

저 시 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

l 차적 저 물 성할 수 습니다.

l 저 물 리 목적 할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

http://creativecommons.org/licenses/by/2.0/kr/legalcode
http://creativecommons.org/licenses/by/2.0/kr/

M.S. THESIS

MLB: A Memory-aware Load Balancing
Method for Mitigating Memory Contention

메모리 경쟁을 완화 시킬 수 있는 메모리 인지로드 밸런스
기법

FEBRUARY 2014

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING
COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Seo Dongyou

M.S. THESIS

MLB: A Memory-aware Load Balancing
Method for Mitigating Memory Contention

메모리 경쟁을 완화 시킬 수 있는 메모리 인지로드 밸런스
기법

FEBRUARY 2014

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING
COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Seo Dongyou

MLB: A Memory-aware Load Balancing Method for

Mitigating Memory Contention

메모리 경쟁을 완화 시킬 수 있는 메모리 인지 로드
밸런스 기법

지도교수 엄 현상

이 논문을 공학석사 학위논문으로 제출함

2013 년 11 월

서울대학교 대학원

전기.컴퓨터 공학부

서 동유

Seo Dongyou의 공학석사 학위논문을 인준함

2014 년 1 월

위 원 장 신 영길 (인)
부위원장 엄 현상 (인)
위 원 염 헌영 (인)

Abstract

Most of the current CPUs have not single cores, but multicores integrated in

the Symmetric MultiProcessing (SMP) architecture, which share the resources

such as Last Level Cache (LLC) and Integrated Memory Controller (IMC).

On the SMP platforms, the contention for the resources may lead to huge

performance degradation. To mitigate the contention, various methods were

developed; most of these methods focus on finding which tasks share the same

resource assuming that a task is the sole owner of a CPU core. However, task

arrival patterns and the demand for resources in the current server environ-

ment are highly dynamic; hence, tasks, the number of which is larger than

that of CPU cores, can be executed simultaneously on a CPU. In order to

mitigate contention for memory subsystems in such multitasking cases, deal-

ing with the dynamicity of resource demand, we have devised a Memory-aware

Load Balancing (MLB) method. MLB dynamically recogrnizes contention by

using simple contention models and performs inter-core task migration to miti-

gate the contention. We have evaluated MLB on an Intel i7-2600 (desktop-level

CPU) and a Xeon E5-2690 (server-level CPU), and found that our approach

can be effectively taken in an adaptive manner, leading to noticeable perfor-

mance improvements of memory intensive tasks (about 15% in best case) on the

different CPU platforms. Also, MLB can achieve performance improvements in

CPU-GPU communication in discrete GPU systems.

Keywords: Multicore processors, shared resource contention, load balancing,

dynamicity, SMP platform

Student Number: 2012-20784

i

Contents

Abstract i

Contents ii

List of Figures iv

List of Tables vi

0.1 Introduction . 1

0.2 Related Work . 4

0.3 Motivations . 7

0.4 Memory Contention Modeling . 12

0.4.1 Memory contention level 12

0.4.2 The correlation between memory contention level and per-

formance . 14

0.5 The Design and Implementation of Memory-aware Load Balanc-

ing(MLB) . 16

0.5.1 Target runqueue and non target runqueue lists 19

0.5.2 Predicted number . 20

0.5.3 Memory-aware Load Balacing algorithm 22

ii

0.6 Evaluation . 26

0.6.1 Dynamicity . 26

0.6.2 Mitigation . 29

0.6.3 Performance . 32

0.6.4 Additional benefit . 33

0.6.5 Overhead . 36

0.7 Advantages . 37

0.8 Conclusions and Future Work . 40

Bibliography 41

요약 46

Acknowledgements 47

iii

List of Figures

Figure 1 VMware cluster imbalance 2

Figure 2 Average memory bandwidth, memory request buffer full

rate, LLC miss rate and LLC reference rate measured

when memory intensive tasks are statically migrated to

specific cores . 11

Figure 3 The correlation between memory request buffer full rate

and memory bandwidth with respect to the number of

stream applications . 13

Figure 4 The correlation between memory bandwidth, memory con-

tention level and performanc on Xeon E5-2690 17

Figure 5 The correlation between memory bandwidth, memory con-

tention level and performanc on i7-2600 18

Figure 6 The memory contention levels of 4 CPU platforms with

respect to the number of stream applications 21

Figure 7 The scenario of dynamic task creation and termination . . 30

Figure 8 Average metric comparisons between MLB and naive . . . 33

Figure 9 The timeline of memory contention level 34

Figure 10 Average runtime comparisons between MLB and naive . . 35

iv

Figure 11 The improvement of CPU-GPU communication with MLB 35

v

List of Tables

Table 1 The specifications of our SMP CPU platforms 9

Table 2 Workload placements . 10

Table 3 Workload mixes . 32

Table 4 The result of comparison between MLB and vector balancing 38

vi

0.1 Introduction

The current OS scheduler balances the runnable tasks across the available

cores for balanced utilization among multiple CPU cores. For this, the scheduler

migrates tasks from the busiest runqueue to the idlest runqueue just by using

the CPU load metric for task. However, the load balancing method ignores the

fact that a core is not an independent processor but rather a part of an on-chip

system and therefore shares some resources such as Last Level Cache(LLC) and

memory controller and so on with other cores[Zhuravlev et al]. The contention

for shared resources is a very important issue in resource management. However,

there is no mechanism in the scheduler for mitigating the contention.

Among the shared resources, the contention for memory subsystems makes

a big impact on overall system performance[Zhuravlev et al][Merkel et al]. In

some articles, it is anticipated that off-chip memory bandwidth will often be the

constraining resource in system performance[Patterson][Williams et al]. Even

though it is expected that memory bandwidth is a major bottleneck in multi-

core CPUs, the number of cores continues to increase. Intel plans to have an

architecture that can scale up to 1,000 cores on a single chip[1000 scale chip].

The more physical cores are integrated, the more intensive contention for mem-

ory subsystems can occur. The more serious contention is assumed to happen

especially in the server environment. The evolution of hardware and virtu-

alization technology enables many tasks to be consolidated in a CPU plat-

form. Task consolidation is considered as an effective method to increase re-

source utilization[Natalie et al]. But, the concurrent execution of many tasks

can cause serious contention for shared resources, and hence lead to performance

degradation, counteracting the benefit of task consolidation[Zhuravlev et al]

[Kim et al][Hood et al][Merkel et al].

1

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30 35 40 45 50 55

cl
u

st
er

 i
m

b
a
la

n
ce

timeline(min)

Figure 1 VMware cluster imbalance

Also, the dynamicity of resource demand leads to difficulty in efficient

resource management in the server environment, intensifying the contention

for shared resources. The server environment is characterized by a large dy-

namic range of resource demands with high variations over short time inter-

vals [Reiss et al] [Gupta et al]. It increases the complexity of resource assign-

ment and complicates task migration. Thus, The physical nodes are not always

balanced in such an environment. Figure 1 presents the timeline of VMware

cluster imbalance[Gulati et al], which is defined as the standard deviation over

all Nh values (Nh = Resource demandhost node / Resource capacityhost node).

The high imbalance value indicates that resource demands are not evenly dis-

tributed among physical nodes. The level of cluster imbalance multiplies ten

times (0.05 → 0.5) from 5 to 20 minutes. That means specific host nodes

are seriously overloaded. The imbalance is irregular and prediction is very

difficult[Gupta et al] [Gulati et al].

Most of the studies on mitigating the contention for shared resources have

been conducted on the assumption that a task is the sole owner of a CPU core.

These studies concentrate on defining the task classification and deciding which

2

tasks share the same resource considering the singletasking case[Zhuravlev et al]

[Jiang et al][Chandra et al][Kim et al]. However, we should also consider the

multitasking case because it is very difficult to predict the cluster imbalance

which may prevent a task from being the sole owner of a core, leading to the

case. In order to mitigate contention for shared resources, especially memory

subsystems in the multitasking case, we have developed an inter-core load bal-

ancing method called Memory-aware Load Balancing (MLB). This method can

be easily applied in harmony with the existing method for the singletasking case

because it is designed to be triggered only in the multitasking case. We have

evaluated MLB on existing SMP platforms and shown how effectively MLB

can mitigate the contention for memory subsystems and hence improve sys-

tem performance, demonstrating its strength in the case with dynamic resource

demand.

The primary contributions of this paper are the following:

• MLB periodically monitors the level of memory contention, and gets trig-

gered on some condition. We have devised simple models effectively by

indicating the level of memory contention and predicting the number of

the memory intensive tasks spreading on multiple cores, each on a core in

order to decide the appropriate moment when MLB should be triggered.

• MLB migrates memory intensive tasks into specific cores and hence de-

creases simultaneous memory requests because memory intensive tasks in

the same core would never be scheduled at the same time. We have devel-

oped the MLB algorithm which fulfills dynamic inter-core task migration.

• We have evaluated MLB on existing SMP platforms, which are widely

being used in practice. We have shown that MLB can be applied to both

server-level (Xeon E5-2690) & desktop-level (i7-2600) CPUs leading to

3

noticeable improvements in the overall system performance.

• In addition, we have shown that MLB can also achieve performance im-

provements in heterogeneous systems consisting of CPU and GPU cores

executing CPU and GPU applications simultaneously where the GPU ap-

plications do not utilize the full memory bandwidth, by enhancing CPU-

GPU communication.

The focus of our method lies on long-running, compute-bound and indepen-

dent tasks. Also, we assume that the tasks hardly perform I/O operations and

never communicate with one another as assumed in other related studies. Thus,

we have used the SPEC CPU 2006 benchmark suite, the applications of which

are single-threading programs and use the internal CPU resources aggressively.

In addition, we have evaluated our method on the machines which have plenty

of memory to minimize the effect of the additional I/O operations caused by

the lack of memory.

The rest of the paper is organized as follows: Section 2 discusses the re-

lated work. Section 3 presents our motivations. Section 4 presents the result

of quantifying the effect of memory contention, our memory contention model,

and the correlation between the model and performance. Section 5 describes

our load balancing algorithm and addresses several implementation issues. Sec-

tion 6 shows the experimental results. Section 7 discusses advantages. Section

8 concludes this paper and presents our future work.

0.2 Related Work

Various solutions have been developed to mitigate the contention for shared

resources via scheduling. [Jiang et al] presented the methology regarded as a

perfect scheduling policy. Their method constructs a graph where tasks are

4

depicted as nodes connected by edges, the weights of which are the sums of

the levels in performance degradation due to their resource contention between

the two tasks. The methodology analyzes which tasks should share the same

resource to minimize performance degradation caused by resource contention.

However, it is feasible only for offline evaluation in contrast to ours. The over-

head in graph construction is O
(
n2

)
(n is the number of tasks). It is not a

practical method if the number of tasks is considerably large. [Xie et al] in-

troduced the animalistic classification, where each application can belong to

one of the four different classes (turtle, sheep, rabbit and devil). Basically, it

is hard to classify each application which has various usage patterns for shar-

ing resources with only four classes. Moreover, some applications may belong

to multiple classes such as both devil and rabbit classes. Also, the application

is sensitive to the usage patterns of co-located tasks by polluting cache lines

seriously. Thus, Xie’s methodology may lack accuracy.

[Zhuravlev et al] proposed pain classification and Distributed Intensity (DI)

which remedies the shortcomings of above mentioned methodologies in terms

of practicality and accuracy. In their method, task has two scores, sensitivity

and intensity. The higher locality the task has, the higher sensitivity score does

the task get. The locality of shared cache is measured by using the stack dis-

tance profile [Chandra et al] and miss rate heuristic. Intensity is defined by the

number of LLC references per one million instructions. Their method avoids

co-locating the high sensitive task with the high intensive task. Also, they pre-

sented a detailed analysis to identify which shared resource in a CPU platform

is a major factor causing performance degradation. The methology proposed by

[Kim et al] is similar to Zhuravlev’s classification. But, their classification and

scheduling algorithm are much simpler to classify many tasks and stronger to

deal with them. Although the task classification methodologies are effective to

5

the management of shared resources, the methodologies are not applicable in

the multitasking case in contrast to ours.

A few methodologies have been devised to mitigate the contention for shared

resources in the multitasking case. [Merkel et al] and [Knauerhase et al] intro-

duced vector balancing & sorted co-scheduling and OBS-M & OBS-L, respec-

tively, to deal with the scheduling issue in the multitasking case. Their method-

ologies decrease the number of simultaneous memory requests by deciding the

order of tasks per runqueue. Knauerhase’s method distributes the tasks accord-

ing to cache weights (LLC misses per cycle) and keeps the sum of the cache

weights of all the running tasks close to a medium value. When a new task

is ready to be allocated to a core, their scheduler checks the weights of tasks

on other cores and co-schedules a task whose weight best complements those

of the co-running tasks on core A. Merkel’s method is better than Knauer-

hase’s method in various aspects. [Merkel et al] motivated our research, which

is explained in detail in the next section.

Out of internal CPU resources, [Novakovic et al] introduces the first end-

to-end system which transparently and efficiently handles interference on any

major server resource in virtualized environments, including Network Interface

Card(NIC) and disk I/O. But, I/O contention is out of our scope and their

system requires sandbox nodes to analyze the contention for shared resources

and fulfills inter-node migration. Our method does not need additional physical

nodes to fulfill intra-node migration. [Ahn et al] presents method using live mi-

gration in virtualized environments to avoid remote accesses on Non-Uniform

Memory Access(NUMA) architecture and mitigates the contention for mem-

ory subsystems. We do not consider NUMA architecture and virtualization but

Ahn’s method also does not consider multitasking case. Besides, there are har-

ware apporaches to mitigate the contention for memory channel[Muralidhara et al]

6

and a methlogy using synthetic benchmark to mimic the inteference situation

and predict the level of performance degradation[Mar et al] and many more.

0.3 Motivations

Two facts motivated our research. First, most of the recent studies on re-

source contention have assumed that only one task is being executed on a CPU

core. The client using computing resources in the server environment expects

his/her application is the sole owner of at least one CPU core. Thus, most of

the existing contention-aware schedulers space-shares the machine rather than

time-sharing it[Zhuravlev et al]. In fact, it is very difficult to predict the load

imbalance among physical nodes with the dynamicity of resource demands.

The dynamicity is one of the most important features of the current server

environment[Reiss et al][Gupta et al]. However, the schedulers do not assume

that multiple tasks might share a CPU core. The dynamicity also means dy-

namic task creation and termination. We have proposed a new method to miti-

gate the contention for memory subsystems in the multitasking case and shown

its strength in dealing with dynamic task creation and termination.

Second, [Merkel et al] claim that migrating memory intensive tasks to spe-

cific cores pollutes cache lines and that it is not always possible to divide tasks

into CPU or memory intensive task sets because there may be tasks which have

medium memory intensity, concluding that it is not a good approach. It is not

true that migrating memory intensive tasks to specific cores is also useless on

the current SMP platforms which have bigger LLCs and provide the higher

maximum memory bandwidth. Their CPU platforms were Intel Core2 Quad

Q6600 and AMD Opteron 2354. They concentrated upon the evaluation with

Q6600 whose memory controller exists out of die. The latency of the controller

7

is larger than that of integrated memory controller[Lin et al]. Two cores on a

die share an L2 cache and there are two dies on the CPU platform while all

cores on the current SMP platforms share an L3 cache. Also, they evaluated

Opteron 2354, which is a SMP platform. Although Opteron 2354 is a server level

CPU, the LLC capacity of Opteron 2354 is four times smaller than our desktop

level CPU. As a result, their platforms are very different from the current SMP

platforms which are widely being used, in that Q6600 has an old-fashioned

architecture and the LLC capacity of Opteron 2354 is very small.

Table 1 shows the specifications of our SMP platforms. Intel i7-2600 is a

desktop-level CPU, but it has an LLC of 8MB that is the same as the LLC

capacity of sever-level Q6600 (2 × 4MB), with higher CPU frequencies and

memory bandwidth than Q6600. The performance of i7-2600 is thus a bit better

than Q6600. Xeon E5-2690 is a high performance server-level CPU platform. We

conducted static experiments with our CPU platforms. We evaluated two place-

ments. In Placement 1, memory intensive tasks (lbm, libquantum, GemsFDTD

and soplex) are migrated to specific cores. In Placement 2, memory intensive

tasks are evenly distributed on all CPU cores. The placements are precisely

shown in Table 2. We executed the task sets and measured performance met-

rics such as memory bandwidth (byte/sec), memory request buffer full rate

(events/sec), LLC miss rate (events/sec) and LLC reference rate (events/sec),

normalizing the results for Placement 1 to those for Placements 2. After any

one task terminated, we stopped monitoring to analyze the situation where all

memory intensive tasks were stressing memory subsystems. On Xeon E5-2690,

soplex was the first terminating task in both Placement 1 (834 secs) and Place-

ment 2 (877 secs). On i7-2600, lbm and namd were the first terminating tasks

in Placement 1 (767 secs) and Placement 2 (773 secs), respectively.

As seen in Figure 2, LLC miss rate (E5-2690: 5.8%; i7-2600: 8.2%) and

8

Descriptions Xeon E5-2690 i7-2600

of cores 8 4

Clock speed 2.9GHz

(Turbo boost:

3.8GHz)

3.4GHz

(Turbo boost:

3.8GHz)

LLC Capacity 20MB 8MB

Max memory bandwidth 51.2GB/s 21GB/s

CPU Category Server level CPU Desktop level CPU

Microacrcitecture Sandy-bridge Sandy-bridge

Table 1 The specifications of our SMP CPU platforms

LLC reference rate (E5-2690: 6.1%; i7-2600: 8.1%) increase a little bit in Place-

ment 1 on all our platforms. On the other hand, memory bandwidth increases

proportionally (E5-2690: 5.8%; i7-2600: 8.5%). Placement 1 truly leads to the

pollution of cache lines, but the point which should be made is the decrease of

memory request buffer full rate (E5-2690: 7.8%; i7-2600: 4.5%). Memory request

buffer full event indicates the failure in inserting a memory request into memory

request buffer due to the full condition of the buffer. If the request buffer in

the memory controller is full, the task cannot enqueue its request right away.

Thus, the task should retry to enqueue the memory request, thus wasting sev-

eral cycles. The more frequently memory request buffer full events happen,

the more CPU cycles are wasted in retrial. To measure memory request buffer

full events, we use Intel’s OFFCORE_REQUEST_BUFFER.SQ_FULL event

[IntelGuide]. AMD also provides the performance counter related with the re-

qust buffer events[AMDGuide]. [Zhuravlev et al] and [Merkel et al] showed that

the contention for memory controller is more fatal in performance than LLC.

9

CPU

platforms

Placement 1 Placement 2

Xeon

E5-2690

(8cores CPU)

2lbm(M)[0,2],

2libquantum(M)[1,3],

2GemsFDTD(M)[1,3],

2soplex(M)[0,2],

2namd(C)[4,6],

2sjeng(C)[4,6],

2gamess(C)[5,7],

2gobmk(C) [5,7]

2lbm(M)[0,4],

2libquantum(M)[1,5],

2GemsFDTD(M)[2,6],

2soplex(M)[3,7],

2namd(C)[0,4],

2sjeng(C)[1,5],

2gamess(C)[2,6],

2gobmk(C) [3,7]

i7-2600

(4cores CPU)

lbm(M)[0],

libquantum(M)[1],

GemsFDTD(M)[1],

soplex(M)[0],

namd(C)[2], sjeng(C)[2],

gamess(C)[3], gobmk(C)[3]

lbm(M)[0],

libquantum(M)[1],

GemsFDTD(M)[2],

soplex(M)[3],

namd(C)[0], sjeng(C)[1],

gamess(C)[2], gobmk(C)[3]

Workload_name

(M : memory intensive workload /

C : CPU intensive workload) [core-id]

Table 2 Workload placements

10

0.7

0.8

0.9

1

1.1

1.2

on Xeon E5-2690 on i7-2600n
o
rm

a
li

ze
d

 t
o
 P

la
ce

m
en

t
2

memory_bandwidth (#bytes/sec)

memory_request_buffer_full_rate (#events/sec)

LLC_miss_rate (#events/sec)

LLC_reference_rate (#events/sec)

Figure 2 Average memory bandwidth, memory request buffer full rate, LLC

miss rate and LLC reference rate measured when memory intensive tasks are

statically migrated to specific cores

The increase of memory bandwidth and the decrease of memory request buffer

full rate can sufficiently offset the increase of LLC miss rate and LLC reference

rate in terms of performance.

According to our result, the statement made by [Merkel et al] is half right

and half wrong for the current SMP platforms. On the current SMP platforms,

the statement is true because LLC miss actually increases when memory in-

tensive tasks are migrated to specific cores. On the other hand, the memory

contention is mitigated by migrating memory intensive tasks to specific cores

because memory request buffer full rate decreases. The mitigation of memory

contention can offset the increase of LLC miss. We name the method driving

memory intensive tasks into specific cores like placement 1 as Memory-aware

Load Balancing(MLB). MLB is very simple and strong at dealing with the dy-

namicity of resource demand. However, simultaneously the tasks causing mem-

ory contention are created in a physical node. This is not a big problem to

MLB because it simply drives the tasks into selected cores step by step. The

11

simplicity of MLB is advantageous over Merkel’s method. We will explain the

stronger points in more detail in section 9(advantages) after our experimental

results are shown.

0.4 Memory Contention Modeling

MLB can mitigate the memory contention by migrating memory intensive

tasks to specific cores. However, MLB should not migrate such tasks if there

is no contention or if the corresponding actions are already taken. Thus, MLB

should first check whether or not the memory contention occurs. In the case

of memory contention, MLB should measure how intensive the contention is to

decide whether or to migrate memory intensive tasks. In this section, we present

a simple and effective memory contention model, and also show the correlation

between our model and the performance to demonstrate the usefulness of the

model.

0.4.1 Memory contention level

Figure 3 shows the average memory bandwidth and memory request buffer

full rate with respect to the number of stream applications[Stream] on E5-2690.

The memory bandwidth is the amount of retired memory traffic multiplied by 64

(size of a cacheline)[Memory bandwidth], and Intel provides Off-core response

events which can permit measuring retired memory traffics[IntelGuide]. Re-

tired memory traffic is the number of LLC miss events and prefetcher requests,

and the traffic eventually flows into integrated memory controller. There is no

single dominant component contributing to the contention of memory subsys-

tems and several components play an important role[Zhuravlev et al]. Retired

memory traffic is thus a good metric to monitor the overall utilization of mem-

12

ory subsystems including LLC, prefetcher and memory controller. The memory

bandwidth of stream application is invariable. This means that the memory

subsystems can be steadily stressed during the execution time of stream ap-

plication and the stress degree can be adjusted with respect to the number of

running stream applications concurrently accessing memory subsystems.

0.E+00

1.E+10

2.E+10

3.E+10

4.E+10

5.E+10

6.E+10

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

m
em

o
ry

_
b

a
n

d
w

id
th

m
em

o
ry

_
re

q
u

es
t_

b
u

ff
er

_
fu

ll
 r

a
te

memory_request_buffer_full_rate (#events/sec)

memory_bandwidth (#bytes/sec)

Figure 3 The correlation between memory request buffer full rate and memory

bandwidth with respect to the number of stream applications

Memory bandwidth does not increase linearly even though the number of

stream applications increases. The bandwidth is saturated at a constant level,

which is near the maximum memory bandwidth of E5-2690 (about 50GB/sec).

In contrast to the saturated memory bandwidth, memory request buffer full

rate increases exponentially as the number of stream applications grows. As

mentioned in Section 3, a memory request buffer full event indicates a wasted

cycle due to the failure in enqueuing a memory request when the memory

request buffer is full. As the number of stream applications increases, more

memory requests are simultaneously generated while the number of failures

13

increases because the capacity of memory request buffer is limited. The memory

bandwidth and memory request buffer full rate shown in Figure 3 are symmetric

with respect to the y=a × x line. The more gentle the inclination of memory

bandwidth curve gets, the more exponential does the inclination of memory

request buffer full rate become.

We constructed our memory contention model based on the correlation be-

tween memory bandwidth and memory request buffer full rate as seen in Figure

3. Equation (1) shows our model. Memory contention level is the number of re-

tries to make a memory request retire. High memory contention level indicates

a lot of retries because many tasks compete in enqueuing their memory requests

into the buffer and hence the memory request buffer is often full. Also, many

retries imply the high contention for overall memory subsystems because the

retired memory traffic is closely connected to LLC, prefetcher and integrated

memory controller.

Memory Contention Levelsystem_wide =
Memory Request Buffer full rate

Retired memory traffic rate

(1)

0.4.2 The correlation between memory contention level and performance

To evaluate the correlation between memory contention level and perfor-

mance, we did the stress tests for memory subsystems similar to [Mar et al].

We designated a stream application as a stressor because a stream application

has high memory intensity and the memory intensity of a stream is invariable

from start to end. A stream application can impose a certain amount of pres-

sure to the memory subsystems at runtime. Thus, we measured the memory

contention level and performance of each target application while increasing

14

the number of stressors. We used SPEC CPU applications. The memory band-

width for each target application is different (see the value in the x-axis of the

point labeled solo in Figure 4 and 5). We do the stress tests on both an i7-2600

(with four cores) and a Xeon E5-2690 (with eight cores). The results of E5-2690

are in Figure 4 and those of i7-2600 in Figure 5. To stress memory subsystems

during the entire execution time of each target application, the stressors con-

tinued to run until the target application terminated. Memory contention level

is a system-wide metric. It indicates the level of overall contention in the CPU

platform. We need to precisely figure out the correlation between the level and

performance of target application because the sensitivity of each application to

the contention for memory subsystems is different. We thus use the sensitivity

model presented in [Kim et al]. This sensitivity model is a very simple model,

but the model is effective and powerful. Equation (2) shows the sensitivity

model. The sensitivity model considers the reuse ratio of LLC(LLChit ratio)

and the stall cycle ratio affected by the usage of memory subsystems. We calcu-

lated the predicted degradation of target application multiplying the sensitivity

of each application by the memory contention level increased by both the target

application and stressors as seen in Equation (3).

The blue vertical line (left y-axis) of each graph indicates the runtime nor-

malized to the sole execution of the target application and the red line (right

y-axis) shows the predicted degradation calculated by Equation (3). X-axis indi-

cates the system-wide memory bandwidth. The predicted degradation is fairly

proportional to the measured degradation (normalized runtime). As the pre-

dicted degradation increases, the measured degradation accordingly increases

on all CPU platforms. The memory bandwidth of Xeon E5-2690 increases as the

number of stressors grows. The highest memory bandwidth reaches the maxi-

mum memory bandwidth (about 50GB/sec) when the number of stressors is 5

15

or 6. In contrast, the highest memory bandwidth of i7-2600 reaches the max-

imum memory bandwidth (about 21GB/s) when the number of stressors is 1

or 2. In the cases of executing lbm, soplex and GemsFDTD, the memory band-

width decreases when each target application is executed with 3 stressors. The

memory contention levels of the applications with 3 stressors are much higher

than that of the non-memory intensive application which is tonto (lbm:11.6;

soplex:10.88; GemsFDTD:9.55; tonto:7.68). The results imply that the system-

wide memory bandwidth can be decreased by too many retries in enqueuing

memory requests into the buffer. The contention on i7-2600 can be drastically

mitigated because the memory bandwidth of i7-2600 is low, thus more easily

saturated than E5-2690. The results demonstrate that memory contention level

effectively indicates the contention degree closely correlated with the perfor-

mance of target application.

Sensitivity = (1− LLCmiss

LLCreference
)× Cyclestall

Cycleretired
(2)

Predicted Degradationtarget_application =

Memory Contention Levelsystem_wide × Sensitivitytarget_application

(3)

0.5 The Design and Implementation of Memory-aware Load
Balancing(MLB)

To implement MLB, many things should be determined. Which task should

MLB consider as a memory intensive task? When should MLB be triggered?

How many memory intensive tasks should MLB migrates? Which cores should

MLB migrate memory intensive tasks to? In this section, we address these

implementation issues in detail.

16

solo +1
+2

+3 +4

+5

+6

+7

0

0.2

0.4

0.6

0.8

1

1.2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1E+10 2E+10 3E+10 4E+10 5E+10 6E+10
p

re
d

ic
te

d
_

d
e
g

ra
d

a
ti

o
n

n
o

rm
li

ze
d

_
ru

n
ti

m
e

memory_bandwidth (#bytes/sec)

normalized_runtime

predicted_degradation

(a) lbm

solo +1 +2 +3

+4

+5 +6

+7

0

0.2

0.4

0.6

0.8

1

1.2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1E+10 2E+10 3E+10 4E+10 5E+10 6E+10

p
re

d
ic

te
d
_
d

eg
ra

d
a
ti

o
n

n
o
rm

li
ze

d
_
ru

n
ti

m
e

memory_bandwidth(byte/sec)

(b) libquantum

solo
+1 +2 +3

+4

+5
+6

+7

0

0.2

0.4

0.6

0.8

1

1.2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1E+10 2E+10 3E+10 4E+10 5E+10 6E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a

ti
o

n

n
o

rm
li

ze
d

_
ru

n
ti

m
e

memory_bandwidth (#bytes/sec)

(c) soplex

solo
+1 +2 +3

+4

+5
+6

+7

0

0.2

0.4

0.6

0.8

1

1.2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1E+10 2E+10 3E+10 4E+10 5E+10 6E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a

ti
o

n

n
o

rm
li

ze
d

_
ru

n
ti

m
e

memory_bandwidth (#bytes/sec)

(d) GemsFDTD

solo

+1 +2 +3

+4

+5 +6

+7

0

0.2

0.4

0.6

0.8

1

1.2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1E+10 2E+10 3E+10 4E+10 5E+10 6E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a
ti

o
n

n
o
rm

li
ze

d
_
ru

n
ti

m
e

memory_bandwidth(byte/sec)

(e) milc

solo

+1
+2

+3
+4

+5

+6

+7

0

0.2

0.4

0.6

0.8

1

1.2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1E+10 2E+10 3E+10 4E+10 5E+10 6E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a
ti

o
n

n
o
rm

li
ze

d
_
ru

n
ti

m
e

memory_bandwidth(byte/sec)

(f) omnetpp

solo

+1 +2 +3
+4 +5

+6

+7

0

0.2

0.4

0.6

0.8

1

1.2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1E+10 2E+10 3E+10 4E+10 5E+10 6E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a
ti

o
n

n
o
rm

li
ze

d
_
ru

n
ti

m
e

memory_bandwidth(byte/sec)

(g) zeusmp

solo +1 +2 +3

+4
+5 +6

+7

0

0.2

0.4

0.6

0.8

1

1.2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1E+10 2E+10 3E+10 4E+10 5E+10 6E+10

p
re

d
ic

te
d

_
d

eg
r
a
d

a
ti

o
n

n
o
rm

li
ze

d
_
ru

n
ti

m
e

memory_bandwidth(byte/sec)

(h) gamess

solo

+1 +2 +3
+4

+5
+6

+7

0

0.2

0.4

0.6

0.8

1

1.2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1E+10 2E+10 3E+10 4E+10 5E+10 6E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a

ti
o

n

n
o

rm
li

ze
d

_
ru

n
ti

m
e

memory_bandwidth (#bytes/sec)

(i) tonto

solo

+1
+2

+3
+4

+5
+6

+7

0

0.2

0.4

0.6

0.8

1

1.2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1E+10 2E+10 3E+10 4E+10 5E+10 6E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a
ti

o
n

n
o
rm

li
ze

d
_
ru

n
ti

m
e

memory_bandwidth(byte/sec)

(j) gobmk

solo
+1 +2 +3

+4

+5 +6
+7

0

0.2

0.4

0.6

0.8

1

1.2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1E+10 2E+10 3E+10 4E+10 5E+10 6E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a
ti

o
n

n
o
rm

li
ze

d
_
r
u

n
ti

m
e

memory_bandwidth(byte/sec)

(k) namd

solo +1 +2 +3
+4

+5 +6
+7

0

0.2

0.4

0.6

0.8

1

1.2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1E+10 2E+10 3E+10 4E+10 5E+10 6E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a
ti

o
n

n
o
rm

li
ze

d
_
ru

n
ti

m
e

memory_bandwidth(byte/sec)

(l) sjeng

Figure 4 The correlation between memory bandwidth, memory contention level

and performanc on Xeon E5-2690

17

sole

+1

+2

+3

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

0 5E+09 1E+10 1.5E+10 2E+10 2.5E+10
p

re
d

ic
te

d
_

d
eg

r
a

d
a

ti
o

n

n
o

rm
a

li
ze

d
_

ru
n

ti
m

e

memory_bandwidth (#bytes/sec)

(a) lbm

sole

+1

+2

+3

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

0 5E+09 1E+10 1.5E+10 2E+10 2.5E+10

p
re

d
ic

te
d

_
d

eg
r
a
d

a
ti

o
n

n
o
rm

a
li

ze
d

_
r
u

n
ti

m
e

memory_bandwidth(byte/sec)

(b) libquantum

sole
+1

+2

+3

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

0 5E+09 1E+10 1.5E+10 2E+10 2.5E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a

ti
o

n

n
o

rm
a

li
ze

d
_

ru
n

ti
m

e

memory_bandwidth (#bytes/sec)

(c) soplex

sole
+1

+2

+3

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

0 5E+09 1E+10 1.5E+10 2E+10 2.5E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a

ti
o

n

n
o

rm
a

li
ze

d
_

ru
n

ti
m

e

memory_bandwidth (#bytes/sec)

(d) GemsFDTD

sole +1
+2

+3

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

0 5E+09 1E+10 1.5E+10 2E+10 2.5E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a
ti

o
n

n
o
rm

a
li

ze
d

_
ru

n
ti

m
e

memory_bandwidth(byte/sec)

(e) milc

sole +1

+2

+3

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

0 5E+09 1E+10 1.5E+10 2E+10 2.5E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a
ti

o
n

n
o
rm

a
li

ze
d

_
ru

n
ti

m
e

memory_bandwidth(byte/sec)

(f) omnetpp

sole

+1 +2

+3

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

0 5E+09 1E+10 1.5E+10 2E+10 2.5E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a
ti

o
n

n
o
rm

a
li

ze
d

_
ru

n
ti

m
e

memory_bandwidth(byte/sec)

(g) zeusmp

sole +1 +2+3

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

0 5E+09 1E+10 1.5E+10 2E+10 2.5E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a
ti

o
n

n
o
rm

a
li
ze

d
_
ru

n
ti

m
e

memory_bandwidth(byte/sec)

(h) gamess

sole +1 +2

+3

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

0 5E+09 1E+10 1.5E+10 2E+10 2.5E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a
ti

o
n

n
o
rm

a
li

ze
d

_
ru

n
ti

m
e

memory_bandwidth (#bytes/sec)

(i) tonto

sole
+1

+2

+3

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

0 5E+09 1E+10 1.5E+10 2E+10 2.5E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a
ti

o
n

n
o
rm

a
li

ze
d

_
ru

n
ti

m
e

memory_bandwidth(byte/sec)

(j) gobmk

sole +1
+2

+3

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

0 5E+09 1E+10 1.5E+10 2E+10 2.5E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a
ti

o
n

n
o
rm

a
li

ze
d

_
ru

n
ti

m
e

memory_bandwidth(byte/sec)

(k) namd

sole +1

+2

+3

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

0 5E+09 1E+10 1.5E+10 2E+10 2.5E+10

p
re

d
ic

te
d

_
d

eg
ra

d
a
ti

o
n

n
o
rm

a
li

ze
d

_
ru

n
ti

m
e

memory_bandwidth(byte/sec)

(l) sjeng

Figure 5 The correlation between memory bandwidth, memory contention level

and performanc on i7-2600

18

0.5.1 Target runqueue and non target runqueue lists

MLB should dynamically divide tasks into memory intensive task and non

memory intensive task sets although we statically treat lbm, libquantum, soplex

and GemsFDTD as memory intensive tasks in the previous sections. Therefor,

MLB monitors the retired memory traffic (off-core response events [IntelGuide])

generated by each task and accumulates the memory intensity into the corre-

sponding task structure whenever the cputime of the task expires (at context

switch). MLB predicts future usage patterns of memory subsystems from histor-

ical behavior. To check the accuracy of the profiled intensity value with MLB,

we compared the results of Intel Perfromance Counter Monitor (PCM)[PCM]

with the traffic values monitored by MLB. We found that the difference be-

tween PCM and MLB is negligible (under 5%). MLB considers the tasks whose

memory intensity is higher than the average memory intensity of all tasks as

memory intensive tasks when the memory contention is intensive.

Also, MLB should determine which core memory intensive tasks are mi-

grated to. For this purpose, MLB manages two runqueue lists, target runqueue

list and non-target one. Memory intensive tasks should be enqueued only to

target runqueues. In contrast, non-memory intensive tasks should be enqueued

only to non-target runqueues. But, MLB can migrate the non-memory intensive

task which has the highest intensity to a target runqueue when the memory

contention is intensive, but there are no memory intensive tasks in the non

target runqueues. In this way, MLB performs the task migration possibly not

based on the features of target runqueue and non-target runqueue. The num-

bers of target runqueues and non-target runqueues can dynamically increase

and decrease depending on memory contention level.

19

0.5.2 Predicted number

The number of target runqueues indicates the condition where the migra-

tion of memory intensive tasks is performed. However, memory contention level

is the variable, the value of which is basically the number of the retries to en-

queue a memory request. When memory contention happens, MLB should find

out which memory intensive tasks to migrate to target runqueues. We have

constructed a model for the predicted number, which is the anticipated num-

ber of memory intensive tasks which are to be scheduled during the interval.

MLB can dynamically calculate the memory contention level, but what MLB

also needs to figure out is the number of “untreated” memory intensive tasks

to be migrated. The predicted number indicates how many memory intensive

tasks are expected to aggressively access memory subsystems during the inter-

val. If the number of target runqueues is smaller than the predicted number,

MLB decides that there is a memory intensive task out of target runqueues.

To build a model for the predicted number, we used the fact that memory con-

tention increases exponentially. Figure 6 presents the rising curve of memory

contention level as the number of stream applications increases. We computed

memory contention levels on four different CPU platforms. All rising curves of

memory contention level become steeper as the number of stream application

increases. Each curve is similar to that of y = a×x2+ b where the x-axis shows

the number of stream applications and the y-axis indicates memory contention

level. We have constructed our model based on the curve of y = a × x2 + b.

Equation (4) shows the model with respect to the memory contention level.

Predicted Number

= [

√
Memory Contention Level −Baseline

Inclination
]

(4)

20

 Inclination ∝ 1
Max Memory Bandwidth

Baseline = Memory Contention Level Baseline

We rotated the curve of y = a × x2 + b on y = x axis of symmetry, and

then replace x, a and b with memory contention level, inclination and baseline,

respectively. The inclination is inversely proportional to the maximum memory

bandwidth of the CPU platform. The inclination for the CPU platform which

has lower maximum memory bandwidth is steeper than that of the higher CPU

platform as shown in Figure 6. The inclination of i7-2600 is the steepest, but

that of E5-2690 or 2670 is relatively gentle. The baseline is the default memory

contention level. Although there is no running task, memory contention level is

not zero due to the miscount of hardware performance counter and the execution

of background tasks. Lastly, we rounded off to transform the value to a discrete

number. We empirically calculated inclination (0.77 for i7-2600 and 0.1 for E5-

2690) and baseline (0.54 for i7-2600 and 0.2 for E5-2690) by using the results

of the stress test as shown in both Figure 4, 5 and 6. This model outputs the

approximated number of memory intensive tasks scheduled during the interval

with an input of memory contention level.

Xeon E5-2690

Max_mb=51.2GB/sec

Xeon E5-2670

Max_mb=51.2GB/sec

i7-2600

Max_mb=21GB/sec

Xeon E5606

Max_mb=25.6GB/sec

0

2

4

6

8

10

12

1stream 2stream 3stream 4stream 5stream 6stream 7stream 8stream

m
em

o
ry

_
co

n
te

n
ti

o
n

_
le

v
el

Figure 6 The memory contention levels of 4 CPU platforms with respect to the

number of stream applications

21

MLB mitigates the contention for memory subsystems by changing the num-

ber of the tasks generating high memory traffic. In the mechanism of MLB, only

the tasks in the target runqueues can generate the high memory traffic. When

the predicted number is greater than the number of target runqueues, MLB de-

cides that there are untreated memory intensive tasks which are in non-target

runqueues. Then, MLB prepares to migrate the memory intensive tasks from

the non-target runqueue to target runqueues.

0.5.3 Memory-aware Load Balacing algorithm

The MLB algorithm is presented as Algorithm 1. When two conditions are

true, MLB is triggered. As described in the previous section, the predicted

number is the anticipated number of running memory intensive tasks to be

scheduled at the same time. When the predicted number is larger than the

number of target runqueues (Line 3), MLB is triggered. However, MLB does

not immediately perform task-migration. MLB checks the memory intensity

(=value) of the highest task in the non target runqueues and compares the

intensity with the average intensity of all running tasks because the predicted

number can be overestimated (Line 9). When the intensity of the highest task

is no higher than the average intensity, MLB decides that all memory intensive

tasks are already migrated to target runqueues, and hence bypasses. This sit-

uation is considered as a false positive due to the misprediction. But, checking

the intensity of the highest task can prevent MLB from performing unnecessary

task migration. In contrast, MLB will be triggered when the intensity of the

highest task in the non-target runqueues is higher. This means that at least the

highest task should be migrated to a target runqueue.

MLB swaps memory intensive tasks in non-target runqueues with non mem-

ory intensive tasks in target runqueues. When there is no non-memory intensive

22

task in target runqueues, MLB inserts the highest runqueue into target run-

queue list, which has the highest intensity sum for all tasks in a non target

runqueue to minimize the number of task swapping (Lines 13 and 41) and re-

sumes swapping. To prevent the imbalance of CPU load among all cores, MLB

does not perform the task swapping if the difference between the CPU load of

the tasks to swap is greater than a certain threshold. The threshold is empir-

ically determined and set to 15%. MLB determines the non-target runqueue

including the highest task as the source runqueue (Line 8). The memory inten-

sive tasks in the source runqueue are swapped with non-memory intensive tasks

in target runqeueus (Line 29). Until only non-memory intensive tasks reside in

the source runqueue, MLB continues to conduct task swapping and insert a

non-target runqueue to the target runqueue list if needed (Lines 41 and 42).

MLB also removes the lowest runqueue which has the lowest intensity sum of

all tasks in a target runqueue if the predicted number is no greater than the

number of target runqueues (Line 5).

MLB can be performed with exisiting CPU load balancer. To maintain the

features of target runqueue and non-target runqueue, we made a slight modifi-

cation of the CPU load balancer since the CPU load balancer does not consider

the memory intensity of a task. When our CPU load balancer selects the bus-

iest runqueue as a target runqueue and the idlest runqueue as a non-target

runqueue, it traverses the tasks residing in the target runqueue in ascending

order of memory intensity. It preferably migrates the task with the lowest inten-

sity in the target runqueue. In the opposite situation, it preferably migrates the

task with the highest intensity in the non-target runqueue. Also, MLB can evict

the tasks which are transformed from memory intensive ones to non-memory

intensive ones. To deal with such cases, MLB periodically checks the number of

transformed tasks in all target runqueues. If the number of transformed tasks

23

is no smaller than that of memory intensive tasks in one target runqueue, MLB

swaps the memory intensive tasks with the transformed tasks and removes the

target runqeue filled with the transformed tasks from the target runqueue list.

The number of target runqueues can be dynamically adjusted depending on

the level of memory contention. MLB essentially migrates the distributed mem-

ory intensive tasks among all cores generating simultaneous memory requests

to target runqueues. As a result, the steps of MLB enforce only the selected

cores (target runqueues) to generate memory requests via task migration.

24

Algorithm 1 Memory-aware Load Balancing Algorithm
1: Memory_aware_Load_Balancing() begin
2: predicted_number = get_predicted_number(memory_contention_level)
3: if predicted_number < target_rq_list → count then
4: lowest_rq=find_the_lowest_rq(target_rq_list)
5: add_rq_to_target_rq_list(lowest_rq,non_target_rq_list)
6: return
7: end if
8: src_rq = find_the_rq_having_highest_task(non_target_rq_list)
9: if src_rq → highest_task → mem_value ≤ avg_value then
10: return
11: end if
12: if target_rq_list.count = 0 then
13: highest_rq=find_the_highest_rq(non_target_rq_list)
14: add_rq_to_target_rq_list(highest_rq,target_rq_list)
15: end if
16: count = src_rq → nr_running

17: dest_rq = target_rq_list → head

18: while count > 0 do
19: if src_rq = dest_rq then
20: return
21: end if
22: for each task in src_rq do
23: if count = 0 then
24: break
25: end if
26: if avg_value < dest_rq → lowest_task → mem_value then
27: break
28: end if
29: swap_two_tasks(src_rq, dest_rq → highest_task,

dest_rq,dest_rq → lowest_task)
30: count = count - 1
31: update_rq(dest_rq)
32: update_rq(src_rq)
33: if avg_value > src_rq → highest_task → mem_value then
34: return
35: end if
36: end for
37: if count > 0 then
38: dest_rq = dest_rq → next

39: end if
40: if dest_rq = NULL then
41: highest_rq=find_the_highest_rq(non_target_rq_list)
42: add_rq_to_target_rq_list(highest_rq,target_rq_list)
43: dest_rq = highest_rq
44: end if
45: end while

25

0.6 Evaluation

In this section, we present the result of evaluating MLB in various ways.

Although the dynamicity of resource demand is very high, we assume that the

maximum runqueue length (the number of tasks in a runqueue) is two, consid-

ering the fact that cluster load balancers strive to let a CPU bound task become

the sole owner of a CPU core. But, MLB can mitigate the memory contention

when the maximum runqueue length is larger than two. In all our experiments,

memory contention level is calculated every four seconds because four seconds

empirically turned out to be the best length of interval. We evaluated the ability

of MLB to cope with dynamic task creation and termination situations. Next,

we present how much memory contention is mitigated and the performance is

thereby improved. Lastly, we discuss the overhead of MLB and an addtional

benefit.

0.6.1 Dynamicity

Dynamicity is the main characteristic of current server environments, and

various tasks are dynamically created or terminated in such environments. MLB

is the method optimized for the dynamicity. Our memory contention and pre-

dicted number models are simple and effective. Based on these models, MLB

dynamically adjust the number of target runqueues to control the amount of

simultaneous memory requests, and therefore MLB can efficiently deal with

the dynamic task creation and termination without performing complex pro-

cedures. In this section, we show the result of evaluating the effectiveness of

our models and the ability of MLB to deal with the dynamicity. We performed

experiments in the scenario where memory intensive tasks are dynamically cre-

ated and killed to simulate the dynamicity in the current server environment.

26

Figure 7 shows the results for Xeon E5-2690. All CPU intensive tasks (namd,

sjeng, gamess and gobmk) were executed from the beginning, while the start

times for memory intensive tasks (lbm, libquantum, soplex and GemsFDTD)

were different.

As shown in Figure 7 (a) and (c) with MLB and the naïve Linux sched-

uler (naïve), respectively, 2lbms started in 30 secs, 2libquantums in 60 secs,

2soplexs in 90 secs and 2GemsFDTDs in 120 secs. After 2lbms started, MLB

detected memory contention so that 2lbms were migrated to core 5 while the

migration of 2lbms was slightly delayed due to the lack of profiled data. The

predicted number was simultaneously calculated by logging the footprints of

memory intensive tasks from the beginning as shown in Figure 7 (b). We used

time window(19 old predicted number and 1 current predicted number) be-

cause the memory intensity of task was not always invariable unlike that of

stream application. The window has a role in smoothing predicted number and

preveting it from fluctuating.

Although only CPU intensive tasks were running before 2lbms started, the

memory contention (the predicted number two) occurred due to the CPU in-

tensive tasks and hence there were already two target runqueues at the time

when 2lbms started. Compared with the single-tasking case, each lbm time-

shared the co-running CPU intensive task in this case and hence 2lbms were

not always scheduled at the same time. Thus, the predicted number was not

increased twice.

Likewise in the lbm’s case, MLB migrated 2libquantums to core 3 due to

the increase of memory contention after 2libquantums started and the predicted

number increased by 3. The number of target runqueues increased as the pre-

dicted number in accordance with memory contention level increased. After all

memory intensive tasks started, MLB managed four target runqueues (core 3,

27

4, 5 and 6) by changing the number of cores generating high memory traffic to

up to four.

In contrast to MLB, memory intensive tasks were irregularly placed with the

naive Linux scheduler as shown in Figure 7 (c). Also, memory intensive tasks

experienced many migrations whenever some tasks were created. The frequent

CPU imbalance happened because the CPU load was changed when a task was

created. Then, the naive scheduler chose memory intensive tasks as victims to

balance the CPU load with. Thus, the footprints of memory intensive tasks

are very irregular during task creations (from 30 to 120 secs) and terminations

(from 300 to 390 secs). With MLB, memory intensive tasks were the last victims

for the CPU balance by our optimizations as explained in Section 5.3. Non-

memory intensive tasks are first selected and then memory intensive tasks are

checked in the end when the CPU load of all non-memory intensive tasks is

similar. The optimization is good for memory intensive tasks, but it can be bad

for non-memory intensive tasks because non-memory intensive tasks experience

more migration than memory intensive tasks. We explain the impact of frequent

migrations of non-memory intensive tasks in Section 6.5 titled Overhead.

If memory intensive tasks dynamically terminate, then MLB decreases the

number of target runqueues. 2GemsFDTDs end in 300 secs, 2soplexs in 330

secs, 2libquantums in 360 secs and 2lbms in 390 secs while all CPU intensive

tasks terminated in 420 secs. The number of target runqueues decreased as

the predicted number decreased. In particular, there was no task on core 3

after 2libquantums terminated, and hence MLB randomly migrated a task to

core 3 in order to balance the CPU load among all cores. In this scenario, one

lbm was selected and migrated from core 5 to core 3. Each lbm is the sole

owner of a core from 360 to 390 secs. Although the contention could be further

mitigated when 2lbms were migrated to a core, there was no memory intensive

28

task migration from 360 to 390 secs because MLB did not migrate any task

which was the sole owner of a core, being applied in harmony with the existing

methods considering the single-tasking case. But the ping-pong migration of

memory intensive tasks did not occur as seen from 60 to 90 secs. For clarity, we

present only the results for memory intensive tasks, but there was no ping-pong

migration of CPU intensive tasks in the case for these tasks, either.

MLB effectively handles the underestimated memory contention. The worst

case is the case where MLB does not migrate memory intensive tasks to target

runqueues although the memory contention continues to occur. With the naive

scheduler, memory intensive tasks can be spreading on multiple cores, each

on a core, leading to intensive memory contention in our task creation and

termination scenario. In contrast, MLB immediately responds to the creation

and termination of the tasks which cause the memory contention, based on our

memory contention and predicted number models as shown in Figure 7 (a). The

ability to cope with the dynamic task creation and termination is the biggest

advantage over the other methods considering the multitasking case like MLB.

0.6.2 Mitigation

To figure out how much the contention can be mitigated by MLB, we eval-

uated two workload mixes per CPU platform. The mixes are described in Table

3. The number of memory intensive tasks in workload mix1 is twice larger than

that for workload mix2. In other words, memory contention level in workload

mix1 is higher. We executed the workload mixes with both MLB and the naive

Linux scheduler and measured four performance metrics (memory bandwidth,

memory request buffer full rate, LLC reference rate and LLC miss rate). We

normalized the values of the metrics with MLB to those of the naive Linux

scheduler. To identify the mitigation degree for memory contention during the

29

0

1

2

3

4

5

6

7

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450

co
re

_
id

s

timeline(sec)

lbm_0 lbm_1 libquantum_0 libquantum_1

soplex_0 soplex_1 GemsFDTD_0 GemsFDTD_1

(a) The footprints of memory intensive tasks with MLB

0

1

2

3

4

5

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450

p
re

d
ic

te
d

_
n

u
m

b
er

timeline(sec)

(b) The timeline of predicted number

0

1

2

3

4

5

6

7

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450

co
re

_
id

s

timeline(sec)

lbm_0 lbm_1 libquantum_0 libquantum_1

soplex_0 soplex_1 GemsFDTD_0 GemsFDTD_1

(c) The footprints of memory intensive tasks with naive

Figure 7 The scenario of dynamic task creation and termination

30

execution of all tasks, we ran all applications at the same time and stopped

measuring after any one task terminated in the experiment similar to that for

Figure 2. The result is shown in Figure 8. MLB decreased memory request

buffer full rate and increased memory bandwidth in all the cases. However, the

result for i7-2600 is more drastic. MLB migrated memory intensive tasks to

two target runqueues in the case of workload mix1 on i7-2600. But, the amount

of mitigated memory contention was slightly reduced with MLB because four

memory intensive tasks (lbm, libquantum, GesFDTD and soplex) in two target

runqueues could sufficiently saturate the memory subsystems. In contrast to

workload mix1, the amount of mitigated memory contention was considerably

reduced in workload mix2. Two memory intensive tasks in one target runqueue

were never scheduled at the same time. In this situation, lbm and libquantum

were alternately scheduled on a core, and thus memory bandwidth increased

and memory request buffer full rate decreased.

Compared with the results for i7-2600, there were no dramstic results for

E5-2690 because the test sets in workload mix1 and mix2 could not saturate the

maximum memory bandwidth. The memory requests buffer full rate decreased

and the memory bandwidth increased similarly in both mix1 and mix2. The

reduced ratio of memory request buffer full rate and improved ratio of memory

bandwidth reflected the performance improvements with MLB. In all four cases

shown in Figure 8, the increased ratio of LLC miss and reference rate were under

5% with MLB.

To see the time-based mitigation with MLB, we measured the temporal

change in memory contention level while we started executing sixteen appli-

cations in workload mix1 and mix2 on Xeon E5-2690. We ran all applications

at the same time. The timeline is shown in Figure 9 (a) and (b). MLB could

decrease the memory contention level most of the time compared with the naive

31

of workload mixes Workloads

Workload-mix1

(on E5-2690)

2lbm(M),2libquantum(M),2GemsFDTD(M)

,2soplex(M),2namd(C),2sjeng(C)

,2gamess(C),2gobmk(C)

Workload-mix2

(on E5-2690)

2lbm(M),2libquantum(M),2tonto(C)

,2zeusmp(C),2namd(C),2sjeng(C)

,2gamess(C),2gobmk(C)

Workload-mix1

(on i7-2600)

lbm(M),libquantum(M),GemsFDTD(M)

,soplex(M),namd(C),sjeng(C),gamess(C)

,gobmk(C)

Workload-mix2

(on i7-2600)

lbm(M),libquantum(M),tonto(C),zeusmp(C)

,namd(C),sjeng(C),gamess(C),gobmk(C)

Table 3 Workload mixes

Linux scheduler.

0.6.3 Performance

The performance results are presented in Figure 10. We executed the ap-

plications in two mixes per CPU platform more than 10 times and normalized

the average execution times with MLB to the naïve scheduler. To figure out

the overall effect of MLB to every application, we executed all applications at

same time and continued to re-execute the applications until all of them fin-

ished at once and the first execution times were sampled. All memory intensive

applications (lbm, libquantum, GemsFDTD and soplex) benefited from MLB.

In particular, the execution times of memory intensive applications were signif-

icantly reduced in workload mix2 on i7-2600. Lbm and libquantum benefited

32

0.7

0.8

0.9

1

1.1

1.2

mix1 on E5-

2690

mix2 on E5-

2690

mix1 on i7-

2600

mix2 on i7-

2600

n
o
rm

a
li

ze
d

_
to

_
n

a
iv

e

memory_bandwidth (#bytes/sec) memory_request
 buffer_full_rate (#events/sec)

LLC_reference_rate (#events/sec) LLC_miss_rate (#events/sec)

Figure 8 Average metric comparisons between MLB and naive

from the highest decrease of memory request buffer full rate as shown in Fig-

ure 8. What is interesting is that the performance benefit of memory intensive

tasks differs for i7-2600 as shown in Figure 10 (c). The reason is that the dis-

tribution of memory bandwidth can be asymmetric depending on the memory

access patterns of applications[Moscibroda et al]. However, MLB could achieve

the noticeable performance improvements for memory intensive applications in

both the server (E5-2690) and desktop level CPU (i7-2600).

0.6.4 Additional benefit

The CUDA programming model using GPU permits data transfer from

host to GPU or vice versa to offload the portion for which the use of GPU is

appropriate[CUDA]. In the programming model, CPU-GPU communication is

very important for the performance of GPU application[Jablin et al]. However,

CPU-GPU communication can be degraded by co-located applications because

both CPU and GPU applications may share host memory bandwidth in dis-

crete GPU systems[Seo et al]. In high memory contention situation, a GPU

application may not obtain sufficient memory bandwidth. MLB can indirectly

33

1.5

1.8 with naïve with MLB0

0.3

0.6

0.9

1.2

1.5

1.8
1

7
0

1
3
9

2
0
8

2
7
7

3
4
6

4
1
5

4
8
4

5
5
3

6
2
2

6
9
1

7
6
0

8
2
9

8
9
8

9
6
7

1
0
3

6

1
1

0
5

1
1

7
4

1
2

4
3

1
3

1
2

1
3

8
1

1
4

5
0

1
5

1
9

1
5

8
8

1
6

5
7

1
7

2
6

1
7

9
5

1
8

6
4

1
9

3
3

2
0

0
2

2
0

7
1

2
1

4
0

2
2

0
9

2
2

7
8

2
3

4
7

2
4

1
6

2
4

8
5

2
5

5
4

2
6

2
3

2
6

9
2

2
7

6
1

2
8

3
0

2
8

9
9

2
9

6
8

m
em

o
ry

_
co

n
te

n
ti

o
n

_
le

v
el

timeline(sec)

with naïve with MLB

(a) Workload-mix1 on Xeon E5-2690

0

0.3

0.6

0.9

1.2

1.5

1.8

1

7
0

1
3
9

2
0
8

2
7
7

3
4
6

4
1
5

4
8
4

5
5
3

6
2
2

6
9
1

7
6
0

8
2
9

8
9
8

9
6
7

1
0
3

6

1
1
0

5

1
1
7

4

1
2
4

3

1
3
1

2

1
3
8

1

1
4
5

0

1
5
1

9

1
5
8

8

1
6
5

7

1
7
2

6

1
7
9

5

1
8
6

4

1
9
3

3

2
0
0

2

2
0
7

1

2
1
4

0

2
2
0

9

2
2
7

8

2
3
4

7

2
4
1

6

2
4
8

5

2
5
5

4

2
6
2

3

2
6
9

2

2
7
6

1

2
8
3

0

2
8
9

9

2
9
6

8

m
em

o
ry

_
co

n
te

n
ti

o
n

_
le

v
el

timeline(sec)

with naïve with MLB

(b) Workload-mix2 on Xeon E5-2690

Figure 9 The timeline of memory contention level

34

0.8

0.84

0.88

0.92

0.96

1

1.04

lb
m

_
0

lb
m

_
1

li
b

q
u

a
n

tu
m

_
0

li
b

q
u

a
n

tu
m

_
1

G
em

sF
D

T
D

_
0

G
em

sF
D

T
D

_
1

so
p

le
x
_
0

so
p

le
x
_
1

n
a
m

d
_
0

n
a
m

d
_
1

sj
en

g
_
0

sj
en

g
_
1

g
a
m

es
s_

0

g
a
m

es
s_

1

g
o
b

m
k

_
0

g
o
b

m
k

_
1

n
o
rm

a
li

ze
d

 t
o
 n

a
iv

e

(a) Workload-mix1 on Xeon E5-2690

0.8

0.84

0.88

0.92

0.96

1

1.04

lb
m

_
0

lb
m

_
1

li
b

q
u

a
n

tu
m

_
0

li
b

q
u

a
n

tu
m

_
1

to
n

to
_

0

to
n

to
_

1

ze
u

sm
p

_
0

ze
u

m
sp

_
1

n
a

m
d

_
0

n
a

m
d

_
1

sj
en

g
_

0

sj
en

g
_

1

g
a

m
es

s_
0

g
a

m
es

s_
1

g
o

b
m

k
_

0

g
o

b
m

k
_

1

n
o

rm
a

li
ze

d
 t

o
 n

a
iv

e

(b) Workload-mix2 on Xeon E5-2690

0.8

0.84

0.88

0.92

0.96

1

1.04

n
o
rm

a
li

ze
d

 t
o
 n

a
iv

e

(c) Workload-mix1 on i7-2600

0.8

0.84

0.88

0.92

0.96

1

1.04

n
o
rm

a
li

ze
d

 t
o
 n

a
iv

e

(d) Workload-mix2 on i7-2600

Figure 10 Average runtime comparisons between MLB and naive

0

20000

40000

60000

80000

100000

naïve mlb naïve mlb

G
P

U
 e

x
ec

u
ti

o
n

 t
im

e(
m

s)

GPU kernel time CPU-GPU communication time

streamcluster

(readpoint = 65536)

on i7-2600

streamcluster

(readpoint = 131072)

on Xeon E5-2690 with

Figure 11 The improvement of CPU-GPU communication with MLB

35

allow the GPU application to occupy more memory banwidth. We have evalu-

ated MLB with NVIDIA GTX580 and Tesla K20C on i7-2600 and on E5-2690,

respectively. We executed a GPU application, stremcluster of rodinia bench-

mark suite[Rodinia] and used nvprof to measure GPU kernel time and CPU-

GPU communication time[Nvprof]. We replaced a soplex with a streamcluster

in workload mix1 on both i7-2600 and E5-2690 and compared MLB with naive

as shown in Figure 11. MLB decreased the CPU-GPU communication time in

both CPU platforms more than naive while having the kernel times in all cases

not changed. The result demonstrates that MLB can lead to improvements in

the performance of CPU-GPU communication via the mitigation of memory

contention when memory contenion is intensive.

0.6.5 Overhead

As can be shown in Figure 10, MLB did not improve the performance of

all applications. MLB carried out additional task migrations and preferred to

migrate non-memory intensive tasks to balance the CPU load when compared

with the naive Linux scheduler. Also, MLB increased LLC miss and reference

rate (under 5%). The additional and preferred migration and the increase of

LLC miss degraded the performance of non-memory intensive tasks. To ana-

lyze in detail, we measured the kernel time increased by MLB when the task

set in workload mix1 was executed on Xeon E5-2690 because MLB performed

the additional migration in kernel level. The kernel time increased by 1.3%

compared with the naive Linux scheduler. The increase ratio of the kernel time

is very similar to the performance degradation ratio of non-memory intensive

applications as shown in Figure 10 (a). However, the performance degradation

for non-memory intensive tasks is relatively negligible, being under 2%, when

compared with the performance gain for memory intensive applications.

36

0.7 Advantages

Merkel’s vector balancing & sorted co-scheduling method is the state of the

art method to mitigate the memory contention in the multitasking case. We

compared our method with Merkel’s because the goal of MLB is similar to that

of Merkel’s. MLB has three advantages over Merkel’s. First, they evaluated the

vector balancing & co-scheduling method on the outdated CPU platform. Most

of the current CPU platforms have the SMP architecture and bigger capacity

of LLC, but one of their platforms does not have unified LLC and the memory

controller is not integrated on the CPU platform (Q6600) and the other has

very small capacity of LLC (Opteron 2354). Their CPU platforms are different

in the current CPU platforms. MLB was evaluated on the two current CPU

platforms which have more capacity of LLC and higher maximum memory

bandwidth having the SMP architecture. In particular, Xeon E5-2690 is a very

high performance CPU platform. We showed that MLB could even mitigate the

contention for memory subsystems on the high performance CPU platform as

shown in Figure 8.

Second, Merkel’s method requires manipulating the time slice mechanism

of the default CPU scheduler in order to ensure ordered scheduling of tasks. In

contrast, MLB does not need to be modified in the time slice mechanism. Their

method distributes tasks to maximize the vector deviation of each runqueue

(we can regard vector as the intensity of memory subsystems). Both memory

intensive task and CPU intensive task co-exist in a runqueue. The task dis-

tribution is vector balancing. Sorted co-scheduling determines the order of the

tasks to be executed. Their method decides the task order to execute in each

runqueue and selected tasks are scheduled in the same epoch. That means that

the number of memory intensive tasks running in the same epoch is adjusted

37

Methods core 0 core 1 core 2 core 3

Vector

balancing

(0.9,0.1) (0.15,0.86) (0.2,0.8) (0.79,0.21)

MLB (0.9,0.86) (0.8,0.79) (0.2,0.1) (0.21,0.15)

Table 4 The result of comparison between MLB and vector balancing

and their method fixes the amount of simultaneous memory requests. It is sim-

ilar to MLB that their method limits the number of memory intensive tasks

running at the same time. But, their method needs to be modified in the time

slice mechanism of the default CPU scheduler. There are quite a lot of opti-

mization done for the fairness in the default Linux scheduler, Completely Fair

Scheduler(CFS)[CFS]. MLB can be implemented just by modifying the part of

periodical load balancing[Love]. Unlike sorted co-scheduling method, MLB can

be performed based on the fairness provided by CFS.

Lastly, MLB is more flexible in responding to dynamic task creation and ter-

mination rather than vector balancing & sorted co-scheduling. To demonstrate

the advantage of MLB, we present the result of comparison as shown in Table

4. Suppose that there are eight tasks executed on a four-core CPU. The vectors

of tasks are 0.9, 0.86, 0.8, 0.79, 0.21, 0.2, 0.15 and 0.1. The vector implies the

memory intensity. We can regard 4 tasks (0.9, 0.86, 0.8 and 0,79) as memory

intensive tasks. With vector balancing, the tasks are distributed as shown in the

first row of Table 5. To change the number of simultaneous memory requests,

the 0.9 task and 0.79 task are executed on core 0 and core 3 in the odd epoch.

In the even epoch, the 0.86 task and 0.8 task are respectively executed on core

1 and core 2 to prevent all memory intensive tasks from being scheduled in

the same epoch. Their method effectively changes the number of simultaneous

38

memory requests. But, what if the 0.21 task terminats? The task re-distribution

is not needed because the sum of task vectors is already the maximum. In the

odd epoch, it is no harm done because the number of memory intensive tasks

running at the same epoch is two and the vector sum is 2.04 (0.9 task on core

0, 0.15 on core 1, 0.2 on core 2 and 0.79 task on core 3). However, the number

is three and the sum is 2.55 in the even epoch (0.1 task on core 0, 0.86 task

on core 1, 0.8 task on core 2 and 0.79 on core 3). With MLB, the number of

memory intensive tasks scheduled at the same time is two and the worst vector

sum is 2.11 whichever task terminates.

What if the 0.05 task is created? It is not the maximum vector deviation of

each runqueue whichever the task is placed on. The 0.9 and 0.05 tasks should

be located on core 0, the 0.86 and 0.1 tasks on core 1, the 0.8 and 0.15 tasks on

core 2 and the 0.79, 0.21 and 0.2 tasks on core 3. Then, five task migrations are

needed to maximize the vector deviation. Merkel’s method can be effective when

the vector deviation of each runqueue is the maximum. In contrast, there is no

additional procedure whichever the task is placed on in the case of MLB. MLB

just evicts a non-memory intensive task from the target runqueues and takes

in a memory intensive task when the “treated” state is under the contention

degree.

In the server environment, task creation and termination can frequently

happen due to the dynamicity of resource demand. As seen in above examples,

Merkel’s method cannot be flexible in responding to dynamic task termination

and creation. The MLB mechanism is simpler than that of Merkel’s so that MLB

can deal with the dynamicity better than Merkel’s. MLB can immediately react

to mitigate memory contention as shown in Figure 7 (a).

39

0.8 Conclusions and Future Work

MLB is a new method to mitigate the contention for memory subsystems

and leads to noticeable performance improvements for memory intensive tasks.

MLB focuses on multitasking and dynamicity. Most of the existing methods

for mitigating the contention concentrate on the single-tasking case. In con-

trast, MLB targets the cases where the number of running tasks is larger than

the number of CPU cores, handling the cluster imbalance. In addition, MLB

is stronger in coping with dynamic task creation and termination than other

existing methods which consider the multitasking case like MLB. Based on the

memory contention and predicted number models, MLB can effectively deal

with the dynamicity.

However, there are currently some issues regarding MLB. First, MLB should

receive assistance from the global load balancer, which allocates tasks among

physical nodes. When there are too many memory intensive tasks in a physical

node, all methods including MLB to mitigate the memory contention cannot

be used effectively. We plan to design a global load balancer which can be

performed in harmony with MLB. Also, MLB should be extended in terms of

the fairness for the performance improved by MLB. In figure 10 (c), GemsFDTD

rarely benefits from MLB compared with other memory intensive tasks. There is

no abstraction to deal with the fairness of the mitigation for memory contention.

We plan to improve the fairness of MLB. Lastly, we plan to optimize MLB in

discrete GPU systems. Discrete GPUs share the bandwidth of main memory

with CPUs. Thus, the GPU can be affected by the memory contention. We will

extend MLB for the bigger systems which have NUMA architectures and are

equipped with multiple CPUs/GPUs.

40

Bibliography

[Zhuravlev et al] Sergey Zhuravlev, Sergey Blagodurov and Alexandra Fe-

dorova. Addressing Shared Resource Contention in Multicore Processors

via Scheduling. In ASPLOS, 2010.

[Zhuravlev et al] Sergey Zhuravlev, Juan Carlos Saez ,Sergey Blagodurov and

Alexandra Fedorova. Survey of Scheduling Techniques for Addressing

Shared Resources in Multicore Processors. In ACM Computing Surveys,

September 2011.

[Patterson] David Patterson. Latency lags bandwidth. In Communication of

the ACM, 2004.

[Williams et al] Samuel Williams, Andrew Waterman and David Patterson.

Roofline: An insightful Visual Performance model for multicore Architec-

tures. In Communication of the ACM, 2009.

[1000 scale chip] http://goo.gl/5lpY8, 2010.

[Natalie et al] Natalie Enright Jerger , Dana Vantrease and Mikko Lipasti.

An evaluation of server consolidation workloads for multi-core designs. In

IISWC, 2007.

41

[Jiang et al] Y. Jiang, X. Shen, J. Chen, and R. Tripathi. Analysis and Ap-

proximation of Optimal Co-Scheduling on Chip Multiprocessors. In PACT,

2008.

[Xie et al] Y. Xie and G. Loh. Dynamic Classification of Program Memory

Behaviors in CMPs. In Proc. of CMP-MSI, held in conjunction with ISCA,

2008.

[Chandra et al] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting In-

terThread Cache Contention on a Chip Multi-Processor Architecture. In

HPCA, 2005.

[Reiss et al] Charles Reiss , Alexey Tumanov , Gregory R. Ganger, Randy H.

Katz and Michael A. Kozuch. Heterogeneity and Dynamicity of Clouds at

Scale: Google Trace Analysis. In SOCC, 2012.

[Gupta et al] Abhishek Gupta, Osman Sarood, Laxmikant V Kale and Dejan

Milojicic. Improving HPC Application Performance in Cloud through Dy-

namic Load Balancing. In CCGrid, 2013.

[Gulati et al] Ajay Gulati, Anne Holle, Minwen Ji, anesha Shanmugananthan,

Carl Waldspurger and Xiaoyun Zhu. VMware Distributed Resource Man-

agement: Design, Implementation, and Lessons Learned. In VMware Aca-

demic Program.

[Kim et al] Shin-gyu Kim, Hyeonsang Eom and Heon Y. Yeom. Virtual ma-

chine consilidation based on interference modeling. In the journal of Su-

percomputing, April 2013.

[Hood et al] Robert Hood, Haoqiang Jin, Piyush Mehrotra, Johnny Chang,

Jahed Djomehri, Sharad Gavali, Dennis Jespersen, Kenichi Taylor, and

42

Rupak Biswas. Performance Impact of Resource Contention in Multicore

Systems. In IPDPS, 2010.

[Knauerhase et al] Rob Knauerhase, Paul Brett, Barbara Hohlt, Tong Li, and

Scott Hahn. Using OS Observations to Improve Performance in Multicore

Systems. In Micro, May 2008.

[Merkel et al] Andreas Merkel, Han Stoess and Frank Bellosa. Resource-

conscious Scheduling for Energy Efficiency on Multicore Processors. In

EuroSys, 2010.

[Novakovic et al] Dejan Novakovic, Nedeljko Vasic, Stanko Novakovic, Dejan

Kostic , and Ricardo Bianchini. DeepDive: Transparently Identifying and

Managing Performance Interference in Virtualized Environments. In ATC,

2013.

[Muralidhara et al] Sai Prashanth Muralidhara, Lavanya Subramanian, Onur

Mutlu, Mahmut Kandemir and Thomas Moscibroda. Reducing Memory

Interference in Multicore Systems via Application-Aware Memory Channel

Partitioning. In MICRO, 2011.

[Mar et al] Jason Mars, Lingjia Tang, Rober Hundt, Kevin Skdron and Mary

Lou Soffa. Bubble-Up: Increasing Utilization in Modern Warehouse Scale

Computers via Sensible Co-locations. In MICRO, 2011.

[Lin et al] Wei-Fen Lin,Reinhardt S.K and Burger D. Reducing DRAM laten-

cies with an integrated memory hierarchy design. In HPCA, 2001.

[Moscibroda et al] T. Moscibroda and O. Mutlu. Memory performance attacks:

denial of memory service in multi-core systems. In SS, 2007.

43

[Ahn et al] Jeongseob Ahn, Changdae Kim and Jaeung Han. Dynamic Virtual

Machine Scheduling in Clouds for Architectural Shared Resources. In Hot-

Cloud, 2012.

[Seo et al] Dongyou Seo, Shin-gyu Kim, Hyeonsang Eom and Heon Y. Yeom.

Performance Evaluation of CPU-GPU communication Depending on the

Characteristic of Co-Located Workloads. International Journal on Com-

puter Science and Engineering, May 2013.

[Jablin et al] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P.

Johnson, Stephen R. Beard and David I. August. Automatic CPU-GPU

Communication Management and Optimization. In PLDI, 2011.

[SPEC CPU 2006] http://www.spec.org/cpu2006/.

[CFS] https://www.kernel.org/doc/Documentation/scheduler/sched-design-

CFS.txt.

[IntelGuide] Intel(R) 64 and IA-32 Arhcitectures Software Develper’s Manual,

Volume 3B. System Programming Guide, Part 2.

[AMDGuide] BIOS and Kernel Developer’ s Guide (BKDG) for AMD Family

15h Models 00h-0Fh Processors.

[Stream] http://www.cs.virginia.edu/stream/.

[Memory bandwidth] http://http://software.intel.com/en-

us/articles/detecting-memory-bandwidth-saturation-in-threaded-

applications.

[CUDA] CUDA Programming Model Overview, NVIDIA techncal report.

44

[Rodinia] https://www.cs.virginia.edu/ skadron/wiki/rodinia/index.php/

Main_Page.

[Nvprof] http://docs.nvidia.com/cuda/profiler-users-guide/index.html.

[Love] Robert Love, Linux Kernel Development, Third Edition.

[PCM] http://software.intel.com/en-us/articles/intel-performance-counter-

monitor-a-better-way-to-measure-cpu-utilization.

45

요약

현재 대부분의 CPU는 단일 코어가 아닌 Symmetric MultiProcessing(SMP)

구조로 발전하고 있다. 이 SMP구조는 다수의 물리적인 코어에 의해 말단 캐시

와 내장형 메모리 컨트롤러가 공유되는 구조를 가진다. 허나 SMP구조에서는

이런한 공유자원에 대한 물리적인 코어간의 경쟁은 상당한 성능 저하를 이끌 수

있다. 다양한 방법들이 공유자원에 대한 경쟁을 완화시키기 위해 고안 되었으며

대부분의 방법들은 하나의 태스크가 하나의 물리적인 코어를 독점한다는 것을

가정하고 태스크의 특성에 따라서 어떤 태스크 끼리 자원을 공유할지 결정하는

방법이다. 하지만 현재의 서버 환경에서는 태스크의 생성 주기와 자원에 대한

요구가 굉장히 역동적 (dynamic)이기 때문에 하나의 태스크가 물리적인 코어를

독점할 수 없는 상황이 발생하여 다수의 태스크가 하나의 코어에서 스케줄을

기다리는 멀티 태스킹 상황이 발생한다. 본 논문에서는 기존의 자원 경쟁 완화

기법들과 비교 했을 때 멀티 태스킹 상황을 고려하고 역동적인 자원 요구에 강

점을 보이는 Memory-aware Load Balancing(MLB)기법을 제시하였다. MLB는

단순하면서 효과적인 메모리 경쟁모델을 이용하여 동적으로 공유자원의 경쟁을

감지하고 CPU내부적인 태스크 이주를 통해서 자원 경쟁을 완화시키는 기법이

다. MLB를서버급(Xeon E5-2690) CPU와데스크탑(i7-2600) CPU에서평가를

하였으며 MLB가 이 두 CPU 모두에서 자원 경쟁을 완화시켜 메모리 집약적인

프로그램의 성능 향상 (최적의 경우 15%)을 이끌 수 있다는 것을 확인하였다.
추가적으로, 메모리 대역폭을 이용하여 CPU와 GPU간의 통신이 이루어 지는데

MLB는 메모리 경쟁을 완화시키기 때문에 이 CPU와 GPU간의 통신의 성능

향상까지 이끌 수 있었다.

주요어: 서울대학교, 전기.컴퓨터공학부, 졸업논문

학번: 2012-20784

46

Acknowledgements

이 논문을 작성하는데 도움을 주신 모든 분들께 감사의 말씀 드리겠습니다.

언제나 날카로운 지적으로 저의 연구방향을 지도해주신 염헌영 교수님께 감사

드립니다. 감히 말씀드리지만 교수님은 제가 만나뵌 엔지니어 중 최고의 엔지니

어 이십니다. 연구를 하는데 있어서 아낌없는 지원을 해주신 저의 지도 교수님

엄현상 교수님께 감사의 말씀 드립니다. 2년동안 교수님께서 저에게 주신 신뢰

잊지 못할 것입니다. 제가 이 논문을 작성하는데 가장 영향력을 주신 신규형님께

감사드립니다. 무심한듯 하시면서도 저를 챙겨주시고 연구 하는데 아이디어를

주신 신규형, 형이 있어 제가 이 논문을 완성할 수 있었습니다. 감사합니다. 같은

방에 있으면서 때론 장난도 치면서 같이 열심히 연구실 생활을 한 명원이형,

지웅이, 윤희 당신들이 있어서 연구실에서 웃을 수 있었습니다. 감사합니다. 동

기로 들어와서 많은 것들을 함께한 민영이 너가 있어서 혼자 연구실 생활 한다는

느낌을 받지 않은거 같아. 고마워. 그리고 인순누나, 영진이형, 재우형, 찬호,

세훈이형, 신웅형, 성구형, 설웅형, 성재형, 용석이형, 시봉이형, Pablo, 내영이,

계신이, 문봉이, 한울이, 다혜까지 도움을 주신 분들께 감사 말씀 드리겠습니다.

마지막으로, 저를 지금까지 키워준 부모님, 누나 감사드리고 이 논문이 완성된

것을 알게 된다면 기뻐할 사람에게 이 논문을 바칩니다. 감사합니다.

47

	0.1 Introduction
	0.2 Related Work
	0.3 Motivations
	0.4 Memory Contention Modeling
	0.4.1 Memory contention level
	0.4.2 The correlation between memory contention level and performance

	0.5 The Design and Implementation of Memory-aware Load Balancing(MLB)
	0.5.1 Target runqueue and non target runqueue lists
	0.5.2 Predicted number
	0.5.3 Memory-aware Load Balacing algorithm

	0.6 Evaluation
	0.6.1 Dynamicity
	0.6.2 Mitigation
	0.6.3 Performance
	0.6.4 Additional benefit
	0.6.5 Overhead

	0.7 Advantages
	0.8 Conclusions and Future Work
	Bibliography
	요약
	Acknowledgements

<startpage>11
0.1 Introduction 1
0.2 Related Work 4
0.3 Motivations 7
0.4 Memory Contention Modeling 12
 0.4.1 Memory contention level 12
 0.4.2 The correlation between memory contention level and performance 14
0.5 The Design and Implementation of Memory-aware Load Balancing(MLB) 16
 0.5.1 Target runqueue and non target runqueue lists 19
 0.5.2 Predicted number 20
 0.5.3 Memory-aware Load Balacing algorithm 22
0.6 Evaluation 26
 0.6.1 Dynamicity 26
 0.6.2 Mitigation 29
 0.6.3 Performance 32
 0.6.4 Additional benefit 33
 0.6.5 Overhead 36
0.7 Advantages 37
0.8 Conclusions and Future Work 40
Bibliography 41
¿ä¾à 46
Acknowledgements 47
</body>

