

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

工學碩士 學位論文

A Testbed for Mobile Named-Data

Network integrated with 4G

networking devices

4G 네트워킹 디바이스로 구성된 이름 주소 기반

네트워크를 위한 테스트베드

2015年 8月

서울大學校 大學院

電氣·컴퓨터工學部

韓 冰

A Testbed for Mobile Named-Data Network

integrated with 4G networking devices

4G 네트워킹 디바이스로 구성된 이름 주소 기반

네트워크를 위한 테스트베드

지도교수 권 태 경

이논문을 공학석사학위논문으로 제출함

2015년 4월

서울대학교 대학원

전기·컴퓨터공학부

Han Bing

Han Bing의 석사학위논문을 인준함

2015년 5월

위 원 장 신 현 식 (인)

부 위 원 장 권 태 경 (인)

위 원 전 화 숙 (인)

1

Abstract

A Testbed for Mobile Named-Data

Network integrated with 4G

networking devices
Han Bing

School of Computer Science & Engineering

The Graduate School

Seoul National University

In recent years, mobile traffic (especially video traffic) explosion has

become serious concern for mobile network operators. While video

streaming services become crucial for mobile users, their traffic may often

exceed the bandwidth capacity of cellular networks.

To address the video traffic problem, we consider a future Internet

architecture: Named-Data Networking (NDN). NDN is an innovative

network architecture that is being considered as a successor to the Internet.

In this thesis, we design and implement framework of adaptive mobile

video streaming and sharing in the NDN architecture (AMVS-NDN) with

multiple wireless interfaces (e.g., 4G LTE and Wi-Fi). To demonstrate the

benefit of NDN, AMVS-NDN has two key functionalities: (1) in the base

2

situation, a mobile station (MS) tries to use either 4G LTE or Wi-Fi links

opportunistically, further using Multi-Interface technology, 4G LTE and Wi-

Fi links can be used simultaneously, and (2) MSs can share content directly

by exploiting local Wi-Fi direct connectivity. We implement AMVS-NDN

over NDN and Multi-Interface, the tests are performed in a real testbed

consisting of a WiMAX base station, a LTE Femtocell and Android phones.

Testing with time-varying link conditions in mobile environments reveals

that AMVS-NDN achieves the higher video quality and less cellular traffic

than other solutions, with using Multi-Interface, AMVS-NDN can gain the

highest video quality.

Keywords：Named Data Networking, Adaptive Video Streaming, Mobile

Networks, Offloading and Sharing, Multi-Interface.

Student Number： 2013-22515

3

Contents

I. Introduction ... 6

II. Related Work .. 12

2.1 Named Data Networking ... 12

2.2 Adaptive Video Streaming 13

2.3 MS-to-MS Content Sharing 13

2.4 Multi Interface .. 14

III. AMVS-NDN Framework ... 15

3.1 AMVS-NDN illustration .. 15

3.2 Video Segmentation and Naming 16

3.3 Adaptive Streaming Strategy in AMVS-NDN 17

3.4 Dealing with Delays ... 20

IV. Video Sharing in AMVS-NDN .. 22

V. Details of Multi Interface .. 24

5.1 NDN-Femtocell for Edge Caching 24

5.2 Multi-Interface in Linux .. 24

5.3 Multi-interface in Android....................................... 26

VI. Implementation and Evaluation 27

6.1 Testbed Environment .. 29

6.2 AMVS-NDN Evaluation .. 30

4

6.3 AMVS-NDN Streaming and Sharing 33

6.4 Comparison with Pure-NDN and DASH-NDN....... 34

6.5 Multi Interface in Linux with LTE access to the

Femtocell .. 36

6.6 Multi Interface in Android with LTE access 38

6.7 Live broadcasting with CCNx and Wi-Fi Direct .. 41

VII. Conclusion .. 43

VIII. References .. 45

5

List of Figures

Figure 1.1 Mobile Networking Architecture ... 10

Figure 3.1 Illustration of streaming and sharing in AMVS-NDN 17

Figure 3.2 Algorithm of Bandwidth Estimation and Quality Adjustment . 20

Figure 3.3 The link quality, link throughput, and playback delay in

AMVS-NDN are illustrated over time .. 21

Figure 6.1 Juni JPW8000 WiMAX and MCT LTE Femtocell 29

Figure 6.2 LTE USB dongle .. 29

Figure 6.3 Screenshot of AMVS-NDN application 30

Figure 6.4 Experiment results of WiMAX link quality 31

Figure 6.5 Experiment result of AMVS-NDN bandwidth and PSNR 32

Figure 6.6 Relationships among CINR, bandwidth, and PSNR 34

Figure 6.7 Experiment results of AMVS-NDN regarding adaptive

streaming and video sharing from phone A to phone B 35

Figure 6.8 A comparison between Pure-NDN, Dash-NDN and AMVS-

NDN ... 37

Figure 6.9 Test setup of Linux Laptop .. 38

Figure 6.10 Experiment for AMVS-NDN with multi interface in Linux 39

Figure 6.11 Test setup of Android System .. 40

Figure 6.12 Three devices with AMVS-NDN and MIF is working 42

Figure 6.13 Experiments for live broadcasting with CCNx and Wi-Fi

Direct ... 43

6

Chapter 1

Introduction

In recent years, most of mobile network operators are facing a serious

challenge due to mobile data (especially video streaming traffic) explosion

[1]. While video streaming services become more crucial for mobile users,

their traffic may often exceed the bandwidth capacity of cellular networks.

In this situation, Named Data Networking (NDN) [2] [3], same as Content

Centric Networking (CCNx), can be an attractive and efficient solution,

adapting the network architecture to the current network usage pattern,

i.e., data dissemination, video sharing. In NDN, every data delivery is based

on the exchange of an Interest packet and a Data packet using a specific

content name. Each NDN device has its own cache so that the cached

data can be reused for near-future requests.

From the deployment perspective, it is a natural evolutionary path to

apply NDN to wireless network environments due to highly clustered

network topologies of cellular networks and wireless local area networks.

For instance, it will be fairly efficient and hence necessary to satisfy

requirements such like latency, of video delivery to cache popular videos

at clustering points, in some situations, base station (BS) in WiMAX, LTE

and access point (AP) in Wi-Fi. However, the wireless link may be

fluctuating while a mobile station (MS) is moving around the coverage of

multiple BSs in outdoor. Furthermore, most of currently available MSs have

multiple interfaces, e.g., 3G/4G, Wi-Fi, NFC, each of which is experiencing

7

different channel conditions. Thus, the high dynamics should be well dealt

with by applications and services in the NDN architecture but currently

NDN has no support for adaptive data communication [4], e.g., adaptive

video streaming.

On the other hand, Dynamic Adaptive Streaming via HTTP (DASH) is

a hot issue in academy and industry. The goal of DASH is to deliver video

with high Quality of Experience (QoE) even in dynamic network conditions.

The basic idea is that the video is encoded at multiple bit rates and

resolutions, typically 7-10 different rates ranging from 150 Kbps for mobile

devices up to 6 Mbps for high definition. Each encoding is divided into

chunks, video segments typically between 2-30 seconds in length. The

client first downloads a manifest file which contains information on the

available audio and video streams, their encodings, and chunk durations.

Then, the client requests one chunk of video at a time using HTTP.

Depending on its rate adaptation algorithm, it detects the currently

available bandwidth for the session and the video quality is adjusted

accordingly. In order to support adaptive video streaming services in NDN

architecture, we discuss following issues:

 Adaptability: The video streaming service should be aware of

available connectivity and bandwidth by taking into consideration

dynamic wireless link conditions and be able to adapt to the best

quality of video depending the estimated bandwidth [4].

8

 Video Enhancement: Due to mobility, it always does not allow

the best quality of video by only cellular networks. Thus, by

exploiting different interfaces, e.g., WiMax and Wi-Fi, a MS

receives video streams via a cellular link and also opportunistically

accesses local Wi-Fi with other MSs to get video segments with a

higher quality.

 NDN Caching and Sharing: In-network caching capability gives

an opportunity that a MS retrieves a video segment from any

nearby MS already caching that video segment, not via a BS.

Furthermore, each MS can freely move and share video contents

with each other [5].

Mobile service providers are deploying heterogeneous networks that

augment conventional macro-cells with micro-, pico-, and femto-cells, and

are utilizing a mix of radio access technologies (RATs) like 3G/4G cellular

and 802.11n/ac. However, advances in wireless networking techniques have

not been matched by new development of system architectures that

effectively facilitate their efficient deployment. New wireless system

architectures should be scalable to provide increased capacity,

programmable to support new functions and advanced RATs, and self-

organized. Therefore, new paradigm of mobile networking architecture

should be considered.

Recently researchers are also trying to evolve current mobile backhaul

networks towards the NDN infrastructure, in which, every content is with

9

a specific name, and each network device is enabled with in-network

caching, so that popular content can be cached in the intermediate network

devices while being delivered, and thus successive requests can be

efficiently satisfied by the cache.

In order to induce the NDN into mobile networks, we investigate

current mobile networking architecture as illustrated in Figure 1.1, and

find that it is very promising to implement the caching at the edges of

mobile networks, e.g., eNodeB and the EPC of LTE, Wi-Fi APs, Femtocells,

and so on, because they are very critical access points to aggregate user

traffic and thus to efficiently utilize the caching.

Figure 1.1 Mobile Network Architecture

10

Besides caching, the essential part of our work is the exploitation of

the Multi-interface support for mobile devices. Poor connectivity is common

when using wireless networks on the go. Connectivity comes and goes,

throughput varies, latencies can be extremely unpredictable, and failures

are frequent. Industry reports that demand is growing faster than wireless

capacity, and the wireless crunch will continue for some time to come.

Yet users expect to run increasingly rich and demanding applications on

their smart-phones, such as video streaming, anywhere anytime access to

their personal files, and online gaming; all of which depend on connectivity

to the cloud over unpredictable wireless networks. Given the mismatch

between user expectations and wireless network characteristics, users will

continue to be frustrated with application performance on their mobile

computing devices.

In our work, by adding functionalities for adaptive video streaming

and sharing among MSs with local Wi-Fi, we realized adaptive mobile

video streaming and sharing in the NDN architecture, termed AMVS-NDN.

We implemented AMVS-NDN within NDN, and conducted experiments in

a real test-bed consisting of a WiMAX BS and two MSs equipped with

Wi-Fi. The experimental result reveals that AMVS-NDN outperforms other

designs in terms of the average video quality, i.e., PSNR, and the amount

of reduced cellular traffic.

Our vision requires much more than just multiple radios and multiple

networks, it requires that the mobile client (as well as the applications and

11

user) can take advantage of them. Today's clients are ill-equipped to do

so, having grown up in an era of TCP connections bound to a single

physical network connection. This leads to several well-known shortcomings:

(1) An ongoing connection oriented flow like TCP cannot easily be handed

over to a new interface, without re-establishing state; (2) If multiple

network interfaces are available, an application cannot take advantage of

them to get higher throughput; at best it can use the fastest connection

available; (3) A user cannot easily and dynamically choose interfaces at

fine granularity so as to minimize loss, delay, power consumption, or usage

charges.

Through these three limitations, we implemented our prototypes (Linux

and Android using NDN) to measure the performance of experiments

where several network interfaces are used. Our prototype design, is purely

host-based. The sending host decides which interfaces to use, and then

divides outgoing traffic over multiple interfaces.

The rest of the thesis is organized as follows. We first introduce

related work in Chapter 2, and explain details of the AMVS-NDN

framework in Chapter 3. Then, the video sharing will be further discussed

in Chapter 4. After that, the details of multi-interface will be showed in

Chapter 5. We evaluate the prototype implementation in Chapter 6, and

finally conclude this thesis.

12

Chapter 2

Related Work

2.1 Named Data Networking

NDN (aka Content Centric Networking [3]) can be characterized by

two major features: routing-by-name and in-network caching. Routing-by-

name enables a content, not the host, to become a first-class citizen of

the network, so a single content can be retrieved from multiple locations

inherently. In network caching also gives several attractive advantages

such as low dissemination latency and network load reduction. At the

protocol level, a user requests a content by broadcasting its interest to

the network and then any content router hearing the interest and having

data that satisfies it can respond with a Data packet. Data is retrieved

only in the response to an interest so a single Interest packet corresponds

to a single Data packet. Audio Conferencing Tool (ACT) [6] is one of pilot

applications to explore the naming and real-time support of NDN for audio

conferences. Instead of relying on a centralized server keeping track of

information on conferences, ACT takes a named data approach to discover

conferences and speakers, and to fetch voice data from individual speakers.

Yet, ACT is considering only audio conferences, that is, there is no support

for video conferencing or streaming.

13

2.2 Adaptive Video Streaming

In adaptive video streaming, e.g., Microsoft’s Smooth Streaming [7],

with each chunk download, the client measures the network bandwidth

and runs a Rate Determination Algorithm (RDA) to determine which bit

rate to request next. Each request represents an opportunity for the client

to change bit rates. When selecting a bit rate, the RDA must consider the

available bandwidth, CPU processing power, screen size, and the fullness

of its buffer. The RDA must balance the desire to request high-quality

video with the need to prevent its buffer from draining in order to deliver

the highest sustainable quality without stops or stutters. Some of

commercially available RDAs were evaluated in [8] and a rate adaptation

algorithm for conversational 3G video streaming was proposed by [9]. In

addition, a couple of cross-layer adaptation techniques were discussed [10]

[11] [12] which can acquire more accurate information of the session

quality so that the rate adaptation can be more accurately made.

2.3 MS-to-MS Content Sharing

Mobile data offloading is one of candidate solutions to address mobile

data explosion. According to this trend, how to reduce the amount of

cellular traffic, i.e., through opportunistic data sharing between MSs, has

become an important research topic. Recently, [13] exploited device-to-

device communications as an underlay to LTE cellular networks for

efficient content delivery. However, it was limited to a single wireless

14

network technology while we consider multi-technology, e.g., WiMAX, LTE

Femtocell and Wi-Fi, in the NDN architecture [5].

2.4 Multi Interface

In [14] [15], the varied methodologies are showed that using the

multiple link interface is available for improving the quality of QoS and

reduce the misalignment and influence in android phone during the

transmission process. However, these experiments are not realized based

on NDN environment. The [16] provided a methodology using multiple links

for improving Dynamic Adaptive Streaming over HTTP (DASH) via CCNx

in Mobile networks. The result shows that the media bitrate can be

improved over 15% higher than the standardization of DASH. However,

this method is only realized on 3G and Wi-Fi, and it isn’t consider the

sharing situation.

15

Chapter 3

AMVS-NDN Framework

3.1 AMVS-NDN illustration

Let us illustrate a scenario to explain how AMVS-NDN supports video

streaming efficiently while reducing 3G/4G link traffic. Suppose two MSs

A and B with AMVS-NDN functionalities will request the same video

stream, and they are in the coverage of a 3G Femtocell BS. There is a

video server that employs the DASH framework, which delivers the video

data via the BS. MSs A and B also employ the DASH framework, so that

the bit rate of the video stream can be adjusted depending on their

wireless link conditions.

MS A walks around the BS while maintaining the 3G connectivity.

Depending on the distance (and hence the link condition) between MS A

and the BS, MS A will request (and receive) the video data with the

different bit rate over time via the BS. MS B initially stays somewhat

distant from the BS, and hence MS B receives the video stream with low

bit rate via the BS at the beginning. After some time, MS B is in proximity

of MS A, and the local Wi-Fi link between the two MSs is available (with

high bandwidth). Then MS B switches to the Wi-Fi link to download the

video data from MS A directly. MS B can connect to MS A by the Wi-Fi

direct or tethering. Later on, MS B is close to the BS, while MS A has a

poor link with the BS, and yet they still have Wi-Fi direct connectivity.

16

Then MS B will receive the video data via the BS, and MS A will receive

the data from MS B. The illustration is shown in Figure 3.1.

Figure 3.1 An illustration of streaming and sharing in AMVS-NDN

3.2 Video Segmentation and Naming

In AMVS-NDN, we assume that there is a metadata file for each

video stream, which summarizes the stream structure of the video in terms

of segments and qualities. This file is similar to the media presentation

description (MPD) in the DASH framework. For a given video file name,

let us name the metadata file, say “Video File Name/ INIT.” The metadata

file includes compression schemes, video bit rates, number of segments,

size of segments for each bit rate, and so on.

For a single video source, the publisher (or its server) will maintain

different copies, each corresponding to different bit rates. Also the video

stream will be segmented by a specified interval, e.g., 5, 10, or 30 seconds.

17

Suppose there are three video qualities for the streaming service of the

final game in World cup 2014. Then the name of the 23rd video segment

with low video quality can be like, /fifa.com/video/worldcup2014/final/low/

023. The 3 name structure can be directly found out from the search

engine or figured out from the metadata file.

3.3 Adaptive Streaming Strategy in AMVS-NDN

In AMVS-NDN, an MS will dynamically decide which bit rate (segment)

is suitable for the current link condition and send the corresponding interest.

The estimation of the current link bandwidth is based on the

communication history during the past interval. The MS first obtains the

INIT file, so that it can figure out the exact names of the video segments

to be requested depending on the bit rate. The interest with the segment

name will be routed to the video publisher, who will find the matching

segment to the incoming interest.

After obtaining the INIT file, the MS will always request the first

segment with low quality for conservative network bandwidth estimation,

and later the segments with higher bit rates can be requested considering

the effective throughput during the previous interval. Once the interests

arrive the server, the corresponding segments will be sent back to the

client, then the client will decode the video file and display in the screen.

The streaming application in the MS periodically evaluates the link

throughput and thus decides the video bit rate for the next period. We

18

assume that the bottleneck is always the wireless link. The length of the

period highly depends on the video segmentation interval. That is, if the

segmentation interval is 5 seconds, the link estimation (and the bit rate

decision) period should be 5 seconds. That is, the MS always plays the

video segment downloaded for the previous 5 seconds, while currently

receiving the segment for the next 5 seconds. In general, at the beginning

of time window i, the ith video segment should be already downloaded in

time window i − 1, and the i + 1
th
 segment will be requested and

downloaded during window i. The publisher will find matching contents

stored locally to the interest; the content will be delivered back via the

reversed path formed by the PITs at the nodes that the interest has

passed. Assume that the segmentation/adjustment interval is Twin seconds,

the procedure of throughput estimation and bit rate adjustment is shown

in Fig. 1. Note that in Segi means the ith segment, and, in Segi∗ , ∗

indicates either low, mid or high quality version of the video stream of i
th

segment. Likewise, Si
∗ means the size of the corresponding quality version

(*) of the ith segment. Sleft means the remaining bytes of the currently

downloaded segment that have not been received yet. BWi
practial is the

estimated bandwidth of the link during the ith interval, and Qnext is the

estimated link quality for the next interval.

19

Figure 3.2 Algorithm of Bandwidth Estimation and Quality Adjustment

20

3.4 Dealing with Delays

In the current NDN software, there is no explicit mechanism to adapt

to time-varying link throughput and delay jitter. We need to address the

delay variations in video streaming. In Figure 3.2, the practical link

throughput changing over time is shown in the middle, which corresponds

to the wireless/mobile link dynamics at the bottom. Accordingly, the video

quality at the top is changed as AMVS-NDN adjusts the bit rate over time.

Figure 3.3 The link quality, link throughput, and playback delay in

AMVS-NDN are illustrated over time

While the transmissions are going on, sometimes the link quality

suddenly changes. If it gets better, transmissions of the current segment

can be finished earlier than expected, which may give chances to increase

the video bit rate. However, if the link quality suddenly drops, the

21

streaming application may not be able to obtain the whole segment timely,

which means we should deal with the delays.

We observe that there are two types of delays when the transmission

of a segment cannot be finished within Twin: A type delay happens if the

remaining bytes of the current segment is larger than the segment size

of the low video quality, the next video quality is degraded to low to

reduce the 4 disruption in the playback. We interrupt the current

transmissions with I/O error exception of NDN input stream in NDN API

and transmit the interest for the low quality segment immediately. At the

top of Figure 3.2, segment 9 is delayed, which is A type delay. Thus the

current transmission is terminated and the video quality is changed to low.

B type delay happens if the remaining bytes of the current segment is

smaller than the size of low video quality, the application shows the waiting

icon in the screen and the current transmission continues. In Figure 3.3,

segment 4 is delayed as B type, and hence we keep the transmission

going.

The delay is mainly because of a sudden change of link quality while

downloading the video segment for the next time window. Thus, initial

buffering of 2 or 3 segments can mitigate the problem, but may incur

long startup delay and require any complicated RDA. The tradeoff between

the initial buffering and the jitter resilience may depend on the level of

link dynamics and user mobility, which we will work on as future work.

22

Chapter 4

Video Sharing in AMVS-NDN

In the NDN architecture, each node has a cache for storing and

sharing. Thus in wireless NDN, once an MS obtained video segments from

the video server via the BS, other MSs nearby can opportunistically receive

the video segment from the MS who holds the segments.

In general, an MS always requests a segment over local Wi-Fi

connectivity, if any. If no MS that holds the segment is available, it will

request the segment via 3G/4G. After the reception, the MS caches video

segments at its own repository; from then on, any MS nearby can share

the segments via the local Wi-Fi connectivity. This sharing is easily

facilitated in the NDN framework.

We substantiate the sharing concept in NDN on the Android platform

as follows. MSs set up a CCNx overlay network on top of UDP/IP sockets.

One MS, say the master, offers tethering service to the other MS using

the Wi-Fi Direct. The other MS can then obtain video segments directly

with the same name from the cache of the master MS. MSs check Wi-Fi

link status, and if its link is poor, then they may switch to 3G/4G links.

To achieve the 3G/4G offloading in wireless NDN, every time an MS

generates an interest, the CCNx will check whether there is any other

MSs nearby. Using the Android SDK we can check whether there is already

23

a Wi-Fi connectivity. Then we send the interest with the same segment

name via the IP interface of the local connectivity.

24

Chapter 5

Details of Multi Interface

5.1 NDN-Femtocell for Edge Caching

We deploy caching functionality in mobile edge, i.e., eNodeB and EPC

of LTE on the commercial LTE Femtocell devices offered by Multi CT,

and import CCNx into its core network emulator to realize the caching of

popular ongoing content and to facilitate the content delivery to the mobile

users attached to the cell without going through the core network to the

remote source.

The LTE Femtocell offered by MCT has two parts: LTE eNodeB

wireless AP, and the CNE which is emulating the EPC functions (S-GW,

P-GW and MME) and thus realize the small cells workable as a standalone

access point.

The whole structure is all IP-based, and thus provide us opportunity

to import CCNx stack. Once the Femtocell is connected to a router with

DHCP enabled and with public IP, the mobile client attached to the

Femtocell will be assigned with a subnet IP assigned by the router. SDK

we can check whether there is already a Wi-Fi connectivity. Then we

send the interest with the same segment name via the IP interface of the

local connectivity.

5.2 Multi-Interface in Linux

25

By default, Linux do not allow multi-interfaces to function. Thus, if a

Linux machine has multiple network interfaces, we need to enable them

by setting routing tables and policy routing. A routing table can contain

an arbitrary number of routes, the selection of route is classically made

according to the destination address of the packet. In addition to the two

commonly used routing tables (the local and main routing tables), the

kernel can support up to 252 additional routing tables which can be added

in the file /etc/iproute2/rt_tables.

Linux also provides more flexible routing selection based on the Type

of Service, scope, output interface. Linux supports policy based routing

using the multiple routing table capability and a routing policy database.

This database contains routing rules used by the kernel. Using policy based

routing, the source address, the ToS flags, the interface name and an

"fwmark" (a mark carried through added in the data structure representing

the packet) can be used as route selectors. Policy based routing can be

used in addition to Linux packet filtering capabilities, e.g., provided by the

“iptables” tool. In a multiple interfaces context, this tool can be used to

mark the packets, i.e., assign a number to fwmark, in order to select the

routing rule according to the type of traffic. This mark can be assigned

according to parameters like protocol, source and/or destination addresses,

and port number and so on. Such a routing management framework allows

to deal with complex situation such as address space overlapping. In this

26

situation, the administrator can use packet marking and policy based routing

to select the correct interface.

5.3 Multi-interface in Android

Android is based on a Linux kernel and, in many situations, behaves

like a Linux device as described in previous section. As per Linux, Android

can manage multiple routing tables and rely on policy based routing

associated with packet filtering capabilities. Such a framework can be used

to solve complex routing issue brought by multiple interfaces terminals,

e.g. address space overlapping.

The Android reference documentation describes the android.net

package that applications can use to request the first hop to a specified

destination address via a specified network interface (LTE or Wi-Fi).

Applications also can ask for permission to start using a network feature.

The Connectivity Manager monitors changes in network connectivity and

attempts to failover to another network if connectivity to an active network

is lost. When there are changes in network connectivity, applications are

notified. Applications are also able to ask for information about all network

interfaces, including their availability, type and other information. We

implement our usage of the android.net package to enable multi-interface

communication over Android.

27

Chapter 6

Implementation and Evaluation

We implemented a wireless NDN test-bed based on Juni’s JPW-8000

WiMAX BS. CCNx (version 0.6.1) is successfully ported into the ASN-GW

core part, and will help WiMAX BS work in NDN way for caching content

effectively and serve for mobile devices. The MCT LTE Femtocell is

provided by MCT Company. The base station devices of WiMAX and LTE

Femotocell are shown in Figure 6.1. We use laptop based on LTE USB

dongle for the LTE service. The Figure 6.2 shows the laptop with LTE

USB dongle. We implemented the application on Android 4.1 environment.

The mobile client we used is chosen from the HTC EVO 4G+ phone and

it is currently the only phone that supports the WiMAX. We also chose

the Samsung Galaxy S3 LTE E210K (KT) for the LTE Femtocell support.

The original video source for experiment is “Gangnam style”, 800x450,

with average bit rate of 773Kbits/s. The Twin is set to 5 seconds. The

screenshot of AMVS-NDN is shown in Figure 6.3.

28

Figure 6.1 Juni JPW8000 WiMAX and MCT LTE Femtocell

Figure 6.2 LTE USB dongle

29

Figure 1.3 Screenshot of AMVS-NDN application

6.1 Testbed Environment

At first, we need to obtain the testing environment of the WiMAX

connection. For this purpose, we keep downloading a big video via AMVS-

NDN by walking around the floor and capturing the WiMAX signal quality

in terms of CINR (Carrier to Interference-plus-Noise Ratio) and RSSI

(Received signal strength indication) for the WiMAX environment. Figure

6.4 shows their values measured in the WiMAX environment. In detail, the

CINR is always round between 30dB and 45dB, and RSSI is always round

between -80dBm and -60dBm, which are under normal cases.

30

Figure 6.4 Experiment results of WiMAX link quality

6.2 AMVS-NDN Evaluation

Based on the practical measurement of the WiMAX testbed

environment, we define three levels of video quality profile “low”, “mid”

and “high” from the original video. “low” is with low resolution of

320x180 and also low image compress quality, while the bit rate is normally

around 160Kbps; “mid” is with mid resolution of 480x270 and also mid

image compress quality, while the bit rate is normally around 310Kbps;

“high” is with high resolution of 640x360 and also high image compress

quality, while the bit rate is normally around 500Kbps. Then we evaluate

the AMVS-NDN performance via WiMAX by running it while moving in

the floor, and repeat each experiment for 5 times. We further write a

logging program to capture the practical CCNx transmission bandwidth. We

use PSNR (Peak Signal-to-Noise Ratio) as a metric to evaluate the video

quality, which is dynamically shown in the application. PSNR is actually

31

based on a comparison of original and obtained videos, hence we store

the captured video at the phone’s local storage every one second.

Figure 6.5 shows that the available bandwidth is always between

20KBytes/s and 100KBytes/s, and normally the PSNR of the video is around

19dB to 23dB. Since the signal quality is good in most cases, meaning that

video segments with mid and high resolution are mostly displayed, the

PSNR falls down to the range of 21dB to 23dB. Note that the PSNR of

video display is not only depending on the transmission quality but the

video image quality itself can also make a significant impact on the PSNR

value.

Figure 6.5 Experiment result of AMVS-NDN bandwidth and PSNR

In order to show the co-relationship between the link quality and the

practical download bandwidth as well as that between the bandwidth and

the video quality (PSNR), we plot the scatter figures based on the captured

32

trace. From Figure 6.6(a), we show that there is approximately a linear

relation between the CINR and the bandwidth. When the link has the

CINR around 35dB to 40dB, the bandwidth can be as high as 80KBytes/s

or even 100KBytes/s, but when the CINR drops below 30dB, the bandwidth

also falls to around 20KBytes/s to 40KBytes/s. Not only in WiMAX but also

in LTE, different link quality will induce different low-layer coding schemes

and thus the bandwidth will be changed accordingly.

From Figure 6.6 (b), we also show approximately a linear relation

between the bandwidth and the PSNR. When the bandwidth is around

60KBytes/s to 90KBytes/s, the PSNR is mostly clustered around 20dB to

24dB. Thus, in general, higher bandwidth always induces better video

quality by PSNR, because of the PSNR is not only decided by the link

bandwidth but also the image dynamics. For instance, in some parts, the

video contains large portion of a single background color, so even if we

deliver the video segment with low resolution, the PSNR can be also very

high.

33

Figure 6.6 Relationships among CINR, bandwidth, and PSNR

6.3 AMVS-NDN Streaming and Sharing

We install our streaming application on one phone (phone A), to obtain

the video streams under the WiMAX network, and use another phone

connecting to phone A to obtain the viewed video segments with Wi-Fi

Direct (or Tethering). During this experiment, we get the bandwidth and

PSNR for each phone.

The measured bandwidth of phones A and B are shown in Figure 6.7.

The areas with green and blue colors indicate the connectivity via WiMAX

link and Wi-Fi Direct (or Tethering), respectively. Note that the bandwidth

curves are quite similar to the expected illustration in Figure 3.2. We take

the experiment for 4 minutes, and the phone A adaptively obtains the

video streaming depending on link quality via the WiMAX connection. At

the beginning, Phone B is served by phone A, by obtaining segments that

phone A has already obtained from the server via the BS. However, while

34

we move phone B towards the BS (far away from phone A), the link

quality of Wi-Fi between two phones drops dramatically and the link

quality of WiMAX at phone B becomes better. Then we turn Phone B to

connect to the WiMAX BS and continue the transmission. Note that the

whole procedure can be automatically done if we obtain the root

permission and recompile the source code of the system. However our

work is constrained due to the limited support of the HTC phone.

Figure 6.7 Experiment results of AMVS-NDN regarding the adaptive

streaming of phone A and video sharing from phone A to phone B

6.4 Comparison with Pure-NDN and DASH-NDN

We compare AMVS-NDN with Pure-NDN and DASHNDN (similar to

DASH but augmented for NDN). Pure NDN is constant bit rate (CBR)

streaming in NDN without adaptively while DASH-NDN is adaptive

streaming in NDN but without phone-to-phone sharing. We reuse the test

scenario of the last experiment, that is, phone A is static but phone B

35

moves to the WiMAX BS and switches from the phone-to-phone to the

WiMAX connection for better video quality. We average 5 runs as shown

in Figure 6.8. In Figure 6.8 (a), in most cases PSNR in the mobile scenario

is a little lower than that in the static scenario. Because CBR streaming

(Pure-NDN) has to choose a poor quality due to the link dynamics during

the whole procedure, the average PSNR is 19.3dB. DASH-NDN supports

adaptive streaming, so the average PSNR is a little higher, 21.3dB. However,

phone A can work adaptively but phone B sometimes can only obtain a

poor quality via the WiMAX link due to the distance in the beginning.

AMVS-NDN has the average PSNR of 22.7dB, phone B with a poor WiMAX

link quality can easily obtain mid or even high from another phone via

Wi-Fi. When phone B changes to WiMAX for better video quality, DASH-

NDN and AMVS-NDN may achieve similar performance. Figure 6.8(b)

shows the reduction of WiMAX traffic. Pure NDN always obtains video

segment with low quality via the WiMAX, so the traffic volume is smaller

than DASH-NDN while DASH-NDN always tries to obtain the segment

with higher quality via the WiMAX connection depending on the link

quality. AMVS-NDN sometimes utilizes the phone-tophone link to share

video segments via WiFi. Conclusively, AMVS-NDN outperforms other

designs due to its adaptability and sharing, it usually achieves higher video

quality (PSNR) but with relatively less cellular traffic.

36

Figure 6.8 A comparison between Pure-NDN, Dash-NDN and AMVS-

NDN

6.5 Multi Interface in Linux with LTE access to the

Femtocell

The Figure 6.9 shows the test setup of Linux laptop. We use laptop

with USB-dongle while also connect to other Wi-Fi resource for multi

interface. The caching can be easily deployed into the Femtocell, as the

CNE is within the same NAT of the subnet, and we can easily import.

The AMVS-NDN client is deployed into a Linux application based on

Java, and we realize the multi interface, laptop-to-laptop sharing and so

on, in the similar way to the Android phones. The details of test setup is

shown in Figure 6.9.

37

Figure 6.9 Test setup of Linux Laptop

Figure 6.10 shows the experiment for AMVS-NDN with multi interface

in Linux system. The laptop with LTE dongle connects to the Femtocell

and download the video streaming (“GangNam Style”) through LTE and

Wi-Fi interface. Each video streaming will be automatically cached in the

CCNx repository while downloading finishes. The smart phone of left can

download the same video streaming from laptop’s CCNx repository through

Wi-Fi interface, and each streaming will be also cached in repository such

like laptop, and the video streaming in repository can be shared with other

phone by Wi-Fi Direct.

38

Figure 6.10 Experiment for AMVS-NDN with multi interface in Linux

6.6 Multi Interface in Android with LTE access

The Figure 6.11 shows the test setup for Android system. In this

scenario, we test the availability of the whole structure as well as tests

on Android phones for the application client, AMVS-NDN, to verify the

performance on phones. The details of test setup is shown in Figure 6.11.

39

Figure 6.11 Test setup of Android System

We use three Android smartphone, Samsung Galaxy S3, to do the

experiment to test the functions we’ve realized. We name the three

Android devices as A, B and C. Test video is stored in CCNx repo in a

server. And all the video transmissions are based on CCNx.

For the experiment, first of all, device A connects to LTE Femtocell

and WiFi, through which, it can get access to the server, where we stored

video for test. LTE and WiFi are working together, called multi-interface.

Because of the multi-interface, we can separate the traffic into two path.

The transmission policy is simply set like this: one link is responsible for

download the odd video tasks, another link is responsible for download the

even video tasks. As a result, the transmission rate is significantly improved.

Device B is connected to device A through Wi-Fi. It’s clear that

while device A is receiving data from the server, through LTE Femtocell,

40

device B can get this video from deivce A through WiFi. At the same

time, we keep another interface, WiFi-Direct working, in order to share

the video with another device C.

Device C is connected to device B through Wi-Fi-Direct. It can get

the video and play it when device B is playing.

So we conduct the whole experiment like this: device A is connected

to the LTE Femtocell and Wi-Fi, connected to the server we stored the

test video, through which it can get the test video. The two interfaces

are able to work at the same time, improving the transmission rate. And

it can share this video with device B through Wi-Fi. For device B, Wi-Fi

and Wi-Fi Direct can work together. It gets the video from device A

through Wi-Fi, and then shares it with device C using Wi-Fi Direct. We

only use one interface, Wi-Fi Direct at device C to get the video from

device B. Figure 6.12 shows that the three devices can play the video

almost at the same time.

41

Figure 6.12 Three devices with AMVS-NDN and MIF is working

6.7 Live broadcasting with CCNx and Wi-Fi Direct

In this experiment, we use two Galaxy S3 smart phones to realize the

live broadcasting with CCNx and Wi-Fi Direct. The library “VLC” provide

the main framework.

Based on the Wi-Fi Direct connection scenario, one phone should be

set as group owner, and another phone is set as client. While choosing

the device type, 2 phones will try to search each other in the same

channel with Wi-Fi Direct. When phone successfully finds another, the

CCNx service will automatically start and the live streaming can be used.

42

The Figure 6.13 shows the situation of live broadcasting experiment.

The phone near us records the objects on the desktop, and the phone

far from us play the live streaming which is recorded from another phone.

Figure 6.13 Experiments for live broadcasting with CCNx and Wi-Fi

Direct

43

Chapter 7

Conclusion

In this thesis, we discuss the impact of network on the performance

of adaptive video streaming in wireless mobile environment, and design an

adaptive mobile video streaming with offloading and sharing, AMVS-NDN,

in the wireless NDN architecture, along with the functionality for sharing

among mobile users by local Wi-Fi connectivity. We also discuss the details

of Multi-Interface technology via CCNx. We implement the AMVS-NDN

with CCNx, and perform experiments in a real testbed consisting of a

WiMAX BS and two phones. It is proved that AMVS-NDN outperforms

pure streaming via NDN, and DASH via NDN in terms of the average

video quality (PSNR) and traffic load reduction. We also implement AMVS-

NDN with multi-interface in Linux and Android system, caching and sharing

application is realized such as live broadcasting in CCNx.

Our current work still has some space for improvement: a) we haven’t

took into account energy consumption yet. However, in some cases total

energy consumption may be reduced due to high energy efficiency of Wi-

Fi. b) The benefit of Wi-Fi sharing may be not so high in practical when

various videos are requested for a short interval. In this case, we

encourage to learn from other domains to improve the sharing probability,

e.g., social influence from social network services. c) During Wi-Fi sharing

the receiver can obtain only video segments that the sender has in its

44

local repository, and thus it may be more flexible if the receiver can

request more “extra” segments via the cellular link concurrently for

better video quality. d) The segment interval (currently, 5 seconds) should

be also adaptive to the link quality; in the future we will carry out more

tests to find an optimal interval for various link conditions and mobility

scenarios. e) Multi-interface is only used by simple and basic transmission

scenarios, various efficient scenarios should be implemented.

45

References

[1] CISCO, “Cisco Visual Networking Index: Global Mobile Data Traffic

Forecast Update , 2010-2015,” CISCO, Tech. Rep., 2011.

[2] Project CCNx, “http://www.ccnx.org, ” Sep., 2009.

[3] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and R.

Braynard, “Networking named content,” ACM CoNEXT,2009.

[4] D. Kulinski, J. Burke, “NDNVideo: Random-access Live and Prerecorded

Streaming using NDN,” Technical Report NDN-0007, 2012.

[5] H. Yoon, J. Kim, T. Feiselia, H. Robert, “On-demand Video Streaming

in Mobile Opportunistic Networks,” IEEE PERCOM, 2008.

[6] Z. Zhenkai, W. Sen Y. Xu, V. Jacobson and Z. Lixia, “ACT: Audio

Conference Tool Over Named Data Networking,” ICN, 2011.

[7] A. Zambelli, “IIS Smooth Streaming Overview,” Tech. Rep., 2009.

[8] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An Experimental Evaluation

of Rate-Adaptation Algorithms in Adaptive Streaming over HTTP,” MMSys,

2011 [9] V. Singh and I. D. D. Curcio, “Rate Adaptation for Conversational

3G Video,” IEEE INFOCOM Workshop, 2009

[10] K. Tappayuthpijarn, G. Liebl, T. Stockhammer, and E. Steinbach,

“Adaptive video streaming over a mobile network with TCP-Friendly Rate

Control,” ACM IWCMC, 2009

46

[11] E. Piri, M. Uitto, J. Vehkaper, and T. Sutinen, “Dynamic Cross-layer

Adaptation of Scalable Video in Wireless Networking,” Proceedings of

IEEE GLOBECOM, 2010

[12] X. Wang, M. Chen, B. Pan, T. Kwon, L. T. Yang, V. C. M. Leung,

“AMES-Cloud: A Framework of Adaptive Mobile Video Streamingand

Efficient Social Video Sharing in the Clouds,” IEEE Transaction of

Multimedia, 2013.

[13] K. Doppler, M. Rinne, C. Wijting, C. Ribeiro and K. Hugl,

“ Devicetodevice communication as an underlay to LTE-advanced

networks,” IEEE Communications Magazine, vol.47, issue.12, pp.42-49, 2009.

[14] P. Kyasanur, and N. Vaidya, “Routing and Interface Assignment in

Multi-Channel Mutil-Interface Wireless Networks ” IEEE Wireless

Communications and networking Conference, 2005.

[15] P. Kyasanur, and N. Vaidya, “Routing and Link-layer Protocols for

Multi-Channel Multi-Interface Ad Hoc Wireless Networks” ACM Mobile

Computing and Communications Review, vol.10, Num 1, 2013.

[16] S. Lederer, C. Mueller, B. Rainer, C. Timmerer and H. Hellwagner,

“Adaptive Streaming over Content Centric Networks in Mobile Networks

using Multiple Links” IEEE International Conference on Communications,

2013

47

초 록

최근의 모바일 트래픽(특히 비디오 트래픽)의 폭발적인 증가는

모바일 네트워크 사업자들에게 큰 부담이 되고 있다.비디오 스트리밍

서비스가 모바일 사용자에게 주요한 서비스가 됨에 따라 모바일

트래픽이 네트워크망의 대역폭을 초과하는 경우가 잦아지고 있다. 이

문제를 해결하기 위해 우리는 “이름 주소 기반 네트워킹(NDN)” 이라는

차세대 인터넷 아키텍쳐를 이용했다. NDN 은 혁신적인 네트워크

아키텍처로서 인터넷의 차기 모델로서 평가되고 있다.

우리는 NDN 아키텍처 상에서 다중 무선 인터페이스(4G LTE, Wi-

Fi)를 활용한 어댑티브 비디오 스트리밍/셰어링 기술을 개발하고 이를

적용한 프레임워크 (AMVS-NDN)를 디자인하고 구현하였다. NDN 의

장점을 보여주기 위해 AMVS-NDN 은 두가지의 기능을 제공한다. 1)

기본적으로 모바일 스테이션(MS)은 상황에 따라 4G LTE 나 Wi-Fi 중

하나를 선택해 사용한다. 이에 더해, 다중 인터페이스 기술을 사용하여

4G LTE 와 Wi-Fi 를 동시에 사용할 수 있다. 2) MS 들은 로컬 Wi-Fi

direct 를 활용하여 콘텐츠를 공유할 수 있다. 우리는 NDN 과 다중

인터페이스를 이용하여 AMVS-NDN 을 구성했다. 테스트는 WiMAX

베이스 스테이션, LTE Femtocell, Android 디바이스로 구성된 실제

테스트베드에서 수행되었다. 모바일 링크의 상태가 시간에 따라 변하는

상황의 테스트를 통해, 우리는 AMVS-NDN 이 다른 솔루션보다 적은

셀룰러 트래픽으로 높은 비디오 품질을 달성하는 것을 보여주었다.

더욱이, 다중 인터페이스 기술을 적용시 최고의 비디오 품질을 얻을 수

있었다.

48

키 워드 : 이름 주소 기반 네트워킹, 어댑티브 비디오 스트리밍,

오프로딩과 셰어링, 다중 인터페이스.

학 번 : 2013-22515

	I.Introduction
	II.Related Work
	2.1 Named Data Networking
	2.2 Adaptive Video Streaming
	2.3 MS-to-MS Content Sharing
	2.4 Multi Interface

	III.AMVS-NDN Framework
	3.1 AMVS-NDN illustration
	3.2 Video Segmentation and Naming
	3.3 Adaptive Streaming Strategy in AMVS-NDN
	3.4 Dealing with Delays

	IV.Video Sharing in AMVS-NDN
	V.Details of Multi Interface
	5.1 NDN-Femtocell for Edge Caching
	5.2 Multi-Interface in Linux
	5.3 Multi-interface in Android

	VI.Implementation and Evaluation
	6.1 Testbed Environment
	6.2 AMVS-NDN Evaluation
	6.3 AMVS-NDN Streaming and Sharing
	6.4 Comparison with Pure-NDN and DASH-NDN
	6.5 Multi Interface in Linux with LTE access to the Femtocell
	6.6 Multi Interface in Android with LTE access
	6.7 Live broadcasting with CCNx and Wi-Fi Direct

	VII.Conclusion
	VIII.References

<startpage>4
I.Introduction 6
II.Related Work 12
 2.1 Named Data Networking 12
 2.2 Adaptive Video Streaming 13
 2.3 MS-to-MS Content Sharing 13
 2.4 Multi Interface 14
III.AMVS-NDN Framework 15
 3.1 AMVS-NDN illustration 15
 3.2 Video Segmentation and Naming 16
 3.3 Adaptive Streaming Strategy in AMVS-NDN 17
 3.4 Dealing with Delays 20
IV.Video Sharing in AMVS-NDN 22
V.Details of Multi Interface 24
 5.1 NDN-Femtocell for Edge Caching 24
 5.2 Multi-Interface in Linux 24
 5.3 Multi-interface in Android 26
VI.Implementation and Evaluation 27
 6.1 Testbed Environment 29
 6.2 AMVS-NDN Evaluation 30
 6.3 AMVS-NDN Streaming and Sharing 33
 6.4 Comparison with Pure-NDN and DASH-NDN 34
 6.5 Multi Interface in Linux with LTE access to the Femtocell 36
 6.6 Multi Interface in Android with LTE access 38
 6.7 Live broadcasting with CCNx and Wi-Fi Direct 41
VII.Conclusion 43
VIII.References 45
</body>

