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Abstract 

A Testbed for Mobile Named-Data 

Network integrated with 4G 

networking devices 
Han Bing 

School of Computer Science & Engineering 

The Graduate School 

Seoul National University 

 

In recent years, mobile traffic (especially video traffic) explosion has 

become serious concern for mobile network operators. While video 

streaming services become crucial for mobile users, their traffic may often 

exceed the bandwidth capacity of cellular networks.  

To address the video traffic problem, we consider a future Internet 

architecture: Named-Data Networking (NDN). NDN is an innovative 

network architecture that is being considered as a successor to the Internet. 

In this thesis, we design and implement framework of adaptive mobile 

video streaming and sharing in the NDN architecture (AMVS-NDN) with 

multiple wireless interfaces (e.g., 4G LTE and Wi-Fi). To demonstrate the 

benefit of NDN, AMVS-NDN has two key functionalities: (1) in the base 
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situation, a mobile station (MS) tries to use either 4G LTE or Wi-Fi links 

opportunistically, further using Multi-Interface technology, 4G LTE and Wi-

Fi links can be used simultaneously, and (2) MSs can share content directly 

by exploiting local Wi-Fi direct connectivity. We implement AMVS-NDN 

over NDN and Multi-Interface, the tests are performed in a real testbed 

consisting of a WiMAX base station, a LTE Femtocell and Android phones. 

Testing with time-varying link conditions in mobile environments reveals 

that AMVS-NDN achieves the higher video quality and less cellular traffic 

than other solutions, with using Multi-Interface, AMVS-NDN can gain the 

highest video quality.       
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Chapter 1  

Introduction  

In recent years, most of mobile network operators are facing a serious 

challenge due to mobile data (especially video streaming traffic) explosion 

[1]. While video streaming services become more crucial for mobile users, 

their traffic may often exceed the bandwidth capacity of cellular networks. 

In this situation, Named Data Networking (NDN) [2] [3], same as Content 

Centric Networking (CCNx), can be an attractive and efficient solution, 

adapting the network architecture to the current network usage pattern, 

i.e., data dissemination, video sharing. In NDN, every data delivery is based 

on the exchange of an Interest packet and a Data packet using a specific 

content name. Each NDN device has its own cache so that the cached 

data can be reused for near-future requests.  

From the deployment perspective, it is a natural evolutionary path to 

apply NDN to wireless network environments due to highly clustered 

network topologies of cellular networks and wireless local area networks. 

For instance, it will be fairly efficient and hence necessary to satisfy 

requirements such like latency, of video delivery to cache popular videos 

at clustering points, in some situations, base station (BS) in WiMAX, LTE 

and access point (AP) in Wi-Fi. However, the wireless link may be 

fluctuating while a mobile station (MS) is moving around the coverage of 

multiple BSs in outdoor. Furthermore, most of currently available MSs have 

multiple interfaces, e.g., 3G/4G, Wi-Fi, NFC, each of which is experiencing 
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different channel conditions. Thus, the high dynamics should be well dealt 

with by applications and services in the NDN architecture but currently 

NDN has no support for adaptive data communication [4], e.g., adaptive 

video streaming.  

On the other hand, Dynamic Adaptive Streaming via HTTP (DASH) is 

a hot issue in academy and industry. The goal of DASH is to deliver video 

with high Quality of Experience (QoE) even in dynamic network conditions. 

The basic idea is that the video is encoded at multiple bit rates and 

resolutions, typically 7-10 different rates ranging from 150 Kbps for mobile 

devices up to 6 Mbps for high definition. Each encoding is divided into 

chunks, video segments typically between 2-30 seconds in length. The 

client first downloads a manifest file which contains information on the 

available audio and video streams, their encodings, and chunk durations. 

Then, the client requests one chunk of video at a time using HTTP. 

Depending on its rate adaptation algorithm, it detects the currently 

available bandwidth for the session and the video quality is adjusted 

accordingly. In order to support adaptive video streaming services in NDN 

architecture, we discuss following issues:  

 Adaptability: The video streaming service should be aware of 

available connectivity and bandwidth by taking into consideration 

dynamic wireless link conditions and be able to adapt to the best 

quality of video depending the estimated bandwidth [4].  
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 Video Enhancement: Due to mobility, it always does not allow 

the best quality of video by only cellular networks. Thus, by 

exploiting different interfaces, e.g., WiMax and Wi-Fi, a MS 

receives video streams via a cellular link and also opportunistically 

accesses local Wi-Fi with other MSs to get video segments with a 

higher quality. 

 NDN Caching and Sharing: In-network caching capability gives 

an opportunity that a MS retrieves a video segment from any 

nearby MS already caching that video segment, not via a BS. 

Furthermore, each MS can freely move and share video contents 

with each other [5]. 

Mobile service providers are deploying heterogeneous networks that 

augment conventional macro-cells with micro-, pico-, and femto-cells, and 

are utilizing a mix of radio access technologies (RATs) like 3G/4G cellular 

and 802.11n/ac. However, advances in wireless networking techniques have 

not been matched by new development of system architectures that 

effectively facilitate their efficient deployment. New wireless system 

architectures should be scalable to provide increased capacity, 

programmable to support new functions and advanced RATs, and self-

organized. Therefore, new paradigm of mobile networking architecture 

should be considered. 

Recently researchers are also trying to evolve current mobile backhaul 

networks towards the NDN infrastructure, in which, every content is with 
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a specific name, and each network device is enabled with in-network 

caching, so that popular content can be cached in the intermediate network 

devices while being delivered, and thus successive requests can be 

efficiently satisfied by the cache.  

In order to induce the NDN into mobile networks, we investigate 

current mobile networking architecture as illustrated in Figure 1.1, and 

find that it is very promising to implement the caching at the edges of 

mobile networks, e.g., eNodeB and the EPC of LTE, Wi-Fi APs, Femtocells, 

and so on, because they are very critical access points to aggregate user 

traffic and thus to efficiently utilize the caching. 

 

Figure 1.1 Mobile Network Architecture  
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Besides caching, the essential part of our work is the exploitation of 

the Multi-interface support for mobile devices. Poor connectivity is common 

when using wireless networks on the go. Connectivity comes and goes, 

throughput varies, latencies can be extremely unpredictable, and failures 

are frequent. Industry reports that demand is growing faster than wireless 

capacity, and the wireless crunch will continue for some time to come. 

Yet users expect to run increasingly rich and demanding applications on 

their smart-phones, such as video streaming, anywhere anytime access to 

their personal files, and online gaming; all of which depend on connectivity 

to the cloud over unpredictable wireless networks. Given the mismatch 

between user expectations and wireless network characteristics, users will 

continue to be frustrated with application performance on their mobile 

computing devices. 

In our work, by adding functionalities for adaptive video streaming 

and sharing among MSs with local Wi-Fi, we realized adaptive mobile 

video streaming and sharing in the NDN architecture, termed AMVS-NDN. 

We implemented AMVS-NDN within NDN, and conducted experiments in 

a real test-bed consisting of a WiMAX BS and two MSs equipped with 

Wi-Fi. The experimental result reveals that AMVS-NDN outperforms other 

designs in terms of the average video quality, i.e., PSNR, and the amount 

of reduced cellular traffic. 

Our vision requires much more than just multiple radios and multiple 

networks, it requires that the mobile client (as well as the applications and 
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user) can take advantage of them. Today's clients are ill-equipped to do 

so, having grown up in an era of TCP connections bound to a single 

physical network connection. This leads to several well-known shortcomings: 

(1) An ongoing connection oriented flow like TCP cannot easily be handed 

over to a new interface, without re-establishing state; (2) If multiple 

network interfaces are available, an application cannot take advantage of 

them to get higher throughput; at best it can use the fastest connection 

available; (3) A user cannot easily and dynamically choose interfaces at 

fine granularity so as to minimize loss, delay, power consumption, or usage 

charges. 

Through these three limitations, we implemented our prototypes (Linux 

and Android using NDN) to measure the performance of experiments 

where several network interfaces are used. Our prototype design, is purely 

host-based. The sending host decides which interfaces to use, and then 

divides outgoing traffic over multiple interfaces. 

The rest of the thesis is organized as follows. We first introduce 

related work in Chapter 2, and explain details of the AMVS-NDN 

framework in Chapter 3. Then, the video sharing will be further discussed 

in Chapter 4. After that, the details of multi-interface will be showed in 

Chapter 5. We evaluate the prototype implementation in Chapter 6, and 

finally conclude this thesis. 
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Chapter 2  

Related Work  

2.1  Named Data Networking 

NDN (aka Content Centric Networking [3]) can be characterized by 

two major features: routing-by-name and in-network caching. Routing-by-

name enables a content, not the host, to become a first-class citizen of 

the network, so a single content can be retrieved from multiple locations 

inherently. In network caching also gives several attractive advantages 

such as low dissemination latency and network load reduction. At the 

protocol level, a user requests a content by broadcasting its interest to 

the network and then any content router hearing the interest and having 

data that satisfies it can respond with a Data packet. Data is retrieved 

only in the response to an interest so a single Interest packet corresponds 

to a single Data packet. Audio Conferencing Tool (ACT) [6] is one of pilot 

applications to explore the naming and real-time support of NDN for audio 

conferences. Instead of relying on a centralized server keeping track of 

information on conferences, ACT takes a named data approach to discover 

conferences and speakers, and to fetch voice data from individual speakers. 

Yet, ACT is considering only audio conferences, that is, there is no support 

for video conferencing or streaming.  
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2.2  Adaptive Video Streaming 

In adaptive video streaming, e.g., Microsoft’s Smooth Streaming [7], 

with each chunk download, the client measures the network bandwidth 

and runs a Rate Determination Algorithm (RDA) to determine which bit 

rate to request next. Each request represents an opportunity for the client 

to change bit rates. When selecting a bit rate, the RDA must consider the 

available bandwidth, CPU processing power, screen size, and the fullness 

of its buffer. The RDA must balance the desire to request high-quality 

video with the need to prevent its buffer from draining in order to deliver 

the highest sustainable quality without stops or stutters. Some of 

commercially available RDAs were evaluated in [8] and a rate adaptation 

algorithm for conversational 3G video streaming was proposed by [9]. In 

addition, a couple of cross-layer adaptation techniques were discussed [10] 

[11] [12] which can acquire more accurate information of the session 

quality so that the rate adaptation can be more accurately made.  

2.3  MS-to-MS Content Sharing 

Mobile data offloading is one of candidate solutions to address mobile 

data explosion. According to this trend, how to reduce the amount of 

cellular traffic, i.e., through opportunistic data sharing between MSs, has 

become an important research topic. Recently, [13] exploited device-to-

device communications as an underlay to LTE cellular networks for 

efficient content delivery. However, it was limited to a single wireless 
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network technology while we consider multi-technology, e.g., WiMAX, LTE 

Femtocell and Wi-Fi, in the NDN architecture [5].  

2.4  Multi Interface 

In [14] [15], the varied methodologies are showed that using the 

multiple link interface is available for improving the quality of QoS and 

reduce the misalignment and influence in android phone during the 

transmission process. However, these experiments are not realized based 

on NDN environment. The [16] provided a methodology using multiple links 

for improving Dynamic Adaptive Streaming over HTTP (DASH) via CCNx 

in Mobile networks. The result shows that the media bitrate can be 

improved over 15% higher than the standardization of DASH. However, 

this method is only realized on 3G and Wi-Fi, and it isn’t consider the 

sharing situation.  
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Chapter 3  

AMVS-NDN Framework  

3.1  AMVS-NDN illustration 

Let us illustrate a scenario to explain how AMVS-NDN supports video 

streaming efficiently while reducing 3G/4G link traffic. Suppose two MSs 

A and B with AMVS-NDN functionalities will request the same video 

stream, and they are in the coverage of a 3G Femtocell BS. There is a 

video server that employs the DASH framework, which delivers the video 

data via the BS. MSs A and B also employ the DASH framework, so that 

the bit rate of the video stream can be adjusted depending on their 

wireless link conditions.  

MS A walks around the BS while maintaining the 3G connectivity. 

Depending on the distance (and hence the link condition) between MS A 

and the BS, MS A will request (and receive) the video data with the 

different bit rate over time via the BS. MS B initially stays somewhat 

distant from the BS, and hence MS B receives the video stream with low 

bit rate via the BS at the beginning. After some time, MS B is in proximity 

of MS A, and the local Wi-Fi link between the two MSs is available (with 

high bandwidth). Then MS B switches to the Wi-Fi link to download the 

video data from MS A directly. MS B can connect to MS A by the Wi-Fi 

direct or tethering. Later on, MS B is close to the BS, while MS A has a 

poor link with the BS, and yet they still have Wi-Fi direct connectivity. 
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Then MS B will receive the video data via the BS, and MS A will receive 

the data from MS B. The illustration is shown in Figure 3.1.  

 

Figure 3.1  An illustration of streaming and sharing in AMVS-NDN 

 

3.2  Video Segmentation and Naming  

In AMVS-NDN, we assume that there is a metadata file for each 

video stream, which summarizes the stream structure of the video in terms 

of segments and qualities. This file is similar to the media presentation 

description (MPD) in the DASH framework. For a given video file name, 

let us name the metadata file, say “Video File Name/ INIT.” The metadata 

file includes compression schemes, video bit rates, number of segments, 

size of segments for each bit rate, and so on.  

For a single video source, the publisher (or its server) will maintain 

different copies, each corresponding to different bit rates. Also the video 

stream will be segmented by a specified interval, e.g., 5, 10, or 30 seconds. 
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Suppose there are three video qualities for the streaming service of the 

final game in World cup 2014. Then the name of the 23rd video segment 

with low video quality can be like, /fifa.com/video/worldcup2014/final/low/ 

023. The 3 name structure can be directly found out from the search 

engine or figured out from the metadata file.  

3.3  Adaptive Streaming Strategy in AMVS-NDN  

In AMVS-NDN, an MS will dynamically decide which bit rate (segment) 

is suitable for the current link condition and send the corresponding interest. 

The estimation of the current link bandwidth is based on the 

communication history during the past interval. The MS first obtains the 

INIT file, so that it can figure out the exact names of the video segments 

to be requested depending on the bit rate. The interest with the segment 

name will be routed to the video publisher, who will find the matching 

segment to the incoming interest.  

After obtaining the INIT file, the MS will always request the first 

segment with low quality for conservative network bandwidth estimation, 

and later the segments with higher bit rates can be requested considering 

the effective throughput during the previous interval. Once the interests 

arrive the server, the corresponding segments will be sent back to the 

client, then the client will decode the video file and display in the screen.  

The streaming application in the MS periodically evaluates the link 

throughput and thus decides the video bit rate for the next period. We 
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assume that the bottleneck is always the wireless link. The length of the 

period highly depends on the video segmentation interval. That is, if the 

segmentation interval is 5 seconds, the link estimation (and the bit rate 

decision) period should be 5 seconds. That is, the MS always plays the 

video segment downloaded for the previous 5 seconds, while currently 

receiving the segment for the next 5 seconds. In general, at the beginning 

of time window i, the ith video segment should be already downloaded in 

time window i − 1, and the i + 1
th
 segment will be requested and 

downloaded during window i. The publisher will find matching contents 

stored locally to the interest; the content will be delivered back via the 

reversed path formed by the PITs at the nodes that the interest has 

passed. Assume that the segmentation/adjustment interval is Twin seconds, 

the procedure of throughput estimation and bit rate adjustment is shown 

in Fig. 1. Note that in Segi means the ith segment, and, in Segi∗ , ∗ 

indicates either low, mid or high quality version of the video stream of i
th
 

segment. Likewise, Si
∗ means the size of the corresponding quality version 

(*) of the ith segment. Sleft means the remaining bytes of the currently 

downloaded segment that have not been received yet. BWi
practial is the 

estimated bandwidth of the link during the ith interval, and Qnext is the 

estimated link quality for the next interval.  
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Figure 3.2  Algorithm of Bandwidth Estimation and Quality Adjustment 
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3.4  Dealing with Delays 

In the current NDN software, there is no explicit mechanism to adapt 

to time-varying link throughput and delay jitter. We need to address the 

delay variations in video streaming. In Figure 3.2, the practical link 

throughput changing over time is shown in the middle, which corresponds 

to the wireless/mobile link dynamics at the bottom. Accordingly, the video 

quality at the top is changed as AMVS-NDN adjusts the bit rate over time.  

 

 

Figure 3.3  The link quality, link throughput, and playback delay in 

AMVS-NDN are illustrated over time 

 

While the transmissions are going on, sometimes the link quality 

suddenly changes. If it gets better, transmissions of the current segment 

can be finished earlier than expected, which may give chances to increase 

the video bit rate. However, if the link quality suddenly drops, the 
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streaming application may not be able to obtain the whole segment timely, 

which means we should deal with the delays.  

We observe that there are two types of delays when the transmission 

of a segment cannot be finished within Twin: A type delay happens if the 

remaining bytes of the current segment is larger than the segment size 

of the low video quality, the next video quality is degraded to low to 

reduce the 4 disruption in the playback. We interrupt the current 

transmissions with I/O error exception of NDN input stream in NDN API 

and transmit the interest for the low quality segment immediately. At the 

top of Figure 3.2, segment 9 is delayed, which is A type delay. Thus the 

current transmission is terminated and the video quality is changed to low. 

B type delay happens if the remaining bytes of the current segment is 

smaller than the size of low video quality, the application shows the waiting 

icon in the screen and the current transmission continues. In Figure 3.3, 

segment 4 is delayed as B type, and hence we keep the transmission 

going.  

The delay is mainly because of a sudden change of link quality while 

downloading the video segment for the next time window. Thus, initial 

buffering of 2 or 3 segments can mitigate the problem, but may incur 

long startup delay and require any complicated RDA. The tradeoff between 

the initial buffering and the jitter resilience may depend on the level of 

link dynamics and user mobility, which we will work on as future work.  
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Chapter 4  

Video Sharing in AMVS-NDN 

In the NDN architecture, each node has a cache for storing and 

sharing. Thus in wireless NDN, once an MS obtained video segments from 

the video server via the BS, other MSs nearby can opportunistically receive 

the video segment from the MS who holds the segments.  

In general, an MS always requests a segment over local Wi-Fi 

connectivity, if any. If no MS that holds the segment is available, it will 

request the segment via 3G/4G. After the reception, the MS caches video 

segments at its own repository; from then on, any MS nearby can share 

the segments via the local Wi-Fi connectivity. This sharing is easily 

facilitated in the NDN framework.  

We substantiate the sharing concept in NDN on the Android platform 

as follows. MSs set up a CCNx overlay network on top of UDP/IP sockets. 

One MS, say the master, offers tethering service to the other MS using 

the Wi-Fi Direct. The other MS can then obtain video segments directly 

with the same name from the cache of the master MS. MSs check Wi-Fi 

link status, and if its link is poor, then they may switch to 3G/4G links.  

To achieve the 3G/4G offloading in wireless NDN, every time an MS 

generates an interest, the CCNx will check whether there is any other 

MSs nearby. Using the Android SDK we can check whether there is already 
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a Wi-Fi connectivity. Then we send the interest with the same segment 

name via the IP interface of the local connectivity.  
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Chapter 5  

Details of Multi Interface 

5.1  NDN-Femtocell for Edge Caching 

We deploy caching functionality in mobile edge, i.e., eNodeB and EPC 

of LTE on the commercial LTE Femtocell devices offered by Multi CT, 

and import CCNx into its core network emulator to realize the caching of 

popular ongoing content and to facilitate the content delivery to the mobile 

users attached to the cell without going through the core network to the 

remote source. 

The LTE Femtocell offered by MCT has two parts: LTE eNodeB 

wireless AP, and the CNE which is emulating the EPC functions (S-GW, 

P-GW and MME) and thus realize the small cells workable as a standalone 

access point. 

The whole structure is all IP-based, and thus provide us opportunity 

to import CCNx stack. Once the Femtocell is connected to a router with 

DHCP enabled and with public IP, the mobile client attached to the 

Femtocell will be assigned with a subnet IP assigned by the router. SDK 

we can check whether there is already a Wi-Fi connectivity. Then we 

send the interest with the same segment name via the IP interface of the 

local connectivity.  

5.2  Multi-Interface in Linux  
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By default, Linux do not allow multi-interfaces to function. Thus, if a 

Linux machine has multiple network interfaces, we need to enable them 

by setting routing tables and policy routing. A routing table can contain 

an arbitrary number of routes, the selection of route is classically made 

according to the destination address of the packet. In addition to the two 

commonly used routing tables (the local and main routing tables), the 

kernel can support up to 252 additional routing tables which can be added 

in the file /etc/iproute2/rt_tables.   

Linux also provides more flexible routing selection based on the Type 

of Service, scope, output interface. Linux supports policy based routing 

using the multiple routing table capability and a routing policy database. 

This database contains routing rules used by the kernel. Using policy based 

routing, the source address, the ToS flags, the interface name and an 

"fwmark" (a mark carried through added in the data structure representing 

the packet) can be used as route selectors. Policy based routing can be 

used in addition to Linux packet filtering capabilities, e.g., provided by the 

“iptables” tool. In a multiple interfaces context, this tool can be used to 

mark the packets, i.e., assign a number to fwmark, in order to select the 

routing rule according to the type of traffic.  This mark can be assigned 

according to parameters like protocol, source and/or destination addresses, 

and port number and so on. Such a routing management framework allows 

to deal with complex situation such as address space overlapping.  In this 
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situation, the administrator can use packet marking and policy based routing 

to select the correct interface. 

5.3  Multi-interface in Android 

Android is based on a Linux kernel and, in many situations, behaves 

like a Linux device as described in previous section. As per Linux, Android 

can manage multiple routing tables and rely on policy based routing 

associated with packet filtering capabilities. Such a framework can be used 

to solve complex routing issue brought by multiple interfaces terminals, 

e.g. address space overlapping. 

The Android reference documentation describes the android.net 

package that applications can use to request the first hop to a specified 

destination address via a specified network interface (LTE or Wi-Fi). 

Applications also can ask for permission to start using a network feature. 

The Connectivity Manager monitors changes in network connectivity and 

attempts to failover to another network if connectivity to an active network 

is lost. When there are changes in network connectivity, applications are 

notified. Applications are also able to ask for information about all network 

interfaces, including their availability, type and other information. We 

implement our usage of the android.net package to enable multi-interface 

communication over Android. 
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Chapter 6  

Implementation and Evaluation 

We implemented a wireless NDN test-bed based on Juni’s JPW-8000 

WiMAX BS. CCNx (version 0.6.1) is successfully ported into the ASN-GW 

core part, and will help WiMAX BS work in NDN way for caching content 

effectively and serve for mobile devices. The MCT LTE Femtocell is 

provided by MCT Company. The base station devices of WiMAX and LTE 

Femotocell are shown in Figure 6.1. We use laptop based on LTE USB 

dongle for the LTE service. The Figure 6.2 shows the laptop with LTE 

USB dongle. We implemented the application on Android 4.1 environment. 

The mobile client we used is chosen from the HTC EVO 4G+ phone and 

it is currently the only phone that supports the WiMAX. We also chose 

the Samsung Galaxy S3 LTE E210K (KT) for the LTE Femtocell support. 

The original video source for experiment is “Gangnam style”, 800x450, 

with average bit rate of 773Kbits/s. The Twin is set to 5 seconds. The 

screenshot of AMVS-NDN is shown in Figure 6.3.  
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Figure 6.1  Juni JPW8000 WiMAX and MCT LTE Femtocell 

 

 

Figure 6.2  LTE USB dongle 



 

29 

 

Figure 1.3  Screenshot of AMVS-NDN application 

 

6.1  Testbed Environment 

At first, we need to obtain the testing environment of the WiMAX 

connection. For this purpose, we keep downloading a big video via AMVS-

NDN by walking around the floor and capturing the WiMAX signal quality 

in terms of CINR (Carrier to Interference-plus-Noise Ratio) and RSSI 

(Received signal strength indication) for the WiMAX environment. Figure 

6.4 shows their values measured in the WiMAX environment. In detail, the 

CINR is always round between 30dB and 45dB, and RSSI is always round 

between -80dBm and -60dBm, which are under normal cases.  
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Figure 6.4  Experiment results of WiMAX link quality 

 

6.2  AMVS-NDN Evaluation 

Based on the practical measurement of the WiMAX testbed 

environment, we define three levels of video quality profile “low”, “mid” 

and “high” from the original video. “low” is with low resolution of 

320x180 and also low image compress quality, while the bit rate is normally 

around 160Kbps; “mid” is with mid resolution of 480x270 and also mid 

image compress quality, while the bit rate is normally around 310Kbps; 

“high” is with high resolution of 640x360 and also high image compress 

quality, while the bit rate is normally around 500Kbps. Then we evaluate 

the AMVS-NDN performance via WiMAX by running it while moving in 

the floor, and repeat each experiment for 5 times. We further write a 

logging program to capture the practical CCNx transmission bandwidth. We 

use PSNR (Peak Signal-to-Noise Ratio) as a metric to evaluate the video 

quality, which is dynamically shown in the application. PSNR is actually 
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based on a comparison of original and obtained videos, hence we store 

the captured video at the phone’s local storage every one second.  

Figure 6.5 shows that the available bandwidth is always between 

20KBytes/s and 100KBytes/s, and normally the PSNR of the video is around 

19dB to 23dB. Since the signal quality is good in most cases, meaning that 

video segments with mid and high resolution are mostly displayed, the 

PSNR falls down to the range of 21dB to 23dB. Note that the PSNR of 

video display is not only depending on the transmission quality but the 

video image quality itself can also make a significant impact on the PSNR 

value.  

 

 

Figure 6.5  Experiment result of AMVS-NDN bandwidth and PSNR 

 

In order to show the co-relationship between the link quality and the 

practical download bandwidth as well as that between the bandwidth and 

the video quality (PSNR), we plot the scatter figures based on the captured 
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trace. From Figure 6.6(a), we show that there is approximately a linear 

relation between the CINR and the bandwidth. When the link has the 

CINR around 35dB to 40dB, the bandwidth can be as high as 80KBytes/s 

or even 100KBytes/s, but when the CINR drops below 30dB, the bandwidth 

also falls to around 20KBytes/s to 40KBytes/s. Not only in WiMAX but also 

in LTE, different link quality will induce different low-layer coding schemes 

and thus the bandwidth will be changed accordingly.  

From Figure 6.6 (b), we also show approximately a linear relation 

between the bandwidth and the PSNR. When the bandwidth is around 

60KBytes/s to 90KBytes/s, the PSNR is mostly clustered around 20dB to 

24dB. Thus, in general, higher bandwidth always induces better video 

quality by PSNR, because of the PSNR is not only decided by the link 

bandwidth but also the image dynamics. For instance, in some parts, the 

video contains large portion of a single background color, so even if we 

deliver the video segment with low resolution, the PSNR can be also very 

high.  
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Figure 6.6  Relationships among CINR, bandwidth, and PSNR 

 

6.3  AMVS-NDN Streaming and Sharing 

We install our streaming application on one phone (phone A), to obtain 

the video streams under the WiMAX network, and use another phone 

connecting to phone A to obtain the viewed video segments with Wi-Fi 

Direct (or Tethering). During this experiment, we get the bandwidth and 

PSNR for each phone.  

The measured bandwidth of phones A and B are shown in Figure 6.7. 

The areas with green and blue colors indicate the connectivity via WiMAX 

link and Wi-Fi Direct (or Tethering), respectively. Note that the bandwidth 

curves are quite similar to the expected illustration in Figure 3.2. We take 

the experiment for 4 minutes, and the phone A adaptively obtains the 

video streaming depending on link quality via the WiMAX connection. At 

the beginning, Phone B is served by phone A, by obtaining segments that 

phone A has already obtained from the server via the BS. However, while 
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we move phone B towards the BS (far away from phone A), the link 

quality of Wi-Fi between two phones drops dramatically and the link 

quality of WiMAX at phone B becomes better. Then we turn Phone B to 

connect to the WiMAX BS and continue the transmission. Note that the 

whole procedure can be automatically done if we obtain the root 

permission and recompile the source code of the system. However our 

work is constrained due to the limited support of the HTC phone.  

 

 

Figure 6.7  Experiment results of AMVS-NDN regarding the adaptive 

streaming of phone A and video sharing from phone A to phone B 

 

6.4  Comparison with Pure-NDN and DASH-NDN 

We compare AMVS-NDN with Pure-NDN and DASHNDN (similar to 

DASH but augmented for NDN). Pure NDN is constant bit rate (CBR) 

streaming in NDN without adaptively while DASH-NDN is adaptive 

streaming in NDN but without phone-to-phone sharing. We reuse the test 

scenario of the last experiment, that is, phone A is static but phone B 
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moves to the WiMAX BS and switches from the phone-to-phone to the 

WiMAX connection for better video quality. We average 5 runs as shown 

in Figure 6.8. In Figure 6.8 (a), in most cases PSNR in the mobile scenario 

is a little lower than that in the static scenario. Because CBR streaming 

(Pure-NDN) has to choose a poor quality due to the link dynamics during 

the whole procedure, the average PSNR is 19.3dB. DASH-NDN supports 

adaptive streaming, so the average PSNR is a little higher, 21.3dB. However, 

phone A can work adaptively but phone B sometimes can only obtain a 

poor quality via the WiMAX link due to the distance in the beginning. 

AMVS-NDN has the average PSNR of 22.7dB, phone B with a poor WiMAX 

link quality can easily obtain mid or even high from another phone via 

Wi-Fi. When phone B changes to WiMAX for better video quality, DASH-

NDN and AMVS-NDN may achieve similar performance. Figure 6.8(b) 

shows the reduction of WiMAX traffic. Pure NDN always obtains video 

segment with low quality via the WiMAX, so the traffic volume is smaller 

than DASH-NDN while DASH-NDN always tries to obtain the segment 

with higher quality via the WiMAX connection depending on the link 

quality. AMVS-NDN sometimes utilizes the phone-tophone link to share 

video segments via WiFi. Conclusively, AMVS-NDN outperforms other 

designs due to its adaptability and sharing, it usually achieves higher video 

quality (PSNR) but with relatively less cellular traffic.  
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Figure 6.8  A comparison between Pure-NDN, Dash-NDN and AMVS-

NDN 

 

6.5  Multi Interface in Linux with LTE access to the 

Femtocell 

The Figure 6.9 shows the test setup of Linux laptop. We use laptop 

with USB-dongle while also connect to other Wi-Fi resource for multi 

interface. The caching can be easily deployed into the Femtocell, as the 

CNE is within the same NAT of the subnet, and we can easily import. 

The AMVS-NDN client is deployed into a Linux application based on 

Java, and we realize the multi interface, laptop-to-laptop sharing and so 

on, in the similar way to the Android phones. The details of test setup is 

shown in Figure 6.9.  
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Figure 6.9  Test setup of Linux Laptop 

 

Figure 6.10 shows the experiment for AMVS-NDN with multi interface 

in Linux system. The laptop with LTE dongle connects to the Femtocell 

and download the video streaming (“GangNam Style”) through LTE and 

Wi-Fi interface. Each video streaming will be automatically cached in the 

CCNx repository while downloading finishes. The smart phone of left can 

download the same video streaming from laptop’s CCNx repository through 

Wi-Fi interface, and each streaming will be also cached in repository such 

like laptop, and the video streaming in repository can be shared with other 

phone by Wi-Fi Direct.  
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Figure 6.10  Experiment for AMVS-NDN with multi interface in Linux 

 

6.6  Multi Interface in Android with LTE access 

The Figure 6.11 shows the test setup for Android system. In this 

scenario, we test the availability of the whole structure as well as tests 

on Android phones for the application client, AMVS-NDN, to verify the 

performance on phones. The details of test setup is shown in Figure 6.11.  
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Figure 6.11  Test setup of Android System 

 

We use three Android smartphone, Samsung Galaxy S3, to do the 

experiment to test the functions we’ve realized. We name the three 

Android devices as A, B and C. Test video is stored in CCNx repo in a 

server. And all the video transmissions are based on CCNx. 

For the experiment, first of all, device A connects to LTE Femtocell 

and WiFi, through which, it can get access to the server, where we stored 

video for test. LTE and WiFi are working together, called multi-interface. 

Because of the multi-interface, we can separate the traffic into two path. 

The transmission policy is simply set like this: one link is responsible for 

download the odd video tasks, another link is responsible for download the 

even video tasks. As a result, the transmission rate is significantly improved. 

Device B is connected to device A through Wi-Fi. It’s clear that 

while device A is receiving data from the server, through LTE Femtocell, 
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device B can get this video from deivce A through WiFi. At the same 

time, we keep another interface, WiFi-Direct working, in order to share 

the video with another device C. 

Device C is connected to device B through Wi-Fi-Direct. It can get 

the video and play it when device B is playing. 

So we conduct the whole experiment like this: device A is connected 

to the LTE Femtocell and Wi-Fi, connected to the server we stored the 

test video, through which it can get the test video. The two interfaces 

are able to work at the same time, improving the transmission rate. And 

it can share this video with device B through Wi-Fi. For device B, Wi-Fi 

and Wi-Fi Direct can work together. It gets the video from device A 

through Wi-Fi, and then shares it with device C using Wi-Fi Direct. We 

only use one interface, Wi-Fi Direct at device C to get the video from 

device B. Figure 6.12 shows that the three devices can play the video 

almost at the same time. 
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Figure 6.12  Three devices with AMVS-NDN and MIF is working  

 

6.7  Live broadcasting with CCNx and Wi-Fi Direct 

In this experiment, we use two Galaxy S3 smart phones to realize the 

live broadcasting with CCNx and Wi-Fi Direct. The library “VLC” provide 

the main framework.  

Based on the Wi-Fi Direct connection scenario, one phone should be 

set as group owner, and another phone is set as client. While choosing 

the device type, 2 phones will try to search each other in the same 

channel with Wi-Fi Direct. When phone successfully finds another, the 

CCNx service will automatically start and the live streaming can be used.  
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The Figure 6.13 shows the situation of live broadcasting experiment. 

The phone near us records the objects on the desktop, and the phone 

far from us play the live streaming which is recorded from another phone.  

 

 

Figure 6.13  Experiments for live broadcasting with CCNx and Wi-Fi 

Direct 
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Chapter 7  

Conclusion 

In this thesis, we discuss the impact of network on the performance 

of adaptive video streaming in wireless mobile environment, and design an 

adaptive mobile video streaming with offloading and sharing, AMVS-NDN, 

in the wireless NDN architecture, along with the functionality for sharing 

among mobile users by local Wi-Fi connectivity. We also discuss the details 

of Multi-Interface technology via CCNx. We implement the AMVS-NDN 

with CCNx, and perform experiments in a real testbed consisting of a 

WiMAX BS and two phones. It is proved that AMVS-NDN outperforms 

pure streaming via NDN, and DASH via NDN in terms of the average 

video quality (PSNR) and traffic load reduction. We also implement AMVS-

NDN with multi-interface in Linux and Android system, caching and sharing 

application is realized such as live broadcasting in CCNx.  

Our current work still has some space for improvement: a) we haven’t 

took into account energy consumption yet. However, in some cases total 

energy consumption may be reduced due to high energy efficiency of Wi-

Fi. b) The benefit of Wi-Fi sharing may be not so high in practical when 

various videos are requested for a short interval. In this case, we 

encourage to learn from other domains to improve the sharing probability, 

e.g., social influence from social network services. c) During Wi-Fi sharing 

the receiver can obtain only video segments that the sender has in its 
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local repository, and thus it may be more flexible if the receiver can 

request more “extra” segments via the cellular link concurrently for 

better video quality. d) The segment interval (currently, 5 seconds) should 

be also adaptive to the link quality; in the future we will carry out more 

tests to find an optimal interval for various link conditions and mobility 

scenarios. e) Multi-interface is only used by simple and basic transmission 

scenarios, various efficient scenarios should be implemented. 
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초   록 

최근의 모바일 트래픽(특히 비디오 트래픽)의 폭발적인 증가는 

모바일 네트워크 사업자들에게 큰 부담이 되고 있다.비디오 스트리밍 

서비스가 모바일 사용자에게 주요한 서비스가 됨에 따라 모바일 

트래픽이 네트워크망의 대역폭을 초과하는 경우가 잦아지고 있다. 이 

문제를 해결하기 위해 우리는 “이름 주소 기반 네트워킹(NDN)” 이라는 

차세대 인터넷 아키텍쳐를 이용했다. NDN 은 혁신적인 네트워크 

아키텍처로서 인터넷의 차기 모델로서 평가되고 있다.  

우리는 NDN 아키텍처 상에서 다중 무선 인터페이스(4G LTE, Wi-

Fi)를 활용한 어댑티브 비디오 스트리밍/셰어링 기술을 개발하고 이를 

적용한 프레임워크 (AMVS-NDN)를 디자인하고 구현하였다. NDN 의 

장점을 보여주기 위해 AMVS-NDN 은 두가지의 기능을 제공한다. 1) 

기본적으로 모바일 스테이션(MS)은 상황에 따라 4G LTE 나 Wi-Fi 중 

하나를 선택해 사용한다. 이에 더해, 다중 인터페이스 기술을 사용하여 

4G LTE 와 Wi-Fi 를 동시에 사용할 수 있다. 2) MS 들은 로컬 Wi-Fi 

direct 를 활용하여 콘텐츠를 공유할 수 있다. 우리는 NDN 과 다중 

인터페이스를 이용하여 AMVS-NDN 을 구성했다. 테스트는 WiMAX 

베이스 스테이션, LTE Femtocell, Android 디바이스로 구성된 실제 

테스트베드에서 수행되었다. 모바일 링크의 상태가 시간에 따라 변하는 

상황의 테스트를 통해, 우리는 AMVS-NDN 이 다른 솔루션보다 적은 

셀룰러 트래픽으로 높은 비디오 품질을 달성하는 것을 보여주었다. 

더욱이, 다중 인터페이스 기술을 적용시 최고의 비디오 품질을 얻을 수 

있었다. 
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