][ P dz) +1 ,
kﬁlr(w) f(4'r(w)

where Ky (w) == Qu(w)N{Qx (=T, 2T}, which implies the estimate (5.1.12)
for the regions Ky.(w) with (1 — 167 7+ 16r%) ¢ (0,T).

5.2 Preliminaries.

5.2.1 Parabolic Sobolev spaces and P.D.E. with vari-
able exponents.

We introduce parabolic spaces with a variable exponent and existence of the
weak solutions of parabolic Cauchy-Dirichlet equations with variable growth.
For details, we refer to [27, 31, 32]. In this subsection, we assume that €2 has
a fat complement; there exists ¢ > 0 such that for any x € Q there holds
| Baa(z,00) (2)NQ°| > ¢|Baa,a0)()], and p(-) satisfies (5.0.2), and is log-Holder
continuous. Note that (J, R)-Reifenberg flat domain has a fat complement.

Let W?0)(Qr)’ be the dual space of Wg(')(QT), and then (, ) = (, ), be
the pairing between W?()(Q7) and Wg(')(QT). Then for each g € WPO)(Qr)’
there exist go € L¥')(Qr) and G € L) (Qp, R") such that

(g.f)= [ fgodz+ | Df-Gdz, forany fe W), (5.2.1)

Qr Qr
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where p/(+) := pgzgl

. Moreover, we have

”g”WP(')(QT)’ = inf (HgOHLP’(‘)(QT) + HGHLP'(‘)(QT,R")) )

where the infimum in the previous equality runs for gy € L) (Q7) and
G € LPO(Qp, R) satisfying (5.2.1). We further define

Wy (Qr) == {f € WPO(Qr): f € Wp(')(QT)/}

with || fllw,, == [fllwsom + 1 fillwsor gy~ Here, f € WPO(Qr)" is under-
stood in the distributional sense that

(ft, ) = / fowpdz, for any ¢ € C3°(Qr),
T

where 0, means the classical time derivative of .

Remark 5.2.1. When p(-) is a constant function, p(-) = p, the above func-
tion spaces return to well known classical parabolic Sobolev spaces, precisely,

WP(Qr) = LP(0,T; W(Q)),  WE(Qr) = LP(0,T; Wy P ()

and
WP(Qr)' = LP(0,T; Wy (Q)) = L¥ (0, T; W~ ().

For the above spaces, we have the following property.

Proposition 5.2.2. [27, 32] W,y(Qr) N L0, T; W' () is continuously
embedded in C(0,T; L*(Q)), that is, for any f € W,(-)(Qr)NLY(0,T; Wy (Q))
we have

”fHC(O,T;LQ(Q)) < CHfHWp(-)(QT)

for some ¢ > 0 independent of f, moreover there holds

1
(fe, Paxit e = 5 (£ Cot2) 2 = 1FC ) e2)) 5

forany 0 <t; <ty <T.
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Now consider the following parabolic equation:

u; —diva(Du,z) = div (|[F]P®~2F) in Qr,
u = f on 00 x (0,7], (5.2.2)
u(0) = fo on Q,
where
FeL’YQr), fo=L*Q) (5.2.3)
feCO,T; L*(Q)NWPO(Qr), fe WPO(Qy), (5.2.4)

and a : R™ x R"*! satisfies that
’5(67 Z)‘ < Al(l + ’5‘)p(z)—1’
A(E,2) - € > m|EP®) — 1,
p(z)—2

(a(&1,2) —a(&2,2)) - (G — &) > vs(p” + |G + &) 2 16 — &P,
(5.2.5)

for every z € R*"1 £, &, & € R™ and for some positive constants vy, vy, 3, A;
and p € [0,1]. We then say u € L*(Qr) is a weak solution of (5.2.2) if

we C0,T; L*(Q) N WPO(Qr) with u, € WPO(Qp),
w—feLY0,T; W, (Q), u(-,0)=fo in L*Q),
and there holds

/ wpy dz —/ a(Du,z)- Dpdz = / |FIPO=2F . Dy dz,
Qr Qp Qp

for every ¢ € C§°(Qr). We point out that if u is a weak solution to (5.2.2)
then we have

<ut7 ¢>Q><[t1,t2] + /

Qx [tl,tg}

a(Du,z) - Dpdz = —/ |F[P®=2F . Dy dz,

QX[tl,tQ}
for every ¢ € Wg(')(QT) and every 0 <t; <ty <T.

Theorem 5.2.3. (Existence and Uniqueness) Under the above assumptions
(5.2.3)-(5.2.5), there exists a unique weak solution u to (5.2.2). Moreover, if
f =0, then we have the estimate

sup (e, 6)| ooy + / Duf@dz < ( / [FPe) 1] dz + IIfolliz(m) |
T T

0<t<T

for some ¢ = c(n, A, v,v,72) > 0.
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Returning to the main equation (5.0.1), we know from (5.0.3) and (5.0.4)
that the nonlinearity a satisfies

a(€,2) - € 2 v —

and

p(2)—2

216 — &l (5.2.6)

(a(&r,2) —a(&, 2)) - (& — &) > v + &P+ &)

for every z € R™, £, &,& € R™ and for some vy, 15, v3 depending only on
n7Aa V1,72

Corollary 5.2.4. There exists a unique weak solution u to (5.0.1). Moreover,
we have

sup. (-, ) 220y + / DuPdz < ¢ / [FI" +1] 2, (5.27)
T T

0<t<T

for some ¢y = co(n, A, v,71,72) > 0.

5.2.2 Self improving integrability.

We introduce self improving integrability results for the gradient of the
weak solutions of nonlinear parabolic equations with variable growth. In [6]
Bogelein and Duzaar showed local self improving integrability for parabolic
systems with variable growth assuming that the variable exponent p(-) is log-
Holder continuous. This result can be naturally extended to a global one on
Reifenberg flat domains with the zero boundary condition, since they have
the measure density conditions (5.1.6) and (5.1.7). Note that, by following
the proof in [6], one can find a exact relation between the radii of parabolic
cylinders and the constant M; > 1 satisfying (5.2.9), see (5.2.8).

Lemma 5.2.5. Let M,y > 1, p(+) satisfy (5.0.2), (p(+), ) be (6, R)-vanishing,
and |F|PY) € LY(Qr). Then there exist o, = o, (n,v, A, v1,72,7) € (0,7 — 1]
and ¢y, = cp(n, 1,72, w(+)) > 1 such that the following holds: for any

1
r < min {cglM1 a,R} (5.2.8)
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and any w = (y,7) € Qr, if u is a weak solutions of

u — div a(Du, 2) = div (|[FIPP72F) in Q.(w) = K,(w), if B.(y) C Q,

or
u — diva(Du,z) = div (|FIP972F) in K, (w),
B, Q,
{ u = 0 on OyK,(w), I B(y) ¢
satisfying
/ [|[DulP®) + |FPP® + 1] dz < M;, (5.2.9)
Ky (w)

then |Du|Pt) € L' (Kx (w)) and we have

I+od(p(w))
][ |DulfPH) qdz < ¢ <][ [| DulP®) + |F|PE)] dz)
K% (w) K (w)

—I—c][ |FPEt) gy 4 ¢ (5.2.10)
K, (w)

for every 0 < o < o, and for some c = c(n,v, A, y1,72) > 0.

Note that if p(-) is just log-Hélder continuous, then o, in the above lemma
depends also on p(-), see [6, Theorem 2.2], however using (0, R)-vanishing
condition on p(-), 6 < 1/8, we can obtain o, independent of p(-).

Using a scaling argument, we deduce a homogeneous self improving in-
tegrability estimate on intrinsic parabolic cylinders from the above lemma.
We note the assumptions (5.2.13) and (5.2.14) in the below corollary will be
clarified in the proof of Theorem 5.1.3 later.

Corollary 5.2.6. Let My,v,T,c, > 1, p(+) satisfy (5.0.2), (p(+),Q2) be (6, R)-
vanishing, and |F|P©) € LY(Qr). Then there exists 6., = &.(n, v, A, V1,72, 7, Ca) €
(0,v — 1] such that, for any w = (y,7) € Qr if u is a weak solutions of

w, — div a(Du, z) = div (|F[PD72F) in QNw) = KMNw), if B.(y) C Q,
or

{ u — diva(Du,z) = div ([FPE2F) in  KMNw),

u = 0 on DKM w), if Bi(y) ¢ Q,
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satisfying
‘ B2\ (e ) T
r < min {1, A 2p(w) }ch Ca M, and r < R, (5.2.11)
/ [[DulP® +|F[P®) + 1] dz < M;, (5.2.12)
KX w)
][ | DulP® dz + (][ |F|pe dz) T (5.2.13)
KX (w) KX (w)
and
pr—p1 <1, APPTPL ¢, (5.2.14)
where
= inf z) and ‘= su z),
b zeKﬁ(w)p( ) P zeKﬁ\IZw)p< )

then |Du|Pt) € L1+5W(Ké\(w)) and we have

][ | Du PR +9) g7 < eplte, (5.2.15)
K3 (w)
2

for every o < &, and for some ¢ = c(n,v, A, v1,72,7,¢q) > 0.

Proof. For the sake of convenience, we may assume w = 0 and write py =
p(0). We first consider the case py > 2. In this case, we define the rescaling
functions such that for (z,t) € R**!

2— 2—po

B, ) = pla, N 70 t), A, z,8) = A 7 a(ARWE,x, A o t),

and for (z,t) € K,
~ 1—pg 2-po _1 2-po
F(z,t) := ApGEO-D F(x, Xvo t),  a(z,t) := X rou(z, A 7 t).

Then, for z; = (x1,t1), 22 = (w2, t2) € R™™ p(-) satisfies

N N 2-pg 2-pg
1D(21) — P(22)| = [p(x1, AP0 t1) — p(a2, A 70 t5)]
27
< w (max{|x1 ~ o), A0 /[t — t2|}>

IN

w(dp(21, 22)),
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hence p(-) is (9, R)-vanishing, and a satisfies (5.0.3) and (5.0.4) with (a, v, A, u, p(+))
replaced by (a,c;'v, c,A, X 70, p(+)), by using (5.2.14). Moreover, @ is a
weak solution of

iy — div a(Da, 2) = div (|[F]PY72F) in Q, =K,, if B, CQ,
or

i ~ﬁ(z)—f) i
{ u; — div a(D1, z) div <|F| F) in K, it B, ¢ Q.

u = 0 on OyK,,
with |F|P0) € LV(K,) and, by (5.2.12),
/ [yDaV’(Z) +|FP@ 4 1} dz
K,

po—2

z (2)(1—pg)
— A% / {A‘%Duyf’(z) T AmnE D | FP) 4 1] dz
KX

:/ {A‘f&)“‘)pﬁ(” |DulP® 1 A" mboD | P 1 1} dz < M.
K

Since r satisfies (5.2.11) and so (5.2.8), applying Lemma 5.2.5 to the above
equations, one can find ¢, = d,(n,v, A, v1,7%,7,¢) € (0,7 — 1] such that
|DulP®) € L% (K,) and the estimate (5.2.10) holds for every o < &, with
u, F,p(-) replaced by @, F, p(-), respectively. Therefore, for any o < o

Kr

|

][ |Du|P<Z><1+ff>dz§][ A (49)| Dgl[p(2)(1+)
K}
2

+][ )\_%lF’p(z)(lJﬂf) dz+ 1}
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p(2) _ p2—p p(2)(po—1) __ po—p(2) _ _p2—p
Observe that o >1 ZW L and ooz D) = 1+ o)1) >1 71(2%711).

Using these inequalities, (5.2.13) and (5.2.14) we have

i

1+od(po)
‘Du|p(z)(1+0) dz < ¢ )\afad(po) <][ UDU|P(2) + |F‘P(Z)} dZ)
K

140
+(][ |F|p<z>”/dz) +1}

< ette,

A
T
2

2—p
We next consider the case py < 2. In this case, let 7 := )\Toor, and define
the rescaling functions such that for (x,t) € R*™!

po—2 1-p 1 po—2
Bla,t) == p(A %0 2,1), &6, x,1) = A 0 a(Awé, A\ 50 a, 1),

and for (z,t) € K5

1-pg o2 5 =)
F(z,t) := AnG@EO-0 (XN 20 z,t), a(x,t):= A" 2u(A 20 x,t).

Then, in a similar argument as in the case py > 2, we see from the fact

nZ—fQ < po and (5.2.14) that

p(21) — P(22)] < w(dy(21,22))

for every z; = (z1,t1),22 = (xo,t2) € R™™ and a satisfies the condition
(5.0.3) and (5.0.4) with (a, v, A, u, p(+)) replaced by (&, c;'v, ca A, A 7o 1, p(+)).

Moreover, u is a weak solution to
iy — div a(Di, z) = div (|[FP®72F) in Q; = K;, if By C €,
or

o _o ~ﬁ(z)—2~> - i .
{ i, — div a(Da, z) div <]F| F) in K;, it By ¢ Q,

u = 0 on 0Oy Kj5,
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with |F|P0) € L7(K;) and

/ [|Da|ﬁ(z> + |FP) +1} dz

2—p0

_p(=) p(2)(1—pg)
= \" "o / {,\ vo |DulP®) 4+ \rowm-0 | FPE) 4 1} dz
K2

_ _ 1
<A / [,\*“”"’wfl |DufP® + A Rt | Fpe) 4 1} dz < 'OV My,
K

~ po—2 ~ 2—p
where Q) := {x ER": A\ g € Q} Note that Q is (5,)\T00R)-Vanishing
and, by (5.2.11), 7 > 0 satisfies

1
. V(Ao e Zm
r<min<gc, " (ca" "M, A0 R B

Therefore, applying Lemma 5.2.5, scaling back from u to @ and repeating
similar computations as in the case py > 2, we obtain (5.2.15). O]

5.2.3 Lipschitz regularity.

We recall L>-estimates up to the flat boundary for the gradient of the weak
solutions of homogeneous parabolic equations of p-Laplacian type with a
nonlinearity independent of the space variable . DiBenedetto and Friedman
showed the interior gradient bound for parabolic systems, see [23] and the
monograph [21], and in [47] Lieberman extended these results up to the
boundary for parabolic equations.

Let b =b(¢,t) : R* x R — R” be a vector valued function satisfying the
condition (5.0.3) and (5.0.4) with a(&, z) and p(z) replaced by b(&,t) and p,

2n
P TR
temporally denote the intrinsic parabolic cylinder such that

respectively, where p € ( oo) is a fixed constant. In this subsection, we

Qp(w) = Br(y)X(T—A%T2,7+A%T2) and QM = Bjx(—)\%Tpﬂ,)f%pr?).

Lemma 5.2.7. (1) Let v be a weak solution to
v, — div b(Dv,t) =0, in QMw)
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with

][ |Dv|P dz < A
Q3 (w)

for some X\ > 1. Then Du € L“(Q%(w)) with the estimate

P
1Dl (Q} () < ek,

for some ¢ = c¢(n,v, A, p) > 0.

(2) Let v be a weak solution to

r

7 =0 on T

{ v, —divb(Dv,t) = 0 in QM
with
][ |Dv|P dz < A,
M (w)

for some A > 1. Then Du € L®(Q>") with the estimate
2

[ Dull < e,

p
L))
2

for some ¢ = ¢(n,v,A,p) > 0.

5.2.4 Technical tools.

We start with a Vitali type covering lemma for intrinsic parabolic cylinders.
A similar one can be found in [6]. Here, we impose more strong restriction
on the scales of intrinsic parabolic cylinders than one in [6, Lemma 7.1], to
get a rather simple proof.

Lemma 5.2.8. Let \,c, > 1. If F := {Qi‘] (w;)}jeg is the family of intrinsic
parabolic cylinders satisfying that U, ; Q;\j(wj) is bounded in R"*! and

AP <e¢, foranyjeJ, (5.2.16)
where
P = wezt{}?wj)p(w) and p; = weérﬁljf(wj)p(w),
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then there exists a countable disjoint subcollection G = {Q;\i(wi)}ig, cJ,
satisfying

U Q?j(wj) - UQ;Ti(wi), where x = max{572\/§c;%}.
jej €1

Proof. For k=1,2,..., we define

r r
Fi = {Q;}j(wj) e F: 2—2 << =2 }, where supr; = ro,

2k-1 jeg
and G; C JF; by any maximal disjoint subcollection of F;. We inductively
select G, C Fj by any maximal disjoint subcollection of

k-1
{QEFk:QﬂQ:QforaHQEUQZ}.
=1

Note that, since the measure of (J;. ; Q;\j (w;) is finite by the assumption of
the lemma, G, has a finite element. Finally, we define

G := U G
k=1

Then G is countable and its elements are mutually disjoint. Therefore, it
suffices to show that for any Qf,‘j (wj) € F, there exists Q) (w;) € G such
that Qf)j(wj) C Q% (wy). If Qi‘j(wj) € G there is nothing to prove. Fix
Qi‘j (w;) € F\ G then Q;\j(wj) € Fj, for some k. By the maximality of Gy,

there exists Q) (w;) € Uy, Gi such that Q;\j(wj) N Q) (w;) # 0. We note

"o

Let w; = (yi,71), wj = (y;,7;) and wy € Q;\j(wj) N @ (w;). Then (5.2.17)
directly implies

B, (yj) C Bsr,(yi) C Byr, (i)
We next show that

2—p(wj) 2—p(w;) 2—p(w; 2—p(w;
Oy UV = AU
(1; — Do, T+ D) C (= AP (xri)®, T+ A P (xry)”).
(5.2.18)
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If p(w;) > p(w;), (5.2.17) implies

2-p(w)) - 2—p(w;)

A ) r < /\ o) (27‘1) =4\ @) 72

and so

2— p(w 2— P(U’]) 2— 2—p(w;)

( W J) 7,,2 T +/\ p(wy) TQ) C (7'—9)\ P(pu(fi )r ) T +9/\ p(w;) 7“2)
J 7 (] K3

On the other hand, if p(w;) < p(w;),

2-p(w;) PW)=P(W)) 2 puw;) p(w)—p(wg)  PWO)=P(w;) 5 p
N\ P TJQ‘ — )\ Pwp(w;) )\ “pwy) rj? < A 73 Y v N Py rj?

+_ = pi—pT
bi P Pi 7P o p(wy)

< A 1A M\ pw) Ty2'7

hence using (5.2.16) and (5.2.17) we obtain

2-p(wy) l 2—p(w;)

P J> T <4cw1)\ p(wy) r2

so that

2 p(w;) 2-p(wy) 2 2wy

pw;)
(75— A 70 2 7 4 AP 7’]2) C (i — 80”1)\ i) 27 + 8cat X 7w r3).

Consequently, we have (5.2.18). O

Lemma 5.2.9. [37, Lemma 4.3] Let ¢ be a bounded nonnegative function on
[11,72]. Suppose that for any s1,se with 0 <1 < 81 < 89 < 71,

Py
(52 — 81)6

where B, Py, Py > 0 and k € (0,1). Then there holds

P(s1) < KP(s2) + + P,

P

(7'2 — 7"1)92

o(r) < ¢ { +P2] :

for some ¢ = ¢(k,3) >0
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The following inequality can be found in [1] and references therein. For
UCR"™ 3>0,0>1and f € L°(U), we have

][Um I’ (e + %) dz < c(o, ) <][U|f]"dz>; | (5.2.19)

for some c(o, ) > 0, where we write In’t := (Int)?. Note that the con-
stant (o, 5) is continuous with respect to 8. We end this section with the
elementary inequality

1
7| Int| < max{—B,ZB 1n2}, Yt € (0,2]. (5.2.20)
e

5.3 Comparison Estimates.

In this section, we obtain interior and boundary comparison estimates on
intrinsic parabolic cylinders, under a circumstance satisfying several condi-
tions described in (5.3.2), (5.3.3), (5.3.4), (5.3.14) and (5.3.21). We start with
setting various parameters and stating required conditions.

Let u be the unique weak solution of (5.0.1), p(-) satisfy (5.0.2), and
(p(+),a(&,-,t),Q) is (4, R)-vainshing for some R € (0,1). Here 6 € (0,1/8)
is a sufficiently small number that will be determined from Lemma 5.3.1,
Lemma 5.3.2 and Lemma 5.3.3. We fix any A > 1 and sufficiently small
r € (0, R/8). Then for w = (y,7) € Qr we set

po:=pw), pr:= inf p(z) and py:= sup p(2).
2eK) (w) 2€K) (w)

In this section, we only consider the interior case that Q}.(w) = K3 (w) C
Qp or the boundary case that

B} C Qu(y) C By(0)N{z, > —106r}, (5:3.1)
(1 — A0 (4r)2,7 + A o (4r)2) C (0, 7). ~
In addition, we assume that the following hold:
. 5'2 1%
—p < — —1 3.2
P2 pl_mln{4(71_1)>2/\’ }7 (53 )
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Neo T2 py —py < w(T(dr)®), AP <, (5.3.3)

for some I', ¢, > 1, and

][ |DuP®) dz < XA and ][ |F[PE) dz < 6. (5.3.4)
KX (w) KX (w)
We remark that I' and ¢, will be determined in Section 5.2. Finally, for the
sake of convenience, we write x;, i = 1,...5, to be any constant in (0, 1), ¢
to be any positive constant depending only on n, A, v,v1, 79, ¢, and ¢(k;) to
be any positive constant depending only on n, A, v, v1, e, €4, K-

Let h be the weak solution to

{ ht — le a(Dh, Z) = 0 in Ki\r(w>7 (5 3 5)

h = u on 9,K}(w).

Lemma 5.3.1. For anye € (0,1) there exists a small 6 = §(n, A, v, 71,72, €) >
0 such that

][ |IDRP®) dz < ;A and ][ |Du — DhP® dz < eX  (5.3.6)
K3, (w) K3, (w)

for some c; = ci(n, A, v,v1,72) > 1.

Proof. Without loss of generality, we assume that w = 0. Since u — h €
Wy (')(K 1), u — h is allowed to be a test function in the weak formulations
of (5.0.1) and (5.3.5) hence we have

((u="h)e,u—h)gy + / (a(Du, z) — a(Dh, z)) - (Du — Dh) dz

K,

™

=— / |FIPO=2F . (Du — Dh) dz. (5.3.7)
K)\

4r

We note by Proposition 5.2.2 that
((u—="n)y,u—h)gr >0. (5.3.8)
From (5.2.6) we observe that

p(z)—2

> |Du— Dh|?* < (a(Du, z) — a(Dh, 2)) - (Du— Dh).

vs(p? + | Dul* + | Dh|?)
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Here, if p(z) > 2 a directly computation yields
%|Du — Dh|P® < (a(Du, z) — a(Dh, 2)) - (Du — Dh),
and if p(2) < 2 Young’s inequality implies
|Du — Dh[P®
p(z)—2

< k1 (L+ [Du[P® + |DhPP) + e(k1) (u* + |Dul* + |Dh[*) > |Du — Dh|?
<r (14 | Du|P®) + |Dh|p(z)) + c(k1) (a(Du, z) — a(Dh, z)) - (Du — Dh).

Therefore we deduce

/ |Du — Dh|PP dz < Ky (1 + |DulP® + |DRPPP) dz
K)\

A
4r K 4r

() /K (a(Du,2) ~a(Dh,2)) - (Du— Dh)d=. (5.39)

Applying Young’s inequality to the right hand side on (5.3.7) we have

/ |F[P®=2F . (Du — Dh)dz
K)\

4r

< @/ |Du — Dh|P®) dz
K/\

4r

+c(/<02)/A |F[P®) dz. (5.3.10)

K4’V‘

Combining (5.3.7)-(5.3.10) we find

][ |Du — Dh|PP dz < /ﬁ][ (1+ | Du|P®) + |DhPP) dz
K3, Qr

+ ﬁgc(lil)][ |Du — DhP®) dz + c(ky)c(k2) / |F[P®) dz. (5.3.11)
K3, Qr

We first choose k; and ko sufficiently small to find

][ |DR|P®) dz < ¢ ][ | Dul?® dz—i—][ |FPPdz+1].  (5.3.12)
K3, K3, K3,

Then inserting the assumption in (5.3.4) into the previous inequality we
obtain the first estimate in (5.3.6). Returning to (5.3.11), applying (5.3.4)
and the first estimate in (5.3.6) and taking

€ 1 €

12+c) T 2e(m) and 0 = 4c(r1)(2)

K1 =
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we get the second estimate in (5.3.6). O

We next observe the self improving integrability of Dv. We first note from
the estimate (5.1.11), (5.2.7) and (5.3.12) that

/ |Dh|P®) dz < &M
KA

4ar

for some ¢q = éo(n, A, v,v1,72) > ¢o + 1, and then define
M, = &M. (5.3.13)
We now further assume that r > 0 satisfies
_1
4r < min{l,/\%}cgl (c;mll”Ml) " (5.3.14)

Then, in view of Corollary 5.2.6 with F' =0, v = 2 and u replaced by v, we
have |Dh[P®) € LY*%2 (K3 (w)) with the estimate

][ |DR|PFFD) gz < X1 (5.3.15)
K2, (w)

for every 0 < o < G5. Note from the first restriction for ps — p; in (5.3.2) that

p1(p2 — 1) P2 —P1 09
< A A 1 < 14+ —=
Po < Py(p2 — 1) < - _p(2)<+%_1)_p(2)<+4)

and
Po <1+%) i pi:(;:)il— 1)~(>1+%) < p(2) (1#%) (H%)
< p(2) (1 + 55

for every z € Kj.(w), where py := -2~ Then, using the third inequality

o
(5.3.3) and (5.3.15), we see i

][ |Dh|P°dz < ][ |Dh|Pe®2=Y dz 41
K3, (w) K3\ (w)

< ][ |Dh|p(z)<1+7pflip11> dz + 2
K3, (w)

p2—P1
1—

< et < en (5.3.16)
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and

][ IDRP(HF) g < ][ | DRPer D (HE) g 41
K3 ) 3 w)

< ][ pRp (52 (4%2) g o
K3, (w)

< C)\1+02+P31 p11(1+02> < C)\H_%Q- (5'3'17>

We next define a vector-valued fuction b : R* x K (w) — R" by

Po— P(Z)

b(¢, 2) == a(§, 2) (1 + 1€[)

Then direct computations yield

Pol

b(&,2)| < L(® + €A™, |Deb(,2)] < Lips — p1 + 1)1 + €)™

and

(Deb(€,2)n) -0 = {v = (p2 = pO)AY(* + [€%) "5
Then applying (5.3.2) we have

{ Ib(€, )| + (12 +1€[)HIDEb(E ) < BAGE + €)™,

L2 4 €)™ n)> < (Deb(€, 2)n) -,

for every z € K3,.(w) and 7, £ € R™, provided that py — p; satisfies the second
and third condition in (5.3.2).
For the mterlor case that K}.(w) = Q}.(w) C Qr, we define b : R” x (1 —

/\2;%(47“) T+/\ o (4r) ) — R by

b = f b
ar(Y

Then, we have from (2) in Definition 5.1.1 that

][ |b(£ t) — (é“ )\d _][ (8, Bu())(2) dz < 6
R S (e )
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On the other hand, for the bounary case that K3,.(w) satisfies (5.3.1), we
define b : R" x (7 — A 70 (4r)2,7+ X\ 70 (4r)%) — R® by

bt = bl

Then again by (2) in Definition 5.1.1 we see that
b(¢,t)—b
][ sup| (1) (if”dz = ][ 0(a, B} )(2)dz
Qi SR (2 4 [gP) W
< 4][ O(a, By )(z)dz < 446. (5.3.19)
Q

A
4ar

In both cases, let v be the weak solution to

{vt—div b(Dv,t) = 0 in Kz (w),

3.2
v = h on 9,K3(w). (5.3.20)

Note that b satisfies (5.3.18) with b(&, z) replaced by b(¢,t), and by (5.3.16)
the equation (5.3.20) is well defined.

Lemma 5.3.2. Suppose that r > 0 satisfies (5.3.14) and
r < min {e—lr*(%“’m, (r—lR)i} . (5.3.21)
For any e € (0,1) there ezists a small § = d(n, A\, v, 71,72, Cqa, €) > 0 such that

][ |Dv|P° dz < coA  and ][ |Dh — Dv|P° dz < e\ (5.3.22)
K3, (w) K3, (w)

for some ¢y = ca(n, A, v, 1,72, ¢q) > 0.

Proof. We assume w = 0. We prove the lemma only if K3, (w) is the boundary
region. The proof when K3 (w) is the interior region is exactly same with the
one of case that K7 (w) is the boundary region. In this proof, { , ) means the
paring between Lpo(—>\2;§0 (3r)?, N (3r)2; W, 7°(Qs,)) and its dual space.

We note from (5.3.16) that |Dh| € LPw®2=D(K2  hence |a(Dh,z)| €

LPo (K3 ). Then by an approximation argument we have
3r Yy

(he ) = — / a(Dh, =) - Dg =
K)\

3r
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2—p 2—p,
for every ¢ € LPO(—)\TO(ST)Q, )\WO(?)T)Q; Wy (Qs,)). From this and (5.3.20)

we obtain

(h =) h—v) = /K B(Dv,1) - (Dh — Duv)dz

—/ a(Dh, z) - (Dh — Dv) dz.

A
3r

In view of Proposition 5.2.2 with the case p(-) = py, we have

I, = ][ (b(Dh,t) — b(Dv,t)) - (Dh — Dv) dz
K3,
< ][ (b(Dh,t) — b(Dh, z)) - (Dh — Dv) dz
K3,
+][ (b(Dh, z) — a(Dh, z)) - (Dh — Dv)dz
K3,
= ]2 + 13.
We now estimate [1, I, and 3. In a similar argument we estimated (5.3.9),

we see from Young’s inequality, (5.2.6) and (5.3.16) that

][ IDh — Do dz < /@3][ [|Dhyp0 + Dol + 1] dz + c(rs) 1y
K)\ A

K37‘

< K3 <][ |Dv|P° dz + /\> +c(k3) 1. (5.3.23)
K3,

3r

For I, Young’s inequality yields

Iy < k4 ][ |Dh — Do|” dz + ¢(ka4) ][ |b(Dh,t) — b(Dh, z)|P dz.
K3 K

A
3r 3r

Using Hélder’s inequality, the first condition in (5.3.18) replaced b(&, z) by
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,t), (5.3.17) and (5.3.19), we have

b(¢
][ b(Dh,t) — b(Dh, z)[P» dz g][ 0(a, Bf)P» (1 + |Dh|)™ dz
70

K2
" Trog oo/t
@ oy 1+0)
< ][ O(a, B} )™ o0 dz ][ (1 + |Dh|)PeU+3) 4z
K3, K3,
o9

3r
o 3\ KA Q]
T R B A) e 12 \ o |
(( ) (4) jfije«% e ) R A

<cod oo A

Hence, we obtain

I, < /-4;4][ |Dh — Dv|" dz + c(m)é‘*iﬁ?’o)\. (5.3.24)
K3,

As for I3, we first set £ := {z € K3 : p? +|Dh(z)|> > 0}. Then Young’s
inequality implies

o< g [ |+ 1DhR)
|53

< /@5][ |Dh — Dv|P° dz
K3,

Po— P()

— 1‘ |a(Dh, z)||Dh — Dv|dz

PO —P. p(z)—17 P,
+C(“f)/H< +|Dh2)"F “—1\ 12+ |Dh|?) ]Odz.
’K3r’ E

For each z € E, applying the mean value theorem to the function f(6) =
(u? + |Dh|2)9p0_2p(2) on the interval [0, 1], we find

Po— P( ) (Z)—l

(1* + |Dh()*)

= m)_—M(MQ + |Dh(Z)|2)sz

~ 1] (42 + |DR(2)?)

S (e + | DA(:) )

for some s, € (0,1). Note that if |Dh(z)| <1, (5.2.20) implies

po—p(2) (2)—1
0#4_%

(1 + [ Dh(z))" [l + [Dh(2)P)] < e
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Therefore, we obtain

p(z)—1

[ [+ 10npy ™5 = 1] g+ 10wy
Es
<l -l ( | 1D tn(e-+ [DAD]™ -+ 11631
E>0{|Dh(z)|21}

< clpa — il ( [ 1D e DR D) |K§T|> ,
A

K3r

and so, by the second inequality in (5.3.3),

I3 < 55][ |Dh — Dol dz + ¢(ks)w(I(47)%)Pw (I3, + 1),
K

A
3r
where
L, ::][ ‘Dh|p6(pzfl) 1npiu(e+ |Dh’p6(prl))d2.
K)\

3r

The elementary inequality In(e + ab) = In(e + a) +1n(e 4+ b), a,b > 0, implies

‘Dh‘pa(pz—l)

—— dz
(|Dh|po(p271))K§

L, S][ |Dh|p6(p2—1)1npﬁu e+
K>\

3r

+][ ‘Dh|p6(p271) InPw (6 + (|D}L|A’06(102—1))KA ) dz.

Kng 3r

Applying (5.2.19) to f = [Dh|P®>=Y, U = K3, 8 =p), and 0 = 1+ % and
using (5.3.17), we have

, , Dh|po(p2—1)
][ |Dh|Po®2= [pPw | ¢ 4 |Dh| dz < c).
K.

3 (I DR[PoP2=D) o
On the other hand, by (5.3.16) and the first inequality in (5.3.3) we know

In (e + (|Dh|Po(p2=1)) | < In(e+ch) < ¢ ln/\%—l—l
K37‘
< ofIn(I'(4r)™"2) 4+ 1},
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which together with (5.3.16) implies
f;JDm%@T”m%<e+QDM%@TUM%)dzécﬂMFMwﬂ”%+1PM.
3
Therefore we obtain
I3 < cfIn(D(4r)7"72) + 1},
and so
]gfgﬁaf;ﬂLDh——[hwmdz%—cO%yuﬂY4rYUp@ﬂnﬂw4r)"ﬂ-+1}%A.
i

Note that (5.3.21) and (5.1.5) yield
W(T(4r)* )P {In(T(4r) " %) + 10 = W(F(‘l?“)“)pw Hpo( F( r)"

IN
€
—
—
~~
>~
=
SN~—
2
~—
S8
£~
—_
=]
3
o
—~
r1
~
1N
3
N~—
|
i
w
N—

VAN
—N
—~
=3
N
=
S~—
=
=3
VR

’1
N
=7

o
~_
——
S

IN

Q

<,
—
N

to discover that

I; < /{5][ |Dh — Du|P° dz + ¢(ks5)072\. (5.3.25)
K3,

Combining (5.3.23), (5.3.24) and (5.3.25) we obtain

][ |Dh — Dv|P°dz < Rj ][
K. K3

3r

|Dmmdz+A)

+ Ii4C<I€3>][ |Dh — Dv|P° dz + c(;@)c(m)é‘digo/\
K2

3r

+ Ii5C<I€3>][ . |Dh — DulP° dz + c(ks3)c(ks)62 N, (5.3.26)
K3,

Consequently, we get the first inequality in (5.3.22) by choosing ks, k4, K5
sufficiently small in (5.3.26), and then get the second inequality (5.3.22), by

choosing
€ 1

[{,:—’/{:K/:
ST 0 +1) T T 3e(ks)
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o (i) ()

in (5.3.26). O

and

For the interior case, we know from (1) in Lemma 5.2.7 that |Dv| is
bounded in K})w) = Q(w). However, for the boundary region, we can not
ensure that |Dv| is bounded in K}(w), since the the boundary of € might
be extremely rough. Hence we need to find a function whose gradient is
bounded and sufficiently close to Dv in LP°-sense for the boundary case. The
next lemma ensures existence of the desired one v.

Lemma 5.3.3. Suppose that K3, satisfies (5.3.1). For any ¢ € (0,1), there
exists 0 = d(n, A, v, 71,72, Ca, €) > 0 and a weak solution U of

U —divb(Du,t) = 0 in Q)
v =0 on Ty
with
][ ‘DU‘pOSCQ)\,
5

where ¢y is given in Lemma 5.3.2, such that

][ |Dv — Do’ < e
KA

2r

_l’_

Here we extend T from Q3" to K3 by zero.

Proof. We first Define
Q:={zecR":rzecQ},
Ki = (QN B;) x (—7%,7%) and 0, K; := (0Q N By) x (=2, 72),
for 7 > 0, and

1 2—p — 1-p 2—p, 1
oar(@,) 1= (Aror) Lu(rz, Ao r2t) and by, (t,€) = X 70 a(A o 12, A €),
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for (x,t) € Ks. Then we see from (5.3.20) and (5.3.22) that vy, is a weak
solution of

(var)e — div by, (Duy,,t) = 0 in  Kj,
Uy = 0 on 8W[~<3.

and
][~ | Doy, [P° dz < co.

K3

Moreover we have from (5.3.1) that
Bg— C 03 C B3ﬂ{1‘n > —10(5}

In the same argument as in [8, Lemma 3.8], there exist § = d(n, A, v, v1, V2, Cq, €) >
0 and a weak solution v, to

Une)t — IV_)\T Unr,t) = in )
, div b, (D), 0 Q7
v = 0 on @Q3N{x, =0}
such that
][ DOy, dz < e,
Qi
and
][ |Duy, — Dy, [P < e.
K>
1 po—2
Then v(z,t) := Arorty,.(r~tz, A o r2), (z,t) € K3 (w), becomes the de-
sired function. O]

5.4 Gradient Estimate in the Variable Expo-
nent Lebesgue Spaces.

We devote this section to the proof of Theorem 5.1.3. Hence, let p(-) satisfy
(5.0.2), q(-) satisfy (5.0.6), (5.1.3) and (5.1.4), that is, ¢(-) is log-Hélder con-
tinuous, (p(-),a(,-,t),Q) be (8, R)-vanishing for some R € (0,1), |F|PV) €
L0 (Qr), and u is a weak solution of (5.0.1). Note that § € (0,1/8) will be se-
lected as a positive small constant depending only on n, A, v, v, 2, V3, V4, L1 ,
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see Remark 5.4.8. We recall the specific constants ¢, 0, 7., a, M, M; defined
in Lemma 5.2.5, Corollary 5.2.6, (5.1.10), (5.1.11) and (5.3.13), and define

1
7= min{%”4 ,1}. (5.4.1)

Choose Ry > 0 such that

(

1 a -
4R0 < Hlin ijl (631(71_1) Ml) ) 6711—‘_(%34_1)7
) (P'R)%, T7%, 4, R (5.4.2)
w(8RO> S min{d—il)a ﬁ? 712027 1}7

362 V30145

p(SRO) < min {/730-"/37 V30, 4 v T 92 1}7

\

where the constants I' and ¢, will be denoted in Remark 5.4.2. We fix any
r < Rp and any wy = (o, 7o) € Q7 with (170 — (4r)?, 79 + (47)%) C (0,T), and
consider a local region K, (wy) = Q,(wo) N . For the sake of convenience,
we assume wy = 0 and write

do := d(wo), d*:= sup d(p(?)), p~:= inf p(z), p* = sup p(z),

2€Qar 2€Qur 2EQ4r
q = inf ¢(z) and ¢ := sup q(2).
Z€Q4r Z€Q4T

Then we have
pT—p” <w(8r) <w(8Ry) and ¢ —gq" < p(8r) < p(8Ry).

From now on, the constant c is denoted by any constant which depends only

on n, A7 V1, 72,73, V4, Ll'
Since 4r < 4R satisfies (5.2.8) by the first condition on (5.4.2), we observe
from Lemma 5.2.5 that

1+odg
][ ‘Du’p(Z)(lJra) dz < c{ (][ [\Du]p(z) + ’F’p(Z)] dz)
Ko Ky
+ ][ |F|PR0t) gy 4 1}, (5.4.3)
Ky
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0,,. Recalling the third condition on (5.4.2), we have
p(8Rp) < min {30,730}, which together with (5.4.1)

for any 0 < o

" —q < p(8r)
implies that

<
<

p%?@)gﬂd<1+ﬁgﬂ>SnmﬂM@ﬂ+a@JwM1+ﬂ} (5.4.4)

and

PR+

q
for any z € Ks,. Consequenty, from (5.4.3), (5.4.4) and (5.4.5), we have

(a() ()a(1)(1+7)
Du|" L |F|T e € LMI,).

1+ 37) < p(2)7s, (5.4.5)

The next lemma will play a crucial role in estimates on intrinsic parabolic
cylinders.

Lemma 5.4.1. Let ¢, > 1 and recall « € (0,1] defined in (5.1.10). Then
there exists c3 = cg(n, A, v,v1,7%2,73,74) > 1 such that, for any A\ > 1, any
w = (y,7) € Ky, and any

7 < min {R, (403ch5_1)_%} (5.4.6)

satisfying K2(w) C Koy, if

1

p(2)q(2) 1 p(2)q(2)(147) e
A< ][ |Du| o= dz+ = ][ |F| «  dz . (5.4.7)
K2 (w) 0 \J K2 w)

then we have

3nyg

\bo <D+ py —p S w(IFY), A2 <ea, (5.4.8)
and o
@ —q <w(F%), A0 <A (5.4.9)
where

F::403ch6_1, p1:= inf p(z), p2:= sup p(z),
zEK2 (w) zEK2 (w)

¢ := inf q(z) and q:= sup q(z).
e KA (w) ve O (w)
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Proof. Fix K2(w) C Ko, and write py := p(w). By (5.4.2) we know that

11
M< — <~ and 4r < 4R, < 1.
S AR, © 4y MG T =R0s

Then (5.1.4), (5.4.3) and (5.4.5) imply

1
p(2)q(2) 1 p(2)q(2)(147) +o
|Du| o= dz+ = |F| «  dz
K2r 5 K2r

< it g 4] s
(5 Ko
14-247) g,
c 73
<5 1o ciere ) f e
5 K4r K4r

20 g
< cM ( M ) 73 1
- 5|K4'r| ‘K4r|

< cM 1 ”(47“)("+v3;dM 1% < cM
= 51l ) \ar M T

where d); is defined in (5.1.9). From (5.1.6), (5.4.7) and the previous estimate,
we see

2—pg +1

2
AP0 = \ Po

1
2-pg p(x)a(2) 1 p(x)a(z)(147) e
< A7 g ][ |Du| o= dz+ = ][ |F| «  dz
KA (w) 0 \J K2 (w)

cch)\;TpO < ceyM
= KN w) = s

(5.4.10)

which gives the first estimate in (5.4.8). Recalling the definitions of p; and
pe, and (5.1.3) we have

2-p 2—71
Po — p1 < w(2F + V2N ) < w(2F + V2X 0 7).
If 41 > 2, it is clear from (5.4.6), inparticular 7 < R < 1, that
p2 — p1 S w(dF) <w(I'7F).

147



CHAPTER 5. NONLINEAR PARABOLIC EQUATIONS WITH
VARIABLE EXPONENT GROWTH IN NONSMOOTH DOMAINS

If 2 <y <2, (5.4.10) yields that

2-7 2—v n42

pa—p1 < w(@A 0 7) < w(d(ese MO~ T T T2) < w(DF).

Hence we obtain the second estimate in (5.4.8). We next derive the last
estimate in (5.4.8). We see from (5.4.6) that I'7® < R~ < R. Then (5.1.5)
implies

[rr < e @) < (Rr—l)—w(erl) <e
and so

w(DFY _ w(DFY) 2

Fp2m) < ) < F%(Ff‘l) o <ea,

which is the third estimate in (5.4.8). Combining the previous two estimates,
we obtain the last estimate in (5.4.8) such that

PQ 2(n+2) ) 3nv9

AP < (F,’;—(n+2))p70(p2*1’1) < 67(1+T <ea .

The estimates in (5.4.9) can be obtained in a similar way, by using (5.1.4)
instead of (5.1.5). O

Remark 5.4.2. Actually, from (5.4.18) and (5.4.33), we will take ¢, =
2(48)"2 in the previous lemma, hence define T is determined by

[ = 8(48)" 23 Mot

On the other hand, from the third inequality in (5.4.8), we define c, > 1 by

3172
Cq 1= :
@

5.4.1 choice of intrinsic cylinders.

Let us first define A\ by

% p(2)q(z) 1 p(2)a(2)(147) 1%&
A= ][ |Du| « dz+ = ][ |F| «  dz +1;, (5.4.11)
KQT 5 K2r
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r(a()
and, for A > 1 and 1 < s < 2, the upper-level set of |Du(-)| «= by

p()4(2)
E(s,\) = {z € Ky, : |[Du(z)] « > )\} , (5.4.12)

We fix any 1 < s7 < s9 < 2, and consider \ > 1 satisfying

d+
16\" / 120y \""
A > A(sy,82)Ng, where A(sq,s9) := {(76> ( Ox ) } , (5.4.13)

S2 — S1

where x > 5 is defined in Lemma 5.2.8. Using Lemma 5.2.8 we obtain the
following covering lemma.

Lemma 5.4.3. Let \ satisfy (5.4.13). There exist {w;}2, = {(yi, :)}52, C
E(s1,A) and

_ pi=2_(S9 — $1)r ,
ce (0minf1, N3 2SN gy
T ( min{ } 60X } i
where p; := p(w;), such that {Qp (w;)}32, is mutually disjoint,

E(s1, \\N C | JK},.(w;) C Koy
=1

for some Lebesgue measure zero set N, and for each i we have

1
p(x)a(2) 1 p(x)a(z) (1+7) e
][ Dy e+ 1 ][ P ) 0 paw
K () 0 \J k2w

7

and

_1
p(2)a(2) 1 p(2)a(x)(14+7) e
][ |Du| = dz+ 5 ][ |F| «  dz <A (54.15)
K2 (w;) K2 (w;)

=2
for any T € (ri, min{1, )\1)272'}(32 — sl)r} :
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Proof. For each w € F(s1, ), we denote the continuous function G,, on the
-2
interval <0,min{1, )\%}(32 - sl)r} by

5 p(2)a(2) 1 p(2)q(2)(147) e
Gy(F) = ][ |Du| = dz+ = ][ |F| «  dz )
K2 (w) 0 \J Krw)

and write po := p(0) and d,, := d(w). Then, for any
N _ p-2_ (89 — 1) , po—2
7€ [ min{1, A 20 }TT7 min{1, A 20 }(sy — s1)r |
X

we have from (5.1.6), (5.4.11) and (5.4.13) that

1
= Q2| ][ p(2)a(z) 1 (][ p(2)a(2)(147) )m
Gw T S Du q— dZ+ - F = dz
D= R e AV

|Q2r| L

d+
2—pg >\0

AT K ()

16\" /2r\""? -2 1
< (7) (5) =

n n+2
() ()
= 7 , )

min{1, \ 270 }(s9 — 1)

po—2

a1
A 2o %+

min{1, )\pgT_cf(nH)}'

IN

—2
If po > 2, then min{l,)\pgTo(nH)} =land &f < &+ = p%, which implies

2 dw 2

FO— po—2

Gu(F) < A If 25 < py < 2, then min{l,)\gTo} — \2%0 and 1<l
(n+2)—2n . . . - 2n—pgn  po(n+2)—2n w

PO which also implies G, (7) < A 20 A 20 = \. On the other

2po
hands, in view of the Lebesgue differentiation theorem, we have

PUQ(w)

lim G, (7) > |Du(w)| « > A
7—0

p()a()
for every Lebesgue’s point w of |Du| «  in E(sy, \).
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Consequently, as GG, is continuous function, for every Lebesgue’s point
p()a() b2,
w of |Du| ¢ in E(s;,A) we can find 7, € <0,min{1,)\ 2o }%r} such

that

Gu(rw) =X and G, (7) < A, Vi e (rw,min{l,)\%}(sg — sl)r} )

Since 7 < r, we konw by (5.4.2) that 7 satisfies the condition (5.4.7) in Lemma

5.4.1 for ¢, = 1, hence applying Lemma 5.4.1 with 7 = r,, and ¢, = 1 we have
w w 3n .

AP2 7P < e%, where py := sup,cq» (w)p(z) and pY¥ = mfZeQ%w(w)p(z).

Finally, applying Lemma 5.2.8 to {Q; (w)} with ¢, = 637%, we obtain the

conclusion of the lemma. O]

5.4.2 Comparison estimates.

For A satisfying (5.4.13), we consider Qi‘l (w;),i=1,2,..., selected in Lemma
5.4.3. From the choice of r; we have

p(w)—2

6OXT7, < min {17 >\ 2p(w) } (52 — 31)7" S (82 — 81)7" S T. (5416)

For each 7 we note that there are the two possible cases that Case 1:
Qiyr,(wi) C Qp, and Case 2: Q). (w;) Z Q.
We first consider Case 1. For the sake of simplicity, we write

DN 70\ _ A .
b= K (wi) = Q) (wi), j=1,2,3,4,

XTi IXTi

and
pi:=pw;), p; = inf p(z), p = sup p(2),

by
ZGQM zle:4

q; = inﬁ q(z), q = sup q(z).
z2€Q7 zEQ?’4

Then from (5.4.16) we have Qg\A C Qsyr C Q2r C Qur so that

pi—pi <pT—p <w(BRy) and ¢ —q¢ <q¢"—q <p(8Ry). (5.4.17)
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Recalling (5.4.14) in Lemma 5.4.3, we have

_1
p(x)a(2) 1 p(x)a(z) (1+7) e
M < 42 ][ D" dz+5<][ 7| dz) . (5.4.18)
A A

i,4 i,4

hence, in view of Lemma 5.4.1 with 7 = 4xr; and w = w;, we obtain

Aot S TR0 b < w(T(dyr)®), M < g, (5.4.19)
and ;
- 3n~y,
G — g <w@(@xr)®), A% <ea, (5.4.20)

3n
«a

where I' = 8(48)"+2¢; M6~ and ¢, = e . Now we claim that

][ |DuPPdz < cyA% and ][ |FPOdz < 6 A\ (5.4.21)
A A

1,4 i,4
for some ¢y = c4(n, A, v, 1, %2, 73, V4, L1) > 1. Indeed, by (5.4.15) we have
][ |Du[P®dz < X\ +1 < 2X\ and ][ |FPPdz < A +1 < 2\
A A
1,4 i,4

This together with the third inequality in (5.4.20) we obtain

4 —a; 4 —q;
<][ | Du|P®) dz) + (][ |F|P) dz) <ec
Q4 2

i4

Therefore, the estimates in (5.4.21) follow from Hoélder’s inequality, (5.4.15)
and the previous estimate such that

+7 —
94 —9

s Z?
][ |Du|p(z) dz < <][ |Du|p(z) dz) <][ |Du|p(z) dz)
QM4 Q4 Q}

1,4

p(2)a; i
< ¢ ][ D" d
Q4
—
p(2)a(2) 0 %
c ][ |Du| = dz+1 < e\
A

i,4

QR
|

IA
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and

q _

p(x)a(2) a;
][ P e < c<][ b dx+1>
Q> Q>

i,4 i4

1 o
p(x)a(2)(1+7) e :

c |\F| «  dr +1

Q4

vy O
< edm N .

IN

In the last inequality, we have used the fact A > 1 obtained by (5.4.11).
We now see from (5.4.2), (5.4.16), (5.4.17), (5.4.19) and (5.4.21) that
the assumptions in Section 5.3, (5.3.2), (5.3.3), (5.3.4), (5.3.14) and (5.3.21),

are satisfied for the region Q?A with A\ and 0 replaced by ci\%  and 5.
Therefore, by Lemma 5.3.1 and Lemma 5.3.2 and Lemma 5.2.7 (1), we have
the following lemma.

Lemma 5.4.4. For anye € (0,1), there exist 6 = §(n, A, v, V1,72, V3, V4, L1, €) >
0 andv; € L'(Q},) with Dv; € L>(Q},) for eachi satisfying Q}, = Q. (w;) C
Qr such that

Pidy < e, (5.4.22)

][ |Du — Dhi|P®) dz < exsi ][ |Dh; — Du;
Q@ @

q

i qF
Py, S AT (5.4.23)

][ |Dh;[P*) dz < eA and || Dv;
Q2

for some ¢ = c(n, N, v,v1,72,73, V4, L1) > 1, where h; is the weak solution of
(h;); — div a(Dh;,z) = 0 in "
hi = u on 0,Q},

Corollary 5.4.5. Under the assumptions and conclusions as in Lemma
5.4.4, we have

p(2)q(z) p(z)a(z) v A
. |Du—Du;| o= dz < eX and |Dvi(z)] « <A Tz € Qfy, (5.4.24)
Q7
for some c5 = cs(n, A, v, v1,72,v3, 71, L1) > 1.
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Proof. The second inequality in (5.4.24) directly follows from (5.4.19) and
the second estimate in (5.4.23). Indeed, for z € Q},

p(x)a(2) Fa 2 ;

|Dui(2)] = < |Du(2)] 41 < 02)\% +1<02)\+ T
3n
< (CQ@TE—Fl) A

We then prove the first inequality in (5.4.24). We observe from (5.4.2) that

20 20(8R

U g g 2R 451 4 ),
q 3

20" pr 20(SR SR

G Doy 208R) | 0BR) g,
T P 73 "

and from (5.4.15) that

][ |Du|Pdz + <][
oy Q}

i,2

1

1+0o
| F P (1+2) dz) < A+2 <3 (5.4.25)

1,2

Hence applying 5.2.6 to the weak solutions v and h; on QZ\1 with (5.4.25)
and (5.4.23), respectively, we have

][ [|Du| Pl )(2qj 1> + |th~|p(z)<2q;r 1)] dz <c (Aﬁjl + )\2;11?>
QN

(5.4.26)

and

o(z )(2q i) 9_ 4~ Pi_
][ \Dhy|" i) dz <ehow v (5.4.27)
Q)

We split the left hand side on the first inequality in (5.4.24) as follow:

p(2)a(2)
][ |Du — Dv;| «  dz
A

i,1
7274 _q p(2)a(2) p(2)a(2)
<27 ]Du — Dhl‘ «  dz+ ’th — D'UZ‘ dz
Qi @}

7,1

=27 NI, + Iy). (5.4.28)
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For I, Holder’s inequality implies

p(z) (a=) 1
I, = ][ |Du — Dhy| 2 () (521) g,
QM
| ) )
(2) p(z)<2q7(f)—1)
< |Du — Dh;|P**) dz |Du — Dh,| a dz
Qs @
= (L) (Iy)?.

We estimate by the first estimates in (5.4.21), (5.4.22) and (5.4.23), and the
second estimate in (5.4.20)

20 o —ap 20 af —of
a; - g
|Du — Dhy [P dz
A
Qz‘,l
124 6 ey 24 af —a;
% q
< | ers
7,1
+ -
T e .2 1 %_L:qi)
<cerdnw oo NWTER <ot

1 2 2
L, = ( ][ |Du — Dhy|P® dz)
QM
+
' (272][ UDu\p(z) + \Dhi|p(2)} dz) '
Q>
q” _2(q,

and by (5.4.26) that

2q+ 2[1?‘r
2 g 2%

Ly < C][ a1 o) | e 41

QN

My 2%
< cl A T HA G
hence we obtain

1 L__‘_—q;r;_qi Y 1- q:_ 1

Iy < cet )\ 4 Aam 24N 2 < ced ). (5.4.29)

We next estimate I5. By Holder’s inequality, the second estimates in (5.4.19),
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(5.4.22) and (5.4.23), and (5.4.27)

pi | p(2)a(z) _Pi
G — 2 dz

1 1

2 a(z) _ P 2

P dz> <][ |Dh; — Duy PP —p<z>)dz>
Qs

Zq% D, ij‘r pfk
(o) (242 (Pl
X <][ |Dhi|p <q pf)dz%—][ |Dvi\p<q P )dz+1>
Q} Q)

i1

[5 = ][ ‘th—D’UZ
by

i1

Q)\

i,1

IA
@)
™

[
>~
N
=<

i i_ q"
< o ()\ ST i 1)
2
< ce? ()\—i-)\pi —i—l) < cez (5.4.30)

Inserting (5.4.29) and (5.4.30) into (5.4.28) we obtain

p(z)a(z) .
|Du — Dv;| «= dz < cex .
Qs

Since € € (0,1) is arbitrary, we get the second inequality in (5.4.24) from the
previous one. ]

We next consider Case 2 that @}, (w;) ¢ Q7. Note that, since dist(y;, 09) <
4xr;, we can take y, € 0N such that |y; —yi| < 4xr;. Since 56xr; < R, in view
of Definition 5.1.1 (3), there exists a spatial coordinate system, still denote
x = (x1,...,x,)-coordinate, with the origin at y. such that

B56x7’i<0) N {ZEn > 56)(7’15} C Q56xri(0) C B56X7‘i (O) N {l’n > —56X(57"Z}

Note from the fact § < 1/8 that Bygy., (56x0rie,) C Bsgyr, (0), where e, =
(0,...,0,n). We then translate the spatial coordinate system to z,-direction
by 56x0r;, still denote x = (x4, ..., x,)-coordinate, so that we have

BF0) ¢ Q.(0) € B.(0)N{x, > —112x6r;}, for any 0 < r < 48xr;.
(5.4.31)
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We remark that, since the transformation is composed of only a transforma-
tion and a rotation, the basic structures of the problem (5.0.1) and the main
assumption Definition 5.1.1 are invariant. Therefore, without loss of general-
ity, we will continuously use the original symbols and notations in this new
coordinate system.

After the above transformation of the spatial coordinate system, we set

wi = (0,1;), K=K, (w), j=1,234,

12jxrs

and

pi =pw;), p; = inf p(z), p = sup p(z),

A
ZeK7y zGKi>:4

¢; = inf q(2), g = sup q(z).
€K

z ! A
7,4 ZEK’L'A

Since |y;| < |yi —vil+ |yl < (4+568)xr; < 11xr;, we have from (5.4.16) that
K}, (w;) C K C K}y C Ky (w;) C Koy, (5.4.32)

and so have the relations in (5.4.17).
We first observe from (5.4.14) in Lemma 5.4.3, (5.4.31) and (5.4.32) that

1
p(x)a() 1 p(x)a(2)(1+7) e
A< 2(48)7”r2 ][ |Du| « dz+ = ][ |F| @ dz
K> 0 K}A

1,4
(5.4.33)
Then, in a similar way to Case 1, using Lemma 5.1.10, (5.4.15) and (5.4.31),
we obtain (5.4.19), (5.4.20) and the estimates

/.

Therefore, applying Lemma 5.3.1, Lemma 5.3.2, Lemma 5.3.3 and Lemma

a~ a_
|DufPdz < A and ][ FP@dz < es AT

A A
i4 K2y

5.2.7 (2), we have the following lemma and corollary.

Lemma 5.4.6. For anye € (0,1), there exist 6 = d(n, A, v, v1, V2, V3, V4, L1, €)
0 and7; € L'(K}) with Dv; € L™(K},) for each i satisfying Q3. (wi) & Qr
such that

][ |Du — Dh[P®) dz < X ][ |Dh; — Dv; [P dz < A
K}

A
Ky
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a_
pi q*
L(K}) S A%,

][ |Dhi|P® dz < eA% and || Dv;
K},

for some ¢ = c(n, A, v, 1,72, 73, V4, L1) > 1, where h; is the weak solution of

(hi)e — div a(Dhg,z) = 0 in K},
hi = u on 9K}

Corollary 5.4.7. Under the assumptions and conclusion of Lemma 5.4.6,
we have

p(2)a(2) p(2)a(2)
v
][ |Du— Dv;| = dz<eX and |Dv;i(z)] « <A "z € Kiq,
K}

(5.4.34)
for some cg = cg(n, \,v,v1,72,73, Vs, L1) > 1.

5.4.3 Gradient estimates on upper-level sets.

Now, for each 1 < s1 < s5 < 2 and each A > 1 satisfying (5.4.13) we estimate
(Ja()
the integration of \Du]p  on the upper-level sets F(s;, BA) and

274

B := 2" max{cs,cs}. (5.4.35)

We recall Lemma (5.4.3). Then we have E(s1, BA) C E(s1,A) C U2, K3, (wi)\
N and

p(2)a(2) e p(2)a(2)
/ |Du| dzgz |Du| «  dz.
E(s1,B)\) i—1 E(sl,B)\)ﬂK;‘m(wi)
If K}

i (i) ¢ Qr(Case 2), we have from the second estimate in (5.4.34)
and (5.4.35) that

p(2)q(z) p(2)a(z)

p(2)a(z) 274
|Du(z)| « < 27 1(|Du(z)—Dvi(2)| o= 4 |Dy| e )

Y274 _q p(2)q(z)

< 2% (|Du(z)—Dvi(z)| . +06)\)

Y274 p(Z)E(Z) p(2)q(z)

) 1
< 2% 'Du(z) — Dui(2)| + 5| Du(2)]
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for any z € E(s1, BA) N K7;, hence by (5.1.6), (5.4.32) and the first estimate
in (5.4.34) we get

p(2)q(2) Y274 p(2)a(z)
|Du| o= <2 |Du— Dv;| <« dz
E(sl,BA)ﬂK;‘ri(wi) E(s1,B)\)ﬂKi>:1

16\",
(3) aoyreess w

(w;) C Qr(Case 1), by using (5.4.24) and (5.4.35) we get

<25 e K, 1\<2W3
Similarly, if K3,,.

274

(2)a(z)
/ Dul " <275 R K (wy)].
E(s1,BANKY, (w;)

Therefore, we see that

/ Dul"
E(s1,B\)

where ¢7 1= 2% (3)" (10x)"*2.
On the other hand, we know from (5.4.14) that

A (=)a(2) )\ 1 (2)a(2)(14+7) e
— ][ |Du|p ©odroor S << ][ |F|p Az .
27 J k) 255 KA (wy)

The first case of (5.4.37) implies

%4z < o) Z | K (w;)| (5.4.36)

O (. <% D p(z)g(z)d
| ri<wl)|— b\ p(z)a(2) | Dul z
{z€K) (w;):[Du| 4~ >3}

and the second case of (5.4.37) gives

\ 4\ p(2)a(2)(147)
Rwi<(5) | o P
{zeRK) (w):|F| o= >3}

Therefore we get

1K) (w;)]

>

p()a(2)
pax  |Dul e dz
{z€K) (w;):|Dul 9™ >%}

p(a(2)(142)
+ / p()a(2) |F| dz. (5.4.38)
‘” eR)u)lF| o >8)

4
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Plugging (5.4.38) into (5.4.36) and using the fact that the elements of { K} (w;)}32,
are disjoint, we finally obtain

p(2)q(2) 145 p(2)q(2)
|Du| = dz <47 cre |Du| o= dz
E(s1,B\) E(s2,2)

4
1 p(2)a(z)(147)
tiz7 1+J/ p(x)a(z) |F| dz p. (5.4.39)
A7 {2€Kapr|F| 4= >}

5.4.4 Local gradient estimates in L?()?()-space: the proof
of (5.1.12).

p()a()
For a sufficiently large k£ € N, we first define the truncations of |Du| <~

such that

Ja() (a()
(| u\ a~ ) —mln{]Du| = Lk}
k

Let 1 < 51 < s9 < 2. By Fubini’s theorem we have

p0a0) \ 4 71 p(2)a(2)
/ |Du| o |Du| «  dz
Kaypr k
p()a)
('D“ a > ) ZOYC!
= (q_—l)/ / XD T2 dN||Du| e dz
KSlT
L p(2)a(2)
)\q |Du| « dzdA\
K51T0{|Du| G >,\}
B M p(2)a(2)
— (¢ —1) B A \Du| " dzdA
0 E(s1,B\)

_ Ao p<z>q<z
— (¢ —1)B" —1/ A ‘Qd)\/ S de
0 R

é1

_ )q(2)
+ (¢ —1)B* -1/ A —2/ dz dA
Ao (s1,B\)

= Iﬁ + [77
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where X\, A(s1,s2) and B are defined (5.4.11), (5.4.13) and (5.4.35), respec-
tively. For I3, a direct calculation yields that

_ p(z)a(z)
Is < (A(s1,82)BA)? 1/ [Dul = dz
K27‘
e d p(x)a(z)
< 0 D = dz.
< oy [ 1D

For I7, inserting (5.4.39) into I, and using Fubini’s theorem we have

s - weo p(2)a(2)
I; < 4% (¢ —1)BY e / A / |Du| o= dzd\
0 E(s2,3)

| p(2)a(:)(1+7)
+ Sl+e A? p(z)a(z) |F| dz d\
0 {2€Ksyr:|F| 9~ >%}

L - LA, p(2)a(2)
= 49 "¢ (q- —1)B? e / A / |Du| o= dzd\
0 E(s2,\)

1 27 p(2a(x)(14+7)
+ 4750 A1 p(2)q(2) |F| a- dz d\
0 {2€Ksyri|F| 97 >}

_ . a0\ 4 7! p()a(2)
= 4717, BM 6/ |Du| <~ |Du| = dz
ST

K
(e, ) / [P gz,
KSQT

where (¢, §) is a positive constant depending only on n, A, v, v1, ¥2, V3, V4, L1-

At this point, we choose € = e(n, A, v, v1, V2,73, 74, L1) € (0, 1) sufficiently
small such that

|

T B e = 2
2
Remark 5.4.8. From the choice of €, § € (0,1/8) is determined to be a
sufficiently small constant depending only on n, A, v, V1,2, 73, V4, L1
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Combining the above results we derive

p0)a()\ 4 1 p()a(2)
/ |Du| o= |Du| < dz
Koy k
1 p(a() \ ¢ 1 p(2)a(2)
§—/ |Du| a~ |Du| <« dz
2 Jk.,, K

A / p(=)a(z)
Du| « dz+ c/ FPRa) g,
(59— s1)n 2" o 1D Ko IFl

Since 1 < 51 < s9 < 2 are arbitrary, applying Lemma 5.2.9, we have

p(a)\ 4 1 p(2)a(2)
/ D" Du|" 7 a2
r k
p(2)q(z)

< c)\g_l/ |Du| = dz+c/ |F|P#)a) gz,
Kor Kor

Passing to the limit & — oo in the above inequality and applying Fatou’s

lemma we have

_ (2)a(2)
/ | DuP®1) gz < exg™ ! / 1Du|" o dz+c / |F|P&a) g,
K, Ko

Kor

which implies

][ |Du|p(Z)q(Z) dz

T

1 L+d+(g~—1)
<c ][ |Du|p(z)dz+<][ |F|p<z>q<z>dz)q +1 . (5.4.40)
K47- K4r

Indeed, we first observe from (5.1.4), (5.1.6), (5.2.7) and the fact M < ﬁ <
+ by (5.4.2) that

p(8r) M p(8r)
( ][ (| DufP® + |Fpee)] dz) < ¢ (_>
Koy |K27’|

INA
o
N
—~
0]
=
~—| =
3
+
w
~__
N
Qo
=
|
o
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From this, (5.4.3) and (5.4.4) we see

(2)a(2) (1 2B
][ |Du|p o dz < ][ |Du|p( 55 4y +1
K27» K2r

L+ 20 do p(37)
<c (][ [|Du|p(z) + |F|p(z)] dz) —l—][ |F|p(z)(1Jr s dz + 1
K47« K4r
l_,'_P(ST))L
— 73 q~
<c ][ [|DulP®) + |FPP] dz + <][ |F|P&) dz) +1
Ky Ky

1
<c ][ | DulP®) dz + (][ |[F[p()az) dz) SRS
K4T K4r

Therefore, applying (5.4.11) and the previous estimate and Holer’s inequality
we obtain (5.4.40). Finally, using (5.1.4), (5.1.5) and the fact M < ﬁ < =
by (5.4.2), we can replace d* and ¢~ in (5.4.40) by d,, = d(w) and ¢, = q(w),
which proves the desired estimate (5.1.12).

We end the subsection determining the constant 6 in Theorem 5.1.3. In

view of Remark 5.4.2 and Remark 5.4.8, we can rewrite (5.4.2) as
ARy < §;Ra M~ w(8Ry) < 6, and p(8Ry) < 6,
for some 9y, 92,03 € (0,1) depending only on n, A, v,v1, 72, 73,74, L1. Hence
we take Ry such that
s 01 w™'(52) p~'(ds)

Ro = 6Ra M) where § := min {Z, 5 g } . (5.4.41)

Here w™t, p! : [0,00) — [0, 00] are denoted by
w(s) :=sup{5 € [0,00) : w(3) < s} and p~'(s) :=sup{s € [0,00) : p(3) < s}.

At the end, Ry satisfies the condition (5.4.2) and then the estimate (5.1.12)
holds for every r < Ry.

5.4.5 Global gradient estimates in L*()¢)-space: the proof
of (5.1.13).

We derive the global estimate (5.1.13) from the local estimates (5.1.12) by us-
ing a standard covering argument. Recall Ry > 0 defined in (5.4.41)(without
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loss of generality we assume Ry < 1/7/16). From the local estimate (5.1.12)
and (5.1.6) we have

Y4
/ |DuP®13) gz < c|@4RO|1—d1{|Q4RO|1—“ ( / |Du\“z>dz>
Kpgy(w) Kary (w)

dy
+ / [|F]PP4E) 1) dzp . (5.4.42)
Kypy(w)

1+dp (y3—1)
73
R™*! using Vitali’s covering lemma we can find {wk}iil C Qr, kg € N, such

that all Qpy/3(wr), & = 1,2,..., ko, are disjoint and {Qg,(wy)} covers Qp.
Moreover one has

for every w € Qp, where d; = > 1. Since Qp is compact in

ko
Z/ fdz <c(n) fdz
=1 ” Karg(wi)

Qr

for every f € L'(Qr), where ¢(n) > 0 depends only on n. Then we see from
(5.4.41) and (5.4.42) that

ko
/ DU 4z < 3 / | D) g
Q k=1

Kprgy(wk)

ko
< MG 1)) rastn2)(a-1) /
; Karg(wi
ko d
+> / [|[F|PEE) 1] dz
k=1 Y Karg (wi)

< oot (d—1) <Mo<o(n+2)(v4—1)+% n M> &

Y4
| Dul?® dz)
)

_ 441
< MRS

This proves (5.1.13).
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