

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

- 1 -

공학석사학위논문

Improving GPU-Speedup of Optimized
Volume Rendering

최적화된 Volume Rendering의

GPU-Speedup 개선기법

2015년 8월

서울대학교 대학원

전기· 컴퓨터 공학부

전 상 수

- 2 -

Improving GPU-Speedup of Optimized
Volume Rendering

최적화된 Volume Rendering의

GPU-Speedup 개선 기법

지도교수 신영길

이 논문을 공학석사학위논문으로 제출함

2015년 4월

서울대학교 대학원

전기· 컴퓨터 공학부

전 상 수

전 상 수의 석사학위논문을 인준함

2015년 6월

위 원 장 김 명 수 (인)

부 위 원 장 신 영 길 (인)

위 원 이 광 근 (인)

- 3 -

Improving GPU-Speedup of Optimized

Volume Rendering

Sang-Soo Jun

Department of Electrical Engineering&Computer Science

Seoul National University

Abstract
This paper presents a speedup improvement method for optimized

volume rendering in GPU platforms. First, from a set of experiments,

we found that the speedup of volume rendering optimized with

transparent voxel skipping decreases with dependency on the

complexity of target images. In order to evaluate the complexity of

volume images, we developed a new algorithm, called EVIC. Next, we

present another new algorithm, called RBDV, that reduces the branch

divergence in transparent voxel skipping by factoring out structurally

similar code from branch paths in GPU programs. We empirically

proved that this RBDV algorithm increases the GPU-speedup of

transparent voxel skipping at least by 14%, improving it from x17.5

upto x20.0 or more, on average, for complex target images.

Keywords. image complexity, volume rendering, transparent voxel

skipping, speedup, graphics processing unit (GPU)

- 4 -

Contents

Chapter 1. Introduction 7

Chapter 2. Background 9

2.1. Volume ray-casting 9

2.2. Optimization of volume rendering 11

2.3. GPU-based parallelization 13

2.4. Branch divergence 14

Chapter 3. Findings on Image Complexity Dependence 16

3.1. The complexity evaluation algorithm 16

3.2. Experimentation on image complexity 18

3.3. Analysis on image complexity 20

Chapter 4. Reducing Branch Divergence 24

4.1. The branch divergence reduction algorithm 24

4.2. Experimentation on branch divergence 28

4.3. Analysis on branch divergence 30

Chapter 5. Conclusion and Future Work 32

References 34

Abstract (in Korean) 37

- 5 -

List of Figures

 Figure 1. Four basic steps of ray casting: (1) Ray Casting (2)

Sampling (3) Shading (4) Compositing 10

 Figure 2. Volume rendering techniques 12

 Figure 3. EVIC algorithm 17

 Figure 4. Three samples of original 2D slice target images in

horizontal order: (1) Engine Block 512*512*512, (2) Metal

Plate 512*512*512, (3) Abdomen 512*512*86 19

 Figure 5. Rendered results of three target images with different

complexities in vertical order: (1) Engine Block, (2) Metal

Plate, (3) Abdomen 20

 Figure 6. Speedup based on optimization techniques 21

 Figure 7. Speedup based on image complexity 22

 Figure 8. Code example of branch distribution 26

 Figure 9. Applying branch distribution method for GPU-based volume

rendering program 28

 Figure 10. The TVS speedup based on image complexity 31

- 6 -

List of Tables

Table 1. Speedups of volume rendering techniques (with CPU/GPU

time in sec) 20

Table 2. Speedup after applying branch distribution method 29

- 7 -

Chapter 1.

Introduction

Volume rendering is a visualization method for volumetric images. It

is widely used for scientific visualization which requires simulation of

realistic 3-dimensional data. The scientific visualization is applied to

many widely recognized fields including medical imaging and industrial

imaging. These fields requires volume rendering of such images,

because it must help the user to better understand the inside and

outside conditions of machine parts or patients.

 Unfortunately, typical sizes of modern data are very large and will

continue to increase in the future due to technological advances in

acquisition devices.5) Thus, processing these data sets efficiently is

important,1,7) so improving GPU-speedup has been a major research

goal in volume rendering community for many years. When running

ray casting on GPU platforms, the speedup is dependent on the amount

of branch divergence incurred by the threads of kernel program.5)

 This paper examines the speedup issues of volume rendering in

GPU platforms with regard to its dependency with image complexity.

First, from a set of experiments, we found that the speedup of volume

- 8 -

rendering optimized with transparent voxel skipping decreases with

dependency on the complexity of target images. In order to evaluate

the complexity of volume images, we developed a new algorithm,

called EVIC. Next, we present another new algorithm that reduces the

branch divergence in transparent voxel skipping by factoring out

structurally similar code from branch paths in GPU programs.

 The remainder of this paper is organized as follows. Chapter 2

provides background for understanding our work. Chapter 3 presents

our own findings on the image complexity dependence on the

GPU-speedup of optimized volume rendering and our EVIC algorithm

that evaluates the complexity of volume images. Chapter 4 presents

another new algorithm that reduces branch divergence in GPU-based

volume rendering programs. Finally, we conclude our paper and give

directions for future work in chapter 5.

- 9 -

Chapter 2.

Background

This paper presents a speedup improvement method for optimized

volume rendering in GPU platforms. This chapter briefly explains the

basic algorithm, called ray casting, of volume rendering. Next, we

introduce two approaches that can increase its performance by

optimizing the basic algorithm and parallelizing it on GPU platforms.

Lastly, we finish this chapter after explaining the concept of branch

divergence which is the main problem solved by this paper

2.1. Volume Ray-Casting

Volume ray casting (or simply ray casting) is the basic technique for

volume rendering.12,13,15) This processes volume data by tracing a path

of light rays through pixels in an image plane. In its basic form, this

algorithm is composed of four steps, as illustrated in Figure 1:13,14)

1. Ray casting: For each pixel in the final image, a ray is casted

through the volume.

2. Sampling: Along the casted ray inside the volume, equi-distant

samples are selected. When evaluating the values of these

- 10 -

Figure 1 Four basic steps of ray casting: (1) Ray Casting (2) Sampling (3)
Shading (4) Compositing.

samples, it is necessary to interpolate them from its surrounding

voxels, since the volume is not aligned with the rays most of the

time, and samples are usually located in between voxels.

3. Shading: Each samples are coloured and lit according to their

surface orientation and the light source location.

4. Compositing: Final colour value for that pixel is evaluated using

front-to-back rendering equation.

 However, unlike general surface rendering, volume rendering is

used for visualizing 3-dimensional data with large volumes, which

makes rendering time slow. So, in order to render images as real-time

as possible, research in effective rendering became an important issue.1)

There are two main stream approaches in the research. The first

approach aims to avoid rendering empty regions in the images as

much as possible;4) the second approach is to utilize ever growing

GPU technology to volume rendering.4,8)

- 11 -

2.2. Optimization of Volume Rendering

Optimization techniques of volume rendering (or simply optimization

techniques) aim to avoid rendering empty regions as much as possible.

We use two kinds of volume rendering techniques: one for non-

optimized ray-casting and the other for three representative optimization

techniques, as shown in Figure 2:3,9)

1. basic volume rendering (BVR): This technique, as shown in

Figure 2(a), represents the traditional volume rendering that does

not apply any type of optimization to the original ray-casting

method

2. early ray termination8) (ERT): This technique, as shown in Figure

2(b), represents an optimized volume rendering that stops

progression of each ray whenever an accumulated opacity reaches

a high fractional value that is greater than zero and equal to one,

say 0.98.

3. empty space skipping8) (ESS): This technique, as shown in Figure

2(c), represents an optimized volume rendering that performs in

the preprocessing stage. ESS divides the volume into

sub-volumes, calculates its minimum and maximum colour values

of each target sub-volume, and finally decide if each pair of

values are within the range of transfer function.

4. transparent voxel skipping8) (TVS): This technique, as shown in

- 12 -

techniques illustration

BVR

ERT

ESS

TVS

Figure 2. Volume rendering techniques

- 13 -

Figure 2(d), represents an optimized volume rendering that skips

transparent voxels from rendering because they do not necessarily

contribute to the final image.

 We compare the performance of these four techniques in regards to

their speedup on a GPU platform in the next chapter.

2.3. GPU-based Parallelization

Computational complexities are very high in volume rendering due to

such large data. Fortunately, in ray casting, each light rays that goes

through pixels are totally independent from one another, making it

suitable for parallelization. The GPU-based volume rendering evaluates

each pixel in the image plane11,17) in parallel by allocating one core for

each ray.

 When comparing the performance between programs running on

CPU and GPU, we use a measure called speedup. Although absolute

running time is the ultimate measure of any program’s performance,

there are some useful relative measure, such as the speedup, that can

provide insight into how well a parallel program is exploiting potential

parallelism.4) The speedup of a parallel program is typically defined as

  




where p is the number of processor cores, and Tk is the running time

- 14 -

on k cores. When T1 is the execution time of a sequential version of

the program, the Sp is called the absolute speedup. This paper employs

this notion of the absolute speedup, and we will refer to it just as

speedup for simplicity.

2.4. Branch Divergence

Threads are often bundled into fixed-size warps for executing them on

a CUDA core; a set of threads within a warp must follow the same

execution path. This means that all threads in a warp must execute the

same instruction at the same given time. But when different threads

within a warp does different things, this causes threads to diverge to

different branch paths of executions.8) In these cases, the warp serially

executes each branch path resulting in overall performance loss,

because a warp executes just one instruction at a time. The following

code segment is a typical example of branch divergence.

1: for (every thread within a warp) {

2: thread_value = Array[tid];

3: if (thread_value > 10) {

4: variable = variable * 2;

5: }

6:

7: }

- 15 -

 If a set of threads is supposed to execute the statement in line 4

that assigns a new value to the variable, at the next timing, the other

set of threads with the boolean condition of false in the same warp

must go through without executing the statement. On average, let’s say

half of the threads within a warp actually execute this branch

condition, this means that the utilization of execution units are also

just half.

 In case of the four techniques discussed in Figure 2, only TVS

causes additional branch divergence on parallel environments. This is

because each ray has different voxels to skip; therefore each ray may

execute one of two different tasks on a branch operation that must be

serialized with each other.

- 16 -

Chapter 3.

Findings on Image Complexity Dependence

This chapter presents that the GPU-speedup of volume rendering

optimized with three representative optimization techniques decreases

with dependency on the complexity of target images from a set of

experiments. In order to evaluate the complexity of volume images, we

developed a new algorithm, called EVIC.

3.1. The Complexity Evaluation Algorithm

Bahnisch, Stelldinger and Kothe (2009) defined image complexity for

2D images as the number of edges that separates two regions from

each other.1) To the best of our knowledge, so far there has been no

completed work on how to define image complexity for volume

images.

 There are two difficulties for the users to evaluate the complexities

of volume images. First, as seen in Figure 4, changes in the intensity

of image values so frequently appear in each slice of the image, thus

it is not easy for the user to define every discrete part that causes

change in regions. Second, most volume images are composed of huge

- 17 -

for (entire volume) {
 final_intensity = final_intensity + intensity[i];
}
threshold = final_intensity / n;

for (entire volume) {
 inten_diff = intensity[i] － intensity[i-1];
 if (inten_diff > threshold) region_change++;
}
final_complexity = region_change / slice_number;

Figure 3. The EVIC Algorithm

number of image slices. Due to these reasons, it is impossible for

users to manually evaluate the image complexity. Our new algorithm,

called EVIC, extends the Bahnisch's definition of image complexity to

our context in volume rendering, where EVIC stands for Evaluation of

Volume Image Complexity.

 This EVIC algorithm works at the sampling stage of ray casting. In

its first stage of EVIC, we take all of the values of sampling points

from the entire volume image and calculate the average of all sampled

values. We set this average value as the threshold to determine if we

meet the change of regions. Whenever the difference between two

sampling values exceeds this threshold, we add one to the variable that

is designated to signify a change between regions. Since target images

usually differ in the number of slices, we have to divide the value

stored in this variable by the number of slices. Figure 3 shows the

pseudo code of this algorithm.

- 18 -

3.2. Experimentation on Image Complexity

We found that the GPU-speedup of volume rendering optimized with

three representative optimization techniques decreases with dependency

on the complexity of target images. To support it, we performed a set

of experiments, in which we take three kinds of image complexities

using three target images: Engine Block, Metal Plate, and Abdomen, as

shown in Figure 4.

 These images are taken from two representative applications of

volume rendering. Engine Block and Metal Plate are taken from

industrial applications, and Abdomen are done from medical

applications. Using the EVIC algorithm introduced in the previous

section, we evaluated all three target images and concluded that Engine

Block has the biggest complexity by 21.3, the next is Abdomen by

16.6, and the last is Metal Plate by 8.2.

 We performed the speedup experiments of the implemented code of

the EVIC algorithm developed in Visual C++ 2012 using an Intel

i7-2600 CPU with an NVIDIA GTX-680 GPU running under the

Microsoft Windows 7 operating system . We performed twelve

experiments and obtained the corresponding set of rendered images and

their speedup data, as shown in Figure 5 and Table 1, respectively. In

this table, the measured CPU-time and GPU-time in seconds represent

- 19 -

Figure 4. Three Samples of original 2D slice target images in horizontal order:

(1) Engine Block 512*512*512, (2) Metal Plate 512*512*512, and (3) Abdomen

512*512*86

the sequential and parallel running times of four employed techniques

of volume rendering applied to three target images respectively.

 We characterize the running times of volume rendering from two

- 20 -

Figure 5 Rendered results of three target images with different complexities in
vertical order: (1) Engine Block (2) Metal Plate (3) Abdomen

 Engine Block Metal Plate Abdomen

 CPU GPU Speedup CPU GPU Speedup CPU GPU Speedup

BVR 8.0 0.19 42.1 7.8 0.18 43.8 3.0 0.07 43.0

ERT 4.4 0.17 25.9 5.3 0.15 35.6 2.8 0.08 35.0

ESS 2.2 0.11 20.0 2.4 0.11 21.8 0.9 0.03 30.0

TVS 2.8 0.16 17.5 3.0 0.12 25.0 1.2 0.05 24.0

Table 1 Speedups resulted from the experiments (with CPU/GPU time in sec)

directions of viewpoints in the table: one viewpoint on every image to

compare the speedups of four volume rendering techniques, and the

other viewpoint on every techniques to compare the speedups of three

complexities of taget images.

3.3. Analysis on Image Complexity

Regarding the viewpoints on an individual image, as shown in Table 1

and represented in Figure 6, we obtained a performance order of

- 21 -

Figure 6. Speedups based on optimization techniques

techniques (ESS > TVS > ERT > BVR) across a big range of

performance in sequential CPU executions, while they reside within a

small range of performance in parallel GPU executions. Due to this

performance order in the CPU-time, BVR that is not optimized shows

the best speedup practice compared to the other optimization

techniques. The other three techniques shows a slight difference in the

- 22 -

Figure 7. Speedups based on image complexity

order (BVR > ERT > ESS > TVS) in which ESS is not always the

last one in that order, especially in case of more complex images. To

explain this irregularity, we argue that TVS incurs additional branch

divergence for rendering optimization and then cannot improve speedup

especially for complex target images.

 Regarding the viewpoints on each technique, we compare the

speedup cases on the three images with different complexities. BVR

- 23 -

shows the lowest speedup for Engine Block that is the highest in

image complexity and then becomes the basis of comparisons with the

other optimization techniques.

 Regarding the viewpoint of optimization techniques, as shown in

Table 1 and represented in Figure 7, we can classify them again into

two classes: one type of techniques that has no additional branch

divergence, such as ERT and ESS, and the other type of techniques

that has additional branch divergence, such as TVS. ERT and ESS

show the medium-level speedup for Engine Block, because these

optimization technique show both good sequential performance and no

branch divergence. TVS, however, shows the lowest speedup for

Engine Block, because the technique incurs a serious amount of branch

divergence. To explain this irregularity, we argue that any optimization

technique incurring additional branch divergence cannot improve

speedup for complex target images.

 Therefore, our results show that the TVS optimization technique

cannot improve speedup for complex target images, because TVS

incurs additional branch divergence for rendering optimization.

- 24 -

Chapter 4.

Reducing Branch Divergence

In this chapter reduces the branch divergence in TVS by factoring out

structurally similar code from branch paths in the GPU programs. For

this kind of reduction in general classes of GPU programs, Han and

Abdelrahman (2011) present two novel software-based optimizations:

iteration delaying and branch distribution.8) Our reduction algorithm is

established based on this branch distribution algorithm for volume

rendering in GPU platforms.

4.1. The Branch Divergence Reduction Algorithm

Iteration delaying is a method that targets a divergent branch enclosed

by a loop within a GPU kernel. It improves performance by executing

loop iterations that take the same branch direction and delaying those

that take the other direction until later iterations.

 Two strategies are proposed to decide which direction to take. The

first is majority vote. In each iteration, all threads in a warp

communicate with each other to determine the number of threads that

take each path, and then choose the direction that at least half of

- 25 -

threads take. For example, this half of threads in a warp of NVIDIA

GPU is sixteen, because the size of the warp is fixed to thirty two.

The rationale behind this strategy is to utilize at least half of the

execution units. The second decision strategy is round-robin. This

strategy works by changing the decision for each iteration. This means

that branching decision for the i-th iteration is the opposite of that for

the (i-1)-th iteration.

 For majority vote strategy, the main challenge of implementing

iteration delaying is reaching a consensus among the warp threads on

which path to take in each loop iteration. This implies that the

threshold parameter that defines what “majority” is need to be defined

first. And then, for each iteration, decision needs to be made based on

this threshold condition. To do this, this strategy uses two vote

functions for CUDA warps: __ballot and __popc. The __ballot

instruction collects branch conditions for all 32 warp threads into a

32-bit integer and the __popc instruction counts the number of bit 1’s

in a 32-bit integer.

 The round-robin strategy is implemented by inverting the threshold

condition periodically. This means that we declare two variables where

each of them indicates the two different branches. And finally, the

execution of all threads inside a warp is checked by using two CUDA

warp vote functions: __all and __any. The __all instruction returns true

if all threads conditions are true, and __any instruction returns true if

at least one thread’s condition is true.

- 26 -

 if (c > 0) {
 x = x * a1 + b1;
 y = y * a1 + b1;
 } else{
 x = x* a2 + b2;
 y= y* a2 + b2;
 }

(a) original code

if (c > 0) {
 a = a1;
 b = b1;

} else{
 a = a2;
 b = b2;
}

x = x * a + b;
y = y * a + b;

(b) optimized code

Figure 8. Code example of branch distribution

 Although iteration delaying improves speedup by x1.12 for

real-world applications, it is highly dependent on the functionality of

the CUDA platform.2) We take iteration delaying algorithm out of the

equation, since our program is implemented using OpenCL that does

not support any warp vote functions.9)

 While the iteration delaying relies on a per-thread loop that

surrounds the target branch, Han and Abdelrahman (2011) propose the

branch distribution method. This method “factors out” code from the

branch paths that are structurally the same, so that the total number of

dynamic instructions are reduced. For example, consider the code

fragment shown in Figure 8a. The structures of the two branches are

almost identical, and we can produce less divergent code as shown in

Figure 8b. Thus, this optimization “distributes” the branch condition

evaluation over the two branch bodies, which results in one or smaller

branch blocks interleaved with blocks of straight-line code, reducing the

- 27 -

impact of branch divergence.

 We now apply this algorithm to volume rendering with TVS

optimization. As mentioned in Section 2.1, the ray casting algorithm is

composed of four stages including the sampling stage. The TVS

decides in the sampling stage whether it skips a sample point or not

based on its sample value. And if that sample point is not zero, it

proceeds to the third stage. Otherwise, it does not proceed to the

shading stage, but it simply allocates zero to its return value. In the

last stage, called compositing stage, this return value is used iteratively

to be multiplied to obtain the final sample point value. If the shading’s

return value is zero, the final colour value for that ray’s pixel is zero,

which implies an empty space.

 The code fragment in Figure 9a is a simple pseudo code of TVS

before applying branch distribution. We see that both of the branch

paths are structurally similar with each other in two locations of the

codes: assigning values to the shading weight, and compositing based

on the shading weight. Thus, we can produce less divergent code by

distributing the branch condition evaluation, which means factoring out

the compositing stage, as shown in Figure 9b. We call this new

algorithm as the RBDV algorithm, denoting the reduction of branch

divergence in volume-rendering.

- 28 -

float shad_weight;

ray_casting();
sampling();
if (sample_value > 0) {
 shad_weight = shading();
 compositing(shad_weight);
} else{
 shad_weight = 0;
 compositing(shad_weight);
}

(a) original code

float shad_weight;

ray_casting();
sampling();
if (sample_value > 0) {
 shad_weight = shading();
} else {
 shad_weight = 0;
}
compositing(shad_weight);

(b) optimized code

Figure 9. Applying branch distribution method for GPU-base volume rendering
program.

4.2. Experimentation on Branch Divergence

We performed a set of experiments to prove that the RBDV algorithm

improves the GPU-speedup of TVS for complex images. Although

BVR does cause branch divergence, we only experimented with TVS

to see the branch distribution’s effect with maximum amount of branch

divergence.

 The environment for these experiments is identical with the

experiments which are performed in Chapter 3. We performed three

more additional experiments to this prior set of experiments, which

apply the RBDV algorithm to see if the TVS algorithm with RBDV

actually shows actual effects of reducing branch divergence for

- 29 -

 CPU
GPU-time
of TVS

without RBDV
Speedup

GPU-time
of TVS

with RBDV
Speedup

Speedup
Ratio

Engine Block 2.8 0.16 17.5 0.14 20.0 1.14

Metal Plate 3.0 0.12 25.0 0.12 25.0 0

Abdomen 1.2 0.05 24.0 0.05 24.0 0

Table 2. Speedup after applying branch distribution method.

rendering our three target images: Engine Block, Metal Plate, and

Abdomen.

 Table 2 shows the resulted data from these new experiments, which

has three rows on target images described above and six columns on

the times, in seconds, monitored in the new experiments. Among these

six columns, the first three columns of them rearrange the last row of

Table 1 that describes the measured results of TVS in three views:

only CPU-time, the GPU-time without the RBDV algorithm, and its

speedup. And, the next two columns show the new times and speedups

that are measured from the new three experiments for the TVS with

RBDV. The final column shows the speedups that are evaluated by

dividing the column on the speedup with RBDV by another column on

the speedup without RBDV.

 After we apply RBDV to its GPU code. as shown in Table 2, we

see significant changes of speedups between the GPU-time without and

with RBDV. Although images with low complexities shows little

- 30 -

improvement, the target image with the highest complexity shows 14%

improvement, from x17.5 speedup to x20.0.

4.3. Analysis on Branch Divergence

 This phenomena can be explained with the relationship between

image complexity and the amount of branch divergence caused by the

complexity. Branch divergence are proportional to the degree of image

complexity, because frequent changes over various image regions means

that the code requires execution instances of if-then-else statements as

many as the changes.

 Figure 10 shows a graphical representation of the GPU-speedups

shown in Table 2 based on image complexity. As the complexity of

image decreases, so does the difference between GPU speedups with or

without the RBDV algorithm. This phenomena proves that the branch

reduction algorithm in GPU-based volume rendering is more effective,

if the input image is associated with a relatively higher value of

complexity that is evaluated by the EVIC algorithm.

 Therefore, branch reduction technique such as RBDV shows an

significant improvement in case of complex images, because a

reasonable amount of branch divergence can be reduced in those kinds

of cases. On the other hand, since non-complex images have less

frequently changes over image regions and requires the less number of

- 31 -

Figure 10. The TVS speedup based on image complexity

executions of conditional statements, such images show little

improvement even though we applied the RBDV algorithm.

- 32 -

Chapter 5.

Conclusion and Future Work

This paper presents a speedup improvement method for optimized

volume rendering in GPU platforms. First, from a set of experiments,

we found that the speedup of volume rendering optimized with

transparent voxel skipping decreases with dependency on the

complexity of target images. In order to evaluate the complexity of

volume images, we developed a new algorithm, called EVIC. Next, we

present another new algorithm that reduces the branch divergence in

transparent voxel skipping by factoring out structurally similar code

from branch paths in GPU programs. This algorithm increases the

GPU-speedup of transparent voxel skipping by 14%, improving it from

x17.5 to x20.0 on average for complex target images.

 There are several issues for future work. The first issue is to apply

two iteration delaying methods discussed by Han and Abdelrahman to

GPU-based volume rendering implemented with OpenCL. Although

OpenCL does not support the warp vote functions which is provided in

CUDA environment, this could achieve decent results. This is because

iteration delaying method achieves higher speedups than branch

distribution method.8) The second issue is to extend our RBDV

algorithm. Because the benefit of branch distribution is proportional

- 33 -

with the size of the code factored out,8) we expect better speedup if

more than two steps of the ray casting algorithm can be factored out.

- 34 -

Reference

 [1] C. Balhnisch, P. Stelldinger, and U. Kothe, "Fast and Accurate

3D Edge Detection for Surface Reconstruction," 31st Annual

Symposium of the German Association for Pattern Recognition,

Springer-Verlag, September 2009.

 [2] M. Baskaran, J. Ramanujam, and P. Sadayappan, “Automatic

C-to-CUDA Code Generation for Affine Programs,” International

Conference on Compiler Construction (CC), pp. 244–263,

Springer-Verlag, 2010.

 [3] S. Bruckner, Efficient Volume Visualization of Large Medical

Datasets, Master's Thesis, Vienna University of Technology, 2004.

 [4] R. E. Bryant, and D. R. O’Hallaron, Compter Systems – A

Programmer’s Persepective, 2nd Edition, Prentice Hall, 2009.

 [5] G. Cox, et al, "Exploring Parallelism in Volume Ray Casting:

Understanding the Programming Issues of Multhreaded

Accelerators," International Workshop on Programming Models

and Applications for Multicores and Manycores (PMAM), ACM,

February 2012.

 [6] K. Engel, et al, Real-Time Volume Graphics, A. K. Peters

Publishers, 2006.

 [7] K. Engel, M. Kraus and T. Ertl, “High-Quality Pre-Integrated

Volume Rendering Using Hardware-Accelerated Pixel Shading,”

- 35 -

International Conference and Exhibition on Computer Graphics

and Interactive Techniques (SIGGRAPH), ACM, 2001.

 [8] T. D. Han, and T. S. Abdelrahman, "Reducing Branch Divergence

in GPU Programs," Fourth Workshop on General Purpose

Processing on Graphics Processing Units, ACM, 2011.

 [9] L. Howes, and A. Munshi, The OpenCL Specification Version 2.0,

Khronos OpenCL Working Group, 2014.

[10] Joe Kniss, et al., “Interactive Texture-Based Volume Rendering for

Large Data Sets,” Computer Graphics and Applications, Vol. 21,

No. 4, IEEE, 2001.

[11] J. Kruger and R. Westermann, "Acceleration Techniques for

GPU-based Volume Rendering," Visualization (VIS), IEEE, 2003.

[12] B. Lee, J. Yun, J. Seo, B. Shim, Y. Shin, and B. Kim, "Fast

High-Quality Volume Ray Casting with Virtual Samplings,"

Transactions on Visualization and Computer Graphics, Vol. 16,

No. 6, pp. 1525-1532, IEEE, November 2010.

[13] L. Marsalek, et al, "High-Speed Volume Ray Casting with

CUDA", Symposium on Interactive Ray Tracing, IEEE, 2008.

[14] M. Meißner, H. Pfister, R. Westermann, and C. M. Wittenbrink,

"Volume Visualization and Volume Rendering Techniques,"

European Association for Computer Graphics (Eurographics),

Tutorial, 2000.

[15] H. Song, J. Yun, B. Kim, and J. Seo, "GazeVis: Interactive 3D

Gaze Visualization for Contiguous Cross-Sectional Medical

Images," Transactions on Visualization and Computer Graphics,

Vol. 20, No. 5, pp. 726-739, IEEE, May 2014.

- 36 -

[16] D. Weiskopf, GPU-Based Interactive Visualization Techniques

(Mathematics and Visualization), Springer-Verlag, 2006

[17] H. Yu, et al, "I/O Strategies for Parallel Rendering of Large

Time-Varying Volume Data," Eurographics Symposium on Parallel

Graphics and Visualization (EGPGV), pages 31-40,

Eurographics/ACM-SIGGRAPH, 2004.

- 37 -

국문 초록

최적화된 Volume Rendering의 GPU-Speedup 개선 기법

서울대학교 전기컴퓨터공학부

전 상 수

이 논문은 volume rendering을 GPU 기반으로 병렬처리 했을 때의

speedup 개선 기법을 소개한다. 첫 번째로, 우리는 transparent voxel

skipping을 이용하여 최적화된 volume rendering의 speedup은 영상 복

잡도가 높을수록 감소한다는 것을 실험을 통해서 발견하였다. 이러

한 볼륨 영상의 복잡도를 계산하기 위해서 EVIC 이라는 새로운 알

고리즘을 개발하였다. 그리고 GPU 프로그램에서 구조적으로 비슷

한 코드들을 분기제어 경로에서 제외시킴으로서 transparent voxel

skipping을 구현한 프로그램의 branch divergence를 감소시키는 새로

운 RBDV 알고리즘을 제시한다. 복잡도가 높은 영상에서, 이 알고

리즘은 transparent voxel skipping의 GPU-speedup을 평균 17.5배에서

20배까지 14% 이상으로 증가시킬 수 있다는 것을 확인하였다.

주요어. 영상 복잡도, volume rendering, transparent voxel skipping,

speedup, graphics processing unit (GPU)

	Chapter 1. Introduction
	Chapter 2. Background
	2.1. Volume ray-casting
	2.2. Optimization of volume rendering
	2.3. GPU-based parallelization
	2.4. Branch divergence

	Chapter 3. Findings on Image Complexity Dependence
	3.1. The complexity evaluation algorithm
	3.2. Experimentation on image complexity
	3.3. Analysis on image complexity

	Chapter 4. Reducing Branch Divergence
	4.1. The branch divergence reduction algorithm
	4.2. Experimentation on branch divergence
	4.3. Analysis on branch divergence

	Chapter 5. Conclusion and Future Work
	References
	Abstract (in Korean)

<startpage>2
Chapter 1. Introduction 7
Chapter 2. Background 9
 2.1. Volume ray-casting 9
 2.2. Optimization of volume rendering 11
 2.3. GPU-based parallelization 13
 2.4. Branch divergence 14
Chapter 3. Findings on Image Complexity Dependence 16
 3.1. The complexity evaluation algorithm 16
 3.2. Experimentation on image complexity 18
 3.3. Analysis on image complexity 20
Chapter 4. Reducing Branch Divergence 24
 4.1. The branch divergence reduction algorithm 24
 4.2. Experimentation on branch divergence 28
 4.3. Analysis on branch divergence 30
Chapter 5. Conclusion and Future Work 32
References 34
Abstract (in Korean) 37
</body>

