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Abstract

Transcriptome-wide analysis of poly(A) tail
and RNA-protein interaction

Hyeshik Chang
School of Biological Sciences

�e Graduate School
Seoul National University

RNAs store and transfer information among constituents of the cell. From their
biogenesis to processing, transport, translation, catalysis, and decay, many cellular factors
are involved to achieve tight regulation. Following the development of high-throughput
DNA sequencing, it has become an essential tool to scrutinize RNA molecules in the
cell in unprecedented scale and depth. �is thesis concerns methodological advances in
two aspects of RNA regulation. First, I develop a novel method to survey global status of
polyadenylation that takes a fundamentally di�erent approach from the existing techniques.
Despite its importance in gene regulation, global investigation of the �˜ extremity of mRNA
has not been feasible due to technical challenges associated with homopolymeric sequences
and relative paucity of mRNA.�e new technique, named as TAIL-seq, allows measuring
poly(A) tail length at the genomic scale for the �rst time. I also discover widespread
uridylation and guanylation at the downstream of poly(A) tail. �e U-tails are generally
attached to short poly(A) tails (<�� nt) while theG-tails are foundmainly on longer poly(A)
tails (>�� nt), implicating their generic roles in mRNA stability control. Furthermore,
TAIL-seq identi�es, with a single nucleotide resolution, numerous nucleolytic events
involved in microRNA processing and mRNA cleavage. TAIL-seq will enable exploration
of unforeseen diversity of RNA processing and modi�cation.

Secondly, I describe an array of new analytic methods to crosslinking, immunoprecipi-
tation, and sequencing (CLIP-seq) to enhance its utility in the investigation of RNA-protein
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interactions. CLIP-seq arose as one of the standard techniques to retrieve transcriptome-
wide information of RNA-protein interactions in last few years. However, generalized
analysis techniques and tools have been missing unlike the other RNA-seq applications.
In this study, I generalize analytic work�ow for binding site identi�cation by developing
new methods. I also provide an open source toolchain that covers most of the common
analyses performed for CLIP-seq. In addition, I present ecliptic, a fully automated pipeline,
and it will speed up the research of RNA-protein interactions and make more information
accessible to researchers.

High-throughput experiments are expanding biology by providing unbiased view and
leading to unexpected observations. In this thesis, I introduce two types of development for
global investigation of poly(A) tails and single nucleotide resolution survey of RNA-protein
interactions. By applying these methods, I discover several phenomena at the �˜ end of
RNAs and the binding interfaces between RNA and RBPs. Further development and im-
provement will o�er an ample opportunity for the discovery of unforeseen regulatory path-
ways.

Keywords: Transcriptomics; High-throughput sequencing; RNA-protein interac-
tion; Poly(A) tail; Gene regulation

Student ID: ����-�����
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�. Introduction

�.� Post-transcriptional regulationof eukaryotic gene expression

RNA is a dynamic molecule of life. It is continuously generated, processed, used, and de-
graded in the cell. Nearly every step of RNAmetabolism is tightly regulated in mammalian
cells. Beginning with the transcription initiation, many mechanisms control expression
level and primary structure of RNA. Unlike its cousin, DNA, it forms uncountable types
of secondary structures, travels around the cell, and o�en changes sequence composition.

�e earliest widespread regulation in the life cycle of RNA is alternative splicing. It
generates various types of isoforms depending on the combination of splicing factors. In
human, at least ��% of multi-exon genes are known to have multiple isoforms (Johnson
et al., ����), and the fraction continues to grow with introduction of more sensitive
techniques. RNA binding proteins (RBPs) like NOVA, PTB, and FOX� bind to unspliced
pre-mRNAs, and collectively determine inclusion of exons into the mature forms of
mRNAs (Keren et al., ����).

At the other end of the cascade, translation provides an opportunity to control gene
expression. mRNA expression levels explain only ~��% of protein expression levels
in eukaryotic cells (Maier et al., ����). Assuming that protein degradation has only
minor e�ects on global deviation of gene expression (Schwanhäusser et al., ����), the
major fraction of the gap between mRNA and protein levels may be explained by the
regulations in translation initiation, translation elongation, and mRNA localization. �e
�˜ UTR of Fth� is blocked by iron regulatory protein (IRP) in iron-de�cient condition,
and iron-dependent release of IRP makes it translatable (Gray & Hentze, ����). AU-rich
element (ARE), known for stability determinant inmRNA sequences, also has roles in both
translational up-regulation and down-regulation through interaction with ARE binding
proteins (Barreau et al., ����). MicroRNA-induced silencing complex (miRISC) is another
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factor that induces both decay and translational repression of its targets (Fabian et al., ����;
Huntzinger & Izaurralde, ����; Guo et al., ����; Bazzini et al., ����; Djuranovic et al., ����).
Physical position of mRNA in the cell is also subject to post-transcriptional regulations.
Type D simian retroviruses escape from nuclear retention by using constitutive transport
element (CTE) that recruits nuclear export factors (Braun et al., ����). �e CaMKIIα
mRNA localizes in the distal dendrites through its cis-regulatory element in �˜UTR, which
determines local concentration of its protein product (Mayford et al., ����).

Cytoplasmic polyadenylation and deadenylation add another complexity of post-
transcriptional control of RNA.�e cytoplasmic polyadenylation element (CPE), which
is found near the polyadenylation signal in the �˜ UTR, is bound by CPE binding pro-
tein (CPEB) to extend its poly(A) tail in the cytoplasm (de Moor & Richter, ����). It is
known to promotes translation initiation and stabilize the mRNA during oogenesis, early
embryo development, localized translation of CaMKIIα, and cyclin mRNAs in cell cycle
progression (Mendez & Richter, ����; Weill et al., ����; Norbury, ����). Deadenylation
of mRNA is o�en coupled with its decay. miRISC is known to induce deadenylation
of its targets (Huntzinger & Izaurralde, ����; Djuranovic et al., ����). Messenger RNAs
undergoing nonsense-mediated decay (NMD) are rapidly deadenylated by poly(A) ribonu-
clease (PARN) before decapping, �˜-�˜ and �˜-�˜ exonucleases become active (Lejeune
et al., ����). mRNAs with ARE can be deadenylated, depending on the protein partner
(Mukherjee et al., ����).

Post-transcriptional regulation is known to have many layers, and may be even more
complex than we currently anticipate. Indeed, there may still exist vast repertoire of
RNA-mediated cellular mechanisms yet to be discovered.

�.� High-throughput methods in RNA biology

Development of gene expression pro�ling techniques enabled simultaneous monitoring of
massive number of transcripts. �ey not only allow measurements of genes of interest but
also provide a big picture of physiological status of cells. �e �rst two high-throughput
methods in gene expression pro�ling were cDNA microarray (Schena et al., ����) and
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serial analysis of gene expression (SAGE) (Velculescu et al., ����). �e cDNA microarray
technology is an extension of Southern blot into bigger scale. It hybridizes cDNAs labeled
with imageable material like �uorophore or silver to oligonucleotide probes attached to a
solid surface, then the light from spots is analyzed a�er imaging (Schena et al., ����). SAGE
is an automated Sanger sequencing-based technique that counts concatamerized short
sequence tags generated by treatment of restriction enzyme to double-stranded cDNAs
(Velculescu et al., ����). Many large scale projects have sought genome-wide insights into
gene expressions using both technologies for last two decades while microarray has been
overwhelmingly popular.

In the late-����’s, the methodology of RNA biology started to face fundamental
changes by commercialization of high-throughput DNA sequencing technology (Ronaghi
et al., ����; Bentley et al., ����). Recent break-through discoveries in the �eld have heavily
relied on high-throughput sequencing methods. �e discovery of PIWI-interacting RNAs,
long interspersed noncoding RNAs, their action mechanisms, non-canonical processing
pathways of microRNA, and global views of splicing regulations are the achievements
based on high-throughput sequencing. Unlike the pre-existing techniques which rely on
the known sequences and gene structures, RNA sequencing techniques based on high-
throughput DNA sequencing delivered far more information. �e independence to prior
knowledge of gene enabled scientists to discover new RNA molecules, unknown isoforms,
RNA modi�cations, and gene fusions, and to develop applications such as crosslinking,
immunoprecipitation, and sequencing (CLIP-seq) and ribosome pro�ling (also known as
ribo-seq or ribosome footprinting). Table �.� summarizes some of popular applications of
high-throughput sequencing in the �eld of RNA biology. �is section describes some of
the techniques related to the main content of this thesis.

�.�.� Transcriptome pro�ling

RNA-seq was developed as a replacement for cDNA microarray, then soon recognized its
powerfulness over the conventionalmethods. Unlike cDNAmicroarray, it is free fromcross-
hybridization, and sensitivity near splice junctions is without parallel to various microarray
technologies (Nagalakshmi et al., ����). When compared to the older sequencing-based
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Table �.� List of popular applications of high-throughput sequencing in RNA biology
(continued in the following pages).

Feature Method Description Reference

Expression pro�ling

RNA-seq RNA fragmentation, RT-PCR,

cDNA sequencing (details o�en

vary)

Nagalakshmi et al.

(����)

DeepSAGE Concatamers of sequence tags

generated from cDNA by

restriction enzyme

Nielsen et al. (����)

FRT-seq
Adapter ligation, RT-PCR on

�ow cell to lower ampli�cation

bias

Mamanova et al.

(����)

NSR-seq RT with not-so-random primer

to avoid rRNAs

Vignali et al. (����)

Transcript structure

(with expression

pro�ling)

Targeted RNA-seq Enrich RNA of interest with

oligonucleotide probes

Mercer et al. (����)

DeepCAGE,

nanoCAGE, or

CAGEscan

Fragmentation, enrich

fragments with �˜ cap or

speci�cally attach �˜ adapter

with template switching

Plessy et al. (����);

Kurosawa et al.

(����)

RNA-PET Mated pair tags with type II

restriction enzyme for

full-length cDNAs

Fullwood et al.

(����)

Direct RNA

sequencing

Hybridize and sequence RNAs

directly to �ow cell in single

molecule sequencer

Ozsolak et al.

(����); Sharon et al.

(����)

�P-seq, PAS-seq Enrich �˜ end fragment of �˜

UTRs where poly(A) begins

Shepard et al. (����);

Jan et al. (����)

�˜T-�ll-seq Skip poly(A) by �lling dTTP in

dark cycles

Wilkening et al.

(����)
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Table �.� (continued)

Feature Method Description Reference

Transcription

activity

GRO-seq Short incubation of nucleus for

nascent RNA labeling and

purify them

Core et al. (����)

NET-seq Immunopurify RNAPolII-RNA

complex, sequence �˜ ends

Churchman &

Weissman (����)

RNA secondary

structure

SHAPE-seq Chemically label for

single-stranded regions, probe

interrupted

reverse-transcriptions

Lucks et al. (����)

PARS Treat RNase V� and S�, analyze

accumulated �˜ ends

Kertesz et al. (����)

FragSeq Treat RNase T�+A, T� PNK, or

none, analyze accumulated �˜

ends

Underwood et al.

(����)

RNA-protein

interaction

RIP-seq Immunopurify RNA-protein

complex in vitro

Zhao et al. (����)

HITS-CLIP Crosslink RNA-protein complex

by UV C, treat RNase,

immunopurify, and treat

protease

Licatalosi et al.

(����)

PAR-CLIP Incubate cells to label RNA with

�SU or �SG, and CLIP with UV

A

Hafner et al. (����)

iCLIP Similar to CLIP, ligate �˜ adapter

a�er reverse-transcription,

probe interrupted

reverse-transcriptions

König et al. (����)
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Table �.� (continued)

Feature Method Description Reference

RNA-RNA

interaction

CLASH Crosslink RNA-protein complex

with UV, ligate two nascent

RNA molecules to each other,

then CLIP

Kudla et al. (����)

RNA editing m�A-seq Random fragmentation,

immunopurify m�A containing

fragments

Dominissini et al.

(����)

Translation activity

Ribosome pro�ling

or ribo-seq

Treat RNase to lysate, purify

monosome in sucrose cushion

Ingolia et al. (����)

ART-seq Treat RNase to lysate, purify

monosome by size-exclusion

chromatography

Freeberg et al.

(����)

Polysome pro�ling

by sequencing

Polysome fractionation, purify

mono-, di-, tri-, and polysomes

separately from fractions

Spies et al. (����)

RNA-chromatin

interaction

ChIRP, CHART Crosslink DNA-RNA-protein

complex by formaldehyde.

Pull-down chromatin fragments

using array of probes

complementary to RNA of

interest, sequence DNA

Chu et al. (����);

Simon et al. (����)

Endonuclease

speci�city

Degradome-seq,

PARE

Enrich poly(A)+ RNAs, ligate �˜

adapter depending on �˜

monophosphate, analyze

accumulated �˜ ends

Addo-Quaye et al.

(����); German

et al. (����)
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techniques like SAGE or , RNA-seq has far more utility not only in generic expression
pro�ling but also in gene structure discovery or in isoform-speci�c expression pro�ling
thanks to its longer size of sequenced reads (Mortazavi et al., ����). As the high-throughput
sequencing became cheaper and deeper, RNA-seq is now widely used in most modern
biology �elds.

As a matter of fact, RNA-seq does not point to a speci�c experimental procedure, but
indicates any variant of sequencing techniques starting from RNAwhen it does not involve
a speci�c biochemical puri�cation except poly(A) enrichment or rRNA depletion. �e
earliest RNA-seq experiments were performed by conversion of RNAs to double-stranded
DNA by RT-PCR, then processed with the regular methods of DNA sequencing library
preparation (Nagalakshmi et al., ����). Later, alternative approaches have been developed
to overcome the limitation of the previous method that cannot provide information on
the strand of RNA (reviewed in Levin et al., ����). �e three major variants of library
preparation methods for RNA-seq are brie�y summarized in Figure �.�. At the time of
writing this thesis, the RNA ligation-based method is generally favored over the other
methods.

�.�.� RNA-protein interactome analysis

In the global analysis of RNA-protein interactions, methods are separated into two disci-
plines depending onwhether in vivoRNA-protein crosslinking is used. RNA immunoprecipitation-
sequencing (RIP-seq) is anRNA-seq application that sequences RNA that is co-immunoprecipitated
with a protein of interest (Zhao et al., ����). It is o�en criticized on its critical drawback that
RNA-protein complex can be formed arti�cially during the experimental process (Riley
& Steitz, ����). HITS-CLIP and its variants are available for more stringent puri�cation.
CLIP determines sequences of RNA interacting with a protein by crosslinking RNA and
protein using ultraviolet light irradiation (Figure �.�) (Licatalosi et al., ����; Licatalosi &
Darnell, ����). Although it excludes in vitro artifacts by design, CLIP o�en misses true
targets depending on experimental conditions like UV wavelength, bu�er condition, or
dozens of minor steps in sequencing library preparation (Singh et al., ����). It is known
that several RNA binding domains are not e�ciently crosslinked (Singh et al., ����). More
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Figure �.� Brief procedure of the three major methods for RNA-seq.
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Figure �.��e procedure of a typical CLIP-seq experiment.

details on the CLIP techniques will be covered in Section �.�.

�.�.� Monitoring transcriptome-wide polyadenylation status

Survey of poly(A) tail length in mRNAs will allow researches to investigate cytoplasmic
polyadenylation and deadenylation mechanisms. Cytoplasmic polyadenylation and dead-
enylation is known to play on important role in late oogenesis, cell cycle progression,
microRNA targeting mechanism, and synaptic plasticity (Weill et al., ����; Norbury, ����).
A su�ciently accurate transcriptome-wide method to measure poly(A) lengths can be a
game changer in the �eld as the tool will enable to �ndmessengers whose tails are regulated.
Early attempts were based on oligo(dT) chromatography (Figure �.�) (Beilharz & Preiss,
����; Meijer et al., ����). �ey were successful to a certain degree, but the method had
limitations. It could not distinguish true poly(A) tails from A-rich mRNA body. Longer
poly(A) tails could not be subdivided to higher resolution. With the introduction of high
throughput sequencing, few groups tried to analyze poly(A) with RNA-seq (Wu et al.,
����; Ulitsky et al., ����). However, they could not achieve enough accuracy due to insuf-
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Bind to oligo(dT)-coated beads

No poly(A) tail

Elution in high salt buffer
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Short poly(A) tail (<30)

Short poly(A) tail (<30)

No poly(A) tail

Figure �.�Method to separate short (<�� nt) and long (>�� nt) poly(A) RNAs (Meijer
et al., ����).

�cient dynamic range of signal (Wu et al., ����) or inaccuracy in Illumina base calling for
homopolymers (Ulitsky et al., ����). In Chapter �, I introduce a newly developed solution
for global investigation of poly(A) tails.

�.�.� Analysis of RNA ends

�e termini of RNA are formed and regulated by highly organized mechanisms. �e �˜
end of mRNA is where transcription starts. Export, stability, and translation are regulated
by �˜ capping (Nevins, ����). �e other end of mRNA is protected by poly(A) tail and
it is known to be important for mRNA stability and translation e�ciency (Weill et al.,
����). �e termini on both ends of tRNA give selectivity in aminoacylation (Schimmel
et al., ����). Stability and processing e�ciency of precursor miRNA are controlled by �˜
end nucleotidyl additions (Heo et al., ����, ����). Incorrect processing of either end of
precursor miRNA can alter the function of mature miRNAs (Vermeulen et al., ����; Park
et al., ����).

Highly parallel investigation of RNA ends for miRNA is relatively straightforward
as the standard protocol gives whole information of the molecules (Park et al., ����). For
longer RNAs, special modi�cations are required to read either end of the RNA. Rapid ampli-
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�cation of cDNA ends (RACE) incorporates oligo(dT)+VN primed reverse-transcription
for �˜ end of �˜ UTR (�˜ RACE), reverse-transcriptase template switching for �˜ end of
RNAs (�˜ RACE), single-stranded adapter ligation for both ends (RLM-RACE), or cir-
cularization for both ends (circular RACE) (Frohman et al., ����; Liu & Gorovsky, ����;
Scotto-Lavino et al., ����a,b,c). Modi�ed version of classical RACE is used for parallel in-
vestigation of mRNA ends (Olivarius et al., ����). Another variations of �˜ RACE, parallel
analysis of RNA ends (PARE) (German et al., ����) and degradome sequencing (Addo-
Quaye et al., ����) have shown their another utility on comprehensive identi�cation of
endonucleolytic cleavage events. Section �.� of this thesis introduces a di�erent variant of
these approaches that captures �˜ ends in transcriptome-wide fashion.
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�. Transciptome-wide pro�ling for �˜ ends of
poly(A)+ RNAs

�.� Background

�e �˜ termini of eukaryotic RNAs re�ect the history of transcript and play important roles
in determining the fate of RNA.�e �˜ ends are generated by endonucleolytic cleavage,
untemplated nucleotidyl transfer and/or exonucleolytic trimming. In the case of messenger
RNAs (mRNAs), the nascent transcripts are cleaved by cleavage and polyadenylation
speci�city factor (CPSF) and become polyadenylated by canonical poly(A) polymerase
(PAP), with an exception of replication-dependent histone mRNAs that lack poly(A)
tails (Norbury, ����). Poly(A) binding proteins (PABPs) not only protect poly(A) tails
but also interact with eIF�G bound to the �˜ cap, which is generally thought to facilitate
translational initiation (Weill et al., ����). Despite the importance, the actual sequences of
�˜ ends remain unknown for the vast majority of transcripts, and our current knowledge is
based on studies of a limited number of individual genes by northern- and RT-PCR/Sanger
sequencing-based techniques (Norbury, ����; Sallés et al., ����).

Genome scale investigation has been hampered for several reasons. Firstly, current
deep sequencing technologies cannot determine homopolymeric sequences of longer than
~�� nt. Although microarray combined with di�erential elution from oligo(dT) column
have been used to roughly estimate poly(A) length (Beilharz & Preiss, ����; Meijer et al.,
����), the resolution is too low for accurate measurement. Secondly, highly abundant
RNAs such as rRNAs and tRNAs dominate cDNA library unless mRNAs are enriched by
oligo(dT) capture which inevitably introduces bias towards mRNAs with long poly(A) tails.
Moreover, when oligo(dT) is used as a primer for reverse transcription or as an adapter
in splint ligation, the sequence information at the very end of RNA is lost in the cDNA
library. �us, global investigation of RNA �˜ end has been largely limited to the mapping
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of polyadenylation sites that mark the boundary between mRNA body and poly(A) tail
(Beck et al., ����; Ozsolak et al., ����; Mangone et al., ����; Yoon & Brem, ����; Fu et al.,
����; Jan et al., ����; Shepard et al., ����; Derti et al., ����; Martin et al., ����; Elkon et al.,
����; Hoque et al., ����; Wilkening et al., ����).

�.� Technical di�culties of sequencing poly(A) tails

To the exact sequencing of poly(A) tails by high-throughput sequencing, there are several
technical di�culties that cannot be easily handled. �is section describes the major
limitations of modern high-throughput sequencing technologies on sequencing poly(A)
tails.

�.�.� Problems in high-throughput sequencing for long homopolymers

�e sequencing technologies without reversible terminator, such as Roche ��� and Life
Technologies IonTorrent, report accumulated signals for homopolymers (Metzker, ����).
In their imaging, dynamic range of �uorescence signal is limited within charge-coupled
device (CCD) cameras and usually tuned to maximize sequencing performance of reg-
ular sequence composition in the genome (Metzker, ����; Bragg et al., ����). �erefore,
extensively long homopolymers like poly(A) tails o�en exceed their linear range of signal
quanti�cation, or even maximum measurement limits.

Even in technologies adopted reversible terminators, such as Illumina and Life Tech-
nologies SOLiD, homopolymers are still one of the most di�cult substrates to sequence.
�e second generation sequencers require PCR ampli�cation of templates to secure enough
signal intensity to be detected by fast imaging techniques (Shendure & Ji, ����; Metzker,
����). �e sequencing reactions from multiple templates are commonly out of sync a�er
several cycles of reaction because each part of the reaction has small chance of failure.
Polymerization reaction sometimes fails to incorporate an incoming nucleotide. �is type
of error and its subsequent e�ect on sequencing are collectively called phasing, and their
occurrence is estimated as �.�% in the modern Illumina equipments (Ledergerber & Dessi-
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moz, ����). Reversely, a single cycle occasionally incorporate more than one nucleotide.
�e phenomenon, called pre-phasing, is known to occur approximately �.��% of chances.
Either type of errors results in mixed-up signals coming from desynchronized templates.
Deconvolution using phasing and pre-phasing parameters is essential for sequencing
longer reads than �� cycles (Ledergerber & Dessimoz, ����).� However, their estimations
are extremely tricky at the ends of long homopolymers. Correction of the blended signals
easily become corrupt as the signal is overwhelmingly uniform inside long homopolymers.

Illumina sequencing technology has another shortcoming called sticky-T phenomenon
. Each step of sequencing-by-synthesis (SBS) reaction �nishes with cleavage and wash out
of �uorophores conjugated to nucleotide bases. While most of them are removed from the
clusters, minor fractions remain still in the template (Whiteford et al., ����). �e rate of
the persistence is speci�cally higher for T residues, which corresponds to poly(A) tails in
the reverse direction. As a result, the persisting �uorophores accumulate over reactions for
long homopolymers. T signal lasts for many more cycles a�er the end of T homopolymeric
region, then the subsequent cycles are called as T regardless of their source sequences.

�ird generation sequencers are better at these problems by taking merits of single-
molecule sequencing. Both Helicos and PacBio are free from phasing and pre-phasing
issues (Metzker, ����; Ozsolak & Milos, ����). Moreover, the latter doesn’t su�er from
build-up of �uorophore signals because it utilizes measurement of electrical conductivity,
which does not accumulate over time in principle (Metzker, ����). �ey could be ideal
platforms for sequencing poly(A) tails if they produce enough throughput, but they are
still limited to lower throughput by two or three orders of magnitudes when compared to
the main stream sequencers (Sharon et al., ����).

�.�.� Design of library construction

As Illumina was the only platform that provide both long (>���bp) and enough number of
reads with base-by-base measurement, our experiment designs were targeted for Illumina

��e feasible quality read lengths without corrections of phasing and pre-phasing is usually estimated as
��bp for Illumina and ��bp for SOLiD.
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Figure �.� Schematic description of experimental procedure. Horizontal bars represent
examples of RNA or DNAmolecules in each step. Colors of bars indicate (blue) mRNA
or its complementary DNA, (yellow) small non-coding RNAs, such as snRNA, snoRNA
or �.�S rRNA, (red) �˜ adapter or Illumina P�-containing primer, (green) �˜ adapter or
Illumina P�-containing primer. B in red circle mark the position of biotins.

chemistry.� �e experimental procedure is almost identical to the regular paired-end
RNA-seq library preparations (Wang et al., ����; Ozsolak & Milos, ����). We applied few
changes to the conventional schemes to enrich �˜ end of RNAs in resulting library (Figure
�.�). �e �˜-most part of RNAs are generally depleted in the conventional RNA-seq due
to the di�erent size distribution from the fragments from the middle parts of mRNAs
(Stern-Ginossar et al., ����). In TAIL-seq, �˜ adapter is ligated to the �˜ end of RNA before
fragmentation. �is enables not only enrichment of �˜-most part but also capturing the
sequence information on intact �˜ hydroxyl end of RNA. In addition, we adopted an rRNA

��is study was designed in collaboration with Jaechul Lim.
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Figure �.� Sequence structure of a complete TAIL-seq tag in sequencing library. P� and
P� are pre-designated sequences by Illumina for binding and ampli�cation on the �ow
cell. ‘N’ stands for a degenerate base.

depletion kit based on antisense LNA probes instead of oligo(dT) pull-down methods
to remove rRNA. As one of the major objective of TAIL-seq is to quantitatively pro�le
poly(A) tails, it needs to be independent of a�nity to oligo(dT) sequences (Raz et al., ����).
�e change also brings an ability to survey �˜ ends of poly(A)– RNAs.

Poly(A) sequences are challenging for fundamental machinery of sequencing, too. We
carefully designed sequences used in the preparation of library to improve the sequencing
performance (Figure �.�). Basically, read � provides the identity of the source transcript
while read � is used for measurement of poly(A) tail length. Read � can be also used
for investigation of �˜ ends of poly(A)– RNAs. Index read allows multiplex runs, which
sequences multiple samples in the same lane of �ow cells. �e multiplexing is bene�cial
not only for a �nancial reason but also for minimization of lane-to-lane and run-to-run
variations in an experiment set.

Sequencers based on optical imaging need to adjust their optics accurately to get
high-quality image and sequence. �e composition of bases in every sequencing cycle is
generally unbiased for the common sequencing libraries. As a TAIL-seq library generally
contains signi�cant proportion of poly(A) tails, base composition in the �rst cycles of
read � would be greatly biased to T. As Illumina sequencer takes images separately from
di�erent bases, getting correct exposure to CCD becomes di�cult when the composition is
signi�cantly unbalanced (Illumina, Inc., ����). It is also harder to correctly focus cameras
on the plane where reaction occurs (Illumina, Inc., ����). Moreover, sequence diversity of
the �rst few cycles of sequencing has substantial impact on overall sequencing. Images
from the �rst four cycles are used to identify cluster positions in the �eld of view on
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Figure �.� Sequence structure of diagnostic poly(A) spike-in library. See the text for the
details of design.

Illumina sequencers (Illumina, Inc., ����), thus unbalanced cycles are prone to lose true
spots or gain false spots. Lack of sequence diversity in poly(A) tails is also problematic for
estimation of phasing and pre-phasing matrices as the �rst �� cycles serves as its reference
data (Illumina, Inc., ����). To resolve these issues, we added ��een degenerate bases,
which are chemically synthesized from equimolar mixture of dNTPs (Figure �.�, ‘N’s in
light violet bar). With the complexity region, cluster registration and imaging becomes
more stable for highly homogeneous libraries in sequence composition. We also added
a pentamer with �xed sequence between inserts and the degenerate bases to distinguish
chemically synthesized adapters from sequences from the �˜ end of inserts (Figure �.�,
‘CTGAC’ in light violet bar).

Exact measurement requires enough number of references whose quantity is known.
We added seven chemically synthesized poly(A) spike-ins to characterize signals from
poly(A) tails (Figure �.�). �ey are designed similarly as the structure of �nal cDNA tag
for TAIL-seq except that they carry ��een random bases at the beginning of read �, and
�rst ��een bases of read � are designated with a �xed sequence (Figure �.�). �e random
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region stabilizes optic control and image analysis of read � by diversifying the sequence
composition. �e random region on the side of read � are changed to a �xed sequence
due to the technical limitation in chemical synthesis of nucleic acids.� Characterization of
signal, machine learning, and benchmarks using these synthetic poly(A) spike-ins will be
covered later in this chapter.

�.� Sequence data processing and acquisition

Signal processing of Illumina sequencing starts with imaging. Cluster spots are isolated
from the images, then their signal intensities are quanti�ed for all four channels, A, C, G,
and T, over the reaction cycles. �e built-in so�ware called real-time analysis (RTA) takes
care of these processes including base calling, which is to convert the signals into DNA
sequences. �is section describes the methods of TAIL-seq to process the signals a�er the
initial processing by RTA.

�.�.� Data acquisition and processing

TAIL-seq libraries were sequenced in ��+��� paired-end layout with Illumina HiSeq ����
or MiSeq. �e base calls and signal intensities were acquired from the sequencers a�er
processing by Illumina RTA �.��.��.� (HiSeq) or �.��.�� (MiSeq) (Table �.�). �e base calls
were collected and transformed into .qseq �les using Illumina o�-line basecaller (OLB)
�.�.�. Together with the .qseq �les, an in-house script collected cluster intensity matrices
from .cif �les via Picard �.�� (http://picard.sourceforge.net/). A new �le format with su�x
.sqi was designed for e�cient storage and random access to the cluster intensity matrices
and sequences. Sqi �le was de�ned with seven �elds in tab-separated text �le (Table �.�).
For the faster access and e�cient storage, sqi �les are stored as compressed with a random
accessible compression format called bgzip (Li et al., ����) and indexed using Tabix (Li,
����).

�Integrated DNA technologies, Inc., who synthezied these oligonucleotides for us, reported that more
degenerate bases make the yield and purity of DNA synthesis worse.
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Table �.� List of �les output from the Illumina sequencing pipeline that are used in this
study. Refer Illumina, Inc. (����) for more details.

File type File name
su�x

Description Use in this study

Cluster
intensity

.cif Raw unprocessed
signal intensities

To get original signal
intensity of each channel over
the cycles

Filter .�lter Quality check result
from cluster passing
�lter

To check if a cluster produces
good signals in regard of
signal intensity, cluster
overlaps, and other factors
a�ecting base calling

Control .control Flag whether the
cluster is control or not

To remove control spots from
analysis

Position .clocs or
.locs

Geometric positions of
clusters in tiles

To �nd spots in images for
case-by-case investigations

O�set .txt Geometric o�sets
among images for
channels and cycles for
a tile

To �nd spots in images for
case-by-case investigations

Base call .bcl Base calls in DNA
sequence

To get sequence information
from sequenceable regions
(read �; read � for poly(A)–

RNA; and �˜ terminal
modi�cation)

�umbnail
image

.jpg Compact summary of
original images for
diagnostic use

To �nd spots in images for
sample case investigation
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Table �.� Fields and descriptions of sqi �le format de�ned in this study.

Field name Type Description

Tile decimal Name of the tile where the cluster locates
Cluster decimal Unique identi�er of the cluster in tile
QC pass � or � Flag indicating whether the cluster passed

QC �lter
Sequence IUPAC string DNA sequence from RTA base calls
Quality Phred+�� Quality score of base call in Phred+�� scale

(Ewing et al., ����)
Cluster intensity base��

(Josefson,
����)

Raw signal packed in sequence of base��
digrams. Values are adjusted to �t in [�,
����] by scaling and trimming, then the
values are encoded in order of A, C, G, and
T, then the unit is repeated over the cycles.

Read � insert start decimal Zero-based inclusive coordinate of the �rst
cycle for �˜ end of insert in read �

�e original images of clusters were collected from thumbnail images for diagnostic
analyses. First, clusters that are visible in the center magni�cation window of thumbnail
images were selected from the full list of clusters. �en, the positions of clusters were calcu-
lated using the position�les and the sub-tile o�set�les. Later imagemanipulationswere per-
formedwith Python Imaging Library (PIL) �.�.� (http://www.pythonware.com/products/pil/).
�e thumbnail images were magni�ed to ��-fold height and width of original size by bicu-
bic spline interpolation to utilize sub-pixel o�sets of image alignment. Cluster images
were cropped with the window size of �×� pixels (��×�� pixels in working bu�er). �e
collected cluster images were stored in raw four channel �-bit image in a Berkeley hash
database.
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�.�.� Sequence processing and alignment

�e read � sequences were aligned to the common contaminants set, which is composed
of rDNA repeat units (GenBank accession BK������.� for NIH�T� and U�����.� for
HeLa), PhiX genome (GenBank accession J�����.�), Illumina TruSeq primer sequences,
and all sequences for �S and �.�S rRNAs of respective species (retrieved from Rfam ��.�
(Burge et al., ����) of the Wellcome Trust Sanger Institute) using GSNAP ����-��-�� (Wu
& Nacu, ����) with maximum �%mismatches allowed. Clusters with any match to the
contaminants were removed from the subsequent analyses.

�e sequences having completely identical nucleotides in the ��st to ��th cycle in read
� (representing region of the insert) and the �st to ��th cycle in read � (degenerate bases in
�˜ adapter) are deduplicated by leaving only a cluster with the maximum Phred quality
sum of read �. �e degenerate and �xed delimiter sequence in �˜ adapter was clipped out
from read � by searching perfect match of delimiter sequence (‘GTCAG’ as in the direction
of read �) between the ��th and ��th cycles in read �. �e clusters missing a delimiter
sequence or having low diversity in degenerate region (at least two occurrences for all of
A, C, G, and T) were removed from further analyses.

�e remaining reads a�er contaminant �lter and the �rst duplication �lters were then
aligned to the genome sequences (UCSC mm�� for NIH�T� and UCSC hg�� for HeLa,
positions of splicing junctions were processed from the UCSC Genome Browser database
for version of Jan ��, ����) using GSNAP ����-��-�� (Wu & Nacu, ����). �ree di�erent
versions of alignments to genome were used in this study. (�) R� alignment: using only the
full read � sequences which are �� nt long. �is was used for identi�cation of a cluster. (�)
R� short alignment: using only �� nt right next to the �˜ adapter of read �. �is was used
in searching for the poly(A)-free �˜ hydroxyl ends. (�) paired alignment: using the full
read � sequences and part of read � sequences trimmed of degenerate bases and delimiter.
I �ltered out poly(A) stretches encoded from genome using this alignment set. All the
alignments were performed with maximummismatches of �%, minimummapping quality
of �. All multi-mapped reads were removed.

PCR artifacts with few mismatches were removed again using the R� alignment with
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�� degenerate bases inside the �˜ adapter region. To detect that kind of artifacts, I clustered
the R� alignments with maximum distance between mapped positions of �� bp, they were
then clustered again within the �rst cluster using degenerate bases from read � of respective
reads with CD-HIT-EST �.�.� (Fu et al., ����) (word size=�, sequence identity=�.��). For
a set of detected duplicates, I chose a read with maximum sum of Phred quality in read �
to leave.

�.�.� Sequence annotation and classi�cation

For classi�cation and transcript-level analyses, I compiled reference annotations for human
and mouse using NCBI RefSeq (Pruitt et al., ����), RepeatMasker, gtRNAdb (Chan &
Lowe, ����), Rfam (Burge et al., ����), and miRBase (Kozomara & Gri�ths-Jones, ����)
databases (the �rst three were downloaded from the UCSC Genome Browser (Kuhn et al.,
����) on Apr ��, ����; Rfam version ��; and miRBase version ��). �e R� alignments were
annotated with intersection with the compiled annotations using BEDTools (Quinlan &
Hall, ����). When multiple annotations were overlapped to an alignment, I chose a class
for the statistics requiring exclusive assignment of a genomic source type by the following
priority: miRNA, rRNA, tRNA, Mt-tRNA, snoRNA, scRNA, srpRNA, snRNA, lncRNA,
RNA, ncRNA, misc_RNA, Cis-reg, ribozyme, RC, IRES, frameshi�_element, LINE, SINE,
Simple_repeat, Low_complexity, Satellite, DNA, LTR, CDS, �˜UTR, �˜UTR, intron, Other,
Unknown (higher priority �rst).

�e transcript-level analyses were performed usingmy custom non-redundant RefSeq
(nrRefSeq) transcript set, which is a reduced set retaining only the longest isoform or tran-
script when regions overlap with each other. �e positions of read � in nrRefSeq transcripts
were positioned with BEDTools intersection between alignments to genome sequences
and nrRefSeq annotation set, and then translated to the transcript-level coordination with
in-house so�ware.
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�.� Processing�uorescence signals for sequencing poly(A) tails

Illumina sequencers produce quantized �uorescence signals in four channel multivariate
values. Although the signal intensities re�ect the original sequence composition of tem-
plates, it is considerably a�ected by both systematic and random noises. �e loss of clarity
in signal patterns becomes especially stronger for templates having low complexity like
poly(A) tails.

What do signals from poly(A) tail look like? How can they be recognized to measure
their length? First, cluster intensity signals from pilot runs of TAIL-seq were analyzed to
extract properties of signals that can be used in detection of poly(A) tails.� �en, hundreds
of clusters were manually inspected whether the original signal contain some clue. Many of
poly(A) spike-ins showed remarkable di�erence in former and later cycles of the designed
end of poly(T) stretch (few examples fromA�� spike-in are shown in Figure �.�). Although
the decrease of T signal intensity was relatively mild and slow, rise of the other signals (A,
C, or G) was signi�cant near the borders (Figure �.�). �e transition was more visible for
shorter poly(A) spike-ins like A�� and A��, yet it was detectable enough for longer poly(A)
spike-ins like A��� and A��� (Figure �.�). Accordingly, I constructed a uni�ed metric that
indicates the relative signal intensity to simplify further analyses:

Uc = Sc,T∑b=A,C ,G Sc,b

where Uc is a simpli�ed metric for signal bias to T in cycle c, Sc,b is the original signal
intensity of channel b for cycle c. However, the dynamic range of signal intensity of each
channel and cluster is di�erentiated by many factors: inconsistency of chemical environ-
ments by physical position of clusters in the �ow cell; optical and image processing glitches
by cluster’s position in view of lens and image sensors; and nucleotide composition or
sequence-speci�c characteristics of cDNA templates. To relieve variability from these
factors, I exploited the degenerate bases located in the �rst twenty nucleotides as normaliza-
tion factors of the individual channels. �e revised formula incorporating normalization

�All explorative trials of sequencing in the designing stages of TAIL-seq were prepared and performed by
Jaechul Lim.
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factors becomes:

Nb = ∑Rσ
c=Rα

Sc,b
Rσ − Rα + �

Fc,b = Sc,b + λ
Nb + λ

Tc = log�
λ + Fc,T

λ +∑b=A,C ,G Fc,b

where Nb indicates the reference signal of channel b, Rα and Rσ are the �rst and last cycles
of degenerative bases in the �-based coordinate, Fc,b is an individual signal normalized
by the reference for c-th cycle of channel b, λ is a pseudo count number to avoid zero
division, and the �nal metric Tc is called “relative T signal” herea�er. �e random samples
of relative T signals from poly(A) spike-in samples show visually detectable edges near the
expected transition points (Figure �.�).

�.� Machine learning for detection of poly(A) tail lengths

�e relative T signal described in the previous section provided enough information, which
simple heuristic method may give a satisfactory solution that matches to experienced
human recognition. However, it was not that easy due to variation changes of signals
across sequencing cycles. At the early cycles, transitions from T to non-T signals are very
steep (Figures �.� and �.�). �e signal drop a�er poly(T) stretch becomes weaker and
weaker as T stretch lengthens (Figures �.� and �.�) due to sticky-T phenomenon (Whiteford
et al., ����). In addition, the full signal transition takes much more number of cycles
in later cycles in read due to phasing and pre-phasing (Ledergerber & Dessimoz, ����).
Missing data, spot noises, run-to-run variation, and dependency of signal distributions
on platforms� add more complexity on automated analysis of signals from poly(A) tails.
Lastly, A-rich regions near the �˜ end of �˜ UTR can’t be easily distinguished from poly(A)
tails using context-free algorithms. I describe the design and assessments of methods
based on several di�erent approaches later in this section.

�HiSeq had more than four-fold wider dynamic range of MiSeq at similar signal-to-noise ratio in our
sequencing runs (data not shown).
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�.�.� Homogeneous sampling for training set

Poly(A) spike-in samples are highly variable in quality of signals and purity over the
sequencing runs. What is the most concerning is variance of poly(A) length in the original
template itself. Both chemical synthesis (Hecker & Rill, ����) and enzymatic ampli�cation
(Schlötterer & Tautz, ����) tend to produce shortened oligonucleotides. Our poly(A)
spike-ins showed the signi�cant variability of length in long homopolymeric regions
(Figure �.�). In addition, HiSeq o�en failed to sequence index reads with high quality
(data not shown), which makes samples mixed up. To minimize run-to-run variations and
enable automated machine learning of routine analyses, training data set had to be puri�ed
before subsequent steps. In this study, I used an outlier �lter based on robust Mahalanobis
distance implemented in the Rmvoutlier package �.�.� (quan=�.�, alpha=�.���, applied
a�er ��een-fold downsampling of relative T signals). As a result, majority of outliers was
�ltered out (Figure �.�), which is enough for providing homogeneous examples to learn
poly(T) to mRNA body transitions.

�.�.� Methods for poly(A) length measurement

�e overall design of expected procedure to poly(A) length measurement is to use relative
T signals to predict the original state of template sequence and measure the count of
consecutive poly(A) states (Figure �.�).

Multivariate Gaussian mixture model

�e junctions between poly(T) stretch and heterogenous sequences show steep change of
relative T signal in surrounding cycles (Figure �.�). As the existence of poly(T) stretch
and its �˜-most position can be easily detected by sequence analysis, a model of relative
T signals near the junctions can reveal the most probable position of the transition. It is
�rst modeled as a multivariate Gaussian mixture model (GMM) of relative T signals from
several consecutive cycles. �e parameters for the �rst trial were chosen with empirical
estimations from previous observations (Table �.�). For the better modeling of the signal,
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Table �.� �e initial parameters of a Gaussian mixture model for relative T signals of
adjacent cycles around the end of poly(T) stretch. Positions are shown as intervals when
ten cycles for each side of the end are modeled in a window.

Positions [�, ��) [��, ��)

Distribution � N(�.�, �.�) × �.�� N(�.�, �.�) × �.��
Distribution � N(-�, �.�) × �.�� N(-�, �.�) × �.��

the initial parameters were optimized with the expectation-maximization (EM) algorithm
(Dempster et al., ����) to maximize the product of maximum likelihood of outlier-�ltered
training set prepared as described in Section �.�.�.

Gaussian mixture hidden Markov model

�e simple Gaussian mixture model cannot easily account the contextual characteristics
that poly(T) is a long continuous stretch and it does not appear once the cycle enters the
heterogenous region. Gaussian mixture hidden Markov model (GMHMM) can incorpo-
rate information of the entire trend into the detection of transition. Initially, the topology
of a GMHMMwas designed with two states of poly(A) and non-poly(A), but later it was
extended to have four states because it appeared that long poly(A) tails required additional
transitive states to cover the longer mixed regions of phased and pre-phased templates
(data not shown). I trained the HMM in le�-to-right topology (Figure �.�) with empirical
initial parameters (Tables �.� and �.�). �e poly(A) spike-ins were sequenced and learned
to generate a model together with TAIL-seq libraries on every sequencing run to adapt to
variable signal characteristics. �en, the model parameters were optimized using Baum-
Welch algorithm with the implementation in the GHMM library (http://ghmm.org) (Table
�.� and �.�). Although the length of poly(A) tails were known to every poly(A) spike-in,
the optimization did not use any of the prior knowledge of expected transition positions
because length variability of poly(A) is already signi�cant at the stage of sequencing. As
it would be simpler, more explicit, and more powerful for the model to account signal
transitions only, I separated considerations of the length variation from this stage. Length
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State 1
Poly(A) body

State 2
Poly(A) transitive

State 3
�Ⱦ�875�WUDQVLWLYH

State 4
�Ⱦ�875�ERG\

Figure �.� Topology of the hidden Markov model for learning poly(A) signals used in
this study.

Table �.� Initial parameters for transition probability matrix of GMHMM of poly(A)
signals. ‘S’ states indicate start or end states, which is inserted between examples to learn.

From\To � � � � S

� �.�� �.�� �.�� �.�� �.��
� � �.� �.� �.�� �.��
� � � �.� �.�� �.��
� � � � �.�� �.��
S �.�� �.�� �.�� �.�� �
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Table �.� Initial parameters for emission probability distributions of GMHMM of poly(A)
signals. ‘S’ states indicate start or end states, which is inserted between examples to learn.

State Dist. � Dist. �
weight

Dist. � Dist. �
weight

� N(�.�, �.�) �.�� N(−�, �.�) �.��
� N(�.�, �.�) �.�� N(−�, �.�) �.��
� N(�.�, �.�) �.� N(−�, �.�) �.�
� N(�.�, �.�) �.�� N(−�, �.�) �.��
S N(�������, �) � - �

Table �.� Example of optimized parameters for transition probability matrix of GMHMM
of poly(A) signals. �e parameters were �tted to one of our pilot sequencing runs using
unsupervised Baum-Welch algorithm.

From\To � � � � S

� �.��� �.��� �.��� � �
� � �.��� �.��� �.��� �
� � � �.��� �.��� �.���
� � � � �.��� �.���
S �.��� �.��� �.��� � �

Table �.� Example of optimized parameters for emission probability distributions of
GMHMM of poly(A) signals. �e parameters were �tted to one of our pilot sequencing
runs using unsupervised Baum-Welch algorithm.

State Dist. � Dist. �
weight

Dist. � Dist. �
weight

� N(�, �) �.���� N(�.��, �.�) �.����
� N(�.��, �.��) �.���� N(�.��, �.��) �.����
� N(�.��, �.��) �.���� N(−�.�, �.��) �.����
� N(−�.��, �.��) �.���� N(−�.��, �.��) �.����
S N(�������, �) � - �
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calling for poly(A) tails was done with the standard Viterbi algorithm (Viterbi, ����)
implemented in the GHMM library. Unlike an algorithm based on base calling (Ulitsky
et al., ����), the newly developed method estimates length of poly(A) tails similar to the
expected length (Figure �.��).

GMHMM-based method with crosstalk matrix

Due to innate overlap among emission spectra of �uorophores, raw signal intensity of each
channel interferes each other. In the current Illumina chemistry, the strongest interference
occurs for C from A and T from G (Ledergerber & Dessimoz, ����). �e phenomenon also
con�rmed in our data (Figure �.��, le� panel). As the emission spectrum of G overlaps
with T, G-rich regions near poly(A) tails could hinder the exact measurement. In this
method, I replaced the original raw signals with orthogonalized signals from Illumina
OLB �.��.� (Figure �.��, right panel).

Edge detection using the �rst or second derivatives

Edges with sharp gradient can be detected with the �rst or second derivatives. Most state-
of-art edge detectors, such as Canny edge detector and Prewitt operator (Canny, ����;
Prewitt, ����), use the �rst derivative of signal to emphasize the boundaries. When a cluster
undergo transition from poly(T) region to heterogenous sequences in body, the slope of
their relative T signal becomes signi�cantly negative. Due to phasing and pre-phasing,
the gradient is much milder in longer poly(A) tails (Figure �.�), but the spanning width
of the negative slope is longer for them. I adopted the Savitzky-Golay �lter (Savitzky &
Golay, ����) which is a popular tool to smoothen and di�erentiate a set of discrete data
points simultaneously. �e �rst implementation of this approach �nds the end of T stretch
by seeking the position where the �rst derivative of relative T signal is less than zero.
Due to pre-phasing and polymerase slippage, the �rst position where the �rst derivative
turns negative is usually earlier than expected. �erefore, a variant was implemented by
extending the T stretch region as long as the �rst derivate is negative. �e relative T signals
from long poly(A) tails include substantial amount of noise. I added another variant that
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Figure �.�� Signal crosstalk between di�erent �uorophores. (le�) Correlation between sig-
nals fromT and the other bases. (right) Correlation between signals a�er orthogonalization
by Illumina OLB �.��.�.

starts with the cycle where relative T signal is lower than a pre-de�ned threshold, and
extends the region as long as the second derivative is negative.

Benchmark

�e seven approaches mentioned above were assessed by measuring poly(A) lengths for
poly(A) spike-ins. In despite of the variability of poly(A) length in the original molecules
themselves, an algorithm with better performance would produce more accurate length
consistently as designed. Table �.� shows representative descriptive metrics from the
benchmark. GMHMMwithout a crosstalk matrix was unanimously the best performer
for all poly(A) spike-ins (Table �.�). Unexpectedly, deconvolution using the crosstalk
matrix (GMHMM � in Table �.�) was less accurate than the original signal (GMHMM
� in Table �.�). It is not clear how the di�erence results this. �e original signal may be
clear enough to be recognized by the model. �e methods based on the simple Gaussian
mixture model (GMM � and GMM � in Table �.�) performed remarkably worse than the
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approaches based on hidden Markov model. �e short and long poly(A) tails could not
be modeled with a single simple model. �e EM optimization with all kinds of poly(A)
spike-ins �tted the model to long poly(A) tails only (Table �.�). Even with parameter
�tting to single type of poly(A) spike-ins, GMM was more inaccurate than GMHMM-
based methods (RMSE=�.��� for A��; RMSE=��.��� for A���). Among the methods with
numerical di�erentiation (SG �-� in Table �.�), the third version that adopts a static
threshold of starting position was the most precise. Even for the size of smoothing window
that performs best, the signals in poly(T) region was not stable enough for accurate
detection of the width of the region (Table �.�). Hereon, the GMHMMwith the original
signal (GMHMM �) will be used for the measurement of poly(A) tails throughout this
thesis.

�.�.� Combination of measurements and base calls

GMHMM-based measurement outperforms the methods using base calls (Figure �.��).
Despite that, it is worthy to refer base calling because it is more accurate for short poly(A)
stretches (< �nt) (data not shown), and it givesmore information on �˜ terminal nucleotidyl
additions like poly(A) uridylation (Rissland et al., ����; Sement et al., ����). I designed a
simple method that determines poly(A) length and �˜ terminal modi�cations from base
calls (Algorithm �.�). In addition, a combined algorithm is developed to take bene�ts from
both of base calls and GMHMM-based length measurements (Algorithm �.�). Indeed,
the all subsequent analyses are proceeded with the algorithm integrated base calls and
GMHMMwith original signal (Algorithm �.�).

�.� Poly(A) tails of the mammalian transcriptome

TAIL-seq libraries from mouse �broblast cell line NIH�T� and human cervical cancer cell
line HeLa were sequenced and analyzed for in-depth analyses (��,���,��� and ��,���,���
reads, respectively, a�er �ltering out PCR artifacts and rRNA reads).� �e tags originate

�All data for NIH�T� and HeLa cells except the miR-� transfection experiment set used in this section are
derived from TAIL-seq libraries by Jaechul Lim.
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Algorithm �.� Procedure that determines poly(A) tail length and �˜ end modi�cations
from base calls. Scores were set as T=�, A/C/G=–��, and N=–� in this study. Maximum
length of �˜ end modi�cation (maxmod) was assigned as ��.
procedure LocatePolyA(seq, seqlen)
  longest_i  longest_j  seqlen + 1
  longest_length = -1

  /* find the longest [i, j] with sum of score > 0 */
  for i  from 0 to maxmod-1
    scoresum  score of i-th base in seq

    /* if longest interval was not found set it with 1-nt long intv */
    if longest_length < 1 and scoresum > 0 then
      longest_length  1
      longest_i  longest_j  i
    end if

    /* try all possible end positions */
    for j  from i+1 to seqlen-1
      add score of j-th base to scoresum

      if scoresum > 0 and j-i+1 > longest_length then
        longest_i, longest_j  i, j
        longest_length  j - i + 1
      end if
    end for
  end for

  if longest_length < 0 then return with no polyA found

  i, j  longest_i, longest_j

  while i-th base  T and i  j, increase i by 1
  while j-th base  T and i  j, decrease j by 1 
    
  return with polyA length of j-i+1, modification in [0, i) of seq
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Algorithm �.� Combined algorithm that determines poly(A) tail length and �˜ end modi-
�cations.
procedure FindPolyAAndModification(seq, seqlen)
  get basecall polyA length and mod. seq from LocatePolyA(seq, seqlen)

  if basecall polyA length  8 then
    return basecall polyA length and mod. seq
  else
    calculate GMHMM polyA length

    /* if GMHMM call short pA, it is more reasonable to ignore it */
    if GMHMM polyA length  8 then
      return basecall polyA length and mod. seq
    else
      return GMHMM polyA length and basecall mod. seq
    end if
  end if

mainly from the �˜ parts of genes although we also �nd internal tags that re�ect endonu-
cleolytic and exonucleolytic activities (Figure �.��). I could measure the poly(A) length
of �,��� mouse and �,��� human genes supported by ˆ�� poly(A)+ tags. Among the
transcripts expressed by more than �� copies per cell, ��.�% were detected with ˆ��
poly(A)+ tags in TAIL-seq (Figure �.��). I compared our TAIL-seq data with previous
results generated by di�erential elution from oligo(dT) column which separates mRNAs
with short tails (<~�� nt) from those with long tails (Meijer et al., ����) (>~�� nt) (Figure
�.��). Despite the di�erences between two methods, the long/short tail ratio correlates
signi�cantly with our measurements (P=�.����, Pearson’s correlation test; Figure �.��).

Figure �.�� presents an example of randomly chosen tags that match to the �˜ end
of the Trp��mRNA, which encodes the p�� protein. Read � is used to identify the gene
while read � is used to sequence the poly(A) tail of heterogeneous lengths. Various types
of interesting information can be extracted from the TAIL-seq data.

�.�.� Steady-state length distribution of poly(A) tails

I �rst examined the global distribution of poly(A) tail lengths. Overall, the distributions
are similar between two cell lines examined (Figure �.��). When the mRNA tags with
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Figure �.�� Global distribution of poly(A) tail lengths of TAIL-seq tags.
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Figure �.�� Distribution of median poly(A) tail lengths depending on number of poly(A)-
containing tags. Regardless of abundance, the median poly(A) tail lengths was around ��
nucleotides. Box represents the �rst and third quartiles and the internal bar indicates the
median. Whiskers denote the lowest and highest values within �.� times the interquartile
range of the �rst and third quartiles, respectively.

poly(A) tails of �–��� nt are plotted, the median lengths are �� nt and �� nt in NIH�T�
and HeLa, respectively. Poly(A) tails over ��� nt could not be counted further due to the
limited sequencing cycle but they account for only ~� % of the total population. Poly(A)
tails shorter than � nt were excluded from the analyses because the estimation was less
accurate with such tags due to the ubiquity of short A stretches in the genome, particularly
near polyadenylation sites. Accordingly, poly(A)-free RNAs such as histone mRNAs and
decay intermediates were not included in this distribution analysis.

�e tags derived from the same gene were clustered to calculatemedian poly(A) length
for each individual gene (�,���mouse and �,��� human genes). �e distribution of median
poly(A) length was consistent over di�erent abundance range of TAIL-seq tags (Figure
�.��). As expected, we found that poly(A) lengths vary widely among di�erent genes
(mRNA species) (Figure �.��). Some mRNA species carry poly(A) tails of ~�� nt while
others have long tails of ~��� nt. Based on these median poly(A) lengths for individual
genes, transcriptome-wide median length (median of medians) is estimated to be �� nt
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Figure �.��Distribution of median poly(A) tail lengths of individual genes.

and �� nt in NIH�T� and HeLa cells, respectively. �ese values are signi�cantly shorter
than what is generally conceived as typical poly(A) tail length in mammals (Elkon et al.,
����). A newly transcribed transcript is known to receive a poly(A) tail of ~��� nt, but they
are thought to be gradually shortened by deadenylases PARN, the PAN�-PAN� complex,
and the CCR�-NOT complex (Garneau et al., ����). �ere are discrepancies over the
poly(A) length in earlier reports based on bulk poly(A)+ RNA or individual genes, which
described poly(A) size as ~��� nt in mouse sarcoma polysomes, ���–��� nt in HeLa, and
��–�� nt in rabbit reticulocyte polysomes (Brawerman, ����). But a recent study suggested
that many mammalian mRNAs might have tails of smaller than �� nt (Meijer et al., ����).
�e current work o�ers an answer to this long-standing question by determining poly(A)
tail length at the transcriptome level.

�.�.� Impact of poly(A) tails on gene expression

I next asked whether genes with distinct biological functions tend to di�er in poly(A)
length distribution, by gene ontology analysis (Figure �.��). Interestingly, genes associated
with regulatory functions such as transcription factors tend to have shorter tails than
those with relatively constitutive functions such as ribosomal subunits, which suggests
that poly(A) tail of regulatory genes may be under dynamic control.

To understand which step of gene expression poly(A) tail may in�uence, I �rst com-
pared the median poly(A) length of each gene with mRNA half-life that was estimated
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Figure �.�� Functional categorization of genes with their median poly(A) tail lengths.
Four categories in the upper panel represent genes with relatively short poly(A) tails while
the lower four categories represent genes with longer tails.

previously by Schwanhäusser et al. (����). Overall, there is a modest but signi�cant corre-
lation between poly(A) tail length and mRNA half-life (P=�.��×��-�, Pearson’s correlation
test) (Figure �.��). �us, deadenylation and/or cytoplasmic polyadenylation may a�ect
mRNA stability, as previously shown (Dreyfus & Régnier, ����; Norbury, ����). Of note,
poly(A) tail length does not correlate signi�cantly with steady state mRNA abundance, as
expected (Figure �.��).

One of the major mechanisms of miRNA action is known to be deadenylation, which
had been proposed based on the studies of a few individual genes (Fabian et al., ����;
Huntzinger & Izaurralde, ����; Bazzini et al., ����; Djuranovic et al., ����). �is model is
tested by examining the global e�ect of miRNA on poly(A) tail.� Synthetic miR-�mimic
was transfected into HeLa cells and subsequently poly(A) length was measured by TAIL-
seq. Deadenylation of miR-� targets was evident � hours post-transfection (Figure �.��,
red dots). By � hours post-transfection, mRNA level was substantially downregulated,
indicating that the deadenylated RNAs were degraded. Consistent with the previous
studies, the data indicate that miRNA induce deadenylation of the majority, if not all, of
its targets.

I next compared poly(A) length with translation e�ciency because it is generally
considered that long poly(A) tail is required for e�ective translation. Unexpectedly, how-
ever, poly(A) lengths do not show any meaningful correlation with protein synthesis rates

��e preparation of cells and sequencing libraries in this experimental set were performed by Minju Ha.
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Figure �.�� Correlation between median poly(A) tail length and translation rate in
NIH�T�, measured by Schwanhäusser et al. (����), and HeLa cells, by Aviner et al. (����).
mRNAs with more than ��� poly(A)+ tags and with CDS length ranging from ��� to
�,��� nt were plotted, considering the limited labeling of small proteins in translation rate
measurement.

(measured by metabolic labeling and mass spectrometry and divided by mRNA abun-
dance) (Figure �.��; P=�.��� for NIH�T�, P=�.��� for HeLa, Pearson’s correlation test).
Similarly, when I compared poly(A) length with ribosome density that was determined
by ribosomal footprinting (and divided by mRNA abundance) (Guo et al., ����) (Figure
�.��), there was no detectable correlation, further supporting our conclusion. I did not
�nd any signi�cant correlation even when I used, in place of poly(A) length, the ratio
between short and long poly(A) tails employing various lengths as a threshold (data not
shown). �ese results suggest that deadenylation per semay not be directly coupled with
translational suppression. It does not exclude a possibility, however, that deadenylation
may a�ect translation indirectly and that translation of a subpopulation of mRNAs may be
selectively a�ected by poly(A) length. Regulation of poly(A) tail may play a determining
role under specialized conditions such as in neural synapses and early embryos where
cytoplasmic polyadenylation is known to induce translation of dormant mRNAs with
short tails (D’Ambrogio et al., ����).
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Figure �.��Uridylation frequency of mRNA.

�.� Analysis of �˜ end modi�cation of poly(A) tails

One of the unique strengths of TAIL-seq is its ability to determine the sequences of the
very end of RNA and to examine if there is any other sequences apart from simple poly(A)
stretches. While looking at the �˜ ends of mRNA reads,� I found unexpectedly widespread
uridylation in the downstream of poly(A) tail (Figures �.�� and �.��). �is section describes
about the terminal modi�cations at the �˜ end of poly(A) tails.

�All data for NIH�T� and HeLa cells are derived from TAIL-seq libraries by Jaechul Lim.
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�.�.� Method for detection and �ltering terminal modi�cations

As poly(A) tails were initially detected with a constraint that it must begin within the �rst
�� cycles, so the maximum detectable �˜ end modi�cation of poly(A) tails was limited to
the last �� nucleotides of insert. To exclude A stretches obviously encoded from genomic
sequence (with or without �˜ end modi�cations), I masked detected poly(A) tail ranges
with read � alignments so that the �˜-most position of alignable (not clipped) is eliminated
from poly(A) tail or its �˜ end modi�cations. All statistics regarding transcript-level
modi�cation rates were calculated for transcripts having more than ��� tags with poly(A)
tails longer than � nt.

�.�.� �˜ Terminal uridylation of poly(A) tails

About half of mRNA species carry U-tails at more than �% frequency; and ~��% of mRNA
species are uridylated at a frequency higher than �% (Figure �.��). I observed a comparable
pattern of uridylation in pilot experiments using a di�erent �˜ adapter (data not shown).

Uridylation detected by TAIL-seq is reminiscent of the observations in �ssion yeast
and Arabidopsis where mRNAs bear short U tails (�–� Us), as analyzed by circularized
RT-PCR (Rissland et al., ����; Sement et al., ����). Uridyl residues were found mainly on
decapped mRNAs which represent decay intermediates and, when the uridylyl transferase
(Cid� in �ssion yeast) was mutated, mRNA was stabilized (Rissland & Norbury, ����).
�ese results collectively suggested that uridylation may be involved in mRNA decay in
yeasts and plants. In mammals, there are only two known cases of mRNA uridylation.
Histone mRNAs are oligo-uridylated, which is required for rapid decay at the end of S
phase (Mullen & Marzlu�, ����; Schmidt et al., ����). Additionally, the �˜ fragments
from small RNA-directed cleavage are also uridylated in mammals and plants (Shen &
Goodman, ����). �e current observation demonstrates that uridylation is much more
pervasive in mammals than previously anticipated and that mRNA uridylation may be an
integral part of a generic mRNA decay pathway that is conserved in all eukaryotes.

It is particularly interesting that uridyl residues are foundmainly inmRNAs with short

��



0 50 100 150 200 250
Poly(A) tail length (nt)

M
od

ifi
ca

tio
n 

fre
qu

en
cy

 (%
) NIH3T3

0 50 100 150 200 250
Poly(A) tail length (nt)

0

2

4

6

8

10

12
HeLa

U
UU
UUU
UUUU

0

2

4

6

8

10

12

Figure �.�� Relationship between uridylation and poly(A) tail length. �e density was
calculated with � nt wide bins, then smoothened with Hanning window (width=�).

0 4 8 12 16
Uridylation frequency (%)

(This study)

2
4
8

16
32

m
R

N
A 

ha
lf-

lif
e 

(h
r)

(S
ch

w
an

hä
us

se
r e

t a
l.)

r=ï0.333

NIH3T3

0 4 8 12 16
Uridylation frequency (%)

(This study)

2

4

8

16

m
R

N
A 

ha
lf-

lif
e 

(h
r)

(T
an

i e
t a

l.)

r=ï0.232

HeLa

Figure �.�� Correlation between uridylation frequency and mRNA half-life (Schwan-
häusser et al., ����; Tani et al., ����).

poly(A) tails (�–�� nt) (Figure �.��). �is phenomenon is similar to that in Arabidopsis
where short U (�–� nt) is added to ��–�� nt poly(A) (Sement et al., ����). It was proposed
that uridylation protects the �˜ end against further deadenylation and promotes decapping
and �˜-�˜ decay (Sement et al., ����). In �lamentous fungus Aspergillus nidulans, a mixture
of uridyl and cytidyl residues are added to short poly(A) tails (Morozov et al., ����) (~�� nt).
Uridylation frequency shows a modest negative correlation with mRNA half-life (Figure
�.��), but not with mRNA abundance or translation rate (Figure �.��). �is is intriguing in
light of recent reports showing that an oligo-U tail of mRNA serves as a decay marker by
interacting with a �˜-�˜ exonuclease Dis�L� in yeast and human (Lubas et al., ����; Malecki
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Figure �.�� Lack of strong correlation between uridylation frequency and mRNA abun-
dance (le�) or translation rate (right) in NIH�T� as measured by Schwanhäusser et al.
(����). r values indicate Pearson correlation coe�cients.

et al., ����) and by recruiting LSM�-� complex and decapping enzymes (Mullen &Marzlu�,
����; Rissland & Norbury, ����). In future studies, RNAi of uridylyl transferases and
nucleases can be combined with TAIL-seq, so as to elucidate the functional consequence
and mechanism of uridylation and decay.

�.�.� �˜ Terminal guanylation of poly(A) tails

In addition to uridylation, it was surprising to discover yet another type of modi�cation,
that is, guanylation (Figure �.��). About ��% of mRNA species are guanlylated at the
downstream of poly(A) tail at a frequency of higher than �%; and over ��% of transcripts
show G-addition at more than �% frequency (Figure �.��). Guanylation was detected in
our initial experiments using a di�erent �˜ adapter (data not shown). To my knowledge,
this is the �rst description of RNA �˜ guanylation although it was shown previously that
some non-canonical poly(A) polymerases can utilize GTP in vitro (Bai et al., ����; Heo
et al., ����). In contrast to U tails, terminal G residues are found selectively on longer
poly(A) tails (>�� nt) (Figure �.��). Cytidylation is considerably less frequent and does
not show any preference for poly(A) tail size. Mono-guanylation is the prevalent form
although the G residue is sometimes followed preferentially by C and subsequently by U
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Figure �.�� Guanylation frequency of mRNA.
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Figure �.�� Scatter plots showing the correlation between guanylation frequency and
mRNA half-life (Schwanhäusser et al., ����; Tani et al., ����).

(Figure �.��). Because deadenylases PARN and CCR� are known to have a preference for
terminal di-adenosines (Henriksson et al., ����; Viswanathan et al., ����) (AA), one can
envision that the G additionmay block deadenylation to protect mRNAs with long poly(A)
tail. I indeed detect a modest positive correlation between guanylation frequency and
mRNAhalf-life (Figure �.��), but none between guanylation andmRNA level or translation
rate (Figure �.��). Although it would be too early to draw a conclusion, it is tempting
to speculate that guanylation may stabilize mRNAs by antagonizing deadenylation. Not
mutually exclusively, it is also plausible that G-tailed mRNAs may represent a speci�c
subcellular location and/or a phase of mRNA life cycle.
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Figure �.�� Lack of strong correlation between guanylation frequency and mRNA abun-
dance (le�) or translation rate (right) in NIH�T� as measured by Schwanhäusser et al.
(����). r values indicate Pearson correlation coe�cients.

�.� Detection of cleavage and polyadenylation sites

Using TAIL-seq data,� I could map the poly(A) sites although this was not our primary
goal and the depth was lower compared to the other specialized tools developed previously
(Beck et al., ����; Mangone et al., ����; Ozsolak et al., ����; Yoon & Brem, ����; Fu et al.,
����; Jan et al., ����; Shepard et al., ����; Derti et al., ����; Martin et al., ����; Hoque et al.,
����; Wilkening et al., ����). In this section, I describe the unique potential of TAIL-seq
that could not provided by the existing high-throughput methods for �˜ UTR mapping.

�.�.� Method for polyadenylation site detection

I �rst selected poly(A)+ tags with ��–�� nt poly(A) tails. �e read �mappings in paired
alignment were processed to remove the unmappable �˜ end modi�cations including
poly(A) tails. �en, I surveyed the �˜ end frequency of genome-mappable spans from
the trimmed alignments for all exonic positions of a transcript with �,��� nt extension
to downstream of the annotated �˜ end in RefSeq. �e position with the most reads was
chosen for the major polyadenylation site. Whenmultiple positions have the same number

�All data for NIH�T� and HeLa cells are derived from TAIL-seq libraries by Jaechul Lim.
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Figure �.�� Position of the poly(A) site identi�ed by TAIL-seq, against the RefSeq annota-
tion.

of reads, the �˜-most one was selected. I used the major polyadenylation sites supported
by more than � reads.

�.�.� Di�erential poly(A) tail lengths for alternative polyadenylation sites

When compared with the annotated poly(A) sites in RefSeq, the sites detected from our
sequencing are signi�cantly enriched at the annotated sites (Figure �.��). Of note, the �˜
ends detected by TAIL-seq fall predominantly at the upstream of the annotated sites rather
than the downstream. �e upstream sites may correspond to alternative polyadenylation
sites, considering that RefSeq o�en annotates the most distal sites (Pruitt et al., ����). �e
sequences surrounding the detected poly(A) sites show characteristic features of known
poly(A) sites (Figure �.��), including the polyadenylation signal (PAS, AAUAAA and
its variants), the U-rich upstream sequence element (USE) and downstream sequence
element (DSE), indicating that TAIL-seq detects poly(A) sites accurately. I could also
detect alternative polyadenylation (APA) in some genes (Figure �.��). Notably, certain
isoforms di�er signi�cantly in their poly(A) length and modi�cation frequency, which is
consistent with the notion that APA fundamentally in�uences mRNA fates (Elkon et al.,
����). For instance, I detected two alternatively processed isoforms from Bclaf� gene:
one with small �˜ UTR carries a long poly(A) tail and relatively frequent guanylation
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while another isoform with extended �˜ UTR holds a shorter poly(A) tail with frequent
uridylation.

�.� Detection of RNA �˜ hydroxyl ends

Another line of valuable applications of TAIL-seq is to identify the substrates of speci�c
ribonucleases.�� Endonucleolytic cleavage sites are particularly interesting as they are
involved in maturation of many important classes of RNA. �is section describes the
method and biological �ndings in search of RNA �˜ hydroxyl ends in the cell.

�.�.� Methods for �˜ end detection

To �nd speci�cally enriched �˜ ends from TAIL-seq, we �rst calculated the frequency
of mapped �˜ ends for all positions in the genome. I compared the number of �˜ ends
mapped to a speci�c position (hotspot count, position �) with the number of �˜ ends
mapped to nearby positions within [-��, -�] and [�, ��] (�anking count) for all positions
with positive number of �˜ ends. �e list of detected �˜ hydroxyl ends were generated for
all ends with no less than �� hotspot tags as well as the number of hotspot tags are at least
twice of �anking tags. �e statistical signi�cance of a speci�c hotspot was calculated using
a binomial distribution (p= �

�� which is a probability when the �˜ ends are positions without
preference; n=all �˜ ends mapped to hotspot and �anking region). �e p-values from the
distribution were adjusted for multiple testing by Bonferroni correction (n=the total length
of genome). While the statistical signi�cance was indicated in �gures with asterisks and
used for genomic source composition analyses, I did not limit the �˜ ends by the statistical
signi�cance in sequence motif to avoid sampling bias to highly abundant RNAs. �e
distance from the closest annotated �˜ ends were calculated against a union of all �˜ ends
in NCBI RefSeq transcripts (Pruitt et al., ����), UCSC known genes (Kuhn et al., ����),
ENSEMBL transcripts (Flicek et al., ����), miRBase DROSHA cleavage sites (Kozomara

��All data for NIH�T� and HeLa cells used in this section are derived from TAIL-seq libraries by Jaechul
Lim.
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Figure �.�� Types of �˜ hydroxyl ends detected by TAIL-seq.
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Figure �.��Distribution of detected �˜ ends around the nearest known �˜ ends.

& Gri�ths-Jones, ����), gtRNAdb (Chan & Lowe, ����) and NCBI RefSeq orthologous
transcripts from other organisms (called xenoRefSeq in UCSC Genome Browser).

�.�.� Comparison to the known �˜ ends in transcriptome

I �nd hundreds of sites from our library, whichmatch to the �˜ ends of transcript sequences
in databases. �ey belong to several distinct classes (Figure �.��), including coding se-
quence (CDS), �˜ UTR, intron, and primary microRNA (pri-miRNA). Many of these
were found almost exactly matching at the known �˜ end annotations (Figure �.��). �e
con�rming �ndings are mostly came from snoRNAs and histone mRNAs, however many
of the rest were located in the middle of known transcripts (Figure �.��). �is may suggest
transcriptome-wide evidences of endonucleolytic cleavage events. A notable class of such
mechanism is pri-miRNA processing sites. I detected �� sites in NIH�T� and �� sites in
HeLa (Figure �.��), which match precisely to the known DROSHA cleavage sites (Figure
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Figure �.�� Frequency of detected �˜ hydroxyl ends near DROSHA cleavage sites (�˜ end
of pre- miRNAs).

�.��). Figure �.�� shows the miR-��~�� cluster as an example, where all six processing
sites are detected by TAIL-seq. It is interesting that the �˜ fragments from DROSHA
processing retain intact �˜ ends, suggesting that they may be relatively resistant to �˜-�˜
trimming activities. Given that DGCR� interacts with the basal part of the pri-miRNA
hairpin (Han et al., ����), it is plausible that DGCR� remains bound to the �˜ product
a�er cleavage reaction. �e result suggests that TAIL-seq can be used to map the �˜ border
of pre-miRNA even when mature miRNA from the �p strand is not detected in small RNA
sequencing (for instance, mmu-mir-��c, mmu-mir-���a, and hsa-mir-��-�). I can also
identify pri-miRNAs that are alternatively processed by DROSHA at more than one site
(mmu-mir-���). Alternative DROSHA processing is interesting as it yields multiple mature
miRNAs with di�erent targeting activities. Additionally, because it has been proposed that
DROSHA may have additional substrates apart from pri-miRNAs, it will be interesting to
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Figure �.�� (Top) Schematic illustration of DROSHAprocessing of pri-miRNA, generating
a �˜ fragment (red line) that is detected by TAIL-seq. (Bottom) A histogram showing the
tags from the miR-��~�� cluster in HeLa cells. Light blue area shows the accumulated
coverage of the �˜-most �� nucleotides of inserts while red bars indicate the frequency of
the �˜ ends of the tags in log scale. Red asterisks mark statistically signi�cant positions
(Bonferroni-corrected p-value < �.��).

search for unknown targets of DROSHA by using TAIL-seq.

�.�.� Newly discovered �˜ ends

Lastly, I searched for putative nucleolytic sites that may be important for mRNA stability
control. In this respect, TAIL-seq is complementary to previous degradome studies which
mapped the �˜ end of RNA fragments containing �˜ phosphate and poly(A) tail (Addo-
Quaye et al., ����; German et al., ����; Karginov et al., ����; Shin et al., ����). I found
�� and ��� internal sites in NIH�T� and HeLa, respectively, from mRNA exons which
may be potentially involved in mRNA destabilization through endonucleolytic cleavage
(Figure �.��). Figure �.�� shows such examples where the �˜ ends of multiple tags come
from a discrete position, indicative of speci�c endonucleolytic cleavage or stalled �˜-�˜
exonucleolytic activity. Intriguingly, when we searched for a consensus sequence motif
from such sites, we detected a trinucleotide motif enriched immediately upstream of the
putative cleavage sites (Figure �.��) that is composed of R (favoring A) - Y (U/C) - H
(avoiding G), with the most frequent motif being ‘AUU’. To our knowledge, no �˜-�
exonuclease is known to stall at a speci�c trinucleotide motif. Furthermore, we did not
detect any signi�cant secondary structure in the vicinity of the putative sites (data not
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Figure �.�� Sequence logos showing enriched motif near the putative cleavage sites found
in mRNA exons. Position � in x-axis indicates the �˜ end of the tag.

shown), which may block the progression of an exonuclease, suggesting that these sites
may be targeted by a speci�c endonuclease. It awaits further investigation as to which
factor(s) recognizes this motif and if the factor(s) constitutes a novel pathway for mRNA
stability control.

�.�� Discussion

TAIL-seq is the �rst method that allows global survey of poly(A) length and �˜ end mod-
i�cation of mRNA. In designing the current version of TAIL-seq, we�� aimed to be as
comprehensive as possible, which allowed us to discover many new exciting features such
as di�erential poly(A) length control, uridylation, guanylation, and RNA cleavage. �ere
is ample information in TAIL-seq datasets, which remains to be analyzed in future studies.
For instance, TAIL-seq determines the �˜ ends of histone mRNAs, post-splicing introns,
and various types of noncoding RNAs, which will be interesting subjects to investigate.
Because the current version of TAIL-seq covers many classes of RNAs and many di�erent
types of modi�cation, it is inevitable that TAIL cannot provide su�cient depth to all
the detected features. To study particular types of �˜ ends in greater depth at lower cost,
the technology will need to be modi�ed further so as to generate more focused libraries.
TAIL-seq is indeed a highly amenable technology that can be modi�ed easily. For instance,
one can change the range of size fractionation and/or use RNA extracted from subcellular
fractions and immunoprecipitates to enrich for a selective class of RNA.

���e current study is designed and performed in collaboration with Jaechul Lim and Prof. V. Narry Kim.
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�is study raises numerous open questions. It will be of great interest to identify the
protein factors involved in each processing and modi�cation discovered in this study, and
to understand their mechanisms and functions. To this end, TAIL-seq, combined with
systematic RNAi, will serve as a valuable tool. TAIL-seq will also be useful to solve various
general issues regarding the relative dynamics of mRNA deadenylation, translation, and
decay. In addition, one can examine RNA terminal modi�cations in diverse physiological
and pathological contexts, such as in neural synapse, late oogenesis, early embryogenesis,
cellular senescence and in�ammation where dynamic control of cytoplasmic polyadenyla-
tion is known to play a critical role. �e TAIL-seq protocol can be applied to any species
and cell types with minor modi�cations, which will greatly expand the initial observations
made in this study.
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�. Analysis of RNA-protein interactions by
high-throughput sequencing

�.� Background

Since the introduction of theHITS-CLIP (also known as CLIP-seq)� technique by Licatalosi
et al. (����), it has become one of themost favoredmethods to gain the transcriptome-wide
view of in vivo RNA-protein interactions. For the preparation of a CLIP-seq sequencing
library, RNA and protein are crosslinked by ultraviolet light in the cell, then the RNA-
protein complex is immunopuri�ed following RNase digestion (Licatalosi et al., ����).
�e protein portion of the puri�ed complexes is removed by treating non-speci�c protease
so that remaining RNA can be converted to DNA and sequenced in a high-throughput
sequencer.

�ere are variations of the technique called PAR-CLIP and iCLIP.�e former uses
photo-activatable ribonucleotides such as �-thiouridine (�SU) or �-thioguanosine (�SG)
under ��� nm UV-A instead of ��� nm UV-C light (Hafner et al., ����) (Figure �.�). �e
another variation called iCLIP delays �˜ adapter ligation to RNA to follow a�er reverse-
transcription so that footprints from incompletely reverse-transcribed cDNAs by physical
interference of residual peptide on RNA are captured in the library (König et al., ����)
(Figure �.�).

Notwithstanding that almost a hundred of studies using any CLIP technique have
been published thus far, there is no established standard work�ow for the analysis of its
data. Nearly every study that utilizes a CLIP-seq technique has designed its own analytic

�Both HITS-CLIP and CLIP-seq are widely used to describe the identical technology with comparable
frequency at the time of writing. In this thesis, I will useCLIP-seq as an umbrella term that includesHITS-CLIP
and its all variants.
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Figure �.� Crosslinking strategy of three CLIP techniques. HITS-CLIP and iCLIP use ���
nmUV light without nonnatural nucleic acid replacements. PAR-CLIP requires cell culture
with �SU or �SG before ��� nm UV irradiation. Unlike the other variants, PAR-CLIP has
limited crosslinking repertoire to U or G depending on the culture medium.
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Figure �.�Detection strategy of three CLIP techniques. HITS-CLIP and PAR-CLIP use
both tag enrichment level compared to RNA-seq or neighboring positions, and sequence
changes accumulated in narrow region of reads. iCLIP detects the accumulated �˜ ends,
which are assumed as result of premature termination of reverse-transcription.
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methods. In this chapter, I provide an analysis toolchain generally applicable to wide range
of HITS-CLIP or PAR-CLIP experiments.� �en, I compare dozens of publicly available
CLIP-seq datasets and show the results from meta analyses, for the �rst time for CLIP-seq
experiments.

�.� Reference data preparation

For the generalization of data processing and analyses, data from eighty experiments in
twenty studies were downloaded from NCBI Sequence Read Archive (SRA) or NCBI
Gene Expression Omnibus (GEO) (Table �.�). �e list covers diverse scope of RNA-
binding proteins including splicing factors, cleavage and polyadenylation factors, post-
transcriptional processors, and translational regulators. It also includes several experiments
from PAR-CLIP to compare the di�erent crosslinking techniques.

�.�.� Sequence processing and alignment

�e �rst few steps in sequence analysis were done by using Assaf Gordon’s FASTX-Toolkit
(http://hannonlab.cshl.edu/fastx_toolkit/). First, the �˜ adapter sequences were removed
from reads by using fastx_clipper. �e rest was trimmed from the �˜ end so that the remain-
ing reads have Phred quality of �� or higher. A�er clipping and trimming, reads of �� nt or
longer were collapsed to generate a set of unique sequences. �e sequences were aligned
to abundant contaminant sequences (Illumina adapter/primer sequences and ribosomal
DNA complete repeating unit, GenBank accession BK������.� for mouse and U�����.�
for human) with GSNAP version ����-��-�� (Wu & Nacu, ����) with ��%mismatch rate.
Filtered reads that do not match to any contaminant and have su�cient sequence complex-
ity (Shannon entropy, at least �.� for mononucleotide, �.� for dinucleotide) were aligned
to the UCSC Genome Browser hg�� (human) or mm�� (mouse) genome assembly with
GSNAP version ����-��-�� (Wu & Nacu, ����) with options of ��% mismatch rate, no

��e so�ware written for this study is released under the MIT license on a github repository
(http://github.com/hyeshik/ecliptic).
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Table �.�List of publicly available datasets used in this study.�e accession number starting
with “SRA” was downloaded from NCBI Sequence Reads Archive (SRA) (Wheeler et al.,
����), and “GSE” accessions were downloaded from NCBI Gene Expression Omnibus
(GEO) (Barrett et al., ����). When additional RNA-seq libraries are available in the
experiment set, they are indicated with nt (no treatment), ctl (control treatment), kd
(knock-down), or exp (over-expressed). More rows are followed in the next page.

Accession Protein(s) Source RNA-seq Technology Reference

SRP������ NOVA mouse brain none HITS-CLIP Licatalosi et al.

(����)

GSE����� PTB HEK���T none HITS-CLIP Xue et al. (����)

GSE����� IGF�BP�,

IGF�BP�,

IGF�BP�, PUM�,

QKI, AGO�,

AGO�, AGO�,

AGO�, TNRC�A,

TNRC�B,

TNRC�C

HEK��� none PAR-CLIP Hafner et al.

(����)

GSE����� HNRNPH HEK���T none HITS-CLIP Katz et al. (����)

GSE����� HNRNPU HeLa ctl, kd HITS-CLIP Xiao et al. (����)

GSE����� HNRPA�B� MDA-MB-

���

none HITS-CLIP Goodarzi et al.

(����)

GSE����� PAPD� HEK��� none PAR-CLIP Rammelt et al.

(����)

GSE����� LIN��A mESC nt, ctl, kd HITS-CLIP Cho et al. (����)

GSE����� MOV�� HEK��� nt PAR-CLIP Sievers et al.

(����)

GSE����� CIRP NIH�T� ctl, kd HITS-CLIP Morf et al. (����)

GSE����� DGCR� HEK���T none HITS-CLIP Macias et al.

(����)
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Table �.� (continued from the previous page)
Accession Protein(s) Source RNA-seq Technology Reference

GSE����� FMR�, FXR�,

FXR�

HEK���-

derived

nt PAR-CLIP Ascano et al.

(����)

GSE����� LIN��A H�, HEK���-

derived

nt, ctl, kd HITS-CLIP Wilbert et al.

(����)

GSE����� MBNL mouse brain,

C�C��

ctl, kd HITS-CLIP Wang et al. (����)

GSE����� mTDP��,

mFUS/TLS,

hFUS/TLS

mouse brain,

human brain

ctl, kd HITS-CLIP Lagier-Tourenne

et al. (����)

GSE����� eIF�AIII HeLa none HITS-CLIP Saulière et al.

(����)

GSE����� CSTF�� C�C�� none HITS-CLIP Hoque et al.

(����)

GSE����� PTB, AGO� HeLa none HITS-CLIP Xue et al. (����)

GSE����� LIN��B HEK��� ctl, exp, kd PAR-CLIP Hafner et al.

(����)

GSE����� FMRP mouse brain none HITS-CLIP Darnell et al.

(����)
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terminal clipping, and splice site annotations from RefSeq (downloaded from the UCSC
Genome Browser on Jan ��, ����). When an RNA-seq library from the same source is
available from the dataset, the sequence alignments from RNA-seq were processed to call
single nucleotide polymorphisms (SNPs) with samtools �.�.�� (Li et al., ����) (minimum
depth=��, substitution mutation rate=�.���, adjusted p-value cuto�=�.��). Since muta-
tions from UV irradiation is indispensable from CLIP experiments, it is preferable to have
variant-aware alignments to increase sensitivity near protein interacting sequences, where
more mutations are accumulated, and reduce false positives from background variants
from tissue or cell line themselves. �e sequence reads with related SNP data were aligned
with variant-aware indices built with gmap snpindex (Wu & Nacu, ����). Finally, the
alignment results were �ltered to leave only the single best hit with minimum edit distance
(up to two edits) to obtain a set of single-hit reads. �ose with multiple best hits were
ignored as repetitive sequences.

�.�.� Sequence annotation and classi�cation

�e alignments were annotated with RefSeq (Pruitt et al., ����), RepeatMasker, miR-
Base release �� (Gri�ths-Jones, ����), Rfam (Burge et al., ����), and GtRNAdb (Chan &
Lowe, ����) by using intersectBed of BEDTools (Quinlan & Hall, ����). A representative
class for a given read was determined as the �rst matching class from all annotations for
all alignments for the read in the following priority: miRNA, rRNA, tRNA, Mt-tRNA,
snoRNA, scRNA, srpRNA, snRNA, RNA, ncRNA, misc_RNA, Cis-reg, ribozyme, RC,
IRES, frameshi�_element, LINE, SINE, Simple_repeat, Low_complexity, Satellite, DNA,
LTR, CDS, �˜UTR, �˜UTR, intron, Other, Unknown. �e annotated representative classes
were combined with read counts of previously removed sequences in the �rst contaminant
�ltration, and used for CLIP tag classi�cation statistics. For subsequent analyses, the
reads classi�ed as rRNA or tRNA were excluded and the rest was used. �e alignments
for �ltered reads were converted to bam format and visualized with the UCSC Genome
Browser. �e non-redundant RefSeq transcription set was constructed by the identical
procedure described in Section �.�.�.

��



�.� Binding site detection

Identi�cation of binding sites is usually required before any further analysis of CLIP data.
Peak calling of mapped CLIP tags in RNAwas used in earlier studies (Licatalosi et al., ����;
Chi et al., ����). PAR-CLIP and iCLIP can identify RNA-protein interactions in single
nucleotide resolution by using T to C transitions and clustered �˜ end positions thanks
to biochemical characteristics of their libraries (Hafner et al., ����; König et al., ����).
�is also became possible for HITS-CLIP libraries by crosslinking-induced mutation sites
(CIMS) introduced by Zhang & Darnell (����).

When the list of con�dent binding sites is prepared, discovery of cis-regulatory element
or the protein’s substrate speci�city is a unique bene�t of the high resolution of CLIP
techniques. �e enriched sequence motifs can be easily visualized by simple sequence logo
analyses (Crooks et al., ����; O’Shea et al., ����) where binding sites were identi�ed in the
single nucleotide resolution. Otherwise, statistical overrepresentation of sequences can be
used to identify the recognized motif of a protein (Yeo et al., ����). �is section introduces
new metrics developed for RNA-protein interactions inducing more substitution errors
than deletion errors, and shows how the metrics can be applied to array of proteins.

�.�.� Metrics for crosslinking-induced errors

Although substitution errors� are once described near RNA-protein binding sites a�er UV
crosslinking and reverse-transcription (Granneman et al., ����). So far, the only systematic
e�ort to use the accumulated errors in sequence alignments was made by Zhang & Darnell
(����) for deletion errors on Argonaute proteins andNOVA. Inmy recent study for LIN��A
with Jun Cho (Cho et al., ����), I found that the protein makes more substitutions than
deletions like Nop�� does in S. cerevisiae (Granneman et al., ����). In addition to the

��e original termmutation used by Kishore et al. (����) and Zhang & Darnell (����) may confuse readers
to understand that the RNA-protein interactions induce inheritable sequence replication errors. Since the
mutations are artifacts from UV irradiation during CLIP experiments, I will use errors instead with a sense
that any mismatch between the reference and sequence reads such as substitution (modi�cation), insertion,
or deletion.
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previous existing metric, deletion rate, I included more metrics into the regular analysis of
crosslinking-induced errors: substitution rate, insertion rate, and substitution and deletion
rate.

As a matter of fact, the simple metrics have common false positives coming from
background sequence variations. Zhang & Darnell (����) avoided the problem by ignoring
positions with deletion rates higher than �.�. �e workaround is simple and powerful for
many cases although it cannot handle heterozygous SNPs. It becomes more problematic
in studies using cancer cell lines because they o�en carry aneuploidy and allele frequency
ratio can be virtually any number. Fortunately, RNA-protein interactions o�en induce
substitution errors in non-uniform type of nucleotide changes. Unlike the RNAs including
SNPs, which usually have only two types of nucleotides in a site, crosslinking-induced
errors generally induce all three types of substitutions and deletions (Figure �.�). To use
this additional information, I introduced Shannon entropy (Shannon, ����) as a metric
for SNP-proof detection of crosslinking-induced errors:

C = −�
n
pn log� pn

where C is the crosslinking-induced error score and n is any type of nucleotide including
D for deletion.

�.�.� Error characteristics of di�erent RNA-binding proteins

An earlier study revealed that type of crosslinking-induced errors are di�erent from protein
to protein even when the experimental conditions are the same (Granneman et al., ����).
NOVA and Argonautes in mouse (Zhang & Darnell, ����), Nop� and Nop�� in S. cerevisiae
(Granneman et al., ����), and hnRNP C in human (Sugimoto et al., ����) are known to
induce deletion errors by UV crosslinking more o�en than in RNA-seq. On the contrary,
crosslinking-induced errors by mouse LIN��A is more biased into substitutions (Figure
�.�). Nop�� in S. cerevisiae (Granneman et al., ����) and HuR in human (Kishore et al.,
����) follow the rank of substitution-favoring mode of interactions.

In my meta analysis, most CLIP experiments including both HITS-CLIP and PAR-
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Figure �.� Sequences from a set of HITS-CLIP libraries showing chaotic substitution and
deletion errors near expected binding sites (Mirlet�g locus from Cho et al. (����)). �e
previously known binding site of the protein, the GGAG motif in the terminal loop of
precursor let-�g, is marked with a red box. Each unique sequence is represented by a black
horizontal bar with the number of reads indicated on the le�. Mismatched sequences are
shown in white letters. UV crosslinking frequency is quanti�ed by using Shannon entropy
and is shown at the bottom with blue bars. Less frequent tags (<� reads) are omitted to
improve visibility.
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Figure �.� LIN��A example of error frequency pro�les as a function of position along
the CLIP tags (Cho et al., ����). Position within the tag was partitioned into �� bins with
the �˜ end of the reads as the le�most bin (x-axis). To avoid underestimation of errors at
both ends, I replaced the sequences removed by terminal so� clippings with the original
sequences obtained from sequencing. In the case of insertion errors, I assumed that the
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Figure �.� Frequencies of substitution and deletion errors in RNA-seq, HITS-CLIP, and
PAR-CLIP libraries.

CLIP showed not only deletion errors but also substitution errors (Figure �.�). PAR-CLIP
generally induced more substitutions as expected (T to C transition), however few HITS-
CLIP libraries inducedmore substitutions than those of PAR-CLIP (Figure �.�). �ese were
DGCR�, PAPD� (also known as TRF�-�), and PTB proteins, however it was hard to �nd
the shared factors that distinguishes them from the others. As themeta dataset have several
libraries that shares some features, I compared them by contrasting di�erences (Figures �.�,
�.�, and �.�). Presumably, it is con�rmed that even if CLIP experiments performed together
in a study, the tendency of making substitutions or deletions are unique to the identity of
protein (Figure �.�). Moreover, the substitution preference of a protein was similar in spite
of that experiments were performed in di�erent species by di�erent investigators (Figure
�.�). �ere were, however, signi�cant experimental variances among replicates by same
investigators when experimental procedure is changed (Figure �.�).

�.�.� Statistical analysis of crosslinking-induced errors

Systematic downstream analyses requires statistical signi�cance of detected binding sites.
RNA-seq and CLIP libraries are heavily biased by di�erent experimental artifacts. For
example, RNA fragmentation is generally known for inducing strong biases under the

��



De
le

tio
ns

 p
er

 ta
g

0

0.2

0.4

0.6

0.8

Substitutions per tag
0 0.2 0.4 0.6 0.8 1 1.2

FMRP HITS-CLIP
Hu HITS-CLIP
RNA-seq
HITS-CLIP
PAR-CLIP

Figure �.� Frequencies of substitution and deletion errors alternatively colored to contrast
di�erent samples in an experiment by Darnell et al. (����).
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embryonic stem cells).
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Figure �.� Frequencies of substitution and deletion errors alternatively colored to contrast
di�erent trials for same protein and cells by same investigators (Xue et al., ����, ����).

e�ects from RNA secondary structure and sequence composition (Roberts et al., ����).
However, the fragmentation bias in CLIP-seq is totally di�erent from RNA-seq’s because
RNA-protein complex maintains characteristic molecular structure in solution while
RNAs are free from proteins in RNA-seq. Moreover, it is extremely hard to estimate
background distribution from neighboring positions in CLIP-seq due to the dispersed
nature of most RNA-protein interactions and broad range of mRNA expression levels.
Lack of appropriate controls makes harder to model the statistical background distribution
of the crosslinking-induced error metrics.

Zhang & Darnell (����) developed a method for permutation-based estimation of
statistical signi�cance of binding sites, called crosslinking-induced mutation sites (CIMS).
It estimates the background distribution of deletion rates by switching the deleted bases
with randomly chosen base of the same position in read and reference nucleotide in
genomic sequence in the other sequence reads (Zhang &Darnell, ����). While maintaining
the basic ideas, I reformed the algorithm for improved scalability and better statistical
performance (Algorithms �.� and �.�). Its optimized implementation is included in the
toolchain supplementary to this chapter.� With the new algorithm and implementation, I
evaluated the new metrics introduced in the previous section using HITS-CLIP data for

�All codes for this implementation are available from https://github.com/hyeshik/ecliptic.
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Algorithm �.� Simpli�ed procedure of one iteration for permutation-based background
distribution estimation of crosslinking-induced error metrics. Actual implementation
uses slightly altered order for multi-threading, and uses splay tree (Sleator & Tarjan, ����)
for results lists for the optimized use of memory.
procedure PermutateOnce(readseqs)
  readqueues  an empty queue for each base (A, C, G, T, D)
  results  an empty list for each base and read depth levels

  for every sequence in readseqs,
    for every base in sequence,
      append base in read to readqueues[reference base]

  for every queue in readqueues,
    shuffle the queue with Fisher-Yates shuffling

  for every unique alignment in readseqs,
    for i  from 0 to length of reference of the alignment,
      readcount  five zeros (for A, C, G, T, D) 
      for j  from 0 to number of duplicated reads of the alignment,
        r  pop an element from readqueues[reference base][i]
        increase readcount[r] by 1
      end for

      value  calculate a metric with the readcount
      append value to results[reference base, depth]
    end for
  end for

  return results
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Algorithm �.� Simpli�ed procedure for setting cuto� that meets given level of FDR.
procedure SetCutoffForFDR(real values, permutated values, fdr)
  sort real values in descending order
  sort permutated values in descending order

  match 1 by 1 to perfectly align real values and permutated values
    by adding zeros to either lists

  real_cum  get cumulative array of real values
  permutated_cum  get cumulative array of permutated values

  valid_cutoff  not a number

  for every element in real_cum and permutated_cum,
    if real or permutated count is zero,
      continue to next set of elements /* zero division */

    fdr_calculated  permutated cumulative count in fraction,
                      divided by real cumulative count in fraction

    /* update valid_cutoff to lower value when satisfy the fdr */
    if fdr_calculated < fdr,
      valid_cutoff  cutoff value for the current element
  end for

  return valid_cutoff
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Table �.� Results from the assessment for detection performance of various crosslinking-
induced error metrics. Each of ��L��G, �J�, and ����� is an experiment using di�erent
antibody in mESC LIN��A HITS-CLIP (Cho et al., ����), and represent respectively each
experiment using the antibody here. Number of sites (� sites) shows number of detected
binding sites with ˆ �� tags and < �.�� false discovery rate. AUC values are the areas
under the curve in receiver operating characteristics (ROC) curves with an assumption
that LIN��A binds only to GGNG or GNG.

Experiment ��L��G �J� �����
Metric � sites AUC � sites AUC � sites AUC

Deletion ��,��� �.��� ��,��� �.��� ��,��� �.���
Substitution ��,��� �.��� ��,��� �.��� ��,��� �.���
Del. + Subst. ��,��� �.��� ��,��� �.��� ��,��� �.���

Shannon entropy ��,��� �.��� ��,��� �.��� ��,��� �.���

LIN��A (Cho et al., ����) (Table �.�). Expectedly, deletion errors were not a powerful
indicator to detect binding sites of LIN��A (Table �.�). Substitution rate detected more
binding sites with the same level of FDR, but Shannon entropy turned out to be modestly
better at picking up the targets with known binding preference. I also compared the error-
based crosslinking detection with di�erent metrics against enrichment-based peak callers
(Table �.�). CIMS methods with substitution or Shannon entropy detected binding sites
from let-�a-� (Mirlet�a-�) and mir-�� (Mir��) loci in addition to the other targets called by
Piranha (Uren et al., ����) or ASPeak (Kucukural et al., ����) (Table �.�). However, CIMS
performed worse than the enrichment-based analysis methods for experiments with lower
depth of reads or lower substitution or deletion rate by UV crosslinking (data not shown).
UV crosslinking between LIN��A and its target induced informative substitutions as well
as deletions unlike NOVA or Argonautes (Zhang & Darnell, ����). �e more degree of
freedom in substitution errors seems to contribute to the better sensitivity of binding target
detection in this case.
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Table �.� False discovery rates calculated using di�erent approaches to detect crosslinked
sites in CLIP.�e experiments are from a HITS-CLIP study for LIN��A protein in mESC
(Cho et al., ����). �e binding partners of LIN��A shown here are the exhaustive list of
let-� precursors which are well-studied to bind LIN��A (Heo et al., ����). �e values
from CIMS are shown in maximum FDRs of the most conservative estimates. FDRs from
Piranha (Uren et al., ����) and ASPeak (Kucukural et al., ����) are shown in multiple-
testing corrected values with the Benjamini-Hochberg method (Benjamini & Hochberg,
����). ‘–’ indicates the target is not detected using the method.

Experiment Target
CIMS
subst.

CIMS del.
CIMS
entropy

Piranha ASPeak

��L��G

let-�a-� < � × ��−� – < � × ��−� – –
let-�d < � × ��−� < � × ��−� < � × ��−� �.� × ��−� �.����
let-�f-� < � × ��−� – < � × ��−� �.� × ��−� �.�× ��−�
let-�g < � × ��−� – < � × ��−� – �.�× ��−�
mir-�� < � × ��−� – < �.�� – –

�J�

let-�a-� – – – – –
let-�d < � × ��−� < � × ��−� < � × ��−� �.� × ��−� �.� × ��−�
let-�f-� < � × ��−� – < � × ��−� �.� × ��−� �.�× ��−�
let-�g < � × ��−� – < � × ��−� – –
mir-�� < � × ��−� < � × ��−� < �.�� – –

�����

let-�a-� – – – – –
let-�d < � × ��−� < � × ��−� < � × ��−� �.� × ��−� �.� × ��−�
let-�f-� < � × ��−� – < � × ��−� �.� × ��−� �.� × ��−�
let-�g < � × ��−� – < � × ��−� �.� × ��−� �.� × ��−�
mir-�� < � × ��−� < �.�� < � × ��−� – –

��



0.0

1.0

2.0

bi
ts

-10
U

A
G
C

U
A
G
U
A
G
C
A
G
C

U

A
G

-5
U

A
G
U
A
G
U

C

A
G
C
A
G
A

U
G

0
C
U
G
A
U
G
U
A
G
U
A
G
A
G

5
U
A
G
U
A
G
U

A
G
A
G
A
G
10
U

A
G

HNRNPH (Katz et al., 2010)

ELAVL1 (Darnell et al., 2011)

0.0

1.0

2.0

bi
ts

-10
G

A

UUU
G

A

U
A

G

U

-5
C

A

G

U
A

G

U
G

U

0
A
C

U
A

C

U
A
G
C

U
A
C
G
U
U

5
U
G

U

A

C

G

UU
U

10
U

Figure �.� Examples of simple sequence logo analysis for �nding sequence motif. Position
� is where crosslinking-induced errors accumulated.

�.� Recognition motif analysis of binding sites

Binding speci�city factors like RNA sequence or secondary structure are valuable infor-
mation for many cases of RNA binding protein research. For example, poly(A)-binding
proteins (PABPs) binds to poly(A) stretches speci�cally to stabilize the poly(A) tails (Kühn
&Wahle, ����), and LIN��A is known to interact with single-stranded GGNG and GNG
sequences on top of hairpin structures (Nam et al., ����; Cho et al., ����) for regulation of
precursor miRNAs and messenger RNAs. �anks to the single nucleotide resolution of
binding site identi�cation in CLIP, it has became easier to �nd cis-regulatory factors in
RNA for the RNA-protein interactions.

�.�.� Sequence motif analysis of binding sites

Sequence motif analysis following the CIMS analysis is relatively easier than in the other
techniques that have lower resolution. As crosslinking-induced errors pinpoint the posi-
tions where an RBP binds, there is no need for additional sequence cluster and alignment.
Simple sequence logo analysis is enough for most cases (Figure �.�).

When an RBP recognizes RNA sequences withmultiple modes or they don’t align well,
the mixture of enrichment levels can easily fade out the distinct signals. For these cases,
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Figure �.�� Example of sequence motif clustering by similarity. Each hexamer sequence is
an enriched motif in LIN��A HITS-CLIP (Cho et al., ����). Area and color of each node
represent relative enrichment of the hexameric sequence compared to the background
frequency from RefSeq transcripts. Any two connected nodes di�er by a single nucleotide.

I developed a visualization-based analysis based on clustering by similarity of enriched
sequence motifs (Figure �.��). �e alternative visualization shows related sequences in
adjacent positions, and naturally reveal the distinguishable groups of sequences that an
RBP interacts with. In the example of LIN��A (Figure �.��), any of simple sequence logo
or traditional motif �nders for transcription factor binding including MEME (Machanick
& Bailey, ����), PhyloGibbs (Siddharthan et al., ����), and Trawler_standalone (Haudry
et al., ����) failed to divide the three groups of binding motifs while they are clearly visible
in this method (data not shown).
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�.�.� Secondary structure motif analysis of binding sites

In addition to the primary sequence, secondary structure is o�en used for binding of RBPs
to RNA. Double-stranded RNA has more stable structure in the cell, whose backbone
structures can be a good platform for stable binding (Carlson et al., ����). By using both
dsRNA regions and few bases in single-stranded regions, proteins can build a speci�c
binding domain with relatively small structure. Statistical analysis of secondary structure
preference of RBP-bound sequences is o�en misleading due to limited accuracy of RNA
secondary structure predictions. Especially, almost half of ~�� nucleotides long RNA
sequences can form certain kind of folds. It causes high false positive rate of secondary
structure scanning near the regions of interest and makes weak preferences undetectable.
Additionally, setting a size of prediction window is tricky and requires some assumptions.

I developed a new method that is free from RNA secondary structure predictions, but
can still detect preferences to small RNA hairpins. �e method uses enrichment level of
Watson-Crick (WC) co-occurrence compared to that of background frequency between
�anking positions of binding sites. It could detect the obvious preference to small hairpins
by LIN��A protein in both human and mouse embryonic stem cells (Figure �.��).

�.� Fully automated pipeline for CLIP-seq analysis

In spite that many alternative approaches and analytic techniques can be applied for thor-
ough analysis of CLIP-seq, there has been no general analysis toolkit except PARalyzer by
Corcoran et al. (����), which is specialized in T-to-C transition analysis of PAR-CLIP. Here,
I present ecliptic, a elastic, scalable, and yet easy-to-use tool chain package developed for
analysis of data from CLIP-seq experiments supporting variety of alternative approaches.�

Ecliptic consists of several small programs written in Python and C with a pipeline
script for Snakemake (Köster & Rahmann, ����) to weave them into an automated work-
�ow. Most parts were described earlier in this chapter, the rest are described below.

�Ecliptic is available under the MIT license from https://github.com/hyeshik/ecliptic.
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CLIP-35L33G:
  runs:          [C3-091210, C3-110713, C3-111013]
  species:      mmu

    workflows:     [CLIP]
    source:        A3-1
    first_base:    7
    quality_scale:  33
    threep_adapter: ATCTCGTATGCCGTCTTCTGCTTG
    description:   "mESC LIN28A CLIP-seq with 35L33G"
PolyA-1:
    runs:          [P-110922]
    species:       mmu
    workflows:     [RNAseq, SNPreference]
    source:        A3-1
    first_base:    7
    quality_scale: 64
    threep_adapter: ATCTCGTATGCCGTCTTCTGCTTG
    description:   "mESC Poly-A RNA-seq"

Figure �.��Examplemetadata for ecliptic describing a pair of a CLIP and Poly(A)-enriched
RNA-seq experiments.

Con�guration and job script generation

Ecliptic accepts metadata describing experiments and comparison pairs in YAML format
as shown in Figure �.��). Several analysis modules written in Snakemake microlanguage
(Köster & Rahmann, ����) are templated and assembled as directed in the metadata. �e
templates for themodules are processed using jinja� template engine (http://jinja.pocoo.org/)
to make it more �exible and easy to extend the work�ow. As the full CLIP-seq analysis in-
cludes many computationally expensive parts, most time-consuming tools and the pipeline
in ecliptic are implemented with multi-processor and/or multi-node job scheduler support.

Identi�cation of binding sites

Two major alternative methods for binding site identi�cation are performed by ecliptic.
Firstly, crosslinking-induced footprints such as substitution or indel in HITS-CLIP, T-to-C
transition in PAR-CLIP, and clustered �˜ ends in iCLIP are scanned throughout the genome,
then the list is re�ned to keep statistically signi�cant footprints only by estimated false
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Figure �.�� Sequence alignment view around a identi�ed binding site. Upper panel shows
coverage of CLIP tags in base positions, and lower panel shows Shannon entropy of
sequenced bases in each position.

discovery rate from permutation using my in silico CLIP simulator included in ecliptic
(see Section �.�.� for details). �e information near the identi�ed binding sites can be
easily visualized by a tool in ecliptic (Figure �.�� as an example). Alternatively, regions of
clustered CLIP tags are examined by one of peak callers like Piranha (Uren et al., ����),
ASPeak (Kucukural et al., ����), or MACS (Zhang et al., ����). Ecliptic tries all these
methods when the dependent program is available on the system.

Discovery of substrate speci�city factors

To generalize their interaction characteristics at large, it is required to discover what
factors a�ect the speci�city between RNA and protein. As many RNA-binding proteins
recognizes their substrates by nucleotide sequence and surrounding secondary structure,
it is worth to try motif analyses. Ecliptic can automatically prepare inputs and invoke tools
for sequence motif discovery like MEME (Machanick & Bailey, ����), GLAM� (Frith et al.,
����), PhyloGibbs (Siddharthan et al., ����), or WebLogo (Crooks et al., ����) (Figure
�.��). Several kinds of plots are also generated to evaluate secondary structure preference
near the binding sites (Figure �.��). See Section �.�.� for background and more details.
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Figure �.�� Example of quality check view for transcript source composition in reads for
CIRP in mouse (Morf et al., ����).

Calling con�dent target transcripts

�e list of con�dent target transcripts can lead the study to functional analyses of targets.
A number of di�erent lists of potential targets are provided by ecliptic to enable taking
a di�erent background or null hypothesis. Simple gene ontology analysis for enriched
targets is also produced for the brief overview of results.

Quality check and miscellaneous statistics

A CLIP experiment o�en fails. It usually requires several trial-and-errors by tuning
various conditions depending on antibody, cell type, mode of RNA-protein interaction
and, crosslinking method. To enable more rapid and fast iterations, ecliptic generates basic
statistics to check quality of libraries such as sequence diversity, length distribution, read
quality, and bacterial contamination (Figure �.��).

Reporting

Ecliptic generates a user-friendly report to make primary analyses accessible to researchers
who are not familiar with Unix environment (Figure �.��). It includes all basic information
and publication-ready plots for fundamental analyses. As most CLIP-seq experiments
eventually need study-speci�c downstream analyses, raw and intermediate data �les in
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Ecliptic Analysis Report for GSE37114-
LIN28A-NKim

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Analysis Settings

Project GSE37114-LIN28A-NKim

Sample Description Version Apr 16, 2013 15:19:11 by hyeshik

Pair Description Version Jan 16, 2013 16:15:26 by hyeshik

Work Directory /atp/hyeshik/p/grandclip/work/GSE37114-LIN28A-NKim

Analysis Started At Jun 14, 2013 14:35:19

Analysis Finished At Jun 17, 2013 20:30:22

Samples

Name Runs Species Workflows Source
Insert
Cycles

Scoring Description

RNAseq-
uninfected-1

SRR458753 mmu
CLIP
RNAseq
SNPreference

A3-1 1-54 entropy
GSM910950: A3-1 PolyA+ RNA-
seq - untreated; Mus musculus;
RNA-Seq

RNAseq-siLuc-1 SRR458754 mmu
RNAseq
SNPreference A3-1 1-54 entropy

GSM910951: A3-1 PolyA+ RNA-
seq - siLuc; Mus musculus;
RNA-Seq

RNAseq-
siLin28a-1

SRR458755 mmu
RNAseq
SNPreference

A3-1 1-54 entropy
GSM910952: A3-1 PolyA+ RNA-
seq - siLin28a; Mus musculus;
RNA-Seq

RNAseqRPFCtl-
siLuc-1 SRR458754 mmu RPF A3-1 1-27 entropy

GSM910951: A3-1 PolyA+ RNA-
seq - siLuc; Mus musculus;
RNA-Seq

RNAseqRPFCtl-
siLin28a-1

SRR458755 mmu RPF A3-1 1-27 entropy
GSM910952: A3-1 PolyA+ RNA-
seq - siLin28a; Mus musculus;
RNA-Seq

RPF-siLuc-1 SRR458756 mmu RPF A3-1 1-27 entropy
GSM910953: A3-1 Ribosome
profiling - siLuc; Mus musculus;
OTHER

RPF-siLin28a-1 SRR458757 mmu RPF A3-1 1-27 entropy
GSM910954: A3-1 Ribosome
profiling - siLin28a; Mus
musculus; OTHER

CLIP-35L33G SRR458758 mmu CLIP A3-1 1-78 entropy
GSM910955: A3-1 LIN28A CLIP -
35L33G (mAb); Mus musculus;
OTHER

CLIP-2J3 SRR458759 mmu CLIP A3-1 1-78 entropy
GSM910956: A3-1 LIN28A CLIP -
2J3 (mAb); Mus musculus;
OTHER

CLIP-46020 SRR458760 mmu CLIP A3-1 1-78 entropy
GSM910957: A3-1 LIN28A CLIP -
polyclonal; Mus musculus;
OTHER

Pair Sets for Comparative Analyses

Pair Name CLIP Sample Control Sample

CLIP-35L33G CLIP-35L33G RNAseq-uninfected-1

CLIP-2J3 CLIP-2J3 RNAseq-uninfected-1

Brief Overview and Quality Check

Number of reads

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Sample Name Total Reads Remaining Reads After Processing Uniquely Mappable Reads To Genome

RNAseq-uninfected-1 20,614,783 17,416,509 (84.5%) 11,593,924 (56.2%)

RNAseq-siLuc-1 16,992,820 13,986,477 (82.3%) 9,100,241 (53.6%)

RNAseq-siLin28a-1 20,270,867 16,994,245 (83.8%) 11,712,912 (57.8%)

CLIP-35L33G 31,690,676 22,306,564 (70.4%) 11,810,718 (37.3%)

CLIP-2J3 33,548,802 22,725,233 (67.7%) 12,093,492 (36.0%)

CLIP-46020 30,117,545 19,419,546 (64.5%) 10,860,533 (36.1%)

Read Origin Assignment Profiles

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Vector Image (pdf)Vector Image (pdf)  Bitmap Image (png)Bitmap Image (png)  Read Count Table (csv)Read Count Table (csv)  Percentage Table (csv)Percentage Table (csv)

Sample
Name rRNA CDS 5'UTR 3'UTR intron miRNA tRNA Repeats Others

RNAseq-
uninfected-

1

2,023,706
(14.9%)

5,470,770
(40.2%)

250,747
(1.8%)

1,935,917
(14.2%)

1,041,469
(7.7%)

7,040
(0.1%)

20,398
(0.1%)

1,834,736
(13.5%)

1,028,451
(7.6%)

RNAseq-
siLuc-1

1,273,818
(12.3%)

4,521,379
(43.6%)

180,623
(1.7%)

1,419,086
(13.7%)

686,412
(6.6%)

5,477
(0.1%)

18,547
(0.2%)

1,491,926
(14.4%)

773,351
(7.5%)

RNAseq-
siLin28a-1

1,277,903
(9.8%)

6,022,094
(46.4%)

274,884
(2.1%)

1,755,591
(13.5%)

882,404
(6.8%)

6,889
(0.1%)

21,091
(0.2%)

1,785,357
(13.7%)

961,066
(7.4%)

CLIP-35L33G 5,469,016
(31.7%)

4,788,389
(27.8%)

73,153
(0.4%)

2,604,278
(15.1%)

1,176,568
(6.8%)

9,004
(0.1%)

37,501
(0.2%)

1,894,530
(11.0%)

1,196,952
(6.9%)

CLIP-2J3 5,517,765
(31.4%)

4,834,451
(27.5%)

71,336
(0.4%)

2,649,599
(15.1%)

1,259,094
(7.2%)

8,926
(0.1%)

38,165
(0.2%)

1,939,665
(11.0%)

1,260,418
(7.2%)

CLIP-46020 2,949,591
(21.4%)

4,558,522
(33.1%)

62,090
(0.5%)

2,574,497
(18.7%)

875,485
(6.4%)

6,735
(0.0%)

26,843
(0.2%)

1,676,588
(12.2%)

1,055,684
(7.7%)

Error Profiles

Binding Characteristics

Sequence Motif Logos

These WebLogos represent enriched patterns of flanking sequences around confident binding sites. The motifs are aligned
just to center the identified binding sites at the single nucleotide level, so this may underestimate loose patterns with
variable distances between recognized bases.

Sample Genomic Sequences Spliced Sequences

RNAseq-uninfected-1

PDFPDF  PNGPNG  Show moreShow more PDFPDF  PNGPNG  Show moreShow more

CLIP-35L33G

PDFPDF  PNGPNG  Show moreShow more PDFPDF  PNGPNG  Show moreShow more

CLIP-2J3

PDFPDF  PNGPNG  Show moreShow more PDFPDF  PNGPNG  Show moreShow more

CLIP-46020

PDFPDF  PNGPNG  Show moreShow more PDFPDF  PNGPNG  Show moreShow more

Secondary Structure Preference

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Sample Genomic Sequences Spliced Sequences

RNAseq-
uninfected-1

Figure Parts (zip)Figure Parts (zip)  PNGPNG  Show moreShow more Figure Parts (zip)Figure Parts (zip)  PNGPNG  Show moreShow more

CLIP-35L33G

Figure Parts (zip)Figure Parts (zip)  PNGPNG  Show moreShow more Figure Parts (zip)Figure Parts (zip)  PNGPNG  Show moreShow more

CLIP-2J3

Figure Parts (zip)Figure Parts (zip)  PNGPNG  Show moreShow more Figure Parts (zip)Figure Parts (zip)  PNGPNG  Show moreShow more

CLIP-46020

Figure Parts (zip)Figure Parts (zip)  PNGPNG  Show moreShow more Figure Parts (zip)Figure Parts (zip)  PNGPNG  Show moreShow more

Enriched N-mer Sequences

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Sample Genomic Sequences Spliced Sequences

RNAseq-
uninfected-1

Full Table (csv)Full Table (csv)  PDFPDF  PNGPNG  Show moreShow more Full Table (csv)Full Table (csv)  PDFPDF  PNGPNG  Show moreShow more

CLIP-35L33G

Full Table (csv)Full Table (csv)  PDFPDF  PNGPNG  Show moreShow more Full Table (csv)Full Table (csv)  PDFPDF  PNGPNG  Show moreShow more

CLIP-2J3

Full Table (csv)Full Table (csv)  PDFPDF  PNGPNG  Show moreShow more Full Table (csv)Full Table (csv)  PDFPDF  PNGPNG  Show moreShow more

Figure �.�� Example pages of analysis report automatically generated by ecliptic.
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text-based formats are listed and provided with help texts in the report.

�.� Discussion

�e new methods and implementations of analysis of CLIP-seq data allow mapping the
binding sites of RBPs on the genomic scale at single nucleotide resolution.�ey successfully
unveiled unknown biochemical properties of RNA binding proteins. In addition, ecliptic
is the �rst full-featured suite for the general CLIP-seq analysis that provides automatic
pipelining and modular extension. It performs most widely used analytic methods, and
provides not only the �nal results but also many intermediate data in de facto standard
formats for more in-depth analyses. It also includes the �rst publicly available implemen-
tation of permutation-based statistical analysis of crosslinking-induced errors in CLIP
tags. �ese will signi�cantly accelerate and lower hurdles of the research of RNA-protein
interactions.
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�. Conclusion

Regulation of RNA plays a pivotal role in diversi�cation of the genetic repertoire, cellular
homeostasis maintenance, localized functions, and �ne-tuned transitions of cellular status.
Being a digital information storage that is relatively easy to read, RNA has been one of
the most convenient indicator of cellular regulation status. �rough the last two decades,
the methodology in RNA biology has been largely moved into top-down approaches
with adoption of high-throughput methods. RNA-seq, cDNA microarray, CLIP-seq, and
ribosome pro�ling have been workhorses for a signi�cant fraction of recent researches.

In this thesis, I developed a novel method named TAIL-seq using direct interpretation
of �uorescence signals to measure the length of poly(A) tails. It showed a fair level of
measurement accuracy and provided the global pro�le of poly(A) tails for the �rst time.
�e analyses of poly(A) tails in NIH�T� and HeLa cells presented several phenomena
that were not described before. �ey include widespread uridylation and guanylation of
poly(A) tails, their preference to short or long poly(A) tails, global view of deadenylation by
microRNA targeting, and potential substrates of a newly hypothesized sequence-speci�c
endonuclease. Still, there are plenty of room for improvement of the method. It needs
to be more sensitive to transcripts with low quantity and gain technological maturity by
improving reproducibility, measurement accuracy, and dynamic range.

�e second part of this thesis covers the advances in analytic techniques of CLIP-seq.
�e RNA-protein interaction pro�ling method lacked an established work�ow of data
analysis due to the variability in the characteristics of RBPs. I devised and tested more
metrics that quantify crosslinking between RNA and protein to allow sensitive detections
for more RBPs. �e newly developed so�ware, ecliptic, is designed to accelerate the
iterations of CLIP experiments and make it more accessible to wet lab scientists. With the
optimized implementation of the false discovery estimation algorithm of crosslinked sites,
more statistically powerful results will be produced with less computational resources.
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In this thesis, I designed novel methods based on high-throughput sequencing, and
demonstrated their applications in biological contexts. �e newly developed technologies
signi�cant improved transcriptome-wide observation of poly(A) tail regulation and RNA-
protein interaction. �e new observations will enable discovery of unexpected links and
mechanisms in RNA-mediated regulation of the cell.
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Ù¨A,¨@ RNA-Ë1»¡8ë©–�\⌅¨¥�
Ñ�

¨Ùu∞(RNA)@ �Ù| �•X‡ 8Ï l1 <» ⌅– �Ù| ⌅ÏXî ‰⌧ <»
t‰. RNAX›1Ä0ò¨,¥⇠,Ë1»àÌ, ‰ë©,ÑtL¿8ÏHXŒ@
l1îå‰t�tƒ›¨�⌅¡D|<§0⌅t RNAD�Uàp�\‰. �©…
%‹¨Ùu∞(DNA) ⌧ÙÑ� 0 X ⌧⌧– 0|, RNA p� Ñ|X lê‰@
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nt¯ÃXÁ@Ù¨Dp–∞,¨§–⌧�0⇠»‡,lDÃ,¨î �� ntt¡X4
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