Universal R-matrices and the center of the quantum generalized Kac-Moody algebras

Seok-Jin Kang* and Toshiyuki Tanisaki
(Received December 11, 1995)

Abstract. We extend the result in [13] to those for the quantization of generalized Kac-Moody algebras introduced in [10]. The existence of the universal R-matrix is proved, and a structure theorem for the center is given.

0. Introduction

The quantum groups—more precisely, the quantization of the universal enveloping algebras of Kac-Moody algebras—were independently introduced by Drinfel'd ([6]) and Jimbo ([7]) through their investigation of R-matrices which are the solutions to the Yang-Baxter equation. Its importance partly comes from the fact that there exists a solution to the Yang-Baxter equation inside the quantum group, called the universal R-matrix, so that one can obtain various R-matrices as its specialization on the representations of the quantum group.

On the other hand, the notion of Kac-Moody algebras was generalized to the so-called generalized Kac-Moody algebras ([1]), and it was used crucially in Borcherds' proof of the moonshine conjecture ([2]). In [10], the first-named author extended the quantum groups to those for the generalized Kac-Moody algebras, and proved some fundamental results on their structures and their representations.

In this paper, we continue the investigation by extending the results in [13] to the quantum groups of generalized Kac-Moody algebras. In the first half of this paper, we construct an analogue of the Killing form and prove the existence of the universal R-matrix. The proofs are very similar to those in [13] and the analogue of the Killing form plays a crucial role. In the second half, we investigate the structure of the center of the quantum groups for generalized Kac-Moody algebras. The case of quantized universal en-
veloping algebras of ordinary Kac-Moody algebras was already treated in [4], [8], [13]. Hence we restrict ourselves to the non-ordinary case. We show that the center consists only of certain obvious elements in almost all cases. The proof is based on the reduction to the small rank cases.

Acknowledgment

Part of this work was completed while the first-named author was visiting Research Institute for Mathematical Sciences at Kyoto University and Hiroshima University in the summer of 1995. He would like to express his sincere gratitude to both places for their hospitality.

1. The Quantum Algebra $U_q(g)$

Let F be a field of characteristic 0 and let $q \in F$ be transcendental over the prime subfield \mathbb{Q}. We assume that F contains an n-th root of q for any positive integer n.

Let I be a countable (possibly infinite) index set and let $A = (a_{ij})_{i,j \in I}$ be a Borcherds-Cartan matrix with $a_{ij} \in \mathbb{Q}$ for all $i, j \in I$. That is, $A = (a_{ij})_{i,j \in I}$ is a rational square matrix satisfying (i) $a_{ii} = 2$ or $a_{ii} \leq 0$ for all $i \in I$, (ii) $a_{ij} \leq 0$ for $i \neq j$ and $a_{ij} \in \mathbb{Z}$ if $a_{ii} = 2$, (iii) $a_{ij} = 0$ implies $a_{ji} = 0$. Let $I^e = \{ i \in I | a_{ii} = 2 \}$, $I^{im} = \{ i \in I | a_{ii} \leq 0 \}$, and let $m = (m_i | i \in I)$ be a collection of positive integers such that $m_i = 1$ for all $i \in I^e$. We call m the charge of the Borcherds-Cartan matrix A. We denote by $g = g(A, m)$ the generalized Kac-Moody algebra associated with the Borcherds-Cartan matrix A and the charge m ([1], [9], [10]).

A rational Borcherds-Cartan matrix $A = (a_{ij})_{i,j \in I}$ is called symmetrizable if there is a diagonal matrix $D = \text{diag}(s_i | i \in I)$ with $s_i \in \mathbb{Z}_{>0}$ such that DA is symmetric. From now on, we assume that A is a symmetrizable Borcherds-Cartan matrix.

Let $h = (\bigoplus_{i \in I} \mathbb{Q} h_i) \oplus (\bigoplus_{i \in I} \mathbb{Q} d_i)$ be the vector space with a basis $\{h_i, d_i | i \in I\}$, and let

$$P^\vee = \left(\bigoplus_{i \in I} \mathbb{Z} h_i \right) \oplus \left(\bigoplus_{i \in I} \mathbb{Z} d_i \right)$$

be the \mathbb{Z}-lattice of h. For each $j \in I$, we define the linear functionals $\alpha_j \in h^*$ by

$$\alpha_j(h_i) = a_{ij}, \quad \alpha_j(d_i) = \delta_{ij} \quad (i, j \in I).$$

Set $Q = \bigoplus_{i \in I} \mathbb{Z} \alpha_i$, $Q_+ = \sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i$, and $Q_- = -Q_+$. Let $\rho \in h^*$ be a linear functional satisfying $\rho(h_i) = \frac{1}{2} a_{ii}$ for all $i \in I$. For each $i \in I^e$, we define the simple reflection $r_i \in \text{GL}(h)$ by $r_i(h) = h - \alpha_i(h) h_i$. The subgroup W of $\text{GL}(h)$
Quantum generalized Kac-Moody algebras

generated by the \(r_i \)'s is called the \emph{Weyl group} of the above Borcherds-Cartan data. It is a Coxeter group with canonical generator system \(\{ r_i | i \in I^* \} \). We denote its length function by \(l : W \to \mathbb{Z}_{\geq 0} \). The contragredient action of \(W \) on \(\mathfrak{h}^* \) is generated by \(r_i(l) = \lambda - \lambda(h_i) \alpha_i \). Since \(A \) is symmetrizable, there exists a nondegenerate symmetric bilinear form \((\ | \) \) on \(\mathfrak{h} \) satisfying \((s_i h_i | h) = \alpha_i(h) \) \((i \in I, h \in \mathfrak{h}) \).

For each \(i \in I \), let \(\xi_i = q^{s_i} - q^{-s_i} \), \(q_i = q^{(\alpha_i, \alpha_i)/2} \), and define the \emph{q-integer} by

\[
[n]_q = \begin{cases}
q^n - q^{-n} & \text{if } a_{ii} \neq 0, \\
q_i - q_i^{-1} & \text{if } a_{ii} = 0.
\end{cases}
\]

We also define \([n]_q! = \prod_{k=1}^{n} [k]_q \).

Definition 1.1. ([10]) The \emph{quantum algebra} \(\mathfrak{g}(g) \) associated with a symmetrizable Borcherds-Cartan matrix \(A = (a_{ij})_{i, j \in I} \) and a charge \(m = (m_i | i \in I) \) is an associative algebra with 1 over \(\mathbb{F} \) generated by the elements \(q^h \) \((h \in \mathfrak{h}^\vee) \), \(e_{ik}, f_{ik} \) \((i \in I, k = 1, 2, \ldots, m_i) \) with the defining relations

\[(R1) \quad q^0 = 1, \quad q^h q^{h'} = q^{h+h'} (h, h' \in \mathfrak{h}^\vee),
\]

\[(R2) \quad q^h e_{ik} q^{-h} = q^{(h, h)} e_{ik} (h \in \mathfrak{h}^\vee, i \in I, k = 1, 2, \ldots, m_i),
\]

\[(R3) \quad q^h f_{ik} q^{-h} = q^{-(h, h)} f_{ik} (h \in \mathfrak{h}^\vee, i \in I, k = 1, 2, \ldots, m_i),
\]

\[(R4) \quad [e_{ik}, f_{ij}] = \frac{\delta_{ij} \delta_{kl}}{\xi_l} \left(K_i - K_i^{-1} \right), \quad \text{where } K_i = q^{s_i h_i} (i, j \in I, k = 1, 2, \ldots, m_i),
\]

\[(R5) \quad \sum_{j=1}^{m_j} (-1)^j e_{ik}^{(n)} e_{ij} f_{ij} = 0 \quad \text{if } a_{ii} = 2 \text{ and } i \neq j \quad (k = 1, l = 1, 2, \ldots, m_j),
\]

\[(R6) \quad \sum_{j=1}^{m_j} (-1)^j f_{ik}^{(n)} f_{ij} = 0 \quad \text{if } a_{ii} = 2 \text{ and } i \neq j \quad (k = 1, l = 1, 2, \ldots, m_j),
\]

\[(R7) \quad [e_{ik}, e_{ij}] = 0 \quad \text{if } a_{ij} = 0.
\]

\[(R8) \quad [f_{ik}, f_{ij}] = 0 \quad \text{if } a_{ij} = 0.
\]

The algebra \(\mathfrak{g}(g) \) has a Hopf algebra structure with comultiplication \(\Delta \), counit \(\epsilon \), and antipode \(S \) defined by

\[
\Delta(q^h) = q^h \otimes q^h,
\]

\[
\Delta(e_{ik}) = e_{ik} \otimes 1 + K_i \otimes e_{ik},
\]

\[
\Delta(f_{ik}) = f_{ik} \otimes K_i^{-1} + 1 \otimes f_{ik},
\]

\[
\epsilon(q^h) = 1, \quad \epsilon(e_{ik}) = \epsilon(f_{ik}) = 0,
\]

\[
S(q^h) = q^{-h},
\]

\[
S(e_{ik}) = -K_i^{-1} e_{ik}, \quad S(f_{ik}) = -f_{ik} K_i.
\]
for \(h \in P^\vee, \ i \in \mathcal{I}, \ k = 1, \ldots, m_i \). We denote by \(U^0 \) the subalgebra of \(U = U_q(g) \) with 1 generated by \(q^h \ (h \in P^\vee) \) and \(U^+ \) (resp. \(U^- \)) the subalgebra of \(U \) generated by the elements \(e_{ik} \) (resp. \(f_{ik} \)) for \(i \in \mathcal{I}, \ k = 1, \ldots, m_i \). We also denote by \(U^{\pm 0} \) (resp. \(U^{\pm 0} \)) the subalgebra of \(U \) generated by the elements \(q^h \) and \(e_{ik} \) (resp. \(f_{ik} \)) for \(h \in P^\vee, \ i \in \mathcal{I}, \ k = 1, \ldots, m_i \). For each \(\beta \in Q^+ \), let

\[
U_{\pm \beta} = \{ x \in U^\pm | q^h x q^{-h} = q^{\pm \beta(h)} x \quad \text{for all} \quad h \in P^\vee \}.
\]

Then we have:

Proposition 1.2. ([10])

(a) \(U \cong U^- \otimes U^0 \otimes U^+ \).

(b) \(U^0 = \bigoplus_{h \in P^\vee} F q^h \).

(c) \(U^\pm = \bigoplus_{\beta \in Q^+} U_{\pm \beta} \).

(d) (R5) and (R7) (resp. (R6) and (R8)) are the fundamental relations for \(U^+ \) (resp. \(U^- \)).

Define a structure of directed set on \(Q^+ \) by \(\beta_1 \geq \beta_2 \) if and only if \(\beta_1 - \beta_2 \in \mathbb{Z}^\vee \), and set \(U^{+; \beta} = \bigoplus_{\gamma \in Q^+ \ s.t. \ \gamma \neq \beta} U_\gamma^+ \) for \(\beta \in Q^+ \). We define a completion \(\hat{U} \) of \(U \) by

\[
\hat{U} = \lim_{\beta} U / U^{+; \beta}.
\]

Then \(\hat{U} \) is an algebra containing \(U \). The comultiplication \(\Delta \) and the counit \(\varepsilon \) are naturally extended to those of \(\hat{U} \) ([13]).

A \(U_q(g) \)-module \(V \) is called a **highest weight module** with highest weight \(\lambda \in \mathfrak{h}^* \) if there is a nonzero vector \(v_\lambda \in V \) such that (i) \(e_{ik} v_\lambda = 0 \ (i \in \mathcal{I}, \ k = 1, \ldots, m_i) \), (ii) \(q^h v_\lambda = q^{\lambda(h)} v_\lambda \ (h \in P^\vee) \), (iii) \(V = U_q(g) v_\lambda \). Let \(\lambda \in \mathfrak{h}^* \) and consider the left ideal \(I(\lambda) \) of \(U_q(g) \) generated by \(e_{ik} \ (i \in \mathcal{I}, \ k = 1, \ldots, m_i) \) and \(q^h - q^{\lambda(h)+1} \) \((h \in P^\vee) \). Let \(M(\lambda) = U_q(g) / I(\lambda) \) and define a \(U_q(g) \)-module structure on \(M(\lambda) \) by the left multiplication. Then \(M(\lambda) \) becomes a highest weight module with highest weight \(\lambda \) and highest weight vector \(v_\lambda = 1 + I(\lambda) \). The \(U_q(g) \)-module \(M(\lambda) \) is called the **Verma module** and it has a unique maximal submodule \(J(\lambda) \). Hence the quotient \(V(\lambda) = M(\lambda) / J(\lambda) \) is irreducible.

Let \(T \) denote the set of all imaginary roots \(\alpha_i \ (i \in I^m) \) counted with multiplicity \(m_i \).

Proposition 1.3. ([1], [10]) Suppose \(\lambda(h_i) \geq 0 \) for all \(i \in \mathcal{I} \) and \(\lambda(h_i) \in \mathbb{Z} \) for all \(i \in I^m \). Then we have

(a) \(\chi M(\lambda) = \prod_{\sigma \in S_\lambda} \frac{e^\lambda}{(1 - e^{-\sigma(h)\dim s_\lambda})} = e^{\lambda} \sum_{\beta \in \mathbb{Q}^+} (\dim U^-_\beta) e^{-\beta} \),

(b) \(\chi V(\lambda) = \prod_{\sigma \in S_\lambda} \frac{(-1)^{\langle w | P \rangle}}{(1 - e^{-\sigma(h)\dim s_\lambda})} \cdot \sum_{w \in \mathbb{W} \ s.t. \ P \subset T} (-1)^{\langle w | P \rangle} e^{w(\lambda + \rho - s(\mathbf{F})) + \rho} \),
where Δ_+ denotes the set of all positive roots of g, g_α denotes the root space, and F runs over all the finite subsets of T such that $\lambda(h_i) = 0$ for $\alpha_i \in F$ and that $\alpha_i(h_j) = 0$ for $\alpha_i, \alpha_j \in F$ with $i \neq j$. We denote by $|F|$ the number of elements in F and $s(F)$ the sum of elements in F.

Corollary 1.4. Let $\gamma = \sum_{i \in I} n_i \alpha_i \in Q_+$. Suppose $\lambda(h_i) > 0$ for all $i \in I$, $\lambda(h_i) \in \mathbb{Z}$ for all $h_i \in P^+$, and $\lambda(h_i) \geq n_i$ for all $i \in P^e$. Then we have a linear isomorphism $U^-_\gamma \cong V(\lambda)$ given by $u \mapsto w_\lambda$.

Proof. The surjectivity of the map $U^-_\gamma \rightarrow V(\lambda)$ is obvious. Hence it suffices to show $\dim U^-_\gamma = \dim V(\lambda)$. By our assumption, we have

$$\frac{\operatorname{ch} V(\lambda)}{\prod_{\alpha \in \Delta_+} (1 - e^{-\alpha})^{|\alpha|}} = \left(\sum_{w \in W} (-1)^{|w|} e^{w(\lambda + \rho) - \rho} \right) \left(\sum_{\beta \in Q_+} (\dim U^-_{-\beta}) e^{-\beta} \right).$$

Therefore, it suffices to show that if $w(\lambda + \rho) - \rho - \beta = \lambda - \gamma$ for $w \in W, \beta \in Q_+$, then $w = 1$. Equivalently, if $w \neq 1$, then $\gamma + w(\lambda + \rho) - (\lambda + \rho) \notin Q_+$. Let us prove this by induction on the length $l(w)$ of w. If $w = r_i (i \in I^e)$, then

$$\gamma + r_i(\lambda + \rho) - (\lambda + \rho) = \gamma - (\lambda(h_i) + 1)\alpha_i \notin Q_+.$$

If $w = w'r_i$ and $l(w) = l(w') + 1$, then

$$\gamma + w(\lambda + \rho) - (\lambda + \rho) = \gamma + w'r_i(\lambda + \rho) - (\lambda + \rho)$$

$$= \gamma + w'(\lambda + \rho) - (\lambda + \rho) - (\lambda(h_i) + 1)w'(\alpha_i) \notin Q_+,$$

which completes the proof. □

2. The Killing Form on $U_q(g)$

The Hopf algebra structure of $U_q(g)$ defines an algebra structure on $(U^{\geq 0})^*$ with the multiplication given by $(\phi_1 \phi_2)(x) = (\phi_1 \otimes \phi_2)(A(x))$ for $\phi_1, \phi_2 \in (U^{\geq 0})^*, x \in U^{\geq 0}$. For $h \in P^+$ and $i \in I$, $k = 1, 2, \ldots, m_i$, we define the linear functionals $\phi_h, \psi_{ik} \in (U^{\geq 0})^*$ by

$$\phi_h(x q^h) = 0, \quad \psi_{ik}(x q^h) = \delta_{ik} \epsilon_{il} q^h \quad (x \in U^+, h' \in P^e),$$

(2.1)

Then it is easy to verify that there is an algebra homomorphism $\zeta: U^{\leq 0} \rightarrow (U^{\geq 0})^*$ given by $\zeta(q^h) = \phi_h, \zeta(f_{ik}) = -\frac{1}{\xi_f} \psi_{ik} (h \in P^+, i \in I, k = 1, \ldots, m_i)$. Define
a bilinear form \((\mid)
): \(U^\geq 0 \times U^\leq 0 \to F\) by

\[(2.2) \quad (x\mid y) = \langle \zeta(y), x \rangle \quad (x \in U^\geq 0, y \in U^\leq 0).\]

Then we have:

Proposition 2.1. The bilinear form \((\mid)\) on \(U^\geq 0 \times U^\leq 0\) defined by \((2.2)\) satisfies

\[
(x_1 x_2 \mid y_1 y_2) = (x_1 \mid y_1) (x_2 \mid y_2) \quad (x_1, x_2 \in U^\geq 0, y_1, y_2 \in U^\leq 0),
\]

\[
(q^h \mid q^{h'}) = q^{-(h \mid h')} \quad (h, h' \in P^+),
\]

\[
(e_{ik} \mid f_{jl}) = 0, \quad (e_{ik} \mid q^h) = 0,
\]

\[
(e_{ik} \mid f_{jl}) = -\frac{1}{\xi_i} \delta_{ij} \delta_{kl}
\]

for \(i, j \in I, k = 1, 2, \cdots, m_i, l = 1, 2, \cdots, m_j\).

Moreover, the bilinear form on \(U^\geq 0 \times U^\leq 0\) satisfying \((2.3)\) is uniquely determined.

The proof is similar to that of [13, Proposition 2.1.1].

The following lemmas can be proved inductively using \((2.3)\).

Lemma 2.2.

(a) \((S(x) \mid S(y)) = (x \mid y)\) for \(x \in U^\geq 0, y \in U^\leq 0\).

(b) \((xq^h \mid yq^{h'}) = q^{-(h \mid h')} (x \mid y)\) \((h, h' \in P^+, x \in U^+, y \in U^-)\).

(c) \((U^+_\gamma \mid U^-_{-\beta}) = 0\) if \(\gamma \neq \beta\).

For \(n \in \mathbb{Z}_{>0}\), we denote by \(\Delta_n: U_q(g) \to U_q(g)^{\otimes (n+1)}\) the algebra homomorphism defined by \(\Delta_1 = \Delta, \Delta_n = (\Delta \otimes 1) \circ \Delta_{n-1}\), and we write

\[\Delta_n(x) = \sum_{(x)_n} x_{(0)} \otimes x_{(1)} \otimes \cdots \otimes x_{(n)}.\]

Lemma 2.3. For \(x \in U^\geq 0, y \in U^\leq 0\), we have

\[
yx = \sum_{(x)_2, (y)_2} (x_{(0)} \mid S(y_{(0)})) (x_{(2)} \mid y_{(2)}) x_{(1)} y_{(1)},
\]

\[
xy = \sum_{(x)_2, (y)_2} (x_{(0)} \mid y_{(0)}) (x_{(2)} \mid S(y_{(2)})) y_{(1)} x_{(1)}.
\]

The following lemma is an immediate consequence of Corollary 1.4.

Lemma 2.4. Let \(\beta \in Q_+ \setminus \{0\}\) and \(y \in U^-_{-\beta}\). If \(e_{ik} y = y e_{ik}\) for all \(i \in I, k = 1, 2, \cdots, m_i\), then \(y = 0\).

Now we can state the main theorem of this section.
THEOREM 2.5. For \(\beta \in \mathbb{Q}^+ \), the bilinear form \((\quad | \quad) : U_{\beta}^0 \times U_{\beta}^0 \rightarrow \mathbb{F}\) defined by (2.2) is nondegenerate.

The proof is the same as that of [13, Proposition 2.1.4].

3. Universal \(R \)-matrix

In this section, we would like to give an explicit formula for the universal \(R \)-matrix of the quantum algebra \(U_q(\mathfrak{g}) \). We first recall the definition of quasi-triangular Hopf algebras and the pre-triangular Hopf algebras ([6], [13]). A Hopf algebra \(\mathcal{H} \) together with an element \(\mathcal{R} \in \mathcal{H} \otimes \mathcal{H} \) is called a quasi-triangular Hopf algebra if it satisfies:

(T1) \(\mathcal{R} \) is invertible,
(T2) \(\mathcal{R} \circ \Delta(a) = \Delta'(a) \circ \mathcal{R} \) for all \(a \in \mathcal{H} \),
(T3) \((\Delta \otimes 1)(\mathcal{R}) = \mathcal{R}_{13} \mathcal{R}_{23} \),
(T4) \((1 \otimes \Delta)(\mathcal{R}) = \mathcal{R}_{13} \mathcal{R}_{12} \),

where \(\Delta' = \tau \circ \Delta \) with \(\tau(a \otimes b) = b \otimes a \) (\(a, b \in \mathcal{H} \)) and \(\mathcal{R}_{ij} \) is an element of \(\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H} \) such that the \((i, j)\) component is given by \(\mathcal{R} \) and the remaining component is 1. The element \(\mathcal{R} \) is called the universal \(R \)-matrix of \(\mathcal{H} \) since it satisfies the Yang-Baxter equation

\[
\mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23} = \mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12}.
\]

A Hopf algebra together with an element \(\mathcal{C} \in \mathcal{H} \otimes \mathcal{H} \) and an algebra automorphism \(\Phi : \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H} \) is called a pre-triangular Hopf algebra if it satisfies:

(P1) \(\mathcal{C} \) is invertible,
(P2) \(\mathcal{C} \circ \Delta(a) = \Phi(\Delta'(a)) \circ \mathcal{C} \) for all \(a \in \mathcal{H} \),
(P3) \(\Phi_{23} \circ \Phi_{13}(\mathcal{C}_{12}) = \mathcal{C}_{12} \),
(P4) \(\Phi_{12} \circ \Phi_{13}(\mathcal{C}_{23}) = \mathcal{C}_{23} \),
(P5) \(\Phi_{23}(\mathcal{C}_{13}) \circ \mathcal{C}_{23} = (\Delta \otimes 1)(\mathcal{C}) \),
(P6) \(\Phi_{12}(\mathcal{C}_{13}) \circ \mathcal{C}_{12} = (1 \otimes \Delta)(\mathcal{C}) \).

A pre-triangular Hopf algebra \(\mathcal{H} \) becomes a quasi-triangular Hopf algebra if there is an invertible element \(\mathcal{Z} \in \mathcal{H} \otimes \mathcal{H} \) satisfying

\[
\Phi(a \otimes b) = \mathcal{Z}(a \otimes b)\mathcal{Z}^{-1},
\]

\[
(\Delta \otimes 1)(\mathcal{Z}) = \mathcal{Z}_{23} \mathcal{Z}_{13},
\]

\[
(1 \otimes \Delta)(\mathcal{Z}) = \mathcal{Z}_{12} \mathcal{Z}_{13}.
\]

In this case, the universal \(R \)-matrix is given by \(\mathcal{R} = \mathcal{Z}^{-1} \mathcal{C} \).

We define an algebra automorphism \(\Phi : U \otimes U \rightarrow U \otimes U \) by
Seok-Jin KANG and Toshiyuki TANISAKI

\[\Phi(q^h \otimes q'^{h'}) = q^h \otimes q'^{h'} , \]

(3.2) \[\Phi(e_{ik} \otimes 1) = e_{ik} \otimes K_i , \quad \Phi(1 \otimes e_{ik}) = K_i \otimes e_{ik} , \]

\[\Phi(f_{ik} \otimes 1) = f_{ik} \otimes K_{i}^{-1} , \quad \Phi(1 \otimes f_{ik}) = K_{i}^{-1} \otimes f_{ik} . \]

It can be shown that \(\Phi \) can be naturally extended to an automorphism of \(\hat{\mathcal{U}} \otimes \hat{\mathcal{U}} = (\mathcal{U} \otimes \mathcal{U})^\wedge \).

For \(\beta = \sum_{i=1}^{n} n_i \alpha_i \in Q_+ \), we denote by \(C_{\beta} \in U_\beta^+ \otimes U_\beta^+ \) the canonical element of the bilinear form \((\; , \;) : U_\beta^+ \times U_\beta^- \rightarrow F \), and let \(h_\beta = \sum_{i=1}^{n} n_i s_i h_i \), \(K_\beta = q^{n_\beta} \) so that \((h_\beta|h) = h(h) (h \in P^\vee) \). We define

\[(3.3) \quad \mathcal{C} = \sum_{\beta \in Q_+} q^{(h_\beta|h)} (K_\beta^{-1} \otimes K_\beta) C_\beta \in \hat{\mathcal{U}} \otimes \hat{\mathcal{U}} . \]

We would like to show that \((\mathcal{U}, \mathcal{C}, \Phi)\) satisfies the conditions (P1)--(P6).

By direct calculations, we can prove the following lemmas.

Lemma 3.1.

(a) \(\mathcal{C} A(q^h) = \Phi(A(q^h)) \mathcal{C} \) \((h \in P^\vee)\).

(b) \((\Phi_{23} \circ \Phi_{13}) (\mathcal{C}_{12}) = \mathcal{C}_{12} \).

(c) \((\Phi_{12} \circ \Phi_{13}) (\mathcal{C}_{23}) = \mathcal{C}_{23} \).

Lemma 3.2. Let

\[\mathcal{C}' = \sum_{\beta \in Q_+} q^{(h_\beta|h)} (1 \otimes K_\beta)(S \otimes 1) C_\beta \in \hat{\mathcal{U}} \otimes \hat{\mathcal{U}} . \]

Then \(\mathcal{C}' \mathcal{C} = \mathcal{C} \mathcal{C}' = 1 \) if and only if for any \(\beta \in Q_+ \) we have

\[(3.4) \quad \sum_{\gamma, \delta \in Q_+} C_{\gamma} (K_{\delta} \otimes 1)(S \otimes 1)(C_{\delta}) = \delta_{\beta,0} , \]

\[\sum_{\gamma, \delta \in Q_+} (K_{\gamma} \otimes 1)(S \otimes 1)(C_{\gamma}) C_{\delta} = \delta_{\beta,0} . \]

Lemma 3.3. We have

\[\mathcal{C} A(e_{ik}) = \Phi(A'(e_{ik})) \mathcal{C} , \quad \mathcal{C} A(f_{ik}) = \Phi(A'(f_{ik})) \mathcal{C} \]

if and only if

\[[1 \otimes e_{ik}, C_{\beta+s_i}] = C_{\beta}(e_{ik} \otimes K_i^{-1}) - (e_{ik} \otimes K_i) C_{\beta} , \]

\[[f_{ik} \otimes 1, C_{\beta+s_i}] = C_{\beta}(K_i \otimes f_{ik}) - (K_i^{-1} \otimes f_{ik}) C_{\beta} . \]

Lemma 3.4. We have

\[\Phi_{23}(\mathcal{C}_{13}) \mathcal{C}_{23} = (A \otimes 1) \mathcal{C} , \quad \Phi_{12}(\mathcal{C}_{13}) \mathcal{C}_{12} = (1 \otimes A) \mathcal{C} \]

if and only if
(3.6)

\[(A \otimes 1)(C_\beta) = \sum_{\gamma, \delta \in Q, \gamma + \delta = \beta} q^{-(\delta, j|\delta)}(K_\delta \otimes 1 \otimes 1)(C_\gamma)_{13}(C_\delta)_{12}. \]

Hence, in order to show that \((\tilde{U}, \mathcal{C}, \Phi)\) satisfies the conditions (P1)–(P6), it remains to show that (3.4), (3.5), and (3.6) hold. But they can be proved in an almost the same manner as in [13, Proposition 4.3.3]. Therefore, we have:

Theorem 3.5. Let \(\Phi: \tilde{U} \otimes \tilde{U}\) be the algebra automorphism defined by (3.2), and let \(c\) be the element of \(\tilde{U} \otimes \tilde{U}\) defined by (3.3). Then the triple \((\tilde{U}, \mathcal{C}, \Phi)\) satisfies the conditions (P1)–(P6).

Remark. Let \(\{h_i, d_i|i \in I\}\) and \(\{h^i, d^i|i \in I\}\) be the dual bases of \(\mathfrak{h}\) with respect to the bilinear form \((|)\) and set \(\mathcal{R} = q^{\sum h_i \otimes h^i + \sum d_i \otimes d^i}\). Then \(\mathcal{R} = \mathcal{R}^{-1}c\) gives rise to an \(R\)-matrix for any \(h\)-diagonalizable integrable representation \(V\) of the quantum algebra \(U_q(\mathfrak{g})\). Therefore, the formula (3.3) can be viewed as an explicit formula for the universal \(R\)-matrix of \(U_q(\mathfrak{g})\).

4. The center of \(U_q(\mathfrak{g})\)

In this section, we will describe the center of the quantum algebra \(U_q(\mathfrak{g})\). Let us denote by \(\mathfrak{z}(U)\) the center of \(U = U_q(\mathfrak{g})\). For each \(i \in I\) with \(a_{ii} \neq 0\), define the simple reflection \(r_i \in GL(\mathfrak{h})\) by

\[r_i(h) = h - \frac{2}{a_{ii}} \alpha_i(h) h_i, \]

and let \(\tilde{W} = \langle r_i|i \in I, a_{ii} \neq 0 \rangle\) be the subgroup of \(GL(\mathfrak{h})\) generated by the \(r_i's\) \((i \in I, a_{ii} \neq 0)\). Let \((U^0)^W\) be the subspace of \(U^0\) consisting of the elements \(\sum_{h \in \mathfrak{c}} c_h q^h\) \((c_h \in F)\) such that \(c_h \neq 0\) implies \(w(h) \in P^+\) and \(c_{\mathfrak{w}(h)} = c_h\) for any \(w \in \tilde{W}\). We define an algebra automorphism \(\phi: U^0 \to U^0\) by \(\phi(q^h) = q^{-\rho(h)} q^h\) \((h \in P^+)\), and let \(\eta\) be the linear map given by

\[\eta: U \overset{\sim}{\to} U^- \otimes U^0 \otimes U^+ \xrightarrow{e \otimes 1 \otimes e} U^0. \]

The linear map \(\xi: \phi \circ (\eta)_1; U^0\) is called the Harish-Chandra homomorphism.

Proposition 4.1.

(a) \(\xi\) is an algebra homomorphism.

(b) \(\xi\) is injective.

(c) \(\text{Im}(\xi) \subseteq (U^0)^W\).
PROOF. (a) can be proved in a standard way (for example, see [Di]), and (b) can be proved as in [13, Theorem 3.1.2].

For (c), let $M(\lambda)$ be the Verma module over $U_q(\mathfrak{g})$ with highest weight λ. Then it is easy to see that $z|_{M(\lambda)} = \chi_{\lambda+\rho}(\xi(z))I$ for all $z \in \mathfrak{g}$, where $\chi_{\lambda}: U^0 \to F (\lambda \in \mathfrak{h}^*)$ is the algebra homomorphism defined by $\chi_{\lambda}(q^h) = q^{\lambda(h)} (h \in P^\vee)$.

Moreover, if $a_{ii} \neq 0$ and $(\lambda + \rho)(h_i) \in \frac{a_{ii}}{2} \mathbb{Z}_{\geq 0}$, then $\text{Hom}_U(M(r_i(\lambda + \rho) - \rho), M(\lambda)) \neq 0$. Indeed, if v_λ is a highest weight vector of $M(\lambda)$ with highest weight λ, then $f_{ik}^{(\frac{1}{2}a_{ii})(\lambda + \rho)(h_i)}v_\lambda$ is a highest weight vector with highest weight $r_i(\lambda + \rho) - \rho$.

Let $i \in I$ be such that $a_{ii} \neq 0$ and let $z \in \mathfrak{g}$. Then $\chi_{\lambda}(\xi(z)) = \chi_{r_i(\lambda)}(\xi(z)) = \chi_{\lambda}(r_i(\xi(z)))$ for any $\lambda \in \mathfrak{h}^*$ such that $\lambda(h_i) = \frac{a_{ii}}{2} \mathbb{Z}_{\geq 0}$. Hence $\chi_{\lambda}(\xi(z) - r_i(\xi(z))) = 0$ for any $\lambda \in \mathfrak{h}^*$ such that $\lambda(h_i) = \frac{a_{ii}}{2} \mathbb{Z}_{\leq 0}$, which implies $\xi(z) = r_i(\xi(z))$ for all $i \in I$ with $a_{ii} \neq 0$. □

For $J \subset \{(i, k)|i \in I, k = 1, 2, \ldots, m_i\}$, let $U_J = \langle e_{ik}, f_{ik}, U^0|(i, k) \in J \rangle$ be the subalgebra of U generated by U^0 and e_{ik}, f_{ik} with $(i, k) \in J$. We denote by \mathfrak{j}_J the center of U_J and $\xi_J: \mathfrak{j}_J \to U^0$ the Harish-Chandra homomorphism for U_J. We would like to show $\text{Im}(\xi) \subseteq \text{Im}(\xi_J)$. Let U_J^+ (resp. U_J^-) be the subalgebra of U_J generated by e_{ik} (resp. f_{ik}) with $(i, k) \in J$, and set

\begin{align}
R_J^+ &= \{x \in U^+|\langle x, U_J^- \rangle = 0\} = \{x \in U^+|\langle x, U_J^- U^0 \rangle = 0\}, \\
R_J^- &= \{y \in U^-|\langle U_J^+, y \rangle = 0\} = \{y \in U^-|\langle U^0 U_J^+, y \rangle = 0\}, \\
R_J &= U_J^+ U^0 U^+ + U^- U^0 U_J^+.
\end{align}

Then we have:

LEMMA 4.2.

(a) $U = U_J \oplus R_J$,

(b) $U_J R_J U_J \subseteq R_J$,

(c) $(\epsilon \otimes 1 \otimes \delta)(R_J) = 0$.

PROOF. (a) It suffices to show $U_J^+ = U_J^+ \oplus R_J^+$ for any $\gamma \in \mathbb{Q}_+$. Since

\[R_{J, \gamma}^+ = \text{Ker}(U_J^+ \to (U^-)\ast \to (U_J^-)\ast), \]

\[\dim R_{J, \gamma}^+ = \dim U_J^+ - \dim U_{J, \gamma}^- = \dim U_{J, \gamma}^+ - \dim U_J^+. \]

Since $\langle \cdot \rangle$ is nondegenerate on $U_J^+ \times U_J^-$, we have $R_{J, \gamma}^+ \cap U_{J, \gamma}^+ = \{0\}$.

(b) First, note that R_J^+ (resp. R_J^-) is a two-sided ideal of U^+ (resp. U^-), and that $U^0 R_J = R_J U^0$. Hence it suffices to show

\[U_J^+ R_J^- \subseteq R_J U, \quad R_J^+ U_J^- \subseteq U R_J^+. \]
Let \(y \in R_j \). For \((i, k) \in J^\ast\), by Lemma 2.3, we have
\[
e_{ik} y = \sum_{\partial j} (e_{ik} | y(0)) (1 | S(y(2))) y(1) + \sum_{\partial j} (K_i | y(0)) (1 | S(y(2))) y(1) e_{ik}
\]
\[+ \sum_{\partial j} (K_i | y(0)) (e_{ik} | S(y(2))) y(1) K_i.
\]
Hence it suffices to show
\[
\begin{align*}
\left(x \left| \sum_{\partial j} (e_{ik} | y(0)) (1 | S(y(2))) y(1) \right. \right) = 0, \\
\left(x \left| \sum_{\partial j} (K_i | y(0)) (1 | S(y(2))) y(1) \right. \right) = 0, \\
\left(x \left| \sum_{\partial j} (K_i | y(0)) (e_{ik} | S(y(2))) y(1) \right. \right) = 0
\end{align*}
\]
for all \(x \in U^+_j \). Indeed, we have, for example,
\[
\left(x \left| \sum_{\partial j} (K_i | y(0)) (e_{ik} | S(y(2))) y(1) \right. \right) = \sum_{\partial j} (K_i | y(0)) (e_{ik} | S(y(2))) (x | y(1))
\]
\[= \sum_{\partial j} (K_i \otimes x \otimes S^{-1} (e_{ik}) | D^{(2)}(y))
\]
\[= (S^{-1} (e_{ik}) x K_i | y) = 0.
\]
The other cases can be proved in a similar way.
(c) Clear. \(\square \)

Proposition 4.3. \(\text{Im}(\xi) \subseteq \text{Im}(\xi_j) \).

Proof. Let \(z \in \mathfrak{z} \) and write \(z = z_1 + z_2 \) with \(z_1 \in U_j, z_2 \in R_j \). By Lemma 4.2 (b), \(z_1 \in \mathfrak{z}_j \), and hence by Lemma 4.2 (c), \(\xi(z) = \xi_j(z_1) \in \text{Im}(\xi_j) \). \(\square \)

We now consider the special cases when \(|I| = 1\) or \(|I| = 2\). By a direct calculation, we have:

Proposition 4.4. Suppose \(I = \{i\} \) and \(m_i = 1 \).

(a) If \(a_{ii} \neq 0 \), then
\[
\mathfrak{z} = \left\langle f_{i,1,1} e_{i,1} + \frac{1}{\xi_i (q_i - q_i^{-1})} (q_i K_i + q_i^{-1} K_i^{-1}), q^h | x_i(h) = 0 \right\rangle.
\]
(b) If \(a_{ii} = 0 \), then \(\mathfrak{z} \subseteq U^0 \).

Proposition 4.5. Assume either
(a) \(I = \{i\} \) with \(a_{ii} < 0, m_i = 2 \), or
(b) \(I = \{i, j\} \) with \(a_{ii} < 0, a_{jj} < 0, a_{ij} < 0 \) and \(m_i = m_j = 1 \).

Then \(3 \subset U^0 \).

Proof. Set \(e = e_{i,1}, e' = e_{i,2}, f = f_{i,1}, f' = f_{i,2} \) in case (a), and \(e = e_{i,1}, e' = e_{i,2}, f = f_{i,1}, f' = f_{i,1} \) in case (b). Then the subalgebra \(U^+ = \langle e, e' \rangle = \bigoplus_{n=0}^{\infty} U_n^+ \) (resp. \(U^- = \langle f, f' \rangle = \bigoplus_{n=0}^{\infty} U_n^- \)) is the free associative algebra over \(F \) generated by the elements \(e, e' \) (resp. \(f, f' \)), where \(U_n^+ \) (resp. \(U_n^- \)) is the homogeneous subspace of degree \(n \) (resp. \(-n \)). Then, for \(n \geq 1 \), we have \(U_n^+ = U_{n-1}^+ e \otimes U_{n-1}^+ e' \).

Let \(z \in \mathfrak{z} \cap (\bigoplus_{k=0}^{n-1} U^- U^0 U_k^+), \) and let \(\{x_\lambda\} \) be a basis of \(U_{n-1}^+ \). Then

\[
z = \sum_{\lambda} \sum_{h \in F^i} y_{\lambda, h} q^h x_\lambda e + \sum_{\lambda} \sum_{h \in F^i} y'_{\lambda, h} q^h x_\lambda e' + y,
\]

where \(y \in \bigoplus_{k=0}^{n-1} U^- U^0 U_k^+ \), \(y_{\lambda, h}, y'_{\lambda, h} \in U^- \). Hence we have

\[
ez = \sum_{\lambda} \sum_{h \in F^i} y_{\lambda, h} q^{-e_{(h)}} q^h x_\lambda e + \sum_{\lambda} \sum_{h \in F^i} y'_{\lambda, h} q^{-e_{(h)}} q^h x_\lambda e' + z',
\]

and

\[
zh = \sum_{\lambda} \sum_{h \in F^i} y_{\lambda, h} q^h x_\lambda e^2 + \sum_{\lambda} \sum_{h \in F^i} y'_{\lambda, h} q^h x_\lambda e e' + z'',
\]

where \(z', z'' \in \bigoplus_{k=0}^{n-1} U^- U^0 U_k^+ \). Hence \(y'_{\lambda, h} = 0 \) for all \(\lambda \) and \(h \). Similarly, \(y_{\lambda, h} = 0 \) for all \(\lambda \) and \(h \). Therefore, \(z \in \mathfrak{z} \cap (\bigoplus_{k=0}^{n-1} U^- U^0 U_k^+) \), and hence, by induction, we see that \(\mathfrak{z} = \mathfrak{z} \cap U^- U^0 = \mathfrak{z} \cap U^0 \). \(\square \)

Proposition 4.6. Assume that \(I = \{i, j\} \) and \(a_{ii} = 2, a_{jj} < 0, a_{ij} < 0 \), and \(m_i = 1 \). Then we have \(\mathfrak{z} \subset U^0 \).

Proof. Let \(V' = \mathbb{Q} h_i \oplus \mathbb{Q} h_j \) and \(V = \{h \in \mathbb{h} | \alpha_i(h) = \alpha_j(h) = 0\} \). Then \(\mathfrak{h} = V \oplus V' \). Note that \(\mathfrak{w} \) preserves \(V \) and \(V' \) and that

\[
det \begin{pmatrix} a_{ii} & a_{ij} \\ a_{ji} & a_{jj} \end{pmatrix} = a_{ii}a_{jj} - a_{ij}a_{ji} < 0.
\]

We would like to show \(\text{Im}(\xi) \subset \bigoplus_{h \in V} \mathbb{Q} h \). Since \(\text{Im}(\xi) \subset (U^0)^\mathfrak{h} \), it suffices to show \(h \in \mathfrak{h} \) and \(|\mathfrak{w}(h)| < \infty \) if and only if \(h \in V \). Hence we need only to show if \(\tilde{h} \in \mathfrak{h} \cap V \approx V' \), \(|\tilde{W}(\tilde{h})| < \infty \), then \(\tilde{h} = 0 \). Therefore, it suffices to show that the eigenvalues of \(r_i r_j |_{V'} \) are not roots of unity. Since the characteristic polynomial of \(r_i r_j |_{V'} \) is \(t^2 - \left(\frac{2a_{ij}a_{ji}}{a_{jj}} - 2 \right) t + 1, r_i r_j |_{V'} \) has an eigenvalue that is a root of unity if and only if \(\frac{2a_{ij}a_{ji}}{a_{jj}} = 0, 1, 2, 3, 4 \), which is a contradiction to our assumption. \(\square \)
Lemma 4.7. Assume that the Borcherds-Cartan matrix \(A = (a_{ij})_{i,j \in I}\) is indecomposable. If there is a nonempty subset \(J\) of \(\{(i, k) | i \in I, k = 1, \ldots, m_i\}\) such that \(\overline{3}_J \subset U^0\), then \(\overline{3}\) is contained in \(U^0\).

Proof. Let \(\overline{J} = \{i \in I | (i, k) \in J\} for some \(k\). Then we have

\[
\overline{3} \cap U^0 = \bigoplus_{h \in P^r, a_i(h) = 0 (i \in I)} F q^h, \quad \overline{3} \cap U^0 = \bigoplus_{h \in P^r, a_i(h) = 0 (i \in \overline{J})} F q^h.
\]

For \(i \in I\), set \(T_i = \bigoplus_{h \in P^r, a_i(h) = 0} F q^h\). We would like to show \(\text{Im}(\xi) \subset \overline{i} \cap \bigcap_{i \in I} T_i\). By Proposition 4.3, we have \(\text{Im}(\xi) \subset \text{Im}(\xi^2) \subset \bigcap_{i \in \overline{J}} T_i\).

If \(a_{ii} = 0\), then by Proposition 4.4 (b), \(\text{Im}(\xi) \subset \text{Im}(\xi_{(i, i)}) \subset T_i\). Hence it suffices to show that if \(a_{ij} \neq 0\), \(a_{ji} \neq 0\), then \(T_i \cap (U^0)^i \subset T_i\).

Let \(x = \sum_{h \in P^r, a_i(h) = 0} c_h q^h \in T_i \cap (U^0)^i\). Then \(x = r_f(x) = \sum_{h \in P^r, a_i(h) = 0} c_q q^{-\xi(h)}\). Hence if \(c_h \neq 0\), then \(a_i(r_f(h)) = a_i(h) = 0\), which implies \(a_i(h) = 0\). \(\square\)

By Proposition 4.4–Lemma 4.7, we have the following theorem.

Theorem 4.8. Suppose that the Borcherds-Cartan matrix \(A = (a_{ij})_{i,j \in I}\) is indecomposable and \(\text{Im} \neq \phi\). Then

\[
\overline{3}(U) = \bigoplus_{h \in P^r, a_i(h) = 0 (i \in I)} F q^h \subset U^0
\]

except for the case \(I\) consists of a single element \(i\) with \(a_{ii} < 0\) and \(m_i = 1\).

References

Department of Mathematics
Seoul National University
Seoul 151-742, Korea

and

Department of Mathematics
Faculty of Science
Hiroshima University
Higashi-Hiroshima 739, Japan