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Abstract

Geometry of moduli space of stable
maps and degeneration

Hyenho Lho

Department of Mathematical Sciences
The Graduate School
Seoul National University

We study geometry of moduli space of holomorphic maps from curves to
projective scheme through various compactifications. Most famous one is mod-
uli space of stable maps introduced by Kontsevich. When genus is one and tar-
get space is projective space, main component of moduli space of stable maps
is nonsingular. Vakil and Zinger found some desingularization via modular blow
ups. Kim introduced log stable maps with target expansions which gives another
desingularization of moduli space of stable maps. We compare theses two desin-
gularization. Also, Gross-Seibert and Abramovich-Chen defined logarithmic sta-
ble maps without target expansions. Using these moduli space, one can define log
Gromov-Witten invariants. We prove the degeneration formula of log Gromov-
Witten invariants.

Key words: stable map, logarithmic structure, Gromov-Witten invariant
Student Number: 2008-20284
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Chapter 1

Introduction

In physics, the number of rational curves in calabi-yau manifold, which is called
Gromov-Witten invariant, is very important. In mathematics, this invariant can
be defined by intersection theory on the moduli space of stable maps introduced
by Kontsevich. More precisely, we can define the virtual fundamental class of
expected dimension through natural perfect obstruction theory coming from de-
formation theory of the moduli space of stable maps.

When X is quintic Calabi-Yau threefold in P*, virtual fundamental class of the
moduli space of stable maps with target X is same as Euler class of certain com-
plex of vector bundles in the moduli space of stable maps with target P*. In genus
0 case, the complex of vector bundles is actually vector bundle. But in higher
genus case, this is no longer true. This is due to some higher genus components
contracted to point. When genus is one, there are two ways to resolve this prob-
lems. First way done by Vakil and Zinger[27] is to desingularize the moduli space
of stable maps with target P* so that the complex of vector bundle become a vector
bundle. Second ways done by Kim[/15]] is to define the new moduli space contain-
ing more information which resolve the problem of contraction of higher genus
component. Each method gives new Gromov-Witten type invariants. These two
spaces are desingularization of the moduli space of stable maps. In chapter 2, we
define these two space and study how they are related.

Even if we defined Gromov-Witten invariants, It is hard to actually compute
them in general. There are several techniques to reduce to more simple one. One
method is degeneration method. Roughly, we degenerate target X into X’ which
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consists of two components X; and X;, and prove the formula relating Gromov-
Witten invariant of X and Gromov-Witten invariant of X; and X,. In chapter 3, we
prove the degeneration formula for log Gromov-Witten invariants introduced by
Gross-Seibert [[10] and Abramovich-Chen|[1]].



Chapter 2

Comparison of two
desingularizations of moduli space
of stable maps

2.1 Introduction

The Kontsevich’s moduli space of stable maps Mg’k(X, d) 1s a moduli space which
parametrizes maps from k-marked nodal curve of arithmetic genus g to projec-
tive variety X satisfying stability conditions. See [9] for precise definitions and
properties. In this paper we only consider Kontsevich’s moduli space of elliptic
stable maps MLO(IP”, d). Ml,o(IP’", d) is known to have several components. We call
the component parametrizing elliptic stable maps whose domain curve have non-
contracted elliptic subcurves the main component. We denote the main component
of M, o(P", d) as M o(P", d),. It is known that M, o(P", d), is singular.

Recently many birational model of MLO(P", d)o have been introduced by many
authors. In [27], Vakil and Zinger found a canonical desingularization 1\7[1,0(}?”, d)o
of MLO(P”, d)y by blowing-up MI,O (P", d)o. In [15], Kim introduced another desin-
gularization of M, o(P",d), called the moduli space of logarithmic stable maps
by using log structures. We denote this space as leg’Ch(P”,d). In [20], Marian,
Oprea and Pandharipande constructed moduli space of stable quotients denoted
by Q,(P",d). They defined a moduli space of stable quotients of the rank » trivial
sheaf on nodal curves. They also proved that when the genus is 1, Q(P",d) is a

3
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smooth Delign-Mumford stack. So this gives another smooth birational model. In
[29]], Viscardi constructed a moduli space of (m)-stable maps denoted by M(IW,? P, d).
He defined a moduli space using (m)-stable curves which was introduced by
Smyth [26]. He also proved M(&)(P", d)is smoothifd + k <m < 5.

In general, it is not known how these birational moduli spaces are related to
each others. In this paper, we compare Vakil-Zinger’s desingularization and the
moduli space of logarithmic stable mpas. We show that Mfﬁ’d’a@", 3) can be ob-
tained by blowing up IVILO(P”, 3)o along the locus },, I, >, I'1.

3, is the closure of the locus of M, ((P", d), parametrizing stable maps such
that their domain curves consist of a elliptic component of the degree 0 and a
rational component of the degree 3 and the morphism restricted to the rational
component has ramification order 3 at the nodal point.

Y, is the closure of the locus of M, ((P", d), parametrizing stable maps such
that their domain curves consist of a elliptic component of the degree 0, and two
rational components with the degree 1,2, each meeting the elliptic component at
one point and the morphism restricted to degree 2 rational component has ramifi-
cation order 2 at the nodal point.

I, is the closure of the locus of M, o(P", d), parametrizing stable maps such
that their domain curves consist of a elliptic component of the degree 0 and a
rational component of the degree three, and there exists a smooth point g on the
rational component such that p, g go to same point, where p is the node point.

I, is the closure of the locus of M, (P", d), parametrizing stable maps such
that their domain curves consist of a elliptic component of the degree 0 and two
rational components with the degree 1, 2, each meeting the elliptic component at
one point and there exists smooth point g on degree 2 rational component such
that p, g go to same point where p is nodal point on degree 2 rational component.

> 1.3,.I'1,T, are proper transforms of 3,31, .

The outline of this paper is as follows. In section 2, we give some prelimi-
naries. In section 3, we present an example of a degeneration where a nontrivial
elliptic logarithmic stable map occurs. In section 4, we calculate the fiber of the
natural morphism from the moduli space of admissible stable maps to the Kont-
sevich’s moduli space of stable maps. In section 5, we prove two moduli spaces
are equal if the degree is 2. In section 6, we describe etale charts of Ml,o(P”, 3)
explicitly and by blowing up suitable subschemes, we obtain
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—log,c

Theorem 2.1.1. M, , h(P", 3) can be obtained by blowing-up IF\V/ILO(P", 3)o along
the locus Y5, I, X1, T.

2.2 Preliminaries

In this section we introduce some notations. We also briefly recall some defini-
tions and properties of Vakil-Zinger’s desingularization and the moduli space of
logarithmic stable maps.

2.2.1 Notations
A dual graph of domain curves

In this paper we only consider connected curves of arithmetic genus 1. Note that
every connected curve of arithmetic genus 1 has the unique minimal subcurve of
arithmetic genus 1. we give names to this subcurve.

Definition 2.2.1. Let C be connected curve of arithmetic genus 1. Let C’ be the
minimal subcurve of arithmetic genus 1 of C. We call C’ the essential part of C.

For every nodal curve, we can associate a graph called the dual graph. Irre-
ducible components of the nodal curve correspond to vertices of the graph. And
nodal points of nodal curve correspond to edges of graph.

If curve C is connected curve of arithmetic genus 1 whose essential part is
irreducible curve, we can represent its dual graph as following. Suppose C has 6
irreducible components E, Cy, C,, By, B,, Bs. E is a smooth curve of arithmetic
genus 1. Two smooth rational components C;, C, are connected to E. And three
smooth rational components B, B;, B3 are connected to Cy. Then we can represent
the dual graph of C as E[C,[B;, B,, Bs], C,]. In this case, we say C is of the type
E[C,[By, By, B3], C,]. We denote the intersection point of £ and C; as c¢;. And we
denote intersection point of C; and B, as b, and so on.

5



CHAPTER 2. COMPARISON OF TWO DESINGULARIZATIONS OF
MODULI SPACE OF STABLE MAPS

0 e Ci Ce
Ci

C2
Bi B: Bs
The real picture and the dual graph of The real picture and the dual graph of
the curve of the type E[C1[B1,B2,Bs],C2] the curve of the type E[C+,Cz]

Furthermore, if a curve C is the domain curve of the Kontsevich’s moduli
space of elliptic stable maps, we record information of the degree in the parenthe-
sis. For example, if we say that C is of the type E(0)[B;(0)[C(1), C»(2)]], then the
dual graph of C is represented as E[B;[C, C;]] and the degrees of maps restricted
to E, By, Cy, Cy are 0, 0, 1, 2, respectively.

The expanded target

Let P" be a n-dimensional projective space. We define P"(1) to be (Bl.)P") [ P".
Here ¢(0) is a point in P". And Bl ()P" and P" are glued along D(1). In Bl ,P",
D(1) is the exceptional divisor. And in P", D(1) is a hyperplane. We can give the
linear order to the set of irreducible components of P"(1) such that component
corresponding to P" is the largest one. We denote the irreducible components of
P*(1) by P}, P} according to this order. i.e. P} is the largest one.

We define P"(2) to be (Bl.)P"(1)) U P". Here c(1) is a point in P} not contained
in D(1). And BIl.;)P"(1) and P" are glued along D(2). In Bl.P"(1), D(2) is the
exceptional divisor. And in P, D(2) is a hyperplane. We can give the linear order
to the set of irreducible components of P*(2) such that component corresponding
to P" is the largest one. We denote the irreducible components of P"(2) by P, P7,
P? according to this order. i.e. P} is the largest one.

In this way, we define P"(k), P{, P7, - -, P}, |, D(1), D(2), - - -, D(k) inductively.
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The sequence of blow up

Let X be an algebraic scheme. Let Vi, V>, ---, V,, be subschemes of X. When we
say that we blow up X along Vi, V5, ---, V,, we mean that we first blow up Vi,
blow up the proper transform of V,, - -- , and blow up the proper transform of V,,.

By abuse of notation, we identify an ideal J with the subscheme V; defined by
J.

2.2.2 Vakil-Zinger Desingularization

In [28]], Vakil and Zinger defined the m-tail locus of MLO(P”, d)o to be the locus
parametrizing maps such that in the domain the contracted elliptic curve meets
the rest of the curve a total of precisely m points. Desingularization is described
as following way; blow up the 1-tail locus, then the proper transform of the 2-
tail locus, etc. This process stop at finite steps, and resulting space IVILO(P”, d)o is
smooth Delign-Mumford stack.

In [1L1]], Hu and Li described local equations of Ml,o(P”, d). They first defined
the terminally weighted tree y. To each v, they associated the variety Z, called
local model and the subvariety ZS C Z, called the type vy loci in Z,. They defined
DM-stack S to have singularity type y at a closed point s € S if there is a scheme
Y, apointy € Y and two smooth morphisms ¢; : ¥ — §, ¢, : Y — Z, such that
q1(y) = sand ¢,(y) € Zg . To each element [u] C MLO(IP’”, d), they associated termi-
nally weighted rooted tree. They defined the substack M, o(P", d), C M, ((P", d)
to be the subset of all [u] C MLO(P”,d) whose associated terminally weighted
rooted trees is y. Finally they showed that the stack MLO(P”, d) has singularity
type vy along Ml,o(Pn, d),

We do not present full details here since our case is quite simple. When d = 3,
1-tail locus D; C Ml,o(P”, 3)y and 2-tail locus D, C MLO(P”, 3)y are smooth divi-
sors. 3-tail locus D5 C Ml,O(IP”, 3)o has description as follows. Let Z be {(a;, as, - - -,

n . _ _ _

n-1,b1,b2,+++ ,bp_1,21,220) € A7 1 a1z1 —b12o = @y — b2y = -0 = a7y —
b,-1zo = 0}, where A" is n-dimensional affine space. Z° ¢ Z is {(aj,as," -+,
ay-1,b1,b2,-+ ,b,_1,21,20) € Z : 71 = 2o = 0}. To each element [u] C Ds, there

is a scheme Y, a point y € Y and two smooth morphisms ¢g; : ¥ — MI.O(P”, d)o,
g¢>» : Y — Z such that ¢;(y) = [u] and ¢»(y) € Z°. Therefore M, o(P",3) =
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Blp, M, o(P", 3),.

2.2.3 Logarithmic stable maps

We briefly introduce logarithmic stable maps following [15]. There is standard
reference for definition and some properties of the log structures ([13]). We do
not give full details about the log structures since the log structures are not used
extensively in this paper.

Definition 2.2.2. An algebraic space W over S is called a Fulton-Macpherson
(FM) type space if

1. W — S is a proper, flat morphism;

2. for every closed point s € S, etale locally there is an etale morphism

W5 — S pec(k($)[x,y,21,22,+*  2k-11/(xy))

where x, y and z; are indeterminates.

Definition 2.2.3 ([15],5.1.1). A triple (C/S,p),W/S,f : C — W) is called a
n-pointed, genus g, admissible map to a FM type space W/S if

1. (C/S,p = (pi1,..., pn)) is a n-pointed, genus g, prestable curve over S.
2. W/S is a FM type space.
3. f:C — Wisamap overS.

4. (Admissibility) If a point p € C is mapped into the relatively singular locus
(W/S)s"2 of W/S, then étale locally at p, f is factorized as

Spec(Alu, v]/(uv — t))

NN

f S <———|—— SpecA

S T

W SpecAlx,y, z1, ..., 211/ (xy — T)
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where all 5 horizontal maps are formally étale; u,v, x,y, z; are indetermi-
nates; x = u', y = V' under the far right vertical map for some positive
integer l; t, T are elements in the maximal ideal m, of the local ring A; and
p is mapped to the point defined by the ideal (u, v, my).

A log morphism (W, My)/(S, N) is called an extended log twisted FM type
space if W — § is FM type space and My, N are log structures on W, S satisfying
some conditions.

Definition 2.2.4 ([15],5.2.2). A log morphism (f : (C, Mc,p) — (W, My)) /(S,N)
is called a (g, n) logarithmic prestable map over (S, N) if

1. ((C,M)/(S,N),p) is a n-pointed, genus g, minimal log prestable curve.
2. (W,My)/(S,N) is an extended log twisted FM type space.

3. (Corank = # Nondistinguished Nodes Condition) For every s € S, the
rank of Coker(N SW IS — Nj) coincides with the number of nondistinguished
nodes on Cs.

4. f:(C,M¢c) — (W, My) is a log morphism over (S, N).

5. (Log Admissibility) either of the following conditions, equivalent under the
above four conditions, holds:

° ]_” is admissible.

o P f*My — M is simple at every distinguished node.

Definition 2.2.5 ([15].8.1). Let M, " (X, d) be the moduli stack of (g = 1,n =
0,d # 0) logarithmic stable maps (f,C, W) satisfying the following conditions
additional to those in Definition 3.0.2. For every s € S,

1. Every end component of W; contains the entire image of the essential part
of Cs under f;.

2. The image of the essential part of Cs is nonconstant.
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Here, it is possible that some of irreducible components in the essential part
are mapped to points. Note that the dual graph of the target W, must be a chain.
Such a log stable map is called an elliptic log stable map to a chain type FM space
W of the smooth projective variety X.

—log,ch
Theorem 2.2.6 ([15],Main Theorem B). The moduli stack Ml,é (X, d) of elliptic
logarithmic stable maps to chain type FM spaces of X is a proper Delign-Mumford
stack. When X is a projective space P", the stack is smooth.

—ch
We define the moduli space M (X, d) of admissible stable maps to chain type
—log,ch . .
FM spaces of X to be same as Mi,g‘; (X, d) without log structures. That is, an

——ch —log,ch .
element of Mi,o(X’ d) 1s an element of Ml(jf; “(X, d) without log structures.

2.3 An example of degeneration

First we construct a family of elliptic stable maps over S = A2 Let R = k[t,a]
be a coordinate ring of S, where k is a algebraically closed field and #,a are in-
determinates. Let C' = Proj(R[x,y,z]/zy* — x> — 22x = 2°). Let f' : C’ --> P? be
given by [y, at’x, z]. It is a well defined family of elliptic stable maps except at
{(t,a) : t = 0} c §. If we blow up an ideal (¢, x, 7), it extends to family of elliptic
stable maps on whole S. That is, if we let C = Bl C’, the rational morphism
f':C’" --> P*extends to f : C —> P? and f gives a family of elliptic stable maps
over S. At t # 0, its domain curve is smooth. At ¢t = O its domain curve consists
of an elliptic component whose degree is 0 and one rational component whose
morphism is given by [s°, as?, 1] where s is the local coordinate of the rational
component such that {s = 0} is the intersection point with elliptic component.

Now we construct a family of elliptic stable admissible maps over S = Bl 4)S
in following way.

10
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Proposition 2.3.1. Let R, C’, C, f be as above. Let S be the blow up of S at
the origin and let E be the exceptional divisor. Let D be the proper transform of
subscheme defined by (t) C R. Let C" be a pullback of C' along S — S and
C be the blow up of C"” along ideals (D, x,z), (E, x,z); Here we mean that first
blow v up along (D, x, z7) and next blow up along the proper transform of (E, x, 2).

Let W be the blow up ofS x P? along ideals (E*, xo, x1), (D?, X0, xl) where Xo, X1,
X, are coordinates of P>. Then f : C — P? extends to map f C — Wand
f :C— W)isa Sfamily of admissible stable maps.

Proof. we choose one local coordinate of S as {(t,a)} = A? such that S — S is
given by (¢, a) — (ta, a). Then the induced morphism is given by [’y : fPasx, z].
Since we only need to consider a neighborhood of {[x : y : z] = [0, 1, 0]} which is
smooth point, the problem is reduced to the following lemma.

Lemma 2.3.2. Suppose (f : C = A x A? = Spec(k[x tal) — W =A2x A> =

S pec(k[X, Y,t,al)) is given by (x,t,a) — (’;’ La's ,t,a), where z is a function of
x such that the vanishing order ofz at x = 0 is 3 If we let C be the blow up of
C along ideals (x,t), (x,a) and W be the blow up of w along ideals (X,Y,a’),
(X, Y,1%), then (f : C — W) extends to morphism ( f C — W)

Proof. Using universal property of blow ups, we need to check that inverse im-
age sheaves of (X, Y,a?) and (X, Y, #?) are invertible. For example, at an open set
vuccC given by {(x,t,a) : x # 0)}, inverse image sheaves of (X, Y,a’) and (X, Y, )
are (’3 @ Ladx ) = (a3) and (’%“z 2alx 42y = (12 respectively which are invertible

sheaves. Other cases are left to the reader O

We can easily check that fsatisﬁes admissible conditions. In the same way
we can prove the case of the other open sets of S. This proves theorem. O

Remark 2.3.3. the origin in S parameterizes stable map whose domain curve con-
sist of an elliptic component of degree 0 and one rational component whose mor-
phism has ramification order 3 at the intersection point with the elliptic compo-
nent. i.e. it is an element of ;.

Remark 2.3.4. In the proof, we can describe an element of admissible stable map
explicitly. For example over {(¢,a) : a = 0,t # 0} C §, C is of the type E[C,] and

11
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W =P*(1)and fl : E — P? is given by [Xo, X1, Xo] = [Py : x :z] = [ty : x : 2]
where X, X;, X, are coordinates of Pf such that D(1) is given by {[X;, X5, X3] :

X, = 0}. The last equality is due to the existence of an automorphism of P% fixing
D(1).

2.4 The description of fiber in the moduli space of
elliptic admissible stable maps

By the definition of admissible stable map we get the following proposition.

Proposition 2.4.1. There is a natural morphism ¢ from the moduli space of elliptic
admissible stable maps to the Kontsevich’s moduli space of stable maps. Proof. A
family of admissible maps over § consist of (C/S,p), W/S, f : C — W), where
C is a family of pre-stable curves over S and W is FM type space of P>. By just
forgetting W, we obtain Kontsevich’s pre-stable maps and after stabilization we
get Kontsevich’s stable maps. |

Now we describe set theoretic fibers of ¢, when d = 3. Note that if the essential
part is not contracted to a point, the fiber is just one point because W 1is trivial. i.e.
W = P". Let’s consider the fiber of element where the essential part is contracted
to a point.

Lemma 2.4.2. Let (C, f : C — P") be an element of the main component of the
Kontsevich’s moduli space of elliptic stable maps satisfying following condition.
C is of the type E(0)[C,(3)].

1. if f has ramification order 2 at ¢, and there is no smooth point q, € Cy such
that f(cy) = f(qy), then the fiber of ¢ is equal to a point set theoretically.

2. if f has ramification order 2 at c| and there is a smooth point q; € Cy such
that f(c\) = f(q.), then the fiber of ¢ is equal to P"~! set theoretically.

3. if f has ramification order 3 at c,, then the fiber of ¢ is equal to Bl,P" set
theoretically.

12
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Proof.

1.

e point : The domain curve C is of the type E[C;] and W = P*(1).

f:Cc — PP is already given. f:E— P} is given by [X, : X :

-: X, =[x:0:---:0:z], where E are given by {[x,y,z] : 2y° =
x> +722x+ Az} and Xy, X, - - -, X, are coordinates of P". ¢| is given by
{lx:y:z]:z=x=0}and D(1) is given by {[ X}, X5,--- , X,] : X, =
0}.

A" with parameter { [ag : @1 : --- : @y_1], @u_1 # 0} : The domain
curve C is of the type E[Ci[A;]] and W = P"(1). flc, : C; — Pl is
already given. fIE E— Plisgivenby [Xop: X : -+ : X, ] =[x:0:
o201 2] fla, : Ay — P'(1)is given by [1 : aof : @yt @ -+ : apit],
where ¢ are a local parameter of A; such that a; is given by {r = 0} and
D(1) is given by {[ X}, X, -+, X,,] : X, = 0}.

P"~? with parameter { [a( : @; : -+ : @,_»] } : The domain curve C
is of the type E[C{[C[A]]] and W = P"(2). flc1 : Cy — Py already
given. flq : C) — Prisgivenby [ : 0 :---: 0 : 1] where ¢ is

a local parameter of C| such that ¢, are given by {t = 0} and D(1)
is given by {[X;, X5,--- , X, ] : X, = 0} flE . E — P is given by
[x:0:---:0:z] where D(2) are given by {[X;, X5, -+, X,,] : X, = O}.
flAl A — Pf is given by [1 : aps : a;s: -+ : @,»5 : s] where s is
a local parameter of A; such that a; is given by {s = 0}.

A" with parameter {[o( : @; : -+ : @,],a, # 0} : The domain curve
C is of the type E[C,] and W = P"(1). fi¢, : C; — PP already given.

flE:E—>P’1’isgivenby [Xo: X1 X)) =lapx+a,y:a1x:a;:
<+l @p- - 2], where D(1) is given by {[ X}, X5, -+, X,,] : X, = 0}.

P! \ pt with parameter {[a( : @; : --- : @,_], not all o, are 0 for
1 < k < n-1}: The domain curve C is of the type E[C{[C,]] and
W = P'Q). fle, : Ci — P} is already given. flc : C; — P}

13
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is given by [1 — agt : ajt : axt : --- : a,_it : £] where ¢t is a
local parameter of C| such that ¢, is given by {r = 0} and D(1) is
given by {[X;,X5,--,X,] : X, = 0}). fle : E — P} is given by
[x:0:---:0:z] where D(2) are given by {[X}, X5, -+, X,,] : X,, = 0}.

e A" ! with parameter { [a : @) : -+ : @y_1], @u_1 # 0} : The domain
curve C is of the type E[C}[Ci,A(]] and W = P2 flc, : C; — PP is
already given. flo, : C; — Pyis givenby [I —7:0:---:0: 7]
where 7 is a local parameter of C| such that ¢ is given by {r = 0} and
a; is given by {t = 1} and D(1) is given by {[X;, X5, -+, X,] : X,, = O}.
fle : E— Plisgivenby [x : 0 : -+ : 0 :zl. fla, : Af — P2
is given by [1 : @y : a; : -+ : a,_15], where s is a local param-
eter of A; such that a; is given by {s = 0} and D(2) is given by
{[X1, X2, -+, Xu] : X, = O}

e P2 with parameter { [ : @; : --- : @,»] } : The domain curve C
is of the type E[CY/[C|[C},A]]] and W = P"(3). flc1 . Cp — Py is
already given. flq :C, — Plisgivenby [1-¢:0:---:0: 7]

where 7 is a local parameter of C} such that ¢, is given by {r = 0} and
a; 1s given by {t = 1} and D(1) is given by {[X}, X5, -+, X,] : X,, = O}.
f~|c;' :C/ — Prisgivenby [1:0:---:0: s?] where s is parameter
of C such that ¢} is given by {s = O}. fla, : Ay — P} is given by [1 :
ol > aiu ;- a,u s u] where u is a local parameter of A; such that
ay is given by {u = 0} and D(2) is given by {[ X}, X5, - , X,,] : X,, = O}.
flE E— Piisgivenby [x: 0:---:0: z] where D(3) is given by
{{X1, Xa, -+, Xu] : X, = 0},

O

Note that the case where essential part is singular curves can be stated and
proved in the same way. Note that we actually know every element of the fiber
explicitly. By similar way we can prove the following lemmas whose proof will
be omitted.

14
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Lemma 2.4.3. Let (C, f : C — P") be an element of the main component of the

Kontsevich’s moduli space of stable maps satisfying the following conditions. C is
of the type E(0)[C1(1), C2(2)].

1.

if f has ramification order 1 at c, and there is no smooth point g, € C, such
that f(c2) = f(q2), then the fiber of ¢ is equal to a point set theoretically.

if f has ramification order 1 at c, and there is a smooth point q, € C; such
that f(cy) = f(q2), then the fiber of ¢ is equal to P" set theoretically.

if f has ramification order 2 at c,.and images of C, and C, are different
lines, then fiber of ¢ is equal to P' set theoretically.

if f has ramification order 2 at c,, images of C, and C, are same lines, then
the fiber of ¢ is equal to P"~' | JP! glued at one point, set theoretically.

Lemma 2.4.4. Let (C, f : C — P") be an element of the main component of the
Kontsevich’s moduli space of stable maps satisfying the following conditions. C is
of the type E(0)[C1(1), Co(1), C3(1)].

1.

if images of Cy and C, and Cs are distinct lines, then the fiber of ¢ is equal
to a point set theoretically.

if images of Cy and C, are same lines and the image of Cs is the distinct
line, then the fiber of ¢ is equal to a point set theoretically.

if images of Cy and C, and Cs are all same lines, then the fiber of ¢ is equal
to P! set theoretically.

Lemma 2.4.5. Let (C, f : C — P") be an element of the main component of the
Kontsevich’s moduli space of stable maps satisfying the following conditions. C is

of the type E(0)[B,(0)[C,(1), C2(2)]].

1.

2.

if f has ramification order 1 at c, and there is no smooth point g, € C, such
that f(c;) = f(q2), then the fiber of ¢ is equal to a point, set theoretically.

if f has ramification order 1 at c, and there is a smooth point g, € C, such
that f(c,) = f(q»), then the fiber of ¢ is equal to P"~' | JP*! glued along
P2, set theoretically.

15
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3.

4.

if f has ramification order 2 at c, and the tangent lines of images of C, and
C, are independent, then the fiber of ¢ is equal to P', set theoretically.

if the tangent lines of images of C; and C, are dependent, then the fiber
of ¢ is equal to BL,P" JP' x P Bl,P" glued along P""', P"2, set
theoretically.

Lemma 2.4.6. Let (C, f : C — P") be an element of the main component of the

Kontsevich’s moduli space of stable maps satisfying the following conditions. C is
of the type E(0)[B,(0)[Ci(1), Co(1), C3(D)]].

1.

if the images of Cy and C, and C; are distinct lines, then the fiber of ¢ is
equal to a point set theoretically.

if the images of Cy and C, are same line and the image of Cs is distinct line,
then the fiber of ¢ is equal to a point set theoretically.

if the images of Cy and C, and Cs are all same lines, then the fiber of ¢ is
equal to (P' x P""Y) | BL,P" glued along P"'set theoretically.

Lemma 2.4.7. Let (C, f : C — P") be an element of the main component of the
Kontsevich’s moduli space of stable maps satisfying the following conditions. C is

of the type E(0)[B,(0)[C;(1), Co(D)], C3(D)]].

1.

2.

3.

if the images of C, and C, are distinct lines, then fiber of ¢ is equal to a
point, set theoretically.

if the images of C| and C, are same lines and the image of Cj is distinct
line, then the fiber of ¢ is equal to P"™', set theoretically.

if the images of Cy and C, and Cs are all same lines, then the fiber of ¢ is
equal to (P' x P"1) | P"! glued along P"~?, set theoretically.

Lemma 2.4.8. Let (C, f : C — P") be an element of the main component of the

Kontsevich’s moduli space of stable maps satisfying the following conditions. C is

of the type E(0)[B,(0)[B2(0)[C1(1), Co(D)], C3(D]].

16
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1. if the images of C; and C, are distinct lines, then the fiber of ¢ is equal to
point, set theoretically.

2. if the images of C| and C, are same lines and the image of Cs is the distinct
line, then the fiber of ¢ is equal to P!, set theoretically.

3. if the images of C and C, and C5 are all same lines, then the fiber of ¢ is
equal to BlL,P" | Bl,,(P"' xP") UP" ! xP") P! xP), set theoretically.

Remark 2.4.9. What we showed is that the fiber of ¢ is ,at least set theoretically,
same as the fiber of corresponding blow-ups which we will describe later. Actually
it is same scheme theoretically.

2.5 The case of the degree 2

In this section, we show that when d = 2, two moduli spaces are same. i.e.
M, o(P", 2) = M, 5 ' (B", 2). Note that if the degree is 2, M, o(B", 2)y = M (", 2),.
As in the previous section, we can calculate the fiber of ¢ : MTTIO(IP”,Z) —
K/ILO(P”, 2)o and it is easy to see that every fiber is just one point. This actually
suffices to conclude that IVILO(P”, 2) = M’[fg‘;‘h(P", 2) by the Zariski’s main theo-
rem. Still we construct an actual morphism for the completeness. We only do the
case n = 1 for simplicity.

Note that when the essential part is not contracted to a point, two moduli
spaces are naturally isomorphic. So we only need to consider neighborhoods of
points where the essential part is contracted to point.

We describe an etale atlas of stack Ml,O(PI,Z)O. Because of stackyness of
the moduli space of elliptic curves, we need to separate the case according to

J-invariant of the essential part of the domain curve.

when essential part is smooth elliptic curve with j # 0

Let k£ be an algebraically closed field and ¢, @, v, ¢, A be indeterminates. Let
R = k[t,a,y,c,Al/(y — a® — y*a — Ay?). Let D;,D, be subschemes defined by
ideals (@, y),(?). Let S = S pec(R)\V where V C § pec(R) is a subscheme defined
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by an ideal (4 + 27A%) and C’ = Proj(R[x,y,z]/2y> — x> — 2°x — AZ>).

Then the rational map f* : C” --> P! defined by [ty(x+ay)+c(yx—az), yx—az]
gives the family of elliptic stable maps except at D, and D,. But if we let C be
the blow up of C’ along (D, x, 2),(Ds, x — ay, z — vy),(D2, x, 7), we easily see that
f':C" > Plextends to f : C —> P! and f gives a family of elliptic stable maps
over whole §.

Moreover we know every element of family over S explicitly as follows.
Over {y = 0, # 0}, the domain curves are of the type E[C,] and f]¢, : C; — P!
is given by [£s? + ¢(s — 1) : s — 1], where s is a local parameter of C, such that ¢,
is given by {s = 0}.

Over {t = 0,y # 0}, the domain curves are of the type E[C;, C;] and ¢, and ¢, are
given by (z = 0), (x = ay,z =yy) in E = {[x;y;7] : 2° = X+ 22x + A’} and
fle, : Ci — Plis given by [s; + ¢, 1] where ¢; is a local parameter of C; such that
c;is given by (s; = 0) fori =1, 2.

Over {y = 0,¢t = 0}, the domain curves are of the type E[B,[C;, C,]] and f]c, :
C; — P'is given by [s; + ¢, 1] where s; local parameter of C; such that c; is given
by (s; = 0) fori =1,2.

By looking at a local deformation, we can check that S is an etale atlas of M o(P', 2),.

Proposition 2.5.1. Let us assume above. If we let W be the blow up of S XP' along
(Ds, xo — ¢x1), (D%, xo — ¢x1) where xo, x; are coordinates of P', then f : C — P!
extends to f : C — W and f gives a family of elliptic admissible maps over S.

Remark 2.5.2. We know every element over S explicitly. Here we only describe
the type of domain curves and target. Over {t # 0,y #= 0}, the domain curve C
is of type E and the target W = P!. Over {t = 0,y # 0}, the domain curve C is
of the type E[C,, C,] and the target W = P!(1). Over {t # 0,y = 0}, the domain
curve C is of the type E[C;] and the target W = P!(1). Over {t = 0,y = 0}, domain
C = E[B,[C,, C,]] and the target W = P!(2).

when essential part is smooth elliptic curve with j # 1728

Everything is same if we change the equation y — o — y*a — Ay> above to y — o —
Ayla — 3.
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when essential part is singular curve

Let k be an algebraically closed field and ¢, @, B, ¢, A be indeterminates. Let
R = k[t,a,B,c,Al/(B* — @ — a* — A). Let D, be a subscheme defined by an ideal
(). Let S = S pec(R) and C’ = Proj(R[x,y,z]/(zy* — x* — zx* — AZ)).

Then a rational map f : C’ --> P! defined by [#(y + Bz) + c(x — az), x — az]
gives a family of elliptic stable maps except at D, and {@ = 5 = 0}. But if we let
C be the blow up of C” along ideals (y — x — M,ﬁ - - ’“2“’—2’”“2), (Ds, x,2),
(D1, x — az,y — B7), we can see that f’ : C’ --» P! extends to f : C — P! and f
gives a family of elliptic stable maps over whole S . Note that the effect of blowing
up along ideal (y — x — "2“’2—”"2, B—a— M) is inserting a rational component
at singular point in the rational nodal curve at {& = g = 0}.

Proposition 2.5.3. Let us assume above. If we let W be the blow up of S x P!
along ideal (Dg, Xo — cx1) where xo,x, are coordinates of P, then f : C — P!
extends to f C — Wand f gives a family of elliptic admissible maps over S .

Summing up previous results we get a morphism from M1 o(P',2) to 1O(Pl 2)

where MLO(PI, 2) is the moduli space of elliptic admissible stable maps without

log structures. Actually it is one to one morphism. On the other hand we also have

one to one morphism from Mii’)log(Pl ,2) to Miflo(Pl, 2), which is just forgetting log

stn}cltures(["]) By the uniqueness of the normalization, we see that IVILO(PI, 2)o =
M, (P',2).

2.6 The case of the degree 3

In this section we describe a local chart of M, oP",3)o and Mi’ﬁ Lh(P” 3). Through-

out the section, we will denote the proper transforms of subscheme as the same
notations as original subschemes.
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Because of the stackyness of the moduli space of elliptic curves, we need to
separate the case according to j-invariant of the essential part of the domain curve.

2.6.1 KEtale chart of Ml,o(P”, 3)o

(a)when essential part is smooth elliptic curve with j # 0.

Let k be an algebraically closed field and ay, a, - --, a,_1, b1, ba, -+, by, cy,

Cy vy Cpot, dyy doy -+, dy, 71, 22, A, @, Y, @, ¥’ be indeterminates. Let R =

Klai,az, - ,an-1,b1,b2, - - b1, C1,C2,0 +  Cprndidny - - ,dn,Zl,Zz,A ay,a'y'l/(a1z1 —

b1z2,a21 — ba2o,+ G121 — byo120,Y — a’ - YZCY - A)’30" - )"20/ A?"3)-
Let Dyy, Dyoys Dag—ors D3y Foy Foyy Foor, G be subschemes defined by ideals

(@,y), (@,y), (@—a,y =), (21, 2), (Zl,bl,bz, b,-1), (z0,a1,a2,+ -+ ,a,-1),

b o’ y (x+(zy)(y x—a'7)—ay (yx—az)(x+a’y)
(Zl — 22,41 — 01,42 — b2» E ¢ 7 R n—l) ( ad (a—a’)(yx—az)(y' x—a’z)

LetS = S pec(R) \V, S = Bl w)§ where V is the subscheme defined
by an ideal (4 + 27A%)(a — o y v"). Let D, be the exceptlonal divisor. Let
C = Proj(R[x,y,z]/zy* — x* — 22x — AZ®), C’ be a pull-back of C and C be the
blow up of C” along ideals

(D1, x,2),

(D2g, x = 'y, 2= V'¥),(D2,05 X, 2),(D2,ors X — @y, 2 = ¥Y),(Door» X, 2),
(D3, x,2),(D3, x —ay, z = yy),(D3, x = &'y, z = Y'y),
(Fo,x—ay,z=yy),(For, X = @'y,2 = V'9),(F oo X, 2).

Then rational map f: C->P" given by

[@'y(a1+c)zi(x+ay)(y' x—a'z)—ay (b1 +c)za(x+ay)(yx—az)+d (a—a' ) (yx—
az)(Yz—a'x),dy(ar + )z (x+ay) (Y x—a'z) —ay (b, + c) o (x + &' y)(yx — az) +
dy(a—a')yx—a)(y'z=a'x), -, &' y(an-1+ )2 (x+ @)Y x—a'z) —ay' (bp-1 +
C-DR(x+ ' y)(yx—az)+d,-((@—a)(yx—az)(y'z—a'x), ' yz (x+ay)(y' x—a'z) -
ay'n(x+a'y)yx—az)+d(a—a')yx—az)(y'z—a'x), (@ —a')(yx—ax)(y'x—a’'z)]

extends to a morphism f : C — P". This gives a family of semi-stable maps

of elliptic curves and after the stabilization we get a family of stable maps of el-
liptic curves over S.
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Note that as in the case of degree 2, we can actually describe every element
parametrized by S and check it is an etale atlas.

(b)when essential part is smooth elliptic curve with j # 1728.
Everything is same if we change the equation y — a® — y?’a — Ay® above to

y—-a - Ay*a -y .

(c)when essential part is singular curve.
Let k be an algebraically closed field and ay, a5, -+, a,-1, by, b2, -+, b,_1, 1,
Cay vty Cpo1y dy, doy o, dyy 71, 22, A, @, B, @, B be indeterminates. Let R=
kla,az, - - san-1,b1,b2, - - \by_1,C1,C25 + * sCpo1,d 1,y - - dny21,20,A,@.8,0" B') /(a1 z1—b1 22
21 — byza, - sa,121 — by 22, P—@—a— Ap - a? —a - A)

Let D,, D3, F,, Fy, Fy_o, G be ideals defined by (@ — o’,8 - '), (21, 22),
(21,D1,b2, -+ ,by1), (22,41, a2, -+ ,ap 1), (21 — 22,41 —b1,a2 = b2y -+ a1 — by ),

GO+ -a) -G +p)x - a).

LetS = SPEC(R), S = Bl(ﬁ—a— ,yzm(é,mxz ,,B’—w’—”z*‘“;/*“ﬂ )S .

Let C = Proj(R[x, y,z]/2y* — x> — Xz — AZ%), let C’ be a pull back of C, and C be
the blow up of C” along ideals

(y—x-— Xtaxt+a® +ax+a' B—a— x2+a2x+a2 )y — x — x2+a’2x+a’2”8/ —a - x2+a’2x+a’2 ,
(D2, x — az,y B2).(D3, x, 2),

(D3, x,2),(D3, x —az,y = f2),(D3, x — &'z, y = ')

(Fo»x—az,y = B2),(Fo, x = @'2,y = B'2),(Fo-w» X, 2).

Then rational map f: C --> P given by

[(a—a)a) +c)z(y+B2)(x—a'z) — (@ —a') (b +c)(y+f'2)(x —az) +di (B -
B(x—az)(x—a'2), (@=a')ay+c2)21(y+B2)(x—a'2) = (@ —a’)(br+2)22(y+5'2) (x =
az) +di(B-B)(x—az)(x—a'2),- - (@ —a')an-1 + o)1y + BD)(x — &'7) — (@ —
@' )by + a2V +B'2) (X —2) +dyy (B=B)(x—a2)(x—'2), (@ =)z (y+B2)(x -
a'2)=(@=a)n(y+f'2)(x—az) +d,(B=p')(x—az)(x—a'z), (B-F)(x—az)(x—a'z)]
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extends to a morphism f : C — P". This gives the family of semi-stable
maps of elliptic curves and after the stabilization we get a family of stable map of
elliptic curves over S.

—log,ch
2.6.2 Local chart of M, , (P",3)
(a)when essential part is smooth elliptic curve with j # 0.
In previous local chart S of M 0(P?, 3), the blow-up center of Vakil-Zinger desin-
gularization is given by Ds. And )}, >.,, I';, I'; are given by proper transforms of

(Dy,ar,az,++ ,ap-1,b1,by, - ,by_1, a2 + @'22),

(D2o»21,b1, b2, -+ ,Dy1) Doy 22,1, G0, ++ , Gpy),

(Dy,ay,az,++ ,an-1,b1,by,- - ,by_y),

(Dyosar,az, -+ ap-1,b1,b2, -+ by 1) (Do, ar,az, -+ a1, b1, b2, -+, byy).

Let S be the blow up of S along D3, 3,5, I, >, I and let Ey, Ey o \J Eb s Ly,
L, . U L, be the exceptional divisors corresponding to }, 22, I'y, I',. Note that
after blowmg up along >, 3, and I, are separated. Now let C” be the pull back
of C along S and let C be the blow up of C” along ideals

(D1, x,2), (L1, x,2), (Ey, x,2),

D2y x = @'y, 2= Y'V)(Loar X = @'y, 2= YY) ,(Ere, X = @'y, 2= V'y),(D2g, X, 2),
(L2.a» X, 2)(E2as X, 2),

(Dros X — @y, 2= yy)(Low, X — @y, 2 = YY) (B2, X — @y, 2 = ¥Y),(D2or, X, 2),
(Loa»> X, 2)(E2ar5 X, 2),

(D3, x,2),(D3, x —ay,z = yy),(D3, x —a'y,z = ¥'y),

(Fo, x =@y, 2= yY),(For, X = @', 2= ¥'9),(Fomars X, 2),

(LZLGL (La.a» G)(Laar, G),
where L,L, ,,L, , are exceptional divisor of (L, x, 2),(L2.4, X, 2),(La.or» X, 2).

Let W be the blow-up of S x P2 along ideals

(D3, X0 — dlxm X1 — d2xn’ X1 T dnxn),
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(E3, X0 — dy Xp, X1 — doXy, -+, Xpot — dXy), (Lo, X0 — di Xy X1 — do Xy - -+ Xy —
dnxn)’ (Dz, Xo — dlxna X1 — den’ X1 T dnxn)a

(E3, Xo — diXp, X1 —dpXn, 0 5 Xuo1 — diXy), (L%’ Xo — di X, X1 — dp Xy 0 5 Xt —
dnxn)a (D%, X0 — dl-xn’ X1 — d2-xn’ s Xp-l T dn-xn)’
where xy,x1,- - - ,x, are coordinates of P".

Then f: C --> P" extends to ]7: C — W and we get a family of admissible
maps over S.

(b)when the essential part is smooth elliptic curve with j # 1728.
Everything is same if we change the equation y — a® — y?’a — Ay® above to
y—-a - Ayra -y .

(c)when the essential part is singular curve.
In previous local chart S of Ml,o(Pz, 3)o, the blow up center of Vakil-Zinger desin-
gularization is given by Ds. And },, I'; are given by proper transforms of (D, z; —
22,d1 — 21), (D3, ay,by).

Let S be the blow up of § along D3, ), ['; and let E;, L, be the exceptional
divisors corresponding to ) ,, I';. Now let C” be the pull back of C’ along S and
let C be the blow up of C” along ideals

(D2, x—az, y—32).(D2, X, 2),(La, Xx—az, y—2),(La, X, 2),(E2, X—z, y—P2),(E2, X, 2),
(D3, x,2),(D3, x — az,y — B2),(D3, x — @'z, y — f'2),
(Fa, x = az,y = B2),(For, x = @2,y = f'2),(F o> X, 2)-
(LzLG),
where L, is exceptional divisor of (L,, x, z).

Let W be blow-up of S x P2 along ideal
(D3, X0 — dy Xp, X1 — doXp, -+, Xy — dpXy),
(E%, X0 — dlxn’ X1 — d2xna et s Xp-1 — dnxn)a (LZa X0 — dlxn’ X1 — d2xn’ s Xp—1 —

dpxn), (Do, X0 — di Xy, X1 — daXp, -+, Xy — dyXp).

Then ]?: C --> P" extends to f: C — W and we get the family of admissible
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maps over S.

2.6.3 Main result

Let M be the blow up of 1\~/[1,0(P”, 3)o along >, I5, >3, I'1. By previous subsec-
tions, we can find a morphism from M to MT?O(P", 3). Here MTO(P”, 3) is moduli
space of admissible stable maps of chain type without log structures. One can
check that this morphism is finite surjective by using the result of section 5. Actu-
ally it is one to one morphism. On the other hand, We also have a finite surjective
map from Mi?éll)g(P”, 3) to MT%(P”, 3), which is just forgetting log structures([?]).
By the uniqueness of the normalization, we get following theorem.

Theorem 1.0.1. Mﬁﬁ”h(w, 3) can be obtained by blowing-up MI,O(P”, 3)o along
the locus 5, 15, X1, .

Remark 2.6.1. Note that we only used the fact that forgetting morphism ¢ :
M[](jg’Ch(P”, 3) — M??O(P", 3) is a finite morphism. It follow from above that it
is actually one to one morphism in our cases. We can also get this fact by calcu-
lating possible log structures. i.e. when d < 3, there exists unique log structure on
each admissible stable map. If d > 4, there could be more than one log structures

on one admissible stable map.
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Chapter 3

Degeneration of log stable maps

3.1 Introduction

3.1.1 The main result

Consider a projective morphism W — B from a nonsingular complex variety W
to a nonsingular curve B with a distinguished closed point O € B such that the
central fiber Wy consists of two irreducible nonsingular components intersecting
transversely. In this paper we prove the degeneration formula (Theorem [3.1.1)
for the degeneration W/B in the framework of minimal/basic stable log maps of
D. Abramovich and Q. Chen [1]; Q. Chen [6]; M. Gross and B. Siebert [[10]. In
papers [10] (resp. [1, 16]), without expanding targets they have constructed the
virtually smooth proper DM stacks of basic (resp. minimal) stable log maps to a
Zariski-globally generated (resp. Deligne-Faltings) log smooth target with a fixed
numerical class. The Deligne-Faltings log structures are special cases of Zariski-
globally generated log structures. Associated to the divisors W, of W and O of B,
the schemes W, B are equipped with the natural Deligne-Faltings log structures
making W — B log smooth (see [13]]).

The degeneration formulas for W/ B in the framework of the “expanded” (rel-
ative) stable maps were already discovered: in symplectic geometry set-up by A.-
M. Li and Y. Ruan [17], by E. Ionel and T. Parker [12]; in algebraic geometry
set-up by J. Li [18]. The degeneration formula is also proven by D. Abramovich
and B. Fantechi [2]] using stable twisted maps and by Q. Chen [3] using stable log
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maps in the sense of [5, [15]. All of these methods commonly use target expan-
sions.

Without target expansions it is under development to obtain a degeneration
formula for general degenerations in the realm of minimal/basic stable log maps
(however see also [25] in a symplectic set-up). We are contented to prove the
degeneration formula for the simple case W/ B, expecting that the proof will serve
to establish a general degeneration formula. We mention that the splitting method
in this paper works for the general case, too.

3.1.2 The precise statement

For the precise statement of the degeneration formula we need some preparations.
Below for a log scheme §, denote by S the underlying scheme of S. Let W be
X, Up X,, where D is the singular locus of W and X, i = 1,2, are the irreducible
components of W,. Let k denote the field C of complex numbers. The point 0 =
Spec(k) of B has the induced log structure, the so-called standard log point, from
B, denoted by Spec(k’). We consider the target W,/Spec(k’) as the log scheme
over Spec(k’), whose log structure is defined to be the inverse image of the log
structures of W under W, c W.
For an effective curve class 5 € Hz(wo, Z), denote by

Mg,n(WO /Spec(kT)’ﬁ)

the moduli stack of n-pointed, genus g, class 8, minimal/basic stable log maps to
Wo/Spec(k’) (see [} 16, [10]). The moduli stack is a proper DM stack over k, with
the canonical virtual fundamental class and evaluation maps at markings, denoted
by

[My.(Wo/Spec(k), /)" and

ev; : My, (Wo/Spec(k"),p) > W,, i=1,..,n,

respectively.

Let I' be a decorated connected graph satisfying the following. The set V(I)
of vertices is partitioned into two sets V;(I'), V»(I'). Every edge connects a vertex
from V(') and a vertex from V,(I'). To v € V;(I), a decoration (g, 8,, N,) is given
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with g, € Z., B, an effective curve class of X;, N, C [n]. Here, [n] := {1,...,n}.
To each edge e, a strictly positive integer c, is given. Finally, a label on V(I') is
chosen. Let ty denote the closed embedding X, — W,. We require that

E Lxl,* vt E LXZ,* v :ﬁ,

veV () veVi(I)

ﬁv-D=Zce;

vee

the “stability” condition S8, # 0 whenever 2g, + |N,| + val(v) < 3;

-y +) g =g

forv e V(I

and

UNV ={1,..,n}.

Let r(v) =iif v € Vi(I') and let E, be the set of edges adjacent to v. Let

Mg\"Nlev (Xr(V)’ ﬁ)

be the moduli stack of N,-pointed, genus g,, class §,, minimal/basic stable log
maps to X, with relative markings {e | e € E,} whose contact orders are {c,, | e €
E,} with respect to the divisor D. Here, X; is considered the log scheme, obtained
from the divisor D C X, with the log smooth morphism X; — Spec(k). Fore € E,,
denote by ev, be the “relative” evaluation map

Mg’Nlev(Xr(V)’B) - D

and for i € N,, denote by ev; be the “absolute” evaluation map

Mz, (X B) = X,

Let Q(g, n, B) be the set of all such graphs I'. Note that Q(g, n, 8) is a finite set.
Let {0} be a homogeneous basis of H*(D, Q) and let {65} be the dual basis in the

1
J
féldz_ 0 ifi#j
b I ifi=

sense that
Now we are ready to state the degeneration formula.
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Theorem 3.1.1. Fory; € H(W,,, Q) and the Psi classes y;, i = 1,...,n,

f[ _ [ [wrevion="), > -y

Mg,n(WO»,B)]Vir i€[n] FeQ(g,N.B) (jo)e€ll,....kH*(D)}ED)
[1.ce o o
|V(er)|' n i . 1—[ Uilevity (7)) l_[ ev, (6",

S (Mg, X BT i€N, eckE,

where (—=1)¢ is given by the equality

n

[ T[] ]oi} =] [w] e ] ] ]

i=1 JEM i€EN] JEM i€EN> JEM

3.1.3 Conventions

Throughout the paper unless otherwise specified: every scheme is a scheme locally
of finite type over the field k := C of complex numbers and every log structure
a : Mg — Os on a scheme S is a fine and saturated (fs for short) log structure
on the étale site of S. The underlying scheme of a log scheme S will be denoted
by S. A log morphism f from a log scheme § to a log scheme S, consists of a
morphism f : §, — §, of schemes and a homomorphism 2 Mg, - M,
compatible_with log structure a; : Mg, — Os,.

The standard log point will be denoted by Spec(k’). The sum M,; & M, of log
structures M, on a scheme S always means the push-out M, o; M,.

For a toric monoid Q, meaning that Q is a fs monoid with no nontrivial in-
vertibles, Q" denotes Hom(Q, N) and QV[1] denotes the set of minimal integral
elements in the extremal rays in Q' ® Qx.

For s € §, 5§ — § denotes the associated geometric point by taking the separa-
ble closure of s. Let P be a monoid. Then a monoid homomorphism @ : P — Os ;
will be called a log structure on Os ; if @ induces an isomorphism from af‘l(0§j)
to 0% ;.

By an algebraic stack X over a scheme, we mean a stack X over the scheme
such that the diagonal is representable and of finite presentation; and it allows a
surjective smooth morphism U — X from a scheme U. This is the convention
following [23]].
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For a curve C over an algebraically closed field, denote by C™ the set of nodal
points, denote by Irr(C) the set of generic points of the irreducible components of
C, and denote by Con(C) the set of connected components of C.

3.2 Basic/Minimal stable log maps

3.2.1 Log structures on )i, , and ¢, ,

Let M, be the algebraic stack of genus g prestable curves. The boundary divisor
parameterizing singular curves gives rise to the divisorial log structure on the lisse-
étale site of 9,. Define the log structure also on the algebraic stack M, , of n-
pointed genus g prestable curves by taking the inverse image of the log structure
on M, under the natural projection M,,, — M,. Denote by €, , the universal
curve with the log structure attached to the normal crossing divisors of boundaries
viewed as M, 1.

3.2.2 Prestable log curves

Let S be a k-scheme. A n-pointed prestable curve (C/S,p := (pi, ..., p»)) amounts
toamap S — @g’n. We denote by

C/S
Ms

the associated pullback log structure of Myy,, under the map. Strictly speaking,

the pullback log structure is on the lisse-étale site of S . However, by [23 Theorem

A.1], it is induced from a unique log structure M?i on the étale site of S.
Similarly, on C there is the log structure B

C/S.p
M

inherited from the log structure of €, , by the pullback. These Mg/i (resp. M%/Q’p )

will be called the canonical log structure on S (resp. on C) attached to the n-
pointed prestable curve (C/S, p).

A log morphism from a fine saturated log scheme S to (S, M? i) will be called
a n-pointed prestable log curve. Denote by B

Q: Mgi — Mg (3.2.1)
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the homomorphism attached to the log morphism. Note that this is equivalent to
an object over a scheme § of the log stack Logy,,, which is, by definition, a log
I-morphism from a fine saturated log scheme § to the log stack 9, , (see [23,
Proposition 5.9]).

There is another interchangeable description of the prestable log curve. From

S — My (3.2.2)

we obtain C by taking the fiber product of log stacks
cC — G,
S —— My,

and hence a log smooth, integral morphism
n:C—-S (3.2.3)

with n-pointed prestable curves (C/S,p = pi, ..., p,) satisfying the following. The
log structure Mc|csm on the m-smooth locus C*™ is isomorphic to the log structure
m*(Ms) @ D, Mp, where Mp, denotes the log structure standardly defined by the
smooth divisor p;.

The converse direction (3.2.3) = (3.2.2) is also true by [[14] 22].

An isomorphism between two n-pointed prestable log curve over § in the stack
Logy,, can be reinterpreted exactly as a pair of isomorphisms & : C — (',
hs : § — S’ of log schemes making a fiber product of log spaces

c ¢

Lo

hs
S — 8’

and satisfying hs = Ids.

From now on, C/S always means a pointed prestable log curves unless other-
wise stated.
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3.2.3 Generization maps

Let g be a node point of C_for s € §. There is a corresponding component N; = N
—/S
in the free monoid ME’/*

5.5 -

According to F. Kato [14],

Meg = Ms s @, N2, (3.2.4)
Here RHS of (3.2.4) is the push-out of a diagram

N, —— N?

l

MS,E’

where N; — N is the diagonal map and N, — My ; is the induced from ¢
in (3.2.1). The isomorphism (3.2.4) preserves the natural homomorphisms from
MS“; to Mc’q and Msj @Nq NZ.

In what follows, A, will denote the image of 1, := 1 € N, under the homo-
morphism N, — M; ;. Note that

A,#0

since ~1(0) = 0.

Adjacent to the node ¢ there are two generic points 7;, i = 1,2 and so we
obtain two generization maps /T/[c,q - /T/[c,ﬁ,-, which will be denoted by )(2’1. and
have explicit expressions:

Xoi: Mss @, N7 > M5 (3.2.5)

(m,(ay,az)) = m+ a;d,.
Since 4, # 0 and Mg’g is a toric monoid, observe that
XZ,] XXg,z : ms,i D, N? - MS,E X MS,E
is injective. Therefore we may identify the monoid MS, 5 O, N? with the image
{(my,my) € ﬂs,g X /\_/(S,g | my —my € ZA, in Mﬁ‘}}

(see [10]). This point of view indicates that a homomorphim to Mcg from a sheaf
of monoids on C_is determined by the restriction to the set of all generic or marked
points.
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3.2.4 Stable log maps

We recall stable log maps introduced by D. Abramovich, Q. Chen [1]; Q. Chen
[6]; and M. Gross, B. Siebert [[10]. Our presentation will closely follow [[10].

Let W, B be fine saturated log schemes and iy : W — B be a log smooth,
projective morphism. We assume that the log structure on W is induced from a log
structure on the Zariski site W.

Definition 3.2.1. A stable log map to W/B is a triple

(C/S,p). [ fs) (3.2.6)

as follows:

e (C/S,p) is a n-pointed prestable log curve.

o f (resp. fs) is a log morphism from C (resp. S ) to W (resp. B) fitting into a
commutative diagram of log morphisms

CLW

nl lﬂw (3.2.7)
s £, B

whose underlying pair (C/S,Pp), f, fs) is a S -family of n-pointed stable maps to
W/B.

An isomorphism between two stable log maps
(C/S,p, ), (C'/S",p". f)

over S — Bisdefined to be an isomorphism (4, kg ) between (C/S, p) and (C'/S’, p’)
in Log,, satisfying the compatibility

froh=f  foohs=fs
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as in diagram

N

S

S S’

Therefore we may define a B-stack of stable log maps to W/ B, which is shown
to be an algebraic stack locally of finite type over B (see [1} 6, 10]).

3.2.5 Class

Let NE(W) be the submonoid of H,(W,Z) generated by effective curve classes.
Let R be a subset of {1, ..., n}. Fix Z; € W,i € R which are strict closed log schemes
and fix global sections o : Mif — Zz, on Z.. We say that a stable log map (3.2.6)
is of class (g, B8, {0i}ier) if the following conditions are satisfied. The genus of C/S
is g; the stable map f has the curve class 8 € NE|(W); f(p;) C Z;; and finally the
equality - B

— ) "
pryo fop; =(fop)(o:)
of homomorphisms
(fo pi)‘lMif — Zs, i €R.

3.2.6 Types

Consider a stable log map (C/S, p, f) and let 5§ — S be a geometric point. For a
marked point p of Cs (i.e., p = p;|s for some i), we define u,, to be the composite

- — _
prof,: MW,J:(p) - Ms;®N — N.
At a node ¢, we define a homomorphism

g : Mwyq = Z
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by the equation

(@) 0 5, 0 Xg2)m) = (@) 0 f5, 0 xg)m) = ug(m)A, (3.2.8)

where 1;, 7, are generic points of two components of Cs adjacent to g and y,; :
Mys) = Mg, are the generization maps. Note that u, is determined up to
signidepending on the orderings of the two components of C.

Let ((C'/S’, p},....p,), f) be obtained from a base change S’ — § and let
§ > 8" — §.Then for p’ = p, g’ = g, note that 1, — A, under M&g - MS',E
and the types u,,, u, of f” coincide with the types u,, u, of f, respectively.

Remark 3.2.2. Note that, generally, for a sheaf P of monoids on C and a homo-
morphim from P — Mg, we can define u,, and u,,.

Remark 3.2.3. If q is a self-intersection point, then u, = 0 since My is a log

structure on a Zariski site. Also, if My, ) = Mp g, (s under 70, then u, = 0 by
the commutativity of (3.2.7).

3.2.7 Universality

Given a stable log map (3.2.6) we construct a universal one following [1}, 16} [10].
We proceed in three steps.

Characteristic level

There is a natural complex of abelian groups

1_[ My s n W) X n Ny

qeCy nd nelr(Cs qeC f‘d
& reriy
— Mg; — 0

where:
e The first homomorphism g; is defined by

81 = Z(Lfn(q) O Xq1 = (@) © Xq2 t Lg O Ug) © PI,
q
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for the homomorphism u, : My, iy — Z defined in (3.2.8). Here pr, is the

S ——2p D .
projection to the component My, @ and ¢, denotes the injection associated
to x-component.

e The second homomorphism g; is induced from the log map f : C/S — W/B
and the homomorphism N, = N — M ; sending 1, = 1 to 4,. This means

that
g = an” o pr; + Z/lqprq.
n q

Let O be the cokernel of g; and let Q5 be the saturation of the quotient image
of H,] MW,[(?‘]) X Hq Nq in Q?p Let

[g2]: Q5 — mS,i
be the induced homomorphism.

Definition 3.2.4. This Qs is called basic in [10] and minimal in [6, [1]. We call
M s and M 5 basic or minimal if [g,] is an isomorphism (i.e. the complex above
becomes exact).

We will use the latter terminology ‘minimal’ following [8] for more general
context. We remark that in [[15] non-degenerate case was treated (see §3.3.2|below
for details).

Remark 3.2.5. In [[10], by the existence of the stable log map (C/S, p, f), it was
shown that Qs is in fact a toric monoid. Therefore Q; can be recovered from its
dual

—v
Q! = {(Vyly) € Hn MVV,i(ﬁ) X Hq N(\I/ | Vg € Crs-ld,

_ (3.2.9)
Vir@ © Xa2 = Vi © Xq1 = lgu, as elements of Hom(My, f@» L)}

which is often easier to be computed than Q;.
Remark 3.2.6. When MW (g 1s free for every node g, there is another equiva-

lent description for Q. Choose an isomorphism MW, f¢p = N (unique up to or-
derings of the basis elements) for some nonnegative integer r, and then express
u, € Hom(My; ¢, Z) uniquely as

Ug = Ug) — Ug2, Ugi € Hom(sz(q),N),
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These components u,; do not depend upon the choices of isomorphisms. Now we
may describe Q as the saturated co-equalizer of

1_[ mwﬂm = l—[ mvv,}j(ﬁ) X l_l N, (3.2.10)

qu‘;d nelr(C); qu‘}d

where two homomorphisms are given by

Z(Lﬁi@ © Xq.i t g O Ugi) © pr,s i=1,2.
q

It is straightforward to check that this definition agrees with the first one.

Construction of M‘S“‘“

We will define a canonical sheaf /V;nm of monoids on the étale site of S such that

M?‘: = (; for every § — §. First note that for every o € Qy, there are pairs
(U, oy) of open étale neighborhoods U of 5 and functions oy : U — | |,cyy Ous
satisfying that oylyr = oy whenever (U’, o) is such a pair with an §-étale
morphism U’ — U. Now for any étale morphism V — S define M?IH(V) to be
the set of functions t : V — | |,cy O such that ¢ allows a collection {(U;, oy,)}
with a cover {U;} of V 'and oy,5 =tv) forv — U,. 4

It is clear that M;mn is a sheaf with a canonical isomorphism M?‘j‘ = Q; for
every 5. Note also that there is a canonical homomorphism

—C/s —min
M; —_— MS
Ms

sending 1, € N, to [¢,(1)] in My .
Let

—min —c/s

) _l—min
MC =T MS @ﬂilﬂg/i Mg 5
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then we obtain a natural commutative diagram of sheaf homomorphisms

—C/S
C
—min | \\_
R e | ————— -Me
—C/S
7T_1M§
l—min \ v
Mg 7 Ms.
Homomorphisms between characteristics
By the connectedness of C; and the fact that ”q|ImMB,- o = 0, the composite of
g s

—_— —_— —min | .
natural maps Mg 5 — Mwym — M is independent of the choices of 7.
Therefore we have a natural commuting diagram of homomorphisms

—mm

via MV w\

Mp £®

(3.2.11)

B

We define a homomorphism

——min

gen : f~ MW - M.

as follows. At a generic point n of a component of Cs, we take the natural one

—_ ——min . A
My = Mc;- Atanode g, we use the generization method to define a homo-
morphism

——min

—_— ——min ) ——min
MW,[(q) - Mg ; @y, N° C Mg s X MS,E

mi— ([Lﬁl(q) qu,l(m)], [Lflz(q) qu,Z(m)])
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—min | . . ——min .
Recall that Mg ; is a toric monoid so that M ; @y, N* can be viewed as a sub-

X —min ——min .
monoid of Mg ; X M; ;. At a marking p, take
— ——min
Upr )+ Mugp) = Mgz ®N.

At other closed points p’ of Cj, take the composite
— Xp — ——min
Mgy = Mwga = Mg
In fact, the generization map yx,, is an isomorphism since MW oy MCM; =
Ms,g is injective.
These maps can be glued since they are compatible with generization maps.
Therefore we obtain a commutative diagram of monoid-valued sheaves

——min

Mc
> N
Mec

f_lmw r

(3.2.12)

The diagram (3.2.12)) is compatible with (3.2.11)) under the natural homomor-
phisms.

This generization method is systematically written as a Proposition below. In
what follows, M is also said to be minimal if its associated My 1s minimal.

Proposition 3.2.7. ([10, Proposition 1.18]) Let (C/S, pi, ..., p) be a family of n-
pointed prestable curves and let P be a Zariski-site fs sheaf of toric monoids on
C with u,, : P,, — N. For every s € § and every node q of Cs, let u, : P, —
Z be a homomorphism. Assume that u,, u, are compatible with generizations,
respectively. Suppose that Ms, Mc be fs sheaves of toric monoids on S, C such
that

—C/S.p

Mc = MS @Mg/i.p ME B
s C

. ==CISp - . , ,
for some sharp homomorphism Mg — Mg, meaning that only invertible
elements are mapped to invertible elements. If there is a sharp homomorphism
P — M with type u, then there is a unique minimal fs sheaves of toric monoids

38



CHAPTER 3. DEGENERATION OF LOG STABLE MAPS

/\_/(?m, M?m on(C/S, p1, ..., pn) with a sharp homomorphism P — M?m with type
u. Moreover there are unique sharp homomorphisms M;nm — M, ﬂ?m — Mc
making the commutative diagram

P
Ve
s
-’
s
. # \
——min —_
c ~— - - - - = >/\/(C
1 min e
Y - M

Log morphisms
Let )
min _ ——min o
MS = MS XMS MS
with the homomorphism M‘S“i“ — Oy induced from the structure map Mg — Os.
Since [gz]‘l(Q) = 0, this pre-log structure is in fact a log structure, whose charac-

—min .
teristic is Mg . It is obvious that the projection M{" — M is a log homomor-
phism. Similarly, on C we define a log structure and a log homomorphism:

Mgﬂn = M?m XMC Mc - Mc.
By the very definitions of the above, there is a natural log morphism
Cmin = (g’ Mrgln)) — Smin = (g, Mgnin).
We construct the natural log lifts of diagrams (3.2.11)), (3.2.12) by the follow-

ing Lemma[3.2.§]

Lemma 3.2.8. For given two homomorphisms of log structures (M, 0;) — (M3, 03),
(My,05) = (M5,0; = O3) with a compatible M, — M, there is a unique lift
homomorphism (M,, 0,) — (My, O1) making a commuting diagram

(M, 01)

-
v
-

(Mz,()z/) (Ms,0))
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Proof. This follows from the fact M; = M x5 M. O

Now for c € C,w € W, b € B with ]_‘(c) =w, n(c) = s, tw(w) = b, we obtain a
commuting diagram of homomorphisms of log structures

(Mrcr‘lgl > OC,Z‘)

ST

(M, Owy)

(MC,E" OC,E‘)
(Mgl’ljn’ OS,S)
(MB,B’ OB,B) (MS,fa OS,§)~

Here the commutativity of the left back side square can be deduced from
Lemma (3.2.8).

Therefore we have constructed a minimal/basic stable log map ™" : (C™"/S™" p’) —
W/B with the same underlying stable map f and a log morphism 4 : C/S —
C™" /™ such that f = f™" o hand fs = ™™ o hg. The minimal/basic stable log
map and the morphism are unique up to unique isomorphism (see [ 10, Proposition
1.24]).

3.2.8 The works of Abramovich, Chen, Gross, and Siebert

The universal stable log maps are called basic in [10] and minimal in [6]. From
now on, all stable log maps are assumed to be minimal unless otherwise stated.

Theorem 3.2.9. [10, 6, I]] Suppose that the characteristic sheaf My is globally
generated. The moduli stack Mg,(,(W/ S, B) of stable log maps of type (g,B3,0) is a
DM-stack, proper over B, carrying a canonical virtual fundamental class.

Remark 3.2.10. We refer readers to [1} 16, [10] for weaker conditions of the log
structure My under which the above properness theorem were proven.

Let r: € — %K be the universal curve and let Ty, 5 denote the log tangent sheaf
of W relative to B. There is a canonical perfect obstruction theory relative to the
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stack M := Logm,, X rog. L0gB

R7.f*Tw;s)" — Lac/m

(for this particular form see [10, [15]).

3.3 Simple degenerations

In this section W/ B is the degeneration as in

3.3.1 Basic facts
We let X; = (x7) and X, = (x) in the local sense in what follows.
Lemma 3.3.1. Let (C/S, p, f) be a stable log map to W/B and let s € S.
1. Ifmwﬂq) =N, then u, = 0.
2. Ifmw,ﬂq) =~ N2, then us((ar, a)) = c4(ar — ay) for some c, € Z.

3. Ifﬂwﬂq) = N? with MWJ:(,—”) = N for some i = 1,2, then u, # 0.

Proof. (1) Both f,;’ OXgi - MW flg = M, i = 1,2, coincide with the homomorphism
N — M, inherited from s — Spec(k").

(2) This is immediate from u,((1,1)) = 0.

(3) Suppose f(ij1) € X, and let x| be a local regular function at f(q) defining
the divisor X,. Then f*(x,) is a local equation defining the component correspond-
ing to n; with some positive multiplicity. Hence ]T"((l ,0)) = [(0,¢,0)] € M, @y N2
(up to the isomorphisms of N?), which is +cA, as an element in Msj X Mg,i by

(3.2.5). Thus u,((1,0)) = £cd, # 0. O

In the case of Lemma [3.3.1](2), we call |c,| the contact order of the node.
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3.3.2 Non-degenerate case

In this subsection we consider the case § = s = Speck. Let (C/S, f) € Mg’o(Wo, Bo)
is non-degenerate, i.e.,]_”_l(D) c C™. Let ]_”_I(D) ={q;li=1,..,m}andletc...,c,
be the contact orders of f at g1, ..., g, (see Lemma@ (2)). They are nonzero by

Lemma[3.3.1/(3).
We claim that M, = N @ N where m’ := |C™| — m. Let

[ =LCM(cy, ...,cp)

and let [1,] denote ¢;(1) in ¢; : N = Mc; — M,. If 7 and 17’ are connected in
C\ /7' (D), note [1,] = [1,] by Lemma (1) and the definition of the minimal
MS. Also note that

[1,] = ¢4, (3.3.1)

whenever ¢; is contained in the component associated to 1. Therefore combined
with the connectedness of C,

[117] = [171’] (3.3.2)

for every components 1,7’ of C. Thus, (3.3.1)) and (3.3.2) together with Lemma
(1) & (2) implies that pr =~ R x Z" for the quotient R of Z" divided
by relations ¢;1,, = ¢;1,,. We note that R® is isomorphic to Z using the exact

sequence

[ (%)

17 0

0 Zm—l ;

Zm

in which ¢, are defined by

1,
¢1(1,) = cily, — cinly,, and ¢a(1,,) = —=.

1

By the saturation of M, we conclude the following description:

——C/s

C/s A (L0)
M, =TI N, @ N7 ——

M;=NeN" «—— Mz,=N

where [; = [/c;.
This shows that for the non-degenerate f, the minimality/basicness of f coin-
cides with the minimality in the sense of [[15) §5.2].

42



CHAPTER 3. DEGENERATION OF LOG STABLE MAPS

3.3.3 Splitting

For each i = 1,2, let My, denote the divisorial log structure associated to the
divisor X, N X, in X,. There is a canonical homomorphism LX My — LX My, .
Under thls homomorphlsm

— =
My, = N&”Kz = Ly, My, = NXl @ NleXZ'

Consider a stable log map (C/S, p, f) whose underlying stable map is a join
of two maps ]_C_, i =1,2, that is:

bt (C p) ( ~1 {pj}jer {P] ]EM) I_Iq] ]EM(Cza {pj}]eNza {pi}jEM) and
¢ (€)X S, =],

We include the case when C, = 0 or C, = 0. For i = 1,2, we will construct a log
structure C;/S ; on the pointed possibly disconnected prestable curve (C,/S, {p}jen;» (D'} jem)
over § and a minimal/basic stable log map f; from C;/S; to X; whose underlying

stable map is exactly f -

Let § — S be a geometric point and let §; be two copies of §. For a node
qe€ in we denote

u; = Ug o LX Mx @) - MWO f@) - Z. (333)
By Proposition we obtain the monoid M;, minimal with respect to data

(T My s g € (. (3.3.4)

Note that M is a toric monoid since it is a finitely generated saturated submonoid

/S. R
of M ;. Note also that there is a natural homomorphism MS’ . — M, from the
construction, hence we can define a sheaf of monoids on C;

Is;
C./S; {P/ JEN;

(ME' - O i aisi Ty, MY,)@@N

i 7[“ ] ME!
JjeM

M, =

where Np;_ is the constant sheaf N supported on pz. and r; : C; — S is the projec-
tion.
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By informally considering local equations x; = 0 for X; and x, = O for X, at
f(pj) € W, itis convenient to write

MWOai(Pj) = le (&) Nxz and MXI"L(I’;) = in/,
where i’ € {1,2} with i’ # i. Define
i My, g iy = N
by the equation
Ug; = Upl O PIy, = U2 O P (3.3.5)

where pr,is the projection N, & N,, — N,.. We assume that with respect to the
order selecting the second branch from C,, the equation (3.3.3)) is fulfilled.

Define a natural homomorphism Mc, — (' Mc by the generization method
of

quC;"d Nq

BN

My —— M; ;.

together with the composite

— — facet et — Rhror
Mcl, =NeM; > N o M;, > N> &y, Ms; = e Mcly.
J l’j =i J

By Proposition [3.2.7, we derive a homomorphism f” making a commutative
diagram of sharp sheaf homomorphisms

b

_ £ _
My —===M, . (3.3.6)

—I

]

-1,-1"A1 -1Aq
]_Ci L&_ MW —_— Lgi MC

In fact we need an extra treatment at p’] We simply define (f ") s (f TIMX,) p
—l J —l J

(MC,,) s =N M,,, to be the sum of u,; and the composite
T M)y = (f My = M,

44



CHAPTER 3. DEGENERATION OF LOG STABLE MAPS

of the generization followed by the natural one in the construction of M,. where
n is the generic point of the curve component containing p’j We check the com-
mutativity at such points by the following diagram:

Mg pna  —— Ny My, (uy(a), [x(@))

l !

M sigps (0s@) —— N2 @ My, (0,u, (@), y(@)]).

ZisZir
Now we define the log structures on s, and C. by fiber products as follows:
MS[ = MS,- XMS Ms, MC,« = MC,- X@ﬂc L*Q,«MC

By (3:3.6) and Lemma [3.2.8| we obtain f making the commutative diagram, for
every ¢ € Qi‘f, ,

f
Myx,f @ Ox.. @)~ = == Mc,, Oc) (3.3.7)

o,

(M, f@» Ox, L_(E)) — (Mci, Oc, )
Therefore, we get two universal stable log maps
(Cl/Sl’p17]€Al’pl]’]€ J’ﬁ) (338)

to X; with contact orders c; at p’}

3.3.4 Gluing

Conversely, starting from given two stable log maps (3.3.8)) we want to glue them
in order to get a stable log map to Wj,. To do so, we will need some additional data
which will be specified later.

Let pr; : My,, — Mx,, = N,, and recall that X; = (x;). First note that (3.3.3)
and Lemma (3.3.1)) determine type u, for g € (C i)f;d, that is,

i i
ug = u, opr,, —u,(l)pr, .
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For a gluing node g; € C, N C,, define
Ug 1= Uyl O Pry, = Uy OPI,.

Now on Cj, we have data ( f‘lmwo, Uy q € Q‘;d), hence obtain Mg minimal
with respect to the data.

Lemma 3.3.2. The monoid M; is a toric monoid with a facet ﬂgl X M§2.

Proof. Let l, = LCM(c;,i € M)/c,. It is straightforward to see that M is the
saturation of a quotient of

P—

M = M, x 1—[ N,, x M;, x 1_[ N,, x l_[ N,

meCon(C, ) meCon(C, ;) q€C, sNCy
Consider a homomorphism -
ol M, - N

determined by that the kernel of o is Ml X Mgz and ooy, = X1 : Nigg,, = N,
oln, = X, : N, — N. Note that o factors through a homomorphism M; —> N,
which is also denoted by o. Since the kernel of o is a toric monoid ﬂil X Mz,
MSX must be trivial and hence M; is also a toric monoid. Since Mil X M@ is the
kernel of o € M?, it is a face. It is easy to check that o is a 1-dimensional ex-
tremal ray of M\: so that M§l X M;Z is a facet. O

Note that there are natural commuting homomorphisms

—~—CIs — —

M Ms ~——M,
I-/S. —[

MS 1 1 - . MS L

Here /\_/(l7 - MS is well-defined via M—,l. - M with any choice of a component
of C_since u, = 0 on M,. Therefore by the generization method we obtain a
commuting diagram of homomorphisms

Me —— My,

I I

MS<— M},
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Lemma 3.3.3. The homomorphism MWO’ flap = M%, defined by the generiza-
tion, coincides with the one through Msi ®N.

Proof.

/\_/Iwo,ﬂ@ = sz,[z(q) ® My, J,@ = Ny, ®Ny, 3 (a,b)
— — —b —b
— (MSZ @ NX) @ (MSI @ Ny) B/ (f2 OX(a)’ an’ fl OX(b)7 cqb)
— —b —b
— M, @n N, ®N,) 5 (f) 0 x(b) + f5 0 x(@), (cya, ¢4b)) — — = ()
There are three possible cases.

Case 1. When ¢ is non-degnerate, then (x) = (0, (c,a, ¢,b)). On the other hand,
0,b)1,, = (a,0)1,, = c,(b - a)d, in M. Hence

() = ((a,0)1,,,(0,b)1,,)
in M, x M,.
Case 2. When 7y, 17, are mapped into X, N X,,, (x) = ((0,b)1,, + (a,0)1,, +
cqgady, (0,b)1,, + (a,0)1,, + c,bA,). Since (a, b)1,, — (a,b)1,, = c,(b - a)d,,

() = ((a, D)1y, (a, b)1,,)

Case 3. When 1, is mapped into X, N X,, (*) = ((a,0)1,, + c,ad,, (a,0)1,, +
cgbA,). Since (a, b)1,, — (a,0)1,, = c,(b - a)d,,

() = ((a,0)1y,, (a, D)1y,)

O

Suppose that we are given the following additional data: a log structure Mg
with the characteristic Mg and a commutative diagram of log homomorphisms
(denoted by dotted arrows)

C/S C/S
€S pMES _ o My~ - M,
T A

S.4;
T |
I

|
C./S.
M? N — MS,‘
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where solid arrows are already determined. This in turn defines a log structure
Mc. We will construct a natural log homomorphism f* My, — Mc. On the way

we will adjust the homomorphism Mg/qi - MS as in Proposition|3.3.4

Note that there is a natural inclusion M” ‘1MC/ 5 which in
turn induces a homomorphism M¢, — LC MC This will be used in the commuta-
tive diagram below. Since

p/}JEA {p }jEJ

£ ALED o AAEP * % AAED
1y My, = My, Doy tx T, M
we obtain a commutative diagram

* gp gp
—_—
LC,~MC M

M f Mgp -~ ]_C;kMip
fix Ty My =0,

and hence a natural homomorphism from
* s %
te, S Mw, = teMc

Therefore a homomorphism f* My, — Mc is well-defined by the above except
at the gluing nodes q;, j € J. It is straightforward to check that this is compatible
with the one in the characteristic level given by the generization method.

Proposition 3.3.4. Assume that S = SpecA for a local noetherian henselian ring
A. At the gluing node q;, there exist log homomorphisms M == My, je Jand
hg; : M, flap = M, satisfying the followings.
1. They make the commutative diagram

hy.

9j
MWO,[(qj) - Mc!qj

]

MB,O —— MS,S
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where § is the unique closed point in S.
2. They induce two given homomorphisms My, ; i, = M, as in diagram
ity PEj

@37

Furthermore, the such homomorphisms hy, @ Mwyrqp = Mcg; and the re-

/ Cq,

striction of M**/ - MS to M = are unlquely determined, where M’
is the subsheaf of M* = conszstmg 0f sections whose c,,-th roots exist at least

locally.

Proof. Let R be the henselization of A[x, y]/(xy). We need to define a log homo-
morphism £ in the diagram

h
RX @ N? = [ Mg pigp — — > M ea (s Mss = RX @ N2 @ x gy (A% & M 5)
qu
(idg,A) T (O‘idMg)
AXeN= f*Mgy Mg =A@ Mg s

hy,

The homomorphism # restricted to each branch is already given so that

h(ly) = ((negl, (LT o (L)),
hew) = (el (LT o x(1y)

for some v; € R*/(y), v, € R*/(x). Therefore & is determined by lifts ¥; of v; in R*.
However, the commutativity of the diagram requires that the product vV, must be
in A*. We show that such lifts are unique as follows. Let x’ = x¥;, y' = y¥, in R.
Then according to [21} §3.B] and [14, Lemma 2.1], there are unique u;,u, € R*
such that u;u, € A* and x’ = xu;,y’ = yu, € R. This analysis shows that /# can be
uniquely determined. Note also that making the square diagram above commutes
for a given hj;,, the homomorphism Mg/ S Mg can be constructed and is, more-

over, uniquely determined when it is restrlcted to M 5645 . It is straightforward to
check that /4 preserves the structure maps of log structures |
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3.4 Proof of Theorem 3.1.1

3.4.1 The splitting stack

For a fine log scheme S, denote by Logs the stack over S whose fiberover 7 — S
is the groupoid of log morphisms 7" — § over T — S and whose homomorphisms
between T — S and 7’ — S are isomorphisms & : T — T’ over S such that
h = idy. The fibered category Logs is an algebraic stack locally of finite presen-
tation over S (see [23 Theorem 1.1]). Let 7 ors be the open substack of Logs
classifying fs log schemes over S.

Definition 3.4.1. Denote by Logiﬁl the category fibered in groupoids over (Sch/Spec(k))
whose fiber over T — Spec(k) is the groupoid of triples (T, h, ¥r) where (T, h :
Ny ©O; — My) is an object in T ory: and Fr is a subsheaf of My satisfying that:

1. ForeveryteT, ?T,,- - MT,,- is a facet.

2. For the log structure a : My — Or, a),, ., = 0.

3. ForeveryteT,{frip)®zQ = MT,,- ® Q where p is the image of 1 under
the induced homomorphism h; : Nr; — My; and (Fr;, p) is the monoid
generated by Fr;and p.

Note that by Condition 2)), (¥7, “\ﬁ) is also a log structure on 7.

Lemma 3.4.2. [. The fibered category Logﬂsﬁ] is a zero pure-dimensional al-
gebraic stack over Spec(k).

2. The forgetful morphism Log]?:l — Logy: is representable and proper.

Proof. It is straightforward to check that Log;gl is a stack over Spec(k). We apply
[3, Lemma C.5] to prove (1) and (2). Let T — 7 ory+ be the morphism obtained
from a log morphims 7' — Spec(k') together with its toric chart

Nlr Or
Nr & ]K; — My
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(in particular, Q is a toric monoid).
For p € Q"[1],1et Q, := {g € Q| p(q) = 0} be the facet of Q associated to p
and let p be the image of 1 under the homomorphism N — Q.

Lemma 3.4.3. The fiber product T Xq, , Logf:;l is representable by a T - scheme
L peoviirppzo Tpy where T, is the closed subscheme of T defined by the ideal gen-
erated by Q/Q, under the composition Qr — My — Or.

Proof. We first show that there is a natural 7-morphism from [[ 7, to T’ Xg,,,
.Eogl‘gl. Consider pre-log structure Q7 — h;lOT — Or,onT,, whereh, : T, > T.
There is the natural morphism f of sheaves of monoids on T ,.

f:0r— 07— 0%
We can check f(Q,) C Q_“T is a facet. We define subsheaf F C QfF as the fibered
product

JT — 07
fQ)—07
Then (F — Q% « ky ®N) is an object of T X7, Log}® (T},)

Conversely, we show that there is a natural T-morphism from 7' X, , Logﬂiﬂ’l
to [[, T,. Suppose that we are given h : § — T, Ny @ ky — Mg < F5 such
that Ny ® O; — M is the pull-back of Ny @ k7. — My by h. Consider following
morphism of monoids by choosing any section A~' My — h™' My,

g: h_l/\_/(T - ]’l_lMT - (h_lMT)a = MS - MS

We can check g‘l(?g) is a facet not containing p. Hence g‘l(?s) is equal to 7,
for some p. Therefore, i : S — T factors thoughS - 7, - T.

It’s straightforward to check that above two natural morphisms are inverse to
each other.

O

This shows the proof of Lemma 3.4.2.
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3.4.2 Graphs

Consider a morphism S — 7 oru,,, X7or, Log]‘;‘il and suppose that S is a connected

scheme. Let p, € m:[l] such that Kerp; = ?_"S and let s be a specialization of
¢ € T. Then by Lemma ?? (2) we have the diagram

sP

0 — (F, )" MLy 0
0—= (Fo)?” ML z——0

so that there is a canonical isomorphism M, /¥, = M./F.. Therefore for s, s" € S,
via cospecialization, canonically

N = Ms/ﬁ = MS'/?;‘"

We can associate a graph I for a geometric point § — S as follows. Let C; be
the curve over the point § induced from the morphism § — 7 ora,,, X7on, LOg;EI'
We call a node e of Cj; a splitting node if the induced homomorphism

Xl : N, = M?/ﬁ - M; > M;/Fs=N

is nonzero (i.e., [, # 0). Using a local chart, we see that the integer [/, is well-
defined, independent of the choices of 5. Now define I" be the dual graph associ-
ated to the curve obtained smoothing all non-splitting nodes of C;. This graph I is
independent of the choices of a geometric point § — S. We say it is (+)-orientable
if there exists an assignment r : V(I') — {+} such that {r(v), 7(v')} = {x} when-
ever (v,v") € E(I'). In particular, there is no loops in E(I') if I is orientable. Let
Ir N, — Mg/%g and ¢, = Ir/l,. We say that if ¢, € N for every e € E(I'), then I"
with [, [, 1s divisible. We also give a genus and marking decorations, g,, n,.

Assume that the decorated graph I" with {/, [, g.,n. : e} is orientable and di-
visible. These decorations [r, [,, g., n. are well-defined, independent of the choices
of 5. Denote by Br the open and closed substack of 7 orm,, X7on, £0g;§1 whose
associated graph is the decorated graph I'.

Let
B = ]_[ B
r
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There is uniquely an open and closed substack My of T orm,, X7on, T 0r: such
that B — T orw,, X7, T ory: factored through a surjective morphism 8 — 9.
Define

spl ,_ spl . _ spl
7(1- = Br XM (](0, K = U?{r .
r

Then canonically
1
K = (T orm,, Xgon, L0g2) X, Ko

since we can check that if («, 8) is an object of (T oru,,, X7or, Logiﬁl) Xan, Ko @ 18
an object of Br C T orm,, X7on, Log;’l.
Define an assignment r : V — {1, 2} by the rule r(v) = i if the composite

in inc le © Nxz pr MWosf(V) — M; e N

is nonzero. The following Lemma shows that the map r is well-defined. Denote
by (p,log x; ® ¢,) the value of 1 under the composite.

Lemma 3.4.4. For each component n of Cs, {p,logx; ® e;,) # 0 if and only if
(0, 1og x:i) ® ey) = 0 for i = 1,2. Furthermore, these imply f(77) € X,.

Proof. Since ﬂj ® R is a strictly convex rational cone, there is no small plane
passing through p. Since p(p) # 0, {p,logx; ® e, + log x,;) ® e;) > 0. Repre-
sent p by [],(a,,B8,) X [1v, € [ N with certain relation at nodes g. Suppose that
(p,log x;®e,) > 0 for both i = 1, 2. For such , the relation is that a,,+, = a,y +5,/
so that we can vary a,, 8, on the line x + y =constant. This proves the first state-
ment. For the second statement, note that if f(77) ¢ X, then logx; ® ¢, = 0 in

M;. o
By using the fiber product

spl OT
KPP —— Ko

r

|

B r —Mr E}RO
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let

Eg /s := 0rEgq/m,-
This defines a perfect obstruction theory for K relative to B (see [4, Theorem
4.5 & Proposition 7.1]).

Lemma 3.4.5. Under the projective morphisms oo,
D I, [Br] = [Mo].
T
Proof. Consider the following fibered diagram
T orm,, X7or, Log;j-l —T orm,, X7on, L0g —=T ory,,

| | |

Log” : 7 Logy: T ory

Since M, , is log smooth over Spec(k), & is smooth by [23, Theorem 4.6 (ii)].
Hence, it’s enough to prove the statement for f : Log,” 'S Logy:.

First note that locally we may assume that any morphism 77 — 7 ory+ is of
form T = Spec(k[Q]/(p)) with chart N — Q, 1 — p, where (p) is the ideal of
k[Q] generated by p # 0. The associated reduced scheme is the union of toric
divisors T, of Spec(k[Q]) with p(p) # 0. For some positive integer m, mp is in the
sum of Q,, ¥p. Note that the hypersurface associated to mp of Spec(k[Q]) has the
multiplicity m[p] with respect to the irreducible component Spec(k[Q,]) of the
hypersurface, where [p] is the integer in Q/Q, = N associated to p. O

Consider By := Br x; Spec(k[x]/ (x)) in order to have the degree-1 induced
morphism [ [ B — My. Now by Theorem 5.0.1 of [7] (see also Proposition 5.29
of [19]), under the projective morphisms o,

Z Ir(or) [ Kr, Exyn.1 = [Kos Ex, o] (3.4.1)
T

3.4.3 Gluing of underlying maps
Fix a graph I" and an element 7 € Sgr), let

7(1) = Mgv,nv,ueu (Xv’ﬁv)
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where e runs for e = (v,V") for some v/ € V(I'). Let ev, ,, be the evaluation map
K, — D at the relative marking 7,. Define a stack @v K., as the fiber product

@v 7(" - Hv 7(\/ (342)
[1.eve l/ l He:(v,v’)(e"v,rg Xevy z,)

DED - DED s pEMD

We define a natural perfect obstruction theory on @v K, relative to [ [, Logm
as follows. Over @ﬂ(v, there is a universal curve C joined by two universal
curves €, associated to the universal curve over K. Let f be the universal map
C - W, lety, : § — € the inclusion, let ¢, : @v K, — C be the section
associated to the nodes corresponding to e. There is a natural sheaf epimorphism

gy, y+1

®(Lg ) f, T;v - ®(g,)ev;Tp
(&) = (D(Evese)e

where D(&,) is the part of &, tangent along D. If we denote & the Kernel of the
above epimorphism, we obtain a homomorphism of distinguished triangles

eV*LDE(F)/D2E(F) [— 1] —_— u*EH K"/Logl'l‘ﬂ?gv,nvﬂ (Rﬂ'*(g)v
L@ K,/ T1 Ky [-1] M*LH Ko/ TT Logmy, 41 L@ K/ T1 Logwm

gy,hy+1

where
= &,(R(m,). f;T§)".

By the diagram chasing, it is straightforward to check that (R7.E)" — Lk, 11 £ogu
&

EH K,/ Logrim

gviny+1

vy +1

is a perfect obstruction theory. By the functoriality of [4, Proposition 5.10] we
conclude that

() Ko Br.©'1 = A | [ 1K, RELLTE (3.4.3)

3.4.4 Gluing of log structures

Define K R Y e " by choosing an order on the set of the splitting nodes. Note
that it’s principal Sgr)-bundle.
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By forgetting some data, we have the commuting diagram of natural mor-
phisms

7 OK,

vl |

Br [T Logm,,.,..
N lv,
Logrim,, .

Lemma 3.4.6.  I. The morphism V' is étale.
2. The morphism  is DM-type and smooth.

3.
* ~ ¥ TRET)
v L%r/&)gn~JJegv,,,v+1 =¢ 1—[ eveND/x
e

. . 5 [, ce
4. The morphism ¢ is DM-type and étale of degree =

Proof. For (I): This is clear by considering the lifting criterion for formally étale
morphisms.

For (2): First note that ¢ is DM-type since there is no infinitesimal automor-
phisms o of a geometric point of By with ¥ (o) = id. This implies that ¢ is DM-
type. Now to prove i is smooth, it is enough to show ¢ is formally smooth since
it is locally of finite presentation. The corresponding lifting property of ¥ can be
checked by considering charts of log morphisms. Let I be a nilpotent ideal of a
finitely generated ring A over k and let S = Spec(A/I). We may assume that there
is a chart

C/S

\/

of Mg/ S5 Mg « No O5. By Definition , the liftings of log structure on
M uniquely exists. It is also obvious that Mg/ * > Mg and Mg «— M, have lifts
(may not be unique).
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For (3)): Since N;)/X@

is also trivial bundle. Let (C/S,Ng @ O LA Mg <L Mg/ S) be an object of B over
S. The isomorphism set of the lifting to S[e] := S pec(Os[€]/€?) is canonically

is trivial bundle, it’s enough to show that Lyj s/ £oem

gv.ny+1

isomorphic to the free Og-module whose basis {3,} is described as follows:

(Clel/S[€]. Nsiq ® Oy [€] - Msle]l & ME[e])

where £ is the trivial extension and j, is the homomorphism determined by
following condition. For each splitting node g, there is the canonical subsheaf
N, C Mg/ 5 such that N, =N®O;. Let 1, € N,[€] be a primitive element. Then
Je 1s the homomorphism which satisfy that: j.(1,) = j(1,) for g # e, j.(1,) =
J(1,)(1 + €) for g = e. We can check that {8,} is well-defined. This show the proof
of (3)

For @)): The proof of (1) and Proposition [3.3.4] shows that ¢ is formally étale
and hence it 1s étale. Now we count the degree of ¢. Let S = Spec(k). By con-
sidering charts, we note that the homomorphisms M5 — Mg « M, modulo
Mg/ Sv M are determined by homomorphism N, — k*, 1 — {,, N, — k*,
1 — ¢ with ;* = £. By an isomorphism of Mg, we may let £ = 1. There are still
remained isomorphisms of Mg which form a multiplicative group {r € k* : ¢/ = 1}.
This group acts on the set of homomorphisms ({,). by {, — t{,. This shows that
the degree of ¢ is ([ [, c.)/Ir. |

Let

E = ¢" (R, E)"

7~(sz/ [1 Logom

gyany+1

By (@) of Lemma[3.4.6] E,klfpl /T £ogm,,, ., 152 perfect obstruction theory relative to

[T Logm,,,,.. and hence by the very definition of virtual fundamental classes,

0'1() Ko Rr8)'1 = 1K B 1 g - (3.4.4)

gv,ny+1

By (@) & (@) of Lemma[3.4.6] we get the exact triangle

E -

K/ 11 Logm - E7~<F’”/‘Br = V' L/ 1 Logu (1]

gy ny+1 gviny+l

Therefore,
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(K", Eon 1= 1K Egn ] (3.4.5)

/11 Logm

gy ny+l1

3.4.5 The conclusion

Now combining (3.4.1), (3.4.3), (3.4.4), (3.4.3)), we obtain Theorem This
part is standard (see [2I],[S]]).

M % l m "s
[ Tlereion= Y ooden ] Jureionni®
(MenWo B icpa] recianvg VDL

i€[n]

D E{ e eg(| |wiev; (%)H[QK

I'eQ(g,N,B) i€[n]

Y, e ex ] Jorevion [ | Qlenial xensn] ik

TeQ(g.N,B) ecE)

L - (5
= >, Gy [ f[MM(XUW]_[w,- evi, 00| | evi@i™.

TeQ(g.N.B) (j,)e€ll,...ckH*(D)}ED i€N, ecE,
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