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Abstract

This thesis presents a novel data-driven approach to single channel speech en-

hancement employing Gaussian process (GP) and relevance vector machine (RVM).

The residual gain is defined as the difference between the optimal gain and that ob-

tained from the minimum mean square error log-spectral amplitude (MMSE-LSA)

estimator, the latter being one of the most popular spectral enhancement approaches.

GP and RVM are applied to model and learn the relationship between the input fea-

tures, which are the a priori and a posteriori signal-to-noise ratios (SNRs), and the

outputs corresponding to the residual gains. The residual gain is predicted for each

frequency bin separately using a different GP or RVm model. The proposed approach

consists of two stages. In the first stage, the gain of the MMSE-LSA estimator is cal-

culated in conjunction with the SNR features. In the second stage, the residual gains

are estimated through GP or RVM and they are used to further enhance the output

of the MMSE-LSA module. Experimental results show that the proposed approach

produces better speech quality than not only the MMSE-LSA enhancement module

but also the other data driven technique. We also extend our setting to the multi-task

case where the residual gain is estimated jointly for a group of frequency bins. As

expected, in the multi-task case, the enhancement performance is better than the case

where the residual gain is estimated for each frequency bin using GP or RVM.

Keywords: Speech enhancment, Data-driven process, Gaussian process (GP), Rele-

vance vector machine (RVM), Multi-task GP
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Chapter 1

Introduction

Statistical model-based speech enhancement techniques have been widely ap-

plied to enhance the quality and intelligibility of the input speech corrupted by back-

ground noises [1, 2, 3]. Recently, a number of data-driven approaches have been pro-

posed to further improve the performance of the traditional statistical model-based

techniques [4, 5, 6]. For example, Fingscheidt et al. [5] proposed applying a look-up

table indexed by the a priori and a posteriori signal-to-noise ratio (SNR) values to

determine the weighting rules for noisy speech spectral amplitudes. Jin et al. [6] ap-

plied a codebook to predict the residual gain which they defined as the log-difference

between the optimal gain and the gain derived from a statistical model-based algo-

rithm. Park et al. [7] proposed a time domain approach employing Gaussian process

(GP) regression to estimate the clean speech samples based on the past and present

noisy samples.

In most of the proposed data-driven approaches, the a priori and a posteriori

SNRs, which turn out to be important parameters in determining the gain in statisti-

cal model-based speech enhancement, are used as input features. Based on this, we
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can treat the problem of finding an optimal gain in a data-driven speech enhancement

technique as a regression task where the gain is predicted conditioned on the given a

priori and a posteriori SNRs. In this respect, the conventional statistical model-based

technique can be thought of as a feature extractor for the subsequently applied re-

gressors.

In this work we present a data-driven approach towards speech enhancement

which is based on predicting the optimal gain as a function of the SNRs. In the next

section we will show that the task of finding the optimal gain is equivalent to that of

finding the residual gain, which we define as the difference between the optimal gain

and the gain derived from a statistical model-based algorithm. We call the latter as

the preliminary gain. Our problem statement is thus reformulated as predicting the

residual gain using the SNRs as input features.

Our proposed approach consists of two stages. In the first stage, the feature vec-

tor relevant to the SNRs is extracted and the preliminary gain is calculated. In the

second stage, the residual gain is predicted based on the feature vector extracted

from the first stage. The final gain is then obtained by adjusting the preliminary gain

derived from the first stage with the predicted residual gain. For predicting the resid-

ual gain, we adopt two prevalent regression techniques: GP [9] and relevance vec-

tor machine (RVM) [10] which are powerful supervised learning approaches exten-

sively used for regression problems in a wide range of areas [19, 20]. Both methods

are kernel-based Bayesian regression algorithms which allow the data to be mapped

into a high-dimensional space thereby capturing the relationship between the input

and output variables in a more efficient manner. Experimental results show that the

proposed method produces better speech quality than the conventional enhancement

techniques. We also extend the our setting to the multi-task case where the residual

gain is estimated jointly for a group of frequency bins. As expected, in the multi-task

case, the enhancement performance is better than the case where the residual gain is
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estimated for each frequency bin using GP or RVM.
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Chapter 2

Residual Gain based Speech
Enhancement System

2.1 Residual Gain

Let X(k, l), Y (k, l) and D(k, l) denote the short term Fourier transform (STFT)

coefficients of the clean speech, noisy speech and the background noise, respectively

for a frequency index k and time-frame l. If we assume that the noise is additive and

uncorrelated with the clean speech, then we have

Y (k, l) = X(k, l) +D(k, l). (2.1)

The conventional statistical model-based speech enhancement techniques assume

a family of parametric models for the distribution of the clean speech and noise spec-

tra. They then find a gain Ĝ(k, l) which is optimal under some criterion such that the

clean speech estimate X̂(k, l) can be derived by

X̂(k, l) = Ĝ(k, l)Y (k, l). (2.2)
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The minimum mean square error log-spectral amplitude (MMSE-LSA) estimator

[1] is one such statistical approach which is most popular. The approach is based on

minimizing the mean-square error of the log-spectra, assuming a Gaussian statistical

model for both speech and noise. The gain in this case is given by

Ĝ(k, l) =
ξ(k, l)

1 + ξ(k, l)
exp

(
1

2

∫ ∞
ν(k,l)

e−t

t
dt

)
(2.3)

where ν(k, l) = γ(k,l)ξ(k,l)
1+ξ(k,l) with ξ(k, l) and γ(k, l) denoting the a priori and a posteri-

ori SNRs, respectively. It should be noted that in (2.3), the gain is given as a function

of ξ(k, l) and γ(k, l). Even though this estimator is optimal in the mean square sense,

its optimality can be easily broken due to mismatches and inaccuracies in distribution

modeling, noise estimation or SNR estimation.

Let us call the gain Ĝ(k, l) as the preliminary gain. Also let G(k, l) denote

the optimal gain such that the actual clean speech spectrum X(k, l) turns out to be

X(k, l) = G(k, l)Y (k, l). (2.4)

As mentioned previously, due to the modeling and estimation inaccuracies, Ĝ(k, l)

in (2.3) usually deviates from G(k, l). Let the residual gain H(k, l) be defined as

H(k, l) = G(k, l)− Ĝ(k, l). (2.5)

H(k, l) thus measures the deviation of Ĝ(k, l) from G(k, l). A positive H(k, l) im-

plies that Ĝ(k, l) under-estimates the corresponding speech component, while a neg-

ative H(k, l) results in an over-estimated speech component.

This is depicted in Figure 2.1 which shows the spectrograms of a clean utterance,

the noisy utterance enhanced by the MMSE-LSA estimator at 15 dB white noise en-

vironment and the corresponding residual gain matrix thresholded at zero. The bright

areas in the residual gain matrix depict a positive value of the residual gain while
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Figure 2.1 Spectrogram of a clean utterance (left). Spectrogram of the noisy utterance

enhanced by MMSE-LSA estimator at 15 dB white noise environment (middle). The

corresponding residual gain matrix thresholded at zero (right).

the dark areas depict a negative residual gain. From the figure we can observe that

for the low and mid frequency bins, the MMSE-LSA estimator under-estimates the

speech components and speech distortion occurs which is why the corresponding

residual gain is mostly positive. In the high frequency bins residual noise exists in the

MMSE-LSA enhanced speech due to which the residual gain values in these bins are

mostly negative.

If we combine (2.4) and (2.5), X(k, l) can be expressed in terms of H(k, l)

through the following relation

X(k, l) = [H(k, l) + Ĝ(k, l)]Y (k, l). (2.6)

To estimate X(k, l), the task of predicting G(k, l) thus reduces to the task of predict-

ing H(k, l). The approach thus being an error-driven approach has 2 stages : In the

first stage we estimate the preliminary gain using the conventional statistical tech-
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nique while in the second stage we estimate the residual gain and finally combine

these two gains using (2.6) to estimate the clean speech.

In this work we regard the task of estimating the residual gain as a regression task

while treating the a priori and a posteriori SNRs as input features. We use regression

to predict the residual gain rather than deriving a closed form expression for the same

because the latter involves several modeling assumptions. The regression technique

on the other hand does not make much assumptions about the distribution of speech

and noise data and finds the unknown function that best describes the relationship

between the residual gain and the SNR features. The regression techniques we use

are GP and RVM regression.

2.2 Feature Extraction and Pre-processing

The feature extraction process is depicted in Figure 2.2. To construct the feature

vector z̃(k, l) corresponding to a point (k, l) in the frequency-time grid, the a priori

and a posteriori SNRs are each collected over a rectangular spectro-temporal window

which incorporates frequency and temporal components with their respective indexes

varying from k−Mw to k+Mw and l−Nw+1 to l as in [6]. This renders z̃(k, l) as

z̃(k, l) =
[
ξ(k −Mw, l −Nw + 1) . . . ξ(k −Mw, l)

. . . ξ(k +Mw, l −Nw + 1) . . . ξ(k +Mw, l)

γ(k −Mw, l −Nw + 1) . . . γ(k −Mw, l)

. . . γ(k +Mw, l −Nw + 1) . . . γ(k +Mw, l)
]T (2.7)

where the dimension of z̃(k, l) is 2(2Mw + 1)Nw and the superscript T denotes ma-

trix or vector transpose.

The grouping of the neighboring SNR features in (2.7) takes into account the high

spectral and temporal correlations inherent in speech signals. The components of the

vector z̃(k, l) are thus highly correlated. This allows us to further reduce the dimen-
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l-N+1     … l-1                       l

k+M
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k-M

…
…

…

…

Figure 2.2 Feature extraction process for a point (k,l) in the time-frequency grid. The

a priori and a posteriori SNR features are collected over a rectangular window of size

(2Mw + 1)Nw.

sion of z̃(k, l) without much loss of information leading to a comparatively compact

statistical representation. For this, we apply principal component analysis (PCA) to

{z̃(k, l)} which results in the compact features {z(k, l)} with lower dimensionality.

In this work, the dimension is reduced from 2(2M + 1)N to d which determines the

input dimensionality of the GP. In the remaining part of this paper, for simplicity, we

will replace the notations z(k, l) and H(k, l) with zkl and Hkl respectively.

2.3 Overall System

Finally, the proposed speech enhancement system is described using a block di-

agram in Figure 2.3. For each frequency bin, the SNR feature vectors of the training

examples are clustered into Nc clusters in the training phase. This is done by using
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Figure 2.3 A block diagram of the proposed speech enhancement system using GP

and RVM.

Vector Quantization (VQ). Then for each cluster, a regressor is trained by treating the

residual gain values corresponding to the SNR feature vectors in the cluster, as the

target for prediction. During the enhancement phase, a test feature vector for each

frequency bin is first assigned to one of the Nc clusters in the same way as the train-

ing data is clustered. Finally, the corresponding residual gain is predicted by using

the regressor belonging to the assigned cluster.

In our work, the values of Mw and Nw in (2.7) were respectively set as 1 and 5,

which resulted in 30-dimensional feature vectors. This original dimension was further

reduced to d = 10 with the help of PCA. These feature vectors for each frequency

bin were then clustered into Nc = 64 clusters using VQ technique. In the cluster-

ing technique using VQ, the codebook of Nc codewords was learned and the SNR

feature vectors for each frequency bin were clustered by applying the Linde-Buzo-

Gray(LBG) algorithm.

Let Dm
k = {(zmki, Hm

ki ) | i = 1, . . . , N} denote the training set corresponding to

9



the kth frequency bin assigned to the mth cluster. Both inputs and outputs are aggre-

gated into vectors Zmk = [zmk1 · · · zmkN ]T and Hm
k = [Hm

k1 · · ·Hm
kN ]

T , respectively. We

assume, without loss of generality, that during the enhancement phase the test feature

z∗kl is assigned to the mth cluster. This implies that the GP or RVM trained for the

mth cluster is used to predict the test output H∗kl. In the following chapters dedicated

to the review of GP and RVM, we will denote the input Zmk by X = [x1 · · ·xN ]T

and the output Hm
k by Y = [y1 · · · yN ]T for a better understanding of each method

described using more general terminology.
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Chapter 3

Speech Enhancement using Gaussian
Process (GP) Regression

3.1 GP Model

Assuming that Dm
k is drawn from a noisy process, the signal model using GP is

defined as

yi = f(xi) + ηi (3.1)

where ηi is a zero-mean Gaussian random variable with variance σ2 and f(·) is an

unknown latent function. A GP imposes a Gaussian prior over the unknown latent

function f . Using the noise term, the joint distribution of the training output Y and

the latent function value f∗ at the test input x∗ under the GP prior can thus be written

as  Y
f∗

 ∼ N

0,

K (X,X) + σ2I K(X,x∗)

K(x∗,X) K(x∗,x∗)

 (3.2)

where I denotes the identity matrix and the N ×N matrix K(X,X) is the matrix of

covariances evaluated at all pairs of training examples X. Each element of K(X,X)

11



is given by

(K(X,X))ij = Cov(f(xi), f(xj))

where Cov(·, ·) indicates the covariance. In a similar way, the N -length row vector

K(x∗, X) represents the covariance between x∗ and X.

3.2 Predictions using GP

The GP predicts the function value for x∗ by performing Bayesian inference as

follows:

µ∗ = K(x∗,X)
[
K
(
X,X

)
+ σ2I

]−1
Y (3.3)

where µ∗ is the mean of the posterior distribution of f at x∗. The above equation can

also be written as

σ∗ =
N∑
i=1

αiK(x∗,xi) (3.4)

where α =
[
K
(
X,X

)
+ σ2I

]−1
Y. Thus another way to look at this equation is

that the posterior mean is given by the linear combination of N kernel points, each

centered on a training point.

The test output y∗ corresponding to the input x∗ is then given by y∗ = µ∗. The

GP also predicts the covariance σ∗ of the posterior distribution of f at x∗ which is

given by

σ∗ = K(x∗,x∗)−K(x∗,X)
[
K
(
X,X

)
+ σ2I

]−1
K(X,x∗) (3.5)

A GP is completely specified in terms of its mean and covariance functions. The

mean function as described above is usually assumed to be zero without causing

serious performance degradation. For the covariance function, we apply an isotropic

12



squared exponential kernel given by

Cov(f(x), f(x′)) = δ2 exp

(
−(x− x′)T (x− x′)

2l2

)
(3.6)

where we need to specify two hyper-parameters: the signal variance δ and the scale

parameter l. It should be noted that the scale parameter is the same for all the dimen-

sions of the feature vector which avoids over-fitting for high dimensional features.

3.3 GP training

The hyper-parameters θ = [σ δ l] are trained by minimizing the negative log

marginal likelihood of the training data, i.e. − log p(Y|X,θ) which is given by

− log p(Y|X,θ) = 1

2
YTK−1Y +

1

2
log |K|+ N

2
log 2π (3.7)

where K = K
(
X,X

)
+σ2I and | · | denotes the matrix determinant. The three terms

of the marginal likelihood in 3.7 have readily interpretable roles: the first term in-

volves the data targets and is called the data fit term, the second term is the negative

complexity penalty term depending only on the covariance function and the third term

is a normalization constant.

The scale parameter l has a direct effect on the model complexity. A larger value

of l results in the covariance function having a smaller curvature as the exponential

term diminishes at a slower rate. Thus the model complexity decreases as it looses its

flexibility and vice-versa. If we thus observe the effect of the three terms of the log

marginal likelihood on l, we can observe from (3.7) that the data-fit term decreases

while the negative complexity penalty term increases with l. This is depicted in Fig-

ures 3.1, 3.2 and 3.3 where the prediction is observed for three different values of l.

From the figures we can observe that when l is too short then the GP prediction is

more wiggly while if l is too big then the prediction is less flexible.

Intuitively this also makes sense because with increase in l the model becomes

13



less flexible which means that the model cannot fit the data well thereby resulting in

the decrease in the data-fit term. On the other hand, a less flexible model implies a

less complex model which has a low complexity penalty which results in the negative

complexity penalty term being big.

In order to find the optimal hyper-parameters by maximizing the marginal like-

lihood, we seek the partial derivatives of the marginal likelihood with respect to the

hyper-parameters. This involves inverting the K matrix which has a O(N3) com-

plexity unfavourable for large data-sets. It is this that the clustered approach comes

handy. As explained earlier, we cluster our data and model a GP for each cluster.

Thus effectively the number of training examples presented to the GP of 1 cluster is

quite small and the computational burden is taken care of.
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Figure 3.1 GP prediction with a scale parameter l = 0.047.
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Figure 3.2 GP prediction with a scale parameter l = 1.832.

3.4 Experimental Setup

In this work, we implemented the GP algorithm using the GPML toolbox [16],

which learns the GP hyper-parameters θ and computes the posterior mean. The GP

training in the toolbox was performed by maximizing the marginal likelihood us-

ing the method of conjugate gradients. The number of kernel functions involved is

equal to the number of training examples N . The computational complexity for the

a posteriori mean prediction is thus O(N) provided K is computed already. The

experimental results obtained are presented in the following chapter.
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Figure 3.3 GP prediction with a scale parameter l = 36.817.
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Chapter 4

Speech Enhancement using Relevance
Vector Machine

4.1 RVM Model

The RVM assumes a finite linear model which is given by

yi =
L∑
j=1

wjφj(xi) + ηi, i = 1, . . . , N (4.1)

where {φj : Rd → R} are the basis functions, with L being their total number, wj

is the weight associated with each φj and ηi is an i.i.d. noise with variance σ2. As

described in [10], an independent Gaussian prior is assumed on each wj

p(wj |αj) = N
(
0, α−1j

)
(4.2)

where αj means the precision (inverse variance) for wj . It is interesting to observe

that a large value of αj (close to ∞) implies that the corresponding wj resets to 0

as the corresponding inverse variance approaches 0 thereby modifying the Gaussian

prior to be an impulse-like function at 0 in accordance to the definition in 4.2.
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4.2 RVM training

Optimizing the marginal likelihood p(Y|αj , σ2) with respect to the {αj} leads

to a significant number of the precision values tending towards infinity which ren-

ders the corresponding weights to be confined to zero and thus enables us to dis-

card the corresponding basis functions from the model. This scheme is often called

the automatic relevance determination (ARD) in which the basis functions that do

not contribute to explaining the data are removed and the resulting model becomes

sparse.

4.3 Predictions using RVM

As shown in [8], the RVM is a special case of GP where the covariance function is

given by K(x,x′) =
L∑
j=1

1
αj
φj(x)φj(x

′). In our work, we specify the basis function

by means of a kernel representation as follows:

φj(x) = exp

(
−
(
x− xj

)T (
x− xj

)
2l2

)
(4.3)

and set L to N , the total number of training data.

4.4 Experimental Setup

In this work we implemented the RVM using the code obtained from http://

www.miketipping.com/sparsebayes.htm. In the case of RVM, the number of kernel

functions involved could be reduced to the number of relevance vectors M which is

always a fraction of N . Thus the mean prediction in this case is faster than that of GP

with computational complexity given by O(M). During our experiments, we found

that the average number of relevance vectors per RVM model was around 3 % of the

training examples. The experimental results obtained are presented in the following

chapter.
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Chapter 5

Enhancement using Multi-task
Gaussian Process

5.1 Introduction

In the previous chapters the residual gain for each frequency bin was estimated

independently using a regressor for each frequency bin. Since the speech signals

posses spectral correlations it might be beneficial to jointly estimate the residual gains

for a group of frequency bins that are highly correlated. Exploring the issue of jointly

estimating residual gains is what we explore in this chapter.

5.2 Multi-Task Learning

Multi-task learning (MTL) is an approach to machine learning that learns a prob-

lem together with other related problems at the same time, using a shared representa-

tion. This often leads to a better model for the main task, because it allows the learner

to use the commonality among the tasks. Therefore, multi-task learning is a kind of

inductive transfer. The goal of MTL is to improve the performance of learning algo-
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rithms by learning classifiers for multiple tasks jointly. This works particularly well

if these tasks have some commonality. The performance improvement achieved by

learning the tasks together can be attributed towards the fact that as the tasks share

some ’correlation’ with each other, the training examples of one task play a role in

deciding the decision region of the other task, for the better. Thus effectively, the

number of training examples ’seen’ by one task is greater than the number of training

examples assigned to it as the examples of other tasks are also involved in deciding

the decision region of the current task.

In this work, we carry forward the idea of multi-task learning to jointly estimate

the residual gain for a group of frequency bins rather than estimating the residual

gain for each frequency bin independently. How to group the frequency bins such

that the residual gains for the corresponding bins within a group have a higher degree

of correlation remains an interesting problem which is discussed in the nest section.

5.3 Frequency Bin Grouping

In order to measure the degree of correlation between the residual gains of the

different frequency bins, we collected the residual gain data for the clean speech cor-

rupted by white noise at 5 and 10 dBs. The clean speech data was obtained from all

the speakers in the TIMIT database. Thus the total noisy data obtained after corrupt-

ing the clean speech with white noise at the above mentioned dBs amounted to 10

hours of data. Figure 5.1 shows the correlation coefficient between the residual gains

of the frequency bins varying from 1 to 257 as the DFT size is 512.

From the figure we can see that the adjacent frequency bins are highly correlated

while the bins far off are loosely correlated. Thus we use this knowledge to group the

frequency bins for multi-task learning. In our frequency grouping scheme, we group
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Figure 5.1 Correlation coefficient between the residual gains of the frequency bins

varying from 1 to 257. The FFT size is 512.

3 adjacent bins into one single group. This can be expressed as

Gi = {3i− 1, 3i, 3i+ 1} (5.1)

where Gi is the set of frequency bins denoting the ith group. The residual gains of

the frequency bins within each group is estimated jointly. It could be noted that the

grouping starts from bin number 2 to bun number 357 and the first bin is left out.

Thus we have 85 multi-task regressor models (256 frequency bins) and each multi-

task regressor estimates the residual gain for the corresponding group.
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5.4 Multi-Task GP

For the multi-task regression using GP, the authors in [26] assume the tasks share

the same input features.

5.4.1 Model

Given the input set X of N inputs X = [x1, . . .xN ] the complete set of re-

sponses for M tasks is defined as y = [y11, . . . , yN1, . . . , y1M , . . . yNM ]T , where yil

is the response for the lth task on the ith input xi. The GP prior is defined over the

latent function as follows

Cov
(
fl(x), fk(x

′)
)
= Kf

lkk
x(x,x′) (5.2)

yil ∼ N (fl(xi), σ
2
l ) (5.3)

where Kf is a positive semi-definite (PSD) matrix that specifies the inter-task simi-

larities, kx is a covariance function over inputs, and σ2l is the noise variance for the

lth task. Here kx is the correlation function same as the covariance function defined

in the GP section. The matrix Kf on the other hand is a symmetric positive definite

matrix and is parametrized differently.

5.4.2 Inference

Using standard GP formulae, the predictive mean µ∗ is found at x∗ as

µ∗ = (kfl ⊗ k
x
∗)
T (Kf ⊗Kx +D ⊗ I)−1y (5.4)

where ⊗ denotes the Kronecker product, kfl selects the lth column of Kf , kx∗ is the

vector of covariances between x∗ andX ,Kx is the matrix of covariances between all

pairs of training points, D is an M ×M diagonal matrix in which the (l, l)th element

is σ2l
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5.4.3 Experimental Setup

In this work, we implemented the Multi-task GP algorithm using the code pro-

vided by the authors, which learns the GP hyper-parameters θ and computes the

posterior mean. The computational complexity for the a posteriori mean prediction is

thus O(MN) provided the inverse is computed already.
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Chapter 6

Experimental Results

In order to evaluate the performance of the proposed approaches, we performed

experiments on speech enhancement where the clean speech data were drawn from

TIMIT database [12]. For training, we used utterances spoken by 50 speakers (25

male and 25 female) and those from other 10 speakers were used for performance

evaluation. Waveforms were sampled at 16 kHz and a Hamming window of length

512 samples (32 ms) was applied with a frame shift of 128 samples (75 % overlap).

In order to compute the preliminary gain and extract SNR features, we applied the

MMSE-LSA algorithm presented in [1]. For the purpose of performance comparison,

we also implemented the VQ-based speech enhancement algorithm which is a data-

driven technique proposed in [6].

For the first phase of our experiments, we considered the case of ‘matched condi-

tions’ where the noise types of the training and test data are the same. Three different

noise types, taken from Noisex92 database [11] were used in this experiment: white

Gaussian, F16 and factory noises. During training, for each of the three noise types

the clean speech signals in the training database were artificially degraded by the ad-
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ditive noise while varying the SNR in the range (-10 dB, 30 dB). The total length of

the training data for each noise type was 5364 seconds.

Performance was measured in terms of four metrics: segmental SNR (SegSNR)

[14] improvement, perceptual evaluation of speech quality (PESQ) [15], log-likelihood

ratio (LLR) and cepstral distance (CD) [17]. Figures 6.1 and 6.2 plot the four metrics

obtained at four different SNR levels: -5, 0, 5 and 10 dBs. In this experiment, we

compared the performances of four different approaches: MMSE-LSA, VQ-based

(VQ), GP-based (GP) and RVM-based (RVM) speech enhancement algorithms.

From the results shown in Figures 6.1 and 6.2, we can see that the proposed GP

and RVM methods produced better metric scores than MMSE-LSA and VQ across

all the SNRs with the GP method producing the best results. Especially in high SNR

conditions, our proposed methods showed significant improvements over the com-

pared baseline methods.

Figure 6.3 shows example spectrograms of noisy speech and speech enhanced

by MMSE-LSA, VQ and GP methods. The enhancement is performed in white noise

environment at 10 dB SNR. As seen in the figure, the speech enhanced by GP method

has lower residual noise than the speech enhanced by MMSE-LSA and VQ methods.

In the second phase of our experiments, we considered the case of ‘mismatched

conditions’, where the noise types of training and test data are different. During train-

ing the models, we used the speech data corrupted only by the white noise. The test

data for enhancement were obtained by degrading the clean speech signals with four

types of noises different from the white noise: F-16, factory, airport and train noises.

The last two types of noises were taken from Aurora -2 database [13].

In this experiment we compared the PESQ scores and Segmental SNR improve-

ment of the input noisy speech with those of the enhanced speech obtained from the

MSE-LSA, VQ, GP and RVM approaches. Figure 6.4 shows the average PESQ scores

for the four different noise types while Figure 6.5 shows the average Segmental SNR
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improvement results for the four different noise types. From the results, we can see

that the proposed methods produce better speech quality as compared to the baseline

approaches. Overall, it can be concluded that the GP and RVM methods outperform

the other enhancement approaches in mis-matched conditions.

In the third and final phase of our experiments, we explored the effect of the form

of the residual gain function on the enhancement performance. The residual gain in

our work is the difference between the optimal and the statistical gain in the linear-

domain. The residual gain in [6] is defined as the difference between the optimal and

the statistical gain in the log-domain.

To evaluate the sensitivity of the performance to residual gain being log or linear,

we applied GP and VQ methods to predict both the log and linear residual gain. The

speech enhanced by estimating these log and linear residual gains using GP had very

similar PESQ scores. The same was observed for the speech files enhanced by the

VQ method. Thus the residual gain type did not affect the performance substantially.

In these comparisons, we used white noise for both the training and testing phases.
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Figure 6.1 Average SegSNR improvement (upper left) and PESQ (upper right) results

for MMSE-LSA, VQ, GP and RVM methods in the matched case setting at different

SNRs across three noise types.
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Figure 6.2 Average LLR (bottom left) and CD (bottom right) results for MMSE-LSA,

VQ, GP and RVM methods in the matched case setting at different SNRs across three

noise types.
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Figure 6.3 Example spectrograms of Noisy speech (upper left) and speech enhanced

by MMSE-LSA (upper right), VQ (bottom left), and GP methods (bottom right). The

enhancement is performed in white noise environment at 10 dB SNR.
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Figure 6.4 PESQ results in the mis-matched case setting at different SNRs for (a)

F-16 (b) Factory (c) Airport (d) Train noise types.
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Figure 6.5 Segmental SNR improvement results in the mis-matched case setting at

different SNRs for (a) F-16 (b) Factory (c) Airport (d) Train noise types.
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Chapter 7

Conclusion and Future Work

In this thesis, we have proposed a novel data-driven approach for speech enhance-

ment by treating the estimation of the residual gain as a regression problem. GP and

RVM regression models are employed to estimate the residual gain based on the a

priori and a posteriori SNRs as the input. A clustering scheme using VQ clustering

is also applied to make the model training tractable. The experimental results have

shown that our approach improves the performance of the conventional statistical

model-based speech enhancement technique in both the matched and mis-matched

noise conditions.

We also extend the our setting to the multi-task case where the residual gain is es-

timated jointly for a group of frequency bins. As expected, in the multi-task case, the

enhancement performance is better than the case where the residual gain is estimated

for each frequency bin using GP or RVM. From the experiments in the matched case

we can see that our system performs significantly at high SNR conditions. However

at low SNR conditions, the performance improvement is comparatively lesser. In the

case of mis-matched conditions, however, there still remains room for performance
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improvement.

For the case of multi-task GP, we grouped the frequency bins sequentially by ob-

serving the degree of correlation among the corresponding residual gains. However

in order to get a more better grouping we can also possibly retort to clustering tech-

niques like spectral clustering, constrained clustering etc. This can provide valuable

insights regarding the implicit structure of the residual gain distribution with respect

to the frequency bins. Using the grouping obtained from the clustering approach,

applying multi-task regression to estimate residual gain can also help deliver better

speech enhancement performance.
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국문초록

본 논문에서는 가우시안 프로세스 (GP) 와 relevance vector machine (RVM)을

활용한데이터구동(data-driven)방식의단일채널음성향상을소개한다.이방식

에서의 잔여 이득은 스펙트럼 향상에 널리 사용되는 minimum mean square error

log spectral amplitude (MMSE-LSA)추정기로부터구한이득과최적이득의차이

로정의한다. GP와 RVM을적용함으로써사전 (a priori)및사후 (a posteriori)신호

대 잡음비 (SNR) 와 같은 입력 특징들과, 출력 값인 잔여 이득과의 관계를 학습

할 수 있다. 이 방식은 크게 두 단계로 나뉜다. 첫 번째 단계에서는 SNR 특징과

MMSE-LSA추정기의이득을계산한다.두번째단계에서는 GP나 RVM을통하여

잔여 이득을 추정하고, 이는 MMSE-LSA 모듈의 출력을 향상시키는데 사용된다.

실험 결과를 통하여 MMSE-LSA 방식과 다른 데이터 구동 방식의 음성 향상에

비하여 음질이 훨씬 개선된 것을 확인 할 수 있었다. 더 나아가 본 논문에서는 멀

티 태스크 가우시안 프로세스 (multi-task GP)를 이용하여 주파수 빈들의 집단에

대하여 연대적으로 잔여 이득을 추정하는 멀티 태스크 (multi-task) 환경으로까지

실험을확장시켰다.예상대로일반 GP나 RVM을사용하여각주파수빈들의잔여

이득을구하는음성향상에비해멀티태스킹환경에서의음성향상이성능이좋은

것을확인할수있었다.

주요어: relevance vector machine, 가우시안 프로세스,데이터 구동 , 멀티 태스크

가우시안프로세스 ,음성향상을

학번: 2012-23955
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