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Abstract
This paper presents a speedup improvement method for optimized 

volume rendering in GPU platforms. First, from a set of experiments, 

we found that the speedup of volume rendering optimized with 

transparent voxel skipping decreases with dependency on the 

complexity of target images. In order to evaluate the complexity of 

volume images, we developed a new algorithm, called EVIC. Next, we 

present another new algorithm, called RBDV, that reduces the branch 

divergence in transparent voxel skipping by factoring out structurally 

similar code from branch paths in GPU programs. We empirically 

proved that this RBDV algorithm increases the GPU-speedup of 

transparent voxel skipping at least by 14%, improving it from x17.5 

upto x20.0 or more, on average, for complex target images.

Keywords. image complexity, volume rendering, transparent voxel 

skipping, speedup, graphics processing unit (GPU)
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Chapter 1.

Introduction

Volume rendering is a visualization method for volumetric images. It 

is widely used for scientific visualization which requires simulation of 

realistic 3-dimensional data. The scientific visualization is applied to 

many widely recognized fields including medical imaging and industrial 

imaging. These fields requires volume rendering of such images, 

because it must help the user to better understand the inside and 

outside conditions of machine parts or patients.

   Unfortunately, typical sizes of modern data are very large and will 

continue to increase in the future due to technological advances in 

acquisition devices.5) Thus, processing these data sets efficiently is 

important,1,7) so improving GPU-speedup has been a major research 

goal in volume rendering community for many years. When running 

ray casting on GPU platforms, the speedup is dependent on the amount 

of branch divergence incurred by the threads of kernel program.5) 

   This paper examines the speedup issues of volume rendering in 

GPU platforms with regard to its dependency with image complexity. 

First, from a set of experiments, we found that the speedup of volume 
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rendering optimized with transparent voxel skipping decreases with 

dependency on the complexity of target images. In order to evaluate 

the complexity of volume images, we developed a new algorithm, 

called EVIC. Next, we present another new algorithm that reduces the 

branch divergence in transparent voxel skipping by factoring out 

structurally similar code from branch paths in GPU programs. 

   The remainder of this paper is organized as follows. Chapter 2 

provides background for understanding our work. Chapter 3 presents 

our own findings on the image complexity dependence on the 

GPU-speedup of optimized volume rendering and our EVIC algorithm 

that evaluates the complexity of volume images. Chapter 4 presents 

another new algorithm that reduces branch divergence in GPU-based 

volume rendering programs. Finally, we conclude our paper and give 

directions for future work in chapter 5. 
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Chapter 2.

Background

This paper presents a speedup improvement method for optimized 

volume rendering in GPU platforms. This chapter briefly explains the 

basic algorithm, called ray casting, of volume rendering. Next, we 

introduce two approaches that can increase its performance by 

optimizing the basic algorithm and parallelizing it on GPU platforms. 

Lastly, we finish this chapter after explaining the concept of branch 

divergence which is the main problem solved by this paper 

2.1. Volume Ray-Casting 

Volume ray casting (or simply ray casting) is the basic technique for 

volume rendering.12,13,15) This processes volume data by tracing a path 

of light rays through pixels in an image plane. In its basic form, this 

algorithm is composed of four steps, as illustrated in Figure 1:13,14) 

1. Ray casting: For each pixel in the final image, a ray is casted 

through the volume. 

2. Sampling: Along the casted ray inside the volume, equi-distant 

samples are selected. When evaluating the values of these 
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Figure 1 Four basic steps of ray casting: (1) Ray Casting (2) Sampling (3) 
Shading (4) Compositing.

samples, it is necessary to interpolate them from its surrounding 

voxels, since the volume is not aligned with the rays most of the 

time, and samples are usually located in between voxels. 

3. Shading: Each samples are coloured and lit according to their 

surface orientation and the light source location. 

4. Compositing: Final colour value for that pixel is evaluated using 

front-to-back rendering equation.

   However, unlike general surface rendering, volume rendering is 

used for visualizing 3-dimensional data with large volumes, which 

makes rendering time slow. So, in order to render images as real-time 

as possible, research in effective rendering became an important issue.1) 

There are two main stream approaches in the research. The first 

approach aims to avoid rendering empty regions in the images as 

much as possible;4) the second approach is to utilize ever growing 

GPU technology to volume rendering.4,8)
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2.2. Optimization of Volume Rendering

Optimization techniques of volume rendering (or simply optimization 

techniques) aim to avoid rendering empty regions as much as possible. 

We use two kinds of volume rendering techniques: one for non- 

optimized ray-casting and the other for three representative optimization 

techniques, as shown in Figure 2:3,9) 

1. basic volume rendering (BVR): This technique, as shown in 

Figure 2(a), represents the traditional volume rendering that does 

not apply any type of optimization to the original ray-casting 

method

2. early ray termination8) (ERT): This technique, as shown in Figure 

2(b), represents an optimized volume rendering that stops 

progression of each ray whenever an accumulated opacity reaches 

a high fractional value that is greater than zero and equal to one, 

say 0.98.

3. empty space skipping8) (ESS): This technique, as shown in Figure 

2(c), represents an optimized volume rendering that performs in 

the preprocessing stage. ESS divides the volume into 

sub-volumes, calculates its minimum and maximum colour values 

of each target sub-volume, and finally decide if each pair of 

values are within the range of transfer function.

4. transparent voxel skipping8) (TVS): This technique, as shown in 
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techniques illustration

BVR

ERT

ESS

TVS

Figure 2.  Volume rendering techniques
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Figure 2(d), represents an optimized volume rendering that skips 

transparent voxels from rendering because they do not necessarily 

contribute to the final image.

   We compare the performance of these four techniques in regards to 

their speedup on a GPU platform in the next chapter. 

2.3. GPU-based Parallelization

Computational complexities are very high in volume rendering due to 

such large data. Fortunately, in ray casting, each light rays that goes 

through pixels are totally independent from one another, making it 

suitable for parallelization. The GPU-based volume rendering evaluates 

each pixel in the image plane11,17) in parallel by allocating one core for 

each ray.

   When comparing the performance between programs running on 

CPU and GPU, we use a measure called speedup. Although absolute 

running time is the ultimate measure of any program’s performance, 

there are some useful relative measure, such as the speedup, that can 

provide insight into how well a parallel program is exploiting potential 

parallelism.4) The speedup of a parallel program is typically defined as 

  




where p is the number of processor cores, and Tk is the running time 
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on k cores. When T1 is the execution time of a sequential version of 

the program, the Sp is called the absolute speedup. This paper employs 

this notion of the absolute speedup, and we will refer to it just as 

speedup for simplicity.

2.4. Branch Divergence

Threads are often bundled into fixed-size warps for executing them on 

a CUDA core; a set of threads within a warp must follow the same 

execution path. This means that all threads in a warp must execute the 

same instruction at the same given time. But when different threads 

within a warp does different things, this causes threads to diverge to 

different branch paths of executions.8) In these cases, the warp serially 

executes each branch path resulting in overall performance loss, 

because a warp executes just one instruction at a time. The following 

code segment is a typical example of branch divergence.

1: for (every thread within a warp) {

2:    thread_value = Array[tid];

3:    if (thread_value > 10) {

4:          variable = variable * 2;

5:      }

6: . . . . . . . . . .

7: }
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   If a set of threads is supposed to execute the statement in line 4 

that assigns a new value to the variable, at the next timing, the other 

set of threads with the boolean condition of false in the same warp 

must go through without executing the statement. On average, let’s say 

half of the threads within a warp actually execute this branch 

condition, this means that the utilization of execution units are also 

just half.

   In case of the four techniques discussed in Figure 2, only TVS 

causes additional branch divergence on parallel environments. This is 

because each ray has different voxels to skip; therefore each ray may 

execute one of two different tasks on a branch operation that must be 

serialized with each other.
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Chapter 3. 

Findings on Image Complexity Dependence

This chapter presents that the GPU-speedup of volume rendering 

optimized with three representative optimization techniques decreases 

with dependency on the complexity of target images from a set of 

experiments. In order to evaluate the complexity of volume images, we 

developed a new algorithm, called EVIC.  

3.1. The Complexity Evaluation Algorithm

Bahnisch, Stelldinger and Kothe (2009) defined image complexity for 

2D images as the number of edges that separates two regions from 

each other.1) To the best of our knowledge, so far there has been no 

completed work on how to define image complexity for volume 

images. 

   There are two difficulties for the users to evaluate the complexities 

of volume images. First, as seen in Figure 4, changes in the intensity 

of image values so frequently appear in each slice of the image, thus 

it is not easy for the user to define every discrete part that causes 

change in regions. Second, most volume images are composed of huge 
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for (entire volume) {
      final_intensity = final_intensity + intensity[i];
}
threshold = final_intensity / n;

for (entire volume) {
     inten_diff = intensity[i] － intensity[i-1];
     if (inten_diff > threshold) region_change++;
}
final_complexity = region_change / slice_number;

Figure 3. The EVIC Algorithm

number of image slices. Due to these reasons, it is impossible for 

users to manually evaluate the image complexity. Our new algorithm, 

called EVIC, extends the Bahnisch's definition of image complexity to 

our context in volume rendering, where EVIC stands for Evaluation of 

Volume Image Complexity.

   This EVIC algorithm works at the sampling stage of ray casting. In 

its first stage of EVIC, we take all of the values of sampling points 

from the entire volume image and calculate the average of all sampled 

values. We set this average value as the threshold to determine if we 

meet the change of regions. Whenever the difference between two 

sampling values exceeds this threshold, we add one to the variable that 

is designated to signify a change between regions. Since target images 

usually differ in the number of slices, we have to divide the value 

stored in this variable by the number of slices. Figure 3 shows the 

pseudo code of this algorithm.
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3.2. Experimentation on Image Complexity

We found that the GPU-speedup of volume rendering optimized with 

three representative optimization techniques decreases with dependency 

on the complexity of target images. To support it, we performed a set 

of experiments, in which we take three kinds of image complexities 

using three target images: Engine Block, Metal Plate, and Abdomen, as 

shown in Figure 4. 

   These images are taken from two representative applications of 

volume rendering. Engine Block and Metal Plate are taken from 

industrial applications, and Abdomen are done from medical 

applications. Using the EVIC algorithm introduced in the previous 

section, we evaluated all three target images and concluded that Engine 

Block has the biggest complexity by 21.3, the next is Abdomen by 

16.6, and the last is Metal Plate by 8.2. 

   We performed the speedup experiments of the implemented code of 

the EVIC algorithm developed in Visual C++ 2012 using an Intel 

i7-2600 CPU with an NVIDIA GTX-680 GPU running under the 

Microsoft Windows 7 operating system . We performed twelve 

experiments and obtained the corresponding set of rendered images and 

their speedup data, as shown in Figure 5 and Table 1, respectively. In 

this table, the measured CPU-time and GPU-time in seconds represent 
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Figure 4. Three Samples of original 2D slice target images in horizontal order: 

(1) Engine Block 512*512*512, (2) Metal Plate 512*512*512, and (3) Abdomen 

512*512*86 

the sequential and parallel running times of four employed techniques 

of volume rendering applied to three target images respectively. 

   We characterize the running times of volume rendering from two 
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Figure 5 Rendered results of three target images with different complexities in 
vertical order: (1) Engine Block (2) Metal Plate (3) Abdomen

 Engine Block Metal Plate Abdomen

 CPU GPU Speedup CPU GPU Speedup CPU GPU Speedup

BVR 8.0 0.19 42.1 7.8 0.18 43.8 3.0 0.07 43.0

ERT 4.4 0.17 25.9 5.3 0.15 35.6 2.8 0.08 35.0

ESS 2.2 0.11 20.0 2.4 0.11 21.8 0.9 0.03 30.0

TVS 2.8 0.16 17.5 3.0 0.12 25.0 1.2 0.05 24.0

Table 1 Speedups resulted from the experiments (with CPU/GPU time in sec)

directions of viewpoints in the table: one viewpoint on every image to 

compare the speedups of four volume rendering techniques, and the 

other viewpoint on every techniques to compare the speedups of three 

complexities of taget images. 

3.3. Analysis on Image Complexity

Regarding the viewpoints on an individual image, as shown in Table 1 

and represented in Figure 6, we obtained a performance order of 
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Figure 6. Speedups based on optimization techniques

techniques (ESS > TVS > ERT > BVR) across a big range of 

performance in sequential CPU executions, while they reside within a 

small range of performance in parallel GPU executions. Due to this 

performance order in the CPU-time, BVR that is not optimized shows 

the best speedup practice compared to the other optimization 

techniques. The other three techniques shows a slight difference in the 
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Figure 7. Speedups based on image complexity

order (BVR > ERT > ESS > TVS) in which ESS is not always the 

last one in that order, especially in case of more complex images. To 

explain this irregularity, we argue that TVS incurs additional branch 

divergence for rendering optimization and then cannot improve speedup 

especially for complex target images.

   Regarding the viewpoints on each technique, we compare the 

speedup cases on the three images with different complexities. BVR 
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shows the lowest speedup for Engine Block that is the highest in 

image complexity and then becomes the basis of comparisons with the 

other optimization techniques. 

   Regarding the viewpoint of optimization techniques, as shown in 

Table 1 and represented in Figure 7, we can classify them again into 

two classes: one type of techniques that has no additional branch 

divergence, such as ERT and ESS, and the other type of techniques 

that has additional branch divergence, such as TVS. ERT and ESS 

show the medium-level speedup for Engine Block, because these 

optimization technique show both good sequential performance and no 

branch divergence. TVS, however, shows the lowest speedup for 

Engine Block, because the technique incurs a serious amount of branch 

divergence. To explain this irregularity, we argue that any optimization 

technique incurring additional branch divergence cannot improve 

speedup for complex target images.

   Therefore, our results show that the TVS optimization technique 

cannot improve speedup for complex target images, because TVS 

incurs additional branch divergence for rendering optimization.
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Chapter 4.  

Reducing Branch Divergence

In this chapter reduces the branch divergence in TVS by factoring out 

structurally similar code from branch paths in the GPU programs. For 

this kind of reduction in general classes of GPU programs, Han and 

Abdelrahman (2011) present two novel software-based optimizations: 

iteration delaying and branch distribution.8) Our reduction algorithm is 

established based on this branch distribution algorithm for volume 

rendering in GPU platforms.

4.1. The Branch Divergence Reduction Algorithm

Iteration delaying is a method that targets a divergent branch enclosed 

by a loop within a GPU kernel. It improves performance by executing 

loop iterations that take the same branch direction and delaying those 

that take the other direction until later iterations. 

   Two strategies are proposed to decide which direction to take. The 

first is majority vote. In each iteration, all threads in a warp 

communicate with each other to determine the number of threads that 

take each path, and then choose the direction that at least half of 
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threads take. For example, this half of threads in a warp of NVIDIA 

GPU is sixteen, because the size of the warp is fixed to thirty two. 

The rationale behind this strategy is to utilize at least half of the 

execution units. The second decision strategy is round-robin. This 

strategy works by changing the decision for each iteration. This means 

that branching decision for the i-th iteration is the opposite of that for 

the (i-1)-th iteration.

   For majority vote strategy, the main challenge of implementing 

iteration delaying is reaching a consensus among the warp threads on 

which path to take in each loop iteration. This implies that the 

threshold parameter that defines what “majority” is need to be defined 

first. And then, for each iteration, decision needs to be made based on 

this threshold condition. To do this, this strategy uses two vote 

functions for CUDA warps: __ballot and __popc. The __ballot 

instruction collects branch conditions for all 32 warp threads into a 

32-bit integer and the __popc instruction counts the number of bit 1’s 

in a 32-bit integer. 

   The round-robin strategy is implemented by inverting the threshold 

condition periodically. This means that we declare two variables where 

each of them indicates the two different branches. And finally, the 

execution of all threads inside a warp is checked by using two CUDA 

warp vote functions: __all and __any. The __all instruction returns true 

if all threads conditions are true, and __any instruction returns true if 

at least one thread’s condition is true.
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   if (c > 0) {
        x = x * a1 + b1;
        y = y * a1 + b1;
   } else{
        x = x* a2 + b2;
        y=  y* a2 + b2;
   }

 
 
 

(a) original code

if (c > 0) {
    a = a1;
    b = b1;

} else{
      a = a2;
      b = b2;
} 

x = x * a + b;
y = y * a + b;

 
(b) optimized code

Figure 8. Code example of branch distribution

   Although iteration delaying improves speedup by x1.12 for 

real-world applications, it is highly dependent on the functionality of 

the CUDA platform.2) We take iteration delaying algorithm out of the 

equation, since our program is implemented using OpenCL that does 

not support any warp vote functions.9)

   While the iteration delaying relies on a per-thread loop that 

surrounds the target branch, Han and Abdelrahman (2011) propose the 

branch distribution method. This method “factors out” code from the 

branch paths that are structurally the same, so that the total number of 

dynamic instructions are reduced. For example, consider the code 

fragment shown in Figure 8a. The structures of the two branches are 

almost identical, and we can produce less divergent code as shown in 

Figure 8b. Thus, this optimization “distributes” the branch condition 

evaluation over the two branch bodies, which results in one or smaller 

branch blocks interleaved with blocks of straight-line code, reducing the 
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impact of branch divergence. 

   We now apply this algorithm to volume rendering with TVS 

optimization. As mentioned in Section 2.1, the ray casting algorithm is 

composed of four stages including the sampling stage. The TVS 

decides in the sampling stage whether it skips a sample point or not 

based on its sample value. And if that sample point is not zero, it 

proceeds to the third stage. Otherwise, it does not proceed to the 

shading stage, but it simply allocates zero to its return value. In the 

last stage, called compositing stage, this return value is used iteratively 

to be multiplied to obtain the final sample point value. If the shading’s 

return value is zero, the final colour value for that ray’s pixel is zero, 

which implies an empty space.

   The code fragment in Figure 9a is a simple pseudo code of TVS 

before applying branch distribution. We see that both of the branch 

paths are structurally similar with each other in two locations of the 

codes: assigning values to the shading weight, and compositing based 

on the shading weight. Thus, we can produce less divergent code by 

distributing the branch condition evaluation, which means factoring out 

the compositing stage, as shown in Figure 9b. We call this new 

algorithm as the RBDV algorithm, denoting the reduction of branch 

divergence in volume-rendering.
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float shad_weight;

ray_casting();
sampling();
if (sample_value > 0) {
      shad_weight = shading();
      compositing(shad_weight);
} else{
     shad_weight = 0;
     compositing(shad_weight);
}

(a) original code

float shad_weight;

ray_casting();
sampling();
if (sample_value > 0) {
      shad_weight = shading();
} else {
      shad_weight = 0;
} 
compositing(shad_weight);
 

(b) optimized code

Figure 9. Applying branch distribution method for GPU-base volume rendering 
program.

4.2. Experimentation on Branch Divergence

We performed a set of experiments to prove that the RBDV algorithm 

improves the GPU-speedup of TVS for complex images. Although 

BVR does cause branch divergence, we only experimented with TVS 

to see the branch distribution’s effect with maximum amount of branch 

divergence. 

   The environment for these experiments is identical with the 

experiments which are performed in Chapter 3. We performed three 

more additional experiments to this prior set of experiments, which 

apply the RBDV algorithm to see if the TVS algorithm with RBDV 

actually shows actual effects of reducing branch divergence for 
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 CPU
GPU-time 
of TVS 

without RBDV
Speedup

GPU-time 
of TVS 

with RBDV
Speedup

Speedup 
Ratio 

Engine Block 2.8 0.16 17.5 0.14 20.0 1.14

Metal Plate 3.0 0.12 25.0 0.12 25.0 0

Abdomen 1.2 0.05 24.0 0.05 24.0 0

Table 2. Speedup after applying branch distribution method.

rendering our three target images: Engine Block, Metal Plate, and 

Abdomen. 

   Table 2 shows the resulted data from these new experiments, which 

has three rows on target images described above and six columns on 

the times, in seconds, monitored in the new experiments. Among these 

six columns, the first three columns of them rearrange the last row of 

Table 1 that describes the measured results of TVS in three views: 

only CPU-time, the GPU-time without the RBDV algorithm, and its 

speedup. And, the next two columns show the new times and speedups 

that are measured from the new three experiments for the TVS with 

RBDV. The final column shows the speedups that are evaluated by 

dividing the column on the speedup with RBDV by another column on 

the speedup without RBDV.

   After we apply RBDV to its GPU code. as shown in Table 2, we 

see significant changes of speedups between the GPU-time without and 

with RBDV. Although images with low complexities shows little 
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improvement, the target image with the highest complexity shows 14% 

improvement, from x17.5 speedup to x20.0.

4.3. Analysis on Branch Divergence

   This phenomena can be explained with the relationship between 

image complexity and the amount of branch divergence caused by the 

complexity. Branch divergence are proportional to the degree of image 

complexity, because frequent changes over various image regions means 

that the code requires execution instances of if-then-else statements as 

many as the changes. 

   Figure 10 shows a graphical representation of the GPU-speedups 

shown in Table 2 based on image complexity. As the complexity of 

image decreases, so does the difference between GPU speedups with or 

without the RBDV algorithm. This phenomena proves that the branch 

reduction algorithm in GPU-based volume rendering is more effective, 

if the input image is associated with a relatively higher value of 

complexity that is evaluated by the EVIC algorithm.

   Therefore, branch reduction technique such as RBDV shows an 

significant improvement in case of complex images, because a 

reasonable amount of branch divergence can be reduced in those kinds 

of cases. On the other hand, since non-complex images have less 

frequently changes over image regions and requires the less number of 



- 31 -

Figure 10. The TVS speedup based on image complexity

executions of conditional statements, such images show little 

improvement even though we applied the RBDV algorithm.
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Chapter 5. 

Conclusion and Future Work

This paper presents a speedup improvement method for optimized 

volume rendering in GPU platforms. First, from a set of experiments, 

we found that the speedup of volume rendering optimized with 

transparent voxel skipping decreases with dependency on the 

complexity of target images. In order to evaluate the complexity of 

volume images, we developed a new algorithm, called EVIC. Next, we 

present another new algorithm that reduces the branch divergence in 

transparent voxel skipping by factoring out structurally similar code 

from branch paths in GPU programs. This algorithm increases the 

GPU-speedup of transparent voxel skipping by 14%, improving it from 

x17.5 to x20.0 on average for complex target images.

   There are several issues for future work. The first issue is to apply 

two iteration delaying methods discussed by Han and Abdelrahman to 

GPU-based volume rendering implemented with OpenCL. Although 

OpenCL does not support the warp vote functions which is provided in 

CUDA environment, this could achieve decent results.  This is because 

iteration delaying method achieves higher speedups than branch 

distribution method.8) The second issue is to extend our RBDV 

algorithm. Because the benefit of branch distribution is proportional 
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with the size of the code factored out,8) we expect better speedup if 

more than two steps of the ray casting algorithm can be factored out.
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국문 초록

최적화된 Volume Rendering의 GPU-Speedup 개선 기법

서울대학교 전기컴퓨터공학부

전 상 수

이 논문은 volume rendering을 GPU 기반으로 병렬처리 했을 때의

speedup 개선 기법을 소개한다. 첫 번째로, 우리는 transparent voxel 

skipping을 이용하여 최적화된 volume rendering의 speedup은 영상 복

잡도가 높을수록 감소한다는 것을 실험을 통해서 발견하였다. 이러

한 볼륨 영상의 복잡도를 계산하기 위해서 EVIC 이라는 새로운 알

고리즘을 개발하였다. 그리고 GPU 프로그램에서 구조적으로 비슷

한 코드들을 분기제어 경로에서 제외시킴으로서 transparent voxel 

skipping을 구현한 프로그램의 branch divergence를 감소시키는 새로

운 RBDV 알고리즘을 제시한다. 복잡도가 높은 영상에서, 이 알고

리즘은 transparent voxel skipping의 GPU-speedup을 평균 17.5배에서

20배까지 14% 이상으로 증가시킬 수 있다는 것을 확인하였다.

주요어. 영상 복잡도, volume rendering, transparent voxel skipping, 

speedup, graphics processing unit (GPU)
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