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Abstract

Transcriptome-wide analysis of poly(A) tail
and RNA-protein interaction

Hyeshik Chang
School of Biological Sciences
The Graduate School

Seoul National University

RNAs store and transfer information among constituents of the cell. From their
biogenesis to processing, transport, translation, catalysis, and decay, many cellular factors
are involved to achieve tight regulation. Following the development of high-throughput
DNA sequencing, it has become an essential tool to scrutinize RNA molecules in the
cell in unprecedented scale and depth. This thesis concerns methodological advances in
two aspects of RNA regulation. First, I develop a novel method to survey global status of
polyadenylation that takes a fundamentally different approach from the existing techniques.
Despite its importance in gene regulation, global investigation of the 3" extremity of mRNA
has not been feasible due to technical challenges associated with homopolymeric sequences
and relative paucity of mRNA. The new technique, named as TAIL-seq, allows measuring
poly(A) tail length at the genomic scale for the first time. I also discover widespread
uridylation and guanylation at the downstream of poly(A) tail. The U-tails are generally
attached to short poly(A) tails (<25 nt) while the G-tails are found mainly on longer poly(A)
tails (>40 nt), implicating their generic roles in mRNA stability control. Furthermore,
TAIL-seq identifies, with a single nucleotide resolution, numerous nucleolytic events
involved in microRNA processing and mRNA cleavage. TAIL-seq will enable exploration

of unforeseen diversity of RNA processing and modification.

Secondly, I describe an array of new analytic methods to crosslinking, immunoprecipi-

tation, and sequencing (CLIP-seq) to enhance its utility in the investigation of RNA-protein



interactions. CLIP-seq arose as one of the standard techniques to retrieve transcriptome-
wide information of RNA-protein interactions in last few years. However, generalized
analysis techniques and tools have been missing unlike the other RNA-seq applications.
In this study, I generalize analytic workflow for binding site identification by developing
new methods. I also provide an open source toolchain that covers most of the common
analyses performed for CLIP-seq. In addition, I present ecliptic, a fully automated pipeline,
and it will speed up the research of RNA-protein interactions and make more information

accessible to researchers.

High-throughput experiments are expanding biology by providing unbiased view and
leading to unexpected observations. In this thesis, I introduce two types of development for
global investigation of poly(A) tails and single nucleotide resolution survey of RNA-protein
interactions. By applying these methods, I discover several phenomena at the 3’ end of
RNAs and the binding interfaces between RNA and RBPs. Further development and im-
provement will offer an ample opportunity for the discovery of unforeseen regulatory path-

ways.

Keywords:  Transcriptomics; High-throughput sequencing; RNA-protein interac-
tion; Poly(A) tail; Gene regulation
Student ID:  2009-30858
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1. Introduction

1.1 Post-transcriptional regulation of eukaryotic gene expression

RNA is a dynamic molecule of life. It is continuously generated, processed, used, and de-
graded in the cell. Nearly every step of RNA metabolism is tightly regulated in mammalian
cells. Beginning with the transcription initiation, many mechanisms control expression
level and primary structure of RNA. Unlike its cousin, DNA, it forms uncountable types

of secondary structures, travels around the cell, and often changes sequence composition.

The earliest widespread regulation in the life cycle of RNA is alternative splicing. It
generates various types of isoforms depending on the combination of splicing factors. In
human, at least 74% of multi-exon genes are known to have multiple isoforms (Johnson
et al., 2003), and the fraction continues to grow with introduction of more sensitive
techniques. RNA binding proteins (RBPs) like NOVA, PTB, and FOX2 bind to unspliced
pre-mRNAs, and collectively determine inclusion of exons into the mature forms of
mRNAs (Keren et al., 2010).

At the other end of the cascade, translation provides an opportunity to control gene
expression. mRNA expression levels explain only ~60% of protein expression levels
in eukaryotic cells (Maier et al., 2009). Assuming that protein degradation has only
minor effects on global deviation of gene expression (Schwanhiusser et al., 2011), the
major fraction of the gap between mRNA and protein levels may be explained by the
regulations in translation initiation, translation elongation, and mRNA localization. The
5" UTR of Fthl is blocked by iron regulatory protein (IRP) in iron-deficient condition,
and iron-dependent release of IRP makes it translatable (Gray & Hentze, 1994). AU-rich
element (ARE), known for stability determinant in mRNA sequences, also has roles in both
translational up-regulation and down-regulation through interaction with ARE binding

proteins (Barreau et al., 2005). MicroRNA-induced silencing complex (miRISC) is another



factor that induces both decay and translational repression of its targets (Fabian et al., 2010;
Huntzinger & Izaurralde, 2011; Guo et al., 2010; Bazzini et al., 2012; Djuranovic et al., 2012).
Physical position of mRNA in the cell is also subject to post-transcriptional regulations.
Type D simian retroviruses escape from nuclear retention by using constitutive transport
element (CTE) that recruits nuclear export factors (Braun et al., 1999). The CaMKII«
mRNA localizes in the distal dendrites through its cis-regulatory element in 3" UTR, which

determines local concentration of its protein product (Mayford et al., 1996).

Cytoplasmic polyadenylation and deadenylation add another complexity of post-
transcriptional control of RNA. The cytoplasmic polyadenylation element (CPE), which
is found near the polyadenylation signal in the 3" UTR, is bound by CPE binding pro-
tein (CPEB) to extend its poly(A) tail in the cytoplasm (de Moor & Richter, 1999). It is
known to promotes translation initiation and stabilize the mRNA during oogenesis, early
embryo development, localized translation of CaMKIIw, and cyclin mRNAs in cell cycle
progression (Mendez & Richter, 2001; Weill et al., 2012; Norbury, 2013). Deadenylation
of mRNA is often coupled with its decay. miRISC is known to induce deadenylation
of its targets (Huntzinger & Izaurralde, 2011; Djuranovic et al., 2012). Messenger RNAs
undergoing nonsense-mediated decay (NMD) are rapidly deadenylated by poly(A) ribonu-
clease (PARN) before decapping, 5'-3" and 3'-5" exonucleases become active (Lejeune
et al., 2003). mRNAs with ARE can be deadenylated, depending on the protein partner
(Mukherjee et al., 2002).

Post-transcriptional regulation is known to have many layers, and may be even more
complex than we currently anticipate. Indeed, there may still exist vast repertoire of

RNA-mediated cellular mechanisms yet to be discovered.

1.2 High-throughput methods in RNA biology

Development of gene expression profiling techniques enabled simultaneous monitoring of
massive number of transcripts. They not only allow measurements of genes of interest but
also provide a big picture of physiological status of cells. The first two high-throughput

methods in gene expression profiling were cDNA microarray (Schena et al., 1995) and



serial analysis of gene expression (SAGE) (Velculescu et al., 1995). The cDNA microarray
technology is an extension of Southern blot into bigger scale. It hybridizes cDNAs labeled
with imageable material like fluorophore or silver to oligonucleotide probes attached to a
solid surface, then the light from spots is analyzed after imaging (Schena et al., 1995). SAGE
is an automated Sanger sequencing-based technique that counts concatamerized short
sequence tags generated by treatment of restriction enzyme to double-stranded cDNAs
(Velculescu et al., 1995). Many large scale projects have sought genome-wide insights into
gene expressions using both technologies for last two decades while microarray has been

overwhelmingly popular.

In the late-2000’s, the methodology of RNA biology started to face fundamental
changes by commercialization of high-throughput DNA sequencing technology (Ronaghi
et al., 1998; Bentley et al., 2008). Recent break-through discoveries in the field have heavily
relied on high-throughput sequencing methods. The discovery of PIWI-interacting RNAs,
long interspersed noncoding RNAs, their action mechanisms, non-canonical processing
pathways of microRNA, and global views of splicing regulations are the achievements
based on high-throughput sequencing. Unlike the pre-existing techniques which rely on
the known sequences and gene structures, RNA sequencing techniques based on high-
throughput DNA sequencing delivered far more information. The independence to prior
knowledge of gene enabled scientists to discover new RNA molecules, unknown isoforms,
RNA modifications, and gene fusions, and to develop applications such as crosslinking,
immunoprecipitation, and sequencing (CLIP-seq) and ribosome profiling (also known as
ribo-seq or ribosome footprinting). Table 1.1 summarizes some of popular applications of
high-throughput sequencing in the field of RNA biology. This section describes some of

the techniques related to the main content of this thesis.

1.2.1 Transcriptome profiling

RNA-seq was developed as a replacement for cDNA microarray, then soon recognized its
powerfulness over the conventional methods. Unlike cDNA microarray, it is free from cross-
hybridization, and sensitivity near splice junctions is without parallel to various microarray

technologies (Nagalakshmi et al., 2008). When compared to the older sequencing-based



Table 1.1 List of popular applications of high-throughput sequencing in RNA biology

(continued in the following pages).

Feature Method Description Reference
RNA-seq RNA fragmentation, RT-PCR, Nagalakshmi et al.
cDNA sequencing (details often (2008)
Expression profiling
vary)
DeepSAGE Concatamers of sequence tags Nielsen et al. (2006)
generated from cDNA by
restriction enzyme
Adapter ligation, RT-PCR on Mamanova et al.
FRT-seq flow cell to lower amplification (2010)
bias
NSR-seq RT with not-so-random primer | Vignali et al. (2011)

to avoid rRNAs

Transcript structure
(with expression

profiling)

Targeted RNA-seq

Enrich RNA of interest with

oligonucleotide probes

Mercer et al. (2012)

DeepCAGE,

nanoCAGE, or

Fragmentation, enrich

fragments with 5" cap or

Plessy et al. (2010);

Kurosawa et al.

CAGEscan specifically attach 5" adapter (2011)
with template switching
RNA-PET Mated pair tags with type II Fullwood et al.
restriction enzyme for (2009)
full-length cDNAs
Direct RNA Hybridize and sequence RNAs Ozsolak et al.
sequencing directly to flow cell in single (2009); Sharon et al.

molecule sequencer

(2013)

3P-seq, PAS-seq

Enrich 3’ end fragment of 3’

UTRs where poly(A) begins

Shepard et al. (2011);

Jan et al. (2011)

3'T-fill-seq Skip poly(A) by filling dTTP in Wilkening et al.
dark cycles (2013)
4 AW S 8
H 21l



Table 1.1 (continued)

Feature Method Description Reference
Transcription GRO-seq Short incubation of nucleus for Core et al. (2008)
activity nascent RNA labeling and
purify them
NET-seq Immunopurify RNAPolII-RNA Churchman &
complex, sequence 3’ ends Weissman (2011)
SHAPE-seq Chemically label for Lucks et al. (2011)
RNA secondary
single-stranded regions, probe
structure
interrupted
reverse-transcriptions
PARS Treat RNase V1 and SI, analyze Kertesz et al. (2010)
accumulated 5 ends
FragSeq Treat RNase T1+A, T4 PNK, or Underwood et al.
none, analyze accumulated 5’ (2010)
ends
RIP-seq Immunopurify RNA-protein Zhao et al. (2010)
RNA-protein complex in vitro
interaction HITS-CLIP Crosslink RNA-protein complex Licatalosi et al.
by UV C, treat RNase, (2008)
immunopurify, and treat
protease
PAR-CLIP Incubate cells to label RNA with | Hafner et al. (2010)
4SU or 6SG, and CLIP with UV
A
iCLIP Similar to CLIP, ligate 5" adapter | Konig et al. (2010)

after reverse-transcription,
probe interrupted

reverse-transcriptions




Table 1.1 (continued)

Feature Method Description Reference
RNA-RNA CLASH Crosslink RNA-protein complex | Kudla et al. (2011)
interaction with UV, ligate two nascent
RNA molecules to each other,
then CLIP
RNA editing m6A-seq Random fragmentation, Dominissini et al.
immunopurify m®A containing (2013)
fragments
Ribosome profiling | Treat RNase to lysate, purify Ingolia et al. (2009)
Translation activity or ribo-seq monosome in sucrose cushion
ART-seq Treat RNase to lysate, purify Freeberg et al.
monosome by size-exclusion (2013)
chromatography
Polysome profiling | Polysome fractionation, purify Spies et al. (2013)
by sequencing mono-, di-, tri-, and polysomes

separately from fractions

RNA-chromatin

interaction

ChIRP, CHART

Crosslink DNA-RNA-protein
complex by formaldehyde.
Pull-down chromatin fragments
using array of probes
complementary to RNA of

interest, sequence DNA

Chu et al. (2011);

Simon et al. (2011)

Endonuclease

specificity

Degradome-seq,

PARE

Enrich poly(A)* RNAs, ligate 5'
adapter depending on 5’
monophosphate, analyze

accumulated 5" ends

Addo-Quaye et al.
(2008); German

et al. (2008)




techniques like SAGE or , RNA-seq has far more utility not only in generic expression
profiling but also in gene structure discovery or in isoform-specific expression profiling
thanks to its longer size of sequenced reads (Mortazavi et al., 2008). As the high-throughput
sequencing became cheaper and deeper, RNA-seq is now widely used in most modern

biology fields.

As a matter of fact, RNA-seq does not point to a specific experimental procedure, but
indicates any variant of sequencing techniques starting from RNA when it does not involve
a specific biochemical purification except poly(A) enrichment or rRNA depletion. The
earliest RNA-seq experiments were performed by conversion of RNAs to double-stranded
DNA by RT-PCR, then processed with the regular methods of DNA sequencing library
preparation (Nagalakshmi et al., 2008). Later, alternative approaches have been developed
to overcome the limitation of the previous method that cannot provide information on
the strand of RNA (reviewed in Levin et al,, 2010). The three major variants of library
preparation methods for RNA-seq are briefly summarized in Figure 1.1. At the time of
writing this thesis, the RNA ligation-based method is generally favored over the other
methods.

1.2.2 RNA-protein interactome analysis

In the global analysis of RNA-protein interactions, methods are separated into two disci-
plines depending on whether in vivo RNA-protein crosslinking is used. RNA immunoprecipitation-
sequencing (RIP-seq) is an RNA-seq application that sequences RNA that is co-immunoprecipitated
with a protein of interest (Zhao et al., 2010). It is often criticized on its critical drawback that
RNA-protein complex can be formed artificially during the experimental process (Riley
& Steitz, 2013). HITS-CLIP and its variants are available for more stringent purification.
CLIP determines sequences of RNA interacting with a protein by crosslinking RNA and
protein using ultraviolet light irradiation (Figure 1.2) (Licatalosi et al., 2008; Licatalosi &
Darnell, 2010). Although it excludes in vitro artifacts by design, CLIP often misses true
targets depending on experimental conditions like UV wavelength, buffer condition, or
dozens of minor steps in sequencing library preparation (Singh et al., 2013). It is known

that several RNA binding domains are not efficiently crosslinked (Singh et al., 2013). More
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Figure 1.1 Brief procedure of the three major methods for RNA-seq.
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Figure 1.2 The procedure of a typical CLIP-seq experiment.

details on the CLIP techniques will be covered in Section 3.1.

1.2.3 Monitoring transcriptome-wide polyadenylation status

Survey of poly(A) tail length in mRNAs will allow researches to investigate cytoplasmic
polyadenylation and deadenylation mechanisms. Cytoplasmic polyadenylation and dead-
enylation is known to play on important role in late oogenesis, cell cycle progression,
microRNA targeting mechanism, and synaptic plasticity (Weill et al., 2012; Norbury, 2013).
A sufficiently accurate transcriptome-wide method to measure poly(A) lengths can be a
game changer in the field as the tool will enable to find messengers whose tails are regulated.
Early attempts were based on oligo(dT) chromatography (Figure 1.3) (Beilharz & Preiss,
2007; Meijer et al., 2007). They were successful to a certain degree, but the method had
limitations. It could not distinguish true poly(A) tails from A-rich mRNA body. Longer
poly(A) tails could not be subdivided to higher resolution. With the introduction of high
throughput sequencing, few groups tried to analyze poly(A) with RNA-seq (Wu et al.,
2008; Ulitsky et al., 2012). However, they could not achieve enough accuracy due to insuf-
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Figure 1.3 Method to separate short (<30 nt) and long (>30 nt) poly(A) RNAs (Meijer
et al., 2007).

ficient dynamic range of signal (Wu et al., 2008) or inaccuracy in Illumina base calling for
homopolymers (Ulitsky et al., 2012). In Chapter 2, I introduce a newly developed solution
for global investigation of poly(A) tails.

1.2.4 Analysis of RNA ends

The termini of RNA are formed and regulated by highly organized mechanisms. The 5’
end of mRNA is where transcription starts. Export, stability, and translation are regulated
by 5’ capping (Nevins, 1983). The other end of mRNA is protected by poly(A) tail and
it is known to be important for mRNA stability and translation efficiency (Weill et al.,
2012). The termini on both ends of tRNA give selectivity in aminoacylation (Schimmel
et al.,, 1993). Stability and processing efficiency of precursor miRNA are controlled by 3’
end nucleotidyl additions (Heo et al., 2009, 2012). Incorrect processing of either end of
precursor miRNA can alter the function of mature miRNAs (Vermeulen et al., 2005; Park

et al., 2011).

Highly parallel investigation of RNA ends for miRNA is relatively straightforward
as the standard protocol gives whole information of the molecules (Park et al., 2011). For

longer RNAs, special modifications are required to read either end of the RNA. Rapid ampli-
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fication of cDNA ends (RACE) incorporates oligo(dT)+VN primed reverse-transcription
for 3" end of 3’ UTR (3’ RACE), reverse-transcriptase template switching for 5" end of
RNAs (5" RACE), single-stranded adapter ligation for both ends (RLM-RACE), or cir-
cularization for both ends (circular RACE) (Frohman et al., 1988; Liu & Gorovsky, 1993;
Scotto-Lavino et al., 2006a,b,c). Modified version of classical RACE is used for parallel in-
vestigation of mRNA ends (Olivarius et al., 2009). Another variations of 5" RACE, parallel
analysis of RNA ends (PARE) (German et al., 2008) and degradome sequencing (Addo-
Quaye et al., 2008) have shown their another utility on comprehensive identification of
endonucleolytic cleavage events. Section 2.9 of this thesis introduces a different variant of

these approaches that captures 3’ ends in transcriptome-wide fashion.
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2. Transciptome-wide profiling for 3’ ends of

poly(A)* RNAs

2.1 Background

The 3’ termini of eukaryotic RNAs reflect the history of transcript and play important roles
in determining the fate of RNA. The 3’ ends are generated by endonucleolytic cleavage,
untemplated nucleotidyl transfer and/or exonucleolytic trimming. In the case of messenger
RNAs (mRNAs), the nascent transcripts are cleaved by cleavage and polyadenylation
specificity factor (CPSF) and become polyadenylated by canonical poly(A) polymerase
(PAP), with an exception of replication-dependent histone mRNAs that lack poly(A)
tails (Norbury, 2013). Poly(A) binding proteins (PABPs) not only protect poly(A) tails
but also interact with eIF4G bound to the 5" cap, which is generally thought to facilitate
translational initiation (Weill et al., 2012). Despite the importance, the actual sequences of
3’ ends remain unknown for the vast majority of transcripts, and our current knowledge is
based on studies of a limited number of individual genes by northern- and RT-PCR/Sanger

sequencing-based techniques (Norbury, 2013; Sallés et al., 1999).

Genome scale investigation has been hampered for several reasons. Firstly, current
deep sequencing technologies cannot determine homopolymeric sequences of longer than
~30 nt. Although microarray combined with differential elution from oligo(dT) column
have been used to roughly estimate poly(A) length (Beilharz & Preiss, 2007; Meijer et al.,
2007), the resolution is too low for accurate measurement. Secondly, highly abundant
RNAs such as rRNAs and tRNAs dominate cDNA library unless mRNAs are enriched by
oligo(dT) capture which inevitably introduces bias towards mRNAs with long poly(A) tails.
Moreover, when oligo(dT) is used as a primer for reverse transcription or as an adapter
in splint ligation, the sequence information at the very end of RNA is lost in the cDNA

library. Thus, global investigation of RNA 3’ end has been largely limited to the mapping
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of polyadenylation sites that mark the boundary between mRNA body and poly(A) tail
(Beck et al., 2010; Ozsolak et al., 2010; Mangone et al., 2010; Yoon & Brem, 2010; Fu et al.,
2011; Jan et al., 2011; Shepard et al., 2011; Derti et al., 2012; Martin et al., 2012; Elkon et al.,
2013; Hoque et al., 2013; Wilkening et al., 2013).

2.2 Technical difficulties of sequencing poly(A) tails

To the exact sequencing of poly(A) tails by high-throughput sequencing, there are several
technical difficulties that cannot be easily handled. This section describes the major
limitations of modern high-throughput sequencing technologies on sequencing poly(A)

tails.

2.2.1 Problems in high-throughput sequencing for long homopolymers

The sequencing technologies without reversible terminator, such as Roche 454 and Life
Technologies IonTorrent, report accumulated signals for homopolymers (Metzker, 2010).
In their imaging, dynamic range of fluorescence signal is limited within charge-coupled
device (CCD) cameras and usually tuned to maximize sequencing performance of reg-
ular sequence composition in the genome (Metzker, 2010; Bragg et al., 2013). Therefore,
extensively long homopolymers like poly(A) tails often exceed their linear range of signal

quantification, or even maximum measurement limits.

Even in technologies adopted reversible terminators, such as Illumina and Life Tech-
nologies SOLiD, homopolymers are still one of the most difficult substrates to sequence.
The second generation sequencers require PCR amplification of templates to secure enough
signal intensity to be detected by fast imaging techniques (Shendure & Ji, 2008; Metzker,
2010). The sequencing reactions from multiple templates are commonly out of sync after
several cycles of reaction because each part of the reaction has small chance of failure.
Polymerization reaction sometimes fails to incorporate an incoming nucleotide. This type
of error and its subsequent effect on sequencing are collectively called phasing, and their

occurrence is estimated as 0.1% in the modern Illumina equipments (Ledergerber & Dessi-
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moz, 2011). Reversely, a single cycle occasionally incorporate more than one nucleotide.
The phenomenon, called pre-phasing, is known to occur approximately 0.05% of chances.
Either type of errors results in mixed-up signals coming from desynchronized templates.
Deconvolution using phasing and pre-phasing parameters is essential for sequencing
longer reads than 30 cycles (Ledergerber & Dessimoz, 2011).! However, their estimations
are extremely tricky at the ends of long homopolymers. Correction of the blended signals

easily become corrupt as the signal is overwhelmingly uniform inside long homopolymers.

Ilumina sequencing technology has another shortcoming called sticky-T phenomenon
. Each step of sequencing-by-synthesis (SBS) reaction finishes with cleavage and wash out
of fluorophores conjugated to nucleotide bases. While most of them are removed from the
clusters, minor fractions remain still in the template (Whiteford et al., 2009). The rate of
the persistence is specifically higher for T residues, which corresponds to poly(A) tails in
the reverse direction. As a result, the persisting fluorophores accumulate over reactions for
long homopolymers. T signal lasts for many more cycles after the end of T homopolymeric

region, then the subsequent cycles are called as T regardless of their source sequences.

Third generation sequencers are better at these problems by taking merits of single-
molecule sequencing. Both Helicos and PacBio are free from phasing and pre-phasing
issues (Metzker, 2010; Ozsolak & Milos, 2011). Moreover, the latter doesn’t suffer from
build-up of fluorophore signals because it utilizes measurement of electrical conductivity,
which does not accumulate over time in principle (Metzker, 2010). They could be ideal
platforms for sequencing poly(A) tails if they produce enough throughput, but they are
still limited to lower throughput by two or three orders of magnitudes when compared to

the main stream sequencers (Sharon et al., 2013).

2.2.2 Design of library construction

As Illumina was the only platform that provide both long (>300bp) and enough number of

reads with base-by-base measurement, our experiment designs were targeted for Illumina

"The feasible quality read lengths without corrections of phasing and pre-phasing is usually estimated as
36bp for Illumina and 25bp for SOLID.
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Figure 2.1 Schematic description of experimental procedure. Horizontal bars represent
examples of RNA or DNA molecules in each step. Colors of bars indicate (blue) mRNA
or its complementary DNA, (yellow) small non-coding RNAs, such as snRNA, snoRNA
or 5.85 rRNA, (red) 3' adapter or Illumina P7-containing primer, (green) 5’ adapter or

Ilumina P5-containing primer. B in red circle mark the position of biotins.

chemistry.> The experimental procedure is almost identical to the regular paired-end
RNA-seq library preparations (Wang et al., 2009; Ozsolak & Milos, 2011). We applied few
changes to the conventional schemes to enrich 3’ end of RNAs in resulting library (Figure
2.1). The 3'-most part of RNAs are generally depleted in the conventional RNA-seq due
to the different size distribution from the fragments from the middle parts of mRNAs
(Stern-Ginossar et al., 2012). In TAIL-seq, 3" adapter is ligated to the 3’ end of RNA before
fragmentation. This enables not only enrichment of 3'-most part but also capturing the

sequence information on intact 3" hydroxyl end of RNA. In addition, we adopted an rRNA

*This study was designed in collaboration with Jaechul Lim.
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Read 1 Index Read [ P5, 5’ adapter
5’ " ™ 3" [ lInsert
I | AAAAAA[CTGACNNN.. N | [ 3’ adapter
[ Index
Read 2 = pP7

Figure 2.2 Sequence structure of a complete TAIL-seq tag in sequencing library. P5 and
P7 are pre-designated sequences by Illumina for binding and amplification on the flow

cell. ‘N’ stands for a degenerate base.

depletion kit based on antisense LNA probes instead of oligo(dT) pull-down methods
to remove rRNA. As one of the major objective of TAIL-seq is to quantitatively profile
poly(A) tails, it needs to be independent of affinity to oligo(dT) sequences (Raz et al., 2011).
The change also brings an ability to survey 3’ ends of poly(A)~ RNAs.

Poly(A) sequences are challenging for fundamental machinery of sequencing, too. We
carefully designed sequences used in the preparation of library to improve the sequencing
performance (Figure 2.2). Basically, read 1 provides the identity of the source transcript
while read 2 is used for measurement of poly(A) tail length. Read 2 can be also used
for investigation of 3’ ends of poly(A)~ RNAs. Index read allows multiplex runs, which
sequences multiple samples in the same lane of flow cells. The multiplexing is beneficial
not only for a financial reason but also for minimization of lane-to-lane and run-to-run

variations in an experiment set.

Sequencers based on optical imaging need to adjust their optics accurately to get
high-quality image and sequence. The composition of bases in every sequencing cycle is
generally unbiased for the common sequencing libraries. As a TAIL-seq library generally
contains significant proportion of poly(A) tails, base composition in the first cycles of
read 2 would be greatly biased to T. As Illumina sequencer takes images separately from
different bases, getting correct exposure to CCD becomes difficult when the composition is
significantly unbalanced (Illumina, Inc., 2011). It is also harder to correctly focus cameras
on the plane where reaction occurs (Illumina, Inc., 2011). Moreover, sequence diversity of
the first few cycles of sequencing has substantial impact on overall sequencing. Images

from the first four cycles are used to identify cluster positions in the field of view on
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Figure 2.3 Sequence structure of diagnostic poly(A) spike-in library. See the text for the
details of design.

Mlumina sequencers (Illumina, Inc., 2011), thus unbalanced cycles are prone to lose true
spots or gain false spots. Lack of sequence diversity in poly(A) tails is also problematic for
estimation of phasing and pre-phasing matrices as the first 25 cycles serves as its reference
data (Illumina, Inc., 2011). To resolve these issues, we added fifteen degenerate bases,
which are chemically synthesized from equimolar mixture of dNTPs (Figure 2.2, ‘N’s in
light violet bar). With the complexity region, cluster registration and imaging becomes
more stable for highly homogeneous libraries in sequence composition. We also added
a pentamer with fixed sequence between inserts and the degenerate bases to distinguish
chemically synthesized adapters from sequences from the 3’ end of inserts (Figure 2.2,
‘CTGAC in light violet bar).

Exact measurement requires enough number of references whose quantity is known.
We added seven chemically synthesized poly(A) spike-ins to characterize signals from
poly(A) tails (Figure 2.3). They are designed similarly as the structure of final cDNA tag
for TAIL-seq except that they carry fifteen random bases at the beginning of read 1, and

first fifteen bases of read 2 are designated with a fixed sequence (Figure 2.3). The random

18



region stabilizes optic control and image analysis of read 1 by diversifying the sequence
composition. The random region on the side of read 2 are changed to a fixed sequence
due to the technical limitation in chemical synthesis of nucleic acids.> Characterization of
signal, machine learning, and benchmarks using these synthetic poly(A) spike-ins will be

covered later in this chapter.

2.3 Sequence data processing and acquisition

Signal processing of Illumina sequencing starts with imaging. Cluster spots are isolated
from the images, then their signal intensities are quantified for all four channels, A, C, G,
and T, over the reaction cycles. The built-in software called real-time analysis (RTA) takes
care of these processes including base calling, which is to convert the signals into DNA
sequences. This section describes the methods of TAIL-seq to process the signals after the

initial processing by RTA.

2.3.1 Data acquisition and processing

TAIL-seq libraries were sequenced in 51+251 paired-end layout with Illumina HiSeq 2500
or MiSeq. The base calls and signal intensities were acquired from the sequencers after
processing by Illumina RTA 1.17.21.3 (HiSeq) or 1.18.42 (MiSeq) (Table 2.1). The base calls
were collected and transformed into .qseq files using Illumina off-line basecaller (OLB)
1.9.4. Together with the .gseq files, an in-house script collected cluster intensity matrices
from .cif files via Picard 1.91 (http://picard.sourceforge.net/). A new file format with suffix
.sqi was designed for efficient storage and random access to the cluster intensity matrices
and sequences. Sqi file was defined with seven fields in tab-separated text file (Table 2.2).
For the faster access and efficient storage, sqi files are stored as compressed with a random
accessible compression format called bgzip (Li et al., 2009) and indexed using Tabix (Li,
2011).

*Integrated DNA technologies, Inc., who synthezied these oligonucleotides for us, reported that more

degenerate bases make the yield and purity of DNA synthesis worse.
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Table 2.1 List of files output from the Illumina sequencing pipeline that are used in this

study. Refer Illumina, Inc. (2011) for more details.

File type File name | Description Use in this study
suffix
Cluster cif Raw unprocessed To get original signal
intensity signal intensities intensity of each channel over
the cycles
Filter Ailter Quality check result To check if a cluster produces
from cluster passing good signals in regard of
filter signal intensity, cluster
overlaps, and other factors
affecting base calling
Control .control | Flag whether the To remove control spots from
cluster is control or not | analysis
Position .clocs or | Geometric positions of | To find spots in images for
Jocs clusters in tiles case-by-case investigations
Offset txt Geometric offsets To find spots in images for
among images for case-by-case investigations
channels and cycles for
atile
Base call .bcl Base calls in DNA To get sequence information
sequence from sequenceable regions
(read 1; read 2 for poly(A)~
RNA; and 3’ terminal
modification)
Thumbnail Jjpg Compact summary of | To find spots in images for
image original images for sample case investigation

diagnostic use
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Table 2.2 Fields and descriptions of sqi file format defined in this study.

Field name H Type Description
Tile decimal Name of the tile where the cluster locates
Cluster decimal Unique identifier of the cluster in tile
QC pass Oorl Flag indicating whether the cluster passed
QC filter
Sequence TUPAC string | DNA sequence from RTA base calls
Quality Phred+33 Quality score of base call in Phred+33 scale
(Ewing et al., 1998)
Cluster intensity base64 Raw signal packed in sequence of base64
(Josefson, digrams. Values are adjusted to fit in [0,
2003) 4095] by scaling and trimming, then the
values are encoded in order of A, C, G, and
T, then the unit is repeated over the cycles.
Read 2 insert start decimal Zero-based inclusive coordinate of the first

cycle for 3’ end of insert in read 2

The original images of clusters were collected from thumbnail images for diagnostic
analyses. First, clusters that are visible in the center magnification window of thumbnail
images were selected from the full list of clusters. Then, the positions of clusters were calcu-
lated using the position files and the sub-tile offset files. Later image manipulations were per-
formed with Python Imaging Library (PIL) 1.1.7 (http://www.pythonware.com/products/pil/).
The thumbnail images were magnified to 10-fold height and width of original size by bicu-
bic spline interpolation to utilize sub-pixel offsets of image alignment. Cluster images
were cropped with the window size of 7x7 pixels (70x70 pixels in working buffer). The

collected cluster images were stored in raw four channel 8-bit image in a Berkeley hash

database.

21




2.3.2 Sequence processing and alignment

The read 1 sequences were aligned to the common contaminants set, which is composed
of rDNA repeat units (GenBank accession BK000964.1 for NIH3T3 and U13369.1 for
HeLa), PhiX genome (GenBank accession J02482.1), Illumina TruSeq primer sequences,
and all sequences for 5S and 5.8S rRNAs of respective species (retrieved from Rfam 11.0
(Burge et al., 2013) of the Wellcome Trust Sanger Institute) using GSNAP 2013-03-31 (Wu
& Nacu, 2010) with maximum 5% mismatches allowed. Clusters with any match to the

contaminants were removed from the subsequent analyses.

The sequences having completely identical nucleotides in the 2Ist to 35th cycle in read
1 (representing region of the insert) and the Ist to 15th cycle in read 2 (degenerate bases in
3" adapter) are deduplicated by leaving only a cluster with the maximum Phred quality
sum of read 1. The degenerate and fixed delimiter sequence in 3’ adapter was clipped out
from read 2 by searching perfect match of delimiter sequence (‘GTCAG’ as in the direction
of read 2) between the 14th and 16th cycles in read 2. The clusters missing a delimiter
sequence or having low diversity in degenerate region (at least two occurrences for all of

A, C, G, and T) were removed from further analyses.

The remaining reads after contaminant filter and the first duplication filters were then
aligned to the genome sequences (UCSC mml0 for NIH3T3 and UCSC hgl9 for HeLa,
positions of splicing junctions were processed from the UCSC Genome Browser database
for version of Jan 24, 2013) using GSNAP 2013-03-31 (Wu & Nacu, 2010). Three different
versions of alignments to genome were used in this study. (1) RI alignment: using only the
full read 1 sequences which are 51 nt long. This was used for identification of a cluster. (2)
R2 short alignment: using only 40 nt right next to the 3" adapter of read 2. This was used
in searching for the poly(A)-free 3" hydroxyl ends. (3) paired alignment: using the full
read 1 sequences and part of read 2 sequences trimmed of degenerate bases and delimiter.
I filtered out poly(A) stretches encoded from genome using this alignment set. All the
alignments were performed with maximum mismatches of 5%, minimum mapping quality

of 3. All multi-mapped reads were removed.

PCR artifacts with few mismatches were removed again using the R1 alignment with
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15 degenerate bases inside the 3’ adapter region. To detect that kind of artifacts, I clustered
the RI alignments with maximum distance between mapped positions of 10 bp, they were
then clustered again within the first cluster using degenerate bases from read 2 of respective
reads with CD-HIT-EST 4.5.4 (Fu et al., 2012) (word size=6, sequence identity=0.85). For
a set of detected duplicates, I chose a read with maximum sum of Phred quality in read 1

to leave.

2.3.3 Sequence annotation and classification

For classification and transcript-level analyses, I compiled reference annotations for human
and mouse using NCBI RefSeq (Pruitt et al., 2012), RepeatMasker, gtRNAdb (Chan &
Lowe, 2009), Rfam (Burge et al., 2013), and miRBase (Kozomara & Griffiths-Jones, 2011)
databases (the first three were downloaded from the UCSC Genome Browser (Kuhn et al.,
2013) on Apr 25, 2013; Rfam version 11; and miRBase version 19). The R1 alignments were
annotated with intersection with the compiled annotations using BEDTools (Quinlan &
Hall, 2010). When multiple annotations were overlapped to an alignment, I chose a class
for the statistics requiring exclusive assignment of a genomic source type by the following
priority: miRNA, rRNA, tRNA, Mt-tRNA, snoRNA, scRNA, srpRNA, snRNA, IncRNA,
RNA, ncRNA, misc_RNA, Cis-reg, ribozyme, RC, IRES, frameshift_element, LINE, SINE,
Simple_repeat, Low_complexity, Satellite, DNA, LTR, CDS, 3" UTR, 5’ UTR, intron, Other,
Unknown (higher priority first).

The transcript-level analyses were performed using my custom non-redundant RefSeq
(nrRefSeq) transcript set, which is a reduced set retaining only the longest isoform or tran-
script when regions overlap with each other. The positions of read 1in nrRefSeq transcripts
were positioned with BEDTools intersection between alignments to genome sequences
and nrRefSeq annotation set, and then translated to the transcript-level coordination with

in-house software.
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2.4 Processing fluorescence signals for sequencing poly(A) tails

Ilumina sequencers produce quantized fluorescence signals in four channel multivariate
values. Although the signal intensities reflect the original sequence composition of tem-
plates, it is considerably affected by both systematic and random noises. The loss of clarity
in signal patterns becomes especially stronger for templates having low complexity like

poly(A) tails.

What do signals from poly(A) tail look like? How can they be recognized to measure
their length? First, cluster intensity signals from pilot runs of TAIL-seq were analyzed to
extract properties of signals that can be used in detection of poly(A) tails.* Then, hundreds
of clusters were manually inspected whether the original signal contain some clue. Many of
poly(A) spike-ins showed remarkable difference in former and later cycles of the designed
end of poly(T) stretch (few examples from Ag4 spike-in are shown in Figure 2.4). Although
the decrease of T signal intensity was relatively mild and slow, rise of the other signals (A,
C, or G) was significant near the borders (Figure 2.4). The transition was more visible for
shorter poly(A) spike-ins like A} and Az, yet it was detectable enough for longer poly(A)
spike-ins like Ajjg and Ajpg (Figure 2.5). Accordingly, I constructed a unified metric that

indicates the relative signal intensity to simplify further analyses:

S
Uc ¢, T

Zb:A,C,G SC,b

where U_ is a simplified metric for signal bias to T in cycle ¢, S, is the original signal
intensity of channel b for cycle c. However, the dynamic range of signal intensity of each
channel and cluster is differentiated by many factors: inconsistency of chemical environ-
ments by physical position of clusters in the flow cell; optical and image processing glitches
by cluster’s position in view of lens and image sensors; and nucleotide composition or
sequence-specific characteristics of cDNA templates. To relieve variability from these
factors, I exploited the degenerate bases located in the first twenty nucleotides as normaliza-

tion factors of the individual channels. The revised formula incorporating normalization

* All explorative trials of sequencing in the designing stages of TAIL-seq were prepared and performed by

Jaechul Lim.
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factors becomes:

Zf:ﬂR“ Sc,b
Ny = —cRe0?
R, -R,+1
SC p+ A
Fop = —=2t=2
&b Nh + A
A+F
T, = log, — ol
A+ Yb-ac6 Feb

where N, indicates the reference signal of channel b, R, and R are the first and last cycles
of degenerative bases in the I-based coordinate, F, ; is an individual signal normalized
by the reference for c-th cycle of channel b, A is a pseudo count number to avoid zero
division, and the final metric T, is called “relative T signal” hereafter. The random samples
of relative T signals from poly(A) spike-in samples show visually detectable edges near the

expected transition points (Figure 2.6).

2.5 Machine learning for detection of poly(A) tail lengths

The relative T signal described in the previous section provided enough information, which
simple heuristic method may give a satisfactory solution that matches to experienced
human recognition. However, it was not that easy due to variation changes of signals
across sequencing cycles. At the early cycles, transitions from T to non-T signals are very
steep (Figures 2.5 and 2.6). The signal drop after poly(T) stretch becomes weaker and
weaker as T stretch lengthens (Figures 2.5 and 2.6) due to sticky-T phenomenon (Whiteford

et al, 2009). In addition, the full signal transition takes much more number of cycles

in later cycles in read due to phasing and pre-phasing (Ledergerber & Dessimoz, 2011).

Missing data, spot noises, run-to-run variation, and dependency of signal distributions

on platforms® add more complexity on automated analysis of signals from poly(A) tails.

Lastly, A-rich regions near the 3’ end of 3" UTR can't be easily distinguished from poly(A)
tails using context-free algorithms. I describe the design and assessments of methods

based on several different approaches later in this section.

®HiSeq had more than four-fold wider dynamic range of MiSeq at similar signal-to-noise ratio in our

sequencing runs (data not shown).
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2.5.1 Homogeneous sampling for training set

Poly(A) spike-in samples are highly variable in quality of signals and purity over the
sequencing runs. What is the most concerning is variance of poly(A) length in the original
template itself. Both chemical synthesis (Hecker & Rill, 1998) and enzymatic amplification
(Schlotterer & Tautz, 1992) tend to produce shortened oligonucleotides. Our poly(A)
spike-ins showed the significant variability of length in long homopolymeric regions
(Figure 2.6). In addition, HiSeq often failed to sequence index reads with high quality
(data not shown), which makes samples mixed up. To minimize run-to-run variations and
enable automated machine learning of routine analyses, training data set had to be purified
before subsequent steps. In this study, I used an outlier filter based on robust Mahalanobis
distance implemented in the R mvoutlier package 1.9.9 (quan=0.5, alpha=0.025, applied
after fifteen-fold downsampling of relative T signals). As a result, majority of outliers was
filtered out (Figure 2.7), which is enough for providing homogeneous examples to learn

poly(T) to mRNA body transitions.

2.5.2 Methods for poly(A) length measurement

The overall design of expected procedure to poly(A) length measurement is to use relative
T signals to predict the original state of template sequence and measure the count of

consecutive poly(A) states (Figure 2.8).

Multivariate Gaussian mixture model

The junctions between poly(T) stretch and heterogenous sequences show steep change of
relative T signal in surrounding cycles (Figure 2.6). As the existence of poly(T) stretch
and its 3'-most position can be easily detected by sequence analysis, a model of relative
T signals near the junctions can reveal the most probable position of the transition. It is
first modeled as a multivariate Gaussian mixture model (GMM) of relative T signals from
several consecutive cycles. The parameters for the first trial were chosen with empirical

estimations from previous observations (Table 2.3). For the better modeling of the signal,
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Figure 2.7 Example of relative T signals of clusters which were used in training poly(A)

length measurement algorithms. Left panels indicate normalize T signals while right pan-

els are their internal Mahalanobis distance matrices. The random samples from original

poly(A) spike-ins are shown in top panels, the data after mvoutlier filtering with Maha-

lanobis distance are shown in bottom panels. Note that this example is from a pilot run

that adopted old design of poly(A) spike-in with 103 As.
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Table 2.3 The initial parameters of a Gaussian mixture model for relative T signals of
adjacent cycles around the end of poly(T) stretch. Positions are shown as intervals when

ten cycles for each side of the end are modeled in a window.

Positions | [0, 10) [10, 20)

Distribution 1 || N(L5, 1.5) x 0.95 | N(1.5, 1.5) x 0.25
Distribution 2 || N(-1, 1.5) x 0.05 | N(-1, 1.5) x 0.75

the initial parameters were optimized with the expectation-maximization (EM) algorithm
(Dempster et al., 1977) to maximize the product of maximum likelihood of outlier-filtered

training set prepared as described in Section 2.5.1.

Gaussian mixture hidden Markov model

The simple Gaussian mixture model cannot easily account the contextual characteristics
that poly(T) is a long continuous stretch and it does not appear once the cycle enters the
heterogenous region. Gaussian mixture hidden Markov model (GMHMM) can incorpo-
rate information of the entire trend into the detection of transition. Initially, the topology
of a GMHMM was designed with two states of poly(A) and non-poly(A), but later it was
extended to have four states because it appeared that long poly(A) tails required additional
transitive states to cover the longer mixed regions of phased and pre-phased templates
(data not shown). I trained the HMM in left-to-right topology (Figure 2.9) with empirical
initial parameters (Tables 2.4 and 2.5). The poly(A) spike-ins were sequenced and learned
to generate a model together with TAIL-seq libraries on every sequencing run to adapt to
variable signal characteristics. Then, the model parameters were optimized using Baum-
Welch algorithm with the implementation in the GHMM library (http://ghmm.org) (Table
2.6 and 2.7). Although the length of poly(A) tails were known to every poly(A) spike-in,
the optimization did not use any of the prior knowledge of expected transition positions
because length variability of poly(A) is already significant at the stage of sequencing. As
it would be simpler, more explicit, and more powerful for the model to account signal

transitions only, I separated considerations of the length variation from this stage. Length
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State 1
Poly(A) body

State 2
Poly(A) transitive

State 3
3’ UTR transitive

State 4
3’ UTR body

Figure 2.9 Topology of the hidden Markov model for learning poly(A) signals used in
this study.

Table 2.4 Initial parameters for transition probability matrix of GMHMM of poly(A)

signals. ‘S’ states indicate start or end states, which is inserted between examples to learn.

‘From\ToHl‘2‘3‘4‘S‘

0.94 | 0.03 | 0.01 | 0.01 | 0.01
0 05 | 04 | 0.08 | 0.02
0 0.6 | 0.38 | 0.02
0 0 0 0.95 | 0.05
0.95 | 0.01 | 0.01 | 0.03 0

N | W I~
o

33



Table 2.5 Initial parameters for emission probability distributions of GMHMM of poly(A)

signals. ‘S’ states indicate start or end states, which is inserted between examples to learn.

State Dist. 1 Dist. 1 Dist. 2 Dist. 2
weight weight
1 N(1.5,1.5) 0.95 N(-1,15) | 0.05
2 N(1.5,1.5) 0.75 N(-1,15) | 025
3 N(1.5,1.5) 0.5 N(-1,1.5) 0.5
4 N(1.5,1.5) 0.25 N(-1,1.5) 0.75
S || N(1000000,1) 1 - 0

Table 2.6 Example of optimized parameters for transition probability matrix of GMHMM
of poly(A) signals. The parameters were fitted to one of our pilot sequencing runs using

unsupervised Baum-Welch algorithm.

‘ From\To H 1 ‘ 2 ‘ 3 ‘ 4 ‘ S ‘
1 0.972 | 0.019 | 0.009 0 0
2 0 0.958 | 0.015 | 0.027 0
3 0 0 0.981 | 0.007 | 0.012
4 0 0 0 0.981 | 0.019
S 0.718 | 0.126 | 0.156 0 0

Table 2.7 Example of optimized parameters for emission probability distributions of
GMHMM of poly(A) signals. The parameters were fitted to one of our pilot sequencing

runs using unsupervised Baum-Welch algorithm.

State Dist. 1 Dist. 1 Dist. 2 Dist. 2
weight weight
1 N(5,0) 03973 N(3.72,0.7) | 0.6027
2 || N(1.77,0.73) | 09092 | N(3.59,0.83) | 0.0908
3 || N(106,256) | 02038 | N(-2.4,3.01) | 0.7962
4 N(-0.42,0.11) 0.3053 N(-0.84,0.48) 0.6947

S || N(1000000,1) 1 - 0
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calling for poly(A) tails was done with the standard Viterbi algorithm (Viterbi, 1967)
implemented in the GHMM library. Unlike an algorithm based on base calling (Ulitsky
etal, 2012), the newly developed method estimates length of poly(A) tails similar to the
expected length (Figure 2.10).

GMHMM-based method with crosstalk matrix

Due to innate overlap among emission spectra of fluorophores, raw signal intensity of each
channel interferes each other. In the current Illumina chemistry, the strongest interference
occurs for C from A and T from G (Ledergerber & Dessimoz, 2011). The phenomenon also
confirmed in our data (Figure 2.11, left panel). As the emission spectrum of G overlaps
with T, G-rich regions near poly(A) tails could hinder the exact measurement. In this
method, I replaced the original raw signals with orthogonalized signals from Illumina

OLB 1.19.4 (Figure 2.11, right panel).

Edge detection using the first or second derivatives

Edges with sharp gradient can be detected with the first or second derivatives. Most state-
of-art edge detectors, such as Canny edge detector and Prewitt operator (Canny, 1986;
Prewitt, 1970), use the first derivative of signal to emphasize the boundaries. When a cluster
undergo transition from poly(T) region to heterogenous sequences in body, the slope of
their relative T signal becomes significantly negative. Due to phasing and pre-phasing,
the gradient is much milder in longer poly(A) tails (Figure 2.6), but the spanning width
of the negative slope is longer for them. I adopted the Savitzky-Golay filter (Savitzky &
Golay, 1964) which is a popular tool to smoothen and differentiate a set of discrete data
points simultaneously. The first implementation of this approach finds the end of T stretch
by seeking the position where the first derivative of relative T signal is less than zero.
Due to pre-phasing and polymerase slippage, the first position where the first derivative
turns negative is usually earlier than expected. Therefore, a variant was implemented by
extending the T stretch region as long as the first derivate is negative. The relative T signals

from long poly(A) tails include substantial amount of noise. I added another variant that
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Figure 2.11 Signal crosstalk between different fluorophores. (left) Correlation between sig-
nals from T and the other bases. (right) Correlation between signals after orthogonalization

by Illumina OLB 1.19.4.

starts with the cycle where relative T signal is lower than a pre-defined threshold, and

extends the region as long as the second derivative is negative.

Benchmark

The seven approaches mentioned above were assessed by measuring poly(A) lengths for
poly(A) spike-ins. In despite of the variability of poly(A) length in the original molecules
themselves, an algorithm with better performance would produce more accurate length
consistently as designed. Table 2.8 shows representative descriptive metrics from the
benchmark. GMHMM without a crosstalk matrix was unanimously the best performer
for all poly(A) spike-ins (Table 2.8). Unexpectedly, deconvolution using the crosstalk
matrix (GMHMM 2 in Table 2.8) was less accurate than the original signal (GMHMM
I'in Table 2.8). It is not clear how the difference results this. The original signal may be
clear enough to be recognized by the model. The methods based on the simple Gaussian

mixture model (GMM I and GMM 2 in Table 2.8) performed remarkably worse than the
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approaches based on hidden Markov model. The short and long poly(A) tails could not
be modeled with a single simple model. The EM optimization with all kinds of poly(A)
spike-ins fitted the model to long poly(A) tails only (Table 2.8). Even with parameter
fitting to single type of poly(A) spike-ins, GMM was more inaccurate than GMHMM-
based methods (RMSE=1.536 for Ajs; RMSE=11.722 for Aj;3). Among the methods with
numerical differentiation (SG 1-3 in Table 2.8), the third version that adopts a static
threshold of starting position was the most precise. Even for the size of smoothing window
that performs best, the signals in poly(T) region was not stable enough for accurate
detection of the width of the region (Table 2.8). Hereon, the GMHMM with the original
signal (GMHMM 1) will be used for the measurement of poly(A) tails throughout this

thesis.

2.5.3 Combination of measurements and base calls

GMHMM-based measurement outperforms the methods using base calls (Figure 2.10).
Despite that, it is worthy to refer base calling because it is more accurate for short poly(A)
stretches (< 8 nt) (data not shown), and it gives more information on 3’ terminal nucleotidyl
additions like poly(A) uridylation (Rissland et al., 2007; Sement et al., 2013). I designed a
simple method that determines poly(A) length and 3’ terminal modifications from base
calls (Algorithm 2.1). In addition, a combined algorithm is developed to take benefits from
both of base calls and GMHMM-based length measurements (Algorithm 2.2). Indeed,
the all subsequent analyses are proceeded with the algorithm integrated base calls and

GMHMM with original signal (Algorithm 2.2).

2.6 Poly(A) tails of the mammalian transcriptome

TAIL-seq libraries from mouse fibroblast cell line NTH3T3 and human cervical cancer cell
line HeLa were sequenced and analyzed for in-depth analyses (29,610,077 and 21,794,337
reads, respectively, after filtering out PCR artifacts and rRNA reads).® The tags originate

®All data for NTH3T3 and HeLa cells except the miR-1 transfection experiment set used in this section are

derived from TAIL-seq libraries by Jaechul Lim.
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Algorithm 2.1 Procedure that determines poly(A) tail length and 3’ end modifications
from base calls. Scores were set as T=1, A/C/G=-10, and N=-5 in this study. Maximum

length of 3’ end modification (maxmod) was assigned as 20.

procedure LocatePolyA(seq, seqlen)
longest_i < longest_j « seqlen + 1
longest_length = -1

/* find the longest [i, j] with sum of score > @ */
for i « from @ to maxmod-1
scoresum « score of i-th base in seq

/* if longest interval was not found set it with 1-nt long intv */
if longest_length < 1 and scoresum > @ then

longest_length « 1

longest_i « longest_j « i
end if

/* try all possible end positions */
for j « from i+l to seqlen-1
add score of j-th base to scoresum

if scoresum > @ and j-i+1 > longest_length then
longest_i, longest_j « i, j
longest_length « j - i + 1
end if
end for

end for
if longest_length < @ then return with no polyA found

i, j « longest_i, longest_j

while i-th base = T and i < j, increase i by 1
while j-th base = T and i < j, decrease j by 1

return with polyA length of j-i+1, modification in [@, i) of seq

40

&)



Algorithm 2.2 Combined algorithm that determines poly(A) tail length and 3’ end modi-

fications.

procedure FindPolyAAndModification(seq, seqlen)
get basecall polyA length and mod. seq from LocatePolyA(seq, seqlen)

if basecall polyA length < 8 then

return basecall polyA length and mod. seq
else

calculate GMHMM polyA length

/* if GMHMM call short pA, it is more reasonable to ignore it */
if GMHMM polyA length < 8 then
return basecall polyA length and mod. seq
else
return GMHMM polyA length and basecall mod. seq
end if
end if

mainly from the 3’ parts of genes although we also find internal tags that reflect endonu-
cleolytic and exonucleolytic activities (Figure 2.12). I could measure the poly(A) length
of 4,176 mouse and 4,091 human genes supported by =30 poly(A)* tags. Among the
transcripts expressed by more than 50 copies per cell, 79.2% were detected with =30
poly(A)* tags in TAIL-seq (Figure 2.13). I compared our TAIL-seq data with previous
results generated by differential elution from oligo(dT) column which separates mRNAs
with short tails (<~30 nt) from those with long tails (Meijer et al., 2007) (>~30 nt) (Figure
2.14). Despite the differences between two methods, the long/short tail ratio correlates

significantly with our measurements (P=0.0024, Pearson’s correlation test; Figure 2.14).

Figure 2.15 presents an example of randomly chosen tags that match to the 3’ end
of the Trp53 mRNA, which encodes the p53 protein. Read 1 is used to identify the gene
while read 2 is used to sequence the poly(A) tail of heterogeneous lengths. Various types

of interesting information can be extracted from the TAIL-seq data.

2.6.1 Steady-state length distribution of poly(A) tails

I first examined the global distribution of poly(A) tail lengths. Overall, the distributions

are similar between two cell lines examined (Figure 2.16). When the mRNA tags with
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Figure 2.12 TAIL-seq tags are enriched near the annotated 3’ end of RNA. x-axis shows

the distance between the 5’ end of read 1 and the 3’ end of annotated transcripts.
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Figure 2.13 Sensitivity of TAIL-seq according to mRNA level in cell. Number of transcripts
that are represented with 30 or more poly(A)* tags are represented with red columns. The

mRNA copy number per cell is based on estimations by Schwanhdusser et al. (2011).
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Figure 2.16 Global distribution of poly(A) tail lengths of TAIL-seq tags.
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nucleotides. Box represents the first and third quartiles and the internal bar indicates the
median. Whiskers denote the lowest and highest values within 1.5 times the interquartile

range of the first and third quartiles, respectively.

poly(A) tails of 8-231 nt are plotted, the median lengths are 60 nt and 59 nt in NTH3T3
and HeLa, respectively. Poly(A) tails over 231 nt could not be counted further due to the
limited sequencing cycle but they account for only ~2 % of the total population. Poly(A)
tails shorter than 8 nt were excluded from the analyses because the estimation was less
accurate with such tags due to the ubiquity of short A stretches in the genome, particularly
near polyadenylation sites. Accordingly, poly(A)-free RNAs such as histone mRNAs and

decay intermediates were not included in this distribution analysis.

The tags derived from the same gene were clustered to calculate median poly(A) length
for each individual gene (4,176 mouse and 4,091 human genes). The distribution of median
poly(A) length was consistent over different abundance range of TAIL-seq tags (Figure
2.17). As expected, we found that poly(A) lengths vary widely among different genes
(mRNA species) (Figure 2.18). Some mRNA species carry poly(A) tails of ~20 nt while
others have long tails of ~100 nt. Based on these median poly(A) lengths for individual

genes, transcriptome-wide median length (median of medians) is estimated to be 61 nt
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Figure 2.18 Distribution of median poly(A) tail lengths of individual genes.

and 60 nt in NTH3T3 and HeLa cells, respectively. These values are significantly shorter
than what is generally conceived as typical poly(A) tail length in mammals (Elkon et al.,
2013). A newly transcribed transcript is known to receive a poly(A) tail of ~230 nt, but they
are thought to be gradually shortened by deadenylases PARN, the PAN2-PAN3 complex,
and the CCR4-NOT complex (Garneau et al., 2007). There are discrepancies over the
poly(A) length in earlier reports based on bulk poly(A)* RNA or individual genes, which
described poly(A) size as ~170 nt in mouse sarcoma polysomes, 100-160 nt in HeLa, and
50-70 nt in rabbit reticulocyte polysomes (Brawerman, 1974). But a recent study suggested
that many mammalian mRNAs might have tails of smaller than 30 nt (Meijer et al., 2007).
The current work offers an answer to this long-standing question by determining poly(A)

tail length at the transcriptome level.

2.6.2 Impact of poly(A) tails on gene expression

I next asked whether genes with distinct biological functions tend to differ in poly(A)
length distribution, by gene ontology analysis (Figure 2.19). Interestingly, genes associated
with regulatory functions such as transcription factors tend to have shorter tails than
those with relatively constitutive functions such as ribosomal subunits, which suggests

that poly(A) tail of regulatory genes may be under dynamic control.

To understand which step of gene expression poly(A) tail may influence, I first com-

pared the median poly(A) length of each gene with mRNA half-life that was estimated
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Figure 2.19 Functional categorization of genes with their median poly(A) tail lengths.
Four categories in the upper panel represent genes with relatively short poly(A) tails while

the lower four categories represent genes with longer tails.

previously by Schwanhéusser et al. (2011). Overall, there is a modest but significant corre-
lation between poly(A) tail length and mRNA half-life (P=2.83x10"°, Pearson’s correlation
test) (Figure 2.20). Thus, deadenylation and/or cytoplasmic polyadenylation may affect
mRNA stability, as previously shown (Dreyfus & Régnier, 2002; Norbury, 2013). Of note,
poly(A) tail length does not correlate significantly with steady state mRNA abundance, as
expected (Figure 2.21).

One of the major mechanisms of miRNA action is known to be deadenylation, which
had been proposed based on the studies of a few individual genes (Fabian et al., 2010;
Huntzinger & Izaurralde, 2011; Bazzini et al.,, 2012; Djuranovic et al., 2012). This model is
tested by examining the global effect of miRNA on poly(A) tail.” Synthetic miR-1 mimic
was transfected into HeLa cells and subsequently poly(A) length was measured by TAIL-
seq. Deadenylation of miR-1 targets was evident 6 hours post-transfection (Figure 2.22,
red dots). By 9 hours post-transfection, mRNA level was substantially downregulated,
indicating that the deadenylated RNAs were degraded. Consistent with the previous
studies, the data indicate that miRNA induce deadenylation of the majority, if not all, of

its targets.

I next compared poly(A) length with translation efficiency because it is generally
considered that long poly(A) tail is required for effective translation. Unexpectedly, how-

ever, poly(A) lengths do not show any meaningful correlation with protein synthesis rates

"The preparation of cells and sequencing libraries in this experimental set were performed by Minju Ha.
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Figure 2.22 Plots showing the changes of poly(A) tail lengths (x-axis) and number of
poly(A)* tags (y-axis) after transfection of miR-1. Targets of miR-1 (red dots) are chosen
from the list of mRNAs downregulated by more than 30% on 12 hr post-transfection in
Guo et al. (2010). Gray dots represent the rest of transcripts. Mean changes are shown in
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Figure 2.23 Correlation between median poly(A) tail length and translation rate in
NIH3T3, measured by Schwanhiusser et al. (2011), and HeLa cells, by Aviner et al. (2013).
mRNAs with more than 200 poly(A)* tags and with CDS length ranging from 900 to
2,400 nt were plotted, considering the limited labeling of small proteins in translation rate

measurement.

(measured by metabolic labeling and mass spectrometry and divided by mRNA abun-
dance) (Figure 2.23; P=0.893 for NTH3T3, P=0.449 for HeLa, Pearson’s correlation test).
Similarly, when I compared poly(A) length with ribosome density that was determined
by ribosomal footprinting (and divided by mRNA abundance) (Guo et al., 2010) (Figure
2.24), there was no detectable correlation, further supporting our conclusion. I did not
find any significant correlation even when I used, in place of poly(A) length, the ratio
between short and long poly(A) tails employing various lengths as a threshold (data not
shown). These results suggest that deadenylation per se may not be directly coupled with
translational suppression. It does not exclude a possibility, however, that deadenylation
may affect translation indirectly and that translation of a subpopulation of mRNAs may be
selectively affected by poly(A) length. Regulation of poly(A) tail may play a determining
role under specialized conditions such as in neural synapses and early embryos where
cytoplasmic polyadenylation is known to induce translation of dormant mRNAs with

short tails (D’Ambrogio et al., 2013).
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Figure 2.25 Uridylation frequency of mRNA.

2.7 Analysis of 3’ end modification of poly(A) tails

One of the unique strengths of TAIL-seq is its ability to determine the sequences of the
very end of RNA and to examine if there is any other sequences apart from simple poly(A)
stretches. While looking at the 3’ ends of mRNA reads,® T found unexpectedly widespread
uridylation in the downstream of poly(A) tail (Figures 2.15 and 2.25). This section describes
about the terminal modifications at the 3" end of poly(A) tails.

8 All data for NTH3T3 and HeLa cells are derived from TAIL-seq libraries by Jaechul Lim.
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2.71 Method for detection and filtering terminal modifications

As poly(A) tails were initially detected with a constraint that it must begin within the first
30 cycles, so the maximum detectable 3" end modification of poly(A) tails was limited to
the last 30 nucleotides of insert. To exclude A stretches obviously encoded from genomic
sequence (with or without 3’ end modifications), I masked detected poly(A) tail ranges
with read 2 alignments so that the 3'-most position of alignable (not clipped) is eliminated
from poly(A) tail or its 3' end modifications. All statistics regarding transcript-level
modification rates were calculated for transcripts having more than 200 tags with poly(A)

tails longer than 8 nt.

2.7.2 3’ Terminal uridylation of poly(A) tails

About half of mRNA species carry U-tails at more than 5% frequency; and ~80% of mRNA
species are uridylated at a frequency higher than 2% (Figure 2.25). I observed a comparable

pattern of uridylation in pilot experiments using a different 3’ adapter (data not shown).

Uridylation detected by TAIL-seq is reminiscent of the observations in fission yeast
and Arabidopsis where mRNAs bear short U tails (1-2 Us), as analyzed by circularized
RT-PCR (Rissland et al., 2007; Sement et al., 2013). Uridyl residues were found mainly on
decapped mRNAs which represent decay intermediates and, when the uridylyl transferase
(Cidl in fission yeast) was mutated, mRNA was stabilized (Rissland & Norbury, 2009).
These results collectively suggested that uridylation may be involved in mRNA decay in
yeasts and plants. In mammals, there are only two known cases of mRNA uridylation.
Histone mRNAs are oligo-uridylated, which is required for rapid decay at the end of S
phase (Mullen & Marzluff, 2008; Schmidt et al., 2011). Additionally, the 5" fragments
from small RNA-directed cleavage are also uridylated in mammals and plants (Shen &
Goodman, 2004). The current observation demonstrates that uridylation is much more
pervasive in mammals than previously anticipated and that mRNA uridylation may be an

integral part of a generic mRNA decay pathway that is conserved in all eukaryotes.

Itis particularly interesting that uridyl residues are found mainly in mRNAs with short
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Figure 2.26 Relationship between uridylation and poly(A) tail length. The density was

calculated with 2 nt wide bins, then smoothened with Hanning window (width=7).
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Figure 2.27 Correlation between uridylation frequency and mRNA half-life (Schwan-
hausser et al., 2011; Tani et al., 2012).

poly(A) tails (8-25 nt) (Figure 2.26). This phenomenon is similar to that in Arabidopsis
where short U (1-2 nt) is added to 10-20 nt poly(A) (Sement et al., 2013). It was proposed
that uridylation protects the 3’ end against further deadenylation and promotes decapping
and 5'-3" decay (Sement et al., 2013). In filamentous fungus Aspergillus nidulans, a mixture
of uridyl and cytidyl residues are added to short poly(A) tails (Morozov et al., 2012) (~15 nt).
Uridylation frequency shows a modest negative correlation with mRNA half-life (Figure
2.27), but not with mRNA abundance or translation rate (Figure 2.28). This is intriguing in
light of recent reports showing that an oligo-U tail of mRNA serves as a decay marker by

interacting with a 3'-5' exonuclease Dis3L2 in yeast and human (Lubas et al., 2013; Malecki
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Figure 2.28 Lack of strong correlation between uridylation frequency and mRNA abun-
dance (left) or translation rate (right) in NIH3T3 as measured by Schwanhiusser et al.

(2011). r values indicate Pearson correlation coefficients.

et al,, 2013) and by recruiting LSM1-7 complex and decapping enzymes (Mullen & Marzluff,
2008; Rissland & Norbury, 2009). In future studies, RNAi of uridylyl transferases and
nucleases can be combined with TAIL-seq, so as to elucidate the functional consequence

and mechanism of uridylation and decay.

2.7.3 3’ Terminal guanylation of poly(A) tails

In addition to uridylation, it was surprising to discover yet another type of modification,
that is, guanylation (Figure 2.29). About 20% of mRNA species are guanlylated at the
downstream of poly(A) tail at a frequency of higher than 5%; and over 60% of transcripts
show G-addition at more than 2% frequency (Figure 2.29). Guanylation was detected in
our initial experiments using a different 3’ adapter (data not shown). To my knowledge,
this is the first description of RNA 3’ guanylation although it was shown previously that
some non-canonical poly(A) polymerases can utilize GTP in vitro (Bai et al., 2011; Heo
et al,, 2012). In contrast to U tails, terminal G residues are found selectively on longer
poly(A) tails (>40 nt) (Figure 2.30). Cytidylation is considerably less frequent and does
not show any preference for poly(A) tail size. Mono-guanylation is the prevalent form

although the G residue is sometimes followed preferentially by C and subsequently by U
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Figure 2.29 Guanylation frequency of mRNA.
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Figure 2.30 Relationship between guanylation and poly(A) tail length. The density was

calculated with 2 nt wide bins, then smoothened with Hanning window (width=7).
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Figure 2.32 Scatter plots showing the correlation between guanylation frequency and

mRNA half-life (Schwanhiusser et al., 2011; Tani et al., 2012).

(Figure 2.31). Because deadenylases PARN and CCR4 are known to have a preference for

terminal di-adenosines (Henriksson et al., 2010; Viswanathan et al., 2003) (AA), one can

envision that the G addition may block deadenylation to protect mRNAs with long poly(A)

tail. T indeed detect a modest positive correlation between guanylation frequency and

mRNA half-life (Figure 2.32), but none between guanylation and mRNA level or translation

rate (Figure 2.33). Although it would be too early to draw a conclusion, it is tempting

to speculate that guanylation may stabilize mRNAs by antagonizing deadenylation. Not

mutually exclusively, it is also plausible that G-tailed mRNAs may represent a specific

subcellular location and/or a phase of mRNA life cycle.

56



4+ 51
5 0§ - : r=0.145 3w r=-0.100
g% O 34 © %: N
5 = [0} b
€38 1 ST 2 34 =
33 > _ * L = E .3 - 4 3¢ T
o O @® 2 b - EBN M °
o 0 < 3 ® =€ 2- NS
<9§ ] oV S2a :
Z E= - =0 3
£—=Z2 11 . Fo§ 44
E & Ean
0- 0-l T T T T T T 1
0 1 2 3 4 5 6 7 0 1 2 383 4 5 6 7
Guanylation frequency (%) Guanylation frequency (%)

Figure 2.33 Lack of strong correlation between guanylation frequency and mRNA abun-
dance (left) or translation rate (right) in NIH3T3 as measured by Schwanhiusser et al.

(2011). r values indicate Pearson correlation coeflicients.

2.8 Detection of cleavage and polyadenylation sites

Using TAIL-seq data,’ I could map the poly(A) sites although this was not our primary
goal and the depth was lower compared to the other specialized tools developed previously
(Beck et al., 2010; Mangone et al., 2010; Ozsolak et al., 2010; Yoon & Brem, 2010; Fu et al.,
2011; Jan et al., 2011; Shepard et al., 2011; Derti et al., 2012; Martin et al., 2012; Hoque et al.,
2013; Wilkening et al., 2013). In this section, I describe the unique potential of TAIL-seq
that could not provided by the existing high-throughput methods for 3" UTR mapping.

2.8.1 Method for polyadenylation site detection

I first selected poly(A)* tags with 12-20 nt poly(A) tails. The read 2 mappings in paired
alignment were processed to remove the unmappable 3’ end modifications including
poly(A) tails. Then, I surveyed the 3’ end frequency of genome-mappable spans from
the trimmed alignments for all exonic positions of a transcript with 1,000 nt extension
to downstream of the annotated 3’ end in RefSeq. The position with the most reads was

chosen for the major polyadenylation site. When multiple positions have the same number

® All data for NTH3T?3 and HeLa cells are derived from TAIL-seq libraries by Jaechul Lim.
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Figure 2.34 Position of the poly(A) site identified by TAIL-seq, against the RefSeq annota-

tion.

of reads, the 3'-most one was selected. I used the major polyadenylation sites supported

by more than 5 reads.

2.8.2 Differential poly(A) tail lengths for alternative polyadenylation sites

When compared with the annotated poly(A) sites in RefSeq, the sites detected from our
sequencing are significantly enriched at the annotated sites (Figure 2.34). Of note, the 3’
ends detected by TAIL-seq fall predominantly at the upstream of the annotated sites rather
than the downstream. The upstream sites may correspond to alternative polyadenylation
sites, considering that RefSeq often annotates the most distal sites (Pruitt et al., 2012). The
sequences surrounding the detected poly(A) sites show characteristic features of known
poly(A) sites (Figure 2.35), including the polyadenylation signal (PAS, AAUAAA and
its variants), the U-rich upstream sequence element (USE) and downstream sequence
element (DSE), indicating that TAIL-seq detects poly(A) sites accurately. I could also
detect alternative polyadenylation (APA) in some genes (Figure 2.36). Notably, certain
isoforms differ significantly in their poly(A) length and modification frequency, which is
consistent with the notion that APA fundamentally influences mRNA fates (Elkon et al.,
2013). For instance, I detected two alternatively processed isoforms from Bclafl gene:

one with small 3’ UTR carries a long poly(A) tail and relatively frequent guanylation
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Figure 2.35 Nucleotide composition of genomic sequences near the detected poly(A) sites.
Sequence motifs such as PAS, USE, and DSE are enriched as shown previously (Beck et al.,
2010; Mangone et al., 2010; Ozsolak et al., 2010; Yoon & Brem, 2010; Fu et al., 2011; Jan
et al., 2011; Shepard et al., 2011; Derti et al., 2012; Martin et al., 2012; Hoque et al., 2013;
Wilkening et al., 2013).
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Figure 2.36 Simultaneous detection of alternative poly(A) sites and their tail structures.
A, refers to the median length of poly(A) tail. Poly(A) tail length distributions are counted

in 20-nt wide bins, then shown after cubic spline interpolation.
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while another isoform with extended 3" UTR holds a shorter poly(A) tail with frequent

uridylation.

2.9 Detection of RNA 3’ hydroxyl ends

Another line of valuable applications of TAIL-seq is to identify the substrates of specific
ribonucleases.’® Endonucleolytic cleavage sites are particularly interesting as they are
involved in maturation of many important classes of RNA. This section describes the

method and biological findings in search of RNA 3’ hydroxyl ends in the cell.

2.9.1 Methods for 3’ end detection

To find specifically enriched 3’ ends from TAIL-seq, we first calculated the frequency
of mapped 3’ ends for all positions in the genome. I compared the number of 3" ends
mapped to a specific position (hotspot count, position 0) with the number of 3’ ends
mapped to nearby positions within [-50, -2] and [2, 50] (flanking count) for all positions
with positive number of 3" ends. The list of detected 3" hydroxyl ends were generated for
all ends with no less than 10 hotspot tags as well as the number of hotspot tags are at least
twice of flanking tags. The statistical significance of a specific hotspot was calculated using
a binomial distribution (p= 9% which is a probability when the 3’ ends are positions without
preference; n=all 3’ ends mapped to hotspot and flanking region). The p-values from the
distribution were adjusted for multiple testing by Bonferroni correction (n=the total length
of genome). While the statistical significance was indicated in figures with asterisks and
used for genomic source composition analyses, I did not limit the 3’ ends by the statistical
significance in sequence motif to avoid sampling bias to highly abundant RNAs. The
distance from the closest annotated 3’ ends were calculated against a union of all 3’ ends
in NCBI RefSeq transcripts (Pruitt et al., 2012), UCSC known genes (Kuhn et al., 2013),
ENSEMBL transcripts (Flicek et al., 2011), miRBase DROSHA cleavage sites (Kozomara

1 All data for NTH3T3 and HeLa cells used in this section are derived from TAIL-seq libraries by Jaechul

Lim.
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Figure 2.38 Distribution of detected 3’ ends around the nearest known 3’ ends.

& Griffiths-Jones, 2011), gtRNAdb (Chan & Lowe, 2009) and NCBI RefSeq orthologous

transcripts from other organisms (called xenoRefSeq in UCSC Genome Browser).

2.9.2 Comparison to the known 3’ ends in transcriptome

I find hundreds of sites from our library, which match to the 3’ ends of transcript sequences
in databases. They belong to several distinct classes (Figure 2.37), including coding se-
quence (CDS), 3" UTR, intron, and primary microRNA (pri-miRNA). Many of these
were found almost exactly matching at the known 3’ end annotations (Figure 2.38). The
confirming findings are mostly came from snoRNAs and histone mRNAs, however many
of the rest were located in the middle of known transcripts (Figure 2.39). This may suggest
transcriptome-wide evidences of endonucleolytic cleavage events. A notable class of such
mechanism is pri-miRNA processing sites. I detected 45 sites in NIH3T3 and 22 sites in
HeLa (Figure 2.39), which match precisely to the known DROSHA cleavage sites (Figure
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Figure 2.40 Frequency of detected 3’ hydroxyl ends near DROSHA cleavage sites (5" end
of pre- miRNAs).

2.40). Figure 2.41 shows the miR-17~92 cluster as an example, where all six processing
sites are detected by TAIL-seq. It is interesting that the 5’ fragments from DROSHA
processing retain intact 3’ ends, suggesting that they may be relatively resistant to 3'-5'
trimming activities. Given that DGCRS interacts with the basal part of the pri-miRNA
hairpin (Han et al., 2006), it is plausible that DGCRS8 remains bound to the 5" product
after cleavage reaction. The result suggests that TAIL-seq can be used to map the 5' border
of pre-miRNA even when mature miRNA from the 5p strand is not detected in small RNA
sequencing (for instance, mmu-mir-29c, mmu-mir-496a, and hsa-mir-24-1). I can also
identify pri-miRNAs that are alternatively processed by DROSHA at more than one site
(mmu-mir-214). Alternative DROSHA processing is interesting as it yields multiple mature
miRNAs with different targeting activities. Additionally, because it has been proposed that
DROSHA may have additional substrates apart from pri-miRNAs, it will be interesting to
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Figure 2.41 (Top) Schematic illustration of DROSHA processing of pri-miRNA, generating
a5’ fragment (red line) that is detected by TAIL-seq. (Bottom) A histogram showing the
tags from the miR-17~92 cluster in HeLa cells. Light blue area shows the accumulated
coverage of the 3'-most 40 nucleotides of inserts while red bars indicate the frequency of
the 3" ends of the tags in log scale. Red asterisks mark statistically significant positions

(Bonferroni-corrected p-value < 0.05).

search for unknown targets of DROSHA by using TAIL-seq.

2.9.3 Newly discovered 3’ ends

Lastly, I searched for putative nucleolytic sites that may be important for mRNA stability
control. In this respect, TAIL-seq is complementary to previous degradome studies which
mapped the 5" end of RNA fragments containing 5’ phosphate and poly(A) tail (Addo-
Quaye et al., 2008; German et al., 2008; Karginov et al., 2010; Shin et al., 2010). I found
95 and 102 internal sites in NIH3T3 and HeLa, respectively, from mRNA exons which
may be potentially involved in mRNA destabilization through endonucleolytic cleavage
(Figure 2.39). Figure 2.42 shows such examples where the 3" ends of multiple tags come
from a discrete position, indicative of specific endonucleolytic cleavage or stalled 3'-5'
exonucleolytic activity. Intriguingly, when we searched for a consensus sequence motif
from such sites, we detected a trinucleotide motif enriched immediately upstream of the
putative cleavage sites (Figure 2.43) that is composed of R (favoring A) - Y (U/C) - H
(avoiding G), with the most frequent motif being ‘AUU’. To our knowledge, no 3'-5
exonuclease is known to stall at a specific trinucleotide motif. Furthermore, we did not

detect any significant secondary structure in the vicinity of the putative sites (data not
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Figure 2.43 Sequence logos showing enriched motif near the putative cleavage sites found

in mRNA exons. Position 0 in x-axis indicates the 3" end of the tag.

shown), which may block the progression of an exonuclease, suggesting that these sites
may be targeted by a specific endonuclease. It awaits further investigation as to which
factor(s) recognizes this motif and if the factor(s) constitutes a novel pathway for nRNA

stability control.

2.10 Discussion

TAIL-seq is the first method that allows global survey of poly(A) length and 3" end mod-

1 aimed to be as

ification of mRNA. In designing the current version of TAIL-seq, we'
comprehensive as possible, which allowed us to discover many new exciting features such
as differential poly(A) length control, uridylation, guanylation, and RNA cleavage. There
is ample information in TAIL-seq datasets, which remains to be analyzed in future studies.
For instance, TAIL-seq determines the 3" ends of histone mRNAs, post-splicing introns,
and various types of noncoding RNAs, which will be interesting subjects to investigate.
Because the current version of TAIL-seq covers many classes of RNAs and many different
types of modification, it is inevitable that TAIL cannot provide sufficient depth to all
the detected features. To study particular types of 3’ ends in greater depth at lower cost,
the technology will need to be modified further so as to generate more focused libraries.
TAIL-seq is indeed a highly amenable technology that can be modified easily. For instance,

one can change the range of size fractionation and/or use RNA extracted from subcellular

fractions and immunoprecipitates to enrich for a selective class of RNA.

""The current study is designed and performed in collaboration with Jaechul Lim and Prof. V. Narry Kim.
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This study raises numerous open questions. It will be of great interest to identify the
protein factors involved in each processing and modification discovered in this study, and
to understand their mechanisms and functions. To this end, TAIL-seq, combined with
systematic RNAi, will serve as a valuable tool. TAIL-seq will also be useful to solve various
general issues regarding the relative dynamics of mRNA deadenylation, translation, and
decay. In addition, one can examine RNA terminal modifications in diverse physiological
and pathological contexts, such as in neural synapse, late oogenesis, early embryogenesis,
cellular senescence and inflammation where dynamic control of cytoplasmic polyadenyla-
tion is known to play a critical role. The TAIL-seq protocol can be applied to any species
and cell types with minor modifications, which will greatly expand the initial observations

made in this study.
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3. Analysis of RNA-protein interactions by
high-throughput sequencing

3.1 Background

Since the introduction of the HITS-CLIP (also known as CLIP-seq)! technique by Licatalosi
etal. (2008), it has become one of the most favored methods to gain the transcriptome-wide
view of in vivo RNA-protein interactions. For the preparation of a CLIP-seq sequencing
library, RNA and protein are crosslinked by ultraviolet light in the cell, then the RNA-
protein complex is immunopurified following RNase digestion (Licatalosi et al., 2008).
The protein portion of the purified complexes is removed by treating non-specific protease
so that remaining RNA can be converted to DNA and sequenced in a high-throughput

sequencer.

There are variations of the technique called PAR-CLIP and iCLIP. The former uses
photo-activatable ribonucleotides such as 4-thiouridine (4SU) or 6-thioguanosine (65G)
under 360 nm UV-A instead of 253 nm UV-C light (Hafner et al., 2010) (Figure 3.1). The
another variation called iCLIP delays 5 adapter ligation to RNA to follow after reverse-
transcription so that footprints from incompletely reverse-transcribed cDNAs by physical
interference of residual peptide on RNA are captured in the library (Konig et al., 2010)
(Figure 3.2).

Notwithstanding that almost a hundred of studies using any CLIP technique have
been published thus far, there is no established standard workflow for the analysis of its

data. Nearly every study that utilizes a CLIP-seq technique has designed its own analytic

"Both HITS-CLIP and CLIP-seq are widely used to describe the identical technology with comparable
frequency at the time of writing. In this thesis, I will use CLIP-seq as an umbrella term that includes HITS-CLIP

and its all variants.
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Figure 3.1 Crosslinking strategy of three CLIP techniques. HITS-CLIP and iCLIP use 253
nm UV light without nonnatural nucleic acid replacements. PAR-CLIP requires cell culture
with 4SU or 6SG before 360 nm UV irradiation. Unlike the other variants, PAR-CLIP has

limited crosslinking repertoire to U or G depending on the culture medium.
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Figure 3.2 Detection strategy of three CLIP techniques. HITS-CLIP and PAR-CLIP use
both tag enrichment level compared to RNA-seq or neighboring positions, and sequence
changes accumulated in narrow region of reads. iCLIP detects the accumulated 5’ ends,

which are assumed as result of premature termination of reverse-transcription.
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methods. In this chapter, I provide an analysis toolchain generally applicable to wide range
of HITS-CLIP or PAR-CLIP experiments.? Then, I compare dozens of publicly available
CLIP-seq datasets and show the results from meta analyses, for the first time for CLIP-seq

experiments.

3.2 Reference data preparation

For the generalization of data processing and analyses, data from eighty experiments in
twenty studies were downloaded from NCBI Sequence Read Archive (SRA) or NCBI
Gene Expression Omnibus (GEO) (Table 3.1). The list covers diverse scope of RNA-
binding proteins including splicing factors, cleavage and polyadenylation factors, post-
transcriptional processors, and translational regulators. It also includes several experiments

from PAR-CLIP to compare the different crosslinking techniques.

3.2.1 Sequence processing and alignment

The first few steps in sequence analysis were done by using Assaf Gordon’s FASTX-Toolkit
(http://hannonlab.cshl.edu/fastx_toolkit/). First, the 3 adapter sequences were removed
from reads by using fastx_clipper. The rest was trimmed from the 3’ end so that the remain-
ing reads have Phred quality of 25 or higher. After clipping and trimming, reads of 20 nt or
longer were collapsed to generate a set of unique sequences. The sequences were aligned
to abundant contaminant sequences (Illumina adapter/primer sequences and ribosomal
DNA complete repeating unit, GenBank accession BK000964.1 for mouse and U13369.1
for human) with GSNAP version 2013-03-31 (Wu & Nacu, 2010) with 10% mismatch rate.
Filtered reads that do not match to any contaminant and have sufficient sequence complex-
ity (Shannon entropy, at least 0.7 for mononucleotide, 1.5 for dinucleotide) were aligned
to the UCSC Genome Browser hgl9 (human) or mmI0 (mouse) genome assembly with

GSNAP version 2013-03-31 (Wu & Nacu, 2010) with options of 10% mismatch rate, no

*The software written for this study is released under the MIT license on a github repository

(http://github.com/hyeshik/ecliptic).
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Table 3.1List of publicly available datasets used in this study. The accession number starting
with “SRA” was downloaded from NCBI Sequence Reads Archive (SRA) (Wheeler et al.,
2008), and “GSE” accessions were downloaded from NCBI Gene Expression Omnibus
(GEO) (Barrett et al., 2013). When additional RNA-seq libraries are available in the
experiment set, they are indicated with st (no treatment), ct! (control treatment), kd

(knock-down), or exp (over-expressed). More rows are followed in the next page.

’ Accession H Protein(s) Source RNA-seq Technology Reference
SRP002550 NOVA mouse brain none HITS-CLIP Licatalosi et al.
(2008)
GSE19323 PTB HEK293T none HITS-CLIP Xue et al. (2009)
GSE21918 IGF2BP], HEK293 none PAR-CLIP Hafner et al.
IGF2BP2, (2010)

IGF2BP3, PUM2,
QKI, AGOL,
AGO2, AGO3,
AGO4, TNRC6A,

TNRC6B,
TNRC6C
GSE23694 HNRNPH HEK293T none HITS-CLIP Katz et al. (2010)
GSE34491 HNRNPU HeLa ctl, kd HITS-CLIP Xiao et al. (2012)
GSE35800 HNRPA2B1 MDA-MB- none HITS-CLIP Goodarzi et al.
231 (2012)
GSE36987 PAPD5 HEK293 none PAR-CLIP Rammelt et al.
(2011)
GSE37114 LIN28A mESC nt, ctl, kd HITS-CLIP Cho et al. (2012)
GSE37524 MOV10 HEK293 nt PAR-CLIP Sievers et al.
(2012)
GSE37685 CIRP NIH3T3 ctl, kd HITS-CLIP Morf et al. (2012)
GSE39086 DGCRS HEK293T none HITS-CLIP Macias et al.
(2012)
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Table 3.1 (continued from the previous page)

‘ Accession ‘ ‘ Protein(s) Source RNA-seq Technology Reference
GSE39686 FMRI, FXRI, HEK293- nt PAR-CLIP Ascano et al.
FXR2 derived (2012)
GSE39872 LIN28A H9, HEK293- nt, ctl, kd HITS-CLIP Wilbert et al.
derived (2012)
GSE39911 MBNL mouse brain, ctl, kd HITS-CLIP Wang et al. (2012)
C2C12
GSE40651 mTDP43, mouse brain, ctl, kd HITS-CLIP Lagier-Tourenne
mFUS/TLS, human brain et al. (2012)
hFUS/TLS
GSE40778 eIF4ATII HeLa none HITS-CLIP Sauliére et al.
(2012)
GSE42398 CSTF64 C2C12 none HITS-CLIP Hoque et al.
(2013)
GSE42701 PTB, AGO2 HeLa none HITS-CLIP Xue et al. (2013)
GSE44616 LIN28B HEK?293 ctl, exp, kd PAR-CLIP Hafner et al.
(2013)
GSE45148 FMRP mouse brain none HITS-CLIP Darnell et al.
(201)
71




terminal clipping, and splice site annotations from RefSeq (downloaded from the UCSC
Genome Browser on Jan 24, 2013). When an RNA-seq library from the same source is
available from the dataset, the sequence alignments from RNA-seq were processed to call
single nucleotide polymorphisms (SNPs) with samtools 0.1.19 (Li et al., 2009) (minimum
depth=20, substitution mutation rate=0.001, adjusted p-value cutoff=0.01). Since muta-
tions from UV irradiation is indispensable from CLIP experiments, it is preferable to have
variant-aware alignments to increase sensitivity near protein interacting sequences, where
more mutations are accumulated, and reduce false positives from background variants
from tissue or cell line themselves. The sequence reads with related SNP data were aligned
with variant-aware indices built with gmap snpindex (Wu & Nacu, 2010). Finally, the
alignment results were filtered to leave only the single best hit with minimum edit distance
(up to two edits) to obtain a set of single-hit reads. Those with multiple best hits were

ignored as repetitive sequences.

3.2.2 Sequence annotation and classification

The alignments were annotated with RefSeq (Pruitt et al., 2012), RepeatMasker, miR-
Base release 18 (Griffiths-Jones, 2010), Rfam (Burge et al., 2013), and GtRNAdb (Chan &
Lowe, 2009) by using intersectBed of BEDTools (Quinlan & Hall, 2010). A representative
class for a given read was determined as the first matching class from all annotations for
all alignments for the read in the following priority: miRNA, rRNA, tRNA, Mt-tRNA,
snoRNA, scRNA, srpRNA, snRNA, RNA, ncRNA, misc_RNA, Cis-reg, ribozyme, RC,
IRES, frameshift_element, LINE, SINE, Simple_repeat, Low_complexity, Satellite, DNA,
LTR, CDS, 3’ UTR, 5" UTR, intron, Other, Unknown. The annotated representative classes
were combined with read counts of previously removed sequences in the first contaminant
filtration, and used for CLIP tag classification statistics. For subsequent analyses, the
reads classified as rRNA or tRNA were excluded and the rest was used. The alignments
for filtered reads were converted to bam format and visualized with the UCSC Genome
Browser. The non-redundant RefSeq transcription set was constructed by the identical

procedure described in Section 2.3.3.
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3.3 Binding site detection

Identification of binding sites is usually required before any further analysis of CLIP data.
Peak calling of mapped CLIP tags in RNA was used in earlier studies (Licatalosi et al., 2008;
Chi et al,, 2009). PAR-CLIP and iCLIP can identify RNA-protein interactions in single
nucleotide resolution by using T to C transitions and clustered 5" end positions thanks
to biochemical characteristics of their libraries (Hafner et al., 2010; Konig et al., 2010).
This also became possible for HITS-CLIP libraries by crosslinking-induced mutation sites
(CIMS) introduced by Zhang & Darnell (2011).

When the list of confident binding sites is prepared, discovery of cis-regulatory element
or the protein’s substrate specificity is a unique benefit of the high resolution of CLIP
techniques. The enriched sequence motifs can be easily visualized by simple sequence logo
analyses (Crooks et al., 2004; O’Shea et al., 2013) where binding sites were identified in the
single nucleotide resolution. Otherwise, statistical overrepresentation of sequences can be
used to identify the recognized motif of a protein (Yeo et al., 2009). This section introduces
new metrics developed for RNA-protein interactions inducing more substitution errors

than deletion errors, and shows how the metrics can be applied to array of proteins.

3.3.1 Metrics for crosslinking-induced errors

Although substitution errors’

are once described near RNA-protein binding sites after UV
crosslinking and reverse-transcription (Granneman et al., 2009). So far, the only systematic
effort to use the accumulated errors in sequence alignments was made by Zhang & Darnell
(2011) for deletion errors on Argonaute proteins and NOVA. In my recent study for LIN28A
with Jun Cho (Cho et al., 2012), I found that the protein makes more substitutions than

deletions like Nop58 does in S. cerevisiae (Granneman et al., 2009). In addition to the

*The original term mutation used by Kishore et al. (2011) and Zhang & Darnell (2011) may confuse readers
to understand that the RNA-protein interactions induce inheritable sequence replication errors. Since the
mutations are artifacts from UV irradiation during CLIP experiments, I will use errors instead with a sense
that any mismatch between the reference and sequence reads such as substitution (modification), insertion,

or deletion.
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previous existing metric, deletion rate, I included more metrics into the regular analysis of
crosslinking-induced errors: substitution rate, insertion rate, and substitution and deletion

rate.

As a matter of fact, the simple metrics have common false positives coming from
background sequence variations. Zhang & Darnell (2011) avoided the problem by ignoring
positions with deletion rates higher than 0.9. The workaround is simple and powerful for
many cases although it cannot handle heterozygous SNPs. It becomes more problematic
in studies using cancer cell lines because they often carry aneuploidy and allele frequency
ratio can be virtually any number. Fortunately, RNA-protein interactions often induce
substitution errors in non-uniform type of nucleotide changes. Unlike the RNAs including
SNPs, which usually have only two types of nucleotides in a site, crosslinking-induced
errors generally induce all three types of substitutions and deletions (Figure 3.3). To use
this additional information, I introduced Shannon entropy (Shannon, 1948) as a metric

for SNP-proof detection of crosslinking-induced errors:

C= _ZPnIngpn

where C is the crosslinking-induced error score and # is any type of nucleotide including

D for deletion.

3.3.2 Error characteristics of different RNA-binding proteins

An earlier study revealed that type of crosslinking-induced errors are different from protein
to protein even when the experimental conditions are the same (Granneman et al., 2009).
NOVA and Argonautes in mouse (Zhang & Darnell, 2011), Nopl and Nop56 in S. cerevisiae
(Granneman et al., 2009), and hnRNP C in human (Sugimoto et al., 2012) are known to
induce deletion errors by UV crosslinking more often than in RNA-seq. On the contrary,
crosslinking-induced errors by mouse LIN28A is more biased into substitutions (Figure
3.4). Nop58 in S. cerevisiae (Granneman et al., 2009) and HuR in human (Kishore et al.,

2011) follow the rank of substitution-favoring mode of interactions.

In my meta analysis, most CLIP experiments including both HITS-CLIP and PAR-
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Figure 3.3 Sequences from a set of HITS-CLIP libraries showing chaotic substitution and
deletion errors near expected binding sites (Mirlet7g locus from Cho et al. (2012)). The
previously known binding site of the protein, the GGAG motif in the terminal loop of
precursor let-7g, is marked with a red box. Each unique sequence is represented by a black
horizontal bar with the number of reads indicated on the left. Mismatched sequences are
shown in white letters. UV crosslinking frequency is quantified by using Shannon entropy
and is shown at the bottom with blue bars. Less frequent tags (<7 reads) are omitted to

improve visibility.
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Figure 3.4 LIN28A example of error frequency profiles as a function of position along
the CLIP tags (Cho et al., 2012). Position within the tag was partitioned into 20 bins with
the 5’ end of the reads as the leftmost bin (x-axis). To avoid underestimation of errors at
both ends, I replaced the sequences removed by terminal soft clippings with the original
sequences obtained from sequencing. In the case of insertion errors, I assumed that the

errors occur only at the left-side of a given base.
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Figure 3.5 Frequencies of substitution and deletion errors in RNA-seq, HITS-CLIP, and
PAR-CLIP libraries.

CLIP showed not only deletion errors but also substitution errors (Figure 3.5). PAR-CLIP
generally induced more substitutions as expected (T to C transition), however few HITS-
CLIP libraries induced more substitutions than those of PAR-CLIP (Figure 3.5). These were
DGCRS, PAPD5 (also known as TRF4-2), and PTB proteins, however it was hard to find
the shared factors that distinguishes them from the others. As the meta dataset have several
libraries that shares some features, I compared them by contrasting differences (Figures 3.6,
3.7,and 3.8). Presumably, it is confirmed that even if CLIP experiments performed together
in a study, the tendency of making substitutions or deletions are unique to the identity of
protein (Figure 3.6). Moreover, the substitution preference of a protein was similar in spite
of that experiments were performed in different species by different investigators (Figure
3.7). There were, however, significant experimental variances among replicates by same

investigators when experimental procedure is changed (Figure 3.8).

3.3.3 Statistical analysis of crosslinking-induced errors
Systematic downstream analyses requires statistical significance of detected binding sites.

RNA-seq and CLIP libraries are heavily biased by different experimental artifacts. For

example, RNA fragmentation is generally known for inducing strong biases under the
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Figure 3.6 Frequencies of substitution and deletion errors alternatively colored to contrast

different samples in an experiment by Darnell et al. (2011).
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Figure 3.7 Frequencies of substitution and deletion errors alternatively colored to contrast
independent trials for a homologous protein in different species by different investigator
(Cho et al. (2012) in mouse embryonic stem cells and Wilbert et al. (2012) in human

embryonic stem cells).
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Figure 3.8 Frequencies of substitution and deletion errors alternatively colored to contrast

different trials for same protein and cells by same investigators (Xue et al., 2009, 2013).

effects from RNA secondary structure and sequence composition (Roberts et al., 2011).
However, the fragmentation bias in CLIP-seq is totally different from RNA-seq’s because
RNA-protein complex maintains characteristic molecular structure in solution while
RNAs are free from proteins in RNA-seq. Moreover, it is extremely hard to estimate
background distribution from neighboring positions in CLIP-seq due to the dispersed
nature of most RNA-protein interactions and broad range of mRNA expression levels.
Lack of appropriate controls makes harder to model the statistical background distribution

of the crosslinking-induced error metrics.

Zhang & Darnell (2011) developed a method for permutation-based estimation of
statistical significance of binding sites, called crosslinking-induced mutation sites (CIMS).
It estimates the background distribution of deletion rates by switching the deleted bases
with randomly chosen base of the same position in read and reference nucleotide in
genomic sequence in the other sequence reads (Zhang & Darnell, 2011). While maintaining
the basic ideas, I reformed the algorithm for improved scalability and better statistical
performance (Algorithms 3.1 and 3.2). Its optimized implementation is included in the
toolchain supplementary to this chapter.* With the new algorithm and implementation, I

evaluated the new metrics introduced in the previous section using HITS-CLIP data for

*All codes for this implementation are available from https://github.com/hyeshik/ecliptic.
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Algorithm 3.1 Simplified procedure of one iteration for permutation-based background
distribution estimation of crosslinking-induced error metrics. Actual implementation
uses slightly altered order for multi-threading, and uses splay tree (Sleator & Tarjan, 1985)

for results lists for the optimized use of memory.

procedure PermutateOnce(readseqs)
readqueues < an empty queue for each base (A, C, G, T, D)
results « an empty list for each base and read depth levels

for every sequence in readsegs,
for every base in sequence,
append base in read to readqueues[reference base]

for every queue in readqueues,
shuffle the queue with Fisher-Yates shuffling

for every unique alignment in readsegs,
for i « from @ to length of reference of the alignment,
readcount « five zeros (for A, C, G, T, D)
for j « from @ to number of duplicated reads of the alignment,
r « pop an element from readqueues[reference base][i]
increase readcount[r] by 1
end for

value « calculate a metric with the readcount
append value to results[reference base, depth]
end for
end for

return results
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Algorithm 3.2 Simplified procedure for setting cutoft that meets given level of FDR.

procedure SetCutoffForFDR(real values, permutated values, fdr)
sort real values in descending order
sort permutated values in descending order

match 1 by 1 to perfectly align real values and permutated values
by adding zeros to either lists

real_cum < get cumulative array of real values
permutated_cum < get cumulative array of permutated values

valid_cutoff < not a number

for every element in real_cum and permutated_cum,
if real or permutated count is zero,
continue to next set of elements /* zero division */

fdr_calculated « permutated cumulative count in fraction,
divided by real cumulative count in fraction

/* update valid_cutoff to lower value when satisfy the fdr */
if fdr_calculated < fdr,
valid_cutoff « cutoff value for the current element
end for

return valid_cutoff
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Table 3.2 Results from the assessment for detection performance of various crosslinking-
induced error metrics. Each of 35L33G, 2J3, and 46020 is an experiment using different
antibody in mESC LIN28A HITS-CLIP (Cho et al., 2012), and represent respectively each
experiment using the antibody here. Number of sites (# sites) shows number of detected
binding sites with = 50 tags and < 0.01 false discovery rate. AUC values are the areas
under the curve in receiver operating characteristics (ROC) curves with an assumption
that LIN28A binds only to GGNG or GNG.

Experiment 35L33G 2]3 46020
Metric #sites | AUC | #sites | AUC | #sites | AUC
Deletion 37,739 | 0.430 | 38,205 | 0.433 | 16,628 | 0.420

Substitution 50,634 | 0.762 | 53,400 | 0.767 | 50,164 | 0.759
Del. + Subst. 63,041 | 0.737 | 65,244 | 0.748 | 51,921 | 0.726
Shannon entropy || 46,522 | 0.790 | 47,707 | 0.797 | 39,798 | 0.789

LIN28A (Cho et al,, 2012) (Table 3.2). Expectedly, deletion errors were not a powerful
indicator to detect binding sites of LIN28A (Table 3.2). Substitution rate detected more
binding sites with the same level of FDR, but Shannon entropy turned out to be modestly
better at picking up the targets with known binding preference. I also compared the error-
based crosslinking detection with different metrics against enrichment-based peak callers
(Table 3.3). CIMS methods with substitution or Shannon entropy detected binding sites
from let-7a-1 (Mirlet7a-1) and mir-98 (Mir98) loci in addition to the other targets called by
Piranha (Uren et al., 2012) or ASPeak (Kucukural et al., 2013) (Table 3.3). However, CIMS
performed worse than the enrichment-based analysis methods for experiments with lower
depth of reads or lower substitution or deletion rate by UV crosslinking (data not shown).
UV crosslinking between LIN28A and its target induced informative substitutions as well
as deletions unlike NOVA or Argonautes (Zhang & Darnell, 2011). The more degree of
freedom in substitution errors seems to contribute to the better sensitivity of binding target

detection in this case.

82



Table 3.3 False discovery rates calculated using different approaches to detect crosslinked
sites in CLIP. The experiments are from a HITS-CLIP study for LIN28A protein in mESC
(Cho et al,, 2012). The binding partners of LIN28A shown here are the exhaustive list of
let-7 precursors which are well-studied to bind LIN28A (Heo et al., 2009). The values

from CIMS are shown in maximum FDRs of the most conservative estimates. FDRs from

Piranha (Uren et al., 2012) and ASPeak (Kucukural et al., 2013) are shown in multiple-

testing corrected values with the Benjamini-Hochberg method (Benjamini & Hochberg,

1995). =’ indicates the target is not detected using the method.

Experiment | Target CIMS CIMS del. CIMS Piranha ASPeak
subst. entropy
let-7a-1 || <1x107* - <1x1073 - -
let-7d || <1x10™* | <1x107* | <1x107* | 3.9x10™* | 0.0433
35L33G | let-7f1 || <1x107* - <1x107* | 43x1073 | 9.0x107*
let-7g || <1x107* - <1x1074 - 9.0x107*
mir-98 || <1x107* - <0.05 - -
let-7a-1 - - - - -~
let-7d || <1x10™* | <1x10™* | <1x107* | 2.8x1077 | 1.2x1078
2J3 let-7f-1 || <1x107* - <1x107* | 1.4x107% | 2.6x1077
let-7g || <1x107* - <1x107* - -
mir-98 || <1x10™* | <1x107* <0.05 - -
let-7a-1 - - - - -
let-7d || <1x107* | <1x107* | <1x107* | 22x107% | L.Ox107°
46020 let-7f-1 || <1x107* - <1x107* | 1.2x10™° | 1.3x107°
let-7g || <1x107* - <1x107% | 2.0x10™ | 2.1x1073
mir-98 || <1x107* <0.05 <1x1073 - -
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Figure 3.9 Examples of simple sequence logo analysis for finding sequence motif. Position

0 is where crosslinking-induced errors accumulated.
3.4 Recognition motif analysis of binding sites

Binding specificity factors like RNA sequence or secondary structure are valuable infor-
mation for many cases of RNA binding protein research. For example, poly(A)-binding
proteins (PABPs) binds to poly(A) stretches specifically to stabilize the poly(A) tails (Kithn
& Wahle, 2004), and LIN28A is known to interact with single-stranded GGNG and GNG
sequences on top of hairpin structures (Nam et al., 2011; Cho et al., 2012) for regulation of
precursor miRNAs and messenger RNAs. Thanks to the single nucleotide resolution of
binding site identification in CLIP, it has became easier to find cis-regulatory factors in

RNA for the RNA-protein interactions.

3.4.1 Sequence motif analysis of binding sites

Sequence motif analysis following the CIMS analysis is relatively easier than in the other
techniques that have lower resolution. As crosslinking-induced errors pinpoint the posi-
tions where an RBP binds, there is no need for additional sequence cluster and alignment.

Simple sequence logo analysis is enough for most cases (Figure 3.9).

When an RBP recognizes RNA sequences with multiple modes or they don’t align well,

the mixture of enrichment levels can easily fade out the distinct signals. For these cases,
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Figure 3.10 Example of sequence motif clustering by similarity. Each hexamer sequence is
an enriched motif in LIN28A HITS-CLIP (Cho et al., 2012). Area and color of each node
represent relative enrichment of the hexameric sequence compared to the background

frequency from RefSeq transcripts. Any two connected nodes differ by a single nucleotide.

I developed a visualization-based analysis based on clustering by similarity of enriched
sequence motifs (Figure 3.10). The alternative visualization shows related sequences in
adjacent positions, and naturally reveal the distinguishable groups of sequences that an
RBP interacts with. In the example of LIN28A (Figure 3.10), any of simple sequence logo
or traditional motif finders for transcription factor binding including MEME (Machanick
& Bailey, 2011), PhyloGibbs (Siddharthan et al., 2005), and Trawler_standalone (Haudry
et al,, 2010) failed to divide the three groups of binding motifs while they are clearly visible

in this method (data not shown).
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3.4.2 Secondary structure motif analysis of binding sites

In addition to the primary sequence, secondary structure is often used for binding of RBPs
to RNA. Double-stranded RNA has more stable structure in the cell, whose backbone
structures can be a good platform for stable binding (Carlson et al., 2003). By using both
dsRNA regions and few bases in single-stranded regions, proteins can build a specific
binding domain with relatively small structure. Statistical analysis of secondary structure
preference of RBP-bound sequences is often misleading due to limited accuracy of RNA
secondary structure predictions. Especially, almost half of ~50 nucleotides long RNA
sequences can form certain kind of folds. It causes high false positive rate of secondary
structure scanning near the regions of interest and makes weak preferences undetectable.

Additionally, setting a size of prediction window is tricky and requires some assumptions.

I developed a new method that is free from RNA secondary structure predictions, but
can still detect preferences to small RNA hairpins. The method uses enrichment level of
Watson-Crick (WC) co-occurrence compared to that of background frequency between
flanking positions of binding sites. It could detect the obvious preference to small hairpins

by LIN28A protein in both human and mouse embryonic stem cells (Figure 3.11).

3.5 Fully automated pipeline for CLIP-seq analysis

In spite that many alternative approaches and analytic techniques can be applied for thor-
ough analysis of CLIP-seq, there has been no general analysis toolkit except PARalyzer by
Corcoran et al. (2011), which is specialized in T-to-C transition analysis of PAR-CLIP. Here,
I present ecliptic, a elastic, scalable, and yet easy-to-use tool chain package developed for

analysis of data from CLIP-seq experiments supporting variety of alternative approaches.’

Ecliptic consists of several small programs written in Python and C with a pipeline
script for Snakemake (Koster & Rahmann, 2012) to weave them into an automated work-

flow. Most parts were described earlier in this chapter, the rest are described below.

*Ecliptic is available under the MIT license from https://github.com/hyeshik/ecliptic.
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CLIP-35L33G:

runs:

species:
workflows:
source:

first base:
quality scale:

threep adapter:

description:

PolyA-1:

runs:

species:
workflows:
source:

first base:
quality scale:

threep adapter:

description:

[C3-091210,
mmu

[CLIP]
A3-1

7

33
ATCTCGTATGCCGTCTTCTGCTTG

C3-110713, C3-111013]

"mESC LIN28A CLIP-seq with 35L33G"
[P-110922]

mmu

[RNAseq, SNPreference]

A3-1

7

64

ATCTCGTATGCCGTCTTCTGCTTG

"mESC Poly-A RNA-seq"

Figure 3.12 Example metadata for ecliptic describing a pair of a CLIP and Poly(A)-enriched
RNA-seq experiments.

Configuration and job script generation

Ecliptic accepts metadata describing experiments and comparison pairs in YAML format
as shown in Figure 3.12). Several analysis modules written in Snakemake microlanguage
(Koster & Rahmann, 2012) are templated and assembled as directed in the metadata. The
templates for the modules are processed using jinja2 template engine (http://jinja.pocoo.org/)
to make it more flexible and easy to extend the workflow. As the full CLIP-seq analysis in-
cludes many computationally expensive parts, most time-consuming tools and the pipeline

in ecliptic are implemented with multi-processor and/or multi-node job scheduler support.

Identification of binding sites

Two major alternative methods for binding site identification are performed by ecliptic.
Firstly, crosslinking-induced footprints such as substitution or indel in HITS-CLIP, T-to-C
transition in PAR-CLIP, and clustered 5’ ends in iCLIP are scanned throughout the genome,
then the list is refined to keep statistically significant footprints only by estimated false
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Figure 3.13 Sequence alignment view around a identified binding site. Upper panel shows
coverage of CLIP tags in base positions, and lower panel shows Shannon entropy of

sequenced bases in each position.

discovery rate from permutation using my in silico CLIP simulator included in ecliptic
(see Section 3.3.3 for details). The information near the identified binding sites can be
easily visualized by a tool in ecliptic (Figure 3.13 as an example). Alternatively, regions of
clustered CLIP tags are examined by one of peak callers like Piranha (Uren et al., 2012),
ASPeak (Kucukural et al., 2013), or MACS (Zhang et al., 2008). Ecliptic tries all these

methods when the dependent program is available on the system.

Discovery of substrate specificity factors

To generalize their interaction characteristics at large, it is required to discover what
factors affect the specificity between RNA and protein. As many RNA-binding proteins
recognizes their substrates by nucleotide sequence and surrounding secondary structure,
it is worth to try motif analyses. Ecliptic can automatically prepare inputs and invoke tools
for sequence motif discovery like MEME (Machanick & Bailey, 2011), GLAM2 (Frith et al.,
2008), PhyloGibbs (Siddharthan et al., 2005), or WebLogo (Crooks et al., 2004) (Figure
3.14). Several kinds of plots are also generated to evaluate secondary structure preference

near the binding sites (Figure 3.15). See Section 3.4.2 for background and more details.
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Figure 3.14 Example of sequence logo showing enriched motif around binding sites for

LIN28A in mouse ESC (Cho et al., 2012).
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Figure 3.15 Example of probability matrix showing overrepresented WC-pairing between

two bases around binding sites for LIN28A in mouse ESC (Cho et al., 2012).
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Figure 3.16 Example of quality check view for transcript source composition in reads for

CIRP in mouse (Morf et al., 2012).

Calling confident target transcripts

The list of confident target transcripts can lead the study to functional analyses of targets.

A number of different lists of potential targets are provided by ecliptic to enable taking
a different background or null hypothesis. Simple gene ontology analysis for enriched

targets is also produced for the brief overview of results.

Quality check and miscellaneous statistics

A CLIP experiment often fails. It usually requires several trial-and-errors by tuning
various conditions depending on antibody;, cell type, mode of RNA-protein interaction
and, crosslinking method. To enable more rapid and fast iterations, ecliptic generates basic
statistics to check quality of libraries such as sequence diversity, length distribution, read

quality, and bacterial contamination (Figure 3.16).

Reporting

Ecliptic generates a user-friendly report to make primary analyses accessible to researchers
who are not familiar with Unix environment (Figure 3.17). It includes all basic information
and publication-ready plots for fundamental analyses. As most CLIP-seq experiments

eventually need study-specific downstream analyses, raw and intermediate data files in
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text-based formats are listed and provided with help texts in the report.

3.6 Discussion

The new methods and implementations of analysis of CLIP-seq data allow mapping the
binding sites of RBPs on the genomic scale at single nucleotide resolution. They successfully
unveiled unknown biochemical properties of RNA binding proteins. In addition, ecliptic
is the first full-featured suite for the general CLIP-seq analysis that provides automatic
pipelining and modular extension. It performs most widely used analytic methods, and
provides not only the final results but also many intermediate data in de facto standard
formats for more in-depth analyses. It also includes the first publicly available implemen-
tation of permutation-based statistical analysis of crosslinking-induced errors in CLIP
tags. These will significantly accelerate and lower hurdles of the research of RNA-protein

interactions.
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4. Conclusion

Regulation of RNA plays a pivotal role in diversification of the genetic repertoire, cellular
homeostasis maintenance, localized functions, and fine-tuned transitions of cellular status.
Being a digital information storage that is relatively easy to read, RNA has been one of
the most convenient indicator of cellular regulation status. Through the last two decades,
the methodology in RNA biology has been largely moved into top-down approaches
with adoption of high-throughput methods. RNA-seq, cDNA microarray, CLIP-seq, and

ribosome profiling have been workhorses for a significant fraction of recent researches.

In this thesis, I developed a novel method named TAIL-seq using direct interpretation
of fluorescence signals to measure the length of poly(A) tails. It showed a fair level of
measurement accuracy and provided the global profile of poly(A) tails for the first time.
The analyses of poly(A) tails in NIH3T3 and HeLa cells presented several phenomena
that were not described before. They include widespread uridylation and guanylation of
poly(A) tails, their preference to short or long poly(A) tails, global view of deadenylation by
microRNA targeting, and potential substrates of a newly hypothesized sequence-specific
endonuclease. Still, there are plenty of room for improvement of the method. It needs
to be more sensitive to transcripts with low quantity and gain technological maturity by

improving reproducibility, measurement accuracy, and dynamic range.

The second part of this thesis covers the advances in analytic techniques of CLIP-seq.
The RNA-protein interaction profiling method lacked an established workflow of data
analysis due to the variability in the characteristics of RBPs. I devised and tested more
metrics that quantify crosslinking between RNA and protein to allow sensitive detections
for more RBPs. The newly developed software, ecliptic, is designed to accelerate the
iterations of CLIP experiments and make it more accessible to wet lab scientists. With the
optimized implementation of the false discovery estimation algorithm of crosslinked sites,

more statistically powerful results will be produced with less computational resources.
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In this thesis, I designed novel methods based on high-throughput sequencing, and
demonstrated their applications in biological contexts. The newly developed technologies
significant improved transcriptome-wide observation of poly(A) tail regulation and RNA-
protein interaction. The new observations will enable discovery of unexpected links and

mechanisms in RNA-mediated regulation of the cell.
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