

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사학위논문

Execution Offloading기술을
사용한모바일기기를위한

클라우드보안솔루션

Cloud Security Solution of Mobile Applications
based on Execution Offloading

2015년 8월

Seoul National University
School of Electrical and Computer Engineering

Ali Almokhtar

Execution Offloading기술을
사용한모바일기기를위한

클라우드보안솔루션

Cloud Security Solution of Mobile Applications
based on Execution Offloading

백윤흥교수님

이논문을공학석사학위논문으로제출함

2015년 8월

Seoul National University
School of Electrical and Computer Engineering

Ali Almokhtar

Ali Almokhtar의석사학위논문을인준함
2015년 8월

위 원 장 윤성로 (인)

부위원장 백윤흥 (인)

위 원 정교민 (인)

Abstract

So far, security mechanisms for mobile devices have had difficulties

to protect from malicious threats due to the limited resources of mobile de-

vices. With the prevalence of cloud computing, one of promising solutions

to overcome the difficulties is to exploit cloud environments, where a remote

virtual machine performs the resource-consuming security analysis instead

of a mobile device. However, existing cloud-based solutions are still insuffi-

cient because of the code coverage problem and security level degradation.

Therefore, this thesis proposes a static and dynamic analysis based secu-

rity solution called SORCloud. For dynamic analysis, it offloads a process

of a suspicious application to a remote virtual machine for dynamic secu-

rity analysis, by which SORCloud resolves two problems mentioned above.

Through comprehensive experiments, we show how efficiently the proposed

scheme works and detects malicious behavior.

Keywords : Offloading, Cloud Systems, Static and Dynamic Analysis,

Malwares analysis tools

Student Number : 2013-23848

i

Contents

I. Introduction . 1

II. Background . 5

III. Related Work . 7

3.1 Androgaurd . 10

3.2 Andriod-apktool . 10

3.3 Dex2Jar . 11

3.4 Dexter . 11

3.5 APKInspector . 12

3.6 API monitor . 12

3.7 offloading . 14

IV. SorCloud . 16

4.1 System Overview . 16

4.2 System Modules . 17

4.3 Execution offloading . 18

4.3.1 Code Instrumentation 18

4.3.2 Thread Migration 21

4.4 Security Modules . 23

4.5 Security Analysis . 25

4.6 Evaluation . 26

4.6.1 Experimental setup 26

ii

4.6.2 Experimental results 27

4.7 CONCLUSION . 34

4.8 FUTURE WORK . 35

References . 40

초록 . 41

iii

List of figures

[[Figure] 1.Distribution of mobile threats by platform , 2004-2012.[23] 2

[[Figure] 2.AASandbox [18] . 8

[[Figure] 3.Secloud [34] . 9

[[Figure] 4.APImointor architecture[8] 13

[[Figure] 5.migration overview of CloneCloud[33] 14

[[Figure] 6.Install time steps . 18

[[Figure] 7.Example of Jasmin code after code instrumentation. . 22

[[Figure] 8.SORcloud overview. 24

[[Figure] 9.Run-time data transfer overhead 31

[[Figure] 10.Sample Java code of emulator detection 32

[[Figure] 11.Result of network monitor[15] 33

iv

List of Tables

Table 1. UserInterface call-back methods 20

Table 2. Offloading data for MOTP 29

Table 3. Offloading data for DroidWieght 30

Table 4. Comparison of Sandbox, replay, and offloading 34

v

Chapter 1

Introduction

The number of malwares targeting mobile devices such as smartphones

or tablets is growing fast. Mobile devices usually have several types of crit-

ical information: user’s position, certificates including personal information

which is used for the financial transactions, private contacts, and a gallery

containing pictures and videos, and so on. This nature of the mobile de-

vices tempts malicious attackers to steal the valuable information through

malware attacks, which makes it necessary to protect the mobile devices

against the information leakage.

Of course, the malware attacks are not new threats. The malwares on

mobile devices are not quite different from those of PCs (personal computer)

such as desktops and laptops. In order to protect from malware attacks, there

have been proposed a lot of solutions to detect the malwares. However, the

legacy solutions are not suitable for mobile devices because of the limited

capacity and computing resources of mobile devices.

One of alternative solutions to overcome the limitation of mobile de-

vices is to detect malwares by using separate servers. The basic concept is

that separate powerful servers take on the detection which requires a heavy

workload on behalf of mobile devices. Recently, with the prevalent use of

the cloud computing, Virtual Machines (VM) are widely used as the separate

servers. In this thesis, therefore, every separate server is assumed to oper-

1

Figure 1: Distribution of mobile threats by platform , 2004-2012.[23]

ate as the VM in the cloud. This kind of solutions can be broadly classified

into two different approaches, sandbox-based and replay-based. As Figure

.1 shows that mobile threats targeting android platforms have massively in-

creased due the huge the number of usage of Android platform, almost 94%

of the attacks attack android based on applications

Firstly, the sandbox-based approach[18, 26, 29, 31, 20, 32, 22] literally

uses a VM as a sandbox1. In this approach, the required security modules,

e.g., a static malware detector or a dynamic behavior analyzer, are installed

into the VM, and a suspicious program is executed and analyzed through

the installed security modules in the VM acting as a sandbox. Thus, this ap-

proach can avoid the overload of mobile devices for detection. Furthermore,

the information can always be protected even if the suspicious program ful-

fills its task since the VM is not a real mobile device but just a sandbox.

However, it cannot be guaranteed that the behaviors of the suspicious pro-

1 Sandbox is a security mechanism for separating untrusted or suspicious programs.

2

gram are examined thoroughly, which is called a Code Coverage Problem,

since the inputs to the program, e.g., typing numbers or pressing a volume

button, are not generated from a real user, but an emulator.

Secondly, in the replay-based approach[34, 24], all the events that oc-

cur in the mobile device are replayed in the VM. Similar to the sandbox, the

required security modules are installed into a VM, and they examine the be-

haviors of the suspicious program. The main difference is that the inputs to

the application program are sent from the real user's device in real-time, and

what the suspicious program does in the mobile device are replayed in the

VM. In other words, the VM executes the suspicious program one more time

with the same inputs as the mobile device. Therefore, it does not have the

code coverage problem due to the use of the actual user's inputs. However,

it needs the initial overhead to make the same environment as the mobile

device in the VM, and the communication overhead to transmit user's input

to the VM. The fatal shortcoming is that it cannot prevent the information

leakage since it is a post processing method. That means even if malicious

behaviors are detected in the VM, the information has been already stolen

from the mobile device.

To sum up, the sandbox-based approaches offer the secure analysis en-

vironment which can prevent the information leakage, but have the code

coverage problem. On the other hand, the replay-based approaches provide

the complete examination, but cannot guarantee the information leakage

prevention, which causes the degradation of security level. So far, we have

had to abandon one of code coverage and security level because of the trade-

off between two different approaches.

3

We propose a new approach to overcome the tradeoff, which is an

offloading-based security solution for mobile devices called SORcloud (Se-

curity ORiented cloud). SORcloud also installs the required security service

modules on a VM, executes a suspicious program in the VM, and makes

it analyzed through the security modules. It is noteworthy that execution

offloading2 is introduced for dynamic analysis for the behaviors of mobile

devices.

The rest is organized as follows.In Section 2, we discuss related work.

In Section 3, we explain SORcloud framework design and implementation.

Section 4 evaluate SORcloud. we conclude in Section 5 and finally in Sec-

tion 6, we discuss future work.

2The execution offloading is a technique that gets some parts of a program code run in a
remote cloud in order to avoid mobile device’s overload.

4

Chapter 2

Background

Android is open platform for mobile platform, embedded and wear-

able devices, it’s based on Linux kernel made by google with user interface

based on direct manipulation. The android application frame work has dif-

ferent structure, it doesn’t have main function and return call, though the

developers should design the applications in terms of components, Android

applications are executed by Dalvik . Dalvik is open-source software and

it’s a process virtual machine made specifically for android and considered

as integrated part of android software stack. .apk files are the application

packages for android systems and consists of 3 compressed files 1- class

byte code 2-resources 3- Binary native files. After these components are

compressed, it is signed by a key created by SDK.

Android applications are written in Java, and compiled into bytecode

for the java virtual machine which is translated in to dalvik bytecode and

stored in .dex (Dalvik Executable) and .odex (optimized dalvik executable)

files. The main advantage of using dalvik that it is optimized for low mem-

ory requirements as it uses less space and the constant pool has been mod-

ified to use 32-bit indices to simplify the process of the interpreter and ac-

cording to google developers, dalvik allows the device to run multiple in-

stances of the VM efficiently.

offloading is considered one of the cloud computing techiques that is

5

being developed to connect mobile devices with limited resources to pow-

erful cloud servers to perform complicated operations in much less time for

efficiency and robustness , The act of transferring a process between two

machines in a network (the source and the destination node) during its ex-

ecution,I offloading process, the code is segmented into parts and might be

offloaded statically or dynamically depending on the complexity of the code

and process state transfer of every part in the code

6

Chapter 3

Related Work

An android application sandbox system called aasandbox [18] is one

of the early sandbox based approaches. An application is executed in a

fully isolated environment, where low-level interactions like system calls

are logged for monitoring and analysis. The other sandbox based approach

is Appspalyground [26], which consists of detection components and ex-

ploration mechanisms to analyze smart phone applications. The automatic

exploration mechanism is used to allow more parts of the application to be

executed, which can increase the code coverage. Mobile-sandbox [29] is

a sand-box based hybrid system combining static and dynamic analysis. It

detects the malicious behaviors of an application by logging calls to native

(non-Java) APIs. Andrubis [31] is also a hybrid system designed to analyze

unknown applications. It performs more efficient dynamic analysis by us-

ing the results of the static analysis. Taintdroid[32, 20] is a dynamic taint

tracking system which has the ability to track multiple sources of sensitive

data. It provides the real time analysis by leveraging Android’s virtualized

execution environment. Droidbox [22] is based on the Taintdroid approach.

It provides an effective way for dynamic analysis, and generates the reports

for information leakage via network, file and SMS. Furthermore, the analy-

sis process could show the cryptography operations which is being done in

the execution using Android API[17]. Secloud[34] is one of replay based

7

Figure 2: AASandbox [18]

approaches. It replicates a device registered to a designated cloud, and re-

plays the replica in the cloud through the synchronization of the device and

the replica by passing the device inputs and network connections. It allows

the server to perform a resource-intensive security analysis. Another simi-

lar approach is Paranoid Android [24]. It provides security checks on re-

mote servers, and applies multiple detection techniques simultaneously. The

difference between the two replay based approaches is that in paranoid ap-

proach the tracing and replay process are done in the application level and

it has the advantage of removing the non-deterministic inputs.

Sandbox and replay based approaches are similar to our work, In sand-

box approaches, the main difference is that sandbox uses user data gener-

ated by emulator, however we use user input’s state data generated by de-

8

Figure 3: Secloud [34]

vice which increases code cover and makes it hard to malwares detection

to speculate the type of environment they are running in. In replay based

approaches, instead of replicating all the data to the VM and by the time re-

play based solutions detect the suspicious behavior, the device would have

already been attacked, however SORcloud offloads the required data from

device to the VM using the the specific data state, which minimize the band-

width and storage capacity , besides that the device can’t fully execute the

application until it has been confirmed by security models in cloud that it’s

out of any suspicious activity.

A study on tools of malware analaysis tools has been done to find out

which one is more suitable for injection process to trigger the offloading

process in SORcloud

9

3.1 Androgaurd

Androgaurd is Android analysis tool written by Python to disassem-

ble and decompile Apk files, Dex/Odex, Android’s binary xml and An-

droid Resources. Androgaurd can analysis a bunch of Android apps with

ipython/sublime text editor, Androgaurd uses androlyze.py which interac-

tive tool with high level comments, it can also measure the efficiency of

the obfuscators and determine if the application has been pirated or not,

it also has the ability to check if the application is listed in the open source

database of malwares so it will notify whether the application has been listed

the black listed database. There is a risk indicator as well for suspected ma-

licious applications. It has also ability to reverse engineering of applications

including transform android’s binary xml into classic xml, and also it can

visualize the application with gephi [2] or with cytoscape [6] or PNG/DOT

output.

3.2 Andriod-apktool

Andriod-apktool is a tool for reverse engineering, it’s also capable to

decode resources to original form and repacking them after having some

modifications, there is also possibility to analysis and debug smali code line

by line. Smali code is assembly language based on Jasmin syntax which has

full functionality dex format[10]. APKTool requires you to use a separate

app such as Notepad++ to edit the decompiled binaries. Once that’s done,

you then have to go back to APKTool to recompile the modified app [5] .

10

3.3 Dex2Jar

Dex2Jar is designed to read Dalvik executables format of Android ap-

plication into jar format which is understandable and readable by other java

reversing tools, more ever the dex2Jar is used by APKinspector to transform

the jar file into understandable format Dex2jar contains of 6 components:

1- dex-reades : is designeed to read the Dalvik Excutable format.

2- dex-translator : is designed to do the convert job and it reads the dex

instruction to dex-ir format after some optimize after that convert to ASM

format.

3- dex-ir : used ti dex-translator to represent the dex instruction.

4- dex-tools : tools to work with ,class files like modify a apk and DeObud-

scate a jar

5- d2j-smali : is to disassemble dex tosmali files and assemble dex form

smali files

6- dex-writer : is to write dex same way as dex-reader

3.4 Dexter

Dexter is a static web based malware analysis that allows uploading an-

droid applications which needs to be analyzed. The tool extracts as much in-

formation as possible from either legitimate or malicious applications (APKs)

and displays them in various different views[16]. It shows a quick overview

of all metadata and included packages of the application, more ever the de-

pendency graph shows all included packages and its interconnections with

ability to go through all the method list of each method and each method

11

will show list of classes and functions.

3.5 APKInspector

Apkinspector is a group of tools in one user interface. After the .apk has

been loaded you can load the Smali representation of functions by select-

ing the function in the Methods tab in the side view. APKInspector comes

with Jad, a Java decompiler. It should be able to decompile most classes,

but regularly creates mistakes that either prevent a recompilation or some-

times make the class very hard to understand. Also it might fail completely

in some cases, then the Smali representation must be used. There are new

analysis features have been developed recently [4]:

• Reverse the Code with Ded[1] for Java Analysis

• Static Instrumentation

• Combine Permission Analysis

3.6 API monitor

API Monitor is an open source software that allows you to monitor

and control API calls which are revoked by the applications and services,

it’s one of the most powerful applications to track down and analysis the

problems occurred during running in android application, and it supports

32 bit and 64 bit applications, there are more than 13000 API’s definitions

from 200 DLL’s plus over 17000 methods. It also decodes and displays 100

different types of unions and structures. It has the ability to display tree

which explains the hierarchy of API calls and the duration, call stack for

12

Figure 4: APImointor architecture[8]

each call.

There are so many malware android tools have been implementing in

many researches, and each one of these has its own specifications and draw-

backs. Also each one varies on the time consumed to transform the Dalvik

executable files into jar files, for example Androgaurd has many other tool

compare to other malware analysis tools and it has the ability to visualize the

application with gephi or cytospace or PNG/DOT format. More ever it can

determine if the application has been pirated or altered, and also it can show

indicators if the application might have malicious code or even suspected.

Most of tools transform the APK to Java. They, however, do not provide

reverse engineering tools for compiled part of APK file.

13

Figure 5: migration overview of CloneCloud[33]

3.7 offloading

there are many several studies try to empower mobile devices through

offloading based on systems, one of the efficient mobile cloud computing

is called cloneCloud proposed by sangjung Yang in paper named as fast

dynamic executation offloading for efficient mobile cloud computing [33],

where there were new proposed techniques to reduce the transferred data

size by transferring the important heap objects which positively influences

the transfer time and the efficiency of the offloading.

In figure 5, it shows when the process is started , the CloneCloud would

detect the the point where it has to start offloading to the cloud,and transfer

the process to the server in the other side, Also it ends the offloading process

when end migration is triggered in the code

one of the other studies was done by satya-narayanan et al.[28] which

is considered one of the earliest studies that enhances mobile devices with

remotely connected servers, it immigrates the full VM image along with the

14

process in order to offload the process running on the device, on the other

hand , the amount of the transfered data is considered to be around massive

(a couple number of gigabytes), another approach was proposed by the

same author to lower the load called VM synthesis approach [27] where

small overlay of the VM is sent to nearby small cloud by mobile device

where the VM is already installed with the base VM where the overlay was

produced,therefore the the overlay size was reported to be smaller than the

full VM size

15

Chapter 4

SorCloud

4.1 System Overview

I proposed a new solution called SorCloud, as a hybrid system com-

bining advantages from sandbox based and replay based approaches , SOR-

cloud provides both static and dynamic analysis for mobile devices. While

the static analysis is performed when an application is installed into a device,

the dynamic analysis inspects the behaviors of the application at run-time.

According to the purpose, Sorcloud is implemented based on offloading ap-

proach to reduce the communication bandwidth between the mobile device

and the cloud due the heavily bandwidth needed between both of them. there

are seven modules of SORcloud which can be classified into three main cat-

egories:

1) Security modules,

2) Execution offloading modules.

3) System modules,

Each of these categories consists of sub-parts , however some of the mod-

ules will be explained in install-time and run-time.

16

4.2 System Modules

System modules consist of Installer and Packet Manager, packet man-

ager is in charge of automatic forwarding packet rules in the cloud server,

it receives the packet from the designated device with device identification

and forwards it to the specific Virtual machine with same device identifica-

tion using some rules set by SDN (a software-defined network) controller.

when every mobile device registers itself into the cloud. the KVM will cre-

ate VM with same device ID that the mobile has, As shown in figure 6, the

main task of the packet manager is to direct the coming packets from the

registered devices to the designated Virtual machine in KVM,

According to figure 6, Installing APK file requires 7 steps starting from

downloading the APK from third party, and sending the APK to the packet

Manager, packet manager will send it to static security analysis module, if

it is free of any suspected behaviors,it will be assigned to proper VM for in-

stallion, after that, .the installing process will start into the VM in the cloud.

After that APK file will be injected with the offloading code and it will be

sent back to the mobile device with permission of installing. after the mobile

device gets the green light from the cloud, it installs the modified version of

the APK in the device. when the mobile device starts installing, it will keep

synchronizing with the application in the same VM in the cloud

17

Figure 6: Install time steps

4.3 Execution offloading

Execution offloading modules consist of mainly two parts:

1) Code Instrumentor.

2) Thread Manage.

4.3.1 Code Instrumentation

For the runtime execution offloading, it is needed to determine which

parts of the application code should be offloaded in order to analyze dynamic

behaviors of the application at runtime. Code instrumentation is a process

to inject the codes which indicate the offloading points for the thread mi-

gration. An android application usually consists of various call-back meth-

ods, which are invoked only when designated events happen. Since some of

the designated events should be analyzed at runtime through offloading, the

18

offloading points generally correspond to call-back methods. For example,

assume that a click event on a button invokes a call-back method. If the call-

back method is executed in the cloud, we can monitor the behaviors of this

click event.

In SORcloud, we define target method which is a call-back method to be

monitored at runtime. There are two kinds of target methods:

1- User Interface call-back method

2- Activity Life Cycle call-back method.

• User Interface call-back methods : onClick(),

onLongClick(), onFucusChange(), onKey(), onTouch(),

onCreateContextMenu()

• Activity Life Cycle call-back methods : onCreate(), onStart(),

onResume(), onPause(), onStop(), onDestroy()

In code instrumentation part, two dummy -empty- methods

(doMigration() and doRemigration()) are declared first. The dummy

methods are inserted at the beginning and end of the target method body, re-

spectively.When doMigration() method is invoked at the device, the

execution offloading starts. In the other way, when doRemigration()

method is invoked at the cloud, the execution offloading ends.

However, there may be some codes in the target method body which

cannot be offloaded. For example, UI related API codes, e.g., getting/setting

user input data from/to a UI component , and hardware related API codes,

19

API
type function

Telephony

getDeviceSoftwareVersion()
getDeviceId()

getNetworkOperatorName()
getCellLocation()
getLine1Number()

onLocationChanged(Location location)

Display
getDisplay(int displayId)

getDisplays(String category)

USB connection
getDeviceName()

getSerial()
getDeviceProtocol()

Bluetooth
getConnectedDevices()

getConnectionState)
getDevicesMatchingConnectionStates

Camera

getId()
createCaptureSession()
createCaptureRequest()

close()

Table 1: UserInterface call-back methods

20

e.g., reading GPS or sensor values, cannot be executed in the cloud because

these codes do not work correctly in VM. Therefore, we define these meth-

ods as non-offloadable API code which should be executed only in the de-

vice, not in the cloud. If there are any non-offloadable API codes in the target

method body, the code is executed in the device. Fig.7 shows an example of

Code Instrumentation.

As Figure 7 shows how the jasmin code after inturmentation will look

like, The codes written in bold are injected ones by Code instrumentor.

doMigration() and doRemigration() methods are defined in (1).

These methods are inserted in the target method to apply execution offload-

ing (2) and to guarantee non-offloadable API code executed in the device

(3). Through this, it is determined that which codes are executed in ei-

ther device (4) or cloud (5). In order to implement Code Instrumentor, we

use dex2jar[13] which is one of android reverse engineering tools. Using

dex2jar, we unpack apk file and obtain dex file from it. And the dex file is

converted into the jar file, after that the jar file is transformed into Jasmin

format[21]. So these Jasmin codes are the input of our Code Instrumentor.

After finishing instrumenting on Jasmin code, these codes are transformed

and packed with apk file by using dex2jar.

4.3.2 Thread Migration

The proposed SORcloud exploits the execution offloading to monitor

runtime behaviors of a unknown application by executing the application

code in the cloud. More specifically, we use execution offloading technique

by implementing thread migration. Offloading framework for thread mi-

21

(4)

(4)

(5)

(2)

(3)

(3)

(2)

(1)

1 .method public onClick(Landroid/view/View;)V
2 aload 0
3 invokevirtual a/b/c/main/doMigration()V
4 aload 0
5 invokevirtual a/b/c/main/dosomething()V
6 aload 0
7 invokevirtual a/b/c/main/doRemigration()V
8 aload 0
9 ldc "phone"

10 invokevirtual
a/b/c/main/getSystemService(Ljava/lang/String;)Ljava/lang/Object;

11 checkcast android/telephony/TelephonyManager
12 invokevirtual

android/telephony/TelephonyManager/getDeviceId()Ljava/lang/String;
13 astore 2
14 aload 0
15 invokevirtual a/b/c/main/doMigration()V
16 getstatic java/lang/System/out Ljava/io/PrintStream;
17 aload 2
18 invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V
19 aload 0
20 invokevirtual a/b/c/main/doRemigration()V
21 return
22 .limit locals 3
23 .limit stack 2
24 .end method
25 //definition of doMigration method
26 .method public doMigration()V
27 return
28 .limit locals 1
29 .limit stack 0
30 .end method
31 //definition of doRemigration method
32 .method public doRemigration()V
33 return
34 .limit locals 1
35 .limit stack 0
36 .end method

Figure 7: Example of Jasmin code after code instrumentation.

22

gration has been already suggested in several studies[19, 33], and we use

some modules of the existing frameworks. In this subsection, it will be de-

scribed what modules are being used and how these modules work. In An-

droid framework, each android application runs on an application virtual

machine(VM)1. Once an application VM is assigned, it allocates a thread to

execute the application code. The state of the thread, i.e., program registers,

call stack and heap objects, are changing while the application code is be-

ing executed. For the thread migration between a device and a server, these

state should be transferred between them. This state transfer is handled by

two modules, State Manager and Offloader. State Manager captures and re-

stores the state, and Offloader sends and receives the state from a device to a

server and vise verse. State Manager exists for each application VM in both

a device and a server. When the codes injected by Code Instrumentor are

executed, the interpreter of an application VM signals to State Manager to

capture the state of the thread and to suspend execution of the thread. When

State Manager receives the state from Offloader, it restores and resumes the

suspended thread with the received state. Offloader implemented as Android

application sends and receives state of a thread from and to state manager

as well as transfers them between a device and a cloud.

4.4 Security Modules

Static Analyzer and Dynamic Analyzer are security modules.

1In this work, we use Dalvik VM because Android 4.0.3 is used in our experiment

23

Device Cloud

VMM

App VM

Offloader

VM1

(1)

(2)

(3)

(4)

(5) (8)

(11)

(12)

(13)

(9)

Code

InstrumentorInstaller

State Manager

App VM

State Manager

Offloader

Static

Analyzer

Packet

Manager

Dynamic

Analyzer

(6)

(7)

(a)

(10)

(b) (c)

(d)

(e)

(f)(g)
(h)

Figure 8: SORcloud overview.

These modules, furthermore, can be divided into two types according

to when they work, install-time and run-time modules. In this section, we

briefly explain how each module works at install-time and run-time.

Fig.8 shows the overview of SORcloud.The dotted and solid lines present

the flows of static analysis and dynamic analysis, respectively. The execu-

tion offloading process at the install-time is started when a user wants to in-

stall a new application into device (a). Before the installation, the application

file(.apk) is sent to Packet Manager in the cloud (b). After Static Analyzer

receives the file from Packet Manager, it decides whether it is a malware or

not (c). If any malicious activities are not found by Static Analyzer, the apk

file would be passed to Code Instrumentor (d). Code Instrumentor inserts a

bit of codes to trigger execution offloading at runtime. After that, the instru-

mented apk file is installed in virtual machine(VM) in cloud (e) and is sent

to packet manager (f). Finally, the device receives modified apk file from the

24

cloud and installs it (g-h).

When the user launches the application which was instrumented at

install-time, the runtime process of SORcloud begins. This process is pre-

sented with the solid line in Fig.8. When the codes inserted by Code Instru-

mentor trigger the execution offloading during the application execution,

State Manager in the device captures the state of the current application

thread, and suspends the thread (1). On receiving the state from State Man-

ager (2), Offloader in the device passes the state to Packet Manager in the

cloud (3). Packet Manager forwards the state to Offloader in VM where the

application was installed (4). State Manager inside VM receives the state

from Offloader, and restores the application thread and resumes the execu-

tion (5). During the execution, the dynamic analyzer monitors the behav-

iors, i.e., network traffic, of the application thread (6). When the execution

offloading ends, State Manager in VM captures the state of the current appli-

cation thread and suspend it (7). If no malicious behavior is detected during

execution, the state is sent back to Offloader in the device (8-10). Then State

Manager takes over this state (11), restores the application thread, and re-

sumes the execution (12). Whenever the execution offloading occurs, this

run-time process is repeated.

4.5 Security Analysis

For security analysis, SORcloud can adopt various security modules.

However, this work does not focus on security modules, but on the offload-

ing framework for security analysis. In this work, therefore, we just use two

25

types of security modules, Source code analysis and Network security mod-

ules. The source code analysis module, Static Analyzer in this work, ana-

lyzes the source code before the offloading and the network security module,

Dynamic Analyzer, checks if the information leakage happens through the

network.

As a source code analysis module, the Virustotal website tool[14] is

used. This tool examines android applications and URLs with 54 different

virus-scanning software products. Static Analyzer automatically sends an

APK file that a user clicked on his/her device to the tool through the public

APIs.

Untangle[15] is used as Dynamic Analyzer in order to prevent the in-

formation leakage by malicious application. It is an open source solution

that combines the GUI web-based network management and control for

network security. In this work, Dynamic Analyzer is configured to block

the traffic outgoing to specific websites. It monitors traffic generated by the

running application and reports filtering results.

4.6 Evaluation

4.6.1 Experimental setup

In this work, we have built the prototype of SORcloud. We used Galaxy

Nexus with dual-core 1.2 Ghz CPU and 1 GB of RAM as a mobile device.

For the cloud, a quad-core desktop with a 3.4GHz CPU and 32 GB of RAM

running CentOS 6.5 is used. And using KVM, 2GHz core and 8GB of mem-

ory are allocated to each VM in the cloud. Packet Manager is implemented

26

on Software Defined Network (SDN)[11] controller. A mobile device and

VMs use the same Android 4.0.3 version. State Manager is implemented by

modifying Dalvik VM. Installer and Offloader are implemented as an an-

droid application. Code Instrumentor is implemented by using dex2jar[13].

4.6.2 Experimental results

4.6.2.1 Efficiency of dynamic analysis

The first concern is the networking traffic caused by transferring the

state for execution offloading because the application execution may be de-

layed due to data exchange time. To show that SORcloud incurs the reason-

able amount of traffic, we measure the traffic caused when a user executes

an application remotely through Remote Desktop Protocol (RDP)[12]. The

RDP provides the user with a graphical user interface to connect to a remote

VM actually running the application over a network connection. there are

three real world applications have been choose for testing.

4.6.2.2 TinyURL

this application is used to create and share TinyURLs on mobile device.

it has many other features like converting a URL to a tinyURL before it’s

being shared by any application like browser, you tube and others, and also

it has the ability to copy and paste the link to the clipboard

27

4.6.2.3 MOTP

MOTP stands for mobile one time password is a free one time syn-

chronize authentication software for android devices, it consists of client (a

J2ME MIDlet) and a server (a unix shell script), the sever part might be

considered as radius server[9]

In Table 2, the table shows the data sizes as the offloading happens for each

injected function in MOTP, the test was done for function by function in the

program

4.6.2.4 DroidWeight

DroidWeight is a free software which allows you to track you weight

and keep you updataped about your weights changes[7].

In table 3, the table shows the results of offloading functions after code

instrumentation.

28

migratin state
collection time

buffer size
migration
data size

migration state
packing time

Number
HeapBytes

Number
stackbytes

total time

OnCreate() 16 446837 441840 2 386444 48 19
onResume() 12 451065 445952 2 389164 80 15
onclick 25 452139 446996 2 389798 52 28
onlcick(genretate) 32 451045 445928 3 389168 56 36
onresume() 47 496792 489972 3 417195 32 52
onclickprofile Motp 42 424747 420468 10 375780 60 58
onlickprof HOTP 48 424747 420468 5 375780 60 58
onlcickprof-totp 37 424747 420468 7 375780 60 47

Table 2: Offloading data for MOTP29

migratin state
collection time

buffer size
migration
data size

migration state
packing time

Number
HeapBytes

Number
stackbytes

total time

creat entry 34 613360 605248 5 507840 40 42
delete entry 37 912355 903036 4 798263 44 43
oncreate 14 160837 157788 2 121972 44 16
oncreate1 12 160837 157788 1 121972 44 13
Onresume() 19 677347 665872 4 537264 32 26
onDestory() 31 587646 579746 4 486522 36 36
BMI Calc 41 652193 642496 5 526491 40 48
BMI Calc (go) 46 779255 768208 4 637251 52 52
show thers 27 2729695 2721660 9 2631565 16 39
months button 24 2729811 2721780 9 2631569 48 35

Table 3: Offloading data for DroidWieght

30

D r o i d W i e g h t m O T P T i n y U R L
0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

1 4 0 0 0 0 0

By
tes

 R D P
 S O R c l o u d

Figure 9: Run-time data transfer overhead

4.6.2.5 comparison

The execution offloading traffic and the RDP traffic are compared for

three real world android applications: TinyURL[3], mOTP[9] and DroidWeight[7].

Fig.9 shows the average sizes of the transferred data while the ap-

plications are being executed with the same user scenario. In the cases of

TinyURL and mOTP, SORcloud incurs less network traffic than the RDP

solution. However, when DroidWeight is running, SORcloud incurs more

data traffic. these results can be explained as follows. In SORcloud, there is

no data transfer when a part of the application code is not offloaded. How-

ever, the more frequent offloading causes more network traffic. In the RDP

solution, upload data for the user inputs and download data for the screen

display are transferred continuously, even in the idle state. Although the

amount of network traffic varies according to the type of application, we

31

1 public void DetectEmulator() {

2 // doMigration()

3 // ...

4 // doRemigration()

5 String devicename = Build.DEVICE;

6 // doMigration()

7 Log.d("SORcloud", devicename);

8 if (devicename.equals("laptop")) {

9 // in case of emulator(or VM)

10 } else {

11 // in case of device, do something.

12 String html =

DownloadHtml("http://facebook.com/");

13 System.out.println(html);

14 }

15 // doRemigration()

16 }

Figure 10: Sample Java code of emulator detection

can say SORcloud is comparable with the RDP. That means SORcloud is

sufficient to execute applications in real time.

4.6.2.6 Security enhancement

Since many recent approaches use a mobile device emulator for dy-

namic analysis to detect malwares, malware developers devise techniques

to evade the malware detection. One of popular techniques is to stop a mal-

ware working in an emulator. Therefore, malware developers exploit some

APIs to check the running environment [25, 30].

Although SORcloud also relies on a VM-based emulator in the cloud,

malwares have no way to figure out their running environments since the

non-offloadable API codes are executed only in the mobile device.

Fig.10 shows a example code for emulation detection. The code at line

32

Figure 11: Result of network monitor[15]

5 is to get name of device, and the code at line 7-14 is the actual behavior

based on the name of device. According to the execution environment, the

behavior of this code would be different. If this code is executed in an em-

ulator, we cannot detect the malicious code since nothing happens. On the

other hand, in SORcloud, the mobile device name is obtained since the code

line 5 is executed in the mobile device. And the state of thread including the

object for a device name are migrated to the cloud. Therefore, even if the

code at line 7-14 is executed in the emulator, we can detect the malicious

behavior as if this code is running in the real mobile device. Fig.11 shows

the network behavior is monitored by Dynamic Analyzer.

33

4.7 CONCLUSION

In this thesis, SORcloud is a cloud based solution for detecting mo-

bile android malware statically and dynamically. The execution offloading

technique is introduced to monitor the runtime behavior of applications.

SORcloud overcomes limitations of the existing approaches, code cover-

age problem and security degradation. It is shown that SORcloud can detect

efficiently malicious behaviors of unknown applications at runtime.

As Table 4 shows briefly the three common approaches on mobile de-

vice security, offloading has better user interactivity compare to sandbox

and replay, it consumes less power and one of the important features that it

does not have code coverage problem plus it can prevent the attack before it

attacks

Sandbox Replay Offloading
User
interactivity

No A little much

Power
consumption

No much (initial overhead) A little

Code
coverage

Yes No No

Prevention Yes No Yes

Table 4: Comparison of Sandbox, replay, and offloading

34

4.8 FUTURE WORK

Since SORcloud is an extensible cloud based framework, it can easily

add or remove security modules. Therefore, it will be the first step to add

more security modules such as System Call Monitor and Taint Analyzer to

monitor various dynamic behaviors.

SORcloud does not examine the non-offloadable APIs in order to hin-

der malwares from figuring out the running environment. However, since it

may be asked if the non-offloadable APIs are safe, a mechanism to monitor

the behaviors of them need to be considered.

35

References

[1]

[2] androguard - reverse engineering, malware and goodware analysis of

android applications ... and more (ninja !) - google project hosting.

https://code.google.com/p/androguard/. (Visited on

05/19/2015).

[3] android-tinyurl - tinyurl intergration for the android flatform. https:

//code.google.com/p/android-tinyurl/.

[4] apkinspector - **moved to github** apkinspector is a powerful gui

tool for analysts to analyze the android applications. - google project

hosting. https://code.google.com/p/apkinspector/.

(Visited on 05/19/2015).

[5] Apktool - a tool for reverse engineering android apk files.

https://ibotpeaches.github.io/Apktool/. (Visited on

05/19/2015).

[6] Cytoscape: An open source platform for complex network analysis

and visualization. http://www.cytoscape.org/. (Visited on

05/19/2015).

[7] droidweight - a weight tracking android app. https://code.

google.com/p/droidweight/.

36

https://code.google.com/p/androguard/
https://code.google.com/p/android-tinyurl/
https://code.google.com/p/android-tinyurl/
https://code.google.com/p/apkinspector/
https://ibotpeaches.github.io/Apktool/
http://www.cytoscape.org/
https://code.google.com/p/droidweight/
https://code.google.com/p/droidweight/

[8] Kelwin yang, student at google summer of code 2012 — slideshare.

http://www.slideshare.net/KelwinYang/. (Visited on

05/19/2015).

[9] motp - one time passwords for android. https://code.google.

com/p/motp/.

[10] smali - an assembler/disassembler for android’s dex format - google

project hosting. https://code.google.com/p/smali/.

(Visited on 05/19/2015).

[11] Software defined network. http://en.wikipedia.org/

wiki/VirusTotal.

[12] Spice. http://www.spice-space.org/.

[13] Tools to work with android .dex and java .class files. https:

//code.google.com/p/dex2jar/.

[14] Virustotal. http://en.wikipedia.org/wiki/

VirusTotal.

[15] Web filter lite. http://wiki.untangle.com/index.php/

Web_Filter_Lite.

[16] Welcome to dexter’s documentation! — dexter 1.0 documentation.

http://dexter.dexlabs.org/static/docs/. (Visited on

05/19/2015).

[17] Droidbox - android application sandbox. https://code.

google.com/p/droidbox, Feb. 2015.

37

http://www.slideshare.net/KelwinYang/
https://code.google.com/p/motp/
https://code.google.com/p/motp/
https://code.google.com/p/smali/
http://en.wikipedia.org/wiki/VirusTotal
http://en.wikipedia.org/wiki/VirusTotal
http://www.spice-space.org/
https://code.google.com/p/dex2jar/
https://code.google.com/p/dex2jar/
http://en.wikipedia.org/wiki/VirusTotal
http://en.wikipedia.org/wiki/VirusTotal
http://wiki.untangle.com/index.php/Web_Filter_Lite
http://wiki.untangle.com/index.php/Web_Filter_Lite
http://dexter.dexlabs.org/static/docs/
https://code.google.com/p/droidbox
https://code.google.com/p/droidbox

[18] T. Blasing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak.

An android application sandbox system for suspicious software detec-

tion. In Malicious and unwanted software (MALWARE), 2010 5th in-

ternational conference on, pages 55–62. IEEE, 2010.

[19] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud:

elastic execution between mobile device and cloud. In Proceedings

of the sixth conference on Computer systems, pages 301–314. ACM,

2011.

[20] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,

J. Jung, P. McDaniel, and A. N. Sheth. Taintdroid: an information-

flow tracking system for realtime privacy monitoring on smartphones.

ACM Transactions on Computer Systems (TOCS), 32(2):5, 2014.

[21] I. K. Jon Meyer, Daniel Reynaud. Jasmin home page. http://

jasmin.sourceforge.net/, 2004.

[22] P. Lantz, A. Desnos, and K. Yang. Droidbox: Android application

sandbox, 2012.

[23] D. Maslennikov. Jasmin home page. http://

securelist.com/analysis/publications/36996/

mobile-malware-evolution-part-6/, 2013.

[24] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos. Paranoid

android: versatile protection for smartphones. In Proceedings of the

26th Annual Computer Security Applications Conference, pages 347–

356. ACM, 2010.

38

http://jasmin.sourceforge.net/
http://jasmin.sourceforge.net/
http://securelist.com/analysis/publications/36996/mobile-malware-evolution-part-6/
http://securelist.com/analysis/publications/36996/mobile-malware-evolution-part-6/
http://securelist.com/analysis/publications/36996/mobile-malware-evolution-part-6/

[25] T. Raffetseder, C. Kruegel, and E. Kirda. Detecting system emulators.

In Information Security, pages 1–18. Springer, 2007.

[26] V. Rastogi, Y. Chen, and W. Enck. Appsplayground: automatic secu-

rity analysis of smartphone applications. In Proceedings of the third

ACM conference on Data and application security and privacy, pages

209–220. ACM, 2013.

[27] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for

vm-based cloudlets in mobile computing. Pervasive Computing, IEEE,

8(4):14–23, 2009.

[28] M. Satyanarayanan, B. Gilbert, M. Toups, N. Tolia, D. R. O’Hallaron,

A. Surie, A. Wolbach, J. Harkes, A. Perrig, D. J. Farber, et al. Pervasive

personal computing in an internet suspend/resume system. Internet

Computing, IEEE, 11(2):16–25, 2007.

[29] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann.

Mobile-sandbox: Having a deeper look into android applications. In

Proceedings of the 28th Annual ACM Symposium on Applied Comput-

ing, pages 1808–1815. ACM, 2013.

[30] T. Vidas and N. Christin. Evading android runtime analysis via sand-

box detection. In Proceedings of the 9th ACM symposium on Informa-

tion, computer and communications security, pages 447–458. ACM,

2014.

[31] L. Weichselbaum, M. Neugschwandtner, M. Lindorfer, Y. Fratantonio,

V. van der Veen, and C. Platzer. Andrubis: Android malware under

39

the magnifying glass. Vienna University of Technology, Tech. Rep.

TRISECLAB-0414-001, 2014.

[32] B.-g. C. L. P. C. J. J. P. M. William Enck, Peter Gilbert and A. N.

Sheth. Taintdroid: An information-flow tracking system for realtime

privacy monitoring on smartphones. In OSDI, 2010.

[33] S. Yang, Y. Kwon, Y. Cho, H. Yi, D. Kwon, J. Youn, and Y. Paek. Fast

dynamic execution offloading for efficient mobile cloud computing.

In Pervasive Computing and Communications (PerCom), 2013 IEEE

International Conference on, pages 20–28. IEEE, 2013.

[34] S. Zonouz, A. Houmansadr, R. Berthier, N. Borisov, and W. Sanders.

Secloud: A cloud-based comprehensive and lightweight security solu-

tion for smartphones. Computers & Security, 37:215–227, 2013.

english abstract

40

Abstract

Cloud Security Solution of Mobile
Applications based on Execution

Offloading

지금까지 모바일기기를 악성 공격으로부터 방어하기 위한 기술들은 모

바일 기기의 제한된 자원으로 인해 어려움을 겪어왔다. 이러한 상황에서

한가지해결방안은원격에존재하는클라우드환경에서의가상머신을통

해 이러한 자원을 많이 소비하는 보안 분석을 모바일 기기대신 실행하도

록 하는 것이다. 하지만 기존 클라우드를 사용한 방법들은 여전히 코드

커버리지 문제나 보안성 약화와 같은 문제점이 존재한다. 따라서 본 연

구에서는 클라우드를 이용해 정적, 동적분석을 실시하는 SORcloud라는

새로운 클라우드기반의 해결책을 제안한다. 동적분석을 위해 SORcloud

는의심스러운어플리케이션의프로세스를원격의가상머신에서실행되

게 하였고, 이를 통해 기존 클라우드 기반의 방법들이 가지는 단점들을

해결하였다. 그리고 실험을 통해 제안하는 해결책이 얼마나 효율적으로

동작하고,악성행위를검출해내는지를보였다.

Keywords : 수행오프로딩,클라우드시스템,정적및동적분석

Student Number : 2013-23848

41

	Contents
	I Introduction
	II Background
	III RelatedWork
	3 1 Androgaurd
	3 2 Andriod-apktool
	3 3 Dex2Jar
	3 4 Dexter
	3 5 APKInspector
	3 6 API monitor
	3 7 offloading

	IV SorCloud
	4 1 System Overview
	4 2 System Modules
	4 3 Execution offloading
	4 3 1 Code Instrumentation
	4 3 2 Thread Migration

	4 4 Security Modules
	4 5 Security Analysis
	4 6 Evaluation
	4 6 1 Experimental setup
	4 6 2 Experimental results

	4 7 CONCLUSION
	4 8 FUTURE WORK

	References
	초록

<startpage>9
Contents
I Introduction 1
II Background 5
III RelatedWork 7
 3 1 Androgaurd 10
 3 2 Andriod-apktool 10
 3 3 Dex2Jar 11
 3 4 Dexter 11
 3 5 APKInspector 12
 3 6 API monitor 12
 3 7 offloading 14
IV SorCloud 16
 4 1 System Overview 16
 4 2 System Modules 17
 4 3 Execution offloading 18
 4 3 1 Code Instrumentation 18
 4 3 2 Thread Migration 21
 4 4 Security Modules 23
 4 5 Security Analysis 25
 4 6 Evaluation 26
 4 6 1 Experimental setup 26
 4 6 2 Experimental results 27
 4 7 CONCLUSION 34
 4 8 FUTURE WORK 35
References 40
ÃÊ·Ï 41
</body>

