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Abstract

Most modern CPUs today come equipped with SIMD (Single

Instruction, Multiple Data) registers and instructions, which

allow for data-level parallelism by offering the ability to

execute a given instruction on multiple elements of data. With

its wide availability and compiler support, lack of need for

hardware changes and potential for boosting performance,

exploiting SIMD instructions in database query processing has

been the subject of some attention in literature.

Star schemas are a popular method of data mart

modeling, and with the sharp rise in the need for efficient big

data analysis, star schemas serve as an important case study

for OLAP performance optimization. Whilst literature on SIMD

optimization of star schema queries exists for the GPGPU

domain - where the GPGPU method of execution is

synonymous with the SIMD paradigm - none has explored the

topic using SIMD instructions on CPUs.

In this paper, we show that by optimizing star schema

query processing for SIMD instructions, speedup in excess of

four times can be achieved in performance. Instead of relying

on the traditional operator-based query processing model, we

focus on the so-called invisible join; an algorithm specialized

for star schema joins. We describe the steps and procedures

involved in the SIMD-conscious optimization of the invisible

join algorithm, and demonstrate that our SIMD optimization
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methods achieve up to 4.8x overall speedup over its scalar

equivalent, and up to 6.4x speedup for specific operations.

Keywords : SIMD query processing, star schema, in-memory

column-store

Student Number : 2012-23953
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Chapter 1. Introduction

SIMD (Single Instruction, Multiple Data) refers to a form of vector

processing which enables the processing of multiple elements of data

with a single instruction. SIMD-enabled systems typically function

by having a set of dedicated SIMD registers - which are larger in

capacity than normal registers - and instructions: the extra-large

SIMD registers have data elements of fixed size loaded onto them as

vectors, after which a given SIMD instruction executions its operation

with each of the vector elements. This allows for a theoretical

degree of parallelism equal to the number of data elements which can

fit into the SIMD register.

Initially added as extensions in 1997 to the x86 instruction set

for the purpose of accelerating multimedia processing, SIMD has

evolved over time to become a fully functional, general purpose

instruction set for vector processing. With SIMD optimization

support from major compiler vendors and ubiquitous compatible

hardware, software can easily and safely be optimized to exploit

SIMD architecture. In addition, SIMD hardware and technology

continues to evolve: AMD has dropped its own SIMD implementation

(3DNow) in favor of Intel’s implementation (SSE/AVX) for a more

unified landscape; Intel plans to increase the width of its SIMD

registers to 512 bits by 2015 (128-bit registers were the most

common at the time of writing); the general purpose GPU (GPGPU)

vendors - whose products essentially follow the SIMD paradigm -

continue to improve their hardware (4,992 cores with 24 GB of

memory, as of writing).
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There has been extensive work covering database operations

for SIMD architectures, spread across three different hardware types:

CPU, GPU, and integrated CPU/GPU. The GPU platforms have been

covered extensively in [3] [5] [6] [7] [8], addressing the main

bottlenecks of that platform - lack of GPU memory capacity and

slow data transfer rates between GPU and main memory. Although

impressive results can be achieved with GPUs, the aforementioned

bottlenecks have prevented GPUs from having impact in the

commercial DBMS market. Integrated CPU/GPU hardware - which

essentially eliminate the memory capacity and data transfer

bottlenecks - has also been covered to some extent in [9], which

focused on the effective utilization of the available hardware by

distributing operators across the devices. It is notable, however, that

only a relative few have focused on SIMD instructions for CPU.

The work in [19] one of the first to put focus to SIMD acceleration

of database operators, covering the SIMDification process of some

basic operator logic. The work in [16] and [17] focused purely on

the scan operation, describing the SIMDification process of

column-store predicate handling with SIMD instructions. [2] and [10]

studied the performance of hash and sort-merge joins - a widely

discussed topic in academia - with each producing highly optimized

versions of the joins; while SIMD instructions were used throughout

the optimization process, SIMDification was not the main focus.

It is also important to note that all the research in this field

so far have based their work on the traditional operator-based query

processing model - the so-called Iterator model [12]. The iterator

model consists of a number of discrete operators, each independently

performing a specific database function - such as filtering, joining

and grouping - based on their set of inputs. The incoming query is
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analyzed to produce an optimized query plan consisting of the

required operators, based on the costs associated with each operator.

While this model of query processing is elegant and widely used

throughout the industry, it is very much a general-purpose query

processing model, with all the overheads associated with

generalization. Indeed, the work presented in literature so far is all

operator-specific, with performance benefits limited to within operator

boundaries. There has not been any work to date which explored

SIMD optimization outside the bounds of the iterator model, e.g. for

specialized database use-cases. As specific scenarios call for

specialized optimization, such a process can offer valuable optimization

opportunities.

For this study, we concentrate on the SIMD optimization of

star schema query processing. Star schemas are a popular method of

organization in a data warehousing system. Specialized for fast and

interactive analysis of data, star schemas are arranged in a heavily

denormalized manner - consisting of a single large fact table

containing data recorded at very atomic levels, and multiple dimension

tables of smaller size containing attributes which describe the fact

table data. As dimension tables in a star schema are arranged in a

single hierarchy, the amount of joins required to process a given

query is reduced, thereby resulting in simpler queries and faster

response times. Owing to their simplicity and performance, star

schemas are popular, supported by a large number of business

intelligence applications.

Although star schemas have been the subject of many studies

such as [13] and [15], to the best of our knowledge, the only work

covering the SIMD optimization of star schemas was in [18] - on

GPU hardware, and again, based on the iterator model. We base our
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work on the so-called Invisible Join described in [1] - an extremely

streamlined join algorithm designed for processing of star schemas,

taking advantage of column-store data structures. We describe the

SIMDification process of the invisible join algorithm, including the

SIMDification process of the different stages of the algorithm. We

demonstrate the efficiency of our SIMDified algorithm, achieving over

four times speedup over its scalar equivalent. We show that the

algorithm is flexible enough to handle all the queries in the Star

Schema Benchmark [14], and that the algorithm can easily be ported

to other SIMD-based hardware platforms, such as GPUs.

The rest of this paper is structured as follows: in Chapter 2,

we present an overview of the previous related work. In Chapter 3,

we briefly describe the star schema and the invisible join technique,

while Chapter 4 details our SIMDification of the invisible join.

Experimental results are presented in Chapter 5, and we make our

concluding remarks and outline future work in Chapter 6.
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Chapter 2. Related Work

The use of SIMD architecture for DBMS operations have been

studied to some extend in literature, with work generally spread

across three different hardware platforms: CPU, GPU, and integrated

CPU/GPU.

The fundamental operators and first examples of join

operators on GPUs were presented in [5] and [8], which identified the

lack of on-board memory and poor data transfer rates between it and

main-memory as key bottlenecks for the GPU platform; follow-up

research mostly focused on addressing these bottlenecks - data

compression for efficient PCI-e transfers [3], high throughput

transactions [7], and CPU/GPU co-processing [6], where workload

was distributed between CPU and GPU for effective utilization of the

hardware. The idea of co-processing was further explored in [9],

utilizing pre-calculated cost metrics to determine the placement of

operators on devices.

CPU-based SIMD optimization of database operations has also

been explored to some degree in literature. [19] presented one of the

first examples of optimizing query processing operator logic explicitly

using SIMD instructions, covering the basic scan, nested loop join

and aggregation operations, as well as index tree search operations.

In [16] and [17], the authors focused on optimizing for the scan

operator, and described SIMD techniques for evaluating predicates

with compressed column-store data. The authors of [10] described

their technique for loading CSV data from disk to memory, utilizing

SIMD string operations for parsing of the data.
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[10] addressed the much-discussed comparison of performance

between hash and sort-merge joins. The authors attempted to utilize

SIMD instructions to achieve optimal performance for both join types,

and through experimentation, predicted that once larger SIMD width

became available, sort-merge joins would outperform hash joins. The

authors of [2] followed up this work, and through extensive

experimentation and optimization using SIMD instructions in addition

to hardware-conscious techniques, concluded that radix hash joins

outperformed sort-merge joins. It is worthy of note that the

objective of the two hash vs. sort papers was purely to compare the

overall optimized performance of the two types of joins; the usage of

SIMD instructions was a side-effect of the optimization process.

The star schema is not a new concept, and consequently,

numerous studies exist addressing techniques related to it, such as in

[13] and [15]. In [1], the authors presented a number of

column-store query processing techniques, one of which is the

invisible join - a streamlined join algorithm targeted specifically for

star schemas on column-stores; our SIMDification work is based

around the invisible join.

At the time of writing, work related to the processing of star

schema queries and SIMD has only recently been explored in [18],

with GPUs. In this work, the authors presented their attempts at

accelerating the Star Schema Benchmark queries using the traditional

operator-based query processing model. The authors explored

performance characteristics under various conditions and on different

platforms, and presented an analytical model for predicting the

performance of query processing on GPUs.
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Chapter 3. Star Schema and Invisible Join

In this Chapter, we describe a typical star schema and its role in

data warehousing applications, and we describe the invisible join [1],

the column-store algorithm streamlined for processing star schema

queries.

3.1 The Star Schema

Commonly used as the schema of the data mart layer of data

warehousing environments, star schemas are a simple but efficient

style of data schema design. As an extension to the snowflake

schema, star schemas typically consist of two main factors: a large

fact table consisting of facts, measures, and foreign keys to

dimension tables; and a number of dimension tables which categorizes

the aforementioned facts and measures in the fact table. Fact tables

typically contain information relating to specific events at various

granularities, whereas the dimension tables which the foreign keys of

the fact table points to contain the descriptive information about the

events.

An example of star schema usage is that of a store chain.

The sales recording system of a store chain would typically require a

table containing the invoices of all sales; the fact table. This table

would record the date (foreign key), the store identifier (foreign key),

the product identifier (foreign key), and the quantity of the product

(value). The dimension tables for such a scenario would be a table

for dates (which describes dates - the day, day of week, quarter,

etc.), a table for stores (containing information on each of the stores
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- the number, location, etc.), and a table for products (containing

details on the products - name, brand, category etc.). With such a

schema, it would only require a trivial SQL query to report on, for

example, the number of product X sold, grouped by product category

and the location, in a given year.

Owing to the simplicity and efficiency, star schemas are

widely used, and supported by a wide variety of business intelligence

applications in the commercial market.

3.2 The Invisible Join

In [1], as part of the description of columns-store database, the

authors presented the so-called Invisible Join algorithm. The

invisible join is a join algorithm specialized for star schemas, taking

advantage of the column-wise nature of the data structures involved

in column-store databases. Where typical DBMS would process star

Figure 1: Layout of a typical star schema
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schema queries like any other query, that is, by parsing the incoming

query and building and executing an optimal plan based on the costs

involved with the required operators (typically it would involve

multiple hash joins between the fact table, and the dimension tables),

the invisible join performs the join by rewriting the joins as foreign

key predicates. The steps involved in the invisible join algorithm for

the query in figure 2 are detailed below.

Step 1: Build the dimension hash tables

The first step involves building a hash table for the dimension table

predicates. The goal behind this step is to retrieve a set of

dimension record IDs which correspond to dimension table records

matching the predicates given in the query.

For this scenario, the predicates for the Customer, Supplier

and Date tables are evaluated, and the primary keys of the matching

records are inserted into a hash table for each dimension table, as

shown in figure 3.

A hash table - where the key is the primary key of the

dimension table - is built, which allows for easier probing with fact

tables values, covered in the next step.

Figure 2: A typical star schema query
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Step 2: Generate filter mask for the fact table

Once the hash tables have been built, the next step of the algorithm

is to generate a filtering mask, which represents the records of the

fact table which satisfy all the join predicates. For this, the hash

tables are probed with the values of each of the foreign key columns

in the fact table. Since the hash table keys correspond to the

primary key of the corresponding dimension table, a match in the

probing indicates that the particular fact table column value satisfies

the predicates for that particular dimension table. A vector

containing 1s (indicating a match) or 0s (indicating a no-match) is

generated as output (figure 4).

Once all the foreign key columns have generated their

resulting vectors, they are then merged together using a bitwise

AND, to generate the final filtering mask representing the fact table

tuples which satisfy all join predicates, to be used in step 3.

Figure 3 (from [1]): Step 1 of the invisible join
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Step 3: Extract the matching records

The final step of the invisible join algorithm involves filtering out the

matching tuples from the fact table, and proceeding to materialization.

The steps involved in the final filtering process is trivial - a

bitwise AND is performed to retrieve only the matching tuples. The

join is complete at this point; materialization can be performed as

normal by looking up the dimension table columns using the filtered

foreign key columns of the fact table.

The invisible join algorithm is very much a specialized

algorithm, exploiting the column-wise nature column-store databases

and late materialization techniques. Whilst perhaps unsuited for

general purpose query processing, this technique is highly efficient for

Figure 4 (from [1]): Step 2 of the invisible join
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star schemas and can offer tremendous performance benefits in that

specialized area. In the next Chapter, we detail our steps towards

SIMDifying the invisible join algorithm.

Figure 5 (from [1]): Step 3 of the invisible join
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Chapter 4. SIMDification of Invisible Join

In this Chapter, we describe the process of SIMDifying the invisible

join algorithm described in Chapter 3. There are two main aspects

of the process: extending the invisible join algorithm to remove the

hash table operations during predicate evaluation, and the actual

SIMDification itself.

4.1 Extending the Invisible Join

Hash table operations are not SIMD friendly. Depending on the

algorithm, the hash function itself can be implemented with SIMD

instructions; however, since the result of said hash functions typically

return random values, that is, values of un-sequential nature,

SIMDification is difficult for working with the actual hash table.

As described in the previous Chapter, hash tables are utilized

as part of the predicate rewrite stages of the invisible join. In order

to facilitate a more efficient SIMDification of the invisible join, we

apply a simplified version of the extensions to the invisible join as

described in [4], to remove the hash table predicate operations,

described below.

The key to the extensions are two assumptions: a) the

columns are dictionary encoded, and b) the dimension tables are

sorted by their primary keys. One of the main benefits that

column-store databases offer is the opportunity to apply dictionary

encoding to the columns, thereby enabling huge savings in the

storage space requirements; it is therefore reasonable to assume that

column data are dictionary encoded. The sorting of the dimension
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tables can also be deemed a reasonable assumption: due to the much

smaller size of the dimension tables in relation to the fact table, the

cost involved in sorting the dimension tables is minimal.

Given the above assumptions, the key aspect of the extension

to the invisible join algorithm is working with the encoded values of

the foreign key columns of the fact table. The encoded values of the

foreign key column are used to look up the dictionary for that

column. As the dictionary of the foreign key column would be

identical to the dictionary of the primary key column of the

dimension table, the encoded value from the foreign key column can

be used directly to probe the dimension table dictionary. In addition,

since primary keys are unique, the encoded value of the foreign key

column can effectively be considered the row ID of the dimension

table.

Figure 6: Implicitly performed join
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Assuming that an interface exists whereby column value can

be retrieved with a row ID given as input, the join between the

dimension table and the fact table becomes implicit as part of, for

example, retrieving the filtering value for a given row ID from the

dimension table, as we iterate through the tuples of the fact table.

For our prototype implementation, we have used an array-based data

structure for our column-store; performing the join is as simple as

accessing an array element at a given index.

4.2 SIMDification of the Invisible Join

We now describe our SIMDification of the invisible join algorithm.

Our implementations are based on 128-bit SIMD registers, using

Intel’s SSE 4.2 intrinsics. As we iterate through the tuples of the

fact table, we perform a number of steps designed to SIMDify the

access and processing of the required columns, as is visualized in

figure 7.

Figure 7: SIMDification of the invisible join
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Step 1: Fetch the join key column

The first step of our algorithm involves fetching the join key

columns from the fact table. As the columns are dictionary encoded,

that is, compressed, we first work to decompress those values.

Assuming that the values are 3-byte-compressed, we use

SIMD instructions to first load the maximum 16 bytes from memory

into a SIMD register. As these 16 bytes contain compressed data,

the next required step is to decompress the values, by aligning them

to 4-byte boundaries using a second SIMD register. The alignment

is performed with the SSE shuffle intrinsic, which allows

programmable shuffle control - that is, designating which byte of a

particular SIMD element goes into which byte in the destination.

The destination SIMD register will then contain 4 elements (12 bytes

total) from the original 16 byte foreign key data, decompressed and

Figure 8: Fetching the join key values
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ready to be used. Furthermore, as described previously, the value of

the elements in the SIMD register represent the row ID of the

corresponding dimension table, and will be used to access values

from that table.

If the query contains predicates on a column of the fact table,

they are processed as part of this step; the details of predicate

handling are detailed in step 2.

Step 2: Process the filtering columns

The second step of our algorithm involves processing the predicates

on the dimension table columns. Whilst accessing the filter column

values is trivial as mentioned above, SIMDifying the access is not.

As mentioned previously, SIMD instructions require that the data

elements they access be sequential. However, the nature of joins

inherently means that access to dimension table values is random;

indeed, this is the case every time that columns need to be accessed

from any of the dimension tables.

There are two options to address this issue: one is to simply

fetch the dimension table values in a serial manner (serialization), and

the other is to rely on the GATHER instruction, supported by Intel’s

AVX2. Whilst the GATHER instruction provides a convenient

intrinsic interface from which to build the codebase on, its

performance on the Haswell architecture has not been documented by

Intel or other authorities at the time of writing. Furthermore, we

have determined from experiments that its performance is also

affected by a few other factors, including the choice of compilers, and

the cache: the effect of cache was demonstrated by the fact that the

GATHER instruction outperformed serialization when the data to be

fetched both in the cache (a cache hit), and in limited number of

cache lines (close data locality). With the uncertainties surrounding
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the performance of GATHER on Haswell, we use the serialization

method throughout our implementation for simplicity - we leave the

performance analysis of the GATHER instruction for future work.

Using the serialization method in conjunction with the row ID

fetched from step 1, the values from the dimension table columns are

loaded into a SIMD register for evaluation. Predicates in SQL can

range widely, from simple numeric comparisons to complex

evaluations of string values. However, as column values are

dictionary encoded, all operations can be simplified down a

combination of integer operations between two operands. For

simplicity, we limit our predicate evaluation implementation to

comparisons between two SIMD integer values, using corresponding

binary comparison intrinsics provided. The results of the binary

comparison operation are stored in a SIMD register in the form of bit

masks, each element indicating the outcome of the comparison. An

element with all its bits set to zero indicates a negative result,

whereas an element with all its bits set to one indicates a positive

result. The results are retained for filtering out unmatched tuples, as

will be described in step 5 below.

As mentioned above, the predicate handling method described

here is also employed if predicate processing is required on a column

of the fact table.

Step 3: Fetch the group by columns

As mentioned in step 2, accessing any data from the dimension

tables require random access to the memory locations, due to the

nature of joined data. This problem applies to the fetching of the

group by columns, as star schema queries most often perform group

by operations on columns from the dimension tables. Again, for

simplicity purposes, we use the aforementioned serialization method.
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Once all the group by columns have been fetched and loaded

into SIMD registers, we use the values to produce a hash key: each

of the group by values are put through a combination of SIMD

arithmetic operators together to produce a unique key. This in turn

is then used to index the result table (a pre-allocated array in our

implementation) for the actual aggregation, described in step 4.

Step 4: Fetch the aggregation columns

As the values to be aggregated are stored in the fact table for star

schemas, the fetching of their values to be loaded onto SIMD

registers is trivial, as is the evaluation of the aggregate expressions

using the corresponding arithmetic SIMD intrinsics.

Step 5: Apply the bit mask from steps 1 and 2

The final step of our SIMDification of the invisible join algorithm is

to filter out the tuples which do not satisfy all the predicates, by

combining the bit mask results from steps 1 and 2, with the

aggregate values from step 4. This is achieved using the SIMD

equivalent of the binary AND bitwise operation, with the first

operand being the aggregates from step 4, and the second operand

being the bit mask results from step 1 and 2. For aggregates using

floating point data types, we emulate the AND operation by first

shifting the bit mask results to the right by 31 bits in order to

convert the elements of the mask into either a numeric 0 or 1; we

then perform a SIMD multiplication of these values with the floating

point aggregate values. The result of these operations is the

aggregate value itself if all predicates have been satisfied, or zero if

one or more of the predicates were not satisfied. These results are

then incremented into the result table using the hash keys from step

3.

The incrementation process is the opposite of the random
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access problem with dimension tables, in that instead of reading

non-sequential values, we now need to write to non-sequential

memory locations. Again, two solutions exist to address this

problem: to write the values in a serialized manner as before, or to

use the SCATTER instruction, provided by Intel’s AVX512. As of

writing, AVX512 has not yet had an official release from Intel, and

for simplicity purposes, we implement the serialization option in this

paper.

Although the SIMDification steps described above have

focused on SIMD instructions for CPUs, it can very easily be adapted

for other hardware platforms supporting the SIMD paradigm, such as

GPUs; with threads executing on the available cores, this would

result in SIMD widths numbering in the thousands.
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Chapter 5. Experimental Results

5.1 Experimental Setup

For evaluating the performance of our implementation, we make use

of the Star Schema Benchmark (SSB) toolset [14]. Derived from the

TPC-H benchmarking tool, the SSB is a domain-specific

benchmarking system, designed specifically to support classical data

warehousing applications. The SSB converts the TPC-H schema into

a star schema (by e.g. combining the LINEITEM and ORDERS tables

into the LINEORDER table), and its query set departs from TPC-H

by attempting to provide the Functional Coverage and Selectivity

Coverage [14].

Our experiments are conducted on the Intel i3 4160 chip, with

4 GB of total RAM available. The processor provides support for

Intel’s AVX up to version 2; our implementation, however, is

designed for SSE 4.2, i.e. 128-bit SIMD width, or four 32-bit data

elements processed in parallel. Our implementation was coded with

C++ using SSE Intrinsics. Our server runs Ubuntu Server 14.04.1

LTS, and we compiled our code using GCC version 4.8.2.

Our experiments were designed to demonstrate the direct

effects of our SIMDification efforts. We achieve this by comparing

the performance of our SIMDified algorithm with the scalar

equivalent - the only difference between the two algorithms is the

SIMDification steps described in Chapter 4. Thus, for accurate

measurements, we compiled the scalar version of our algorithm with

flags specified to exclude SSE optimization. Both binaries were

compiled with optimization level 3.
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We first present the overall performance results from start to

finish, followed by the breakdown of the results to the main

components of the invisible join algorithm.

5.2 Overall Results

We present the overall results of our SIMDified invisible join

algorithm. Our results exclude pre-loading, pre-processing and all

other unrelated functions, and instead measure pure operator

performance.

As shown in figure 9, our SIMDification of the invisible join

algorithm achieved 4.8x speedup on average over its scalar equivalent,

exceeding the 4x potential speedup offered by 128-bit SIMD

operations. The overall speedup is highly affected by the proportion

of overall time taken up by the individual stages of our algorithm.

Figure 9: Overall execution time
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From figure 10, we observe that the first two stages of our

invisible join algorithm - namely the join key fetch and the filter

processing stages - accounts for the overwhelming majority of the

total execution time. The group by and aggregation stages of the

algorithm are highly dependent on the selectivity of the incoming

queries, and account for only a very small proportion of the overall

running time. Consequently, performance speedups achieved by the

first two stages largely determine the overall performance speedup;

we show that this is indeed the case in the following breakdown of

the overall results.

5.3 Breakdown of Results

We now break down the overall performance results to the four main

stages of our SIMDified invisible join algorithm: join key fetch, filter

processing, group by, and aggregation. It is important to note that

the code used to measure the individual stages of the algorithm

Figure 10: The distribution of overall execution time
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affects the performance - relative to the overall start-to-finish

performance - and the figures presented below do not reflect the

actual run time of the said stages.

Join Key Fetch

The performance of our SIMDified join key fetch achieved 4.9x

speedup on average over its scalar counterpart, exceeding the logical

potential speedup of 4x for 128-bit SIMD; in fact, a peak speedup of

6.4x was observed for Q3.4, far exceeding the potential, as can be

seen in figure 11.

The extra performance can be attributed to the difference in

the quality of the compiled code between the two algorithms. The

join key fetch stage is, in essence, simply the copying of a particular

section of memory from address A to address B. For the scalar

version of our algorithm, the most efficient method of achieving this

was to use the memcpy() function provided by C++, which is a

Figure 11: Performance of join key fetch
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function call and incurs all the costs associated with such an

operation. For our SIMDified version, this involved the loading of

the data to the SIMD register, followed by a shuffle operation for

4-byte alignment. Due to the use of intrinsics, our SIMD code

translated directly into their SIMD assembly counterparts, and

avoided the expensive function call overheads incurred by the scalar

memcpy() implementation, accounting for speedup in excess of the

logical potential.

Process Filter

The filter processing stage of our SIMDified invisible join algorithm

achieved 3.6x speedup on average over its scalar equivalent, as is

shown in figure 12.

The potential 4x speedup was not achieved for this stage of

our algorithm, primarily due to the dimension table accesses required.

As described in the previous Chapter, reading values from the

dimension table in our algorithm requires random memory access,

Figure 12: Performance of filter processing
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which remains serialized in the SIMDified version. While the

evaluation of the binary comparison operators can easily be

SIMDified, the random memory access involved in reading the

filtering column values from the dimension tables affects our

algorithm from achieving the full 4x speedup potential. The

GATHER instruction in AVX2, along with Intel’s Xeon Phi

architecture which fully supports the instruction set with hardware, is

hypothesized to address the effect of random memory access. We

plan to further analyze the effect of that combination in future work.

Group By

The selectivity of the SSB query set was very high - that is, the

percentage of the fact table tuples which satisfied all the query

predicates was extremely small; only 0.7% of the fact table tuples

satisfied all the predicates, with the maximum being 4.1% for Q3.1.

As the group by stage of the algorithm is performed only after all

predicates have been satisfied for a given tuple, the high selectivity

had the effect of reducing the run time of the group by stage to only

a few clock cycles, making effective comparisons difficult. For the

purpose of measuring the effect of SIMD on our algorithm, we

adjusted the selectivity to 0%, i.e. the group by stage was processed

for all the tuples in the fact table, regardless of predicates. The

results are shown in figure 13.

We observed our algorithm achieving 3.5x speedup on average

over the scalar version of the algorithm. Queries 1.1, 1.2, and 1.3 do

not contain group by statements, and were excluded from the results.

Again, the potential 4x speedup was not achieved for this stage of

our algorithm, due to the aforementioned dimension table accesses

required.
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Aggregation

As with the group by stage, the aggregation stage is also affected

by the aforementioned high selectivity of the SSB queries, resulting

in performance which could not be reliably measured. Again, we

adjusted the selectivity to 0% to demonstrate the effectiveness of our

SIMDification on the aggregation stage.

Unlike the previous stages of our algorithm, the SIMDification

of the aggregation stage only achieved 1.8x speedup on average over

its scalar counterpart, far less than the potential 4x speedup. As

with the group by stage, the evaluation of the aggregation

expressions consists of arithmetic operations, which are readily

SIMDified using the appropriate intrinsics. Similarly, applying the bit

mask to filter out the fact table tuples which do not satisfy all the

predicates is also translated directly into SIMD intrinsics. However,

as was described in Chapter 4, the aggregation stage requires write

Figure 13: Performance of group by
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operations to memory locations corresponding to the hash keys

generated by the group by stage, i.e. random write access. While

our implementation serialized this section of the algorithm, the effect

of the serialized write is much larger than that of the serialized read,

due to the complexities in serialization. Code-wise, the serialization

of the random read access is implemented simply as four separate

read operations. The serialization of the random write access is

restricted by the limitations of the SSE intrinsics library: for floating

point data types (all the SSB aggregation columns are floating point

data types), the most efficient method of accessing the individual

elements of a given SIMD register is to write the contents back into

memory, and then access them individually. Given this restriction,

the serialized random writes of our aggregation stage suffers much

more overhead than that of the serialized read, resulting in a heavier

penalty on the performance.

Figure 14: Performance of aggregation
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Again, whilst the group by and aggregation stages of our

algorithm do show performance improvements with SIMDification,

they only account for a very small percentage of the overall running

time, due to the high selectivity of the incoming queries. The

improvements achieved in the join key fetch and filter processing

stages of our algorithm have the biggest impact to the overall

performance.
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Chapter 6. Conclusion and Future Work

Hardware is constantly evolving, and at a rapid pace, to meet the

ever-increasing demands of database systems - a trend which will

only increase with the prevalence of the so-called Big Data. And

although the development of bigger and better hardware is beneficial,

attention must be given to making use of the hardware which is

available today. Indeed, SIMD processing on the CPU is a prime

example of this: although widely available on a large number of

platforms and with a history of continued development, focus on

making explicit use of SIMD instructions for database operations has

been limited. With further SIMD hardware development planned by

vendors, focusing on optimizing database systems for SIMD is

essential.

Though some work has covered the usage of SIMD

instructions for database operations, the large majority of the work

was based around the iterator model. In order to showcase the full

potential of the SIMD hardware, we must move outside the bounds

of the traditional, general purpose models used today, and focus on

specific scenarios which offer more opportunities for optimization. In

this paper, we have described the SIMDification process of one such

scenario that is widely used in the data warehousing field, the

processing of star schema queries. Through the SIMDification of the

invisible join algorithm, we have demonstrated that can be achieved

which match, and sometimes exceed, the logical hardware potential.

Although the focus on specific scenarios sacrifices flexibility for

performance, the techniques described can serve as a base for further
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optimization toward a more generalized framework.

As future work, we plan to perform an in-depth analysis of

the performance speedups we have achieved with our SIMDification.

We also plan to explore the optimization opportunities available with

newer hardware, namely Intel’s AVX512 and the full set of

instructions that it supports.
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국문 초록

스타-스키마 쿼리 처리의 SIMD

최적화

서울대학교 대학원

전기 컴퓨터 공학부

송 상 협

대부분의 최신 CPU들은 SIMD (Single Instruction, Multiple Data) 레지

스터와 명령어를 갖추어서, 하나의 명령어로 여러 데이터를 동시에 처리

하는 것이 가능하다. 높은 활용성과 컴파일러의 지원, 하드웨어를 변경

할 필요가 없는 점, 그리고 성능 향상의 가능성이 크다는 점에서, SIMD

명령어를 데이터베이스 질의 처리에 활용하는 것은 몇몇 연구의 주제로

다뤄지기도 하였다.

스타 스키마는 데이터마트 모델링에서 많이 사용되는 방법이고,

빅데이터 분석의 필요성이 급격하게 늘어나면서, 온라인 분석 처리 성능

최적화의 주요 용례로 떠오르고 있다. GPGPU 분야에서 스타 스키마

질의 처리를 SIMD 최적화하는 연구가 이미 진행된 바가 있지만,

GPGPU와 SIMD의 작동방식의 유사성에도 불구하고 CPU에 장착된

SIMD 명령어를 활용하는 연구는 아직 진행된 적이 없다.

본 논문에서 우리는 스타 스키마 질의 처리를 SIMD 최적화함으

로써, 4배 이상의 속도향상을 얻을 수 있음을 확인하였다. 전통적인 연

산자-기반 질의 처리 방식 대신, 스타 스키마에 특화된 소위 invisible

join알고리즘에 주목한다. Invisible join 알고리즘의 각 단계와 그 수행

절차 및 SIMD를 고려한 최적화 과정을 설명한 후, 그 결과물이 대응되
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는 기존의 스칼라 구현과 비교하여 전체적으로는 최대 4.8배, 특정 연산

자에서는 최대 6.4배의 속도 향상을 얻을 수 있음을 보인다.

주요어 : SIMD 질의 처리, 스타 스키마, In-memory column store

학 번 : 2012-23953
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