A New Interpretation and Derivation of the Gini Coefficient

Kwang Soo Cheong

We show that the Gini coefficient is a simple linear transformation of the center of gravity of income distribution. The new derivation and inequality decomposition methods are applied to income data for Korea in order to analyze the distributional impact of the recent economic crisis. We also discuss the potential benefits of using additional higher moments of the relative income rankings.

Keywords: Income inequality, Gini coefficient, Lorenz curve.

JEL Classification: D31, D63.

I. Introduction

The Gini coefficient is widely used as a measure of income inequality, and there have been many attempts to find an intuitive meaning to it. To mention a few examples, Yitzhaki (1979), Hey and Lambert (1980) and Berrebi and Silber (1985) showed that the Gini coefficient represents the degree of relative deprivation in a society, Lerman and Yitzhaki (1984) and Shalit (1985) related the Gini coefficient to the covariance between a household's income and its income rank, and Milanovic (1994) expressed the Gini coefficient as

*Assistant Professor, Department of Economics, University of Hawaii at Manoa, 2424 Maile Way, Social Sciences Building 528, Honolulu, HI 96822. (Tel) +1-808-956-7653, (Fax) +1-808-956-4347, (E-mail) kscheong@hawaii.edu. I am grateful to Hyunggyo Moon of the Korea Development Institute for providing income data used in this study. I also gratefully acknowledge the insightful comments from three referees of the journal. It is a matter of course that all errors are mine.

the weighted average of differences between each household's importance as a member of a society and its importance as an income-receiving unit. In this paper, we provide a more satisfying intuitive interpretation of the Gini coefficient using the statistical properties of the Lorenz curve.

In Section II, we derive the Gini coefficient as a linear transformation of the first moment of the distribution function underlying the Lorenz curve. More specifically, the Gini coefficient is linearly related to the mean of households' relative income rankings, and thus identifies the ranking of the household on which the distribution of income is centered. In other words, the center of gravity of an income distribution is obtained as a linear transformation of the Gini coefficient. Furthermore, this new interpretation allows for not only an easy way of computing the Gini coefficient but also a useful decomposition of overall inequality into between-group and within-group components.

Section III illustrates an application of the new derivation and inequality decomposition methods, using income data for Korea. It is found that the recent economic crisis in the country has caused a sharp increase in overall income inequality in parallel with a distinct process of income stratification.

In the last section, we discuss the potential benefit of using additional higher moments, especially for situations in which the Lorenz curves cross each other.

II. A New Interpretation and Derivation

The Gini coefficient is defined as the ratio of the area between the Lorenz curve and the equality line (or the 45-degree line) to the area below the equality line. Defining the Lorenz curve, \(L(p) \), as a function of \(p \) where \(p \) denotes the cumulative population frequency, so that \(0 \leq p \leq 1 \), the Gini coefficient, \(G \), is expressed as follows:\(^1\)

\[
G = 1 - 2 \int_0^1 L(p) dp.
\]

Since \(L(p) \) is continuous (from the right), increasing in \(p \) and

\(^1\)The Gini coefficient can be expressed in many different ways. Yitzhaki (1998) provides a useful summary of alternative formulae.
ranges between 0 and 1, it can be considered as a cumulative distribution function of a random variable \(p \). The variable \(p \) now indicates the relative income ranking, 0 being the poorest and 1 being the richest, and \(L'(p) \) is the corresponding probability density function. The (unconditional) mean of \(p \), which is denoted by \(E(p) \), is then obtained as follows:\(^2\)

\[
E(p) = 1 - \int_0^1 L(p) dp.
\]

(2)

From Equations (1) and (2), we have the following relationship between the Gini coefficient and the mean of \(p \):

\[
E(p) = \frac{1}{2}(1 + G).
\]

(3)

Equation (3) expresses the mean of the relative income rankings as a simple linear transformation of the Gini coefficient, thereby enabling us to offer an intuitive interpretation of the Gini coefficient. Although the Gini coefficient measures a geometric area according to its original definition, it also finds the mean of the relative income rankings in an income distribution. The mean of the relative income rankings is simply the sum of households’ relative income rankings \(p \) weighted by their income shares \(L'(p) \). For example, when an income distribution is completely equal, all households are equally in the middle of income rankings, and hence the mean of the relative income rankings is 1/2, which corresponds to the Gini coefficient being 0 according to Equation (3). When an income distribution is completely concentrated, the richest household with a relative ranking of 1 has the total income share while all the other households have no income shares, and hence the mean is 1, which corresponds to the Gini coefficient being 1. Therefore, the mean of the relative income rankings is bounded by 1/2 from below and by 1 from above with its lower value meaning a lower degree of income inequality as is the case with the Gini coefficient.

By the definition of the first moment, the mean of the relative income rankings (and hence the Gini coefficient) locates the center of gravity of an income distribution. Intuitively speaking, it finds

\(^2\)See Appendix for proof.
the relative ranking of the household on which the distribution of income is centered when the households are lined up in order of income size. For example, the mean of the relative income rankings being 0.7 (or equivalently, the Gini coefficient being 0.4) means that the distribution of income is centered on the seventy-seventh poorest household in percentile income rankings. In other words, the central tendency of the income distribution is toward the seventy-seventh poorest household, and this household then represents the income distribution. Along the same line of thought, a completely concentrated distribution of income is represented by the richest household while a completely equal distribution is represented by the middle-ranked household.

The new interpretation of the Gini coefficient proposed here is not only intuitive but also important in that it provides an economically meaningful rationale for extending the use of the Gini coefficient to the cases of intersecting Lorenz curves. Whether the curves intersect or not, income distributions are evaluated by their representative income rankings (or equivalently, their centers of gravity), not by the particular geometric areas which seemingly have no economic meaning.

In practice, the relative income rankings, \(p \), are not continuous, and the Gini coefficient can be calculated using the discrete version of Equation (3). Let \(y_k \) denote the income of the \(k \)-th poorest household, \(N \) the total population, \(Y \) the total income (such that \(Y = \sum_k y_k \)). Then the mean of the relative income rankings (henceforth, the center of gravity of the income distribution), \(E \) and the Gini coefficient, \(G \) are obtained as follows:

\[
E = \frac{\sum_k 1}{N} \frac{y_k}{Y} \tag{4}
\]

\[
G = -1 + 2E \tag{5}
\]

Computing the Gini coefficient using the above formulas requires only a sorted income vector and is much simpler than existing methods such as the matrix algorithm in Milanovic (1994), or the covariance method in Lerman and Yitzhaki (1984) and Shalit (1985).

An additional advantage of using the center of gravity of income distribution is that it allows for a useful decomposition of inequal-
ity changes into two parts: one due to within-group inequality and the other due to between-group inequality.\(^3\) Suppose that an ordered income distribution is partitioned into income groups (or strata) with equal group sizes, such as income deciles. The center of gravity can be computed within each group by re-ranking the households in the group, ignoring the income rank assigned in the total population.\(^4\) Denoting the center of gravity within the \(j\)-th (poorest) group by \(\bar{c}_j\), the number of income groups by \(K\), and the total income of group \(j\) by \(Y_j\), we obtain the following relationship:\(^5\)

\[
E = \sum_{j=1}^{K} \frac{1}{Y} \frac{Y_j}{K} \bar{c}_j + \sum_{j=1}^{K} \frac{1}{Y} \frac{Y_j}{K} \bar{c}_j.
\]

The first term measures the contribution of within-group inequality to overall income inequality as the weighted sum of each group’s center of gravity \(\bar{c}_j\) with the weight for each group being the product of the group’s population share \((1/K)\) and income share \((Y_j/Y)\). The second term is simply the center of gravity of the distribution of group income, \((Y_1, Y_2, \cdots, Y_K)\); that is, it captures the contribution of the between-group inequality to overall income inequality. The last term is constant, depending upon only the number of income groups. Therefore, as long as the same number of income groups is maintained, one can precisely trace what fraction of inequality changes are attributed to inequality within groups or inequality between groups.

III. An Empirical Example

To illustrate the use of the center of gravity and the decomposition method, we used income data from the Urban Household Income and Expenditure Survey (UHIES) conducted by the National

\(^3\)The Gini coefficient can be decomposed too since it is merely a linear transformation of the center of gravity; however, the direct decomposition of the Gini coefficient is more complicated. See, for example, Lambert and Aronson (1993) and Sastry and Kelkar (1994) for different ways of decomposing the Gini coefficient.

\(^4\)For example, the poorest household in each group is assigned the income rank 1 no matter which income group it belongs to.

\(^5\)See Appendix for proof.
Statistical Office in Korea. The UHIES collects monthly income data from over three thousand representative worker households living in the seventy-two cities in Korea, and their income data are publicly available on quarterly basis. We chose the quarters from the first of 1996 to the first of 1999 in order to analyze the distributional impact of the economic crisis erupting in the last quarter of 1997.

The computed results are summarized in Table 1. The table shows that the center of gravity for the first quarter of 1999 is higher than that for any quarters of 1998, which is in turn higher than that of any previous quarters. For example, the household representing the sixty-fourth poorest percentile was at the center of income distribution just prior to the crisis in the third quarter of 1997. However, the income distribution in the first quarter of 1999 was centered on the sixty-eighth poorest household. In terms of the Gini coefficient, this amounts to an increase of 26.2% from 0.2772 to 0.3599. Clearly, income inequality among worker households has sharply increased as a result of the economic crisis.

While the deterioration of income distribution is hardly surprising given the nature of the socio-economic changes brought by the economic crisis, the result from decomposition analysis reveals an interesting phenomenon. In Table 1, inequality changes are decomposed for income deciles (that is, \(K=10\)). First, the table shows that the center of gravity of overall income distribution, \(E\), and the center of gravity of group income distribution, \(E_G\), move in the same direction for all quarters, implying that an increase (decrease) in overall income inequality accompanied an increase (decrease) in between-group income inequality throughout the sample period. The table also shows that that is not necessarily true for the within-group component of overall inequality. For example, the increase in \(E_G\) exceeds the increase in \(E\) between the first and second quarters of 1998, which means that there was a decrease in within-group inequality. In fact, such overshooting of between-group inequality almost forms a pattern after the onset of the crisis as it is found for four quarters out of a total of six quarters. The average contribution of between-group inequality during the six quarters is about 122% of the changes in overall inequality. Therefore, it is believed that severe deterioration in between-group inequality has more than offset minor improvement in within-group inequality, resulting in deterioration of overall income inequality. In other words, the worker households in Korea are undergoing a distinct
Table 1

<table>
<thead>
<tr>
<th>Quarter</th>
<th>G</th>
<th>E</th>
<th>E_C</th>
<th>ΔE</th>
<th>ΔE_C</th>
<th>$\Delta E_C / \Delta E$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996-1</td>
<td>0.2942</td>
<td>0.6471</td>
<td>0.6986</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996-2</td>
<td>0.2670</td>
<td>0.6335</td>
<td>0.6918</td>
<td>-0.0136</td>
<td>-0.0067</td>
<td>49.57</td>
</tr>
<tr>
<td>1996-3</td>
<td>0.2756</td>
<td>0.6378</td>
<td>0.6929</td>
<td>0.0043</td>
<td>0.0011</td>
<td>25.43</td>
</tr>
<tr>
<td>1996-4</td>
<td>0.2932</td>
<td>0.6466</td>
<td>0.7009</td>
<td>0.0088</td>
<td>0.0080</td>
<td>91.31</td>
</tr>
<tr>
<td>1997-1</td>
<td>0.2904</td>
<td>0.6452</td>
<td>0.6972</td>
<td>-0.0014</td>
<td>-0.0038</td>
<td>270.33</td>
</tr>
<tr>
<td>1997-2</td>
<td>0.2653</td>
<td>0.6327</td>
<td>0.6887</td>
<td>-0.0126</td>
<td>-0.0084</td>
<td>67.22</td>
</tr>
<tr>
<td>1997-3</td>
<td>0.2772</td>
<td>0.6386</td>
<td>0.6915</td>
<td>0.0060</td>
<td>0.0028</td>
<td>46.25</td>
</tr>
<tr>
<td>1997-4</td>
<td>0.2761</td>
<td>0.6381</td>
<td>0.6905</td>
<td>-0.0006</td>
<td>-0.0010</td>
<td>181.07</td>
</tr>
<tr>
<td>1998-1</td>
<td>0.3188</td>
<td>0.6594</td>
<td>0.7061</td>
<td>0.0214</td>
<td>0.0156</td>
<td>73.04</td>
</tr>
<tr>
<td>1998-2</td>
<td>0.3352</td>
<td>0.6676</td>
<td>0.7150</td>
<td>0.0082</td>
<td>0.0090</td>
<td>109.35</td>
</tr>
<tr>
<td>1998-3</td>
<td>0.3300</td>
<td>0.6650</td>
<td>0.7111</td>
<td>-0.0026</td>
<td>-0.0040</td>
<td>153.12</td>
</tr>
<tr>
<td>1998-4</td>
<td>0.3232</td>
<td>0.6616</td>
<td>0.7070</td>
<td>-0.0034</td>
<td>-0.0040</td>
<td>118.64</td>
</tr>
<tr>
<td>1999-1</td>
<td>0.3499</td>
<td>0.6750</td>
<td>0.7197</td>
<td>0.0134</td>
<td>0.0127</td>
<td>95.14</td>
</tr>
</tbody>
</table>

Notes: G: The Gini coefficient, E: The Center of Gravity of overall income distribution (overall inequality), E_C: The Center of Gravity of group income distribution (between-group inequality), ΔE: change in E, ΔE_C: change in E_C, and $\Delta E_C / \Delta E$: percentage ratio of E_C to E.

The process of income stratification parallel with the concentration of income.

IV. An Extended Idea

Although the literature provides normative principles that can be used when the Lorenz curves intersect, conservative researchers

6 Considering the principle of diminishing transfers, Kolm (1976) and Shorrocks and Foster (1987) derived a sufficient and necessary condition under which all inequality indices based upon this principle lead to unanimous rankings of income distributions as long as their Lorenz curves intersect only once. Recently, Davies and Hoy (1995) extended this condition
have limited the usage of the Gini coefficient to the cases of non-intersecting Lorenz curves; that is, the cases in which one Lorenz curve dominates the other in the sense of first degree stochastic dominance. It seems partly due to not being able to directly relate the geometrical definition of the Gini coefficient with the underlying aspects of an income distribution. The new interpretation offered in this paper, however, validates the use of the Gini coefficient regardless of whether the Lorenz curves cross each other, so long as we intend to rank income distributions according to their centers of gravity.7

Making further use of the properties of the Lorenz curve as a cumulative distribution function may yield important information about a given income distribution, which can be overlooked by simply using the Gini coefficient. In general, a cumulative distribution function can be uniquely determined by the entire set of moments.8 Therefore, we get more information about the structure of an income distribution as we compute additional moments based upon the corresponding Lorenz curve. For example, the second and third moments about the mean will measure the dispersion and skewness, respectively, of the relative income rankings.

Consider the two Lorenz curves shown in Figure 1. Lorenz curve A shows a relatively more equal distribution among the low-income households while Lorenz curve B shows a relatively more equal distribution among the high-income households. The two curves are, however, geometrically symmetric and their Gini coefficients are identical. In this case, the Gini coefficient based upon the first moment of the Lorenz curve fails to capture the critical differences in the two income distributions. One would conclude, solely on the basis of their Gini coefficients, that the two income distributions to the case in which the Lorenz curves intersect a finite number of times and Beach, Davidson and Slotsve (1994) provided the statistical basis for empirical application of the condition.

7One may define a social welfare function using the Gini coefficient, such as the one proposed by Sheshinski (1972), and consider maximizing this social welfare function. However, this type of social welfare function is subject to criticism. Among other things, it is not compatible with a strictly quasiconcave social welfare function, and it gives more weight to transfers near the mode of an income distribution than at the tails. See, for example, Bishop, Chakraborti and Thistle (1991) and Ch.5 in Kakwani (1980).

8One sufficient condition frequently noted is the existence of the moment generating function.
Note: Two Lorenz Curves A and B are based upon considerably different income distributions. However, their Gini coefficients are identical since the curves are geometrically symmetric. In this case, the differences are captured by the variances of relative income rankings.

Figure 1

Hypothetically intersecting Lorenz curves

are equally unequal. This conclusion is hardly satisfactory to those who have seen the Lorenz curves,\(^9\) and here we suggest the use of the second moment in addition to the Gini coefficient.

The second moment about the mean, the variance, measures the degree of dispersion of households' relative income rankings. Denoted by \(\text{Var}(p)\), the variance can be written as\(^10\)

\[
\text{Var}(p) = 2\int_0^1 L p dp - \left[\int_0^1 L p dp\right]^2 - 2 \int_0^1 p L dp.
\]

(7)

Since the two income distributions in consideration have the same Gini coefficients, the first two terms in Equation (7) do not make any difference. It is the last term, particularly the expression \(\int_0^1 p L dp\), that can distinguish the income distributions by their variances. It is obvious from the figure that that expression has a higher value.

\(^9\)See Wolff (1997) for expository discussion of a similar example.

\(^10\)See Appendix for proof.
for Lorenz curve B; consequently, Lorenz curve A generates a larger variance than Lorenz curve B. In other words, the income distribution showing more equality among low-income households shows a higher degree of dispersion of the relative income rankings.

In practice, the variance of the relative income rankings, denoted by VAR, can be computed from the following formula:\footnote{This formula is a discrete version of Equation (13) in the Appendix.}

$$VAR = \sum_{i=1}^{N} \left[\frac{l_i}{N} \right]^2 \frac{Y_i}{Y} - \left[E \right]^2. \quad (8)$$

where E is already obtained from Equation (4), making it such that little additional effort is required to compute the variances along with the Gini coefficients. As simple as it is, computing the variances seems an economic, if not indispensable, procedure to take, especially when the Lorenz curves are not drawn or the Gini coefficients show little difference.

Although the variance of the relative income rankings may reveal differences that the Gini coefficient fails to demonstrate, it remains a value judgement as to which of the two income distributions is more desirable. In a sense, it can be thought of as a decision of how to distribute weights of importance over households. If, for example, we give more weight to low-income households relative to high-income households, then we can conclude that the income distribution generating Lorenz curve A is more desirable than the one generating Lorenz curve B, despite their identical Gini coefficients. However, it should be noted that there is already a distribution of weights implicitly built in the Gini coefficient\footnote{As is well known, each household’s weight implicit in the Gini coefficient is determined by its income ranking. See, for example, Ch.2 in Sen (1997).} and these weights are necessarily inconsistent with the weights newly assigned for comparing variances.

The above discussion clearly demonstrates the potential benefit from computing the variance of the relative income rankings along with the Gini coefficient. A comparison based upon the Gini coefficients alone may disregard potentially important differences. In the same vein, one should not focus only on the variance and ignore the implication of the Gini coefficient.
We do no know, however, how likely in reality it is for a situation similar to Figure 1 to happen. Existing studies seem to provide mixed indications on the likelihood of crossing Lorenz curves. While the large number of crossings observed in empirical data has been taken seriously by many researchers noted earlier, Bishop and Formby (1999) recently showed that many of the previously observed Lorenz crossings are due to sampling variability and hence are statistically insignificant. Given this empirical ambiguity of whether the crossing Lorenz curves are the exception or the rule, the question regarding the usefulness of the variance of relative income rankings may be answered on a case-by-case basis.

Figure 2 presents the Lorenz curves drawn from the data used in the previous section. The figure clearly shows the Lorenz dominance of the 1997 income distribution over both the 1998 and 1999 income distributions, which is consistent with the previous result in terms of the center of gravity of income distribution. As for the 1998 and 1999 Lorenz curves, it should be noted that the underlying income data produce no Lorenz crossings except between the twelfth and thirteenth percentile, which was statistically insignificant and hardly detectable in the figure.13 For the range above the thirteenth percentile, the 1998 Lorenz curve consistently and significantly lies above the 1999 Lorenz curve, allowing us to conclude that the 1998 income distribution weakly Lorenz-dominates the 1999 income distribution. While this finding confirms the result previously obtained with the center of gravity, it does not seem to necessitate the application of the variance or other higher moments of relative income rankings.

In general, however, we will get a better description of an income distribution as we compute additional moments. On the other hand, we need a convenient means of evaluating income distributions in terms of income inequality. This trade off between detail and convenience basically comes out of our lack of consensus with regard to equity criteria and is, hence, an inevitable issue in income studies. As a consequence, we have yet to answer questions such as up to which higher moment we should compute and how

13The differences in the two Lorenz curve ordinates up to the twelfth percentile are almost negligible and it is, therefore, unmistakable that the Bishop-Formby-Thistle (1992) test using the Student Maximum Modulus distribution would lead to the conclusion that the two curves are statistically indistinguishable up to the percentile.
the conflicting equity implications can be balanced.

Appendix

Proof of Equation (2):
The mean of p is given by

$$E(p) = \int_0^1 p dL.$$ \hfill (9)

Substituting $L'(p) dp$ for dL and using integration by parts, we obtain

$$E(p) = \left[pl(p) \right]_0^1 - \int_0^1 L(p) dp.$$ \hfill (10)

The first term of Equation (10) is 1, and therefore Equation (2) follows.

Q.E.D.
Proof of Equation (6):
Denote the income rankings of the households in the j-th poorest income group by \((G_{j-1}+1, G_{j-1}+2, \ldots, G_j)\), where \(G_0 = 0\) and \(G_K = N\). Also denote the number of household in each group by \(n_j\), that is, \(n = N/K\). Then \(E\) can be written as
\[
E = \sum_{j=1}^{K} \left[\frac{G_j}{N} \cdot \frac{i}{N} \cdot \frac{y_i}{Y} \right]. \tag{11}
\]

Since
\[
\sum_{i=1}^{G_j} \frac{i}{N} \cdot \frac{y_i}{Y} = \frac{G_j}{N} \cdot \frac{y_{G_j}}{Y} + \frac{G_j}{N} \cdot \frac{y_{G_j+1}}{Y}
\]
\[
= \frac{n}{Y} \cdot \frac{Y_j}{N} \cdot \frac{G_j}{n} \cdot \frac{y_{G_j+1}}{Y} + \frac{G_j}{N} \cdot \frac{y_{G_j+1}}{Y}
\]
\[
= \frac{n}{N} \cdot \frac{Y_j}{Y} \cdot E_j + \frac{G_j}{N} \cdot \frac{Y_j}{Y},
\]
we obtain
\[
E = \sum_{j=1}^{K} \frac{n}{N} \cdot \frac{Y_j}{Y} \cdot E_j + \sum_{j=1}^{K} \frac{G_j}{N} \cdot \frac{Y_j}{Y}. \tag{12}
\]

Since \(G_{j-1} = n(j-1)\), the second term of Equation (12) can be written as follows:
\[
\sum_{j=1}^{K} \frac{n(j-1)}{N} \cdot \frac{Y_j}{Y} = \sum_{j=1}^{K} \frac{(j-1)}{K} \cdot \frac{Y_j}{Y}
\]
\[
= \sum_{j=1}^{K} \frac{1}{K} \cdot \frac{Y_j}{Y} - \frac{1}{K} \cdot \sum_{j=1}^{K} \frac{Y_j}{Y}.
\]

Since \(\sum_{j=1}^{K} Y_j/Y = 1\), we obtain Equation (6) from Equation (12).
\[Q.E.D.\]
Proof of Equation (7):

The variance of \(p \) is given by

\[
\text{Var}(p) = \int_0^1 p^2 L'(p)dp - [E(p)]^2. \tag{13}
\]

Using integration by parts, the first term of Equation (13) can be written as

\[
1 - 2 \int_0^1 pL(p)dp. \tag{14}
\]

Substituting Equations (2) and (14) into Equation (13) yields Equation (7).

\(Q.E.D. \)

(Received 27 December 2000; Revised 2 April 2001)

References

Davies, James, and Hoy, Michael. “Making Inequality Comparisons

