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Abstract
Geometry of moduli space of stable

maps and degeneration

Hyenho Lho

Department of Mathematical Sciences
The Graduate School

Seoul National University

We study geometry of moduli space of holomorphic maps from curves to
projective scheme through various compactifications. Most famous one is mod-
uli space of stable maps introduced by Kontsevich. When genus is one and tar-
get space is projective space, main component of moduli space of stable maps
is nonsingular. Vakil and Zinger found some desingularization via modular blow
ups. Kim introduced log stable maps with target expansions which gives another
desingularization of moduli space of stable maps. We compare theses two desin-
gularization. Also, Gross-Seibert and Abramovich-Chen defined logarithmic sta-
ble maps without target expansions. Using these moduli space, one can define log
Gromov-Witten invariants. We prove the degeneration formula of log Gromov-
Witten invariants.

Key words: stable map, logarithmic structure, Gromov-Witten invariant
Student Number: 2008-20284
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Chapter 1

Introduction

In physics, the number of rational curves in calabi-yau manifold, which is called
Gromov-Witten invariant, is very important. In mathematics, this invariant can
be defined by intersection theory on the moduli space of stable maps introduced
by Kontsevich. More precisely, we can define the virtual fundamental class of
expected dimension through natural perfect obstruction theory coming from de-
formation theory of the moduli space of stable maps.

When X is quintic Calabi-Yau threefold in P4, virtual fundamental class of the
moduli space of stable maps with target X is same as Euler class of certain com-
plex of vector bundles in the moduli space of stable maps with target P4. In genus
0 case, the complex of vector bundles is actually vector bundle. But in higher
genus case, this is no longer true. This is due to some higher genus components
contracted to point. When genus is one, there are two ways to resolve this prob-
lems. First way done by Vakil and Zinger[27] is to desingularize the moduli space
of stable maps with target P4 so that the complex of vector bundle become a vector
bundle. Second ways done by Kim[15] is to define the new moduli space contain-
ing more information which resolve the problem of contraction of higher genus
component. Each method gives new Gromov-Witten type invariants. These two
spaces are desingularization of the moduli space of stable maps. In chapter 2, we
define these two space and study how they are related.

Even if we defined Gromov-Witten invariants, It is hard to actually compute
them in general. There are several techniques to reduce to more simple one. One
method is degeneration method. Roughly, we degenerate target X into X′ which
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CHAPTER 1. INTRODUCTION

consists of two components X1 and X2, and prove the formula relating Gromov-
Witten invariant of X and Gromov-Witten invariant of X1 and X2. In chapter 3, we
prove the degeneration formula for log Gromov-Witten invariants introduced by
Gross-Seibert [10] and Abramovich-Chen[1].
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Chapter 2

Comparison of two
desingularizations of moduli space
of stable maps

2.1 Introduction

The Kontsevich’s moduli space of stable maps Mg,k(X, d) is a moduli space which
parametrizes maps from k-marked nodal curve of arithmetic genus g to projec-
tive variety X satisfying stability conditions. See [9] for precise definitions and
properties. In this paper we only consider Kontsevich’s moduli space of elliptic
stable maps M1,0(Pn, d). M1,0(Pn, d) is known to have several components. We call
the component parametrizing elliptic stable maps whose domain curve have non-
contracted elliptic subcurves the main component. We denote the main component
of M1,0(Pn, d) as M1,0(Pn, d)0. It is known that M1,0(Pn, d)0 is singular.

Recently many birational model of M1,0(Pn, d)0 have been introduced by many
authors. In [27], Vakil and Zinger found a canonical desingularization M̃1,0(Pn, d)0

of M1,0(Pn, d)0 by blowing-up M1,0(Pn, d)0. In [15], Kim introduced another desin-
gularization of M1,0(Pn, d)0 called the moduli space of logarithmic stable maps
by using log structures. We denote this space as M

log,ch
1,0 (Pn, d). In [20], Marian,

Oprea and Pandharipande constructed moduli space of stable quotients denoted
by Qg(Pn, d). They defined a moduli space of stable quotients of the rank n trivial
sheaf on nodal curves. They also proved that when the genus is 1, Q1(Pn, d) is a
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MODULI SPACE OF STABLE MAPS

smooth Delign-Mumford stack. So this gives another smooth birational model. In
[29], Viscardi constructed a moduli space of (m)-stable maps denoted by M

(m)
1,k (Pn, d).

He defined a moduli space using (m)-stable curves which was introduced by
Smyth [26]. He also proved M

(m)
1,k (Pn, d) is smooth if d + k ≤ m ≤ 5.

In general, it is not known how these birational moduli spaces are related to
each others. In this paper, we compare Vakil-Zinger’s desingularization and the
moduli space of logarithmic stable mpas. We show that M

log,ch
1,0 (Pn, 3) can be ob-

tained by blowing up M̃1,0(Pn, 3)0 along the locus
∑

2, Γ2,
∑

1, Γ1.∑
1 is the closure of the locus of M1,0(Pn, d)0 parametrizing stable maps such

that their domain curves consist of a elliptic component of the degree 0 and a
rational component of the degree 3 and the morphism restricted to the rational
component has ramification order 3 at the nodal point.∑

2 is the closure of the locus of M1,0(Pn, d)0 parametrizing stable maps such
that their domain curves consist of a elliptic component of the degree 0, and two
rational components with the degree 1,2, each meeting the elliptic component at
one point and the morphism restricted to degree 2 rational component has ramifi-
cation order 2 at the nodal point.

Γ1 is the closure of the locus of M1,0(Pn, d)0 parametrizing stable maps such
that their domain curves consist of a elliptic component of the degree 0 and a
rational component of the degree three, and there exists a smooth point q on the
rational component such that p, q go to same point, where p is the node point.

Γ2 is the closure of the locus of M1,0(Pn, d)0 parametrizing stable maps such
that their domain curves consist of a elliptic component of the degree 0 and two
rational components with the degree 1, 2, each meeting the elliptic component at
one point and there exists smooth point q on degree 2 rational component such
that p, q go to same point where p is nodal point on degree 2 rational component.∑

1,
∑

2,Γ1,Γ2 are proper transforms of
∑

1,
∑

2,Γ1,Γ2 .
The outline of this paper is as follows. In section 2, we give some prelimi-

naries. In section 3, we present an example of a degeneration where a nontrivial
elliptic logarithmic stable map occurs. In section 4, we calculate the fiber of the
natural morphism from the moduli space of admissible stable maps to the Kont-
sevich’s moduli space of stable maps. In section 5, we prove two moduli spaces
are equal if the degree is 2. In section 6, we describe etale charts of M1,0(Pn, 3)0

explicitly and by blowing up suitable subschemes, we obtain
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Theorem 2.1.1. M
log,ch
1,0 (Pn, 3) can be obtained by blowing-up M̃1,0(Pn, 3)0 along

the locus
∑

2, Γ2,
∑

1, Γ1.

2.2 Preliminaries

In this section we introduce some notations. We also briefly recall some defini-
tions and properties of Vakil-Zinger’s desingularization and the moduli space of
logarithmic stable maps.

2.2.1 Notations

A dual graph of domain curves

In this paper we only consider connected curves of arithmetic genus 1. Note that
every connected curve of arithmetic genus 1 has the unique minimal subcurve of
arithmetic genus 1. we give names to this subcurve.

Definition 2.2.1. Let C be connected curve of arithmetic genus 1. Let C′ be the
minimal subcurve of arithmetic genus 1 of C. We call C′ the essential part of C.

For every nodal curve, we can associate a graph called the dual graph. Irre-
ducible components of the nodal curve correspond to vertices of the graph. And
nodal points of nodal curve correspond to edges of graph.

If curve C is connected curve of arithmetic genus 1 whose essential part is
irreducible curve, we can represent its dual graph as following. Suppose C has 6
irreducible components E, C1, C2, B1, B2, B3. E is a smooth curve of arithmetic
genus 1. Two smooth rational components C1, C2 are connected to E. And three
smooth rational components B1, B2, B3 are connected to C1. Then we can represent
the dual graph of C as E[C1[B1, B2, B3],C2]. In this case, we say C is of the type
E[C1[B1, B2, B3],C2]. We denote the intersection point of E and C1 as c1. And we
denote intersection point of C1 and B1 as b1 and so on.
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Furthermore, if a curve C is the domain curve of the Kontsevich’s moduli
space of elliptic stable maps, we record information of the degree in the parenthe-
sis. For example, if we say that C is of the type E(0)[B1(0)[C1(1),C2(2)]], then the
dual graph of C is represented as E[B1[C1,C2]] and the degrees of maps restricted
to E, B1, C1, C2 are 0, 0, 1, 2, respectively.

The expanded target

Let Pn be a n-dimensional projective space. We define Pn(1) to be (Blc(0)P
n)
⋃
Pn.

Here c(0) is a point in Pn. And Blc(0)P
n and Pn are glued along D(1). In Blc(0)P

n,
D(1) is the exceptional divisor. And in Pn, D(1) is a hyperplane. We can give the
linear order to the set of irreducible components of Pn(1) such that component
corresponding to Pn is the largest one. We denote the irreducible components of
Pn(1) by Pn

1, Pn
2 according to this order. i.e. Pn

2 is the largest one.
We define Pn(2) to be (Blc(1)P

n(1))
⋃
Pn. Here c(1) is a point in Pn

2 not contained
in D(1). And Blc(1)P

n(1) and Pn are glued along D(2). In Blc(0)P
n(1), D(2) is the

exceptional divisor. And in Pn, D(2) is a hyperplane. We can give the linear order
to the set of irreducible components of Pn(2) such that component corresponding
to Pn is the largest one. We denote the irreducible components of Pn(2) by Pn

1, Pn
2,

Pn
3 according to this order. i.e. Pn

3 is the largest one.
In this way, we define Pn(k), Pn

1, Pn
2, · · · , Pn

k+1, D(1), D(2), · · · , D(k) inductively.
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The sequence of blow up

Let X be an algebraic scheme. Let V1, V2, · · · , Vn be subschemes of X. When we
say that we blow up X along V1, V2, · · · , Vn, we mean that we first blow up V1,
blow up the proper transform of V2, · · · , and blow up the proper transform of Vn.

By abuse of notation, we identify an ideal J with the subscheme VJ defined by
J.

2.2.2 Vakil-Zinger Desingularization

In [28], Vakil and Zinger defined the m-tail locus of M1,0(Pn, d)0 to be the locus
parametrizing maps such that in the domain the contracted elliptic curve meets
the rest of the curve a total of precisely m points. Desingularization is described
as following way; blow up the 1-tail locus, then the proper transform of the 2-
tail locus, etc. This process stop at finite steps, and resulting space M̃1,0(Pn, d)0 is
smooth Delign-Mumford stack.

In [11], Hu and Li described local equations of M1.0(Pn, d). They first defined
the terminally weighted tree γ. To each γ, they associated the variety Zγ called
local model and the subvariety Z0

γ ⊂ Zγ called the type γ loci in Zγ. They defined
DM-stack S to have singularity type γ at a closed point s ∈ S if there is a scheme
Y , a point y ∈ Y and two smooth morphisms q1 : Y → S , q2 : Y → Zγ such that
q1(y) = s and q2(y) ∈ Z0

γ . To each element [u] ⊂M1,0(Pn, d), they associated termi-
nally weighted rooted tree. They defined the substack M1,0(Pn, d)γ ⊂ M1,0(Pn, d)
to be the subset of all [u] ⊂ M1,0(Pn, d) whose associated terminally weighted
rooted trees is γ. Finally they showed that the stack M1,0(Pn, d) has singularity
type γ along M1,0(Pn, d)γ

We do not present full details here since our case is quite simple. When d = 3,
1-tail locus D1 ⊂ M1,0(Pn, 3)0 and 2-tail locus D2 ⊂ M1,0(Pn, 3)0 are smooth divi-
sors. 3-tail locus D3 ⊂M1,0(Pn, 3)0 has description as follows. Let Z be {(a1, a2, · · · ,
an−1, b1, b2, · · · , bn−1, z1, z2) ∈ A2n : a1z1 − b1z2 = a2z1 − b2z2 = · · · = an−1z1 −

bn−1z2 = 0}, where An is n-dimensional affine space. Z0 ⊂ Z is {(a1, a2, · · · ,
an−1, b1, b2, · · · , bn−1, z1, z2) ∈ Z : z1 = z2 = 0}. To each element [u] ⊂ D3, there
is a scheme Y , a point y ∈ Y and two smooth morphisms q1 : Y → M1.0(Pn, d)0,
q2 : Y → Z such that q1(y) = [u] and q2(y) ∈ Z0. Therefore M̃1,0(Pn, 3)0 =

7
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BlD3M1,0(Pn, 3)0.

2.2.3 Logarithmic stable maps

We briefly introduce logarithmic stable maps following [15]. There is standard
reference for definition and some properties of the log structures ([13]). We do
not give full details about the log structures since the log structures are not used
extensively in this paper.

Definition 2.2.2. An algebraic space W over S is called a Fulton-Macpherson
(FM) type space if

1. W → S is a proper, flat morphism;

2. for every closed point s ∈ S , etale locally there is an etale morphism

Ws → S pec(k(s)[x, y, z1, z2, · · · , zk−1]/(xy))

where x, y and zi are indeterminates.

Definition 2.2.3 ([15],5.1.1). A triple ((C/S ,p),W/S , f : C −→ W) is called a
n-pointed, genus g, admissible map to a FM type space W/S if

1. (C/S ,p = (p1, ..., pn)) is a n-pointed, genus g, prestable curve over S .

2. W/S is a FM type space.

3. f : C −→ W is a map over S .

4. (Admissibility) If a point p ∈ C is mapped into the relatively singular locus
(W/S )sing of W/S , then étale locally at p̄, f is factorized as

C

f

��

��

Uoo //

""

��

Spec(A[u, v]/(uv − t))

tt

��

S SpecAoo

W

@@

Voo //

<<

SpecA[x, y, z1, ..., zr−1]/(xy − τ)

jj

8
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where all 5 horizontal maps are formally étale; u, v, x, y, zi are indetermi-
nates; x = ul, y = vl under the far right vertical map for some positive
integer l; t, τ are elements in the maximal ideal mA of the local ring A; and
p̄ is mapped to the point defined by the ideal (u, v,mA).

A log morphism (W,MW)/(S ,N) is called an extended log twisted FM type
space if W → S is FM type space and MW , N are log structures on W, S satisfying
some conditions.

Definition 2.2.4 ([15],5.2.2). A log morphism ( f : (C,MC,p) −→ (W,MW)) /(S ,N)
is called a (g, n) logarithmic prestable map over (S ,N) if

1. ((C,M)/(S ,N),p) is a n-pointed, genus g, minimal log prestable curve.

2. (W,MW)/(S ,N) is an extended log twisted FM type space.

3. (Corank = # Nondistinguished Nodes Condition) For every s ∈ S , the
rank of Coker(NW/S

s̄ −→ Ns̄) coincides with the number of nondistinguished
nodes on C s̄.

4. f : (C,MC) −→ (W,MW) is a log morphism over (S ,N).

5. (Log Admissibility) either of the following conditions, equivalent under the
above four conditions, holds:

• f is admissible.

• f b : f ∗MW −→ MC is simple at every distinguished node.

Definition 2.2.5 ([15],8.1). Let M
log,ch
1,0 (X, d) be the moduli stack of (g = 1, n =

0, d , 0) logarithmic stable maps ( f ,C,W) satisfying the following conditions
additional to those in Definition 3.0.2. For every s ∈ S ,

1. Every end component of Ws̄ contains the entire image of the essential part
of C s̄ under fs̄.

2. The image of the essential part of C s̄ is nonconstant.

9
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Here, it is possible that some of irreducible components in the essential part
are mapped to points. Note that the dual graph of the target Ws must be a chain.
Such a log stable map is called an elliptic log stable map to a chain type FM space
W of the smooth projective variety X.

Theorem 2.2.6 ([15],Main Theorem B). The moduli stack M
log,ch
1,0 (X, d) of elliptic

logarithmic stable maps to chain type FM spaces of X is a proper Delign-Mumford
stack. When X is a projective space Pn, the stack is smooth.

We define the moduli space M
ch
1,0(X, d) of admissible stable maps to chain type

FM spaces of X to be same as M
log,ch
1,0 (X, d) without log structures. That is, an

element of M
ch
1,0(X, d) is an element of M

log,ch
1,0 (X, d) without log structures.

2.3 An example of degeneration

First we construct a family of elliptic stable maps over S = A2. Let R = k[t, a]
be a coordinate ring of S , where k is a algebraically closed field and t,a are in-
determinates. Let C′ = Pro j(R[x, y, z]/zy2 − x3 − z2x − z3). Let f ′ : C′ d P2 be
given by [t3y, at2x, z]. It is a well defined family of elliptic stable maps except at
{(t, a) : t = 0} ⊂ S . If we blow up an ideal (t, x, z), it extends to family of elliptic
stable maps on whole S . That is, if we let C = Bl(t,x,z)C′, the rational morphism
f ′ : C′ d P2 extends to f : C −→ P2 and f gives a family of elliptic stable maps
over S . At t , 0, its domain curve is smooth. At t = 0 its domain curve consists
of an elliptic component whose degree is 0 and one rational component whose
morphism is given by [s3, as2, 1] where s is the local coordinate of the rational
component such that {s = 0} is the intersection point with elliptic component.

Now we construct a family of elliptic stable admissible maps over S̃ = Bl(t,a)S
in following way.

10
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Proposition 2.3.1. Let R, C′, C, f be as above. Let S̃ be the blow up of S at
the origin and let E be the exceptional divisor. Let D be the proper transform of
subscheme defined by (t) ⊂ R. Let C′′ be a pullback of C′ along S̃ −→ S and
C̃ be the blow up of C′′ along ideals (D, x, z), (E, x, z); Here we mean that first
blow up along (D, x, z) and next blow up along the proper transform of (E, x, z).
Let W̃ be the blow up of S̃ × P2 along ideals (E3, x0, x1), (D2, x0, x1), where x0, x1,
x2 are coordinates of P2. Then f : C −→ P2 extends to map f̃ : C̃ −→ W̃ and
( f̃ : C̃ −→ W̃) is a family of admissible stable maps.

Proof. we choose one local coordinate of S̃ as {(t, a)} ' A2 such that S̃ −→ S is
given by (t, a) 7→ (ta, a). Then the induced morphism is given by [t3a3y : t2a3x, z].
Since we only need to consider a neighborhood of {[x : y : z] = [0, 1, 0]} which is
smooth point, the problem is reduced to the following lemma.

Lemma 2.3.2. Suppose ( f : C = A1 × A2 = S pec(k[x, t, a]) −→ W = A2 × A2 =

S pec(k[X,Y, t, a])) is given by (x, t, a) 7→ ( t3a3

z ,
t2a3 x

z , t, a), where z is a function of
x such that the vanishing order of z at x = 0 is 3. If we let C̃ be the blow up of
C along ideals (x, t), (x, a) and W̃ be the blow up of W along ideals (X,Y, a3),
(X,Y, t2), then ( f : C −→ W) extends to morphism ( f̃ : C̃ −→ W̃)

Proof. Using universal property of blow ups, we need to check that inverse im-
age sheaves of (X,Y, a3) and (X,Y, t3) are invertible. For example, at an open set
U ⊂ C given by {(x, t, a) : x , 0)}, inverse image sheaves of (X,Y, a3) and (X,Y, t3)
are ( t3a3

z ,
t2a3 x

z , a3) = (a3) and ( t3a3

z ,
t2a3 x

z , t2) = (t2) respectively which are invertible
sheaves. Other cases are left to the reader. �

We can easily check that f̃ satisfies admissible conditions. In the same way
we can prove the case of the other open sets of S̃ . This proves theorem. �

Remark 2.3.3. the origin in S parameterizes stable map whose domain curve con-
sist of an elliptic component of degree 0 and one rational component whose mor-
phism has ramification order 3 at the intersection point with the elliptic compo-
nent. i.e. it is an element of

∑
1.

Remark 2.3.4. In the proof, we can describe an element of admissible stable map
explicitly. For example over {(t, a) : a = 0, t , 0} ⊂ S̃ , C̃ is of the type E[C1] and

11
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W̃ = P2(1) and f̃ |E : E −→ P2
1 is given by [X0, X1, X2] = [t3y : t2x : z] = [ty : x : z]

where X0, X1, X2 are coordinates of P2
1 such that D(1) is given by {[X1, X2, X3] :

X2 = 0}. The last equality is due to the existence of an automorphism of P2
1 fixing

D(1).

2.4 The description of fiber in the moduli space of
elliptic admissible stable maps

By the definition of admissible stable map we get the following proposition.

Proposition 2.4.1. There is a natural morphism φ from the moduli space of elliptic
admissible stable maps to the Kontsevich’s moduli space of stable maps. Proof. A
family of admissible maps over S̃ consist of ((C̃/S̃ ,p),W/S̃ , f̃ : C̃ −→ W), where
C̃ is a family of pre-stable curves over S̃ and W is FM type space of P2. By just
forgetting W, we obtain Kontsevich’s pre-stable maps and after stabilization we
get Kontsevich’s stable maps. �

Now we describe set theoretic fibers of φ, when d = 3. Note that if the essential
part is not contracted to a point, the fiber is just one point because W is trivial. i.e.
W = Pn. Let’s consider the fiber of element where the essential part is contracted
to a point.

Lemma 2.4.2. Let (C, f : C −→ Pn) be an element of the main component of the
Kontsevich’s moduli space of elliptic stable maps satisfying following condition.
C is of the type E(0)[C1(3)].

1. if f has ramification order 2 at c1 and there is no smooth point q1 ∈ C1 such
that f (c1) = f (q1), then the fiber of φ is equal to a point set theoretically.

2. if f has ramification order 2 at c1 and there is a smooth point q1 ∈ C1 such
that f (c1) = f (q1), then the fiber of φ is equal to Pn−1 set theoretically.

3. if f has ramification order 3 at c1, then the fiber of φ is equal to BlptP
n set

theoretically.

12
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Proof.

1. • point : The domain curve C̃ is of the type E[C1] and W = Pn(1).
f̃ : C1 −→ P

n
0 is already given. f̃ : E −→ Pn

1 is given by [X0 : X1 :
· · · : Xn] = [x : 0 : · · · : 0 : z], where E are given by {[x, y, z] : zy2 =

x3 + z2x + Az3} and X0, X1, · · · , Xn are coordinates of Pn. c1 is given by
{[x : y : z] : z = x = 0} and D(1) is given by {[X1, X2, · · · , Xn] : Xn =

0}.

2. • An−1 with parameter { [α0 : α1 : · · · : αn−1] , αn−1 , 0 } : The domain
curve C̃ is of the type E[C1[A1]] and W = Pn(1). f̃ |C1 : C1 −→ P

n
0 is

already given. f̃ |E : E −→ Pn
1 is given by [X0 : X1 : · · · : Xn] = [x : 0 :

· · · : 0 : z]. f̃ |A1 : A1 −→ P
n(1) is given by [1 : α0t : α1t : · · · : αn−1t],

where t are a local parameter of A1 such that a1 is given by {t = 0} and
D(1) is given by {[X1, X2, · · · , Xn] : Xn = 0}.

• Pn−2 with parameter { [α0 : α1 : · · · : αn−2] } : The domain curve C̃
is of the type E[C′1[C1[A1]]] and W = Pn(2). f̃ |C1 : C1 −→ P

n
0 already

given. f̃ |C′1 : C′1 −→ P
n
1 is given by [t2 : 0 : · · · : 0 : 1] where t is

a local parameter of C′1 such that c1 are given by {t = 0} and D(1)
is given by {[X1, X2, · · · , Xn] : Xn = 0}. f̃ |E : E −→ Pn

2 is given by
[x : 0 : · · · : 0 : z] where D(2) are given by {[X1, X2, · · · , Xn] : Xn = 0}.
f̃ |A1 : A1 −→ P

2
1 is given by [1 : α0s : α1s : · · · : αn−2s : s] where s is

a local parameter of A1 such that a1 is given by {s = 0}.

3. • An with parameter {[α0 : α1 : · · · : αn],αn , 0} : The domain curve
C̃ is of the type E[C1] and W = Pn(1). f̃ |C1 : C1 −→ P

n
0 already given.

f̃ |E : E −→ Pn
1 is given by [X0 : X1 : · · · : Xn] = [α0x + αny : α1x : α2 :

· · · : αn−1 : z], where D(1) is given by {[X1, X2, · · · , Xn] : Xn = 0}.

• Pn−1 \pt with parameter {[α0 : α1 : · · · : αn−1], not all αk are 0 for
1 6 k 6 n − 1} : The domain curve C̃ is of the type E[C′1[C1]] and
W = Pn(2). f̃ |C1 : C1 −→ Pn

0 is already given. f̃ |C′1 : C′1 −→ Pn
1

13
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is given by [1 − α0t : α1t : α2t : · · · : αn−1t : t3] where t is a
local parameter of C′1 such that c1 is given by {t = 0} and D(1) is
given by {[X1, X2, · · · , Xn] : Xn = 0}. f̃ |E : E −→ Pn

2 is given by
[x : 0 : · · · : 0 : z] where D(2) are given by {[X1, X2, · · · , Xn] : Xn = 0}.

• An−1 with parameter { [α0 : α1 : · · · : αn−1] , αn−1 , 0 } : The domain
curve C̃ is of the type E[C′1[C1, A1]] and W = Pn

2. f̃ |C1 : C1 −→ P
n
0 is

already given. f̃ |C′1 : C′1 −→ P
n
1 is given by [1 − t : 0 : · · · : 0 : t3]

where t is a local parameter of C′1 such that c1 is given by {t = 0} and
a1 is given by {t = 1} and D(1) is given by {[X1, X2, · · · , Xn] : Xn = 0}.
f̃ |E : E −→ Pn

2 is given by [x : 0 : · · · : 0 : z]. f̃ |A1 : A1 −→ P
n
2

is given by [1 : α0 : α1 : · · · : αn−1s], where s is a local param-
eter of A1 such that a1 is given by {s = 0} and D(2) is given by
{[X1, X2, · · · , Xn] : Xn = 0}.

• Pn−2 with parameter { [α0 : α1 : · · · : αn−2] } : The domain curve C̃
is of the type E[C′′1 [C′1[C1, A1]]] and W = Pn(3). f̃ |C1 : C1 −→ P

n
0 is

already given. f̃ |C′1 : C′1 −→ P
n
1 is given by [1 − t : 0 : · · · : 0 : t3]

where t is a local parameter of C′1 such that c1 is given by {t = 0} and
a1 is given by {t = 1} and D(1) is given by {[X1, X2, · · · , Xn] : Xn = 0}.
f̃ |C′′1 : C′′1 −→ P

n
2 is given by [1 : 0 : · · · : 0 : s2] where s is parameter

of C′′1 such that c′1 is given by {s = 0}. f̃ |A1 : A1 −→ P
n
2 is given by [1 :

α0u : α1u : · · · : αn−2u : u] where u is a local parameter of A1 such that
a1 is given by {u = 0} and D(2) is given by {[X1, X2, · · · , Xn] : Xn = 0}.
f̃ |E : E −→ Pn

3 is given by [x : 0 : · · · : 0 : z] where D(3) is given by
{[X1, X2, · · · , Xn] : Xn = 0}.

�

Note that the case where essential part is singular curves can be stated and
proved in the same way. Note that we actually know every element of the fiber
explicitly. By similar way we can prove the following lemmas whose proof will
be omitted.
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Lemma 2.4.3. Let (C, f : C −→ Pn) be an element of the main component of the
Kontsevich’s moduli space of stable maps satisfying the following conditions. C is
of the type E(0)[C1(1),C2(2)].

1. if f has ramification order 1 at c2 and there is no smooth point q2 ∈ C2 such
that f (c2) = f (q2), then the fiber of φ is equal to a point set theoretically.

2. if f has ramification order 1 at c2 and there is a smooth point q2 ∈ C2 such
that f (c2) = f (q2), then the fiber of φ is equal to Pn set theoretically.

3. if f has ramification order 2 at c2.and images of C1 and C2 are different
lines, then fiber of φ is equal to P1 set theoretically.

4. if f has ramification order 2 at c2, images of C1 and C2 are same lines, then
the fiber of φ is equal to Pn−1⋃P1 glued at one point, set theoretically.

Lemma 2.4.4. Let (C, f : C −→ Pn) be an element of the main component of the
Kontsevich’s moduli space of stable maps satisfying the following conditions. C is
of the type E(0)[C1(1),C2(1),C3(1)].

1. if images of C1 and C2 and C3 are distinct lines, then the fiber of φ is equal
to a point set theoretically.

2. if images of C1 and C2 are same lines and the image of C3 is the distinct
line, then the fiber of φ is equal to a point set theoretically.

3. if images of C1 and C2 and C3 are all same lines, then the fiber of φ is equal
to P1 set theoretically.

Lemma 2.4.5. Let (C, f : C −→ Pn) be an element of the main component of the
Kontsevich’s moduli space of stable maps satisfying the following conditions. C is
of the type E(0)[B1(0)[C1(1),C2(2)]].

1. if f has ramification order 1 at c2 and there is no smooth point q2 ∈ C2 such
that f (c2) = f (q2), then the fiber of φ is equal to a point, set theoretically.

2. if f has ramification order 1 at c2 and there is a smooth point q2 ∈ C2 such
that f (c2) = f (q2), then the fiber of φ is equal to Pn−1⋃Pn−1 glued along
Pn−2, set theoretically.

15
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3. if f has ramification order 2 at c2 and the tangent lines of images of C1 and
C2 are independent, then the fiber of φ is equal to P1, set theoretically.

4. if the tangent lines of images of C1 and C2 are dependent, then the fiber
of φ is equal to BlptP

n⋃(P1 × Pn−1)
⋃

BlptP
n glued along Pn−1, Pn−2, set

theoretically.

Lemma 2.4.6. Let (C, f : C −→ Pn) be an element of the main component of the
Kontsevich’s moduli space of stable maps satisfying the following conditions. C is
of the type E(0)[B1(0)[C1(1),C2(1),C3(1)]].

1. if the images of C1 and C2 and C3 are distinct lines, then the fiber of φ is
equal to a point set theoretically.

2. if the images of C1 and C2 are same line and the image of C3 is distinct line,
then the fiber of φ is equal to a point set theoretically.

3. if the images of C1 and C2 and C3 are all same lines, then the fiber of φ is
equal to (P1 × Pn−1)

⋃
BlptP

n glued along Pn−1set theoretically.

Lemma 2.4.7. Let (C, f : C −→ Pn) be an element of the main component of the
Kontsevich’s moduli space of stable maps satisfying the following conditions. C is
of the type E(0)[B1(0)[C1(1),C2(1)],C3(1)]].

1. if the images of C1 and C2 are distinct lines, then fiber of φ is equal to a
point, set theoretically.

2. if the images of C1 and C2 are same lines and the image of C3 is distinct
line, then the fiber of φ is equal to Pn−1, set theoretically.

3. if the images of C1 and C2 and C3 are all same lines, then the fiber of φ is
equal to (P1 × Pn−1)

⋃
Pn−1 glued along Pn−2, set theoretically.

Lemma 2.4.8. Let (C, f : C −→ Pn) be an element of the main component of the
Kontsevich’s moduli space of stable maps satisfying the following conditions. C is
of the type E(0)[B1(0)[B2(0)[C1(1),C2(1)],C3(1)]].
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1. if the images of C1 and C2 are distinct lines, then the fiber of φ is equal to
point, set theoretically.

2. if the images of C1 and C2 are same lines and the image of C3 is the distinct
line, then the fiber of φ is equal to Pn−1, set theoretically.

3. if the images of C1 and C2 and C3 are all same lines, then the fiber of φ is
equal to BlptP

n⋃ Blpt(Pn−1×P1)
⋃

(Pn−1×P1)
⋃

(Pn−1×P1), set theoretically.

Remark 2.4.9. What we showed is that the fiber of φ is ,at least set theoretically,
same as the fiber of corresponding blow-ups which we will describe later. Actually
it is same scheme theoretically.

2.5 The case of the degree 2

In this section, we show that when d = 2, two moduli spaces are same. i.e.
M̃1,0(Pn, 2)0 = M

log,ch
1,0 (Pn, 2). Note that if the degree is 2, M̃1,0(Pn, 2)0 = M1,0(Pn, 2)0.

As in the previous section, we can calculate the fiber of φ : M
ch
1,0(Pn, 2) −→

M̃1,0(Pn, 2)0 and it is easy to see that every fiber is just one point. This actually
suffices to conclude that M̃1,0(Pn, 2)0 = M

log,ch
1,0 (Pn, 2) by the Zariski’s main theo-

rem. Still we construct an actual morphism for the completeness. We only do the
case n = 1 for simplicity.

Note that when the essential part is not contracted to a point, two moduli
spaces are naturally isomorphic. So we only need to consider neighborhoods of
points where the essential part is contracted to point.

We describe an etale atlas of stack M1,0(P1, 2)0. Because of stackyness of
the moduli space of elliptic curves, we need to separate the case according to
j-invariant of the essential part of the domain curve.

when essential part is smooth elliptic curve with j , 0

Let k be an algebraically closed field and t, α, γ, c, A be indeterminates. Let
R = k[t, α, γ, c, A]/(γ − α3 − γ2α − Aγ3). Let D1,D2 be subschemes defined by
ideals (α, γ),(t). Let S = S pec(R)\V where V ⊂ S pec(R) is a subscheme defined
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by an ideal (4 + 27A2) and C′ = Pro j(R[x, y, z]/zy2 − x3 − z2x − Az3).

Then the rational map f ′ : C′ d P1 defined by [tγ(x+αy)+c(γx−αz), γx−αz]
gives the family of elliptic stable maps except at D1 and D2. But if we let C be
the blow up of C′ along (D1, x, z),(D2, x − αy, z − γy),(D2, x, z), we easily see that
f ′ : C′ d P1 extends to f : C −→ P1 and f gives a family of elliptic stable maps
over whole S .

Moreover we know every element of family over S explicitly as follows.
Over {γ = 0, t , 0}, the domain curves are of the type E[C1] and f |C1 : C1 → P

1

is given by [ts2 + c(s − 1) : s − 1], where s is a local parameter of C1 such that c1

is given by {s = 0}.
Over {t = 0, γ , 0}, the domain curves are of the type E[C1,C2] and c1 and c2 are
given by (z = 0), (x = αy, z = γy) in E = {[x; y; z] : zy2 = x3 + z2x + Az3} and
f |Ci : Ci → P

1 is given by [si + c, 1] where ci is a local parameter of Ci such that
ci is given by (si = 0) for i = 1, 2.
Over {γ = 0, t = 0}, the domain curves are of the type E[B1[C1,C2]] and f |Ci :
Ci → P

1 is given by [si + c, 1] where si local parameter of Ci such that ci is given
by (si = 0) for i = 1, 2.
By looking at a local deformation, we can check that S is an etale atlas of M1,0(P1, 2)0.

Proposition 2.5.1. Let us assume above. If we let W be the blow up of S ×P1 along
(D2, x0 − cx1), (D2

1, x0 − cx1) where x0, x1 are coordinates of P1, then f : C −→ P1

extends to f̃ : C −→ W and f̃ gives a family of elliptic admissible maps over S .

Remark 2.5.2. We know every element over S explicitly. Here we only describe
the type of domain curves and target. Over {t , 0, γ ,= 0}, the domain curve C
is of type E and the target W = P1. Over {t = 0, γ , 0}, the domain curve C is
of the type E[C1,C2] and the target W = P1(1). Over {t , 0, γ = 0}, the domain
curve C is of the type E[C1] and the target W = P1(1). Over {t = 0, γ = 0}, domain
C = E[B1[C1,C2]] and the target W = P1(2).

when essential part is smooth elliptic curve with j , 1728

Everything is same if we change the equation γ−α3−γ2α−Aγ3 above to γ−α3−

Aγ2α − γ3.
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when essential part is singular curve

Let k be an algebraically closed field and t, α, β, c, A be indeterminates. Let
R = k[t, α, β, c, A]/(β2 − α3 − α2 − A). Let D2 be a subscheme defined by an ideal
(t). Let S = S pec(R) and C′ = Pro j(R[x, y, z]/(zy2 − x3 − zx2 − Az3)).

Then a rational map f ′ : C′ d P1 defined by [t(y + βz) + c(x − αz), x − αz]
gives a family of elliptic stable maps except at D2 and {α = β = 0}. But if we let
C be the blow up of C′ along ideals (y − x − x2+αx+α2

2 , β − α − x2+αx+α2

2 ), (D2, x, z),
(D2, x − αz, y − βz), we can see that f ′ : C′ d P1 extends to f : C −→ P1 and f
gives a family of elliptic stable maps over whole S . Note that the effect of blowing
up along ideal (y− x− x2+αx+α2

2 , β− α− x2+αx+α2

2 ) is inserting a rational component
at singular point in the rational nodal curve at {α = β = 0}.

Proposition 2.5.3. Let us assume above. If we let W be the blow up of S × P1

along ideal (D2, x0 − cx1) where x0,x1 are coordinates of P1, then f : C −→ P1

extends to f̃ : C −→ W and f̃ gives a family of elliptic admissible maps over S .

Summing up previous results we get a morphism from M̃1,0(P1, 2)0 to M
ch
1,0(P1, 2)

where M
ch
1,0(P1, 2) is the moduli space of elliptic admissible stable maps without

log structures. Actually it is one to one morphism. On the other hand we also have
one to one morphism from M

ch,log
1,0 (P1, 2) to M

ch
1,0(P1, 2), which is just forgetting log

structures([?]). By the uniqueness of the normalization, we see that M̃1,0(P1, 2)0 =

M
ch,log
1,0 (P1, 2).

2.6 The case of the degree 3

In this section we describe a local chart of M1,0(Pn, 3)0 and M
log,ch
1,0 (Pn, 3). Through-

out the section, we will denote the proper transforms of subscheme as the same
notations as original subschemes.
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Because of the stackyness of the moduli space of elliptic curves, we need to
separate the case according to j-invariant of the essential part of the domain curve.

2.6.1 Etale chart of M1,0(Pn, 3)0

(a)when essential part is smooth elliptic curve with j , 0.
Let k be an algebraically closed field and a1, a2, · · · , an−1, b1, b2, · · · , bn−1, c1,
c2, · · · , cn−1, d1, d2, · · · , dn, z1, z2, A, α, γ, α′, γ′ be indeterminates. Let R =

k[a1,a2,· · · ,an−1,b1,b2,· · · ,bn−1, c1,c2,· · · ,cn−1,d1,d2,· · · ,dn,z1,z2,A,α,γ,α′,γ′]/(a1z1 −

b1z2,a2z1 − b2z2,· · · ,an−1z1 − bn−1z2,γ − α3 − γ2α − Aγ3,γ′ − α′3 − γ′2α′ − Aγ′3).
Let D2,α, D2,α′ , D2,α−α′ , D3, Fα, Fα′ , Fα−α′ , G be subschemes defined by ideals

(α, γ), (α′, γ′), (α − α′, γ − γ′), (z1, z2), (z1, b1, b2, · · · , bn−1), (z2, a1, a2, · · · , an−1),

(z1 − z2, a1 − b1, a2 − b2, · · · , an−1 − bn−1), (
α′γ

z1
z2

(x+αy)(γ′x−α′z)−αγ′(γx−αz)(x+α′y)

αα′(α−α′)(γx−αz)(γ′x−α′z) ).

Let Ŝ = S pec(R) \V , S = Bl(α,α′,γ,γ′)Ŝ , where V is the subscheme defined
by an ideal (4 + 27A2)(α − α′, γ − γ′). Let D1 be the exceptional divisor. Let
Ĉ = Pro j(R[x, y, z]/zy2 − x3 − z2x − Az3), C′ be a pull-back of Ĉ, and C be the
blow up of C′ along ideals

(D1, x, z),
(D2,α, x − α′y, z − γ′y),(D2,α, x, z),(D2,α′ , x − αy, z − γy),(D2,α′ , x, z),
(D3, x, z),(D3, x − αy, z − γy),(D3, x − α′y, z − γ′y),
(Fα, x − αy, z − γy),(Fα′ , x − α′y, z − γ′y),(Fα−α′ , x, z).

Then rational map f̂ : Ĉ d Pn given by

[α′γ(a1+c1)z1(x+αy)(γ′x−α′z)−αγ′(b1+c1)z2(x+α′y)(γx−αz)+d1(α−α′)(γx−
αz)(γ′z−α′x), α′γ(a2 +c2)z1(x +αy)(γ′x−α′z)−αγ′(b2 +c2)z2(x +α′y)(γx−αz)+

d2(α−α′)(γx−αz)(γ′z−α′x), · · · , α′γ(an−1 +cn−1)z1(x+αy)(γ′x−α′z)−αγ′(bn−1 +

cn−1)z2(x+α′y)(γx−αz)+dn−1(α−α′)(γx−αz)(γ′z−α′x), α′γz1(x+αy)(γ′x−α′z)−
αγ′z2(x+α′y)(γx−αz)+dn(α−α′)(γx−αz)(γ′z−α′x), (α−α′)(γx−αx)(γ′x−α′z)]

extends to a morphism f : C −→ Pn. This gives a family of semi-stable maps
of elliptic curves and after the stabilization we get a family of stable maps of el-
liptic curves over S .

20



CHAPTER 2. COMPARISON OF TWO DESINGULARIZATIONS OF
MODULI SPACE OF STABLE MAPS

Note that as in the case of degree 2, we can actually describe every element
parametrized by S and check it is an etale atlas.

(b)when essential part is smooth elliptic curve with j , 1728.
Everything is same if we change the equation γ − α3 − γ2α − Aγ3 above to
γ − α3 − Aγ2α − γ3.

(c)when essential part is singular curve.
Let k be an algebraically closed field and a1, a2, · · · , an−1, b1, b2, · · · , bn−1, c1,
c2, · · · , cn−1, d1, d2, · · · , dn, z1, z2, A, α, β, α′, β′ be indeterminates. Let R=

k[a1,a2,· · · ,an−1,b1,b2,· · · ,bn−1,c1,c2,· · · ,cn−1,d1,d2,· · · ,dn,z1,z2,A,α,β,α′,β′]/(a1z1−b1z2

,a2z1 − b2z2,· · · ,an−1z1 − bn−1z2,β2 − α3 − α − A,β′ − α′3 − α′ − A)
Let D2, D3, Fα, Fα′ , Fα−α′ , G be ideals defined by (α − α′, β − β′), (z1, z2),

(z1, b1, b2, · · · , bn−1), (z2, a1, a2, · · · , an−1), (z1−z2, a1−b1, a2−b2, · · · , an−1−bn−1),
( z1

z2
(y + β)(x − α′) − (y + β′)(x − α)).

Let Ŝ = S pec(R), S = Bl(β−α− α
2+αα′+α′2

2 ,β′−α′− α
2+αα′+α′2

2 )Ŝ .

Let Ĉ = Pro j(R[x, y, z]/zy2 − x3 − x2z − Az3), let C′ be a pull back of Ĉ, and C be
the blow up of C′ along ideals

(y − x − x2+αx+α2

2 , β − α − x2+αx+α2

2 ),(y − x − x2+α′x+α′2

2 , β′ − α′ − x2+α′x+α′2

2 ),
(D2, x − αz, y − βz),(D2, x, z),
(D3, x, z),(D3, x − αz, y − βz),(D3, x − α′z, y − β′)
(Fα, x − αz, y − βz),(Fα′ , x − α′z, y − β′z),(Fα−α′ , x, z).

Then rational map f̂ : Ĉ d Pn given by

[(α−α′)(a1 +c1)z1(y+βz)(x−α′z)− (α−α′)(b1 +c1)z2(y+β′z)(x−αz)+d1(β−
β′)(x−αz)(x−α′z), (α−α′)(a2+c2)z1(y+βz)(x−α′z)−(α−α′)(b2+c2)z2(y+β′z)(x−
αz) + d1(β− β′)(x−αz)(x−α′z), · · · , (α−α′)(an−1 + cn−1)z1(y + βz)(x−α′z)− (α−
α′)(bn−1 +cn−1)z2(y+β′z)(x−αz)+dn−1(β−β′)(x−αz)(x−α′z), (α−α′)z1(y+βz)(x−
α′z)−(α−α′)z2(y+β′z)(x−αz)+dn(β−β′)(x−αz)(x−α′z), (β−β′)(x−αz)(x−α′z)]
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extends to a morphism f : C −→ Pn. This gives the family of semi-stable
maps of elliptic curves and after the stabilization we get a family of stable map of
elliptic curves over S .

2.6.2 Local chart of M
log,ch
1,0 (Pn, 3)

(a)when essential part is smooth elliptic curve with j , 0.
In previous local chart S of M1,0(P2, 3)0, the blow-up center of Vakil-Zinger desin-
gularization is given by D3. And

∑
1,
∑

2, Γ1, Γ2 are given by proper transforms of

(D1, a1, a2, · · · , an−1, b1, b2, · · · , bn−1, αz1 + α′z2),
(D2,α, z1, b1, b2, · · · , bn−1)(D2,α′ , z2, a1, a2, · · · , an−1),
(D1, a1, a2, · · · , an−1, b1, b2, · · · , bn−1),
(D2,α, a1, a2, · · · , an−1, b1, b2, · · · , bn−1)(D2,α′ , a1, a2, · · · , an−1, b1, b2, · · · , bn−1).

Let S̃ be the blow up of S along D3,
∑

2, Γ2,
∑

1, Γ1 and let E1, E2,α
⋃

E2,α′ , L1,
L2,α
⋃

L2,α′ be the exceptional divisors corresponding to
∑

1,
∑

2, Γ1, Γ2. Note that
after blowing up along

∑
2,
∑

1 and Γ2 are separated. Now let C
′′

be the pull back
of Ĉ along S̃ and let C̃ be the blow up of C” along ideals

(D1, x, z), (L1, x, z), (E1, x, z),
(D2,α, x − α′y, z − γ′y),(L2,α, x − α′y, z − γ′y),(E2,α, x − α′y, z − γ′y),(D2,α, x, z),

(L2,α, x, z),(E2,α, x, z),
(D2,α′ , x − αy, z − γy),(L2,α′ , x − αy, z − γy),(E2,α′ , x − αy, z − γy),(D2,α′ , x, z),

(L2,α′ , x, z),(E2,α′ , x, z),
(D3, x, z),(D3, x − αy, z − γy),(D3, x − α′y, z − γ′y),
(Fα, x − αy, z − γy),(Fα′ , x − α′y, z − γ′y),(Fα−α′ , x, z),
(L̃2

1,G), (L̃2,α,G),(L̃2,α′ ,G),
where L̃1,L̃2,α,L̃2,α are exceptional divisor of (L1, x, z),(L2,α, x, z),(L2,α′ , x, z).

Let W̃ be the blow-up of S̃ × P2 along ideals

(D3, x0 − d1xn, x1 − d2xn, · · · , xn−1 − dnxn),
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(E2
2, x0 − d1xn, x1 − d2xn, · · · , xn−1 − dnxn), (L2, x0 − d1xn, x1 − d2xn, · · · , xn−1 −

dnxn), (D2, x0 − d1xn, x1 − d2xn, · · · , xn−1 − dnxn),
(E3

1, x0 − d1xn, x1 − d2xn, · · · , xn−1 − dnxn), (L2
1, x0 − d1xn, x1 − d2xn, · · · , xn−1 −

dnxn), (D2
1, x0 − d1xn, x1 − d2xn, · · · , xn−1 − dnxn),

where x0,x1,· · · ,xn are coordinates of Pn.

Then f̂ : Ĉ d Pn extends to f̃ : C̃ −→ W̃ and we get a family of admissible
maps over S̃ .

(b)when the essential part is smooth elliptic curve with j , 1728.
Everything is same if we change the equation γ − α3 − γ2α − Aγ3 above to
γ − α3 − Aγ2α − γ3.

(c)when the essential part is singular curve.
In previous local chart S of M1,0(P2, 3)0, the blow up center of Vakil-Zinger desin-
gularization is given by D3. And

∑
2, Γ2 are given by proper transforms of (D2, z1−

z2, a1 − b1), (D2, a1, b1).
Let S̃ be the blow up of S along D3,

∑
2, Γ2 and let E2, L2 be the exceptional

divisors corresponding to
∑

2, Γ2. Now let C′′ be the pull back of C′ along S̃ and
let C̃ be the blow up of C′′ along ideals

(D2, x−αz, y−βz),(D2, x, z),(L2, x−αz, y−βz),(L2, x, z),(E2, x−αz, y−βz),(E2, x, z),
(D3, x, z),(D3, x − αz, y − βz),(D3, x − α′z, y − β′z),
(Fα, x − αz, y − βz),(Fα′ , x − α′z, y − β′z),(Fα−α′ , x, z).
(L̃2,G),

where L̃2 is exceptional divisor of (L2, x, z).

Let W̃ be blow-up of S̃ × P2 along ideal

(D3, x0 − d1xn, x1 − d2xn, · · · , xn−1 − dnxn),
(E2

2, x0 − d1xn, x1 − d2xn, · · · , xn−1 − dnxn), (L2, x0 − d1xn, x1 − d2xn, · · · , xn−1 −

dnxn), (D2, x0 − d1xn, x1 − d2xn, · · · , xn−1 − dnxn).

Then f̂ : Ĉ d Pn extends to f̃ : C̃ −→ W̃ and we get the family of admissible
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maps over S̃ .

2.6.3 Main result

Let M̂ be the blow up of M̃1,0(Pn, 3)0 along
∑

2, Γ2,
∑

1, Γ1. By previous subsec-
tions, we can find a morphism from M̂ to M

ch
1,0(Pn, 3). Here M

ch
1,0(Pn, 3) is moduli

space of admissible stable maps of chain type without log structures. One can
check that this morphism is finite surjective by using the result of section 5. Actu-
ally it is one to one morphism. On the other hand, We also have a finite surjective
map from M

ch,log
1,0 (Pn, 3) to M

ch
1,0(Pn, 3), which is just forgetting log structures([?]).

By the uniqueness of the normalization, we get following theorem.

Theorem 1.0.1. M
log,ch
1,0 (Pn, 3) can be obtained by blowing-up M̃1,0(Pn, 3)0 along

the locus
∑

2, Γ2,
∑

1, Γ1.

Remark 2.6.1. Note that we only used the fact that forgetting morphism ψ :
M

log,ch
1,0 (Pn, 3) −→ M

ch
1,0(Pn, 3) is a finite morphism. It follow from above that it

is actually one to one morphism in our cases. We can also get this fact by calcu-
lating possible log structures. i.e. when d 6 3, there exists unique log structure on
each admissible stable map. If d > 4, there could be more than one log structures
on one admissible stable map.
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Chapter 3

Degeneration of log stable maps

3.1 Introduction

3.1.1 The main result

Consider a projective morphism W → B from a nonsingular complex variety W
to a nonsingular curve B with a distinguished closed point 0 ∈ B such that the
central fiber W0 consists of two irreducible nonsingular components intersecting
transversely. In this paper we prove the degeneration formula (Theorem 3.1.1)
for the degeneration W/B in the framework of minimal/basic stable log maps of
D. Abramovich and Q. Chen [1]; Q. Chen [6]; M. Gross and B. Siebert [10]. In
papers [10] (resp. [1, 6]), without expanding targets they have constructed the
virtually smooth proper DM stacks of basic (resp. minimal) stable log maps to a
Zariski-globally generated (resp. Deligne-Faltings) log smooth target with a fixed
numerical class. The Deligne-Faltings log structures are special cases of Zariski-
globally generated log structures. Associated to the divisors W0 of W and 0 of B,
the schemes W, B are equipped with the natural Deligne-Faltings log structures
making W → B log smooth (see [13]).

The degeneration formulas for W/B in the framework of the “expanded” (rel-
ative) stable maps were already discovered: in symplectic geometry set-up by A.-
M. Li and Y. Ruan [17], by E. Ionel and T. Parker [12]; in algebraic geometry
set-up by J. Li [18]. The degeneration formula is also proven by D. Abramovich
and B. Fantechi [2] using stable twisted maps and by Q. Chen [5] using stable log
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maps in the sense of [5, 15]. All of these methods commonly use target expan-
sions.

Without target expansions it is under development to obtain a degeneration
formula for general degenerations in the realm of minimal/basic stable log maps
(however see also [25] in a symplectic set-up). We are contented to prove the
degeneration formula for the simple case W/B, expecting that the proof will serve
to establish a general degeneration formula. We mention that the splitting method
in this paper works for the general case, too.

3.1.2 The precise statement

For the precise statement of the degeneration formula we need some preparations.
Below for a log scheme S , denote by S the underlying scheme of S . Let W0 be
X1 tD X2, where D is the singular locus of W0 and Xi, i = 1, 2, are the irreducible
components of W0. Let k denote the field C of complex numbers. The point 0 =

Spec(k) of B has the induced log structure, the so-called standard log point, from
B, denoted by Spec(k†). We consider the target W0/Spec(k†) as the log scheme
over Spec(k†), whose log structure is defined to be the inverse image of the log
structures of W under W0 ⊂ W.

For an effective curve class β ∈ H2(W0,Z), denote by

Mg,n(W0/Spec(k†), β)

the moduli stack of n-pointed, genus g, class β, minimal/basic stable log maps to
W0/Spec(k†) (see [1, 6, 10]). The moduli stack is a proper DM stack over k, with
the canonical virtual fundamental class and evaluation maps at markings, denoted
by

[Mg,n(W0/Spec(k†), β)]vir and

evi : Mg,n(W0/Spec(k†), β)→ W0, i = 1, ..., n,

respectively.

Let Γ be a decorated connected graph satisfying the following. The set V(Γ)
of vertices is partitioned into two sets V1(Γ), V2(Γ). Every edge connects a vertex
from V1(Γ) and a vertex from V2(Γ). To v ∈ Vi(Γ), a decoration (gv, βv,Nv) is given
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with gv ∈ Z≥0, βv an effective curve class of Xi, Nv ⊂ [n]. Here, [n] := {1, ..., n}.
To each edge e, a strictly positive integer ce is given. Finally, a label on V(Γ) is
chosen. Let ιXa

denote the closed embedding Xa → W0. We require that∑
v∈V1(Γ)

ιX1,∗βv +
∑

v∈V1(Γ)

ιX2,∗βv = β;

for v ∈ Vi(Γ)
βv · D =

∑
v∈e

ce;

the “stability” condition βv , 0 whenever 2gv + |Nv| + val(v) < 3;

1 − χ(Γ) +
∑

v

gv = g;

and ∐
v

Nv = {1, ..., n}.

Let r(v) = i if v ∈ Vi(Γ) and let Ev be the set of edges adjacent to v. Let

Mgv,Nv |Ev(Xr(v), β)

be the moduli stack of Nv-pointed, genus gv, class βv, minimal/basic stable log
maps to Xr(v) with relative markings {e | e ∈ Ev} whose contact orders are {cev | e ∈
Ev} with respect to the divisor D. Here, Xi is considered the log scheme, obtained
from the divisor D ⊂ Xi, with the log smooth morphism Xi → Spec(k). For e ∈ Ev,
denote by eve be the “relative” evaluation map

Mg,Nv |Ev(Xr(v), β)→ D

and for i ∈ Nv, denote by evi be the “absolute” evaluation map

Mg,Nv |Ev(Xr(v), β)→ Xr(v).

Let Ω(g, n, β) be the set of all such graphs Γ. Note that Ω(g, n, β) is a finite set.
Let {δ1

j} be a homogeneous basis of H∗(D,Q) and let {δ2
j} be the dual basis in the

sense that ∫
D
δ1

i δ
2
j =

{
0 if i , j
1 if i = j.

Now we are ready to state the degeneration formula.
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Theorem 3.1.1. For γi ∈ H∗(W0,Q) and the Psi classes ψi, i = 1, ..., n,∫
[Mg,n(W0,β)]vir

∏
i∈[n]

ψmi
i ev∗i (γi) =

∑
Γ∈Ω(g,N,β)

∑
( je)e∈{1,...,rkH∗(D)}E(Γ)

(−1)ε∏
e ce

|V(Γ)|!

∏
v

∫
[Mg,Nv |Ev (Xv,β)]vir

∏
i∈Nv

ψmi
i ev∗i ι

∗
Xa

(γi)
∏
e∈Ev

ev∗e(δr(v)
je

),

where (−1)ε is given by the equality

n∏
i=1

γi

∏
j∈M

δ1
jδ

2
j = (−1)ε

∏
i∈N1

γi

∏
j∈M

δ1
j

∏
i∈N2

γi

∏
j∈M

δ2
j .

3.1.3 Conventions

Throughout the paper unless otherwise specified: every scheme is a scheme locally
of finite type over the field k := C of complex numbers and every log structure
α : MS → OS on a scheme S is a fine and saturated (fs for short) log structure
on the étale site of S . The underlying scheme of a log scheme S will be denoted
by S . A log morphism f from a log scheme S 1 to a log scheme S 2 consists of a
morphism f : S 1 → S 2 of schemes and a homomorphism f [ : f −1MS 2 → MS 1

compatible with log structure αi :MS i → OS i .
The standard log point will be denoted by Spec(k†). The sumM1 ⊕M2 of log

structuresMi on a scheme S always means the push-outM1 ⊕O×S M2.
For a toric monoid Q, meaning that Q is a fs monoid with no nontrivial in-

vertibles, Q∨ denotes Hom(Q,N) and Q∨[1] denotes the set of minimal integral
elements in the extremal rays in Q∨ ⊗ Q≥0.

For s ∈ S , s̄→ S denotes the associated geometric point by taking the separa-
ble closure of s. Let P be a monoid. Then a monoid homomorphism α : P→ OS ,s̄

will be called a log structure on OS ,s̄ if α induces an isomorphism from α−1(O×S ,s̄)
to O×S ,s̄.

By an algebraic stack X over a scheme, we mean a stack X over the scheme
such that the diagonal is representable and of finite presentation; and it allows a
surjective smooth morphism U → X from a scheme U. This is the convention
following [23].
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For a curve C over an algebraically closed field, denote by Cnd the set of nodal
points, denote by Irr(C) the set of generic points of the irreducible components of
C, and denote by Con(C) the set of connected components of C.

3.2 Basic/Minimal stable log maps

3.2.1 Log structures onMg,n and Cg,n

Let Mg be the algebraic stack of genus g prestable curves. The boundary divisor
parameterizing singular curves gives rise to the divisorial log structure on the lisse-
étale site of Mg. Define the log structure also on the algebraic stack Mg,n of n-
pointed genus g prestable curves by taking the inverse image of the log structure
on Mg under the natural projection Mg,n → Mg. Denote by Cg,n the universal
curve with the log structure attached to the normal crossing divisors of boundaries
viewed asMg,n+1.

3.2.2 Prestable log curves

Let S be a k-scheme. A n-pointed prestable curve (C/S ,p := (p1, ..., pn)) amounts
to a map S → Mg,n. We denote by

M
C/S
S

the associated pullback log structure of MMg,n under the map. Strictly speaking,
the pullback log structure is on the lisse-étale site of S . However, by [23, Theorem
A.1], it is induced from a unique log structureMC/S

S on the étale site of S .
Similarly, on C there is the log structure

M
C/S ,p
C

inherited from the log structure of Cg,n by the pullback. TheseMC/S
S (resp.MC/S ,p

C )
will be called the canonical log structure on S (resp. on C) attached to the n-
pointed prestable curve (C/S ,p).

A log morphism from a fine saturated log scheme S to (S ,MC/S
S ) will be called

a n-pointed prestable log curve. Denote by

ϕ :MC/S
S →MS (3.2.1)
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the homomorphism attached to the log morphism. Note that this is equivalent to
an object over a scheme S of the log stack LogMg,n , which is, by definition, a log
1-morphism from a fine saturated log scheme S to the log stack Mg,n (see [23,
Proposition 5.9]).

There is another interchangeable description of the prestable log curve. From

S → Mg,n, (3.2.2)

we obtain C by taking the fiber product of log stacks

C −−−−−→ Cg,n

π

y y
S −−−−−→ Mg,n

and hence a log smooth, integral morphism

π : C → S (3.2.3)

with n-pointed prestable curves (C/S ,p = p1, ..., pn) satisfying the following. The
log structureMC |Csm on the π-smooth locus Csm is isomorphic to the log structure
π∗(MS )⊕

⊕
iMDi whereMDi denotes the log structure standardly defined by the

smooth divisor pi.
The converse direction (3.2.3)⇒ (3.2.2) is also true by [14, 22].

An isomorphism between two n-pointed prestable log curve over S in the stack
LogMg,n can be reinterpreted exactly as a pair of isomorphisms h : C → C′,
hS : S → S ′ of log schemes making a fiber product of log spaces

C
h

−−−−−→ C′y y
S

hS
−−−−−→ S ′

and satisfying hS = IdS .

From now on, C/S always means a pointed prestable log curves unless other-
wise stated.
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3.2.3 Generization maps

Let q be a node point of C s̄ for s ∈ S . There is a corresponding componentNq̄ = N

in the free monoidM
C/S
S ,s̄ .

According to F. Kato [14],

MC,q̄ =MS ,s̄ ⊕Nq̄ N
2. (3.2.4)

Here RHS of (3.2.4) is the push-out of a diagram

Nq̄ −−−−−→ N2y
MS ,s̄,

where Nq̄ → N2 is the diagonal map and Nq → MS ,s̄ is the induced from ϕ

in (3.2.1). The isomorphism (3.2.4) preserves the natural homomorphisms from
MS ,s̄ toMC,q̄ andMS ,s̄ ⊕Nq N

2.
In what follows, λq will denote the image of 1q := 1 ∈ Nq under the homo-

morphism Nq →MS ,s̄. Note that

λq , 0

since ϕ̄−1(0) = 0.
Adjacent to the node q there are two generic points ηi, i = 1, 2 and so we

obtain two generization maps MC,q̄ → MC,η̄i , which will be denoted by χS
q,i and

have explicit expressions:

χS
q,i :MS ,s̄ ⊕Nq̄ N

2 →MS ,s̄ (3.2.5)

(m, (a1, a2)) 7→ m + aiλq.

Since λq , 0 andMS ,s̄ is a toric monoid, observe that

χS
q,1 × χ

S
q,2 :MS ,s̄ ⊕Nq N

2 →MS ,s̄ ×MS ,s̄

is injective. Therefore we may identify the monoidMS ,s̄ ⊕Nq N
2 with the image

{(m1,m2) ∈ MS ,s̄ ×MS ,s̄ | m2 − m1 ∈ Zλq inM
gp
S ,s̄}

(see [10]). This point of view indicates that a homomorphim toMC s̄ from a sheaf
of monoids on C s̄ is determined by the restriction to the set of all generic or marked
points.
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3.2.4 Stable log maps

We recall stable log maps introduced by D. Abramovich, Q. Chen [1]; Q. Chen
[6]; and M. Gross, B. Siebert [10]. Our presentation will closely follow [10].

Let W, B be fine saturated log schemes and πW : W → B be a log smooth,
projective morphism. We assume that the log structure on W is induced from a log
structure on the Zariski site W.

Definition 3.2.1. A stable log map to W/B is a triple

((C/S ,p), f , fS ) (3.2.6)

as follows:

• (C/S ,p) is a n-pointed prestable log curve.

• f (resp. fS ) is a log morphism from C (resp. S ) to W (resp. B) fitting into a
commutative diagram of log morphisms

C
f

−−−−−→ W

π

y yπW

S
fS

−−−−−→ B

(3.2.7)

whose underlying pair ((C/S ,p), f , fS ) is a S -family of n-pointed stable maps to
W/B.

An isomorphism between two stable log maps

(C/S ,p, f ), (C′/S ′,p′, f ′)

over S → B is defined to be an isomorphism (h, hS ) between (C/S ,p) and (C′/S ′,p′)
in LogMg,n satisfying the compatibility

f ′ ◦ h = f , f ′S ′ ◦ hS = fS
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as in diagram
W

C
h

//

f
>>

��

��

C′

f ′
``

��

B

S
hS

//

fS
>>

S ′

f ′S ′
``

Therefore we may define a B-stack of stable log maps to W/B, which is shown
to be an algebraic stack locally of finite type over B (see [1, 6, 10]).

3.2.5 Class

Let NE1(W) be the submonoid of H2(W,Z) generated by effective curve classes.
Let R be a subset of {1, ..., n}. Fix Zi ⊂ W, i ∈ R which are strict closed log schemes
and fix global sections σi :M

gp
Zi
→ ZZi on Zi. We say that a stable log map (3.2.6)

is of class (g, β, {σi}i∈R) if the following conditions are satisfied. The genus of C/S
is g; the stable map f has the curve class β ∈ NE1(W); f (pi) ⊂ Zi; and finally the
equality

pr2 ◦ f ◦ pi
[

= ( f ◦ pi)∗(σi)

of homomorphisms
( f ◦ pi)−1M

gp
Zi
→ ZS , i ∈ R.

3.2.6 Types

Consider a stable log map (C/S ,p, f ) and let s̄ → S be a geometric point. For a
marked point p of C s̄ (i.e., p = pi|s̄ for some i), we define up to be the composite

pr2 ◦ f
[

p :MW, f (p) →MS ,s̄ ⊕ N→ N.

At a node q, we define a homomorphism

uq :MW, f (q) → Z
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by the equation

((π[)−1
η̄2
◦ f [η̄2

◦ χq,2)(m) − ((π[)−1
η̄1
◦ f [η̄1

◦ χq,1)(m) = uq(m)λq (3.2.8)

where η1, η2 are generic points of two components of C s̄ adjacent to q and χq,i :
MW, f (q) → MW, f (η̄i) are the generization maps. Note that uq is determined up to
sign depending on the orderings of the two components of C.

Let ((C′/S ′, p′1, ..., p′n), f ′) be obtained from a base change S ′ → S and let
s̄ → S ′ → S . Then for p′ 7→ p, q′ 7→ q, note that λq 7→ λq′ underMS ,s̄ → MS ′,s̄

and the types up′ , uq′ of f ′ coincide with the types up, uq of f , respectively.

Remark 3.2.2. Note that, generally, for a sheaf P of monoids on C and a homo-
morphim from P→MC, we can define up and uq.

Remark 3.2.3. If q is a self-intersection point, then uq = 0 since MW is a log
structure on a Zariski site. Also, ifMW, f (q) �MB,πW ( f (q)) under π̄[W , then uq = 0 by
the commutativity of (3.2.7).

3.2.7 Universality

Given a stable log map (3.2.6) we construct a universal one following [1, 6, 10].
We proceed in three steps.

Characteristic level

There is a natural complex of abelian groups∏
q∈Cnd

s̄

M
gp
W, f (q)

g1
−→

∏
η∈Irr(C)s̄

M
gp
W, f (η̄) ×

∏
q∈Cnd

s̄

N
gp
q

g2
−→ M

gp
S ,s̄ → 0

where:

• The first homomorphism g1 is defined by

g1 =
∑

q

(ιη̄1(q) ◦ χq,1 − ιη̄2(q) ◦ χq,2 + ιq ◦ uq) ◦ prq
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for the homomorphism uq : MW, f (q) → Z defined in (3.2.8). Here prq is the

projection to the componentM
gp
W, f (q) and ι? denotes the injection associated

to ?-component.

• The second homomorphism g2 is induced from the log map f : C/S → W/B
and the homomorphism Nq = N → MS ,s̄ sending 1q = 1 to λq. This means
that

g2 =
∑
η

f̄ [η̄ ◦ prη̄ +
∑

q

λqprq.

Let Qgp
s̄ be the cokernel of g1 and let Qs̄ be the saturation of the quotient image

of
∏

ηMW, f (η̄) ×
∏

qNq in Qgp
s̄ . Let

[g2] : Qs̄ →MS ,s̄

be the induced homomorphism.

Definition 3.2.4. This Qs̄ is called basic in [10] and minimal in [6, 1]. We call
MS ,s̄ andMS ,s̄ basic or minimal if [g2] is an isomorphism (i.e. the complex above
becomes exact).

We will use the latter terminology ‘minimal’ following [8] for more general
context. We remark that in [15] non-degenerate case was treated (see §3.3.2 below
for details).

Remark 3.2.5. In [10], by the existence of the stable log map (C/S ,p, f ), it was
shown that Qs̄ is in fact a toric monoid. Therefore Qs̄ can be recovered from its
dual

Q∨s̄ = {(Vη, lq) ∈
∏

ηM
∨

W, f (η̄) ×
∏

qN
∨
q | ∀q ∈ Cnd

s̄ ,

Vη2(q) ◦ χq,2 − Vη1(q) ◦ χq,1 = lquq as elements of Hom(MW, f (q),Z)}
(3.2.9)

which is often easier to be computed than Qs̄.

Remark 3.2.6. When MW, f (q) is free for every node q, there is another equiva-

lent description for Q. Choose an isomorphism MW, f (q) � N
rq (unique up to or-

derings of the basis elements) for some nonnegative integer rq and then express
uq ∈ Hom(MW, f (q),Z) uniquely as

uq = uq,1 − uq,2, uq,i ∈ Hom(MW, f (q),N).
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These components uq,i do not depend upon the choices of isomorphisms. Now we
may describe Q as the saturated co-equalizer of∏

q∈Cnd
s̄

MW, f (q) ⇒
∏

η∈Irr(C)s̄

MW, f (η̄) ×
∏

q∈Cnd
s̄

Nq, (3.2.10)

where two homomorphisms are given by∑
q

(ιη̄i(q) ◦ χq,i + ιq ◦ uq,i) ◦ prq, i = 1, 2.

It is straightforward to check that this definition agrees with the first one.

Construction ofM
min
S

We will define a canonical sheafM
min
S of monoids on the étale site of S such that

M
min
S ,s̄ � Qs̄ for every s̄ → S . First note that for every σ ∈ Qs̄, there are pairs

(U, σU) of open étale neighborhoods U of s̄ and functions σU : U →
⊔

u∈U Qū,
satisfying that σU |U′ = σU′ whenever (U′, σU′) is such a pair with an S -étale
morphism U′ → U. Now for any étale morphism V → S define M

min
S (V) to be

the set of functions t : V →
⊔

v∈V Qv̄ such that t allows a collection {(Ui, σUi)}
with a cover {Ui} of V and σUi,v̄ = t(v) for v̄→ Ui.

It is clear thatM
min
S is a sheaf with a canonical isomorphismM

min
S ,s̄ � Qs̄ for

every s̄. Note also that there is a canonical homomorphism

M
C/S
S

//

""

M
min
S

��

MS

sending 1q ∈ Nq to [ιq(1)] inM
min
S .

Let
M

min
C := π−1M

min
S ⊕

π−1M
C/S
S
M

C/S
C ,
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then we obtain a natural commutative diagram of sheaf homomorphisms

M
C/S
C

$$zz

M
min
C

//

OO

MC

π−1M
C/S
S

zz $$

π−1M
min
S

//

OO

π−1MS .

OO

Homomorphisms between characteristics

By the connectedness of C s̄ and the fact that uq|ImMB, f S (s̄)
= 0, the composite of

natural maps MB, f
S

(s̄) → MW, f (η̄) → M
min
S ,s̄ is independent of the choices of η.

Therefore we have a natural commuting diagram of homomorphisms

M
min
S ,s̄

[g2]

!!

MB, f
S

(s̄)
f [S

//

viaMW, f (η̄)
;;

MS ,s̄.

(3.2.11)

We define a homomorphism

gen : f −1MW →M
min
C

as follows. At a generic point η of a component of C s̄, we take the natural one
MW, f (η̄) → M

min
C,η̄ . At a node q, we use the generization method to define a homo-

morphism

MW, f (q) →M
min
S ,s̄ ⊕Nq N

2 ⊂ M
min
S ,s̄ ×M

min
S ,s̄

m 7→ ([ιη̄1(q) ◦ χq,1(m)], [ιη̄2(q) ◦ χq,2(m)])
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Recall thatM
min
S ,s̄ is a toric monoid so thatM

min
S ,s̄ ⊕Nq N

2 can be viewed as a sub-

monoid ofM
min
S ,s̄ ×M

min
S ,s̄ . At a marking p, take

(χp, σp) :MW, f (p) →M
min
S ,s̄ ⊕ N.

At other closed points p′ of C s̄, take the composite

MW, f (p′)
χp′

→MW, f (η̄) →M
min
S ,s̄ .

In fact, the generization map χp′ is an isomorphism since MW, f (p′) → MC s̄,p̄′ �

MS ,s̄ is injective.
These maps can be glued since they are compatible with generization maps.

Therefore we obtain a commutative diagram of monoid-valued sheaves

M
min
C

[̃g2]

!!

f −1MW
f [ //

gen

;;

MC

(3.2.12)

The diagram (3.2.12) is compatible with (3.2.11) under the natural homomor-
phisms.

This generization method is systematically written as a Proposition below. In
what follows,MC is also said to be minimal if its associatedMS is minimal.

Proposition 3.2.7. ([10, Proposition 1.18]) Let (C/S , p1, ..., pn) be a family of n-
pointed prestable curves and let P be a Zariski-site fs sheaf of toric monoids on
C with upi : Ppi → N. For every s ∈ S and every node q of C s̄, let uq : Pq →

Z be a homomorphism. Assume that upi , uq are compatible with generizations,
respectively. Suppose thatMS ,MC be fs sheaves of toric monoids on S , C such
that

MC �MS ⊕
M

C/S ,p
S
M

C/S ,p
C

for some sharp homomorphism M
C/S ,p
S → M

′

S , meaning that only invertible
elements are mapped to invertible elements. If there is a sharp homomorphism
P → MC with type u, then there is a unique minimal fs sheaves of toric monoids
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M
min
C ,M

min
S on (C/S , p1, ..., pn) with a sharp homomorphism P→M

min
C with type

u. Moreover there are unique sharp homomorphismsM
min
S →MS ,M

min
C →MC

making the commutative diagram

P

{{ ""
M

min
C

//MC

π−1M
min
S

OO

// π−1MS

OO

Log morphisms

Let
Mmin

S =M
min
S ×

MS
MS

with the homomorphismMmin
S → OS induced from the structure mapMS → OS .

Since [g2]−1(0) = 0, this pre-log structure is in fact a log structure, whose charac-
teristic isM

min
S . It is obvious that the projectionMmin

S → MS is a log homomor-
phism. Similarly, on C we define a log structure and a log homomorphism:

Mmin
C :=M

min
C ×

MC
MC →MC.

By the very definitions of the above, there is a natural log morphism

Cmin := (C,Mmin
C ))→ S min := (S ,Mmin

S ).

We construct the natural log lifts of diagrams (3.2.11), (3.2.12) by the follow-
ing Lemma 3.2.8.

Lemma 3.2.8. For given two homomorphisms of log structures (M1,O1)→ (M3,O3),
(M2,O2) → (M3,O1 = O3) with a compatibleM2 → M1, there is a unique lift
homomorphism (M2,O2)→ (M1,O1) making a commuting diagram

(M1,O1)

&&
(M2,O2) //

88

(M3,O1)
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Proof. This follows from the factM1 =M1 ×M3
M3. �

Now for c ∈ C,w ∈ W, b ∈ B with f (c) = w, π(c) = s, πW(w) = b, we obtain a
commuting diagram of homomorphisms of log structures

(Mmin
C,c̄ ,OC,c̄)

''
(MW,w̄,OW,w̄) //

77 OO

(MC,c̄,OC,c̄)

(Mmin
S ,s̄ ,OS ,s̄)

''
(MB,b̄,OB,b̄) //

77

OO

(MS ,s̄,OS ,s̄).

OO

Here the commutativity of the left back side square can be deduced from
Lemma (3.2.8).

Therefore we have constructed a minimal/basic stable log map f min : (Cmin/S min,p′)→
W/B with the same underlying stable map f and a log morphism h : C/S →
Cmin/S min such that f = f min ◦ h and fS = f min

S ◦ hS . The minimal/basic stable log
map and the morphism are unique up to unique isomorphism (see [10, Proposition
1.24]).

3.2.8 The works of Abramovich, Chen, Gross, and Siebert

The universal stable log maps are called basic in [10] and minimal in [6]. From
now on, all stable log maps are assumed to be minimal unless otherwise stated.

Theorem 3.2.9. [10, 6, 1] Suppose that the characteristic sheafMW is globally
generated. The moduli stack Mg,σ(W/S , β) of stable log maps of type (g, β, σ) is a
DM-stack, proper over B, carrying a canonical virtual fundamental class.

Remark 3.2.10. We refer readers to [1, 6, 10] for weaker conditions of the log
structureMW under which the above properness theorem were proven.

Let π : C→ K be the universal curve and let TW/B denote the log tangent sheaf
of W relative to B. There is a canonical perfect obstruction theory relative to the
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stackM := LogMg,n ×Logk LogB

(Rπ∗ f ∗TW/B)∨ → LK/M

(for this particular form see [10, 15]).

3.3 Simple degenerations

In this section W/B is the degeneration as in §3.1.

3.3.1 Basic facts

We let X1 = (x1) and X2 = (x2) in the local sense in what follows.

Lemma 3.3.1. Let (C/S , p, f ) be a stable log map to W/B and let s ∈ S .

1. IfMW, f (q) = N, then uq = 0.

2. IfMW, f (q) � N
2, then uq((a1, a2)) = cq(a2 − a1) for some cq ∈ Z.

3. IfMW, f (q) � N
2 withMW, f (η̄i) = N for some i = 1, 2, then uq , 0.

Proof. (1) Both f [η̄i
◦χq,i :MW, f (q) →Ms, i = 1, 2, coincide with the homomorphism

N→Ms inherited from s→ Spec(k†).
(2) This is immediate from uq((1, 1)) = 0.
(3) Suppose f (η̄1) ∈ X1 and let x1 be a local regular function at f (q) defining

the divisor X1. Then f ](x1) is a local equation defining the component correspond-
ing to η1 with some positive multiplicity. Hence f [((1, 0)) = [(0, c, 0)] ∈ Ms ⊕NN

2

(up to the isomorphisms of N2), which is ±cλq as an element in MS ,s̄ × MS ,s̄ by
(3.2.5). Thus uq((1, 0)) = ±cλq , 0. �

In the case of Lemma 3.3.1 (2), we call |cq| the contact order of the node.
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3.3.2 Non-degenerate case

In this subsection we consider the case S = s = Speck. Let (C/S , f ) ∈ Mg,0(W0, β0)
is non-degenerate, i.e., f −1(D) ⊂ Cnd. Let f −1(D) = {qi | i = 1, ...,m} and let c,..., cm

be the contact orders of f at q1, ..., qm (see Lemma 3.3.1 (2)). They are nonzero by
Lemma 3.3.1 (3).

We claim thatMs � N ⊕ N
m′ where m′ := |Cnd| − m. Let

l = LCM(c1, ..., cm)

and let [1η] denote ιη̄(1) in ιη̄ : N = MC,η̄ → Ms. If η and η′ are connected in
C \ f −1(D), note [1η] = [1η′] by Lemma 3.3.1 (1) and the definition of the minimal

Ms. Also note that

[1η] = c jλq j (3.3.1)

whenever q j is contained in the component associated to η. Therefore combined
with the connectedness of C,

[1η] = [1η′] (3.3.2)

for every components η, η′ of C. Thus, (3.3.1) and (3.3.2) together with Lemma
3.3.1 (1) & (2) implies that M

gp
s � R × Zm′ for the quotient R of Zm divided

by relations ci1qi = c j1q j . We note that Rgp is isomorphic to Z using the exact
sequence

0 // Zm−1 φ1 // Zm φ2 // 1
lZ

// 0

in which φi are defined by

φ1(1qi) = ci1qi − ci+11qi+1 and φ2(1qi) =
1qi

ci
.

By the saturation ofMs we conclude the following description:

M
C/s
s =

∏m
i=1Nqi ⊕ N

m′ (l1,...,lm)⊕Id
−−−−−−−−→ Ms = N ⊕ Nm′ (l,0)

←−−−−− MB,0 = N

where li = l/ci.
This shows that for the non-degenerate f , the minimality/basicness of f coin-

cides with the minimality in the sense of [15, §5.2].
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3.3.3 Splitting

For each i = 1, 2, let MXi denote the divisorial log structure associated to the
divisor X1 ∩ X2 in Xi. There is a canonical homomorphism ι[Xi

: MXi → ι∗Xi
MW0 .

Under this homomorphism

MXi = NX1∩X2
↪→ ι−1

Xi
MW0 = NX1

⊕ NX1∩X2
.

Consider a stable log map (C/S ,p, f ) whose underlying stable map is a join
of two maps f

i
, i = 1, 2, that is:

• (C,p) = (C1, {p j} j∈N1 , {p
1
j} j∈M)

∐
q j, j∈M(C2, {p j} j∈N2 , {p

2
j} j∈M) and

• f (Ci) ⊂ Xi, f
i
= f

|Ci

.

We include the case when C1 = ∅ or C2 = ∅. For i = 1, 2, we will construct a log
structure Ci/S i on the pointed possibly disconnected prestable curve (Ci/S , {p j} j∈Ni , {p

i
j} j∈M)

over S and a minimal/basic stable log map fi from Ci/S i to Xi whose underlying
stable map is exactly f

i
.

Let s̄ → S be a geometric point and let s̄i be two copies of s̄. For a node
q ∈ Ci|s̄i

, we denote

ui
q := uq ◦ ι

[
Xi

:MXi, f i
(q) →MW0, f (q) → Z. (3.3.3)

By Proposition 3.2.7 we obtain the monoidMs̄i minimal with respect to data

( f −1
i
MXi , u

i
q; q ∈ (Ci)

nd
|s̄i

). (3.3.4)

Note thatMs̄i is a toric monoid since it is a finitely generated saturated submonoid

ofMS ,s̄. Note also that there is a natural homomorphismM
Ci/S i

S i,s̄i
→Ms̄i from the

construction, hence we can define a sheaf of monoids on Ci|s̄i

MCi := (M
Ci/S i,{p j} j∈Ni
Ci|s̄i

⊕
π−1

i|s̄i
M

Ci/S i
S i ,s̄i

π−1
i|s̄i
Ms̄i) ⊕

⊕
j∈M

Npi
j

where Npi
j
is the constant sheaf N supported on pi

j and πi : Ci → S i is the projec-
tion.
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By informally considering local equations x1 = 0 for X1 and x2 = 0 for X2 at
f (p j) ∈ W, it is convenient to write

MW0, f (p j) = Nx1 ⊕ Nx2 and MXi, f i
(pi

j)
= Nxi′ ,

where i′ ∈ {1, 2} with i′ , i. Define

upi
j

:MXi, f i
(pi

j)
→ N

by the equation
uq j = up1

j
◦ prx2

− up2
j
◦ prx1

. (3.3.5)

where prxi
is the projection Nx1 ⊕ Nx2 → Nxi . We assume that with respect to the

order selecting the second branch from C2, the equation (3.3.5) is fulfilled.
Define a natural homomorphism MCi → ι−1

Ci
MC by the generization method

of ∏
q∈Cnd

i
Nq

�� $$

Ms̄i
� � //MS ,s̄.

together with the composite

MCi |pi
j
= N ⊕Ms̄i

facet
↪→ N2 ⊕Ms̄i → N

2 ⊕Np1
j
MS ,s̄ = ι−1

Ci
MC |pi

j
.

By Proposition 3.2.7, we derive a homomorphism f [
i

making a commutative
diagram of sharp sheaf homomorphisms

f −1
i
MXi

f [
i //

��

MCi

��

f −1
i
ι−1
Xi
MW

// ι−1
Ci
MC

. (3.3.6)

In fact we need an extra treatment at pi
j. We simply define ( f [

i
)pi

j
: ( f −1

i
MXi)pi

j
→

(MCi)pi
j
= N ⊕Msi to be the sum of upi

j
and the composite

( f −1
i
MXi)pi

j
→ ( f −1

i
MXi)η̄ →Msi
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of the generization followed by the natural one in the construction ofMsi where
η is the generic point of the curve component containing pi

j. We check the com-
mutativity at such points by the following diagram:

MXi, f 1
(pi

j)
, a −−−−−→ Nzi′ ⊕Ms̄i , (upi

j
(a), [χ(a)])y y

MW0, f (q j), (0, a) −−−−−→ N2
zi,zi′
⊕NMs̄, (0, upi

j
(a), [χ(a)]).

Now we define the log structures on si and Ci by fiber products as follows:

MS i :=MS i ×MS
MS , MCi :=MCi ×ι−1

Ci
MC

ι∗Ci
MC

By (3.3.6) and Lemma 3.2.8, we obtain f [i making the commutative diagram, for
every c ∈ Ci|s̄i

,

(MXi, f i
(c̄),OXi, f i

(c̄))
f [i //

��

(MCi ,OCi)

��
(MW0, f i

(c̄),OXi, f i
(c̄))

f [ // (MC,c̄,OCi,c̄).

(3.3.7)

Therefore, we get two universal stable log maps

(Ci/S i, p j, j ∈ Ai, pi
j, j ∈ J, fi) (3.3.8)

to Xi with contact orders c j at pi
j.

3.3.4 Gluing

Conversely, starting from given two stable log maps (3.3.8) we want to glue them
in order to get a stable log map to W0. To do so, we will need some additional data
which will be specified later.

Let pri :MW0,q →MXi,q � Nxi′ and recall that Xi = (xi). First note that (3.3.3)
and Lemma (3.3.1) determine type uq for q ∈ (Ci)nd

s̄ , that is,

uq := ui
q ◦ prxi′

− ui
q(1)prxi

.
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For a gluing node q j ∈ C1 ∩C2, define

uq := up1
j
◦ prx2

− up2
j
◦ prx1

.

Now on C s̄, we have data ( f −1
MW0 , uq; q ∈ Cnd

s̄ ), hence obtain Ms̄ minimal
with respect to the data.

Lemma 3.3.2. The monoidMs̄ is a toric monoid with a facetMs̄1 ×Ms̄2 .

Proof. Let lq = LCM(ci, i ∈ M)/cq. It is straightforward to see that Ms is the
saturation of a quotient of

M̃s :=Ms̄1 ×
∏

η1∈Con(C1,s̄)

Nx1 ×Ms̄2 ×
∏

η1∈Con(C2,s̄)

Nx2 ×
∏

q∈C1,s̄∩C2,s̄

Nq

Consider a homomorphism

σ : M̃s → N

determined by that the kernel of σ isMs̄1 × Ms̄2 and σ|log xi = ×l : Nlog xi → N,
σ|Nq = ×lq : Nq → N. Note that σ factors through a homomorphism Ms̄ → N,
which is also denoted by σ. Since the kernel of σ is a toric monoidMs̄1 ×Ms̄2 ,
M
×

s̄ must be trivial and henceMs̄ is also a toric monoid. SinceMs̄1 ×Ms̄2 is the
kernel of σ ∈ M

∨

s̄ , it is a face. It is easy to check that σ is a 1-dimensional ex-
tremal ray ofM

∨

s̄ so thatMs̄1 ×Ms̄2 is a facet. �

Note that there are natural commuting homomorphisms

M
C/S
S

//MS Mb
oo

M
Ci/S i

S i
//

OO

MS i

OO

HereMb →MS is well-defined viaMη̄i →Ms with any choice of a component
of C s since uq = 0 on Mb. Therefore by the generization method we obtain a
commuting diagram of homomorphisms

MC ←−−−−− MW0x x
MS ←−−−−− Mb
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Lemma 3.3.3. The homomorphism MW0, f (q j) → MC,q j , defined by the generiza-

tion, coincides with the one throughMsi ⊕ N.

Proof.

MW0, f (q) =MX2, f 2
(q) ⊕MX1, f 1

(q) = Nx1 ⊕ Nx2 3 (a, b)

−→ (Ms2 ⊕ Nx) ⊕ (Ms1 ⊕ Ny) 3 ( f
[

2 ◦ χ(a), cqa, f
[

1 ◦ χ(b), cqb)

−→Ms ⊕N (Nx ⊕ Ny) 3 ( f
[

1 ◦ χ(b) + f
[

2 ◦ χ(a), (cqa, cqb)) − − − (∗)

There are three possible cases.
Case 1. When q is non-degnerate, then (∗) = (0, (cqa, cqb)). On the other hand,

(0, b)1η2 − (a, 0)1η1 = cq(b − a)λq inMs. Hence

(∗) = ((a, 0)1η1 , (0, b)1η2)

inMs ×Ms.
Case 2. When η1, η2 are mapped into X1 ∩ X2, (∗) = ((0, b)1η1 + (a, 0)1η2 +

cqaλq, (0, b)1η1 + (a, 0)1η2 + cqbλq). Since (a, b)1η2 − (a, b)1η1 = cq(b − a)λq,

(∗) = ((a, b)1η1 , (a, b)1η2)

Case 3. When η2 is mapped into X1 ∩ X2, (∗) = ((a, 0)1η2 + cqaλq, (a, 0)1η2 +

cqbλq). Since (a, b)1η2 − (a, 0)1η1 = cq(b − a)λq,

(∗) = ((a, 0)1η1 , (a, b)1η2)

�

Suppose that we are given the following additional data: a log structure MS

with the characteristic MS and a commutative diagram of log homomorphisms
(denoted by dotted arrows)

M
C/S
S ,q j

//M
C/S
S

//MS Mb
oo

M
Ci/S i
S i

//

OO

MS i

OO
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where solid arrows are already determined. This in turn defines a log structure
MC. We will construct a natural log homomorphism f ∗MW0 →MC. On the way

we will adjust the homomorphismMC/S
S ,q j
→MS as in Proposition 3.3.4.

Note that there is a natural inclusion M
Ci/S i,{p j} j∈Ai ,{p

i
j} j∈J

Ci
→ ι−1

Ci
M

C/S
C which in

turn induces a homomorphismMCi → ι∗Ci
MC. This will be used in the commuta-

tive diagram below. Since

ι∗Xi
M

gp
W0
�M

gp
X1
⊕O×Xi

ι∗Xi
π∗W0
M

gp
b ,

we obtain a commutative diagram

ι∗Ci
M

gp
C M

gp
Ci

oo

ι∗Ci
π∗M

gp
S

OO

f ∗
i
ι∗Xi
M

gp
W0

ff

f ∗
i
M

gp
Xi

ii

oo

f ∗
i
ι∗Xi
π∗W0
M

gp
b

bb OO

O×Ci

OO

oo

and hence a natural homomorphism from

ι∗Ci
f ∗MW0 → ι∗Ci

MC

Therefore a homomorphism f ∗MW0 → MC is well-defined by the above except
at the gluing nodes q j, j ∈ J. It is straightforward to check that this is compatible
with the one in the characteristic level given by the generization method.

Proposition 3.3.4. Assume that S = SpecA for a local noetherian henselian ring
A. At the gluing node q j, there exist log homomorphismsMC/S

S ,q j
→MS , j ∈ J and

hq j :MW0, f (q j) →MC,q j satisfying the followings.
1. They make the commutative diagram

MW0, f (q j)

hq j //MC,q j

MB,0
//

OO

MS ,s̄

OO
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where s̄ is the unique closed point in S .
2. They induce two given homomorphismsMXi, f i

(pi
j)
→ MCi,pi

j
as in diagram

(3.3.7)
Furthermore, the such homomorphisms hq j : MW0, f (q j) → MC,q j and the re-

striction of MC/S
S ,q j
→ MS to M

C/S ,cq j

S ,q j
are uniquely determined, where M

C/S ,cq j

S ,q j

is the subsheaf of MC/S
S ,q j

consisting of sections whose cq j-th roots exist at least
locally.

Proof. Let R be the henselization of A[x, y]/(xy). We need to define a log homo-
morphism h in the diagram

R× ⊕ N2 � f ∗MW0 , f (q j )
h // MC/S

C,q j
⊕
M

C/S
S ,q j

MS ,s̄ � R× ⊕ N2 ⊕A×⊕N (A× ⊕MS ,s̄)

A× ⊕ N � f ∗MB,0

(idA ,∆)

OO

hb

// MS ,s̄ � A× ⊕MS ,s̄

(0,idMs̄
)

OO

The homomorphism h restricted to each branch is already given so that

h(1x1) = ((v1, cq1x), (1, f
[

2 ◦ χ(1x1))),

h(ex2) = ((v2, cq1y), (1, f
[

1 ◦ χ(1x2))

for some v1 ∈ R×/(y), v2 ∈ R×/(x). Therefore h is determined by lifts ṽi of vi in R×.
However, the commutativity of the diagram requires that the product ṽ1ṽ2 must be
in A×. We show that such lifts are unique as follows. Let x′ = xṽ1, y′ = yṽ2 in R.
Then according to [21, §3.B] and [14, Lemma 2.1], there are unique u1, u2 ∈ R×

such that u1u2 ∈ A× and x′ = xu1, y′ = yu2 ∈ R. This analysis shows that h can be
uniquely determined. Note also that making the square diagram above commutes
for a given hb, the homomorphismMC/S

S ,q j
→MS can be constructed and is, more-

over, uniquely determined when it is restricted toM
C/S ,cq j

S ,q j
. It is straightforward to

check that h preserves the structure maps of log structures. �

49



CHAPTER 3. DEGENERATION OF LOG STABLE MAPS

3.4 Proof of Theorem 3.1.1

3.4.1 The splitting stack

For a fine log scheme S , denote byLogS the stack over S whose fiber over T → S
is the groupoid of log morphisms T → S over T → S and whose homomorphisms
between T → S and T ′ → S are isomorphisms h : T → T ′ over S such that
h = idT . The fibered category LogS is an algebraic stack locally of finite presen-
tation over S (see [23, Theorem 1.1]). Let T orS be the open substack of LogS

classifying fs log schemes over S .

Definition 3.4.1. Denote byLogspl
k†

the category fibered in groupoids over (Sch/Spec(k))
whose fiber over T → Spec(k) is the groupoid of triples (T, h,FT ) where (T, h :
NT ⊕O

∗
T →MT ) is an object in T ork† and FT is a subsheaf ofMT satisfying that:

1. For every t ∈ T, F T,t̄ ⊂ MT,t̄ is a facet.

2. For the log structure α :MT → OT , α|MT \FT
= 0.

3. For every t ∈ T, 〈FT,t̄, p〉 ⊗Z Q =MT,t̄ ⊗ Q where p is the image of 1 under
the induced homomorphism ht̄ : NT,t̄ → MT,t̄ and 〈FT,t̄, p〉 is the monoid
generated by FT,t̄ and p.

Note that by Condition (2), (FT , α|FT
) is also a log structure on T .

Lemma 3.4.2. 1. The fibered category Logspl
k†

is a zero pure-dimensional al-
gebraic stack over Spec(k).

2. The forgetful morphism Logspl
k†
→ Logk† is representable and proper.

Proof. It is straightforward to check that Logspl
k†

is a stack over Spec(k). We apply
[3, Lemma C.5] to prove (1) and (2). Let T → T ork† be the morphism obtained
from a log morphims T → Spec(k†) together with its toric chart

NT
//

��

QT

��
NT ⊕ k

∗
T

//MT
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(in particular, Q is a toric monoid).
For ρ ∈ Q∨[1], let Qρ := {q ∈ Q | ρ(q) = 0} be the facet of Q associated to ρ

and let p be the image of 1 under the homomorphism N→ Q.

Lemma 3.4.3. The fiber product T ×T or
k†
Logspl

k†
is representable by a T - scheme∐

ρ∈Q∨[1],ρ(p),0 Tρ, where Tρ is the closed subscheme of T defined by the ideal gen-
erated by Q/Qρ under the composition QT →MT → OT .

Proof. We first show that there is a natural T -morphism from
∐

Tρ to T ×T or
k†

Logspl
k†

. Consider pre-log structure QT → h−1
ρ OT → OTρ on Tρ, where hρ : Tρ → T .

There is the natural morphism f of sheaves of monoids on Tρ.

f : QT → Qa
T → Qa

T

We can check f (Qρ) ⊂ Qa
T is a facet. We define subsheaf F ⊂ Qa

T as the fibered
product

F //

��

Qa
T

��

f (Qρ) // Qa
T

Then (F → Qa
T ← kT ⊕ N) is an object of T ×T or

k†
Logspl

k†
(Tρ)

Conversely, we show that there is a natural T -morphism from T ×T or
k†
Logspl

k†

to
∐

ρ Tρ. Suppose that we are given h : S → T , NS ⊕ k
∗
S → MS ← FS such

that NS ⊕ O
∗
S →MS is the pull-back of NT ⊕ k

∗
T →MT by h. Consider following

morphism of monoids by choosing any section h−1MT → h−1MT ,

g : h−1MT → h−1MT → (h−1MT )a �MS →MS

We can check g−1(F S ) is a facet not containing p. Hence g−1(F S ) is equal to Tρ

for some ρ. Therefore, h : S → T factors though S → Tρ → T .

It’s straightforward to check that above two natural morphisms are inverse to
each other.

�

This shows the proof of Lemma 3.4.2.
�
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3.4.2 Graphs

Consider a morphism S → T orMg,n ×T orkLogspl
k†

and suppose that S is a connected

scheme. Let ρs ∈ M
∨

s [1] such that Kerρs = F s and let s be a specialization of
ξ ∈ T . Then by Lemma ?? (2) we have the diagram

0 // (F s)gp //

����

M
gp
s

ρ
gp
t //

����

Z // 0

0 // (F ξ)gp //M
gp
ξ

ρ
gp
ξ // Z // 0

so that there is a canonical isomorphismMs/Fs �Mξ/Fξ. Therefore for s, s′ ∈ S ,
via cospecialization, canonically

N �Ms/Fs �Ms′/Fs′ .

We can associate a graph Γ for a geometric point s̄→ S as follows. Let C s̄ be
the curve over the point s̄ induced from the morphism S → T orMg,n ×T ork Logspl

k†
.

We call a node e of C s̄ a splitting node if the induced homomorphism

×le : Ne →M
C s̄/s̄
s̄ →Ms̄ →Ms̄/F s̄ = N

is nonzero (i.e., le , 0). Using a local chart, we see that the integer le is well-
defined, independent of the choices of s̄. Now define Γ be the dual graph associ-
ated to the curve obtained smoothing all non-splitting nodes of C s̄. This graph Γ is
independent of the choices of a geometric point s̄→ S . We say it is (±)-orientable
if there exists an assignment r : V(Γ) → {±} such that {r(v), r(v′)} = {±} when-
ever (v, v′) ∈ E(Γ). In particular, there is no loops in E(Γ) if Γ is orientable. Let
lΓ : Nb →Ms̄/F s̄ and ce = lΓ/le. We say that if ce ∈ N for every e ∈ E(Γ), then Γ

with lΓ, le is divisible. We also give a genus and marking decorations, ge, ne.
Assume that the decorated graph Γ with {lΓ, le, ge, ne : e} is orientable and di-

visible. These decorations lΓ, le, ge, ne are well-defined, independent of the choices
of s̄. Denote by BΓ the open and closed substack of T orMg,n ×T ork Logspl

k†
whose

associated graph is the decorated graph Γ.
Let

B :=
∐

Γ

BΓ.
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There is uniquely an open and closed substack M0 of T orMg,n ×T ork T ork† such
that B → T orMg,n ×T ork T ork† factored through a surjective morphism B → M0.
Define

K
spl
Γ

:= BΓ ×M0 K0, K spl :=
∐

Γ

K
spl
Γ
.

Then canonically

K spl � (T orMg,n ×T ork Logspl
k†

) ×M0 K0

since we can check that if (α, β) is an object of (T orMg,n ×T ork Logspl
k†

)×M0 K0, α is
an object of BΓ ⊂ T orMg,n ×T ork Logspl

k†
.

Define an assignment r : V → {1, 2} by the rule r(v) = i if the composite

Nxi inc
// Nx1 ⊕ Nx2 pr

//MW0, f (v)
//Ms̄ ρ

// N

is nonzero. The following Lemma shows that the map r is well-defined. Denote
by 〈ρ, log xi ⊗ eη〉 the value of 1 under the composite.

Lemma 3.4.4. For each component η of C s̄, 〈ρ, log xi ⊗ eη〉 , 0 if and only if
〈ρ, log xt(i) ⊗ eη〉 = 0 for i = 1, 2. Furthermore, these imply f (η̄) ∈ Xi.

Proof. SinceM
∨

s̄ ⊗ R≥0 is a strictly convex rational cone, there is no small plane
passing through ρ. Since ρ(p) , 0, 〈ρ, log xi ⊗ eη + log xt(i) ⊗ eη〉 > 0. Repre-
sent ρ by

∏
η(αη, βη) ×

∏
γq ∈

∏
N with certain relation at nodes q. Suppose that

〈ρ, log xi⊗eη〉 > 0 for both i = 1, 2. For such η, the relation is that αη+βη = αη′+βη′

so that we can vary αη, βη on the line x + y =constant. This proves the first state-
ment. For the second statement, note that if f (η̄) < Xi, then log xi ⊗ eη = 0 in

Ms̄. �

By using the fiber product

K
spl
Γ

σΓ //

��

K0

��
BΓ σBΓ

//M0
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let
EKΓ/BΓ

:= σ∗ΓEK0/M0 .

This defines a perfect obstruction theory for KΓ relative to BΓ (see [4, Theorem
4.5 & Proposition 7.1]).

Lemma 3.4.5. Under the projective morphisms σMΓ
,∑

Γ

lΓ(σBΓ
)∗[BΓ] = [M0].

Proof. Consider the following fibered diagram

T orMg,n ×T ork Logspl
k†

//

��

T orMg,n ×T ork Logk† //

��

T orMg,n

h

��
Logspl

k† f
// Logk† // T ork

SinceMg,n is log smooth over Spec(k), h is smooth by [23, Theorem 4.6 (ii)].
Hence, it’s enough to prove the statement for f : Logspl

k†
→ Logk† .

First note that locally we may assume that any morphism T → T ork† is of
form T = Spec(k[Q]/(p)) with chart N → Q, 1 7→ p, where (p) is the ideal of
k[Q] generated by p , 0. The associated reduced scheme is the union of toric
divisors Tρ of Spec(k[Q]) with ρ(p) , 0. For some positive integer m, mp is in the
sum of Qρ, ∀ρ. Note that the hypersurface associated to mp of Spec(k[Q]) has the
multiplicity m[p] with respect to the irreducible component Spec(k[Qρ]) of the
hypersurface, where [p] is the integer in Q/Qρ = N associated to p. �

Consider B′
Γ

:= BΓ ×k Spec(k[x]/(xlΓ)) in order to have the degree-1 induced
morphism

∐
ΓB

′
Γ
→ M0. Now by Theorem 5.0.1 of [7] (see also Proposition 5.29

of [19]), under the projective morphisms σΓ,∑
Γ

lΓ(σΓ)∗[KΓ, EKΓ/BΓ
] = [K0, EK0/M0]. (3.4.1)

3.4.3 Gluing of underlying maps

Fix a graph Γ and an element τ ∈ SE(Γ), let

Kv := Mgv,nv,∪eτe(Xv, βv)
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where e runs for e = (v, v′) for some v′ ∈ V(Γ). Let evv,τe be the evaluation map
Kv → D at the relative marking τe. Define a stack

⊙
vKv as the fiber product⊙

vKv
u //

∏
e eve
��

∏
vKv∏

e=(v,v′)(evv,τe×evv′ ,τe )
��

DE(Γ)
∆
// DE(Γ) × DE(Γ)

(3.4.2)

We define a natural perfect obstruction theory on
⊙

vKv relative to
∏

vLog∏Mgv ,nv+1

as follows. Over
⊙

vKv, there is a universal curve C joined by two universal
curves Cv associated to the universal curve over Kv. Let f be the universal map
C → W, let ιCv

: Cv → C the inclusion, let ιqe :
⊙

v Kv → C be the section
associated to the nodes corresponding to e. There is a natural sheaf epimorphism

⊕v(ιCv
)∗ f ∗v T †Xv

→ ⊕e(ιqe)∗ev∗eTD

(ξv)v 7→ (D(ξv)v 7→e)e

where D(ξv) is the part of ξv tangent along D. If we denote E the Kernel of the
above epimorphism, we obtain a homomorphism of distinguished triangles

ev∗LDE(Γ)/D2E(Γ)[−1] //

��

u∗E∏Kv/Log∏Mgv ,nv+1
//

��

(Rπ∗E)∨

��
L⊙Kv/

∏
Kv[−1] // u∗L∏Kv/

∏
LogMgv ,nv+1

// L⊙Kv/
∏
LogMgv ,nv+1

where
E∏Kv/Log∏Mgv ,nv+1

= �v(R(πv)∗ f ∗v T †Xv
)∨.

By the diagram chasing, it is straightforward to check that (Rπ∗E)∨ → L⊙Kv/
∏
LogMgv ,nv+1

is a perfect obstruction theory. By the functoriality of [4, Proposition 5.10] we
conclude that

[
⊙

Kv, (Rπ∗E)∨] = ∆!
∏

v

[Kv, (R(πv)∗ f ∗v T †Xv
)∨]. (3.4.3)

3.4.4 Gluing of log structures

Define K̃ spl
Γ
→ K

spl
Γ

by choosing an order on the set of the splitting nodes. Note
that it’s principal SE(Γ)-bundle.
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By forgetting some data, we have the commuting diagram of natural mor-
phisms

K̃
spl
Γ

φ //

v

��

⊙
Kv

��
BΓ

ψ &&

∏
LogMgv ,nv+1

v′

��
Log∏Mgv ,nv+1

Lemma 3.4.6. 1. The morphism v′ is étale.

2. The morphism ψ is DM-type and smooth.

3.
v∗LBΓ/Log∏Mgv ,nv+1

� φ∗
∏

e

ev∗eN†�E(Γ)
D/Xe

4. The morphism φ is DM-type and étale of degree
∏

e ce
lΓ

.

Proof. For (1): This is clear by considering the lifting criterion for formally étale
morphisms.

For (2): First note that ψ is DM-type since there is no infinitesimal automor-
phisms σ of a geometric point of BΓ with ψ(σ) = id. This implies that ψ is DM-
type. Now to prove ψ is smooth, it is enough to show ψ is formally smooth since
it is locally of finite presentation. The corresponding lifting property of ψ can be
checked by considering charts of log morphisms. Let I be a nilpotent ideal of a
finitely generated ring Λ over k and let S = Spec(Λ/I). We may assume that there
is a chart

M
C/S
S

!!

// Q Nb
oo

��
OS

ofMC/S
S → MS ← N ⊕ O

×
S . By Definition 3.4.1, the liftings of log structure on

MS uniquely exists. It is also obvious thatMC/S
S →MS andMS ←Mb have lifts

(may not be unique).

56



CHAPTER 3. DEGENERATION OF LOG STABLE MAPS

For (3): Since N†D/Xe
is trivial bundle, it’s enough to show that L∏B/LogMgv ,nv+1

is also trivial bundle. Let (C/S ,NS ⊕O
∗
S

h
→MS

j
←M

C/S
S ) be an object ofBΓ over

S . The isomorphism set of the lifting to S [ε] := S pec(OS [ε]/ε2) is canonically
isomorphic to the free OS -module whose basis {βe} is described as follows:

(C[ε]/S [ε],NS [ε] ⊕ O
∗
S [ε]

h
→MS [ε]

je
←M

C/S
S [ε])

where h is the trivial extension and je is the homomorphism determined by
following condition. For each splitting node q, there is the canonical subsheaf
Nq ⊂ M

C/S
S such that Nq � N ⊕ O

∗
S . Let 1q ∈ Nq[ε] be a primitive element. Then

je is the homomorphism which satisfy that: je(1q) = j(1q) for q , e, je(1q) =

j(1q)(1 + ε) for q = e. We can check that {βe} is well-defined. This show the proof
of (3)

For (4): The proof of (1) and Proposition 3.3.4 shows that φ is formally étale
and hence it is étale. Now we count the degree of φ. Let S = Spec(k). By con-
sidering charts, we note that the homomorphisms MC/S → MS ← Mb modulo
M

Cv/S v
S v

→ MS are determined by homomorphism Ne → k
×, 1 7→ ζe, Nb → k

×,
1 7→ ζ with ζce

e = ζ. By an isomorphism ofMS , we may let ζ = 1. There are still
remained isomorphisms ofMS which form a multiplicative group {t ∈ k× : tl = 1}.
This group acts on the set of homomorphisms (ζe)e by ζe 7→ tζe. This shows that
the degree of φ is (

∏
e ce)/lΓ. �

Let
E
K̃

spl
Γ
/
∏
LogMgv ,nv+1

:= φ∗(Rπ∗E)∨

By (4) of Lemma 3.4.6, E
K̃

spl
Γ
/
∏
LogMgv ,nv+1

is a perfect obstruction theory relative to∏
LogMgv ,nv+1 and hence by the very definition of virtual fundamental classes,

φ∗[
⊙

Kv, (Rπ∗E)∨] = [K̃ spl
Γ
, E
K̃

spl
Γ
/
∏
LogMgv ,nv+1

]. (3.4.4)

By (2) & (3) of Lemma 3.4.6, we get the exact triangle

E
K̃

spl
Γ
/
∏
LogMgv ,nv+1

→ E
K̃

spl
Γ
/BΓ
→ v∗LBΓ/

∏
LogMgv ,nv+1

[1]

Therefore,
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[K̃ spl
Γ
, E
K̃

spl
Γ
/
∏
LogMgv ,nv+1

] = [K̃ spl
Γ
, E
K̃

spl
Γ
/BΓ

]. (3.4.5)

3.4.5 The conclusion

Now combining (3.4.1), (3.4.5), (3.4.4), (3.4.3), we obtain Theorem 3.1.1. This
part is standard (see [2],[5]).

∫
[Mg,n(W0,β)]vir

∏
i∈[n]

ψmi
i ev∗i (γi) =

∑
Γ∈Ω(g,N,β)

lΓ
|V(Γ)|!

deg(
∏
i∈[n]

ψmi
i ev∗i (γi) ∩ [K̃ spl

Γ
])

=
∑

Γ∈Ω(g,N,β)

∏
e ce

|V(Γ)|!
deg(
∏
i∈[n]

ψmi
i ev∗i (γi) ∩ [

⊙
v

Kv])

=
∑

Γ∈Ω(g,N,β)

∏
e ce

|V(Γ)|!
deg(
∏
i∈[n]

ψmi
i ev∗i (γi)

∏
e∈E(Γ)

(
∑

j

ev∗1,eδ
1
je × ev∗2,eδ

2
je) ∩
∏

v

[Kv])

=
∑

Γ∈Ω(g,N,β)

∑
( je)e∈{1,...,rkH∗(D)}E(Γ)

(−1)ε
∏

e ce

|V(Γ)|!

∏
v

∫
[Mg,Nv |Ev (Xv,β)]vir

∏
i∈Nv

ψmi
i ev∗i ι

∗
Xa

(γi)
∏
e∈Ev

ev∗e(δr(v)
je

).
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국문초록

대수적곡선에서프로젝티브다양체로의홀로모픽사상의모듈라이공간의옹

골화들을 통해서 그 기하를 공부한다. 가장 유명한 옹골화는 컨세비치에 의해
소개된 스테이블 사상의 모듈라이 공간이다. 종수가 1이고 타겟이 프로젝티브
다양체인경우에,스테이블사상의모듈라이공간의메인컴포넌트는논싱귤러
한공간이다.바킬과징어에의해모듈러블로우업에통한특이점해소화가발
견되었다.김에의해로그스테이블공간이소개되었데,이공간역시스테이블
사상의 모듈라이 공간의 특이점 해소화 공간이다. 이 두가지의 특이점 해소화
공간이어떻게연관이되어있는지를밝히겠다.또한그로스-지버트와아브라
모비치-첸에 의해 로가리드믹 스테이블맵이 소개되었다. 이 공간을 이용하아,
로그 그로모브 위튼 불변량을 정의 할 수 잇다. 로가리드믹 스테이블 맵의 변
형에 대하여 공부하고, 이를 통해 로그 그로모브 위튼 불변량의 디제너레이션
공식을증명하겠다.

주요어휘:스테이블사상,로가리드믹구조,그로모브위튼불변량
학번: 2008-20284
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