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초론 

HEVC(High Efficiency Video Coding)는 지난 제너레이션 표준 

H.264/AVC 보다 코딩 효율성을 향상시키기를 위해서 국제 표준 

조직과(International Standard Organization) 국제 전기 통신 

연합(International Telecommunication Union)에 의해 공동으로 개발된 

것이다. 중국 작업 그룹인 AVS(Audio and Video coding standard)가 이미 

비슷한 노력을 바쳤다. 그들이 많이 창의적인 코딩 도구를 운용한 첫 

제너레이션 AVS1 의 압축 퍼포먼스를 높이도록 최신의 코딩 표준(AVS2 

or AVS2.0)을 개발했다.  

AVS2.0 중에 엔트로피 코딩 도구로 사용된 상황 기반 2 진법 계산 

코딩(CBAC)은 전체적 코딩 표준 중에서 중요한 역하를 했다. HEVC 에서 

채용된 상황 기반 조정의 2 진법 계산 코딩(CABAC)과 비슷하게 이 두 

코딩은 다 승수 자유 방법을 채용해서 계산 코딩을 현실하게 된다. 그런데 

각 코딩마다 각자의 특정한 알고리즘을 통해 곱셈 문제를 처리한 것이다. 

본지는 AVS2.0 중의 CBAC 에 대한 더 깊이 이해와 더 좋은 퍼포먼스 

개선의 목적으로 3 가지 측면의 일을 한다. 

첫째, 우리가 한 비교 제도를 다자인을 해서 AVS2.0플랫폼 중의 CBAC와 

CABAC 를 비교했다. 다른 실행 세부 사항을 고려하여 HEVC 중의 

CABAC 알고리즘을 AVS2.0 에 이식한다.예를 들면, 상황 기반 초기치가 

다르다. 실험 결과는 CBAC 가 더 좋은 코딩 퍼포먼스를 달성한다고 

알려진다.  



 
 

그 다음에 CBAC 알고리즘을 최적화시키기를 위해서 몇 가지 아이디어를 

제안하게 됐다. 코딩 퍼포먼스 향상시키기의 목적으로 근사 오차 

보상(approximation error compensation)과 확률 추정 최적화(probability 

estimation)를 도입했다. 두 코딩은 다른 앵커보다 다 부호화효율 향상 

결과를 얻게 됐다. 다른 한편으로는 코딩 시간을 줄이기를 위하여 레테 

추정 모델(rate estimation model)도 제안하게 된다. 부호율-변형 최적화 

과정(Rate-Distortion Optimization process)의 부호율-변형 대가 

계산(Rate-distortion cost calculation)을 지지하도록 리얼 CBAC 

알고리즘(real CBAC algorithm) 레테 추정(rate estimation)을 사용했다.  

마지막으로 2 진법 계산 디코더(decoder) 실행 세부 사항을 서술했다. 

AVS2.0 중의 상황 기반 2 진법 계산 디코딩(CBAD)이 너무 많이 데이터 

종속성과 계산 부담을 도입하기 때문에 2 개 혹은 2 개 이상의 bin 평행 

디코딩인 처리량(CBAD)을 디자인을 하기가 어렵다. 2 진법 계산 디코딩의 

one-bin 제도도 여기서 디자인을 하게 됐다. 현재까지 AVS 의 CBAD 

기존 디자인이 없다. 우리가 우리의 다자인을 관련된 HEVC 의 연구와 

비교하여 설득력이 강한 결과를 얻었다. 

 

주요어: 오디오 및 비디오 코딩 표준(AVS); AVS2.0;상황 기반 2 진법 계산 

코딩(CBAC);상황 기반 조정의 2 진법 계산 코딩(CABAC);비교 제도; 근사 

오차 보상; 확률 추정; 레테 추정;2 진법 계산 디코딩 건축 
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Abstract 

High Efficiency Video Coding (HEVC) was jointly developed by the International 

Standard Organization (ISO) and International Telecommunication Union (ITU) to 

improve the coding efficiency further compared with last generation standard 

H.264/AVC. The similar efforts have been devoted by the Audio and Video coding 

Standard (AVS) Workgroup of China. They developed the newest video coding 

standard (AVS2 or AVS2.0) in order to enhance the compression performance of the 

first generation AVS1 with many novel coding tools.  

The Context-based Binary Arithmetic Coding (CBAC) as the entropy coding tool used 

in the AVS2.0 plays a vital role in the overall coding standard. Similar with Context-

based Adaptive Binary Arithmetic Coding (CABAC) adopted by HEVC, both of them 

employ the multiplier-free method to realize the arithmetic coding procedure. However, 

each of them develops the respective specific algorithm to deal with multiplication 

problem. In this work, there are three aspects work we have done in order to understand 

CBAC in AVS2.0 better and try to explore more performance improvement. 

Firstly, we design a comparison scheme to compare the CBAC and CABAC in the 

AVS2.0 platform. The CABAC algorithm in HEVC was transplanted into AVS2.0 with 

consideration about the different implementation detail. For example, the context 

initialization. The experiment result shows that the CBAC achieves better coding 

performance.  
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Then several ideas to optimize the CBAC algorithm in AVS2.0 were proposed. For 

coding performance improvement, the proposed approximation error compensation and 

probability estimation optimization were introduced. Both of these two coding tools 

obtain coding efficiency improvement compared with the anchor. In the other aspect, 

the rate estimation model was proposed to reduce the coding time. Using rate estimation 

instead of the real CBAC algorithm to support the Rate-distortion cost calculation in 

Rate-Distortion Optimization (RDO) process, can significantly save the coding time 

due to the computation complexity of CBAC in nature. 

Lastly, the binary arithmetic decoder implementation detail was described. Since 

Context-based Binary Arithmetic Decoding (CBAD) in AVS2.0 introduces too much 

strong data dependence and computation burden, it is difficult to design a high 

throughput CBAD with 2 bins or more decoded in parallel. Currently, one-bin scheme 

of binary arithmetic decoder was designed in this work. Even through there is no 

previous design for CBAD of AVS up to now, we compare our design with other 

relative works for HEVC, and our design achieves a compelling experiment result.  

 

 

Keywords: Audio and Video coding Standard (AVS), AVS2.0, Context-based Binary 

Arithmetic Coding (CBAC), Context-based Adaptive Binary Arithmetic Coding 

(CABAC), comparison scheme, approximation error compensation, probability 

estimation, rate estimation, Binary Arithmetic Decoder (BAD) Architecture. 

Student number: 2013-22510 
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Chapter 1 Introduction  

1.1  Research Background  

Recent years, with the rapid development of the information technology, the 

demand for the multi-media, such as video media, is getting greater and greater. 

Mass data offered by the video carrier make the information storage and 

transmission more difficult to handle and it is necessary to explore the effective and 

efficient video compression technique, especially in the vast images data and real-

time transmission with high definition requirement. The video compression and 

coding technique has been significantly enhanced since it merged in 1980s. The 

main procedure of video codec includes prediction for video images to obtain the 

residual data, transform and quantization for the residual data, entropy coding for 

the data after quantization, as well as the bit-stream collection finally. However, a 

reverse procedure is performed for the decoder part, and the reconstruction video 

sequence is achieved through bit-stream as input. The typical video codec structure 

can be described as Fig.1-1.  

Image 

Segmentation
Prediction Transform Quantization

Entropy 

Coding
Video 

image

bit-stream

Entropy 

Coding
QuantizationTransformPrediction

Image 

Segmentation
Recon. 

image

Encoder 

Decoder  

Figure 1- 1  The typical video codec block diagram 
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Many efforts have been made by the video expects from the International Telecom 

Union (ITU) , Video Coding Expert Group (VCEG), International Standard 

Organization (ISO) and Moving Picture Expert Group (MPEG) in the past several 

decades and consequently there are considerable development in the video 

compression standards. H.261 is the first generation motion image compression 

standard developed by the ITU[1] followed by the H.263 standard proposal[2] which 

was developed for the low bit rate video coding at the Nov. 1995. H.263 was aimed 

to the low bit rate compression for the high quality motion image and used to 

support the application with bit rate less than 64kbits/s. In the following several 

years, ITU proposed couple improved vision based on H.263. IMEG family [3] 

including MPEG-1, MPEG-2, MPEG-4, MPEG-7, and MPEG-21 have been 

developed by the ISO. Until at the beginning of the 21-st century, H.264/AVC [4] 

introduced by the ITU and ISO brought about 50% performance improvement 

compared with MPEG-2 and has been popular in the industrial application. At the 

same time, another video standard, named AVS[5] developed by the Audio Video 

coding Standard (AVS) Workgroup in China. The coding complexity was deduced 

compared with the H.264/AVC with a comparable coding efficiency. Along with 

the new high definition and ultra-high definition video requirements, High 

Efficiency Video Coding (HEVC) [6] were proposed and finished the final draft in 

2013 by the Joint Collaborative Team on Video Coding (JCT-VC) which is the 

cooperative team including ITU VCEG and ISO MPEG. This standard has been 

designed aim to save over 50% [7] bit rate to get the comparable quality, albeit at 
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higher computational costs. Correspondingly, AVS workgroup has spared more 

efforts to make second generation video codec orientated to higher coding 

efficiency referred as AVS2.0 [8]. Specifically, the video technique can be 

represented as the Fig.1-2 according to the development in the past 30 years.  

     

1990 2000 2010

Technology 

background
MPEG1 

H.261 H.263

MPEG 2 HEVC

AVS2

VP9H.264/AVC, AVS

 

Figure 1- 2  The development of video codec standard 

 

1.2  Key Techniques in AVS2.0 

Similar with other mainstream video coding standard, the overall coding framework 

of AVS2.0 can be shown in Fig.1-3.  

Current 
Frame

DPB

Transform/
Quantization

Entropy 
Coding

Reverse Trans./
Reverse Quan.

+
-

Inter Pred.

Intra Pred.

inter

intra

DBSAOALF +
+

 

Figure 1- 3  The coding block diagram of AVS2.0 
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However, the specific techniques introduced into AVS2.0 standard includes Intra 

prediction, Inter prediction, Transform & Quantization, Entropy coder, Sample adaptive 

offset, and Adaptive loop filter [9]. With the similar algorithm structure of HEVC, 

AVS2.0 has the competitive coding efficiency but more simplified algorithms for each 

mode to deal with video image. Although the coding procedure of AVS2.0 shares the 

similar structure of HEVC, AVS2.0 pays more attention on some special application 

scene, such as surveillance video, real-time video meeting, etc. Specifically, for each 

part, including Intra prediction, Inter prediction, Transform/Quantization, Entropy 

coding and Loop filter, technique baseline and performance improvement in BD-rate 

saving (%) in AVS2.0 are presented in Table 1-1.  

Table 1- 1  Key techniques used in AVS2.0 

Type Technique baseline 
Coding 

gain 

Image 

structure 

Hierarchical reference 

frame 

B picture used as 

reference 

Forward multiple 

hypothesis 

prediction picture 

8% ~ 

13% 

Block 

structure 

Quad-tree based 

coding unit partitions 

Non-square intra 

prediction 

Non-square inter 

prediction 

Non square 

transform 

15% ~ 

20% 

Intra 

prediction 

33 directional 

prediction modes 

1/32 sub pixel 

prediction 
 

5% ~ 

10% 

Inter 

prediction 

Forward multiple 

hypothesis prediction, 

special prediction 

mode and motion 

vector  prediction 

Progressive motion 

vector coding 

DCT like 

interpolation filter 

7% ~ 

12% 

Transform  

Multiple size and 

highly normalized 

integer transform 

Secondary transform  3% 

Entropy 

coding 
Two level scan coding   5% 

Loop filter Deblock filter Sample adaptive offset Adaptive loop filter 8% 
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Then we will briefly introduce the key feature of each technique adopted in AVS2.0.  

A.  Block Structure  

The block partition is more adaptive compared with AVS1.0 by using quad-tree 

structure. The 64*64 is the largest coding unit (LCU) and then it is partitioned into 

smaller coding unit (CU) until reaching the minimum coding unit limitation size 

8*8. Through this partition mode, then coding tree (CTU) structure is obtained. 

Fig.1-4 gives the quad-tree partition structure.  

 

Figure 1- 4  The quad-tree partition structure in AVS2.0 

Each CU then can be divided into some prediction unit (PU), PU is the basic unit 

for intra and inter-picture prediction. For intra prediction, there are four type PUs 

among which N*N PU is used for 8*8 CU only and 2N*0.5N/0.5N*2N are 

introduced in CU size 32*32 and 16*16. Eight types PU are used in inter prediction, 

including 2N*2N、N*N、N*2N、2N*N、2N*nU、2N*nD、nL*2N、nR*2N. The 

maximum PU size is decided by the current CU and minimum PU is 4*4. The 

transform unit (TU) is another coding block which is used for the transform and 

quantization operations. TU is also decided by the current CU size without 

consideration the PU size anyway, 64*64 and 4*4 are the maximum and minimum 

TU size, respectively. Fig.1-5 is the prediction coding unit partition structure.  
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2Nx2N
PU_Skip/Direct

2Nx2N
PU_Intra

NxN 2Nx0.5N 0.5Nx2N

2Nx2N
PU_Inter

2NxN Nx2N NxN

2NxnU 2NxnD nLx2N nRx2N

 

Figure 1- 5  The prediction unit structure in AVS2.0 

B.  Intra Prediction  

Intra prediction is employed to remove the spatial redundancy within picture. Multi-

direction intra-picture prediction is used in AVS2.0 and as described in A section, 

except for four partitions, the Short Distance Intra Prediction (SDIP) [10] is used 

for intra prediction on 32*32 and 16*16 CU. Fig.1-6 shows 33 modes including DC, 

Plane, Bilinear and 30 Angle modes for luma component.   

 
Figure 1- 6  Intra prediction direction in AVS2.0 
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C.  Inter Prediction  

Inter prediction is employed to remove the spatial redundancy between picture. 

AVS2.0 uses 8 inter prediction modes as described in A section, and 3 frame types: 

P frame, B frame, and F frame. F frame is developed based on the P frame with bi-

forward inter prediction. In inter prediction, there are specific techniques patented 

by AVS2.0 developer group, including Dual Hypothesis Prediction (DHP) [11], 

Directional Multi-Hypothesis Prediction (DMH) [12], Progressive Motion Vector 

Resolution (PMVR) [13], etc.  

D.  Transform & Quantization  

In AVS2.0, the two-level transform coding to deal with residual data. Firstly, using 

Wavelet Transform and then DCT transform as the TU size is divided into 32*32. 

In DCT transform, 4*4 ~ 32*32 TU size are supported and Non-Square Quad-tree 

Transform (NSQT) is used to handle non-square TU. In order to reduce the 

information redundancy, the residual data will be performed a second DCT 

transform [14]. 

In addition, Rate Distortion Optimization Quantization (RDOQ) is another 

technique adopted by the AVS2.0 in the rate distortion optimization process. RDOQ 

makes the compromise between the computation complexity and the coding 

efficiency. To reduce the complexity to decide mode, only is the mode within the 

one coding unit decided, the RDOQ is used for the coefficients quantization in the 

best mode in AVS2.0.  
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E.  Entropy Coding  

The entropy coding in AVS2.0 is only context-based binary arithmetic coding 

(CBAC), which is different from AVS1.0 where CBAC and variable length coding 

technique are performed as entropy coders. In CBAC, two-level transform 

coefficient coding scheme acts as the well-designed entropy coding strategy. The 

two-level scheme [15] employs the similar concept of sub-block based partition as 

in HEVC and applies this scheme to the (Level, Run) coefficients pair of large 

blocks. In this scheme, the sub-block size is set to a fixed value with 4×4 and named 

as one coefficient group (CG) in the following text.  

Entropy coding plays a vital role in the entire coding structure as the Fig.3 illustrates. 

It locates in the last step of the encoder and the first step of decoder which 

determines the bin-to-bit compression ratio which is relative the coding 

performance. Entropy coding, especially CBAC is the study center in this research 

topic, and more detail will be shown in the following several chapters.  

F.  Loop Filter  

To reduce the visual flaw caused by the video coding algorithm, there are three 

methods used in AVS2.0 including Deblocking Filter (DF), Sample Adaptive Offset 

(SAO) [16], and Adaptive Loop Filter (ALF) [17] to address the visual problem for 

the reconstructive picture.  

Even through a significant compression efficiency has been achieved by AVS2.0 

based on the above techniques compared with AVS1.0, the improvement in each 
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technique perspective can be explored to make it better enough to comparable with 

other popular video coding standard, such H.264/AVC, HEVC etc. However, in 

order to escape the copyright and patents own by other standards, the techniques 

employed in AVS tend to be more complexity and simpler in the algorithm 

implementation. Thus, the study on the AVS2.0 is full of challenge in the algorithm 

design and schedule implementation practically.  

1.3  Research Contents 

In AVS2.0, context-based binary arithmetic coding (CBAC) [18] is the only entropy 

coding method introduced into current standard. In this thesis, there are three topics 

we focus on the entropy coder CBAC in AVS2.0. Firstly, we compare performance 

between two entropy coder with different algorithm, which are CBAC and context-

based adaptive binary arithmetic coding (CABAC) that is used in H.264/AVC and 

HEVC. Secondly, we propose some ideas about the CBAC performance 

enhancement and then introduce the fast rate estimation model for the AVS2.0 in 

the rate distortion optimization (RDO) mode decision process. Lastly, we 

implemented Binary Arithmetic Decoder with throughput of one-bin per cycle, 

which is main bottle-neck of implementation of CBAC Decoder with high 

throughput. More detail will be shown in the following several subclasses.  

1.3.1 Performance Comparison of CBAC  

We propose a fair scheme to compare the CBAC with Context-based Adaptive 

Binary Arithmetic Coding (CABAC) [19] in HEVC, as Fig.1-7 shows, we implant 
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CABAC logic that is designed for HEVC into RD10.1, which is one of latest 

versions of reference software of AVS2.0. The coding efficiency of AVS2.0 using 

two entropy coders can be evaluated by bitstream 0 and bitstream1, which are from 

the result of encoding the given video sequence.  

Intra/Inter 

prediction

Transform/ 

Quantization

CBAC

CABAC

RD10.1
bitstream0

bitstream1

Image Seq.

   

Figure 1- 7  scheme for comparison between two entropy coders. 

 

Through comparison of these two entropy coders, we can obtain the knowledge 

about entropy coding compression performance. Our evaluation experiments show 

that CBAC algorithm tend to be more efficient than CABAC with about 0.4% BD-

rate saving when we use the CABAC algorithm of HEVC directly to encode the 

same video sequences. 

1.3.2 CBAC Performance Improvement   

With understand of the reason of coding efficiency improvement, we explore more 

in CBAC algorithm in AVS2.0. Most of algorithms in Codec are usually used to 

implement without using multiplier operation to reduce Complexity of Computation. 

In the process of updating variables, which is used for Arithmetic Coding such as 

range and context probability, multiplier operations are replaced with other 

operations similarly. Look-up table is used in CABAC in HEVC for the purpose of 
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this. While the logarithm addition and shift operations is used in CBAC. But, 

introduction of operation of logarithm domain necessarily accompany the process 

to convert data between real domain and logarithmic domain, which requires 

additional computational complexity. So CBAC uses two approximation equations 

to minimize overhead by domain conversion. For that reason, it is likely to increase 

coding performance if we can reduce approximation error at the sake of minimal 

increase of computational complexity.   

Therefore, we present compensation tables to minimize the error by approximation 

equations within the CBAC engine by introducing adjusted factors when the 

approximation equations are used in domain conversion. 

Adaptive probability estimation [20] [21] is another topic in CBAC which is a 

powerful optimization to indict how to map the symbol statistical behavior. Based 

on the fact that probability estimation in CBAC is also performed in the logarithm 

domain with probability in certain bits resolution, we explore the probability 

estimation scheme with the perfect bit resolution and well-designed update process.  

In addition, rate estimation is introduced into AVS2.0 in order to save the overall 

encoding time. Different from AVS2.0 software reference, we use the proposed rate 

estimation table to support the rate distortion cost in the Rate-Distortion 

Optimization (RDO). Though the proposed rate estimation model, the encoding time 

can be reduced about 1% without considerable performance degradation.  
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1.3.3 Implementation of Binary Arithmetic Decoder in CBAC  

Through the above two chapters in the algorithm study, we understand the software 

implementation detail better. Based on this understand, the hardware-oriented 

architecture for binary arithmetic decoder is described in this chapter. Considering 

the total CBAC decoder will cost more time to arrange reasonable context models, 

only Binary Arithmetic Decoder (BAD) with one bin scheme is designed in this 

chapter, but we give the proposed context update module architecture. For the BAD, 

there are three important loops needed to update after one bin is decoded, which 

includes range update loop, offset update loop and bits read. Correspondingly, we 

design three modules to realize the update: range update module, offset update 

module, bits read module. Since few previous work is focus on the CBAC decoder 

in AVS2.0, we compare our work with the available CBAC decoder design in AVS1, 

and the competitive result can be achieved based on our BAD architecture. 

1.4  Organization 

Chapter 2 describes the entropy coding CBAC in AVS2.0 and how it works the 

arithmetic engine. Also, the two-level transform coefficients coding is given in 

detail. In Chapter 3, the coding efficiency of CBAC and CABAC of HEVC are 

compared based on the software platform of AVS2.0 RD10.1. We proposed a quite 

fair comparison scheme with consideration of initial context variables, binarization, 

adaptive probability estimation model, etc. In Chapter 4, we propose some idea to 

improve coding efficiency in CBAC such as error compensation, new probability 

estimation scheme and introduction of rate estimation table. Then, we describe how 
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to implement binary arithmetic decoder in CBAC in Chapter 5. In the last Chapter, 

the research conclusion about this thesis and further research orientation are posted.  
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Chapter 2   Entropy Coder CBAC in AVS2.0  

2.1 Introduction of Entropy Coding 

Context-based Adaptive Binary Arithmetic Coding (CABAC) is a method of entropy 

coding first introduced in H.264/AVC, and it is also adopted in the newest standard - 

High Efficiency Video Coding (HEVC). Similar with the method used in above 

standards, another kind of entropy coding approach – Context-based Binary Arithmetic 

Coding (CBAC) is introduced in a Chinese video standard – Audio and Video coding 

standard (simplified as AVS) by the Audio Video coding standard of Workgroup of 

China. However, the strong data dependence and serious operations in nature make 

entropy coding more complicate to parallelize and improve the throughput. Thus in the 

design of standard of entropy coding for H.264/AVC, HEVC, and AVS, the balance of 

coding efficiency and throughput should be considered.   

Specifically, all the current entropy coding engines are based on the arithmetic coding 

[22] [23]. Arithmetic coding is different from other coding methods because we know 

the exact relationship between the coded symbols and the actual bits that are written to 

a file. It codes one symbol once, and a real-valued number of bits is assigned to each 

symbol. The code value v of a compressed data sequence is the real number with 

fractional digits that equals to the sequence’s symbol. We can convert sequence. This 

construction create a convenient mapping between infinite sequences of symbols from 

a D-symbol alphabet and real numbers in the interval [0, 1), where any data sequence 

can be represented by a real number, and vice-versa. This kind of code value 
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presentation can be used in any coding system, and it makes a universal method to 

represent large amounts of information of a set of symbols used for coding, such as 

binary, decimal, etc. By analyzing the distribution of the code value it produced, we can 

evaluate the efficiency of any compression method. According to Shannon’s 

information theory, we can know that, if a coding method is optimal, then the code 

values cumulative distribution has to be a straight line from point (0, 0) to the point 

(1,1). When it is applied into video coding, it is attached with context information of 

each symbol. Therefore, entropy coding is the kind of lossless compression approach 

which can use the statistical probabilities of source information, e.g. video or image 

carriers, so that a string of bits can be used to represent the symbols is logarithmically 

proportional to the corresponding probability of each symbol. When compressing a 

string of symbols, the symbol which occurs in a large frequency can be represented by 

few bits, while the other symbols with less frequent emergence, represented with a 

longer bit string. According to the Shannon’s information theory, the probability of a 

symbol represented in bit 0 or 1 is p, the optimal average code length for one symbol is 

– 2log p .  

In the general videoing coding standard, the classical codec framework is represented 

as Fig.1. And the entropy coding is performed in the last step of the overall video coding 

after the video signal has been parsed to series of syntax elements. Correspondingly, it 

is in the first stage of the video decoding procedure in each standard. 
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2.2 CBAC Overview 

The CABAC algorithm is firstly introduced within the joint H.264/AVC standard of 

ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts 

Group (MPEG). CABAC was used as one of two alternative methods of entropy coding 

in H.264/AVC, and introduced as the only method in HEVC.  

Similarly, the entropy coding in AVS 1.0 jizhun file includes two schemes, C2DLVC 

and CBAC, which not only adopted 2-dimension (run, level) coding scheme used in 

MPEG-2, but also absorbed the context-based adaptive binary arithmetic coding 

strategy used in H.264/AVC. In C2DVLC, the VLC multiple tables achieved by training 

in off-line. It is not able to capture the local statistical distributions in nature and a 

symbol with a probability which is greater than 0.5 cannot be coded efficiently 

considering the nature limit to 1 bit/symbol in VLC codes. However, the arithmetic 

coding can challenge this restriction with a higher coding efficiency.  

Therefore, in this section, the CBAC algorithms and separated key technique are 

represented systemically from the AVS1.0 to AVS2.0. The general procedure for the 

CBAC includes binarization, context derivation and selection, and arithmetic coding 

engine. And these compounds illustrated in Fig.2-1. The binarization process is aimed 

to translate the values of the non-binary syntax elements into binary and it is defined as 

the bin string generation process. The context derivation and selection process is related 

to the probability modeling process, in which the each bin can be mapped into a specific 

context to estimate the probability of each regular bin. Finally, the binary arithmetic 

coding process is adopted to compress the bins into bits according to the context 
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information and probability distribution. There are two kinds of the arithmetic coding 

paths according to the probability value for each bin, including the regular path and 

bypass path.   
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Figure 2- 1  The general block diagram of CBAC in AVS2.0 

2.2.1 Binarization and Generation of Bin String 

Binarization process is aimed to uniquely map process of all possible values of a syntax 

element onto a set of bin string. For the non-binary valued symbols, e.g. Level and Run, 

they should be performed the binarization process as the values of this kind of syntax 

elements tend to be typically in a large range in a DCT block. When this value is coded 

directly by the m-ary (m>2) arithmetic code, it will have a high computation complexity. 

Moreover, the source with typically large alphabet size often suffers from “context 

dilution” effect when the high-order conditional probabilities have to be estimated on a 

relatively small set of coding samples. In addition, the context modeling for the sub 

syntax element level provides more accurate probability estimation than that in the 



18 
 

syntax elements level, and the alphabet of the encoder is decreased.  

There are several methods of binarization adopted in video coding standard. All of these 

methods, including Unary, Truncated Unary, k-th order Exp-Golomb (EGk), and Fixed 

length are introduced to reduce the alphabet size of syntax elements to encode.The 

binarization methods for syntax elements which are applied into the CBAC of AVS2.0 

represented as the following [24]: 

(1) Unary coding is used to binarize the symbol into a bin string with length N+1, 

including the first N bins with value 1 and the last bin is 0. 

(2) Truncated Unary scheme is defined based on the largest possible value maxVal of 

the syntax element. Before maxVal, the binarization value is the same as the Unary, 

and when the value is equal to maxVal, all the bins in the bin string are set to 0 

and the total bins are the same as that of the maxVal -1. 

(3) Marking bit is defined as the bin value is the same as the value of the syntax 

element. 

(4) The k-th order Exp-Golomb coding with k ranged from 0, 1, 2, 3, has a general 

construction, which consists of a prefix and suffix. For the given codeNum N and 

the specific order k, the code word consists of l zeros followed by one 1 and suffix 

of N-2k(2l-1), and the l is defined as following: 

            

However, except for the above several schemes, for most syntax elements in CBAC, 

the binarization process is defined based on the type of the syntax element.  
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2.2.2  Context Modeling and Probability Estimation 

Context Modeling Process, shown in Fig.2-1, consists of three sub steps: context model 

derivation, context model selection andcontext model access. The context modeling 

process is referred as the probability selection process. In the regular binary arithmetic 

coding process, where the probability model is decided by the fixed modelbased on the 

type of the syntax elements and the bin position or the bin index in the binarized 

representation of the syntax elements. Another kind of context (probability model) is 

adaptively chosen from the two or more than two probability models according to the 

side information, such as the special neighbors(Left, Above block), components (Luma, 

Chroma), depth and size of the CTU, PU, TU as well as the position of within one TU. 

The adaptive case is generally adopted into the observed bins with high frequency while 

the fixed model is usually applied for the less frequently occurred bins. Thus the 

modeling process can be benefited from the balance of the choice cost and context 

learning complexity with the estimated accuracy.  

Similar with probability models in CABAC adopted in H.264/AVC and HEVC, the 

CBAC probability updating model is based on the adaptive probability model as well, 

in which the parameters of the probability model make a promising contribution to the 

map the statistical variations of the source bins which is performed bin-by-bin basis as 

the sub symbol. This is the probability estimation process. The derivation of the CBAC 

probability updating process is applied for the infinitely independent identical 

distribution (IID) [25] of the binary source. If the probability of the symbol “1” is p, 

and the probability of the symbol “0” is q. And the adjusting parameter N is defined to 
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adjust the updating speed. Then kp and kq are defined as the estimated probability of 

the symbol “1” and “0” after the k-th iteration. And then we can achieve the probability 

after (k+1)-th iteration as the following equation 2-1: 

1
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           (2-2) 

According to the relationship between p and q, i.e. 1k kp q  , the equation (2-2) can be 

changed as the following equation (2-3): 
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According to the above equations, the expectation and variance of the 1kp  are proved 

to converge to a constant value which is dependent on N. Therefore, if we use the MPSp  

and LPSp  as the probabilities of the MPS and LPS symbol, thus the probability change 

can be obtained based on the equation (2-2), as the following equation (2-4): 

( )

( )

MPSnew MPSold

LPSnew LPSold

LPS

MPS

p p if occurs

p p if occurs

 


 




            (2-4) 

Here
1

N

N



 . That is to say, the larger the N is, the α is smaller, the slower the 

estimation converges, the variance is smaller, thus the probability estimation is more 

accurate.  

However, in H.264/AVC and HEVC, the probability estimation model is based on the 

assumption that the estimated probabilities of each context model can be represented 

by a sufficiently limited numbers of representative values. For the CABAC engine, 
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there are 64 limited representative probability values p, which is ranged from 0.01875 

to 0.5, including. The estimation model can be derived from the recursive equation of 

the LPS symbol as the following (2-5): 

           δ δ 1α ( δ 1 , 2 , 3 , . . . , 6 3 )p p                      (2-5) 

With 1/63

0

0.01875
α ( ) 0.5

0.5
and p   

The scaling factor α ≈ 0.95 and the probability state is set as 64, in which the 

compromise of the speed and estimation accuracy. Each probability δp  is addressed 

according to the probability state. 

As to the practical implementation procedure, In CABAC of H.264/AVC and HEVC, 

the probability state updating process is based on the 64-state Finite State Machine 

(FSM). In this process, the state transfer process is performed to index a pre-defined 

state table, where the state is the index, and state is also the key variable for each context. 

Similarly, In AVS1 and AVS2.0, the context modeling adopts the same probability 

estimation model to model the information source and performing probability updating 

process for each context. However, since CBAC and CABAC apply different schemes 

to perform the entropy coding, the probability modeling process is experienced various 

procedure, especially in the term of practical implementation. In AVS, the state of 

probability estimation model is based on the logarithm value of probability, which is 

scaled into 10-bit resolution domain (0 ~ 1024) in theory. Therefore, the probability 

model is based on the probability and logarithm value of the probability of MPS symbol. 

The scaled probability LgPmps can be described as equation (2-6): 
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Here, pmps is the MPS probability. Thus for each probability including MPS and LPS 

are indicted in the scaled probability LgPmps when it implemented in CBAC. The 

statistics of the coded syntax elements are utilized to update the probability models, 

which is related to context models of regular bins. Therefore, more specific explanation 

of the transition rules for updating the state indices will be shown in binary arithmetic 

coding, and contexts design derivation sections. 

2.2.3 Binary Arithmetic Coding Engine 

The basic principle of arithmetic coding is introduced in [22], which is based on the 

recursive interval subdivision of the interval width R. Each binary symbol of the 

information source which is represented by a bin string, associated with a specific 

context model, which keeps update during the coding process in order to adaptively 

estimate the probability. Therefore, the variables for BAC is bin value, slice type, and 

the context model for each bin. And BAC is a recursive process of the coding interval 

(range, offset, low) subdivision, updating, and renormalization operations as Fig. 2-2. 

 

Figure 2- 2  Subdivision and decision procedure of BAC 

A given interval initially which can be represented as the lower bound L and range R is 

C 
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subdivided into two sub-ranges according to an relative estimation of the probability 

lpsp valued from 0 to 0.5, not including, of the Least Probability Symbol (LPS).Thus 

another part can be described as mpsp and subrange 
mpsR of Most Probability Symbol 

(MPS). One of the sub-range can be denoted as the following equation: 

                     

Which is associated with the MPS symbol and corresponding interval of the range LPS

lps mpsR R R  , which is related to the MPS with a probability 1mps lpsp p  . According 

to the binary value to be encoded, the relative LPS or MPS range will be chosen as the 

new interval for the next iteration.  

Based on the above description, the subdivision is performed via the multiplication, but 

multiplication operation is proven with high computation complexity and calculation 

cost both in software and hardware. The practical implementation method has been 

focus on the multiplication-free operations, such as the look-up table approach which 

is used in H.264/AVC and HEVC, where a well-developed table is pre-designed, the 

sun-range can be obtained from the look-up table operation. Thus the multiplication 

operation is eliminated. However, the CBAC in AVS2.0 is based on a novel algorithm 

which is based on the domain conversion between logarithm and original domain. By 

this method, the multiplication operation can be substituted by the logarithm adder 

operation in logarithm domain. More detail about the two methods to reduce the 

multiplication complexity will be represented in the following sections.   

In CABAC, the BAC is performed on the look-up table to realize the range subdivision 
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and applies for the FSM to deal with the state transition for the context and probability 

updating. However, the procedure in CBAC in AVS2.0 experience a various scheme. 

The process is an iterative one which consists of consecutive MPS symbols and one 

LPS symbol. 9-bit precision for range is kept during whole coding process. In the binary 

arithmetic coder of CBAC, we substitute the multiplication in (2-7) with addition by 

using logarithm domain instead of original domain. When a MPS happens, the renewal 

of range is given as  

                

where Lgx  indicates the logarithm value of variable x and mpsLgR  is the new range 

after encoding one MPS. For the case of encountering one LPS, we denote the two MPS 

range before and after encoding the LPS as R1 and R2 as shown in Fig. 2-3. Then, the 

range after the whole coding cycle in original domain should be 

                    1 2lpsR R R                           (2-9)     

range

 
1

R
 

2R

LPS

MPS

MPS

MPS

low_new

low  

Figure 2- 3  One binary arithmetic coder cycle 

And the new lower bound of current range equals to the addition of low and R2. Since 
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R1 and R2 are both calculated on the logarithm domain, we have to get the value of R1 

and R2 from 1LgR  and 2LgR , and then  

          

and  

          

Here, 1 2s s  are the integer, and 1 2t t  are the fraction part, which range from [0, 1). Δ1 

and Δ2 are the approximation error adjust factor. From (2-10), (2-11), we can get the 

following, ignoring the approximation error Δ1 and Δ2: 
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               (2-13) 

After the new value of lpsR  is obtained, the renewed lower bound is updated. Then 

the renormalization process is carried out to guarantee that the most significant bit of 

the updated range value is always ‘1’. Until now, one coding cycle is finished. After 

one bin is encoded by arithmetic coder, the estimated probability of the chosen context 

should also be updated. In order to prepare the relative parameters for the next iteration, 

the range in original domain should be exchanged into logarithm domain. Considering 

a fact that the approximation will stand when the variable x ranged into a small interval 

(0, 1) as following: 

                ln(1 ) (0 1)x x x                        (2-14) 
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The integer part of the logarithm-based updated range lpsR s1 is 0, and the fraction 

part 3t  can be simplified with the above equation. Thus the lpsR  in logarithm 

domain can be obtained and the range preparation for the next cycle is finished. 

Actually, in CBAC, the probability of each context model is set to be 0.5 for both MPS 

and LPS at the start of coding initially. With the coding of some bins, the adaptive 

probability estimation of MPS on logarithm domain is performed. Based on the 

context modeling section described in section 2.2.2, the practical probability 

estimation is fulfilled using only additions/subtractions and shifts as in the following 

formulas: 

         
( )

( ) ( )

LgPmps LgPmps Lgf if lps

LgPmps LgPmps LgPmps cw if mps

 


  
      (2-15) 

Where f is equal to (1-2-cw). Here, cw is the size of sliding widow to control the speed 

of probability adaptation. The smaller cw is, the faster the probability adaptation will 

be. In the practical implementation process, the cw is adaptive according the cycno 

parameter, which is adopted to record the iteration of calling the CBAC engine.  

2.3 Two-level Scan Coding CBAC in AVS2.0 

Different from AVS1, AVS2.0 supports larger transform blocks (e.g., 16×16 and 32×32). 

In the early stage of AVS2.0 standardization process, the CBAC design for AVS2.0 is 

inherited from that in AVS1 by a straightforward extension. However, CBAC was 

primarily designed for 8×8 transform blocks while the non-zero coefficients may be 

sparser in larger transform blocks. Therefore, to further improve the coding efficiency 
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and throughput issue in hardware implementation, AVS2.0 CBAC employs a two-level 

coefficient coding scheme [15].  

Generally, the iteration of CBAC in AVS is slice, which means that all the binary 

arithmetic coding engine relative parameters will be initialized after finishing one slice. 

Only the syntax elements which are belong to the slice segment data, will be processed 

by the CBAC encoded. The coding structure in the slice illustrated as Fig.2-4, including 

slice header information, slice data information, the coding procedure in one LCU, and 

the slice end information. The syntax elements that are coded with CBAC in AVS2.0 

include three categories: (1) context-based syntax elements, (2) bypass mode-based 

syntax elements, (3) stuffing bit-based syntax elements. For AVS, these context-based 

syntax elements describe the properties of the coding tree unit (CTU/LCU), coding unit 

(CU), prediction unit (PU), and transform unit (TU). For the CTU level, the related 

syntax elements are used to represent the block partition information of the CTU, the 

type including edge and band, and offsets for the sample adaptive offset (SAO), and 

adaptive loop filtering in loop filtering in CTU. For a CU, the syntax elements are 

related to describe whether the CU is intra prediction mode, or inter prediction mode, 

the PU type definition of B and F frame. For a PU, it includes the syntax elements which 

describe the intra prediction mode, and the motion data. For the TU level, the coding 

tree pattern, and residual data including transform coefficient, level and run information.  
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Figure 2- 4  The slice coding structure for the CBAC 

   

However, entropy coding in AVS, which is the similar with CABAC in H.264/AVC and 

HEVC, provides a high coding efficiency, while its strong data dependence caused by 

the serious operations in its procedure put a big challenge on the throughput 

improvement. The throughput of CBAC is determined by the binary symbol that it can 

be performed per second. Moreover, the significant contribution is made by the syntax 

elements of transform coefficient data, which includes the residual of the prediction 

error.  

The two-level scheme employs the similar concept of sub-block based partition as in 

HEVC [26] and applies it to the (Level, Run) coding to address the spatiality of large 

blocks. In this scheme, the sub-block size is set to a fixed value, i.e., 4×4. Such a sub-

block is named one coefficient group (CG) in the following text. The CG level coding 

is firstly invoked, followed by the (Level, Run) coding within one CG which is similar 

to CBAC in AVS1.  

2.3.1 Scan order 

In CBAC for AVS2.0, the coefficient coding for a transform block (TB) is decoupled 
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into two levels, i.e., CG level coding and coefficient level coding. In both levels, the 

coding follows the reverse zig-zag scan order. Fig. 2-5 shows the zig-zag scan pattern 

in a TB with a different size, which is split into sub-blocks and the scan order of CGs 

is indicated by lines while the scan order within one CG is indicated as the line shows 

in Fig.2-6. The CG-based coding methods have two main advantages: 

 Allowing for modular processing, that is, for harmonized sub-block based 

processing across all block sizes.  

 With much lower implementation complexity compared to that of a scan for the 

entire TB, both in software implementations and hardware.  

8x8 block 16x16 block 32x32 block
 

Figure 2- 5  Sub-block scan: each sub-block is a Coding Group (CG)  

 

 

16x16 block 16 coefficients in a CG  

Figure 2- 6  4*4 Coefficients scan within a CG 
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2.3.2 First level coding 

For the current coding block which is divided into multiple CGs as Fig.2-5 shows. The 

first level coding is performed among these CGs. At inter CG level, the position of the 

last CG is signaled, where the last CG is the CG that contains the last non-zero 

coefficient in the transform block in the scan order. Different ways are used to signal 

the position of the last CG which is dependent on the TB sizes. For an 8×8 block, a 

syntax element LastCGPos is coded, which is the scan position of the last CG. For 

larger TBs, such as 16×16 and 32×32 TBs, one flag LastCG0flag is firstly coded first 

to indicate whether the last CG is at position (0, 0). In the case that lastCG0flag is equal 

to one, two more syntax elements LastCGX and LastCGY are coded to signal the(x, y) 

coordinates of the last CG position. Note that, (LastCGY- 1) is coded instead of 

LastCGY when LastCGX is zero since lastCG0flag is equal to one. 

The first level coding is performed by several syntax elements which indicate the 

information about the current CG in the entire TB. Thus the syntax elements for this 

level are explained by the last_cg_pos, last_cg0_flag, last_cg_x, last_cg_y, 

last_cg_y_minus1 and nonzero_cg_flag and each description is presented in Table 2-1.  

Table 2- 1  The syntax elements for the first level coding 

Syntax elements Description  

last_cg_pos denotes the position of the last CG block in the current TB 

last_cg0_flag indicates whether the last CG position is 0 or not in the TB (larger 

than 8x8) 

last_cg_x denotes the x coordinate of the current CG in the current TB 

last_cg_y denotes the y coordinate of the current CG in the current TB 

last_cg_y_minus1 denote the y coordinate of the current CG in the current TB when 

the x coordinate is zero. 

nonzero_cg_flag signals whether the current CG includes non-zero coefficients 
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2.3.3 Second level coding 

The second level coding indicates the coding of coefficients within one CG. Fig. 2-7 

depicts the coding flow for one CG. Basically, it follows the principle of the CBAC 

design in AVS1. However, when one CG contains non-zero coefficients (i.e., the 

nonzero_cg_flag of the CG is equal to 1 or it is the last CG), the position of the last 

non-zero coefficient in the scan order in the CG is coded instead of coding the end of 

bit (EOB) flag after each (Level, Run) pair to signal a stop. Then, the (Level, Run) pairs 

are coded sequentially in the reverse scan order until the coding of all pairs are finished. 

Similar to the coding of (Level, Run) pairs in CBAC for AVS1, the Level is represented 

by its magnitude absLevel and the sign information. 

CGPos>=0？

end

start

Y

N

NonzeroCgFlag

 last_cg_x 

 last_cg_y last_coeff_pos_x

last_coeff_pos_y,

CoeffPosInCG initialization

coeff_levvel_minus1_band、
coeff_level_minus1_pos_in_band

CoeffPosInCG>=0?

coeff_run

CoeffPosInCG -= coeff_run

(Non-zero position)

NonzeroCgFlag

Coefficients in CG

Coeffic ient  in  CG

Y

N

end

start

Y

N

 

Figure 2- 7  Coding flow for the transform coefficients 

It is observed that depending on whether the CG is the last CG, the distribution of the 

position of the last nonzero coefficient shows different exhibitions. As a result, two last 

coefficient position coding schemes are utilized accordingly. For the last CG, the 

position of the last non-zero coefficient in the CG is mostly random but has a general 
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tendency to be close to the top-left corner of the sub-block. The position is then directly 

coded in its (x, y)-coordinates relative to the top-left position of one CG, namely, 

LastPosX and LastPosY. For CGs which is not the last CG, the position of the last non-

zero coefficient, if present, tends to be close to the bottom-right corner of the sub-block 

and is also highly correlated to the reverse scan order. It is therefore more efficient to 

code its reverse scan position within the CG rather than the (x, y)-coordinates, i.e., the 

position relative to the bottom-right position of one CG.The coding procedure in the 

second level is based on the coefficients in each CG and the coding order is the reverse 

order of the zig-zag scan. The syntax elements for this step can be defined as: 

last_coeff_pos_x, last_coeff_pos_y, coeff_level_minus1_pos_in_band and coeff_run 

and each description is presented in Table 2-2. 

Table 2- 2  The syntax elements for the second level coding in one CG 

Syntax elements Description  

Last_coeff_pos_x Denote the x-coordinate of last non-zero coefficient in the 

nonzero CG. 

Last_coeff_pos_y Denote the y-coordinate of last non-zero coefficient in the 

nonzero CG. 

coeff_level_minus1 Denote the range of the coefficient level minus 1. 

coeff_level_minus1_ 

pos_in_band 

Denote the position of the coefficient level minus1 in the current 

level band. 

coeff_run denote the run value 

coeff_sign Indicate the coefficient is positive or not. 

 

2.4 Summary 

In this section, the detail about the entropy coding in AVS2.0 was presented in the above 

aspects.Then, the context-based binary arithmetic coding theory is analyzed, and the 

binarization, context modeling & probability estimation, and the binary arithmetic 
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coding engine are all summarized in detail. It is the complicated computations and 

strong data dependence that post more challenge on this topic about CBAC entropy 

coding.   
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Chapter 3 Performance Comparison in CBAC  

The Context-based Adaptive Binary Arithmetic Coding is the typical entropy coding 

method used in current video coding standard, such as HEVC, H.264/AVC, AVS, etc. 

In order to understand the coding performance of tools contributed by the CBAC better, 

we proposed a comparison scheme to compare the entropy coder CBAC with CABAC 

based on the software reference RD platform of AVS2.0. In this chapter, we give the 

performance comparison though the proposed comparison scheme and to keep it fair, 

the adaptive context initialization is introduced when we transplant CABAC into 

reference s/w of AVS2.0 as CABAC used in reference s/w of HEVC adopts specific 

initial context variables for each context model. It is different form CBAC in AVS2.0 

because the context variables of all context models in CBAC are initialized with the 

same value at the beginning of the new slice.  

3.1 Differences between CBAC and CABAC 

In H.264/AVC and HEVC, the CABAC is adopted as entropy coding technique, which 

is based on the Look-up table (LUT) operation to free multiplication. On the other hand, 

Logarithm Domain Addition (LDA) is used for CBAC in AVS2.0.  

Generally, the Binary Arithmetic Coder (BAC) of current video standards mentioned 

above is consisted of three steps: (1) Binarization, (2) Context Modeling (Probability 

estimation and assignment), and (3) Arithmetic coding. The binarization is a procedure 

to map syntax elements with non-binary value into binary value with some elementary 
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schemes which are suitable model-probability distribution. The context modeling is a 

procedure to associate a probability model with different type of the syntax elements 

adaptively. The whole process of Selection of the probability model according to the 

syntax element type, bin index and the side information is referred as context modeling. 

In this process, the probability model parameters is adaptive in order to estimate the 

statistical feature of the source bins. Each binarized syntax element decided through 

rate distortion optimization (RDO) mode decision process is processed in BAC engine 

with matched context model for each bin the arithmetic coding will be finally performed 

based on the probability update and range subdivision.  

Specifically, the CABAC algorithm is based on the LUT for range division and context 

update is realized through another two LUTs for MPS and LPS case. Each of LUT 

includes 64 states transiting according to the probability estimation model. And each 

context of syntax element includes 6-bit probability state indexing two context update 

LUTs and 1-bit value of MPS bin. However, the CBAC algorithm in AVS2.0 performs 

the entropy coding through the logarithm addition and shifting in order to eliminate the 

multiplication. The context model introduces 10-bit probability-based variable of MPS 

bin, 1-bit for the value of MPS bin and the 2-bit counter parameter marking sliding 

window size for the probability estimation. Different form that in CABAC where the 

sliding window size is fixed as about 19.69, the adaptive probability estimation model 

is introduced through 2-bit counter parameter in CBAC. Therefore, the differences 

between two entropy coders CBAC and CABAC can be summarized as the Table 3-1.  
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Table 3- 1  The differences between two entropy coders 

 CBAC CABAC 

Binarization  Syntax elements - - 

Context  

Modeling 

Sliding window parameter Adaptation (cycno, cwr) Fixed 

Initial probability Fixed  Adaptation  

Bit depth of probability  10 bits 8 bits 

Context model 

variables 

Probability(10-bit 

scaled), valMps,  cycno 

Probability(LUTs), 

valMps  

BAC Method free multiplication Logarithm addition LUTs 

 

3.2 Comparison of Two BAC Engines  

In order to evaluate the coding efficiency of two BAC engines fairly, we design the 

specific comparison schemes for each engine. Firstly, we should transplant the CABAC 

engine into RD10.1, which is reference s/w of AVS2.0 and use it as the entropy coder 

to encode and decode the video sequence. Based on the differences presented in above 

Table 3-1, we can see that CABAC employs different method to realize the binary 

arithmetic coding, especially in the context modeling and arithmetic engine part. To 

compare fairly, then we need to consider how to make the two entropy coders in the 

same scheme to realize each step in their multiplication-free operations. Fig.3-1 gives 

the block diagram to compare two entropy coders CABAC and CBAB. However, in 

order to measure the coding efficiency of these two entropy coders, the comparison 

scheme [27] should be exactly matched the procedure in each standard. Thus, the 

significant issue needed to address is how to design the adaptive initialization value of 

probability for each context model of each syntax element in AVS2.0 when CABAC is 

used as entropy coder. In addition, there are several optimization methods used in the 

logarithm domain-based arithmetic CBAC. The adaptive probability estimation and 
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adaptive sliding window size are the techniques which can be used to improve the 

compression performance of arithmetic coding. However, in this evaluating scheme, 

what need to do is to keep the comparison fair and retain the original feature of each 

entropy coder used in respective video standard as much as possible. 
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                                                                                                                                                    reference code
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In-loop
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CBAC  Encoder
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Figure 3- 1  The Block Diagram for Evaluating CBAC and CABAC Engines 

3.2.1 Statistics and initialization of Context Models  

The context model initialization process for each entropy coder holds some difference 

and we should reduce this distinction in proposed scheme. Specifically, the initial 

probability value for each context model of each syntax element is distinct in CABAC. 

It is one of conditions of CABAC which works for the only entropy coder in HEVC. 

Thus at the beginning of each slice, the context variable of probability in each context 

is assigned to the respective value. While the initialization of probability is performed 

as the assigning the same value 0.5 to each context model in CBAC in AVS2.0. Thus 
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the context initialization for the CBAC is pretty easy to perform as all the context 

models are set as the same initial value, including MPS symbol as 0, LgPmps rested as 

1023, and the cycno parameter designed as the start iteration. However, according to 

source information in the nature video, the adaptive context in the different area even 

the same syntax elements tend to be set as the various initialized features. In addition, 

the different syntax elements should be assigned to the adaptive initial value at the 

beginning of the each slice. To achieve this goal, we should give the specific initial 

value of each context. Table 3-2 gives the syntax elements accessed to CBAC entropy 

coder. For some syntax elements, 2-D context buffer is used for the context updating to 

make scalability possible in future.   

Table 3- 2  The context number of each syntax element in RD10.1 

Syntax Elements Ctx num. Syntax Elements Ctx num. 

cuType_contexts 11+9 cbp_contexts [3][4] 

pdir_contexts 18 map_contexts [8][17] 

amp_contexts 2 last_contexts [8][17] 

b8_type_contexts 9 split_contexts 8 

pdir_dhp_contexts 3 tu_contexts 3 

b8_type_dhp_contexts 1 lastCG_contexts 30 

b_dir_skip_contexts 4 sigCG_contexts 3 

p_skip_mode_contexts 4 lastPos_contexts 56+16 

wpm_contexts 3 saomergeflag_context 3 

mvd_contexts [3][10] saomode_context 1 

pmv_idx_contexts [2][10] saooffset_context 2 

ref_no_contexts 6 m_cALFLCU_Enable_SCModel [3][4] 

delta_qp_contexts 4 brp_contexts 8 

l_intra_mode_contexts 7 pdirMin_contexts 2 

c_intra_mode_contexts 4   
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The context initialization process is performed based on the fact that all the contexts in 

one slice will be initialized with the same variable. The initial procedure is described in 

Fig. 3-2, in which biari_init_context_logac( ) function defines the initial context 

variables including LgPmps, valMps and cycno. 

void biari_init_context_logac (BiContextTypePtr ctx)
{
ctx->LG_PMPS = (QUARTER << LG_PMPS_SHIFTNO) - 1; 
ctx->MPS = 0;
ctx->cycno = 0;

}

#define BIARI_CTX_INIT1_LOG(jj,ctx)\
  {\
    for (j=0; j<jj; j++)\
    {\
biari_init_context_logac(&(ctx[j]));\
    }\

  }

#define BIARI_CTX_INIT2_LOG(ii,jj,ctx)\
  {\
    for (i=0; i<ii; i++)\
      for (j=0; j<jj; j++)\
      {\
biari_init_context_logac(&(ctx[i][j]));\
      }\

  }

void init_contexts ()
{
  SyntaxInfoContexts*  syn = img->currentSlice->syn_ctx;
  int i, j;
BIARI_CTX_INIT1_LOG(NUM_CuType_CTX, syn->cuType_contexts );
BIARI_CTX_INIT1_LOG(NUM_INTER_DIR_CTX, syn->pdir_contexts );

…
BIARI_CTX_INIT2_LOG(3, NUM_CBP_CTX, syn->cbp_contexts );
...

}

void picture_data ( Picture *pic )
{
...
 start_slice ();

…
SliceHeader(slice_nr,slice_qp);
...
init_slice ( img->current_mb_nr , pic );
...
 init_contexts();
...

}
 

Figure 3- 2  the context initialization procedure in RD10.1 
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3.2.2 Adaptive Initialization Probability  

In HEVC, the adaptively initial probability operation is performed by setting each 

context model of each syntax element an initial value and through several steps of 

speculative computations to get the initial probability value. However, in order to give 

the similar adaptation to CABAC which is implemented into our test model and then 

compare the coding efficiency with model using CBAC. Since the residual data 

accounts for the significant part (about 70%) [15] of total syntax elements, and we also 

know the fact that when the LgPmps is closer to 1023, the better compression result is, 

since the probability of a given symbol is about 0.5 when there is no previous symbol 

for current symbol to refer to. Before exploring the exactly adaptive initial probability 

by training numerous video sequences, the initial probability LgPmps for the residual 

data is assigned as the same as the CBAC with the same value. While for the other 

syntax elements, we assigned the initial value for LgPmps based on the following roles 

(3-1),  

        

where ctxN  is the total number of context model for a given syntax element as shown 

in Table 3-2 and inc denotes the increment for the adaptive initial probability for each 

context. Note that when the probability value for the current context is greater than 

1023, the symbol value will be given a conversion. Though this method, the initial value 

of probability for each syntax element will distribute near 1023 in both sides. 
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3.3 Experiment Result 

In this section, we will analyze the performance difference in the two entropy coders. 

However, the performance of CABAC is measured based on above the specific 

initialization for some contexts. Specifically, the initial probability for each context is 

not identical, which is given the respective initial value for these syntax elements as 

described in section 3.2. And then measure the coding efficiency of CABAC modified 

with this initialization method. Although it is not the exact the adaptive initialization, it 

also give the hint that the coding efficiency trend when the context models are 

initialized with the distinct values.  

Table 3-3 gives the coding performance result of CABAC compared with CBAC in 

AVS2.0. The reference is common test condition in AVS2.0 [28] and for five 1080p 

video sequences including Kimono, ParkScene, Cactus, BasketballDrive, and 

BQTerrace in Random Access (RA) configuration. From the result of Table 3-3, using 

CABAC achieves about 0.4% performance degradation compared with that of CBAC 

in AVS2.0. Similarly, there are also some others’ work [20][21] have been proved that 

it is a little bit disadvantage when CABAC algorithm is used as the entropy coder in 

HEVC platform since the implementation detail in CABAC adopts the pre-designed 

look-up table where many approximations are introduced to get the pre-defined tables. 

While using CBAC where the logarithm domain addition/shift and domain conversion 

are operated can be benefit from more accurate speculations. In addition, adaptive 

sliding window size and adaptive probability estimation enhance the performance as 
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well. This work gives the conclusion that using CBAC achieves a better compression 

performance. 

Table 3- 3  the performance comparison result of CABAC with CBAC 

sequence 
RDOQ off RDOQ on 

Y BD-rate U BD-rate V BD-rate Y BD-rate U BD-rate V BD-rate 

Kimono 0.61% 0.54% 0.54%   0.59%   0.55%   0.72% 

ParkScene 0.58% 0.55% 0.42% 0.57% 0.57% 0.55% 

Cactus 0.24% 0.43% 0.15% 0.32% 0.21% 0.57% 

BasketballDrive 0.14% 0.35% 0.39% 0.17% 0.48% 0.10% 

BQTerrace 0.29% 0.39% 0.12% 0.01% 0.36% 0.38% 

Avg. 0.37% 0.45% 0.32% 0.33% 0.43% 0.46% 

  

3.4   Conclusion  

In this chapter, the proposed comparison scheme for CBAC and CABAC shows that 

the CBAC achieves more compelling compression performance with about 0.4% BD-

rate reduction in average in RA configuration. The reason that using CBAC can achieve 

a better compression performance when encoding the same video sequences lies in the 

computation complexity of CBAC tend to be greater than that in CABAC. Domain 

conversion, data operation divided into integer and fraction part and comparison 

between integer and fraction respectively increase the calculation cost. However, more 

compelling coding efficiency can be obtained from these traits as the experiment result 

shows.  
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Chapter 4 CBAC Performance Improvement  

Through description in the above several chapters, it has been showed that the 

computation complexity and sequential operation put a thread on the performance 

improvement. In this chapter, we will propose three ideas to improve performance of 

the CBAC including approximation error compensation, modification of probability 

estimation model and introduction of fast rate estimation to replace the real CBAC in 

the rate distortion optimization (RDO) process. More details for each improvement idea 

will be described in the following sections.  

4.1 Approximation Error Compensation 

As the description before, in order to simplify the computation and implementation, 

there are two approximation equations adopted in the domain converting process to 

realize the free-multiplication operation. However, the approximated error is inevitable 

once the approximation equations are used in the domain conversion process. Thus the 

error compensation method in this subclause is introduced to minimize the 

approximation error by domain conversion.   

4.1.1 Error Compensation Table  

According to the approximation principle of the Taylor’s Formula, the approximation 

equations implemented into CBAC practically are represented as the following: 

                 2 1 (0 1)x x x                                  (4-1) 
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These approximation equations are used to combine operations of both real domain and 

logarithmic domain, which is to replace multiplications with additions. The followings 

are cases of using these approximation equations: 

(1) When the symbol is MPS, the range updating is performed with the LgPmps. 

While the probability update is based on the probability in the original domain, 

which should be derived from the LgPmps. Thus the approximation (4-1) is 

served as the bridge to draw the updating principle through LgPmps. 

(2) When the symbol is LPS, the new range in logarithm should be derived from the 

original domain, where both the old and current range can be obtained from the 

logarithm value of each. Thus the approximation (4-1) is adopted. 

(3) When the symbol is LPS, after the range updating and renormalization, there is a 

crucial step of the range map to prepare the logarithm-based value of the current 

range in order to make the parameters ready for the next iteration. Thus the 

approximation (4-2) is used for the transition from the original to the logarithm 

domain for the LPS range. 

It can be see that the approximation equations defined in (4-1) and (4-2) are based on 

the index and logarithm of 2, though the fact is that these equations are true only when 

the base is e in the mathematical theory. Thus the approximated error induced in the 

process of domain conversion results in considerable performance degradation if there 

is no extra supplementary method to make up this. Therefore, the modification of the 
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approximation can be considered to minimize error in the conversion process. However, 

the gain which can be obtained by compensation of the approximation error will be a 

little bit marginal due to the incorrect probability estimation caused by the unstableness 

of information source. The correction function Δ1 and Δ2 can be defined as the 

following:  

                   

Here, the 1x  and 2x  are 8 bit precision and the correction function also based on the 

8 bit precision as well. The implementation is realized by indexing the pre-defined table 

with size of 64 where the index is 8-bit LgPmps. And the correction function table can 

be varied as the bit precision (depth) is changed. The correction factor can be quantized 

as the following: 

64

1
δ ( ) 2 (1 ) 2 2 , 0,1, 2,..., 63

64

index

bitdepth bitdepthindex
index index           (4-5) 

depth

2 2
δ ( ) 2 log (1 ) 2 , 0,1, 2,...,63

64 64

bit bitdepthindex index
index index            (4-6) 

Here, bitdepth denotes the bit precision and the index is the needed table size. Table 4-

1 shows the correction table based on the (4-5) and (4-6) and gives the difference with 

error adjusting table in [25]. Generally, 6 bits is enough to correct the approximation 

error caused by the above (4-1) and (4-2) two approximation equations.  

Different from the fact that there is no exact derivation and experiment result in [25], 

our method gives the derivation exactly from the approximation equations and 
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implement into AVS2.0 in detail. In addition, only one table in [25] is adopted for both 

approximation equations, while our method give the exact correction table for both in 

Table 4-1.    

Table 4- 1  The approximation error compensation table 

Index δ1(index)(8-bit) error δ2(index) (8-bit) error  [25] 

0 0 0 0 0 0 

1 1.212342771 1 1.726160135 2 2 

2 2.394329945 2 3.364894556 3 4 

3 3.545630971 4 4.918832757 5 5 

4 4.665911699 5 6.390487360 6 7 

5 5.754834340 6 7.782260935 8 8 

6 6.812057427 7 9.096452338 9 9 

7 7.837235774 8 10.33526259 10 10 

8 8.830020438 9 11.50080037 12 11 

9 9.790058673 10 12.59508707 13 12 

10 10.71699390 11 13.62006160 14 13 

11 11.61046564 12 14.57758477 15 14 

12 12.47010950 12 15.46944344 15 15 

13 13.29555713 13 16.29735442 16 16 

14 14.08643615 14 17.06296803 17 17 

15 14.84237014 15 17.76787153 18 17 

16 15.56297856 16 18.41359229 18 18 

17 16.24787675 16 19.00160074 19 19 

18 16.89667584 17 19.53331318 20 20 

19 17.50898276 18 20.01009442 20 20 

20 18.08440011 18 20.43326023 20 20 

21 18.62252620 19 20.80407965 21 21 

22 19.12295496 19 21.12377720 21 21 

23 19.58527588 20 21.39353494 21 21 

24 20.00907401 20 21.61449437 22 21 

25 20.39392985 20 21.78775833 22 22 

26 20.73941935 21 21.91439266 22 22 

27 21.04511384 21 21.99542789 22 22 

28 21.31057998 21 22.03186075 22 22 

29 21.53537972 22 22.02465564 22 21 

30 21.71907022 22 21.97474603 22 21 

31 21.86120383 22 21.88303573 22 21 

32 21.96132803 22 21.75040018 22 21 

33 22.01898537 22 21.57768760 22 20 

34 22.03371341 22 21.36572009 21 20 
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35 22.00504469 22 21.11529474 21 21 

36 21.93250664 22 20.82718458 21 20 

37 21.81562156 22 20.50213958 21 20 

38 21.65390654 22 20.14088754 20 20 

39 21.44687341 21 19.74413496 20 19 

40 21.19402870 21 19.31256784 19 19 

41 20.89487354 21 18.84685252 19 19 

42 20.54890365 21 18.34763637 18 19 

43 20.15560926 20 17.81554852 18 18 

44 19.71447502 20 17.25120055 17 17 

45 19.22498000 19 16.65518714 17 17 

46 18.68659759 19 16.02808666 16 16 

47 18.09879544 18 15.37046179 15 15 

48 17.46103539 17 14.68286005 15 15 

49 16.77277345 17 13.96581438 14 14 

50 16.03345968 16 13.21984363 13 13 

51 15.24253817 15 12.44545304 12 12 

52 14.39944694 14 11.64313475 12 11 

53 13.50361791 14 10.81336821 11 11 

54 12.55447680 13 9.956620637 10 10 

55 11.55144307 12 9.073347407 9 9 

56 10.49392988 10 8.163992476 8 8 

57 9.381343979 9 7.228988742 7 7 

58 8.213085668 8 6.268758416 6 6 

59 6.988548714 7 5.283713367 5 5 

60 5.707120282 6 4.274255459 4 4 

61 4.368180866 4 3.240776873 3 3 

62 2.971104211 3 2.183660416 2 2 

63 1.515257245 2 1.103279814 1 0 

 

In addition, the approximation error compensation tables can be implemented in the 

encoder and similarly in the decoder part, the same compensation table is used to 

decode the bits generated by the modified CBAC encoder. Also, make sure that the 

engine should be make some definitions in the value domain limitation of engine 

parameters thus the encoder and decoder will be performed without overload or 

deadlock since this correction table can make LgPmps overload the minimum value. 



48 
 

For example, when after correcting, LgPmps may equal to 0, thus the deadlock will be 

encountered. Therefore, the specific definition should be included in code.  

4.1.2 Experiment Result  

Through the proposed approximation error compensation table, as experiment result in 

Table 4-2 shows, there will be about 0.2% in the Luma component and a more 

promising result in the Chroma components (about 0.3%) in average in five 1080p 

video sequences under Random Access (RA) configuration.  

Table 4- 2  The coding efficiency using approximation error correction tables 

Image seq. Y BD-rate U BD-rate V BD-rate 

Kimono -0.17% -0.54% -0.21% 

ParkScene -0.29% 0.08% -0.45% 

Cactus -0.26% -0.23% -0.47% 

BasketballDrive 0.06% -0.45% -0.15% 

BQTerrace -0.30% -0.48% -0.29% 

Avg. -0.19% -0.33% -0.31% 

 

4.2 Probability Estimation Model Optimization 

4.2.1 Probability Estimation  

The probability model updating is the crucial feature in the efficiency improvement in 

the arithmetic entropy coder in the video coding standard due to offering the probability 

of each symbol to adapt the internal state of the coder to the underlying source statistics 

[29]. Such adaptation enhances the compression efficiency of various entropy coding 

schemes such as M coder, PIPE.  One of the most frequently used formulas is as the 

equation (4-7) shows: 
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           δ δ 1( ) α ( ) (1 α) ( )    p i y i p i                   (4-7) 

Here, i is valued as “0” or “1” which denotes that current bin is most probability symbol 

(MPS) or the least probability symbol (LPS), respectively. In addition, y(i) is 0 if the 

current symbol is MPS and it is assigned as 1 if otherwise. The δ  denotes the 

probability state. Theα is the scaling factor which adjusts the speed of the adaptation as 

it indicates that how many the in-prior encoded bins are needed to estimate the 

distribution of probability for the coming bins. From this recursive equation, we can 

get the clue that the probability updates based on α that is derived from the number of 

consecutive bins binN  , which is defined a reciprocal number of scaling factor α . 

( α 1/ binN ). The larger binN  is, the speed of the adaptation is slower due to the 

smaller a, while the estimation model is more accurate. Otherwise, there will be fast 

transition along with a less compelling accuracy. Therefore, the choice of the referred 

symbols N determines trade-off between the model sensitivity and accuracy. About the 

referred bins , one method is always using binN  bins all over the engine performing 

statically, while another one adopts an adaptive scaling factor cw, thus the referred bins 

can be expressed as , discretely and adaptively.  

Many research works focus on how to optimize the binary arithmetic coding. In [30], 

the proposed “virtual sliding window” method provided a more outstanding 

compression rate compared with look-up table index based entropy coder. Currently, 

the virtual sliding window technique is widely explored in HEVC. An integrated 

window sizes technique is introduced in [31] ~ [33], which gives a higher precision 

binN

2cw
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estimation model with around 0.8% performance improvement in HEVC. In [34], a 

counter-based window sizes scheme is proposed and brings about 0.9% BD-rate saving. 

Therefore for probability estimation, the smaller window size of each probability model 

in the beginning of the sequence can improve the R-D performance considerably and 

the changeable window size tends to be more effective. The entropy coder CBAC used 

in AVS2 made the similar affords to design an adaptive probability estimation model 

to improve R-D performance, although it causes computation complexity increase. 

Generally, according to how to choose window size and the probability smoothing trend, 

two probability distribution functions are employed including exponent mesh and 

uniform mesh [32][33]. The exponent mesh explains that the probability transition is 

based on the map function
δ

δ 0.5(1 α) p , where δ  is the quantized state to realize the 

probability change within the certain domain, e.g. from 0.01875 to 0.5. Using this 

model, the practical implementation can be performed based the finite state machine 

(FSM) indexed byδ , thus the speculative calculation can be eliminated. However, note 

that the probability distribution with an exponent mesh illustrates that the probability is 

more dense near 0 and sparse close to 0.5. Therefore, when the probability is distributed 

near 0.5, there tend to be a considerable error in the evaluation. Another map function, 

mesh function, adopts a uniform model where the probability is scaled into certain 

integer section thus it can be presented as δ δ / 2 kp P . The parameter k denotes the 

scaled range with length of 2k and δP  is the integer within this range. Here δ is a token 

for the virtual sliding window operation as there is no exactly state will be used for the 
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transition while the speculative computation is performed with shift or/and addition 

operation.  

With the consideration of computation complexity and hardware-friendly in logic, the 

look-up table and scaling strategies are served for the practical implementation scheme 

of probability transition without multiplication. In table-based method, the probability 

updating is performed based on a pre-defined Finite State Machine (FSM), i.e.

[ ]nextState , where each state implies the real probability. The states jumping rules is 

based on the Mesh function. Benefit from the Uniform Mesh map function, another 

method is aimed to free multiplication with the addition and shift operation. Thus the 

scaled δP  expressed as integer ranged from 1 to 2k makes the arithmetic operations 

easily. The transition rules can be performed as ( δ δ 1 δ 1{Δ,( )}P P P cw   ) with LPS 

and MPS, respectively. Here,  is the increment of the Uniform Mesh.  

According to the required variables ,  and  in equation (4-7), the supported 

theories and implementation approaches employed in each video standard or relative 

technique to realize probability estimation are summarized in Table 4-3.  

Table 4- 3  The model variables for the probability estimation 

variable models formula note 

α  
static 1/ binN  [19] 

adaptive 1/ 2cw  [25] 

δp  

exponent mesh 
δ

δ 0.5 (1 α)p     [33] 

uniform mesh 
δ δ / 2kp P  [33] 

δ  
table-based [δ 1]nextState   [19] 

scale-based δ 1 δ 1{Δ,( )}P P cw   [25] 

 



 p
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Practically, the tradeoff of the computation complexity, memory requirements and the 

estimation accuracy is the key problem that the implementation of probability 

estimation model should consider in practice. Therefore, the implementation schedule 

of each standard explores the method balanced all the variables and achieve the most 

significant performance enhancement.  

4.2.2 Probability Estimation Model in CBAC  

The probability estimation in AVS2.0 is performed with logarithm addition and shift 

operation as the CBAC algorithm employs the logarithm domain–based arithmetic 

coder. The Uniform Mesh and speculation computation are used for the probability up-

date with multiplication free logic. The scaling factor for CBAC is defined as 

(α 1/ 2cw ) with adaptive parameter cw chosen one of among 3, 4 and 5 according to 

the engine execution counter cycno for each context. Specifically, at the beginning 

several iterations, a smaller scaling factor is assigned and it will fixed at 5 after 2 

iterations. In addition, the implementation of the probability estimation procedure 

adopts the Uniform Mesh where the scaled probability is represented as the 

corresponding LgPmps with k-bit resolution. Here, LgPmps denotes the scaled absolute 

value of log2(Pmps) with Pmps valued from (0.5, 1). Hence, the factor k defined in 

Uniform Mesh function indicts the resolution (bit-depth) of LgPmps, theoretically. The 

scaled MPS probability LgPmps is described as equation (4-8):  
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where bit depth bitDepth is assigned 10-bit and Pmps valued from (0.5, 1). Then we 

can achieve two boundary values, i.e., (0, 1024), for the LgPmps calculation in the 

arithmetic coding process. Thus the probability transition can be mapped into a scaled 

integer range with integer operations. Specifically, the estimation updating model 

employed in AVS2.0 can be fulfilled in the equation (5): 

  ( )

Δ

 
 



LgPmps LgPmps cw if mps
LgPmps

LgPmps if lps
              (4-9) 

where cw is the sliding window factor as described before,  is the increment of the 

LgPmps once encoding one bin based on the Uniform Mesh for case that the symbol is 

LPS case. It is also relative to the cw and the bit depth of the LgPmps. 

Probability estimation is a crucial step in arithmetic coding of CBAC as illustrated in 

Fig.1-3. It has much influence on the final coding performance. In CBAC, context 

variables are included 10-bit LgPmps, 1-bit valMps, and 2-bit cycno. Once the 

arithmetic coding for a regular bin is finished, the context variables will be updated 

including LgPmps speculation, valMps conversion (if necessary), and cycno marking. 

Even through this adaptation increase the computation complexity, the coding 

performance of CBAC tends to be competitive compared with CABAC.  

4.2.3 The Optimization of Probability Estimation Model in CBAC  

In this section, based on the mechanism in CBAC, we propose an optimized probability 

estimation model with well-regulated scheme to improve coding efficiency.  
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Figure 4- 1  The flowchart of CBAC encoder 

Referring to the analysis of Uniform Mesh in above section, it can be concluded that 

the scaled probability LgPmps is valued within a scaled domain as (0, 2bitDepth) in theory. 

Thus the probability estimation can be performed by addition or subtraction, and shift 

within integer data domain. Considering that the estimation error of probability of MPS 

near to 0.5 tends to be more considerable than that close to 1 where the difference 

between two symbols is marginal, we deign a feasible data domain, called (ThrLgPmps, 

InitLgPmps), for probability estimator of the CBAC. ThrLgPmps denotes the low boundary 

that the scaled probability LgPmps can reach. InitLgPmps is the initial value assigned to 

each context model at the beginning of new slice. 

For the initial value, it is assigned as in CBAC as follow equation (4-10),  

                 

where  is valued as 0 or 1. For the threshold value ThrLgPmps, it is represented by (4-

11): 

           2 min,
ˆ2 | log (1 ) |

bitDepth

LgPmps plps
Thr p                    (4-11) 

where is the statistical result of minimum LPS probability which can be obtained 

through the similar method used for the CABAC in [5]. In theory, it is a statistical result.  



min,
ˆ

plsp
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Based on the provided scheme, the scaled probability LgPmps can be transited within 

the feasible domain with the uniform increment each iteration in the LPS case. However, 

note that the adaptive scaling factor cw is introduced in CBAC where the sliding 

window size will be changed along with context variable cycno marking, thus the 

uniform increment will also adaptively change and the adaptive uniform increment  

is defined as equation (4-12): 

          , 2Δ 2 | log (1 2 ) |bitDepth cw

bitDepth cw

                        (4-12) 

Therefore, the proposed probability estimation model can be modified with the 

following equation (4-13): 

lg

1

max(( ), )

1024?(2 ) : ( Δ)

pmps

bitDepth

LgPmps LgPmps cw Thr if mps
LgPmps

LgPmps LgPmps LgPmps if lps


 


  





        (4-13) 

In implementation, parameters adjustments including cw, bitDepth, ThrLgPmps, and 

InitLgPmps are necessary in order to find out the best scheme. Then the overall schedule 

for the probability estimation can be illustrated as Fig.4-2.  
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Figure 4- 2  The proposed probability estimation scheme for each context model. 

4.2.4 Experiment Result 

In this section, the coding efficiency enhancement result will be shown. However, for 

the adaptive probability estimation method, it is easy to implement with the 

considerable performance enhancement. To verify the coding efficiency of proposed 

optimized probability estimation model, experiments are conducted on RD 10.1. The 

bit depth bitDepth is assigned as 9 bits, min,
ˆ

plsp  is about 0.0382, τ  is set as 1, and the 

final sliding factor cw is set as 5. Note that cw is determined by the cycno marking and 

we assign the value of cw along with different cycno and syntax element type. Until 

cycno increases up to 3, cw is assigned 5 constantly for each context model for all syntax 
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elements. Table 4-4 and Table 4-5 give the BD-rate reduction detail in the A, B class 

video sequences under the Random Access (RA) configurations with common test 

condition [28] of AVS2.0. 

Table 4- 4  The BD-rate of proposed probability estimation with RDOQ-off 

Size Sequence Y BD-rate U BD-rate V BD-rate Avg. 

A Class Traffic -0.20% -0.24% -0.71% -0.27% 

Pku-girls -0.10% -0.94% -0.73% -0.28% 

PeopleOnStreet -0.21% -0.88% -1.43% -0.45% 

B Class ParkScene -0.05% -0.43% -0.63% -0.17% 

beach -0.07% -8.48% -9.65% -2.32% 

taishan -0.13% -0.25% -0.62% -0.21% 

kimono -0.10% -0.21% -0.47% -0.16% 

cactus -0.28% -0.43% -0.70% -0.35% 

BasketballDrive -0.29% -0.67% -0.54% -0.37% 

Avg.  -0.16% -1.35% -1.76% -0.52% 

 

Table 4- 5  The BD-rate of proposed probability estimation with RDOQ on. 

Size Sequence Y BD-rate U BD-rate V BD-rate Avg. 

A Class Traffic -0.23% -0.39% -0.76% -0.32% 

Pku-girls -0.16% -0.44% -0.42% -0.22% 

PeopleOnStreet -0.23% -0.73% -0.89% -0.37% 

B Class ParkScene -0.09% -0.50% -0.15% -0.15% 

beach -0.14% -7.37% -6.00% -1.78% 

taishan -0.15% -0.53% -0.45% -0.23% 

kimono -0.19% -0.00% -0.32% -0.19% 

cactus -0.24% -0.53% -0.18% -0.27% 

BasketballDrive -0.13% -0.47% -0.62% -0.24% 

Avg.  -0.17% -1.22% -1.09% -0.42% 
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4.3 Rate Estimation  

4.3.1 Rate Estimation Model  

In AVS2.0, it is crucial to find out the efficient rate distortion optimization (RDO) mode 

decision for enhancing the coding efficiency. This mode decision is aimed to selects an 

optimal mode among various available candidates including supported size of coding 

unit, the prediction unit and the transform unit. However, the rate distortion cost in 

RD10.1, reference s/w of AVS2.0 is obtained from the rates coming from the real 

CBAC instead of using rate estimation table which is used in HM, reference s/w of [35]. 

In addition, based on the previous several research[36][37][38], we proposed the fast 

rate estimation model for AVS2.0 to replace the real CBAC since the process of CBAC 

tend to be complicated because of the serial nature and strong data dependence. In this 

section, we will describe the proposed rate estimation (RE) model for the rate 

estimation in the RDO mode decision process implemented with RE table and Fig.4-3 

illustrates the rate estimation idea in the AVS2.0 where we use the pre-defined RE table 

to replace the real CBAC engine to calculate the rate distortion cost.   

Prediction RDO Binarization CBAC

CBAC

RE table

R

Image 

Sequence
SE seq. Bin seq. bitstream

state

rate

 

Figure 4- 3  The block diagram of proposed rate estimation  

Current rate estimation is built based on the fact that there is a relationship between the 
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probability and range as Fig. 4-4 shows. The statistics tell us that the probability of each 

new range can be described as (4-14): 

                   0( )
k

p r
r

                              (4-14) 

Here, r denotes for the new obtained range and k0 is the constant. Thus, according the 

range r varies from 256 to 510 in theory, the constant k0 can be derived and it is 

presented with log2e. Therefore, the rate estimation model dedicated with estimated bits 

can be further built.  

256 510
r (Range)

p (Probability)

p256

p510

...

 

Figure 4- 4  Probability distribution of the CABAC range 

Based on this probability distribution function, the expected output bit length is 

represented with (4-15) if the input bin is the least probability symbol (LPS). Otherwise, 

(4-16) is adopted. 
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Here R(s) denotes the value of range indexed by context state s. Therefore, the expected 

bit length for both MPS and LPS case defined in the above equations can be basic model 
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for the distinguished arithmetic coding engine.  

In addition, the rate model for CBAC which uses logarithm adder and shift will be 

deduced as described in the following. In this model, LgPmps denotes the MPS 

probability in logarithm domain with 10-bit precision. Therefore, the corresponding 

probability Pmps in original can be derived from (4-17). 

                  

10

/1024

log / 2

2

mps

LgPmps
mps

p LgPmps

p 

 


                   (4-17) 

In the principle of arithmetic coding on logarithm, all the related parameters are derived 

from probability of MPS in logarithm domain, which is LgPmps. Therefore, the 

expected bit length of a bin can be achieved as (4-18) if input bin is MPS, on the contrary, 

(4-19) is derived. 
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              (4-19) 

From (4-18) and (4-19), the estimated bit length is achieved indexing by the LgPmps. 

However, the bit length tend to be changed with the bit depth of LgPmps. We also 



61 
 

designed experiments that verify the effects of bit depth of LgPmps (fraction part of bit 

length) in the rate estimation RE table.                                                                          

4.3.2 Experiment Result 

To verify the coding efficiency of RD10.1 encoder with proposed rate estimation model, 

we use the AVS2.0 common test condition [28] for five 1080p video sequences 

including Kimono, ParkScene, Cactus, BasketballDrive, and BQTerrace in Random 

Access (RA), All Intra (AI), and Low Delay P (LDP) configurations.  

Table 4-7 shows the coding performance after using rate estimation table with 2-bit 

fraction part and 8-bit fraction part. Note that the same rate estimation table with 8-bit 

fraction part is used for rate distortion optimization quantization (RDOQ). Fig.4-5 

illustrates the coding performance in BD-rate (%) varying according to the change of 

fraction part from 2-bit to 8-bit. We can get the conclusion that the coding efficiency 

tend to be almost constant when the fraction part is larger than 2-bit. There are about 

0.1% BD-rate reduction in RA, a marginal (0.02%) increase under AI and a slight 

performance degradation with 0.18% in LDP configuration. This trend keeps the similar 

between 2-bit and 8-bit in AVS2.0. Thus it is important to know that the rate estimation 

table should be at least 2-bit fraction part to implement the correct rate estimation model 

in the RDO process. In addition, Table 4-8 gives the encoding time saving when the 

rate estimation is implemented into AVS2.0 for the RD cost calculation in the RDO 

process. There is about 1.24% encoding time reduction compared with the original 

AVS2.0 reference software.  
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Table 4- 6  The BD-rate of using rate estimation (2-bit and 8-bit fraction part) 

1080p image 

seqence 

RE table (8-bit) RE table (2-bit) 

RA AI LDP RA AI LDP 

Kimono 0.03% 0.00% 0.10% 0.10% 0.03% 0.13% 

ParkScene 0.03% -0.04% 0.01% 0.12% -0.02% 0.14% 

Cactus -0.06% -0.02% 0.37% -0.08% -0.04% 0.09% 

BasketballDrive -0.14% 0.13% 0.23% -0.15% 0.09% 0.05% 

BQTerrace -0.38% 0.02% 0.22% -0.27% 0.03% 0.46% 

Average -0.10% 0.02% 0.18% -0.06% 0.02% 0.17% 

 

Table 4- 7  The time saving when the rate estimation table is used in AVS2.0 

Test seq. QP Anchor time Rate est. Time Time Saving Avg. 

Kimono 

27 4989.17 4967.22 -0.44% 
-1.02% 

32 4730.05 4653.46 -1.62% 

 38 4607.79 4562.96 -0.97%  

 45 4100.52 4056.9 -1.06%  

 27 3594.39 3560.48 -0.94% -1.16% 

ParkScene 32 3233.44 3198.90 -1.07%  

 38 2982.04 2948.08 -1.14%  

 45 2817.84 2776.41 -1.47%  

 27 3203.02 3155.65 -1.48% -1.68% 

Cactus 32 2959.27 2909.86 -1.67%  

 38 2897.11 2876.14 -0.72%  

 45 2579.71 2506.22 -2.85%  

BasketballDrive 

27 10375.7 10265.3 -1.06% 

-1.10% 
32 7762.71  7822.48 -0.77% 

38 8873.24  8957.54 -0.95% 

45 7960.32  8090.07 -1.63% 

Average  -1.24% 
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Figure 4- 5  The BD-rate changes with different fraction part lengths 

4.4 Conclusion   

In this section, ideas for improving performance in terms of the engine optimization 

and throughput improvement were described in detail. From the experimental results, 

we can obtain three conclusions. One is approximation error modification is aimed to 

match the arithmetic coding principle without the approximation operation. There is 

0.2% BD-rate improvement in the Luma component at the sake of addition of a 2-D 

buffer to store the adjusting factor and increase of a little of computation.  

Another work is about the probability estimation. Since the performance analysis shows 

that the bit resolution of LgPmps tend to affects the coding efficiency, the proposed 

probability estimation model using 9-bit resolution with matched parameters achieve a 

better performance with about 0.3% BD-rate saving in average.  

Lastly, for rate estimation, we can see that there is at least 2 bits fraction part for rate 

estimation RE table when implementing the rate estimation in RDO process.   
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Chapter 5 Implementation of Binary Arithmetic 

Decoder in CBAC   

Because of serial data dependency of the process of updating range and context 

probabilities in a CBAC algorithm, it is still challengeable to implement decoder of 

CBAC with high throughput. 

There are numerous previous work [39] [40] which have been devoted to improve the 

throughput for CABAC encoder in HEVC. [39] shows various methods to improve the 

throughput including grouping bypass bin, reducing the context data dependence, and 

sharing context modeling, etc. Several hardware-orientated tools such pre-

renormalization, hybrid path coverage, bypass bin splitting, were developed for the 

binary arithmetic encoding for HEVC in [40]. In addition, the recent publication [41] 

researched on the architecture of CBAC encoder in AVS1 targeting to the real-time 

HDTV applications. However, plenty of works are CABAC encoder/decoder in HEVC, 

although there are several literatures about AVS, most of them are for CAVLD of AVS1. 

Few work is about CBAC architecture design, especially CBAC decoder.  

Generally, the overall CBAC decoder includes several steps: binary arithmetic decoder 

(BAD), context updating and selection and debinarization. In this chapter, we design 

Binary Arithmetic Decoder, with throughput of one-bin per cycle which is a part of 

CBAC Decoder and a main bottleneck of accomplishing high throughput by strong data 

dependency. Specifically, BAD includes range update, offset update and bit read when 

one bin is decoded. The most important work of this chapter is designing a reasonable 
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critical path of BAD.  

5.1 Architecture of BAD  

The difficulty of implementation of CBAC decoder with high throughput lies in the 

high serial data dependencies from several update loops: range update, offset update, 

and context update. For the introduction of the operation of logarithm domain to free 

multiplication, a variable of range is represented as 2 terms, which are RangeI for 

integer part and RangeF for fractional part of range. The representation of Offset is the 

same as that of range. We design the conceptive structure including the main loops 

needed in the decoder part. And the general CBAC decoder implementation structure 

can be described as Fig.5-1. There are several loops which are performed with strong 

data dependency in CBAC Decoder and each loops are marked with different colors. 
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Figure 5- 1  the General BAD Structure in AVS2.0 

This overall structure can be divided into four sub-structures including range update 

module, offset update module, bits read module and context update module when 

implemented.  
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5.1.1 Top Architecture of BAD  

For BAD structure design, there are three loops we should consider: range update, offset 

update and bits read. One-bin per cycle scheme requires all the loops to be performed 

in the one clock. Then signals for the interface between each module are need to be 

matched when one bin is performed. Each module will be given details of the design 

through the block diagram and Verilog code logic.  

In this top architecture, range update module is firstly performed based on the algorithm 

design in CBAC, followed by the offset update module using the output signals of range 

update module including the fraction part of MPS symbol o_rangeFMps, integer part 

of LPS symbol o_rangeILps, and the LPS symbol isLps. The bits read module reads 

bits from bit-stream and uses the signals generated by offset update module indicts how 

many bits that the bits read module should obtain from the bit-stream buffer. Though 

this procedure, one bin is decoded and the parameters including range and offset are 

updated and prepared for the next bin. The overall structure can be described as Fig.5-

2 where the interface signals are given the detailed illustration.  

Range Update Offset Update Bits Read

isLps

o_rangeFMps[7:0]

o_rangeILPs[4:0]

F/F

F/F

rangeI

rangeF

o_offsetI[4:0]

o_offsetF[7:0]

Initialization

Context variables

Engine variables
clk

o_numOfReadBits1

o_numOfReadBits2[3:0]

o_numOfReadBits3[4:0]

Bits Stream 

Buffer

readData[63:0]

readEnable

readAddr[15:0]

ReadBits1

ReadBits2[7:0]

ReadBits3[31:0]

 

Figure 5- 2  The overall structure for the BAD with one-bin scheme 
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5.1.2 Range Update Module  

Firstly, the range update procedure is described in this section. Range Update for MPS 

and LPS case is the similar as that in encoder part with integer and fraction part. In 

order to make the update scheme clear, the integer part of range rangeI and fraction part  

rangeF are divided into respective sub-module. The flow charts of updating rangeI and 

rangeF are shown as in Fig. 5-3 and Fig. 5-4, respectively. For the integer part, if it is 

LPS symbol, rangeI will be changed as the rangeF which decides the increment of 

rangeI as rangeF should be scaled until it is not smaller than 256. However, after 

finishing all the scaling, the rangeI is assigned as 0 again in LPS case.  

rangeF < 256 ?

isMps

No

rangeI++

rangeI == 0

Yes

rangeI = rangeILps

rangeI = rangeIMps

Update rangeI  

Figure 5- 3  Flow chart of rangeI update 



68 
 

rangeF < 256 ?

isMps

No

rangeF <<= 1

rangeF &= 0xFF

Yes

rangeF = rangeFLps

rangeF = rangeFMps

Update rangeF  

Figure 5- 4  Flow chart of rangeF update 

For the fraction part of range rangeF is performed with the similar stage as above offsetI 

update after re-modifying the original code in RD10.1. Fig.5-4 shows the process of 

updating rangeF where the similar scaling and shift operations are performed but the 

difference is that the rangeF is scaled using the 8-bit of low significant bit (LSB) in 

LPS case. Based on the rangeF and rangeI update scheme in C code, then the range 

update procedure can be described as the following Fig.5-5 where two LPS scaling 

modules are included into the range update module, which describes two cases whether 

the integer parts are equal or not. Once the process of updating rangeI and rangeF are 

finished, updated value of each variable is stored to register (F/F), which is for next 

process. 
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Figure 5- 5  Detailed Structure of Module for Range Update 

5.1.3 Offset Update Module 

In this section, the offset update module is introduced with the design detail. Range 

Update plays the vital role in the sub-range division process. According to the 

speculation of range and offset in the decoder part, the offset update is performed with 

the intermediate result of the process of updating range such as rangeILps and 

rangeFMps. By comparing rangeFMps with offset, we can decide whether decoded bin 

is MPS or not. After the MPS/LPS decision is made, offset update is performed. Since 

there is no offset update in MPS case, thus the offset update is performed in the LPS 

case only. The flow chart in Fig.5-6 illustrates of the process of updating offsetI where 

offsetI keeps the same without updating when it is MPS case.  
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isMps

No

offsetI == 0

Yes

offsetI = 0

Update offsetI

offsetF < 256 ?

offsetI++

rangeFMps <= 

offsetF ?

offsetI++

 

Figure 5- 6  offsetI update block diagram 

Then we will analysis the offsetF update in the following section. In the offset update 

module, it is updated the value of offset in case of LPS only. There are offsetF scaling 

and rangeF scaling for the bit reads and range updating gives the hint how many bits 

should be read to decide the offsetF. The flow chart for the offsetF update can be 

described as Fig.5-7.  
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isMps
NoYes

offsetF &= 0xFF;

Update offsetF

rangeFLps < 256 ?

bit = get_bit(dep);

offsetF = (offsetF << 1)| bit;

rangeFMps <= offsetF ?

offsetF = offsetF – 

rangeFMps;
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bit = get_bit(dep);

offsetF = (offsetF<<1) | bit;

offsetF = 256+ offsetF – rangFMps;

No

offsetF < 256 ?
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offsetF = (offsetF << 1)| bit;

i_rangeFMps ( rangeUpdate output)

i_rangeIMps (rangeUpdate output)

i_offsetI (register)

i_offsetF (register)

 

Figure 5- 7  flow chart of updating offsetF 

Finally, through the algorithm analysis, the offset update module can be described as 

Fig.5-8. The input signals includes rangeILps, rangeFMps and isLps, which are 

generated after finishing range update module, and reads some other signals relative to 

bit read module that will be described in bit read module.  
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Figure 5- 8  Offset Update logic diagram block 
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5.1.4 Bits Read Module 

The bit read module defines the bits read operation in BAD. As shown in Fig 5-7, the bit read and offset update is performed with the jointly procedure. Part 

of the input signals of offset update come from the output variables including o_readBits1, o_readBits2 and o_readBits3, which indicts different bit channel. 

i_numOfReadBits2 

1

nextEightBits=NextBits1[63:56]

8

isLPS

32

i_numOfReadBits3 i_numOfReadBits1 

Bit 

Stream

Buffer

readData

64

readEnable

1

readAddr

16

CurrBits Register

(64bits F/F)

nextOneBits = CurrBits[63]

<< 1 1

0

<< 

CurrBits[63:0]

{CurrBits[62:1],1'b0}

NextBits1[63:0] NextBits2[63:0]

+

<< 

+

next32Bits=NextBits2[63:32]

CurrBitCount Register

(64bits F/F) (0~63)
CurrBitCount[5:0]

+

7 bits 7 bits 7 bits 
[5:0]

Address Counter

If 1, Counter++

1

0

1

0

Concatenate

Preload Register

(64bits F/F)

initialReadEnable

Initail Value = 63

NextBits3[63:0]

PreloadBits[63:0]

[5]

o_readBits1 o_readBits2 o_readBits3  

Figure 5- 9  Bits Read Logic Block Diagram 
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5.1.5 Context Modeling  

In this section, the context update is described although context update module is not 

included Binary Arithmetic Coding in CBAC. It is because it is one of bottle-neck of 

implementing design with high throughput by context data dependency, which means 

consecutive bins with same context index should be decoded in a sequence. The 

variables for context update in CBAC are LgPmps, which is a variable for context 

probability, cycno, which is a variable for sliding window parameter, and valMps, which 

is a flag indicating whether current decoded bin is MPS or not. In the CBAC decoder, 

all the context variables are assigned with the same value – LgPmps is 1023, cycno 

equals to 0 and valMps initialized as 0 at the beginning of the new slice. Specifically, 

the process of updating context variables is designed as the following Fig.5-12. Once 

the context updating is finished, the context model for the current bin is updated with 

the new variable for the next access within current slice.     
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Mps?
No

Done

cw == 3

cw == 4

LgPmps += 95

Yes No

Yes No

LgPmps = LgPmps – (LgPmps>>cw) – 

(LgPmps >>(cw+2))

Yes

LgPmps += 46

LgPmps > 1023 
Yes

LgPmps = 2047 - LgPmps

valMPS = !valMPS 

No

LgPmps += 197

Context Update

cycno = ( cycno <= 2 ) ? ( cycno + 1 ) : 3;

cw = ( cycno <= 1 ) ? 3 : ( cycno == 2 ) ? 4 : 5;

 

Figure 5- 10  The process of Context Updating in the CBAC decoder in AVS2.0 

For the hardware design, signals for interface should be defined clearly. For the cycno 

update, and cycno is related to the sliding window factor cw, which is relative the sliding 

window size in the probability update process. The valMps is changed only when 

LgPmps is larger than 1024, which means probability is out of the defined bit precision 

(10 bits) and valMps should be reversed (0 –> 1 or 1 –> 0). According to this analysis, 

the block diagram for context update can be described with the following architecture 

in Fig. 5-11. 
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Figure 5- 11  Detailed Structure of Module for Context Update 

5.2 Complexity of BAD  

This design is synthesized using the TSMC 65 nm LP process. From the synthesis result, 

we can see that the critical path of this design is related to paths to update offsetF in 

case of LPS.  

At synthesis level, it achieves a maximum clock rate of 526 MHz. So we can expect 

that this design has an operating frequency of more than 400 MHz in the level of chip 

in consideration of overhead by place and routing with the margin of 20%, which is a 

kind of estimated figure by experiential knowledge and depends on competence level 
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of engineer, which deal with CAD tools for place and routing. And the total gate count 

is about 13.3K, which is including BAD only. 

There is no issued research results about the one-bin per cycle design for AVS2.0, most 

of researches are based on the first generation AVS1.0, HEVC or H.264/AVC. Although 

[44] has been designed for CBAC in AVS1, it is also available to compare with 

proposed BAD design. Since the different synthesis processors are used, after 

normalizing the frequencies [45][46] collected by our design and [44], the comparison 

detail can be shown in Table 5-1. 

Table 5- 1  Summary of the implementation result 

 [3] Ours  

Standard  AVS1.0 AVS2.0 

Process technology 0.18um CMOS TSMC 65nm LP 

Max. frequency (Synthesized) 150 MHz 526 MHz 

Total gate count 21.5 k - 

BAD only  

(excluding bitstream Control) 

6.3k 6.7k 

Throughput 1 bin/cycle 1 bin/cycle 

 

5.3 Conclusion  

There is no significant changes in CBAC decoder algorithm from AVS1.0 to AVS2.0. 

We propose an architecture for Binary Arithmetic Decoder in CBAC, which is crucial 

part of implementing whole of CBAC Decoder with high throughput. Although we 

focus on implementing BAD with throughput of one bin per cycle, it is possible to 

extend this design to the architecture for multi-bin decoding in considering the fact that 

there is no offset update in MPS case. It means we can improve throughput of this 
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design if we can decode multiple MPS Bins at a time without increasing delay of critical 

paths.   

In the current stage, this one-bin scheme obtains the basic BAD engine and it will be a 

premising exploration for the multi-bin design in order to improve the throughput for 

the real-time applications or surveillance camera. In addition, implementation of the 

context update and debinarization are not achieved in this stage of this research topic 

for lack of time. In the near future, the context update and de-binarization will be given 

much consideration based on the BAD design in this thesis. In addition, based on this 

design, we can explore the multi-bin scheme in future as well. 
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Chapter 6   Conclusion and Further Work   

6.1 Conclusion  

In this dissertation, the author performed three aspects works on the entropy coding 

CBAC of AVS2.0 including CBAC performance analysis, Arithmetic Coder engine 

optimizations and the CBAC decoder architecture implementation.  

In the performance analysis chapter, we concluded that CBAC achieves a better 

performance under the proposed comparison scheme even though CABAC transplanted 

in RD10.1 with the adaptive initial context models at the beginning of each new slice. 

Since the adaptive probability estimation and adaptive sliding window size adjusting 

methods are introduced into CBAC to map the source information for the given video 

sequence, the performance is proved that CBAC has the better compression 

performance compared with CABAC. The CBAC optimization is another topic in this 

thesis work.  

Based on the each parameters used in CBAC, the relative exploration is performed, 

especially in the approximation error optimization and probability estimation re-

scalability. Though verifying the best bit depth of the scaled probability LgPmps, the 

various bit resolutions are tested and then get the conclusion that 9-bit resolution with 

the relative parameters setting can achieve a significant efficiency enhancement. 

Actually, CBAC adopts various variables both in engine parameters and context 

variables, only these variables are trained very well via numerous adjusting, the CBAC 
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can achieve the considerable algorithm simplification and performance improvement. 

Otherwise, it is difficult to get more progress.  

For the CBAC decoder implementation, the author explores the hardware performance 

though proposed one-bin per cycle architecture. Firstly, modify the C code in RD code 

into hardware design language Verilog code and design the one-bin scheme including 

range update, offset update, bits read, and context update and debinarization logics. 

Then match and verify the Verilog code and C code though comparing the simulation 

result. Finally, analyze the hardware architecture performance. For this one-bin scheme 

design, the maximum frequency is up to 526 MHz in theory and the total gate count is 

about 13.3K based on the technique TSMC 65 process.  

6.2 Future Works  

For the future works, there are two aspects which are challengeable to achieve more 

progress in the coding efficiency. Firstly, simplifying the CBAC encoder/decoder logic, 

especially in the update loops with the serial data domain conversion. It can be referred 

as the algorithm optimization based on the software RD code of AVS2.0 since CBAC 

logic still accounts for the considerable computation complexity. Thus exploring a more 

simplified scheme without much performance degradation is one of the further effort 

needed to spare to. Another is the implementation for the multi-bin schedule which is 

aimed to improve the throughput, especially for the ultra-high definition video or the 

real-time applications. As the growing requirements on the video information, such as 

TV programs, on-line movie, surveillance camera, etc., in daily life, the high throughput 
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architecture tend to be more compelling and only the efficient multiple bins architecture 

can make it come true. Therefore, multi-bin architecture for CBAC decoder will be 

proposed and designed in the future.          
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Appendix 

A.1. Co-simulation Environment  

In this section, the Verilog codes for each module will be shown in detail.  

A.1.1 Range Update Module (dRangeUpdate.v)  

`timescale 1ns/100ps 

 

module dRangeUpdate ( 

 input        clk, 

 input        rst_n, 

  

 // Signals from Context Modeling 

 input        i_reset,   

 input        i_valid,   

 input        i_valMPS,   

 input  [7:0]     i_lgPmps, 

  

 // Signals from Offset Update  

 input  [7:0]     i_offsetF, 

 input  [4:0]     i_offsetI,   

   

 // Signals to Context Modeling 

 output        o_valid, 

 output        o_decodedBin, 

   

 // Signals for Updating Offset 

 output         o_isLPS,  

 output   [7:0]     o_rangeFMps, 

 output   [4:0]     o_rangeILps,    

  

 // Signals for Test , 

 output   [7:0]     t_rangeF, 

 output   [4:0]     t_rangeI  

); 

//////////////////////////////////////////////////////////////////////////////// 

// range Update Stage 

//////////////////////////////////////////////////////////////////////////////// 
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 wire        isBypass   ; 

 wire        valMPS    ;   

 wire  [7:0]     lgPmps    ; 

   

 reg         isLPS     ; 

  

 wire        s_flag    ; 

  

 reg   [7:0]     reg_rangeF   ;   

 reg   [4:0]     reg_rangeI   ;   

 wire  [7:0]     updated_rangeF  ;   

 wire  [4:0]     updated_rangeI  ;   

  

 wire   [4:0]     rangeIMps   ; 

 wire   [4:0]     rangeILps    ; 

 wire   [4:0]     rangeILps1    ; 

 wire   [4:0]     rangeILps2    ; 

  

 wire  [7:0]     rangeFMps   ; 

 wire  [7:0]     rangeFLps     ; 

 wire  [7:0]     rangeFLps1    ; 

 wire  [7:0]     rangeFLps2    ; 

  

 //////////////////////////////////////////////////////////////////////////////// 

 // Input  

 //////////////////////////////////////////////////////////////////////////////// 

 assign isBypass    = (i_lgPmps == 0 ) ? 1'b1 : 1'b0 ; 

 assign valMPS    = i_valMPS ; 

 assign lgPmps    = i_lgPmps ;  

  

 //////////////////////////////////////////////////////////////////////////////// 

 // Output  

 //////////////////////////////////////////////////////////////////////////////// 

 assign o_valid    = i_valid ; 

 assign o_decodedBin   = ( isLPS == 1'b1 ) ? ~valMPS  : valMPS ; 

  

 assign o_isLPS      = isLPS  ; 

 assign o_rangeFMps   = ( isLPS == 1'b1 ) ? rangeFMps : 8'b0 ; 

 assign o_rangeILps   = ( isBypass == 1'b0 && isLPS == 1'b1 ) ? rangeILps : 

5'b0 ;    

  

 assign t_rangeF    = updated_rangeF ; 

 assign t_rangeI    = updated_rangeI ; 
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 //////////////////////////////////////////////////////////////////////////////// 

 // MPS/LPS Decision 

 //////////////////////////////////////////////////////////////////////////////// 

 always@(i_offsetI,i_offsetF,rangeIMps,rangeFMps) begin 

  if ( rangeIMps > i_offsetI  || (i_offsetI == rangeIMps && i_offsetF >= 

rangeFMps ) ) begin 

   isLPS    = 1'b1 ; 

  end else begin 

   isLPS    = 1'b0 ; 

  end    

 end 

  

 //////////////////////////////////////////////////////////////////////////////// 

 // s_flag 

 //////////////////////////////////////////////////////////////////////////////// 

 assign s_flag    = ( reg_rangeF < lgPmps ) ? 1'b1 : 1'b0 ; 

   

 //////////////////////////////////////////////////////////////////////////////// 

 // Range MPS  

 //////////////////////////////////////////////////////////////////////////////// 

 assign rangeFMps   = reg_rangeF - lgPmps ;    

 assign rangeIMps   = reg_rangeI + {4'b0,s_flag} + {4'b0,isBypass} ; 

  

 //////////////////////////////////////////////////////////////////////////////// 

 // Range LPS  

 //////////////////////////////////////////////////////////////////////////////// 

 assign rangeFLps    = ( s_flag == 1'b1 ) ? rangeFLps2 : rangeFLps1 ; 

 assign rangeILps    = ( s_flag == 1'b1 ) ? rangeILps2 : rangeILps1 ; 

  

 dLPSScaling1 A_LPSScaling1(   

  .i_rangeF     ( reg_rangeF    ), 

     .i_lgPmps     ( lgPmps     ), 

     .rangeFLps1    ( rangeFLps1   ), 

     .rangeILps1    ( rangeILps1   ) 

 ); 

  

 dLPSScaling2 A_LPSScaling2(   

  .i_rangeF     ( reg_rangeF    ), 

     .i_lgPmps     ( lgPmps     ), 

     .rangeFLps2    ( rangeFLps2   ), 

     .rangeILps2    ( rangeILps2   ) 

 ); 

  

 //////////////////////////////////////////////////////////////////////////////// 
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 // rangeF Update  

 //////////////////////////////////////////////////////////////////////////////// 

 assign updated_rangeF  = ( isBypass == 1'b0 && isLPS  == 1'b1 ) ? rangeFLps : 

rangeFMps ;  

  

 always@(posedge clk,negedge rst_n) begin 

  if (!rst_n) begin 

   reg_rangeF   <= 8'hFF ; 

  end else begin 

   if ( i_reset == 1'b1 ) begin 

    reg_rangeF  <= 8'hFF ; 

   end else if ( i_valid == 1'b1 ) begin  

    reg_rangeF  <= updated_rangeF ; 

   end  

  end 

 end  

  

 //////////////////////////////////////////////////////////////////////////////// 

 // rangeI Update  

 //////////////////////////////////////////////////////////////////////////////// 

 assign updated_rangeI  = ( isLPS  == 1'b1 ) ? 5'b0 : rangeIMps ;  

  

 always@(posedge clk,negedge rst_n) begin 

  if (!rst_n) begin 

   reg_rangeI   <= 5'b0 ; 

  end else begin 

   if ( i_reset == 1'b1 ) begin 

    reg_rangeI  <= 5'b0 ; 

   end else if ( i_valid == 1'b1 ) begin  

    reg_rangeI  <= updated_rangeI ; 

   end  

  end 

 end  

    

endmodule 

In the range update module, there are two scaling operations are introduced in order to 

describe the operations in each case in LPS. 

`timescale 1ns/100ps 

 

module dLPSScaling1 ( 

 input  [7:0]    i_rangeF, 

 input  [7:0]    i_lgPmps,       
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    output  reg [7:0]    rangeFLps1, 

    output  reg [4:0]    rangeILps1 

); 

  

 always@(i_lgPmps,i_rangeF,i_rangeF) begin 

  case(i_lgPmps) 

  8'b00000000 : rangeFLps1 = i_rangeF ; 

  8'b00000001 : rangeFLps1 = 8'b0 ; 

  8'b00000010 : rangeFLps1 = {i_lgPmps[0],7'b0} ; 

  8'b00000011 : rangeFLps1 = {i_lgPmps[0],7'b0} ; 

  8'b00000100 : rangeFLps1 = {i_lgPmps[1:0],6'b0} ; 

  8'b00000101 : rangeFLps1 = {i_lgPmps[1:0],6'b0} ; 

  8'b00000110 : rangeFLps1 = {i_lgPmps[1:0],6'b0} ; 

  8'b00000111 : rangeFLps1 = {i_lgPmps[1:0],6'b0} ; 

  8'b00001000 : rangeFLps1 = {i_lgPmps[2:0],5'b0} ; 

  8'b00001001 : rangeFLps1 = {i_lgPmps[2:0],5'b0} ; 

  8'b00001010 : rangeFLps1 = {i_lgPmps[2:0],5'b0} ; 

  8'b00001011 : rangeFLps1 = {i_lgPmps[2:0],5'b0} ; 

  8'b00001100 : rangeFLps1 = {i_lgPmps[2:0],5'b0} ; 

  8'b00001101 : rangeFLps1 = {i_lgPmps[2:0],5'b0} ; 

  8'b00001110 : rangeFLps1 = {i_lgPmps[2:0],5'b0} ; 

  8'b00001111 : rangeFLps1 = {i_lgPmps[2:0],5'b0} ; 

  8'b00010000 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ; 

  8'b00010001 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ; 

  8'b00010010 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ; 

  8'b00010011 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ; 

  8'b00010100 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ; 

  8'b00010101 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ; 

  8'b00010110 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ; 

  8'b00010111 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ; 

  8'b00011000 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ; 

  8'b00011001 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ; 

  8'b00011010 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ; 

  8'b00011011 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ; 

  8'b00011100 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ; 

  8'b00011101 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ; 

  8'b00011110 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ; 

  8'b00011111 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ; 

  8'b00100000 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00100001 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00100010 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00100011 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00100100 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00100101 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 
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  8'b00100110 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00100111 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00101000 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00101001 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00101010 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00101011 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00101100 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00101101 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00101110 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00101111 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00110000 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00110001 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00110010 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00110011 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00110100 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00110101 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00110110 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00110111 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00111000 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00111001 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00111010 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00111011 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00111100 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00111101 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00111110 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b00111111 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ; 

  8'b01000000 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01000001 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01000010 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01000011 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01000100 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01000101 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01000110 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01000111 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01001000 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01001001 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01001010 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01001011 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01001100 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01001101 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01001110 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01001111 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01010000 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01010001 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 
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  8'b01010010 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01010011 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01010100 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01010101 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01010110 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01010111 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01011000 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01011001 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01011010 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01011011 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01011100 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01011101 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01011110 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01011111 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01100000 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01100001 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01100010 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01100011 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01100100 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01100101 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01100110 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01100111 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01101000 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01101001 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01101010 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01101011 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01101100 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01101101 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01101110 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01101111 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01110000 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01110001 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01110010 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01110011 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01110100 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01110101 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01110110 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01110111 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01111000 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01111001 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01111010 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01111011 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01111100 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01111101 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 
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  8'b01111110 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  8'b01111111 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ; 

  default  : rangeFLps1 = {i_lgPmps[6:0],1'b0} ;  

  endcase  

 end 

     

    always@(i_lgPmps) begin 

  case(i_lgPmps[7:1]) 

  7'b0000000 : rangeILps1 = 5'd8 ; 

  7'b0000001 : rangeILps1 = 5'd7 ; 

  7'b0000010 : rangeILps1 = 5'd6 ; 

  7'b0000011 : rangeILps1 = 5'd6 ; 

  7'b0000100 : rangeILps1 = 5'd5 ; 

  7'b0000101 : rangeILps1 = 5'd5 ; 

  7'b0000110 : rangeILps1 = 5'd5 ; 

  7'b0000111 : rangeILps1 = 5'd5 ; 

  7'b0001000 : rangeILps1 = 5'd4 ; 

  7'b0001001 : rangeILps1 = 5'd4 ; 

  7'b0001010 : rangeILps1 = 5'd4 ; 

  7'b0001011 : rangeILps1 = 5'd4 ; 

  7'b0001100 : rangeILps1 = 5'd4 ; 

  7'b0001101 : rangeILps1 = 5'd4 ; 

  7'b0001110 : rangeILps1 = 5'd4 ; 

  7'b0001111 : rangeILps1 = 5'd4 ; 

  7'b0010000 : rangeILps1 = 5'd3 ; 

  7'b0010001 : rangeILps1 = 5'd3 ; 

  7'b0010010 : rangeILps1 = 5'd3 ; 

  7'b0010011 : rangeILps1 = 5'd3 ; 

  7'b0010100 : rangeILps1 = 5'd3 ; 

  7'b0010101 : rangeILps1 = 5'd3 ; 

  7'b0010110 : rangeILps1 = 5'd3 ; 

  7'b0010111 : rangeILps1 = 5'd3 ; 

  7'b0011000 : rangeILps1 = 5'd3 ; 

  7'b0011001 : rangeILps1 = 5'd3 ; 

  7'b0011010 : rangeILps1 = 5'd3 ; 

  7'b0011011 : rangeILps1 = 5'd3 ; 

  7'b0011100 : rangeILps1 = 5'd3 ; 

  7'b0011101 : rangeILps1 = 5'd3 ; 

  7'b0011110 : rangeILps1 = 5'd3 ; 

  7'b0011111 : rangeILps1 = 5'd3 ; 

  7'b0100000 : rangeILps1 = 5'd2 ; 

  7'b0100001 : rangeILps1 = 5'd2 ; 

  7'b0100010 : rangeILps1 = 5'd2 ; 

  7'b0100011 : rangeILps1 = 5'd2 ; 
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  7'b0100100 : rangeILps1 = 5'd2 ; 

  7'b0100101 : rangeILps1 = 5'd2 ; 

  7'b0100110 : rangeILps1 = 5'd2 ; 

  7'b0100111 : rangeILps1 = 5'd2 ; 

  7'b0101000 : rangeILps1 = 5'd2 ; 

  7'b0101001 : rangeILps1 = 5'd2 ; 

  7'b0101010 : rangeILps1 = 5'd2 ; 

  7'b0101011 : rangeILps1 = 5'd2 ; 

  7'b0101100 : rangeILps1 = 5'd2 ; 

  7'b0101101 : rangeILps1 = 5'd2 ; 

  7'b0101110 : rangeILps1 = 5'd2 ; 

  7'b0101111 : rangeILps1 = 5'd2 ; 

  7'b0110000 : rangeILps1 = 5'd2 ; 

  7'b0110001 : rangeILps1 = 5'd2 ; 

  7'b0110010 : rangeILps1 = 5'd2 ; 

  7'b0110011 : rangeILps1 = 5'd2 ; 

  7'b0110100 : rangeILps1 = 5'd2 ; 

  7'b0110101 : rangeILps1 = 5'd2 ; 

  7'b0110110 : rangeILps1 = 5'd2 ; 

  7'b0110111 : rangeILps1 = 5'd2 ; 

  7'b0111000 : rangeILps1 = 5'd2 ; 

  7'b0111001 : rangeILps1 = 5'd2 ; 

  7'b0111010 : rangeILps1 = 5'd2 ; 

  7'b0111011 : rangeILps1 = 5'd2 ; 

  7'b0111100 : rangeILps1 = 5'd2 ; 

  7'b0111101 : rangeILps1 = 5'd2 ; 

  7'b0111110 : rangeILps1 = 5'd2 ; 

  7'b0111111 : rangeILps1 = 5'd2 ; 

  default  : rangeILps1 = 5'd1 ;   

  endcase  

 end 

  

endmodule 

 

`timescale 1ns/100ps 

 

module dLPSScaling2 (       

 input  [7:0]    i_rangeF, 

 input  [7:0]    i_lgPmps, 

 output  reg [7:0]    rangeFLps2,           

    output  reg [4:0]    rangeILps2 

); 
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 wire [8:0]     temp ; 

 wire  [7:0]       sel ;  

  

 assign temp      = {1'b0,i_rangeF} + {1'b0,i_lgPmps} ;   

 assign sel       = temp[8:1] ; 

    

 always@(sel,temp) begin 

  case(sel) 

  8'b00000000 : rangeFLps2 = 8'b0 ; 

  8'b00000001 : rangeFLps2 = {temp[0],7'b0} ; 

  8'b00000010 : rangeFLps2 = {temp[1:0],6'b0} ; 

  8'b00000011 : rangeFLps2 = {temp[1:0],6'b0} ; 

  8'b00000100 : rangeFLps2 = {temp[2:0],5'b0} ; 

  8'b00000101 : rangeFLps2 = {temp[2:0],5'b0} ; 

  8'b00000110 : rangeFLps2 = {temp[2:0],5'b0} ; 

  8'b00000111 : rangeFLps2 = {temp[2:0],5'b0} ; 

  8'b00001000 : rangeFLps2 = {temp[3:0],4'b0} ; 

  8'b00001001 : rangeFLps2 = {temp[3:0],4'b0} ; 

  8'b00001010 : rangeFLps2 = {temp[3:0],4'b0} ; 

  8'b00001011 : rangeFLps2 = {temp[3:0],4'b0} ; 

  8'b00001100 : rangeFLps2 = {temp[3:0],4'b0} ; 

  8'b00001101 : rangeFLps2 = {temp[3:0],4'b0} ; 

  8'b00001110 : rangeFLps2 = {temp[3:0],4'b0} ; 

  8'b00001111 : rangeFLps2 = {temp[3:0],4'b0} ; 

  8'b00010000 : rangeFLps2 = {temp[4:0],3'b0} ; 

  8'b00010001 : rangeFLps2 = {temp[4:0],3'b0} ; 

  8'b00010010 : rangeFLps2 = {temp[4:0],3'b0} ; 

  8'b00010011 : rangeFLps2 = {temp[4:0],3'b0} ; 

  8'b00010100 : rangeFLps2 = {temp[4:0],3'b0} ; 

  8'b00010101 : rangeFLps2 = {temp[4:0],3'b0} ; 

  8'b00010110 : rangeFLps2 = {temp[4:0],3'b0} ; 

  8'b00010111 : rangeFLps2 = {temp[4:0],3'b0} ; 

  8'b00011000 : rangeFLps2 = {temp[4:0],3'b0} ; 

  8'b00011001 : rangeFLps2 = {temp[4:0],3'b0} ; 

  8'b00011010 : rangeFLps2 = {temp[4:0],3'b0} ; 

  8'b00011011 : rangeFLps2 = {temp[4:0],3'b0} ; 

  8'b00011100 : rangeFLps2 = {temp[4:0],3'b0} ; 

  8'b00011101 : rangeFLps2 = {temp[4:0],3'b0} ; 

  8'b00011110 : rangeFLps2 = {temp[4:0],3'b0} ; 

  8'b00011111 : rangeFLps2 = {temp[4:0],3'b0} ; 

  8'b00100000 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00100001 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00100010 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00100011 : rangeFLps2 = {temp[5:0],2'b0} ; 
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  8'b00100100 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00100101 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00100110 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00100111 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00101000 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00101001 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00101010 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00101011 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00101100 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00101101 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00101110 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00101111 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00110000 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00110001 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00110010 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00110011 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00110100 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00110101 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00110110 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00110111 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00111000 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00111001 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00111010 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00111011 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00111100 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00111101 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00111110 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b00111111 : rangeFLps2 = {temp[5:0],2'b0} ; 

  8'b01000000 : rangeFLps2 = {temp[6:0],1'b0} ;   

  8'b01000001 : rangeFLps2 = {temp[6:0],1'b0} ;   

  8'b01000010 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01000011 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01000100 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01000101 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01000110 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01000111 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01001000 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01001001 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01001010 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01001011 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01001100 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01001101 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01001110 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01001111 : rangeFLps2 = {temp[6:0],1'b0} ; 
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  8'b01010000 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01010001 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01010010 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01010011 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01010100 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01010101 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01010110 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01010111 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01011000 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01011001 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01011010 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01011011 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01011100 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01011101 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01011110 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01011111 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01100000 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01100001 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01100010 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01100011 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01100100 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01100101 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01100110 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01100111 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01101000 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01101001 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01101010 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01101011 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01101100 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01101101 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01101110 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01101111 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01110000 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01110001 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01110010 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01110011 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01110100 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01110101 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01110110 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01110111 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01111000 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01111001 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01111010 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01111011 : rangeFLps2 = {temp[6:0],1'b0} ; 
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  8'b01111100 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01111101 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01111110 : rangeFLps2 = {temp[6:0],1'b0} ; 

  8'b01111111 : rangeFLps2 = {temp[6:0],1'b0} ; 

  default  : rangeFLps2 = temp[7:0] ;  

  endcase  

 end 

  

 always@(sel) begin 

  case(sel) 

  8'b00000000 : rangeILps2 = 5'd8 ; 

  8'b00000001 : rangeILps2 = 5'd7 ; 

  8'b00000010 : rangeILps2 = 5'd6 ; 

  8'b00000011 : rangeILps2 = 5'd6 ; 

  8'b00000100 : rangeILps2 = 5'd5 ; 

  8'b00000101 : rangeILps2 = 5'd5 ; 

  8'b00000110 : rangeILps2 = 5'd5 ; 

  8'b00000111 : rangeILps2 = 5'd5 ; 

  8'b00001000 : rangeILps2 = 5'd4 ; 

  8'b00001001 : rangeILps2 = 5'd4 ; 

  8'b00001010 : rangeILps2 = 5'd4 ; 

  8'b00001011 : rangeILps2 = 5'd4 ; 

  8'b00001100 : rangeILps2 = 5'd4 ; 

  8'b00001101 : rangeILps2 = 5'd4 ; 

  8'b00001110 : rangeILps2 = 5'd4 ; 

  8'b00001111 : rangeILps2 = 5'd4 ; 

  8'b00010000 : rangeILps2 = 5'd3 ; 

  8'b00010001 : rangeILps2 = 5'd3 ; 

  8'b00010010 : rangeILps2 = 5'd3 ; 

  8'b00010011 : rangeILps2 = 5'd3 ; 

  8'b00010100 : rangeILps2 = 5'd3 ; 

  8'b00010101 : rangeILps2 = 5'd3 ; 

  8'b00010110 : rangeILps2 = 5'd3 ; 

  8'b00010111 : rangeILps2 = 5'd3 ; 

  8'b00011000 : rangeILps2 = 5'd3 ; 

  8'b00011001 : rangeILps2 = 5'd3 ; 

  8'b00011010 : rangeILps2 = 5'd3 ; 

  8'b00011011 : rangeILps2 = 5'd3 ; 

  8'b00011100 : rangeILps2 = 5'd3 ; 

  8'b00011101 : rangeILps2 = 5'd3 ; 

  8'b00011110 : rangeILps2 = 5'd3 ; 

  8'b00011111 : rangeILps2 = 5'd3 ; 

  8'b00100000 : rangeILps2 = 5'd2 ; 

  8'b00100001 : rangeILps2 = 5'd2 ; 
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  8'b00100010 : rangeILps2 = 5'd2 ; 

  8'b00100011 : rangeILps2 = 5'd2 ; 

  8'b00100100 : rangeILps2 = 5'd2 ; 

  8'b00100101 : rangeILps2 = 5'd2 ; 

  8'b00100110 : rangeILps2 = 5'd2 ; 

  8'b00100111 : rangeILps2 = 5'd2 ; 

  8'b00101000 : rangeILps2 = 5'd2 ; 

  8'b00101001 : rangeILps2 = 5'd2 ; 

  8'b00101010 : rangeILps2 = 5'd2 ; 

  8'b00101011 : rangeILps2 = 5'd2 ; 

  8'b00101100 : rangeILps2 = 5'd2 ; 

  8'b00101101 : rangeILps2 = 5'd2 ; 

  8'b00101110 : rangeILps2 = 5'd2 ; 

  8'b00101111 : rangeILps2 = 5'd2 ; 

  8'b00110000 : rangeILps2 = 5'd2 ; 

  8'b00110001 : rangeILps2 = 5'd2 ; 

  8'b00110010 : rangeILps2 = 5'd2 ; 

  8'b00110011 : rangeILps2 = 5'd2 ; 

  8'b00110100 : rangeILps2 = 5'd2 ; 

  8'b00110101 : rangeILps2 = 5'd2 ; 

  8'b00110110 : rangeILps2 = 5'd2 ; 

  8'b00110111 : rangeILps2 = 5'd2 ; 

  8'b00111000 : rangeILps2 = 5'd2 ; 

  8'b00111001 : rangeILps2 = 5'd2 ; 

  8'b00111010 : rangeILps2 = 5'd2 ; 

  8'b00111011 : rangeILps2 = 5'd2 ; 

  8'b00111100 : rangeILps2 = 5'd2 ; 

  8'b00111101 : rangeILps2 = 5'd2 ; 

  8'b00111110 : rangeILps2 = 5'd2 ; 

  8'b00111111 : rangeILps2 = 5'd2 ; 

  8'b01000000 : rangeILps2 = 5'd1 ;   

  8'b01000001 : rangeILps2 = 5'd1 ;   

  8'b01000010 : rangeILps2 = 5'd1 ; 

  8'b01000011 : rangeILps2 = 5'd1 ; 

  8'b01000100 : rangeILps2 = 5'd1 ; 

  8'b01000101 : rangeILps2 = 5'd1 ; 

  8'b01000110 : rangeILps2 = 5'd1 ; 

  8'b01000111 : rangeILps2 = 5'd1 ; 

  8'b01001000 : rangeILps2 = 5'd1 ; 

  8'b01001001 : rangeILps2 = 5'd1 ; 

  8'b01001010 : rangeILps2 = 5'd1 ; 

  8'b01001011 : rangeILps2 = 5'd1 ; 

  8'b01001100 : rangeILps2 = 5'd1 ; 

  8'b01001101 : rangeILps2 = 5'd1 ; 
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  8'b01001110 : rangeILps2 = 5'd1 ; 

  8'b01001111 : rangeILps2 = 5'd1 ; 

  8'b01010000 : rangeILps2 = 5'd1 ; 

  8'b01010001 : rangeILps2 = 5'd1 ; 

  8'b01010010 : rangeILps2 = 5'd1 ; 

  8'b01010011 : rangeILps2 = 5'd1 ; 

  8'b01010100 : rangeILps2 = 5'd1 ; 

  8'b01010101 : rangeILps2 = 5'd1 ; 

  8'b01010110 : rangeILps2 = 5'd1 ; 

  8'b01010111 : rangeILps2 = 5'd1 ; 

  8'b01011000 : rangeILps2 = 5'd1 ; 

  8'b01011001 : rangeILps2 = 5'd1 ; 

  8'b01011010 : rangeILps2 = 5'd1 ; 

  8'b01011011 : rangeILps2 = 5'd1 ; 

  8'b01011100 : rangeILps2 = 5'd1 ; 

  8'b01011101 : rangeILps2 = 5'd1 ; 

  8'b01011110 : rangeILps2 = 5'd1 ; 

  8'b01011111 : rangeILps2 = 5'd1 ; 

  8'b01100000 : rangeILps2 = 5'd1 ; 

  8'b01100001 : rangeILps2 = 5'd1 ; 

  8'b01100010 : rangeILps2 = 5'd1 ; 

  8'b01100011 : rangeILps2 = 5'd1 ; 

  8'b01100100 : rangeILps2 = 5'd1 ; 

  8'b01100101 : rangeILps2 = 5'd1 ; 

  8'b01100110 : rangeILps2 = 5'd1 ; 

  8'b01100111 : rangeILps2 = 5'd1 ; 

  8'b01101000 : rangeILps2 = 5'd1 ; 

  8'b01101001 : rangeILps2 = 5'd1 ; 

  8'b01101010 : rangeILps2 = 5'd1 ; 

  8'b01101011 : rangeILps2 = 5'd1 ; 

  8'b01101100 : rangeILps2 = 5'd1 ; 

  8'b01101101 : rangeILps2 = 5'd1 ; 

  8'b01101110 : rangeILps2 = 5'd1 ; 

  8'b01101111 : rangeILps2 = 5'd1 ; 

  8'b01110000 : rangeILps2 = 5'd1 ; 

  8'b01110001 : rangeILps2 = 5'd1 ; 

  8'b01110010 : rangeILps2 = 5'd1 ; 

  8'b01110011 : rangeILps2 = 5'd1 ; 

  8'b01110100 : rangeILps2 = 5'd1 ; 

  8'b01110101 : rangeILps2 = 5'd1 ; 

  8'b01110110 : rangeILps2 = 5'd1 ; 

  8'b01110111 : rangeILps2 = 5'd1 ; 

  8'b01111000 : rangeILps2 = 5'd1 ; 

  8'b01111001 : rangeILps2 = 5'd1 ; 
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  8'b01111010 : rangeILps2 = 5'd1 ; 

  8'b01111011 : rangeILps2 = 5'd1 ; 

  8'b01111100 : rangeILps2 = 5'd1 ; 

  8'b01111101 : rangeILps2 = 5'd1 ; 

  8'b01111110 : rangeILps2 = 5'd1 ; 

  8'b01111111 : rangeILps2 = 5'd1 ; 

  default  : rangeILps2 = 5'd0 ;  

  endcase                        

    end                                

                                        

endmodule                              

   

 

A.1.2 Offset Update Module(dOffsetUpdate.v)  

`timescale 1ns/100ps 

 

module dOffsetUpdate ( 

 input        clk, 

 input        rst_n, 

  

 // Signals from Context Modeling 

 input        i_reset,  

 input        i_init,   

 input        i_valid,   

  

 // Signals for Updating Offset 

 input         i_isLPS,  

 input   [7:0]     i_rangeFMps, 

 input   [4:0]     i_rangeILps, 

  

 // Signals from ReadBit 

 input        i_readBits1,   

 input  [7:0]     i_readBits2,   

 input  [31:0]     i_readBits3,    

  

 // Signals to ReadBit 

 output        o_numOfReadBits1, 

 output  [3:0]     o_numOfReadBits2, 

 output  [4:0]     o_numOfReadBits3, 
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 // Signals to Range Update  

 output        o_valid,   

 output  [7:0]     o_offsetF, 

 output  [4:0]     o_offsetI, 

  

 // Signals for Test , 

 output  [7:0]     t_offsetF, 

 output  [4:0]     t_offsetI    

); 

 

//////////////////////////////////////////////////////////////////////////////// 

// offset Update Stage 

//////////////////////////////////////////////////////////////////////////////// 

 reg   [7:0]     reg_offsetF   ;   

 reg   [4:0]     reg_offsetI   ;   

 wire  [7:0]     updated_offsetF  ;   

 wire  [4:0]     updated_offsetI  ; 

  

 wire        s_flag_offset  ;   

  

 wire  [8:0]     un_offsetF   ; 

 wire  [9:0]     us_offsetF   ; 

 wire  [8:0]     u_offsetF   ; 

 wire        u_offsetI   ; 

  

 reg   [8:0]     s_offsetF   ;  

  

 reg   [7:0]     n_offsetF   ; 

 reg   [4:0]     n_offsetI   ; 

   

 //////////////////////////////////////////////////////////////////////////////// 

 // Output  

 //////////////////////////////////////////////////////////////////////////////// 

 assign o_valid    = i_valid ; 

 assign o_offsetF   = reg_offsetF ; 

 assign o_offsetI   = reg_offsetI ; 

 assign t_offsetF   = updated_offsetF ; 

 assign t_offsetI   = updated_offsetI ; 

  

 assign o_numOfReadBits1  = i_init | s_flag_offset ; 

 assign o_numOfReadBits2  = ( i_init == 1'b1 ) ? 4'd8 : i_rangeILps[3:0] ; 

 assign o_numOfReadBits3  = n_offsetI ; 

  

 //////////////////////////////////////////////////////////////////////////////// 
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 // s_flag  

 //////////////////////////////////////////////////////////////////////////////// 

 assign s_flag_offset  = ( i_init == 1'b1 || reg_offsetF < i_rangeFMps ) ? 1'b1 : 

1'b0 ;   

  

 //////////////////////////////////////////////////////////////////////////////// 

 // OffsetF Update  

 //////////////////////////////////////////////////////////////////////////////// 

 assign un_offsetF   = {1'b0,reg_offsetF} - {1'b0,i_rangeFMps} ;   

  // non scaled offsetF    

 assign us_offsetF   = 10'd256 + {1'b0,reg_offsetF[7:0],i_readBits1} - 

{2'b0,i_rangeFMps} ;  // scaled offsetF  

 assign u_offsetF   = ( s_flag_offset == 1'b1 ) ? us_offsetF[8:0] : un_offsetF ; 

  

 //////////////////////////////////////////////////////////////////////////////// 

 // OffsetI Update  

 //////////////////////////////////////////////////////////////////////////////// 

 assign u_offsetI   = ( s_flag_offset == 1'b1 ) ? 1'b1 : 1'b0 ; 

  

 //////////////////////////////////////////////////////////////////////////////// 

 // rangeF Scaling ( renormalization )  

 //////////////////////////////////////////////////////////////////////////////// 

 always@(i_rangeILps,u_offsetF,i_readBits2,i_init) begin 

  if ( i_init == 1'b1 ) begin 

   s_offsetF    = {u_offsetF[0:0],i_readBits2[7:0]} ; 

  end else begin 

   case(i_rangeILps) 

   4'd1 : s_offsetF = {u_offsetF[7:0],i_readBits2[7:7]} ; 

   4'd2 : s_offsetF = {u_offsetF[6:0],i_readBits2[7:6]} ; 

   4'd3 : s_offsetF = {u_offsetF[5:0],i_readBits2[7:5]} ; 

   4'd4 : s_offsetF = {u_offsetF[4:0],i_readBits2[7:4]} ; 

   4'd5 : s_offsetF = {u_offsetF[3:0],i_readBits2[7:3]} ; 

   4'd6 : s_offsetF = {u_offsetF[2:0],i_readBits2[7:2]} ; 

   4'd7 : s_offsetF = {u_offsetF[1:0],i_readBits2[7:1]} ; 

   4'd8 : s_offsetF = {u_offsetF[0:0],i_readBits2[7:0]} ; 

   default : s_offsetF = u_offsetF ; 

   endcase 

  end 

 end 

    

 //////////////////////////////////////////////////////////////////////////////// 

 // offsetF Scaling ( domain conversion )  

 //////////////////////////////////////////////////////////////////////////////// 

 wire [40:0]  e_offsetF ; 
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 assign e_offsetF = {s_offsetF,i_readBits3} ; 

  

 always@(e_offsetF) begin 

  if ( e_offsetF[40:40] == 1 ) begin 

   n_offsetF = e_offsetF[39:32]  ; 

   n_offsetI = 5'd0    ; 

  end else if ( e_offsetF[40:39] == 1 ) begin 

   n_offsetF = e_offsetF[38:31]  ; 

   n_offsetI = 5'd1    ; 

  end else if ( e_offsetF[40:38] == 1 ) begin 

   n_offsetF = e_offsetF[37:30]  ; 

   n_offsetI = 5'd2    ; 

  end else if ( e_offsetF[40:37] == 1 ) begin 

   n_offsetF = e_offsetF[36:29]  ; 

   n_offsetI = 5'd3    ; 

  end else if ( e_offsetF[40:36] == 1 ) begin 

   n_offsetF = e_offsetF[35:28]  ; 

   n_offsetI = 5'd4    ; 

  end else if ( e_offsetF[40:35] == 1 ) begin 

   n_offsetF = e_offsetF[34:27]  ; 

   n_offsetI = 5'd5    ; 

  end else if ( e_offsetF[40:34] == 1 ) begin 

   n_offsetF = e_offsetF[33:26]  ; 

   n_offsetI = 5'd6    ; 

  end else if ( e_offsetF[40:33] == 1 ) begin 

   n_offsetF = e_offsetF[32:25]  ; 

   n_offsetI = 5'd7    ; 

  end else if ( e_offsetF[40:32] == 1 ) begin 

   n_offsetF = e_offsetF[31:24]  ; 

   n_offsetI = 5'd8    ; 

  end else if ( e_offsetF[40:31] == 1 ) begin 

   n_offsetF = e_offsetF[30:23]  ; 

   n_offsetI = 5'd9    ; 

  end else if ( e_offsetF[40:30] == 1 ) begin 

   n_offsetF = e_offsetF[29:22]  ; 

   n_offsetI = 5'd10    ; 

  end else if ( e_offsetF[40:29] == 1 ) begin 

   n_offsetF = e_offsetF[28:21]  ; 

   n_offsetI = 5'd11    ; 

  end else if ( e_offsetF[40:28] == 1 ) begin 

   n_offsetF = e_offsetF[27:20]  ; 

   n_offsetI = 5'd12    ; 

  end else if ( e_offsetF[40:27] == 1 ) begin 
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   n_offsetF = e_offsetF[26:19]  ; 

   n_offsetI = 5'd13    ; 

  end else if ( e_offsetF[40:26] == 1 ) begin 

   n_offsetF = e_offsetF[25:18]  ; 

   n_offsetI = 5'd14    ; 

  end else if ( e_offsetF[40:25] == 1 ) begin 

   n_offsetF = e_offsetF[24:17]  ; 

   n_offsetI = 5'd15    ; 

  end else if ( e_offsetF[40:24] == 1 ) begin 

   n_offsetF = e_offsetF[23:16]  ; 

   n_offsetI = 5'd16    ; 

  end else if ( e_offsetF[40:23] == 1 ) begin 

   n_offsetF = e_offsetF[22:15]  ; 

   n_offsetI = 5'd17    ; 

  end else if ( e_offsetF[40:22] == 1 ) begin 

   n_offsetF = e_offsetF[21:14]  ; 

   n_offsetI = 5'd18    ; 

  end else begin 

   n_offsetF = e_offsetF[20:13]  ; 

   n_offsetI = 5'd19    ; 

  end 

 end                   

     

 //////////////////////////////////////////////////////////////////////////////// 

 // offsetF Update  

 //////////////////////////////////////////////////////////////////////////////// 

 assign updated_offsetF  = ( i_isLPS ) ? n_offsetF : reg_offsetF ;  

  

 always@(posedge clk,negedge rst_n) begin 

  if (!rst_n) begin 

   reg_offsetF   <= 8'd0 ; 

  end else begin 

   if ( i_reset == 1'b1 ) begin 

    reg_offsetF  <= 8'd0 ; 

   end else if ( i_valid == 1'b1 || i_init == 1'b1 ) begin  

    reg_offsetF  <= updated_offsetF ; 

   end  

  end 

 end  

  

 //////////////////////////////////////////////////////////////////////////////// 

 // offsetI Update  

 //////////////////////////////////////////////////////////////////////////////// 

 assign updated_offsetI  = ( i_isLPS ) ? n_offsetI : reg_offsetI ;  
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 always@(posedge clk,negedge rst_n) begin 

  if (!rst_n) begin 

   reg_offsetI   <= 5'b0 ; 

  end else begin 

   if ( i_reset == 1'b1 ) begin 

    reg_offsetI  <= 5'b0 ; 

   end else if ( i_valid == 1'b1 || i_init == 1'b1 ) begin  

    reg_offsetI  <= updated_offsetI ; 

   end  

  end 

 end  

    

endmodule 

 

A.1.3 Bits Read Module (dReadBits.v) 

`timescale 1ns/100ps 

 

module dReadBits #( 

 parameter ADDR_WIDTH    = 16 

)( 

 input        clk, 

 input        rst_n, 

  

 input        i_init,   

 input        i_valid,   

 input        i_isLPS,   

  

 // form Bitstream Buffer 

 output        renable, 

    output reg [ADDR_WIDTH-1:0]  raddr, 

    input   [63:0]     rdata, 

     

 input        i_numOfReadBits1, 

 input  [3:0]     i_numOfReadBits2, 

 input  [4:0]     i_numOfReadBits3,  

  

 output        o_readBits1,   

 output  [7:0]     o_readBits2,   

 output  [31:0]     o_readBits3    
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); 

 reg   [5:0]     currBitCount  ;   

 wire  [6:0]     nextBitCount1  ;   

 wire  [6:0]     nextBitCount2  ;   

 wire  [6:0]     nextBitCount3  ;        

 wire  [6:0]     nextBitCount4  ; 

    

 reg   [63:0]     currBitBuffer  ;   

 reg   [63:0]     nextBitBuffer1  ;   

 reg   [63:0]     nextBitBuffer2  ;   

 reg   [63:0]     nextBitBuffer3  ;        

 wire  [63:0]     nextBitBuffer4  ; 

  

 reg   [63:0]     currPreLoadBuffer ;   

 reg   [63:0]     nextPreLoadBuffer0 ;   

 reg   [63:0]     nextPreLoadBuffer1 ;   

 reg   [63:0]     nextPreLoadBuffer2 ;   

 reg   [63:0]     nextPreLoadBuffer3 ;        

 wire  [63:0]     nextPreLoadBuffer4 ; 

  

 reg         init_1d    ; 

 reg         renable_1d   ;  

  

 assign o_readBits1 = currBitBuffer[63] ;  

 assign o_readBits2 = nextBitBuffer1[63:56] ; 

 assign o_readBits3 = nextBitBuffer2[63:32] ;  

  

 always@(currBitCount,currPreLoadBuffer,rdata) begin 

  case(currBitCount[5:0]) 

  6'd63 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:63],rdata[63:01]} ; 

  6'd62 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:62],rdata[63:02]} ; 

  6'd61 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:61],rdata[63:03]} ; 

  6'd60 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:60],rdata[63:04]} ; 

  6'd59 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:59],rdata[63:05]} ; 

  6'd58 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:58],rdata[63:06]} ; 

  6'd57 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:57],rdata[63:07]} ; 

  6'd56 : nextPreLoadBuffer0 = 
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{currPreLoadBuffer[63:56],rdata[63:08]} ; 

  6'd55 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:55],rdata[63:09]} ; 

  6'd54 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:54],rdata[63:10]} ; 

  6'd53 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:53],rdata[63:11]} ; 

  6'd52 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:52],rdata[63:12]} ; 

  6'd51 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:51],rdata[63:13]} ; 

  6'd50 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:50],rdata[63:14]} ; 

  6'd49 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:49],rdata[63:15]} ; 

  6'd48 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:48],rdata[63:16]} ; 

  6'd47 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:47],rdata[63:17]} ; 

  6'd46 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:46],rdata[63:18]} ; 

  6'd45 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:45],rdata[63:19]} ; 

  6'd44 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:44],rdata[63:20]} ; 

  6'd43 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:43],rdata[63:21]} ; 

  6'd42 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:42],rdata[63:22]} ; 

  6'd41 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:41],rdata[63:23]} ; 

  6'd40 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:40],rdata[63:24]} ; 

  6'd39 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:39],rdata[63:25]} ; 

  6'd38 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:38],rdata[63:26]} ; 

  6'd37 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:37],rdata[63:27]} ; 

  6'd36 : nextPreLoadBuffer0 = 

{currPreLoadBuffer[63:36],rdata[63:28]} ; 

  default : nextPreLoadBuffer0 = currPreLoadBuffer ; 

  endcase 

 end 
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 assign nextBitCount1 = {1'b0,currBitCount} + {6'b0,i_numOfReadBits1} ; 

  

 always@(i_numOfReadBits1,currBitBuffer,nextPreLoadBuffer0) begin 

  if ( i_numOfReadBits1 == 1'b1 ) begin 

   nextBitBuffer1    = 

{currBitBuffer[62:0],nextPreLoadBuffer0[63]} ; 

   nextPreLoadBuffer1   = {nextPreLoadBuffer0[62:0],1'b0} ; 

  end else begin 

   nextBitBuffer1    = currBitBuffer ; 

   nextPreLoadBuffer1   = nextPreLoadBuffer0 ; 

  end 

 end 

  

 assign nextBitCount2 = nextBitCount1 + {3'b0,i_numOfReadBits2} ; 

   

 always@(i_numOfReadBits2,nextBitBuffer1,nextPreLoadBuffer1) begin 

  case(i_numOfReadBits2) 

  4'd1 : nextBitBuffer2 = 

{nextBitBuffer1[62:0],nextPreLoadBuffer1[63:63]} ; 

  4'd2 : nextBitBuffer2 = 

{nextBitBuffer1[61:0],nextPreLoadBuffer1[63:62]} ; 

  4'd3 : nextBitBuffer2 = 

{nextBitBuffer1[60:0],nextPreLoadBuffer1[63:61]} ; 

  4'd4 : nextBitBuffer2 = 

{nextBitBuffer1[59:0],nextPreLoadBuffer1[63:60]} ; 

  4'd5 : nextBitBuffer2 = 

{nextBitBuffer1[58:0],nextPreLoadBuffer1[63:59]} ; 

  4'd6 : nextBitBuffer2 = 

{nextBitBuffer1[57:0],nextPreLoadBuffer1[63:58]} ; 

  4'd7 : nextBitBuffer2 = 

{nextBitBuffer1[56:0],nextPreLoadBuffer1[63:57]} ; 

  4'd8 : nextBitBuffer2 = 

{nextBitBuffer1[55:0],nextPreLoadBuffer1[63:56]} ; 

  default : nextBitBuffer2 = nextBitBuffer1 ; 

  endcase 

 end 

  

 always@(i_numOfReadBits2,nextPreLoadBuffer1) begin 

  case(i_numOfReadBits2) 

  4'd1 : nextPreLoadBuffer2 = {nextPreLoadBuffer1[62:0],1'b0} ; 

  4'd2 : nextPreLoadBuffer2 = {nextPreLoadBuffer1[61:0],2'b0} ; 

  4'd3 : nextPreLoadBuffer2 = {nextPreLoadBuffer1[60:0],3'b0} ; 

  4'd4 : nextPreLoadBuffer2 = {nextPreLoadBuffer1[59:0],4'b0} ; 
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  4'd5 : nextPreLoadBuffer2 = {nextPreLoadBuffer1[58:0],5'b0} ; 

  4'd6 : nextPreLoadBuffer2 = {nextPreLoadBuffer1[57:0],6'b0} ; 

  4'd7 : nextPreLoadBuffer2 = {nextPreLoadBuffer1[56:0],7'b0} ; 

  4'd8 : nextPreLoadBuffer2 = {nextPreLoadBuffer1[55:0],8'b0} ; 

  default : nextPreLoadBuffer2 = nextPreLoadBuffer1 ; 

  endcase 

 end 

    

 assign nextBitCount3 = nextBitCount2 + {2'b0,i_numOfReadBits3} ; 

   

 always@(i_numOfReadBits3,nextBitBuffer2,nextPreLoadBuffer2) begin 

  case(i_numOfReadBits3) 

  5'd1 : nextBitBuffer3 = 

{nextBitBuffer2[62:0],nextPreLoadBuffer2[63:63]} ; 

  5'd2 : nextBitBuffer3 = 

{nextBitBuffer2[61:0],nextPreLoadBuffer2[63:62]} ; 

  5'd3 : nextBitBuffer3 = 

{nextBitBuffer2[60:0],nextPreLoadBuffer2[63:61]} ; 

  5'd4 : nextBitBuffer3 = 

{nextBitBuffer2[59:0],nextPreLoadBuffer2[63:60]} ; 

  5'd5 : nextBitBuffer3 = 

{nextBitBuffer2[58:0],nextPreLoadBuffer2[63:59]} ; 

  5'd6 : nextBitBuffer3 = 

{nextBitBuffer2[57:0],nextPreLoadBuffer2[63:58]} ; 

  5'd7 : nextBitBuffer3 = 

{nextBitBuffer2[56:0],nextPreLoadBuffer2[63:57]} ; 

  5'd8 : nextBitBuffer3 = 

{nextBitBuffer2[55:0],nextPreLoadBuffer2[63:56]} ; 

  5'd9 : nextBitBuffer3 = 

{nextBitBuffer2[54:0],nextPreLoadBuffer2[63:55]} ; 

  5'd10 : nextBitBuffer3 = 

{nextBitBuffer2[53:0],nextPreLoadBuffer2[63:54]} ; 

  5'd11 : nextBitBuffer3 = 

{nextBitBuffer2[52:0],nextPreLoadBuffer2[63:53]} ; 

  5'd12 : nextBitBuffer3 = 

{nextBitBuffer2[51:0],nextPreLoadBuffer2[63:52]} ; 

  5'd13 : nextBitBuffer3 = 

{nextBitBuffer2[50:0],nextPreLoadBuffer2[63:51]} ; 

  5'd14 : nextBitBuffer3 = 

{nextBitBuffer2[49:0],nextPreLoadBuffer2[63:50]} ; 

  5'd15 : nextBitBuffer3 = 

{nextBitBuffer2[48:0],nextPreLoadBuffer2[63:49]} ; 

  5'd16 : nextBitBuffer3 = 

{nextBitBuffer2[47:0],nextPreLoadBuffer2[63:48]} ; 
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  5'd17 : nextBitBuffer3 = 

{nextBitBuffer2[46:0],nextPreLoadBuffer2[63:47]} ; 

  5'd18 : nextBitBuffer3 = 

{nextBitBuffer2[45:0],nextPreLoadBuffer2[63:46]} ; 

  5'd19 : nextBitBuffer3 = 

{nextBitBuffer2[44:0],nextPreLoadBuffer2[63:45]} ; 

  default : nextBitBuffer3 = nextBitBuffer2 ; 

  endcase 

 end 

  

 always@(i_numOfReadBits3,nextPreLoadBuffer2) begin 

  case(i_numOfReadBits3) 

  5'd1 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[62:0],01'b0} ; 

  5'd2 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[61:0],02'b0} ; 

  5'd3 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[60:0],03'b0} ; 

  5'd4 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[59:0],04'b0} ; 

  5'd5 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[58:0],05'b0} ; 

  5'd6 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[57:0],06'b0} ; 

  5'd7 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[56:0],07'b0} ; 

  5'd8 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[55:0],08'b0} ; 

  5'd9 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[54:0],09'b0} ; 

  5'd10 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[53:0],10'b0} ; 

  5'd11 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[52:0],11'b0} ; 

  5'd12 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[51:0],12'b0} ; 

  5'd13 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[50:0],13'b0} ; 

  5'd14 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[49:0],14'b0} ; 

  5'd15 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[48:0],15'b0} ; 

  5'd16 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[47:0],16'b0} ; 

  5'd17 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[46:0],17'b0} ; 

  5'd18 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[45:0],18'b0} ; 

  5'd19 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[44:0],19'b0} ; 

  default : nextPreLoadBuffer3 = nextPreLoadBuffer2 ; 

  endcase 

 end 

  

 assign nextBitCount4   = ( i_isLPS == 1'b1 ) ? nextBitCount3    : 

currBitCount   ; 

 assign nextBitBuffer4   = ( i_isLPS == 1'b1 ) ? nextBitBuffer3   : 

currBitBuffer  ; 

 assign nextPreLoadBuffer4  = ( i_isLPS == 1'b1 ) ? nextPreLoadBuffer3  : 

currPreLoadBuffer ; 

    

 always@(posedge clk,negedge rst_n) begin 

  if (!rst_n) begin 
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   currBitCount  <= 6'd0 ; 

  end else begin 

   if ( i_init == 1'b1 ) begin 

    currBitCount <= 6'd0 ; 

   end else if ( i_valid == 1'b1 ) begin  

    currBitCount <= nextBitCount4[5:0] ; 

   end  

  end 

 end  

  

 always@(posedge clk) begin 

  if ( init_1d == 1'b1 ) begin 

   currBitBuffer  <= currPreLoadBuffer ; 

  end else if ( i_valid == 1'b1 ) begin  

   currBitBuffer  <= nextBitBuffer4 ; 

  end 

 end  

  

 always@(posedge clk) begin 

  if ( init_1d == 1'b1 ) begin 

   currPreLoadBuffer <= rdata ; 

  end else if ( renable == 1'b1 ) begin 

   case(nextBitCount4[5:0]) 

   6'd01 : currPreLoadBuffer <= {rdata[62:0],01'b0} ; 

   6'd02 : currPreLoadBuffer <= {rdata[61:0],02'b0} ; 

   6'd03 : currPreLoadBuffer <= {rdata[60:0],03'b0} ; 

   6'd04 : currPreLoadBuffer <= {rdata[59:0],04'b0} ; 

   6'd05 : currPreLoadBuffer <= {rdata[58:0],05'b0} ; 

   6'd06 : currPreLoadBuffer <= {rdata[57:0],06'b0} ; 

   6'd07 : currPreLoadBuffer <= {rdata[56:0],07'b0} ; 

   6'd08 : currPreLoadBuffer <= {rdata[55:0],08'b0} ; 

   6'd09 : currPreLoadBuffer <= {rdata[54:0],09'b0} ; 

   6'd10 : currPreLoadBuffer <= {rdata[53:0],10'b0} ; 

   6'd11 : currPreLoadBuffer <= {rdata[52:0],11'b0} ; 

   6'd12 : currPreLoadBuffer <= {rdata[51:0],12'b0} ; 

   6'd13 : currPreLoadBuffer <= {rdata[50:0],13'b0} ; 

   6'd14 : currPreLoadBuffer <= {rdata[49:0],14'b0} ; 

   6'd15 : currPreLoadBuffer <= {rdata[48:0],15'b0} ; 

   6'd16 : currPreLoadBuffer <= {rdata[47:0],16'b0} ; 

   6'd17 : currPreLoadBuffer <= {rdata[46:0],17'b0} ; 

   6'd18 : currPreLoadBuffer <= {rdata[45:0],18'b0} ; 

   6'd19 : currPreLoadBuffer <= {rdata[44:0],19'b0} ; 

   6'd20 : currPreLoadBuffer <= {rdata[43:0],20'b0} ; 

   6'd21 : currPreLoadBuffer <= {rdata[42:0],21'b0} ; 
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   6'd22 : currPreLoadBuffer <= {rdata[41:0],22'b0} ; 

   6'd23 : currPreLoadBuffer <= {rdata[40:0],23'b0} ; 

   6'd24 : currPreLoadBuffer <= {rdata[39:0],24'b0} ; 

   6'd25 : currPreLoadBuffer <= {rdata[38:0],25'b0} ; 

   6'd26 : currPreLoadBuffer <= {rdata[37:0],26'b0} ; 

   6'd27 : currPreLoadBuffer <= {rdata[36:0],27'b0} ; 

   6'd28 : currPreLoadBuffer <= {rdata[35:0],28'b0} ; 

   6'd29 : currPreLoadBuffer <= {rdata[34:0],29'b0} ; 

   default :  currPreLoadBuffer <= rdata ; 

   endcase 

  end else if ( i_valid == 1'b1 ) begin  

   currPreLoadBuffer <= nextPreLoadBuffer4 ; 

  end 

 end  

  

 assign renable = nextBitCount4[6]&i_valid | i_init ; 

  

 always@(posedge clk,negedge rst_n) begin 

  if (!rst_n) begin 

   init_1d    <= 1'b0 ; 

  end else begin 

   init_1d    <= i_init ; 

  end 

 end  

  

 always@(posedge clk,negedge rst_n) begin 

  if (!rst_n) begin 

   renable_1d   <= 1'b0 ; 

  end else begin 

   renable_1d   <= nextBitCount4[6]&i_valid ; 

  end 

 end  

  

 always@(posedge clk,negedge rst_n) begin 

  if (!rst_n) begin 

   raddr    <= {ADDR_WIDTH{1'b0}} ; 

  end else begin 

   if ( renable == 1'b1 ) begin 

    raddr   <= raddr + 1 ; 

   end  

  end 

 end  

     

endmodule 
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A.1.4 Binary Arithmetic Decoding Top Module (BADTop.v) 

`timescale 1ns/100ps 

 

module BADTop #( 

 parameter ADDR_WIDTH    = 16 

)(      

 input        clk, 

 input        rst_n, 

  

 // Signals from Context Modeling 

 input        i_reset,   

 input        i_init_offset,   

 input        i_init_readBits,   

 input        i_valid,   

 input        i_valMPS,   

 input  [7:0]     i_lgPmps, 

  

 // form Bitstream Buffer 

 output        renable, 

    output  [ADDR_WIDTH-1:0]  raddr, 

    input   [63:0]     rdata, 

     

 // Signals to Context Modeling 

 output        o_valid, 

 output        o_decodedBin, 

   

 // Signals for Test , 

 output        t_isLPS, 

 output   [7:0]     t_rangeF, 

 output   [4:0]     t_rangeI, 

 output   [7:0]     t_offsetF, 

 output   [4:0]     t_offsetI   

); 

 wire  [7:0]     offsetF   ; 

 wire  [4:0]     offsetI   ;   

 wire         isLPS   ; 

 wire   [7:0]     rangeFMps  ; 

 wire   [4:0]     rangeILps  ;    

                                                   

 wire        readBits1  ;   
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 wire  [7:0]     readBits2  ;   

 wire  [31:0]     readBits3  ;   

 wire        numOfReadBits1 ; 

 wire  [3:0]     numOfReadBits2 ; 

 wire  [4:0]     numOfReadBits3 ; 

  

 assign t_isLPS = isLPS ; 

  

 dRangeUpdate A_dRangeUpdate(                                

  .clk         ( clk      ),     

  .rst_n        ( rst_n        ),     

  .i_reset       ( i_reset       ),     

  .i_valid      ( i_valid      ),     

  .i_valMPS   ( i_valMPS    ),     

  .i_lgPmps     ( i_lgPmps    ),     

  .i_offsetI     ( offsetI    ),     

  .i_offsetF     ( offsetF    ),     

  .o_valid            ( o_valid             ),     

  .o_decodedBin       ( o_decodedBin        ),    

  .o_isLPS   ( isLPS     ), 

  .o_rangeFMps  ( rangeFMps    ),     

  .o_rangeILps  ( rangeILps    ),     

  .t_rangeF   ( t_rangeF    ),   

  .t_rangeI   ( t_rangeI    )     

 );   

  

 dOffsetUpdate A_dOffsetUpdate( 

  .clk    ( clk     ),        

  .rst_n              ( rst_n                 ), 

  .i_reset       ( i_reset       ),     

  .i_init          ( i_init_offset         ), 

  .i_valid      ( i_valid          ), 

  .i_isLPS         ( isLPS | i_init_offset ), 

  .i_rangeFMps        ( rangeFMps            ), 

  .i_rangeILps        ( rangeILps            ), 

  .i_readBits1  ( readBits1    ),     

  .i_readBits2  ( readBits2    ), 

  .i_readBits3  ( readBits3    ), 

  .o_numOfReadBits1 ( numOfReadBits1     ), 

  .o_numOfReadBits2 ( numOfReadBits2     ), 

  .o_numOfReadBits3 ( numOfReadBits3     ), 

  .o_valid      ( /*open*/          ), 

  .o_offsetF          ( offsetF              ), 

  .o_offsetI          ( offsetI              ), 
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  .t_offsetF          ( t_offsetF             ), 

  .t_offsetI   ( t_offsetI       ) 

 );    

  

 dReadBits #(ADDR_WIDTH) A_dReadBits( 

  .clk    ( clk     ),       

  .rst_n              ( rst_n                 ), 

  .i_init          ( i_init_readBits       ), 

  .i_valid      ( i_valid | i_init_offset), 

  .i_isLPS         ( isLPS | i_init_offset ), 

  .renable            ( renable               ), 

     .raddr              ( raddr                 ), 

     .rdata              ( rdata                 ), 

     .i_numOfReadBits1   ( numOfReadBits1       ), 

  .i_numOfReadBits2   ( numOfReadBits2       ), 

  .i_numOfReadBits3   ( numOfReadBits3       ), 

  .o_readBits1  ( readBits1       ), 

  .o_readBits2  ( readBits2       ), 

  .o_readBits3  ( readBits3       )  

 ); 

 

endmodule 

 

A.1.5 Test Bench  

`timescale 1ns/100ps 

 

module tb ( ) ;  

 reg clk   ; 

 reg rst_n ; 

 initial begin 

  clk  = 0 ; 

  rst_n = 0 ; 

  #10  

  rst_n = 1 ;   

 end 

 

 always begin 

  #2.5 clk  <= ~clk ; 

 end 
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 dTB_Single_Bin A_dTB_Single_Bin (clk,rst_n) ; 

 

endmodule 

 

`timescale 1ns/100ps 

 

module dTB_Single_Bin (  

 input                   clk,     // Clock input 

    input                   rst_n    // Reset async input active low 

); 

 import "DPI-C" context task dMain_single_bin(); 

 export "DPI-C" task dTb_single_bin_wait_clk; 

 export "DPI-C" task dTb_single_bin_wait_rstn; 

 export "DPI-C" task dTb_single_bin_input_write; 

 export "DPI-C" task dTb_single_bin_output_read; 

 export "DPI-C" task dTb_single_bin_init; 

 export "DPI-C" task dTb_single_bin_writeBitStream; 

  

 reg                  iReset  ; 

 reg                  init_offset ; 

 reg                  init_readBits ; 

 reg                  iValid  ;           

 wire                 oValid  ;           

 reg                  oClear  ;           

 reg                  output_valid;           

  

    reg  [31:0]      iBinCount ; 

    reg         iValMPS  ; 

    reg  [7:0]      iLgPmps  ; 

    reg  [4:0]      iOffsetI ; 

    reg  [7:0]      iOffsetF ; 

     

    reg  [7:0]      oRangeF  ; 

    reg  [4:0]      oRangeI  ; 

    reg         oIsLPS  ; 

    reg         oDecodedBin ; 

    reg  [4:0]      oOffsetI ; 

    reg  [7:0]      oOffsetF ; 

       

    wire [7:0]      reg_RangeF  ; 

    wire [4:0]      reg_RangeI  ; 

    wire        reg_IsLPS  ; 

    wire        reg_DecodedBin ; 
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    wire [7:0]      reg_OffsetF  ; 

    wire [4:0]      reg_OffsetI  ; 

     

    parameter ADDR_WIDTH    = 16 ; 

 

 reg         wenable  ; 

    reg  [ADDR_WIDTH-1:0]   waddr  ; 

    reg  [63:0]      wdata  ; 

    wire        renable  ; 

    wire [ADDR_WIDTH-1:0]   raddr  ; 

    wire [63:0]      rdata  ; 

              

 initial begin 

  iValid     = 1'b0 ; 

  iReset    = 1'b0 ; 

  init_offset   = 1'b0 ; 

  init_readBits   = 1'b0 ; 

 end 

   

 initial begin 

     repeat(30) @(posedge clk); 

  dMain_single_bin(); 

 end 

 

 task dTb_single_bin_wait_clk (input int cycle); 

     repeat(cycle) @(posedge clk); 

 endtask 

 

 task dTb_single_bin_wait_rstn (output bit o_rst_n); 

     while(!rst_n) begin 

         @(posedge clk); 

     end 

     o_rst_n = rst_n; 

    endtask 

     

    task dTb_single_bin_input_write (input int i_mode,input int i_binCount,input int 

i_valMPS,input int i_lgPmps,input int i_offsetI,input int i_offsetF); 

     iValid     <= 1'b1 ; 

     iBinCount    <= i_binCount ; 

     iValMPS     <= i_valMPS ; 

     iLgPmps     <= i_lgPmps[9:2] ; 

     iOffsetI    <= i_offsetI ; 

     iOffsetF    <= i_offsetF ; 

     repeat(1) @(posedge clk); 
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     iValid     <= 1'b0 ; 

    endtask 

  

 task dTb_single_bin_output_read (output int o_valid,output int o_rangeF,output int 

o_rangeI,output int o_offsetF,output int o_offsetI,output int o_isLPS,output int 

o_decodedBin); 

  o_valid     <= output_valid ; 

  oClear     <= 1'b1   ; 

  o_rangeF    <= oRangeF   ; 

  o_rangeI    <= oRangeI   ; 

     o_offsetF    <= oOffsetF  ; 

  o_offsetI    <= oOffsetI  ; 

     o_isLPS     <= oIsLPS  ; 

     o_decodedBin   <= oDecodedBin ; 

     repeat(1) @(posedge clk); 

  oClear     <= 1'b0   ; 

    endtask 

   

  task dTb_single_bin_init(input int cycle); 

     repeat(1) @(posedge clk); 

   init_readBits   <= 1'b1 ; 

   repeat(2) @(posedge clk); 

   init_readBits    <= 1'b0 ; 

   repeat(2) @(posedge clk); 

   init_offset    <= 1'b1 ; 

   repeat(1) @(posedge clk); 

   init_offset    <= 1'b0 ; 

   repeat(cycle) @(posedge clk); 

  endtask 

    

  task dTb_single_bin_writeBitStream(input int i_data[8]) ; 

  wenable     <= 1'b1 ; 

     wdata[63:56]   <= i_data[0] ; 

     wdata[55:48]   <= i_data[1] ; 

     wdata[47:40]   <= i_data[2] ; 

     wdata[39:32]   <= i_data[3] ; 

     wdata[31:24]   <= i_data[4] ; 

     wdata[23:16]   <= i_data[5] ; 

     wdata[15:08]   <= i_data[6] ; 

     wdata[07:00]   <= i_data[7] ; 

     repeat(1) @(posedge clk); 

     wenable     <= 1'b0 ; 

    endtask  
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 always@(posedge clk,negedge rst_n) begin 

  if (!rst_n) begin 

   waddr    <= {ADDR_WIDTH{1'b0}} ; 

  end else if ( wenable == 1'b1 ) begin 

   waddr    <= waddr + 1 ; 

  end 

 end  

   

 BADTop #(16) A_BADTop( 

  .clk    ( clk     ),       

  .rst_n              ( rst_n                 ), 

  .i_reset   ( iReset             ), 

  .i_init_offset  ( init_offset           ), 

  .i_init_readBits    ( init_readBits         ), 

  .i_valid      ( iValid           ), 

  .i_valMPS      ( iValMPS          ), 

  .i_lgPmps           ( iLgPmps            ), 

  .renable            ( renable               ), 

     .raddr              ( raddr                 ), 

     .rdata              ( rdata                 ), 

     .o_valid            ( oValid                ), 

  .o_decodedBin       ( reg_DecodedBin        ), 

  .t_isLPS   ( reg_IsLPS    ),  

  .t_rangeF           ( reg_RangeF            ), 

  .t_rangeI           ( reg_RangeI            ), 

  .t_offsetF          ( reg_OffsetF           ), 

  .t_offsetI      ( reg_OffsetI      ) 

 );                                                  

 

 rf_memory #(64,ADDR_WIDTH) A_BitStreamBuffer( 

  .clk            ( clk         ),  

  .wenable          ( wenable    ), 

     .waddr            ( waddr     ), 

     .wdata            ( wdata        ), 

     .renable          ( 1'b1     ), 

     .raddr            ( raddr     ), 

     .rdata            ( rdata        ) 

 ); 

 

 always@(posedge clk,negedge rst_n) begin 

  if (!rst_n) begin 

   output_valid <= 1'b0 ; 

  end else if ( oValid == 1'b1 ) begin 

   output_valid    <= 1'b1 ; 
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  end else if ( oClear == 1'b1 ) begin 

   output_valid    <= 1'b0 ; 

  end 

 end  

  

 always@(posedge clk) begin 

  if ( oValid == 1'b1 ) begin 

   oRangeF  <= reg_RangeF  ; 

      oRangeI  <= reg_RangeI  ; 

      oOffsetF <= reg_OffsetF  ; 

      oOffsetI <= reg_OffsetI  ; 

      oIsLPS  <= reg_IsLPS  ; 

      oDecodedBin <= reg_DecodedBin ; 

     end 

    end     

  

endmodule 
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