creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

THE OPTIMIZATION OF
CONTEXT-BASED BINARY
ARITHMETIC CODING IN AVS2.0

BY
CUIJING
FEBRUARY 2016

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

AVS2.9| Context-based Binary

Arithmetic Coding Z|%{%}

The Optimization of Context-based Binary
Arithmetic Coding in AVS2.0

2016 4 2 &

Merisrm chers
H7| M Zee

2 d

The Optimization of Context-based

Binary Arithmetic Coding in AVS2.0

Az o & =
o EEE8 SHMA H=ELE MEH

2016 ' 2 ¥

MEroHew CHeEry
ol e 3%

2 H
2|50l BeMA SRR QUER
2016 ' 2 &
A HE X 71 A (2))
He|a® M= ¢ (2))

? & o & x| (2h

T

Coding)

HEVC(High Efficiency Video

H.264/AVC HTth

o

A7

=

Organization)

Standard

Z A ¥} (International

o k(International Telecommunication Union)®l|

Z1&91 AVS(Audio and Video coding standard)”} ©]v]

o3|
H

0

Nfo

K

A o] F

o

A<

~

32 vt HEVC oA

o

AAk Y (CABAC)H H]

ol

o]
J‘:ZJ_

=

o 2 A

] 74= S
R A

o

T

or AVS2.0)& 7R3t
O

AVS2.0
F9(CBAC)

A @t 2 d

s

i AL 29+

S

&

do

o)
o
™

%)

}el HEVC

°©

A

[e)

=

)

A AVS2.02

S

AR AL

[e)

=

|

o
v

oA}
g 29

T

=

o] CBAC o o
t}
AVS2.0 o o]

=
K3

3 Wl A
NEEE
=O
= =

are]

=
=

AVS2.0

727}
o}

-

T

T

A]
14
CABAC
CABAC

A

15_

=

CBAC 7}

A=

!

<

Azt

N

T vroll CBAC 2argss HA3A7171E fleiM 2 71| ofolyol&

AcratA . =y ¥

H:l

Mo ggArlvle] BRom A o4

H 2 (approximation error compensation)®} & F% Z A3k probability

i

ol

o 0E JARY o REFEE Y

—n

estimation)E =% 3t}

2435 A Ao vE

ot

Hog

[

9 NS Eol71E #ste] dHE
74 Rd(rate estimation modeD)= A¢teA Hrp R &-H3d %3}
3} (Rate-Distortion Optimization process)d FIZ&-¥HE 7}
A4k (Rate-distortion cost calculation) g A A== Y CBAC
o 312]F(real CBAC algorithm) #@lE|] 5% (rate estimation)s AF-& 3t}

npxlgro g 2 W Axk tid(decoder) A& M AFES M &Fic

AVS2.0 9] &3 719 2 X AXF gZ9(CBAD)o] UHF o] dolH

of\
B
o,
:‘_1‘
o
>
-z
L
o
H
0

Jst] wEel 2) Z& 2) ol bin B

Al
0
ofl
o,

A2 ZF(CBAD)S HARIS 31717F g 2 X A f3d 9
one-bin AZE 7|4 YARIS A k. dA7IA AVS 2] CBAD

& dAe] gk Szt §

AC)
o

tha1el s ##EE HEVC ¢ ATt

Fool: erle Y Wt IY EF(AVS): AVS2.0:43 719k 2 X9 AL
A (CBAC): 3 7Ixk 249 2 X AXF T (CABAC)HI L Al%; A
A B 2E A4 wEH S22 AN A gad As

8FH:2013-22510

Abstract

High Efficiency Video Coding (HEVC) was jointly developed by the International
Standard Organization (1ISO) and International Telecommunication Union (ITU) to
improve the coding efficiency further compared with last generation standard
H.264/AVC. The similar efforts have been devoted by the Audio and Video coding
Standard (AVS) Workgroup of China. They developed the newest video coding
standard (AVS2 or AVS2.0) in order to enhance the compression performance of the
first generation AVS1 with many novel coding tools.

The Context-based Binary Arithmetic Coding (CBAC) as the entropy coding tool used
in the AVS2.0 plays a vital role in the overall coding standard. Similar with Context-
based Adaptive Binary Arithmetic Coding (CABAC) adopted by HEVC, both of them
employ the multiplier-free method to realize the arithmetic coding procedure. However,
each of them develops the respective specific algorithm to deal with multiplication
problem. In this work, there are three aspects work we have done in order to understand
CBAC in AVS2.0 better and try to explore more performance improvement.

Firstly, we design a comparison scheme to compare the CBAC and CABAC in the
AVS2.0 platform. The CABAC algorithm in HEVC was transplanted into AVS2.0 with
consideration about the different implementation detail. For example, the context
initialization. The experiment result shows that the CBAC achieves better coding

performance.

Then several ideas to optimize the CBAC algorithm in AVS2.0 were proposed. For
coding performance improvement, the proposed approximation error compensation and
probability estimation optimization were introduced. Both of these two coding tools
obtain coding efficiency improvement compared with the anchor. In the other aspect,
the rate estimation model was proposed to reduce the coding time. Using rate estimation
instead of the real CBAC algorithm to support the Rate-distortion cost calculation in
Rate-Distortion Optimization (RDO) process, can significantly save the coding time
due to the computation complexity of CBAC in nature.

Lastly, the binary arithmetic decoder implementation detail was described. Since
Context-based Binary Arithmetic Decoding (CBAD) in AVS2.0 introduces too much
strong data dependence and computation burden, it is difficult to design a high
throughput CBAD with 2 bins or more decoded in parallel. Currently, one-bin scheme
of binary arithmetic decoder was designed in this work. Even through there is no
previous design for CBAD of AVS up to now, we compare our design with other

relative works for HEVC, and our design achieves a compelling experiment result.

Keywords: Audio and Video coding Standard (AVS), AVS2.0, Context-based Binary
Arithmetic Coding (CBAC), Context-based Adaptive Binary Arithmetic Coding
(CABAC), comparison scheme, approximation error compensation, probability
estimation, rate estimation, Binary Arithmetic Decoder (BAD) Architecture.

Student number: 2013-22510

Contents

0111 o N i
L] | (=] £ iii
I A I] vi
LiST OF FIQUIES.ciiiiiiiisiinetrieiiiiiissinnnnienisiissssssnnneessiissssssssssnessssssssssssssnsssssssssssssnssnssssssssssssnnns vii
(O T 1o (=1 b R 11 oo [1 o1 (o] [PSP 1
1.1 Research BaCKGrOUNG..........cccoiiiieierieriseeeeiese et e et e s te e ese e sseesaenseneas 1

1.2 Key Techniques iN AVS2.0.....cciiieeeerieseeeetese s ete ettt e st saense e sseeseensennas 3

1.3 RESEAICH CONTENTS......eitiitiieiiitertetetet ettt ettt b et e ettt et ebe b st naens 9
1.3.1 Performance Comparison 0f CBAC.........ccccoeverieeeese st ae e 9

1.3.2 CBAC Performance IMprovement...........cccevevereeeerereseeieseseeeesesee e eee s 10

1.3.3 Implementation of Binary Arithmetic Decoder in CBAC..........cccccevvvvvveienne. 12

I O O (o T T2 L1 T] TSROSO 12
Chapter 2 Entropy Coder CBAC iNAVS2.0 ...vvccrreeeiiiicssssnnnresesiisesssssnssessssssssssssssssssssssas 14
2.1 Introduction of ENtropy COOINGccccveeerieririeeesiese sttt sae e 14

2.2 CBAC OVEIVIBW ...ttt sttt st sttt b e st st e et s be st e b et ebesbesbeneens 16
2.2.1 Binarization and Generation of Bin String........ccccccvevvvievenieneseeecese e 17

2.2.2 Context Modeling and Probability EStimation...........c..cceceveveniiecenieneceeienn 19

2.2.3 Binary Arithmetic Coding ENQINE........cccveveriiieeeere e 22

2.3 Two-level Scan Coding CBAC iNAVS2.0....cc.ocveiieieceieieesteseevese e eve st seeee e 26
2.3.1 SCAN OFUET ...ttt sttt sttt ettt e et et e st e b e e ebeebesbe e ens 28

ii

2.3.2 First level coding.......ccccecevivieennee.

2.3.3 Second level codingcccceeeenee.

2.4 SUMMANY c.oovveeieienienieeienie e eeesee e e

Chapter 3 Performance Comparison in CBAC

3.1 Differences between CBAC and CABAC

3.2 Comparison of Two BAC Engines...........

3.2.1 Statistics and initialization of Context MOdelSs..........cccveveeeeeeeeieiieeeeee e

3.2.2 Adaptive Initialization Probability

3.3 Experiment Result.........ccccooeveininienienenn.

3.4 CONCIUSION oo

Chapter 4 CBAC Performance Improvement ..

4.1 Approximation Error Compensation........

4.1.1 Error Compensation Table............

4.1.2 Experiment Result..........ccccooeneeen.

4.2 Probability Estimation Model Optimizationcccecvvivererieiineneeeseneeeee e

4.2.1 Probability Estimation...................

4.2.2 Probability Estimation Model in C

BAC ...

4.2.3 The Optimization of Probability Estimation Model in CBAC...........c.cccoeenene.

4.2.4 Experiment Result.............ccccc......

4.3 Rate EStimation........cccevvvvvevveenveerreennne,

4.3.1 Rate Estimation Model..................

4.3.2 Experiment Result............ccccoenveee.

A4 CONCIUSION ettt ettt e ettt e et e e e eeaaeeesataeesaesaeeesasaeesssssaessassseesssssaeesanns 63

Chapter 5 Implementation of Binary Arithmetic Decoder in CBAC.....cuueeeiiicccireenreeennnne. 64
5.1 ArChiteCture OF BADoiiiiiiieieierie ettt sttt st sttt s 65
5.1.1 Top ArchiteCture OF BADccccoiirierieirienienieeee ettt sttt 66

5.1.2 Range Update MOUUIE........c.ccoiiiiiieieirereeeese e 67

5.1.3 Offset Update MOUAUIE..........ccvvuiriirieieiierieeeeeseee ettt 69

5.1.4 Bits REad MOUUIE........ccirieieieirieeeeee ettt 73

5.1.5 CoNteXt MOUEING......coiiieieieisieieeesesee ettt sttt enes 74

5.2 COMPIEXILY OF BAD ...ttt st sttt bbb e se e 76

5.3 CONCIUSION 1.ttt ettt sttt se s be b ete st ebe st e s enaenesteseenseneens 77
Chapter 6 Conclusion and FUrther WOrK.........eeieeeiiicccnieeereeeeisccccsseereesessseecssssnsesssssnes 79
8.1 CONCIUSION <ottt ettt bbb stttk ettt b et 79

8.2 FULUIE WWOTKS ...ttt sttt 80
RETEIENCE ittt s s s 82
APPENAIX cerreieriiiieeiieereereriieeesisssnreeeeseseessssssseesessssessssssssesssssssessssssssasssssssssssnnssssssssssssssanssasans 87
Al Co-simulation ENVIFONMENTcc.ciiiiiririeirieiieerie ettt 87
A.1.1 Range Update Module (dRangeUpdate.V)cccoevvevrvrrriereeenenieeesssieneenenns 87

A.1.2 Offset Update Module(dOffsetUpdate.V)ccovveveeervreneisnnierieeeeseeseenes 102

A.1.3 Bits Read Module (AREAABILS.V).....ccccvrierveiririerieieiriseeese e 107

A.1.4 Binary Arithmetic Decoding Top Module (BADTOP.V) c.cvevvvrieriereeerierieneenes 115

ALS TESEBENCN ..o 117

v =

Table 1- 1

Table 2- 1

Table 2- 2

Table 3-1

Table 3- 2

Table 3- 3

Table 4- 1

Table 4- 2

Table 4- 3

Table 4- 4

Table 4-5

Table 4- 6

Table 4- 7

Table 5-1

List of Tables

Key techniques used iN AVS2.0 ..o 4
The syntax elements for the first level coding........c.ccccooveiiiiviciiinennn, 30
The syntax elements for the second level coding in one CG.................. 32
The differences between two entropy COders........cccovvviveveviecieenese e, 36
The context number of each syntax element in RD10.1......................... 38
the performance comparison result of CABAC with CBAC 42
The approximation error compensation table..............cccccooiiiiiinenen, 46

The coding efficiency using approximation error correction tables..... 48

The model variables for the probability estimation...............ccccccovenen. 51

The BD-rate of proposed probability estimation with RDOQ-off 57

The BD-rate of proposed probability estimation with RDOQ on......... 57

The BD-rate of using rate estimation (2-bit and 8-bit fraction part).... 62

The time saving when the rate estimation table is used in AVS2.0 62

Summary of the implementation result.............ccccoovvniininincicn, 77

vi

List of Figures

Figure 1-1 The typical video codec block diagram.......ccceeeeveeeiiissneeriiissnnecssssneenes 1
Figure 1-2 The development of video codec standardccceevvevvneeeiiiseeecssisnneennes 3
Figure 1- 3 The coding block diagram of AVS2.0...cccccveerriiieeiiiiisnneniiinneesssssnnennns 3
Figure 1- 4 The quad-tree partition structure in AVS2.0cevveeiineeiineinsnecsinnnnn. 5
Figure 1-5 The prediction unit structure in AVS2.0ccevivveeriiisnneeniissneessssinneenes 6
Figure 1- 6 Intra prediction direction in AVS2.0u...ccccvveeiiiiseeiiiinnnneinisnneessssnneeenes 6
Figure 1- 7 scheme for comparison between two entropy COders.ccovveeereeruneen 10
Figure 2-1 The general block diagram of CBAC iN AVS2.0ccccvvurerrininneericsnnnees 17
Figure 2- 3 Subdivision and decision procedure of BACccccvvevereriinineeerscsnnees 22
Figure 2- 4 One binary arithmetic coder CYCIe ...covvierrrrrmmreeeiiiiicrrerrreeessnecessnenes 24
Figure 2-5 The slice coding structure for the CBAC......coccvvitiiiiniereininieeesissnnees 28
Figure 2- 6 Sub-block scan: each sub-block is a Coding Group (CG) ...cceeveeernnenes 29
Figure 2- 7 4*4 Coefficients scan Within @ CGueivvivveeiiiiiieeiiisnieeenninieecnsssnneens 29
Figure 2- 8 Coding flow for the transform COeffiCientSccovveerricrveeeriisieeerissnnen. 31

Figure 3- 1

Figure 3- 2

Figure 4- 1

Figure 4- 2

Figure 4- 3

The Block Diagram for Evaluating CBAC and CABAC Engines...... 37

the context initialization procedure in RD10.1eeeeeeeiieccrnvenneenennnans 39
The flowchart of CBAC enCOder..........ccoooiiieiiieie e 54
The proposed probability estimation scheme for each context model.56

The block diagram of proposed rate estimation.............cccccocceevvrenene 58

Vii

Figure 4- 4

Figure 4- 5

Figure 5- 1

Figure 5- 2

Figure 5- 3

Figure 5- 4

Figure 5-5

Figure 5- 6

Figure 5- 7

Figure 5- 8

Figure 5- 9

Probability distribution of the CABAC range..........c.ccoceeeveieivnnnenn. 59
The BD-rate changes with different fraction part lengths................... 63
the General BAD Structure in AVS2.0....cccveeiineeninneennneeennnecsneesnnees 65
The overall structure for the BAD with one-bin scheme.................... 66
Flow chart of rangel UPdate......ccceeeeeeieiccerrreneeeeerriesecssneneeeeeessesessnnnns 67
Flow chart of rangeF UPdate......cccceeeeeeeeeeirrneeeeerieececsssneeeeeeeesscssssnnns 68
Detailed Structure of Module for Range Updatecccceeeeeeeecccinneeneenn. 69
offsetl update block diagramcccccceeeeeeericcccrnseereeeeeniccccsrneeeeeseesnenn 70
flow chart of updating OffSEtFccveeeeerreeeeeeeieecccceereeeee e eneeeeeen 71
Offset Update logic diagram DIOCKeeeeeerieeecerreereeeenniecccssnneeeeeennnenns 72
Bits Read Logic BIOCK Diagramcceeecceeecvneeeeeeeeececsssnneeeeeeesscssssnnns 73

Figure 5- 10 The process of Context Updating in the CBAC decoder in AVS2.0..75

Figure 5- 11 Detailed Structure of Module for Context Update.......cccceeeeeeececnnnnee 76

viii

Chapter 1 Introduction

1.1 Research Background

Recent years, with the rapid development of the information technology, the
demand for the multi-media, such as video media, is getting greater and greater.
Mass data offered by the video carrier make the information storage and
transmission more difficult to handle and it is necessary to explore the effective and
efficient video compression technique, especially in the vast images data and real-
time transmission with high definition requirement. The video compression and
coding technique has been significantly enhanced since it merged in 1980s. The
main procedure of video codec includes prediction for video images to obtain the
residual data, transform and quantization for the residual data, entropy coding for
the data after quantization, as well as the bit-stream collection finally. However, a
reverse procedure is performed for the decoder part, and the reconstruction video
sequence is achieved through bit-stream as input. The typical video codec structure

can be described as Fig.1-1.

' Video Image -
EW’Segmentation_' Prediction —» Transform _>-_>

Encoder

Recon. Image -

‘—image Segmentation‘_ Prediction <«— Transform ’ ’
Decoder

Many efforts have been made by the video expects from the International Telecom
Union (ITU) , Video Coding Expert Group (VCEG), International Standard
Organization (ISO) and Moving Picture Expert Group (MPEG) in the past several
decades and consequently there are considerable development in the video
compression standards. H.261 is the first generation motion image compression
standard developed by the ITU™ followed by the H.263 standard proposal[2] which
was developed for the low bit rate video coding at the Nov. 1995. H.263 was aimed
to the low bit rate compression for the high quality motion image and used to
support the application with bit rate less than 64kbits/s. In the following several
years, ITU proposed couple improved vision based on H.263. IMEG family [3]
including MPEG-1, MPEG-2, MPEG-4, MPEG-7, and MPEG-21 have been
developed by the 1SO. Until at the beginning of the 21-st century, H.264/AVC [4]
introduced by the ITU and ISO brought about 50% performance improvement
compared with MPEG-2 and has been popular in the industrial application. At the
same time, another video standard, named AVS[5] developed by the Audio Video
coding Standard (AVS) Workgroup in China. The coding complexity was deduced
compared with the H.264/AVC with a comparable coding efficiency. Along with
the new high definition and ultra-high definition video requirements, High
Efficiency Video Coding (HEVC) [6] were proposed and finished the final draft in
2013 by the Joint Collaborative Team on Video Coding (JCT-VC) which is the
cooperative team including ITU VCEG and ISO MPEG. This standard has been

designed aim to save over 50% [7] bit rate to get the comparable quality, albeit at

higher computational costs. Correspondingly, AVS workgroup has spared more
efforts to make second generation video codec orientated to higher coding
efficiency referred as AVS2.0 [8]. Specifically, the video technique can be
represented as the Fig.1-2 according to the development in the past 30 years.

H.261 H.263 AVS2

MPEG1 MPEG 2 - HEVC VP9

| | |
1990 2000 2010

>

Figure 1- 2 The development of video codec standard

1.2 Key Techniques in AVS2.0

Similar with other mainstream video coding standard, the overall coding framework

of AVS2.0 can be shown in Fig.1-3.

__y Current d~ .| Transform/ Entropy
Frame T Quantization | /| Coding |~
DPB Inter Pred. 5
—0
Intra Pred. |5 y

R T .
ALF {SAO |1 DB T % everse Trans./
+ Reverse Quan.

Figure 1- 3 The coding block diagram of AVS2.0

However, the specific techniques introduced into AVS2.0 standard includes Intra
prediction, Inter prediction, Transform & Quantization, Entropy coder, Sample adaptive
offset, and Adaptive loop filter [9]. With the similar algorithm structure of HEVC,
AVS2.0 has the competitive coding efficiency but more simplified algorithms for each
mode to deal with video image. Although the coding procedure of AVS2.0 shares the
similar structure of HEVC, AVS2.0 pays more attention on some special application
scene, such as surveillance video, real-time video meeting, etc. Specifically, for each
part, including Intra prediction, Inter prediction, Transform/Quantization, Entropy
coding and Loop filter, technique baseline and performance improvement in BD-rate

saving (%) in AVS2.0 are presented in Table 1-1.

Table 1-1 Key techniques used in AVS2.0

Codin
Type Technique baseline . 4
gain
. . . Forward multiple
Image Hierarchical reference | B picture used as) 8% ~
hypothesis
structure | frame reference L 13%
prediction picture
Non-square inter
Block Quad-tree based | Non-square intra | prediction 15% ~
structure | coding unit partitions | prediction Non square | 20%
transform
Intra 33 directional | 1/32 sub pixel 5% ~
prediction | prediction modes prediction 10%
Forward multiple
hypothesis prediction, . . .
Inter . L Progressive motion | DCT like | 7% ~
. special prediction . . L
prediction . vector coding interpolation filter 12%
mode and motion
vector prediction
Multiple size and
Transform | highly normalized | Secondary transform 3%
integer transform
Entro
. w Two level scan coding 5%
coding
Loop filter | Deblock filter Sample adaptive offset | Adaptive loop filter | 8%

Then we will briefly introduce the key feature of each technique adopted in AVS2.0.

A. Block Structure

The block partition is more adaptive compared with AVS1.0 by using quad-tree
structure. The 64*64 is the largest coding unit (LCU) and then it is partitioned into
smaller coding unit (CU) until reaching the minimum coding unit limitation size
8*8. Through this partition mode, then coding tree (CTU) structure is obtained.

Fig.1-4 gives the quad-tree partition structure.

Figure 1-4 The quad-tree partition structure in AVS2.0

Each CU then can be divided into some prediction unit (PU), PU is the basic unit
for intra and inter-picture prediction. For intra prediction, there are four type PUs
among which N*N PU is used for 8*8 CU only and 2N*0.5N/0.5N*2N are
introduced in CU size 32*32 and 16*16. Eight types PU are used in inter prediction,
including 2N*2N. N*N. N*2N. 2N*N. 2N*nU. 2N*nD. nL*2N. nR*2N. The
maximum PU size is decided by the current CU and minimum PU is 4*4. The
transform unit (TU) is another coding block which is used for the transform and
guantization operations. TU is also decided by the current CU size without
consideration the PU size anyway, 64*64 and 4*4 are the maximum and minimum

TU size, respectively. Fig.1-5 is the prediction coding unit partition structure.

| 2Nx2N :

' |

' |

! I

! I

! I

' |

I_ _____________ -

I' PU_Intray
| 2Nx2N NXxN 2Nx0.5N 0.5Nx2N |
| |
| |
| |
| |
| |
L o ____l
| PU_Inter,
| 2Nx2N 2NxN Nx2N NXN |
| |
| |
| |
| |
| |
| |
| 2NxnU 2NxnD nLx2N nRx2N |
| |
| |
| |
| |
| |
| |
| |

Figure 1-5 The prediction unit structure in AVS2.0

B. Intra Prediction

Intra prediction is employed to remove the spatial redundancy within picture. Multi-

direction intra-picture prediction is used in AVS2.0 and as described in A section,

except for four partitions, the Short Distance Intra Prediction (SDIP) [10] is used

for intra prediction on 32*32 and 16*16 CU. Fig.1-6 shows 33 modes including DC,

Plane, Bilinear and 30 Angle modes for luma component.

Figure 1- 6

Bilinear:2

Intra prediction direction in AVS2.0

C. Inter Prediction

Inter prediction is employed to remove the spatial redundancy between picture.
AVS2.0 uses 8 inter prediction modes as described in A section, and 3 frame types:
P frame, B frame, and F frame. F frame is developed based on the P frame with bi-
forward inter prediction. In inter prediction, there are specific techniques patented
by AVS2.0 developer group, including Dual Hypothesis Prediction (DHP) [11],
Directional Multi-Hypothesis Prediction (DMH) [12], Progressive Motion Vector

Resolution (PMVR) [13], etc.

D. Transform & Quantization

In AVS2.0, the two-level transform coding to deal with residual data. Firstly, using
Wavelet Transform and then DCT transform as the TU size is divided into 32*32.
In DCT transform, 4*4 ~ 32*32 TU size are supported and Non-Square Quad-tree
Transform (NSQT) is used to handle non-square TU. In order to reduce the
information redundancy, the residual data will be performed a second DCT

transform [14].

In addition, Rate Distortion Optimization Quantization (RDOQ) is another
technique adopted by the AVS2.0 in the rate distortion optimization process. RDOQ
makes the compromise between the computation complexity and the coding
efficiency. To reduce the complexity to decide mode, only is the mode within the
one coding unit decided, the RDOQ is used for the coefficients quantization in the

best mode in AVS2.0.

E. Entropy Coding

The entropy coding in AVS2.0 is only context-based binary arithmetic coding
(CBAC), which is different from AVS1.0 where CBAC and variable length coding
technique are performed as entropy coders. In CBAC, two-level transform
coefficient coding scheme acts as the well-designed entropy coding strategy. The
two-level scheme [15] employs the similar concept of sub-block based partition as
in HEVC and applies this scheme to the (Level, Run) coefficients pair of large
blocks. In this scheme, the sub-block size is set to a fixed value with 4>4 and named

as one coefficient group (CG) in the following text.

Entropy coding plays a vital role in the entire coding structure as the Fig.3 illustrates.
It locates in the last step of the encoder and the first step of decoder which
determines the bin-to-bit compression ratio which is relative the coding
performance. Entropy coding, especially CBAC is the study center in this research

topic, and more detail will be shown in the following several chapters.

F. Loop Filter

To reduce the visual flaw caused by the video coding algorithm, there are three
methods used in AVS2.0 including Deblocking Filter (DF), Sample Adaptive Offset
(SAO) [16], and Adaptive Loop Filter (ALF) [17] to address the visual problem for

the reconstructive picture.

Even through a significant compression efficiency has been achieved by AVS2.0

based on the above techniques compared with AVS1.0, the improvement in each

technique perspective can be explored to make it better enough to comparable with
other popular video coding standard, such H.264/AVC, HEVC etc. However, in
order to escape the copyright and patents own by other standards, the techniques
employed in AVS tend to be more complexity and simpler in the algorithm
implementation. Thus, the study on the AVS2.0 is full of challenge in the algorithm

design and schedule implementation practically.

1.3 Research Contents

In AVS2.0, context-based binary arithmetic coding (CBAC) [18] is the only entropy
coding method introduced into current standard. In this thesis, there are three topics
we focus on the entropy coder CBAC in AVS2.0. Firstly, we compare performance
between two entropy coder with different algorithm, which are CBAC and context-
based adaptive binary arithmetic coding (CABAC) that is used in H.264/AVC and
HEVC. Secondly, we propose some ideas about the CBAC performance
enhancement and then introduce the fast rate estimation model for the AVS2.0 in
the rate distortion optimization (RDO) mode decision process. Lastly, we
implemented Binary Arithmetic Decoder with throughput of one-bin per cycle,
which is main bottle-neck of implementation of CBAC Decoder with high

throughput. More detail will be shown in the following several subclasses.

1.3.1 Performance Comparison of CBAC

We propose a fair scheme to compare the CBAC with Context-based Adaptive

Binary Arithmetic Coding (CABAC) [19] in HEVC, as Fig.1-7 shows, we implant

9

CABAC logic that is designed for HEVC into RD10.1, which is one of latest

versions of reference software of AVS2.0. The coding efficiency of AVS2.0 using

two entropy coders can be evaluated by bitstream 0 and bitstream1, which are from

the result of encoding the given video sequence.

| RD101
Image Sed. | intra/inter
—® prediction

A 4

Transform/
Quantization

! bitstreamO

CBAC |——»
! bitstream1
CABAC (——»

Figure 1- 7 scheme for comparison between two entropy coders.

Through comparison of these two entropy coders, we can obtain the knowledge

about entropy coding compression performance. Our evaluation experiments show

that CBAC algorithm tend to be more efficient than CABAC with about 0.4% BD-

rate saving when we use the CABAC algorithm of HEVC directly to encode the

same video sequences.

1.3.2 CBAC Performance Improvement

With understand of the reason of coding efficiency improvement, we explore more

in CBAC algorithm in AVS2.0. Most of algorithms in Codec are usually used to

implement without using multiplier operation to reduce Complexity of Computation.

In the process of updating variables, which is used for Arithmetic Coding such as

range and context probability, multiplier operations are replaced with other

operations similarly. Look-up table is used in CABAC in HEVC for the purpose of

10

this. While the logarithm addition and shift operations is used in CBAC. But,
introduction of operation of logarithm domain necessarily accompany the process
to convert data between real domain and logarithmic domain, which requires
additional computational complexity. So CBAC uses two approximation equations
to minimize overhead by domain conversion. For that reason, it is likely to increase
coding performance if we can reduce approximation error at the sake of minimal

increase of computational complexity.

Therefore, we present compensation tables to minimize the error by approximation
equations within the CBAC engine by introducing adjusted factors when the

approximation equations are used in domain conversion.

Adaptive probability estimation [20] [21] is another topic in CBAC which is a
powerful optimization to indict how to map the symbol statistical behavior. Based
on the fact that probability estimation in CBAC is also performed in the logarithm
domain with probability in certain bits resolution, we explore the probability

estimation scheme with the perfect bit resolution and well-designed update process.

In addition, rate estimation is introduced into AVS2.0 in order to save the overall
encoding time. Different from AVS2.0 software reference, we use the proposed rate
estimation table to support the rate distortion cost in the Rate-Distortion
Optimization (RDO). Though the proposed rate estimation model, the encoding time

can be reduced about 1% without considerable performance degradation.

11

1.3.3 Implementation of Binary Arithmetic Decoder in CBAC

Through the above two chapters in the algorithm study, we understand the software
implementation detail better. Based on this understand, the hardware-oriented
architecture for binary arithmetic decoder is described in this chapter. Considering
the total CBAC decoder will cost more time to arrange reasonable context models,
only Binary Arithmetic Decoder (BAD) with one bin scheme is designed in this
chapter, but we give the proposed context update module architecture. For the BAD,
there are three important loops needed to update after one bin is decoded, which
includes range update loop, offset update loop and bits read. Correspondingly, we
design three modules to realize the update: range update module, offset update
module, bits read module. Since few previous work is focus on the CBAC decoder
in AVS2.0, we compare our work with the available CBAC decoder design in AVS1,

and the competitive result can be achieved based on our BAD architecture.

1.4 Organization

Chapter 2 describes the entropy coding CBAC in AVS2.0 and how it works the
arithmetic engine. Also, the two-level transform coefficients coding is given in
detail. In Chapter 3, the coding efficiency of CBAC and CABAC of HEVC are
compared based on the software platform of AVS2.0 RD10.1. We proposed a quite
fair comparison scheme with consideration of initial context variables, binarization,
adaptive probability estimation model, etc. In Chapter 4, we propose some idea to
improve coding efficiency in CBAC such as error compensation, new probability

estimation scheme and introduction of rate estimation table. Then, we describe how
12
1]

to implement binary arithmetic decoder in CBAC in Chapter 5. In the last Chapter,

the research conclusion about this thesis and further research orientation are posted.

13

Chapter 2 Entropy Coder CBAC in AVS2.0

2.1 Introduction of Entropy Coding

Context-based Adaptive Binary Arithmetic Coding (CABAC) is a method of entropy
coding first introduced in H.264/AVC, and it is also adopted in the newest standard -
High Efficiency Video Coding (HEVC). Similar with the method used in above
standards, another kind of entropy coding approach — Context-based Binary Arithmetic
Coding (CBAC) is introduced in a Chinese video standard — Audio and Video coding
standard (simplified as AVS) by the Audio Video coding standard of Workgroup of
China. However, the strong data dependence and serious operations in nature make
entropy coding more complicate to parallelize and improve the throughput. Thus in the
design of standard of entropy coding for H.264/AVC, HEVC, and AVS, the balance of

coding efficiency and throughput should be considered.

Specifically, all the current entropy coding engines are based on the arithmetic coding
[22] [23]. Arithmetic coding is different from other coding methods because we know
the exact relationship between the coded symbols and the actual bits that are written to
a file. It codes one symbol once, and a real-valued number of bits is assigned to each
symbol. The code value v of a compressed data sequence is the real number with
fractional digits that equals to the sequence’s symbol. We can convert sequence. This
construction create a convenient mapping between infinite sequences of symbols from
a D-symbol alphabet and real numbers in the interval [0, 1), where any data sequence

can be represented by a real number, and vice-versa. This kind of code value

14

presentation can be used in any coding system, and it makes a universal method to
represent large amounts of information of a set of symbols used for coding, such as
binary, decimal, etc. By analyzing the distribution of the code value it produced, we can
evaluate the efficiency of any compression method. According to Shannon’s
information theory, we can know that, if a coding method is optimal, then the code
values cumulative distribution has to be a straight line from point (0, 0) to the point
(1,1). When it is applied into video coding, it is attached with context information of
each symbol. Therefore, entropy coding is the kind of lossless compression approach
which can use the statistical probabilities of source information, e.g. video or image
carriers, so that a string of bits can be used to represent the symbols is logarithmically
proportional to the corresponding probability of each symbol. When compressing a
string of symbols, the symbol which occurs in a large frequency can be represented by
few bits, while the other symbols with less frequent emergence, represented with a
longer bit string. According to the Shannon’s information theory, the probability of a
symbol represented in bit 0 or 1 is p, the optimal average code length for one symbol is

~log, p.

In the general videoing coding standard, the classical codec framework is represented
as Fig.1. And the entropy coding is performed in the last step of the overall video coding
after the video signal has been parsed to series of syntax elements. Correspondingly, it

is in the first stage of the video decoding procedure in each standard.

15

2.2 CBAC Overview

The CABAC algorithm is firstly introduced within the joint H.264/AVC standard of
ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts
Group (MPEG). CABAC was used as one of two alternative methods of entropy coding

in H.264/AVC, and introduced as the only method in HEVC.

Similarly, the entropy coding in AVS 1.0 jizhun file includes two schemes, C2DLVC
and CBAC, which not only adopted 2-dimension (run, level) coding scheme used in
MPEG-2, but also absorbed the context-based adaptive binary arithmetic coding
strategy used in H.264/AVC. In C2DVLC, the VLC multiple tables achieved by training
in off-line. It is not able to capture the local statistical distributions in nature and a
symbol with a probability which is greater than 0.5 cannot be coded efficiently
considering the nature limit to 1 bit/symbol in VLC codes. However, the arithmetic

coding can challenge this restriction with a higher coding efficiency.

Therefore, in this section, the CBAC algorithms and separated key technique are
represented systemically from the AVS1.0 to AVS2.0. The general procedure for the
CBAC includes binarization, context derivation and selection, and arithmetic coding
engine. And these compounds illustrated in Fig.2-1. The binarization process is aimed
to translate the values of the non-binary syntax elements into binary and it is defined as
the bin string generation process. The context derivation and selection process is related
to the probability modeling process, in which the each bin can be mapped into a specific
context to estimate the probability of each regular bin. Finally, the binary arithmetic

coding process is adopted to compress the bins into bits according to the context

16
1]

information and probability distribution. There are two kinds of the arithmetic coding

paths according to the probability value for each bin, including the regular path and

bypass path.
Ay
SN
S / | e-d - mmm e mmmmmy
A LA
4 4 Context buffer
%
e dast g2
22
Non-binary av;g (b=Vmps®)? .
Syntax - {bo, b, b bl [Probabilty |_(ves:tps) | Regular
elements ™ Estimation | Lo pups® Arithmetic [—®
g yeno Coding
Syntax L
elements -
e v, bitstream
Binary valued = — - C— »
Syntax elements S Regular/bypass <
> >) switch
-7 0
b; Bypass
» Arithmetic |—p!
LG_PMPS =1023 Coding

Figure 2-1 The general block diagram of CBAC in AVS2.0

2.2.1 Binarization and Generation of Bin String

Binarization process is aimed to uniquely map process of all possible values of a syntax
element onto a set of bin string. For the non-binary valued symbols, e.g. Level and Run,
they should be performed the binarization process as the values of this kind of syntax
elements tend to be typically in a large range in a DCT block. When this value is coded
directly by the m-ary (m>2) arithmetic code, it will have a high computation complexity.
Moreover, the source with typically large alphabet size often suffers from “context
dilution” effect when the high-order conditional probabilities have to be estimated on a
relatively small set of coding samples. In addition, the context modeling for the sub

syntax element level provides more accurate probability estimation than that in the

17

syntax elements level, and the alphabet of the encoder is decreased.

There are several methods of binarization adopted in video coding standard. All of these
methods, including Unary, Truncated Unary, k-th order Exp-Golomb (EGK), and Fixed
length are introduced to reduce the alphabet size of syntax elements to encode.The
binarization methods for syntax elements which are applied into the CBAC of AVS2.0

represented as the following [24]:

(1) Unary coding is used to binarize the symbol into a bin string with length N+1,

including the first N bins with value 1 and the last bin is 0.

(2) Truncated Unary scheme is defined based on the largest possible value maxVal of
the syntax element. Before maxVal, the binarization value is the same as the Unary,
and when the value is equal to maxVal, all the bins in the bin string are set to 0

and the total bins are the same as that of the maxVal -1.

(3) Marking bit is defined as the bin value is the same as the value of the syntax

element.

(4) The k-th order Exp-Golomb coding with k ranged from 0, 1, 2, 3, has a general
construction, which consists of a prefix and suffix. For the given codeNum N and
the specific order k, the code word consists of | zeros followed by one 1 and suffix

of N-2%(2'-1), and the I is defined as following:
! =min{o,(1og2((w—1) ..-"2'::_")—1.-"2—‘} (2-1)

However, except for the above several schemes, for most syntax elements in CBAC,

the binarization process is defined based on the type of the syntax element.

18

2.2.2 Context Modeling and Probability Estimation

Context Modeling Process, shown in Fig.2-1, consists of three sub steps: context model
derivation, context model selection andcontext model access. The context modeling
process is referred as the probability selection process. In the regular binary arithmetic
coding process, where the probability model is decided by the fixed modelbased on the
type of the syntax elements and the bin position or the bin index in the binarized
representation of the syntax elements. Another kind of context (probability model) is
adaptively chosen from the two or more than two probability models according to the
side information, such as the special neighbors(Left, Above block), components (Luma,
Chroma), depth and size of the CTU, PU, TU as well as the position of within one TU.
The adaptive case is generally adopted into the observed bins with high frequency while
the fixed model is usually applied for the less frequently occurred bins. Thus the
modeling process can be benefited from the balance of the choice cost and context

learning complexity with the estimated accuracy.

Similar with probability models in CABAC adopted in H.264/AVC and HEVC, the
CBAC probability updating model is based on the adaptive probability model as well,
in which the parameters of the probability model make a promising contribution to the
map the statistical variations of the source bins which is performed bin-by-bin basis as
the sub symbol. This is the probability estimation process. The derivation of the CBAC
probability updating process is applied for the infinitely independent identical
distribution (11D) [25] of the binary source. If the probability of the symbol “1” is p,

and the probability of the symbol “0” is q. And the adjusting parameter N is defined to

19

adjust the updating speed. Then P, and 0, are defined as the estimated probability of
the symbol “1”” and “0” after the k-th iteration. And then we can achieve the probability

after (k+1)-th iteration as the following equation 2-1:

N) pk H uan
= if "0" occurs
pk+l N +1 () (2_2)
Gy = :fi (if "1" occurs)

According to the relationship between p and q, i.e. P, =1-0,, the equation (2-2) can be

changed as the following equation (2-3):

Pt = NP (if "0" occurs)
N +1 (2-3)
1 N - pk e onqn
== if "1" occurs
P = N1 N+ ()

According to the above equations, the expectation and variance of the P, are proved
to converge to a constant value which is dependent on N. Therefore, if we use the Pyps
and Ppps as the probabilities of the MPS and LPS symbol, thus the probability change

can be obtained based on the equation (2-2), as the following equation (2-4):

Pupsnew = & * Pupsold (if LPS occurs) (2-4)
Prpsnew = & * Pipsold (if MPS occurs)
Here o « N1 That is to say, the larger the N is, the « is smaller, the slower the
+

estimation converges, the variance is smaller, thus the probability estimation is more

accurate.

However, in H.264/AVC and HEVC, the probability estimation model is based on the
assumption that the estimated probabilities of each context model can be represented

by a sufficiently limited numbers of representative values. For the CABAC engine,

20

there are 64 limited representative probability values p, which is ranged from 0.01875
to 0.5, including. The estimation model can be derived from the recursive equation of

the LPS symbol as the following (2-5):

péza'p§1 (& 172937“ (2-5)

0.5

y/*®and p, =0.5

The scaling factor a =~ 0.95 and the probability state is set as 64, in which the

compromise of the speed and estimation accuracy. Each probability P; is addressed

according to the probability state.

As to the practical implementation procedure, In CABAC of H.264/AVC and HEVC,
the probability state updating process is based on the 64-state Finite State Machine
(FSM). In this process, the state transfer process is performed to index a pre-defined

state table, where the state is the index, and state is also the key variable for each context.

Similarly, In AVS1 and AVS2.0, the context modeling adopts the same probability
estimation model to model the information source and performing probability updating
process for each context. However, since CBAC and CABAC apply different schemes
to perform the entropy coding, the probability modeling process is experienced various
procedure, especially in the term of practical implementation. In AVS, the state of
probability estimation model is based on the logarithm value of probability, which is
scaled into 10-bit resolution domain (0 ~ 1024) in theory. Therefore, the probability
model is based on the probability and logarithm value of the probability of MPS symbol.

The scaled probability LgPmps can be described as equation (2-6):

21

LgPnps=1024x|log, (p,..) | (2-6)

Here, pmps is the MPS probability. Thus for each probability including MPS and LPS
are indicted in the scaled probability LgPmps when it implemented in CBAC. The
statistics of the coded syntax elements are utilized to update the probability models,
which is related to context models of regular bins. Therefore, more specific explanation
of the transition rules for updating the state indices will be shown in binary arithmetic

coding, and contexts design derivation sections.

2.2.3 Binary Arithmetic Coding Engine

The basic principle of arithmetic coding is introduced in [22], which is based on the
recursive interval subdivision of the interval width R. Each binary symbol of the
information source which is represented by a bin string, associated with a specific
context model, which keeps update during the coding process in order to adaptively
estimate the probability. Therefore, the variables for BAC is bin value, slice type, and
the context model for each bin. And BAC is a recursive process of the coding interval

(range, offset, low) subdivision, updating, and renormalization operations as Fig. 2-2.

CBAC Bin Encoding Flow

Range <

Low

—_—

Figure 2- 2 Subdivision and decision procedure of BAC

A given interval initially which can be represented as the lower bound L and range R is

22

subdivided into two sub-ranges according to an relative estimation of the probability
Pips valued from 0 to 0.5, not including, of the Least Probability Symbol (LPS).Thus
another part can be described as P, and subrange R, of Most Probability Symbol

(MPS). One of the sub-range can be denoted as the following equation:

R e = Py ¥R @2-7)

Which is associated with the MPS symbol and corresponding interval of the range LPS

Ris = R—=R,, which is related to the MPS with a probability P, =1— P, . According

Ips
to the binary value to be encoded, the relative LPS or MPS range will be chosen as the

new interval for the next iteration.

Based on the above description, the subdivision is performed via the multiplication, but
multiplication operation is proven with high computation complexity and calculation
cost both in software and hardware. The practical implementation method has been
focus on the multiplication-free operations, such as the look-up table approach which
is used in H.264/AVC and HEVC, where a well-developed table is pre-designed, the
sun-range can be obtained from the look-up table operation. Thus the multiplication
operation is eliminated. However, the CBAC in AVS2.0 is based on a novel algorithm
which is based on the domain conversion between logarithm and original domain. By
this method, the multiplication operation can be substituted by the logarithm adder
operation in logarithm domain. More detail about the two methods to reduce the

multiplication complexity will be represented in the following sections.
In CABAC, the BAC is performed on the look-up table to realize the range subdivision

23

and applies for the FSM to deal with the state transition for the context and probability
updating. However, the procedure in CBAC in AVS2.0 experience a various scheme.
The process is an iterative one which consists of consecutive MPS symbols and one
LPS symbol. 9-bit precision for range is kept during whole coding process. In the binary
arithmetic coder of CBAC, we substitute the multiplication in (2-7) with addition by
using logarithm domain instead of original domain. When a MPS happens, the renewal

of range is given as

IR, ~IgR+1gp,, (2-8)
where Lgx indicates the logarithm value of variable x and LgR, is the new range
after encoding one MPS. For the case of encountering one LPS, we denote the two MPS

range before and after encoding the LPS as R: and Rz as shown in Fig. 2-3. Then, the

range after the whole coding cycle in original domain should be

Rlps = Rl - RZ (2-9)

——

T low_new

Figure 2-3 One binary arithmetic coder cycle

And the new lower bound of current range equals to the addition of low and R». Since

24

R1 and R are both calculated on the logarithm domain, we have to get the value of Ry

and Rzfrom LOR, and LQR,, and then
R =2 =27 227 x(141,-A) (2-10)
and

R, =278 =277 2 2 x(1+1, - A, (2-11)

Here, S, S, aretheinteger,and { 1, are the fraction part, which range from [0, 1). A1
and A are the approximation error adjust factor. From (2-10), (2-11), we can get the

following, ignoring the approximation error A1 and Az:

R,=2"xt, (2-12)

lps

and

t,~ { Lt s, =) (2-13)
(t, <<D—t, if (s, =s,-1)

After the new value of R, is obtained, the renewed lower bound is updated. Then

Ips
the renormalization process is carried out to guarantee that the most significant bit of
the updated range value is always ‘1°. Until now, one coding cycle is finished. After
one bin is encoded by arithmetic coder, the estimated probability of the chosen context
should also be updated. In order to prepare the relative parameters for the next iteration,
the range in original domain should be exchanged into logarithm domain. Considering
a fact that the approximation will stand when the variable x ranged into a small interval
(0, 1) as following:

INnA+x)~x (0<x<1) (2-14)

25

The integer part of the logarithm-based updated range R, sl is 0, and the fraction

Ips

part 1, can be simplified with the above equation. Thus the R, in logarithm

Ips
domain can be obtained and the range preparation for the next cycle is finished.

Actually, in CBAC, the probability of each context model is set to be 0.5 for both MPS
and LPS at the start of coding initially. With the coding of some bins, the adaptive
probability estimation of MPS on logarithm domain is performed. Based on the
context modeling section described in section 2.2.2, the practical probability
estimation is fulfilled using only additions/subtractions and shifts as in the following

formulas:

{Lngps « LgPmps + Lgf (if Ips) (2-15)

LgPmps < LgPmps — (LgPmps >> cw) (if mps)

Where f is equal to (1-2°°"). Here, cw is the size of sliding widow to control the speed
of probability adaptation. The smaller cw is, the faster the probability adaptation will
be. In the practical implementation process, the cw is adaptive according the cycno

parameter, which is adopted to record the iteration of calling the CBAC engine.

2.3 Two-level Scan Coding CBAC in AVS2.0

Different from AVS1, AVS2.0 supports larger transform blocks (e.g., 1616 and 32>32).
In the early stage of AVS2.0 standardization process, the CBAC design for AVS2.0 is
inherited from that in AVS1 by a straightforward extension. However, CBAC was
primarily designed for 8>8 transform blocks while the non-zero coefficients may be

sparser in larger transform blocks. Therefore, to further improve the coding efficiency

26

and throughput issue in hardware implementation, AVS2.0 CBAC employs a two-level

coefficient coding scheme [15].

Generally, the iteration of CBAC in AVS is slice, which means that all the binary
arithmetic coding engine relative parameters will be initialized after finishing one slice.
Only the syntax elements which are belong to the slice segment data, will be processed
by the CBAC encoded. The coding structure in the slice illustrated as Fig.2-4, including
slice header information, slice data information, the coding procedure in one LCU, and
the slice end information. The syntax elements that are coded with CBAC in AVS2.0
include three categories: (1) context-based syntax elements, (2) bypass mode-based
syntax elements, (3) stuffing bit-based syntax elements. For AVS, these context-based
syntax elements describe the properties of the coding tree unit (CTU/LCU), coding unit
(CU), prediction unit (PU), and transform unit (TU). For the CTU level, the related
syntax elements are used to represent the block partition information of the CTU, the
type including edge and band, and offsets for the sample adaptive offset (SAO), and
adaptive loop filtering in loop filtering in CTU. For a CU, the syntax elements are
related to describe whether the CU is intra prediction mode, or inter prediction mode,
the PU type definition of B and F frame. For a PU, it includes the syntax elements which
describe the intra prediction mode, and the motion data. For the TU level, the coding

tree pattern, and residual data including transform coefficient, level and run information.

27

. SAO te
Slice header infopr;“’;’t‘l?:n r
information T~ n
One LCU ~
v LCU partition structure
+ +
. . Prediction
Slice data Slice end every CU { ;

information information Residual dat

+

xN

| ALF parameter |

Figure 2-4 The slice coding structure for the CBAC

However, entropy coding in AVS, which is the similar with CABAC in H.264/AVC and
HEVC, provides a high coding efficiency, while its strong data dependence caused by
the serious operations in its procedure put a big challenge on the throughput
improvement. The throughput of CBAC is determined by the binary symbol that it can
be performed per second. Moreover, the significant contribution is made by the syntax
elements of transform coefficient data, which includes the residual of the prediction

error.

The two-level scheme employs the similar concept of sub-block based partition as in
HEVC [26] and applies it to the (Level, Run) coding to address the spatiality of large
blocks. In this scheme, the sub-block size is set to a fixed value, i.e., 4>4. Such a sub-
block is named one coefficient group (CG) in the following text. The CG level coding
is firstly invoked, followed by the (Level, Run) coding within one CG which is similar

to CBAC in AVS1.,

2.3.1 Scan order

In CBAC for AVS2.0, the coefficient coding for a transform block (TB) is decoupled
28

into two levels, i.e., CG level coding and coefficient level coding. In both levels, the
coding follows the reverse zig-zag scan order. Fig. 2-5 shows the zig-zag scan pattern
in a TB with a different size, which is split into sub-blocks and the scan order of CGs
is indicated by lines while the scan order within one CG is indicated as the line shows

in Fig.2-6. The CG-based coding methods have two main advantages:

® Allowing for modular processing, that is, for harmonized sub-block based

processing across all block sizes.

® With much lower implementation complexity compared to that of a scan for the

entire TB, both in software implementations and hardware.

Y

5 b

8x8 block 16x16 block 32x32 block

Figure 2-5 Sub-block scan: each sub-block is a Coding Group (CG)

- 00 OO0
Q’ Jegfofie
B Wetofel'e

16x16 block 16 coefficientsina CG

Figure 2- 6 4*4 Coefficients scan within a CG

29

ﬂ 1]|:ﬂr =¥

2.3.2 First level coding

For the current coding block which is divided into multiple CGs as Fig.2-5 shows. The
first level coding is performed among these CGs. At inter CG level, the position of the
last CG is signaled, where the last CG is the CG that contains the last non-zero
coefficient in the transform block in the scan order. Different ways are used to signal
the position of the last CG which is dependent on the TB sizes. For an 8>8 block, a
syntax element LastCGPos is coded, which is the scan position of the last CG. For
larger TBs, such as 16x16 and 32>32 TBs, one flag LastCGOflag is firstly coded first
to indicate whether the last CG is at position (0, 0). In the case that lastCGOflag is equal
to one, two more syntax elements LastCGX and LastCGY are coded to signal the(x, y)
coordinates of the last CG position. Note that, (LastCGY- 1) is coded instead of

LastCGY when LastCGX is zero since lastCGOflag is equal to one.

The first level coding is performed by several syntax elements which indicate the
information about the current CG in the entire TB. Thus the syntax elements for this
level are explained by the last cg pos, last cg0 flag, last cg x, last cg y,

last_cg_y minusl and nonzero_cg_flag and each description is presented in Table 2-1.

Table 2-1 The syntax elements for the first level coding

Syntax elements Description
last_cg_pos denotes the position of the last CG block in the current TB
last_cg0_flag indicates whether the last CG position is 0 or not in the TB (larger
than 8x8)
last_cg_x denotes the x coordinate of the current CG in the current TB
last_cg_y denotes the y coordinate of the current CG in the current TB
last cg y _minusl denote the y coordinate of the current CG in the current TB when
the x coordinate is zero.
nonzero_cg_flag signals whether the current CG includes non-zero coefficients

30

2.3.3 Second level coding

The second level coding indicates the coding of coefficients within one CG. Fig. 2-7
depicts the coding flow for one CG. Basically, it follows the principle of the CBAC
design in AVS1. However, when one CG contains non-zero coefficients (i.e., the
nonzero_cg_flag of the CG is equal to 1 or it is the last CG), the position of the last
non-zero coefficient in the scan order in the CG is coded instead of coding the end of
bit (EOB) flag after each (Level, Run) pair to signal a stop. Then, the (Level, Run) pairs
are coded sequentially in the reverse scan order until the coding of all pairs are finished.
Similar to the coding of (Level, Run) pairs in CBAC for AVS1, the Level is represented
by its magnitude absLevel and the sign information.

last Coefficient in CG

ast_cg_x

last_cg_y last_coeff_pos_x

last_coeff_pos_y,
CoeffPosInCG initialization

N
CoeffPosInCG>=0?

| NonzeroCgFlag |

\ 4 pd .
y coeff_levvel_minusl_band.
end)/ coeff_level_minusl_pos_in_band
Ve
7
4 y
7 ff
Coefficients in CG coetr_run
CoeffPosINCG -= coeff_run

g (Non-zero position)

Figure 2- 7 Coding flow for the transform coefficients

It is observed that depending on whether the CG is the last CG, the distribution of the
position of the last nonzero coefficient shows different exhibitions. As a result, two last
coefficient position coding schemes are utilized accordingly. For the last CG, the

position of the last non-zero coefficient in the CG is mostly random but has a general

31

tendency to be close to the top-left corner of the sub-block. The position is then directly
coded in its (x, y)-coordinates relative to the top-left position of one CG, namely,
LastPosX and LastPosY. For CGs which is not the last CG, the position of the last non-
zero coefficient, if present, tends to be close to the bottom-right corner of the sub-block
and is also highly correlated to the reverse scan order. It is therefore more efficient to
code its reverse scan position within the CG rather than the (x, y)-coordinates, i.e., the
position relative to the bottom-right position of one CG.The coding procedure in the
second level is based on the coefficients in each CG and the coding order is the reverse
order of the zig-zag scan. The syntax elements for this step can be defined as:
last_coeff _pos_x, last_coeff pos y, coeff level minusl pos in_band and coeff run

and each description is presented in Table 2-2.

Table 2-2 The syntax elements for the second level coding in one CG

Syntax elements Description
Last_coeff_pos_x Denote the x-coordinate of last non-zero coefficient in the
nonzero CG.
Last_coeff _pos_y Denote the y-coordinate of last non-zero coefficient in the
nonzero CG.
coeff_level minusl Denote the range of the coefficient level minus 1.
coeff_level minusl | Denote the position of the coefficient level minusl in the current
pos_in_band level band.
coeff_run denote the run value
coeff_sign Indicate the coefficient is positive or not.

2.4 Summary

In this section, the detail about the entropy coding in AVS2.0 was presented in the above
aspects.Then, the context-based binary arithmetic coding theory is analyzed, and the

binarization, context modeling & probability estimation, and the binary arithmetic
32

coding engine are all summarized in detail. It is the complicated computations and
strong data dependence that post more challenge on this topic about CBAC entropy

coding.

33

Chapter 3 Performance Comparison in CBAC

The Context-based Adaptive Binary Arithmetic Coding is the typical entropy coding
method used in current video coding standard, such as HEVC, H.264/AVC, AVS, etc.
In order to understand the coding performance of tools contributed by the CBAC better,
we proposed a comparison scheme to compare the entropy coder CBAC with CABAC
based on the software reference RD platform of AVS2.0. In this chapter, we give the
performance comparison though the proposed comparison scheme and to keep it fair,
the adaptive context initialization is introduced when we transplant CABAC into
reference s/w of AVS2.0 as CABAC used in reference s/w of HEVC adopts specific
initial context variables for each context model. It is different form CBAC in AVS2.0
because the context variables of all context models in CBAC are initialized with the

same value at the beginning of the new slice.

3.1 Differences between CBAC and CABAC

In H.264/AVC and HEVC, the CABAC is adopted as entropy coding technique, which
is based on the Look-up table (LUT) operation to free multiplication. On the other hand,

Logarithm Domain Addition (LDA) is used for CBAC in AVS2.0.

Generally, the Binary Arithmetic Coder (BAC) of current video standards mentioned
above is consisted of three steps: (1) Binarization, (2) Context Modeling (Probability
estimation and assignment), and (3) Arithmetic coding. The binarization is a procedure
to map syntax elements with non-binary value into binary value with some elementary

34

schemes which are suitable model-probability distribution. The context modeling is a
procedure to associate a probability model with different type of the syntax elements
adaptively. The whole process of Selection of the probability model according to the
syntax element type, bin index and the side information is referred as context modeling.
In this process, the probability model parameters is adaptive in order to estimate the
statistical feature of the source bins. Each binarized syntax element decided through
rate distortion optimization (RDO) mode decision process is processed in BAC engine
with matched context model for each bin the arithmetic coding will be finally performed

based on the probability update and range subdivision.

Specifically, the CABAC algorithm is based on the LUT for range division and context
update is realized through another two LUTs for MPS and LPS case. Each of LUT
includes 64 states transiting according to the probability estimation model. And each
context of syntax element includes 6-bit probability state indexing two context update
LUTs and 1-bit value of MPS bin. However, the CBAC algorithm in AVS2.0 performs
the entropy coding through the logarithm addition and shifting in order to eliminate the
multiplication. The context model introduces 10-bit probability-based variable of MPS
bin, 1-bit for the value of MPS bin and the 2-bit counter parameter marking sliding
window size for the probability estimation. Different form that in CABAC where the
sliding window size is fixed as about 19.69, the adaptive probability estimation model
is introduced through 2-bit counter parameter in CBAC. Therefore, the differences

between two entropy coders CBAC and CABAC can be summarized as the Table 3-1.

35

Table 3-1 The differences between two entropy coders

CBAC CABAC

Binarization | Syntax elements - -

Sliding window parameter Adaptation (cycno, cwr) | Fixed

Initial probability Fixed Adaptation
Context : — - -
Modeling Bit depth of probability 10 bits 8 bits

Context model Probability(10-bit Probability(LUTs),

variables scaled), valMps, cycno | valMps
BAC Method free multiplication | Logarithm addition LUTs

3.2 Comparison of Two BAC Engines

In order to evaluate the coding efficiency of two BAC engines fairly, we design the
specific comparison schemes for each engine. Firstly, we should transplant the CABAC
engine into RD10.1, which is reference s/w of AVS2.0 and use it as the entropy coder
to encode and decode the video sequence. Based on the differences presented in above
Table 3-1, we can see that CABAC employs different method to realize the binary
arithmetic coding, especially in the context modeling and arithmetic engine part. To
compare fairly, then we need to consider how to make the two entropy coders in the
same scheme to realize each step in their multiplication-free operations. Fig.3-1 gives
the block diagram to compare two entropy coders CABAC and CBAB. However, in
order to measure the coding efficiency of these two entropy coders, the comparison
scheme [27] should be exactly matched the procedure in each standard. Thus, the
significant issue needed to address is how to design the adaptive initialization value of
probability for each context model of each syntax element in AVS2.0 when CABAC is
used as entropy coder. In addition, there are several optimization methods used in the

logarithm domain-based arithmetic CBAC. The adaptive probability estimation and
36

adaptive sliding window size are the techniques which can be used to improve the
compression performance of arithmetic coding. However, in this evaluating scheme,
what need to do is to keep the comparison fair and retain the original feature of each

entropy coder used in respective video standard as much as possible.

reference code
CBAC
Encoder
SEST iestimated rates CBAC Encoder
modes i
Image RDO L) Binarization Conte.xt CBAC L1y Bits
Sequence Modeling Engine Sequence,
» PSNRog
Rate Est. Test #1
Tables 8 bit depth
for CBAC
x
SEs estimated rates CBAC Encoder
modes i
— rDO | Binarization [y COMeXt L, CBAC L, Bits
Modeling Engine Sequencey,
» PSNRy
Rate Est. Test #2
Tables 8 bit depth
for CABAC
SEs T estimated rates CBAC Encoder
modes i
— r0O L1 Binarization —y COTteXt Ly CABAC L, Bits
Modeling Engine Sequencey,
» PSNRy,

Figure 3-1 The Block Diagram for Evaluating CBAC and CABAC Engines

3.2.1 Statistics and initialization of Context Models

The context model initialization process for each entropy coder holds some difference
and we should reduce this distinction in proposed scheme. Specifically, the initial
probability value for each context model of each syntax element is distinct in CABAC.
It is one of conditions of CABAC which works for the only entropy coder in HEVC.
Thus at the beginning of each slice, the context variable of probability in each context
is assigned to the respective value. While the initialization of probability is performed
as the assigning the same value 0.5 to each context model in CBAC in AVS2.0. Thus

37

the context initialization for the CBAC is pretty easy to perform as all the context
models are set as the same initial value, including MPS symbol as 0, LgPmps rested as
1023, and the cycno parameter designed as the start iteration. However, according to
source information in the nature video, the adaptive context in the different area even
the same syntax elements tend to be set as the various initialized features. In addition,
the different syntax elements should be assigned to the adaptive initial value at the
beginning of the each slice. To achieve this goal, we should give the specific initial
value of each context. Table 3-2 gives the syntax elements accessed to CBAC entropy
coder. For some syntax elements, 2-D context buffer is used for the context updating to

make scalability possible in future.

Table 3-2 The context number of each syntax element in RD10.1

Syntax Elements Ctx num. | Syntax Elements Ctx num.
cuType_contexts 11+9 cbp_contexts [3]114]
pdir_contexts 18 map_contexts [8][17]
amp_contexts 2 last_contexts [81[17]
b8 type_contexts 9 split_contexts 8
pdir_dhp_contexts 3 tu_contexts 3
b8 type_ dhp contexts | 1 lastCG_contexts 30
b_dir_skip_contexts 4 sigCG_contexts 3
p_skip_mode_contexts | 4 lastPos_contexts 56+16
wpm_contexts 3 saomergeflag_context 3
mvd_contexts [3][10] saomode_context 1
pmv_idx_contexts [2][10] saooffset_context 2
ref_no_contexts 6 m_cALFLCU_Enable_SCModel [3]1[4]
delta_qp_contexts 4 brp_contexts 8
|_intra_mode_contexts | 7 pdirMin_contexts 2
c_intra_mode_contexts | 4

38

The context initialization process is performed based on the fact that all the contexts in

one slice will be initialized with the same variable. The initial procedure is described in

Fig. 3-2, in which biari_init_context_logac() function defines the initial context

variables including LgPmps, valMps and cycno.

{
ctx->LG_PMPS

ctx->MPS = @
ctx->cycno = 0@

}

QUARTER

void biari_init_context_logac (

ctx)

LG_PMPS_SHIFTNO) - 1

A

A 4

#define BIART CTX_INIT1 LOG(jj,ctx)\
Q\
for (3=0; j<jj; j++)\
Q0
biari_init_context_logac(&(ctx[j]));\
N
¥

#define BIARI CTX_INIT2 LOG(ii,jj,ctx)\
\
for (i=0; i<ii; i++)\
for (j=0; j<jj; j++)\
{\
biari_init_context_logac(&(ctx[i][]]));\
ja

}

A

void init_contexts ()

{

int i, i;

}

syn = img->currentSlice->syn_ctx;

BIARI_CTX_INIT1_LOG(NUM_CuType CTX, syn->cuType_contexts);
BIARI_CTX_INIT1_LOG(NUM_INTER_DIR_CTX, syn->pdir_contexts);

BIARI_CTX_INIT2_LOG(3, NUM CBP_CTX, syn->cbp_contexts);

void picture_data (*pic)
{
‘;éart_slice (OF
;iiceHeader(slice_nr,slice_qp);
iéit_slice (img->current_mb_nr , pic);
.iéit_contexts();
}
Figure 3- 2 the context initialization procedure in RD10.1

39

.H

i) T
e
T

|

1

n

3.2.2 Adaptive Initialization Probability

In HEVC, the adaptively initial probability operation is performed by setting each
context model of each syntax element an initial value and through several steps of
speculative computations to get the initial probability value. However, in order to give
the similar adaptation to CABAC which is implemented into our test model and then
compare the coding efficiency with model using CBAC. Since the residual data
accounts for the significant part (about 70%) [15] of total syntax elements, and we also
know the fact that when the LgPmps is closer to 1023, the better compression result is,
since the probability of a given symbol is about 0.5 when there is no previous symbol
for current symbol to refer to. Before exploring the exactly adaptive initial probability
by training numerous video sequences, the initial probability LgPmps for the residual
data is assigned as the same as the CBAC with the same value. While for the other
syntax elements, we assigned the initial value for LgPmps based on the following roles
(3-1),

1023—i i=0,12....[N_ /2]
LgPmps', = o i . (3-1)
1023+i 1=0,1,2,..N_ —[N_ /2]

where N, is the total number of context model for a given syntax element as shown
in Table 3-2 and inc denotes the increment for the adaptive initial probability for each
context. Note that when the probability value for the current context is greater than
1023, the symbol value will be given a conversion. Though this method, the initial value

of probability for each syntax element will distribute near 1023 in both sides.

40

3.3 Experiment Result

In this section, we will analyze the performance difference in the two entropy coders.
However, the performance of CABAC is measured based on above the specific
initialization for some contexts. Specifically, the initial probability for each context is
not identical, which is given the respective initial value for these syntax elements as
described in section 3.2. And then measure the coding efficiency of CABAC modified
with this initialization method. Although it is not the exact the adaptive initialization, it
also give the hint that the coding efficiency trend when the context models are

initialized with the distinct values.

Table 3-3 gives the coding performance result of CABAC compared with CBAC in
AVS2.0. The reference is common test condition in AVS2.0 [28] and for five 1080p
video sequences including Kimono, ParkScene, Cactus, BasketballDrive, and
BQTerrace in Random Access (RA) configuration. From the result of Table 3-3, using
CABAC achieves about 0.4% performance degradation compared with that of CBAC
in AVS2.0. Similarly, there are also some others’ work [20][21] have been proved that
it is a little bit disadvantage when CABAC algorithm is used as the entropy coder in
HEVC platform since the implementation detail in CABAC adopts the pre-designed
look-up table where many approximations are introduced to get the pre-defined tables.
While using CBAC where the logarithm domain addition/shift and domain conversion
are operated can be benefit from more accurate speculations. In addition, adaptive

sliding window size and adaptive probability estimation enhance the performance as

41

well. This work gives the conclusion that using CBAC achieves a better compression
performance.

Table 3- 3 the performance comparison result of CABAC with CBAC

RDOQ off RDOQ on

sequence Y BD-rate | UBD-rate | V BD-rate | Y BD-rate | U BD-rate | V BD-rate
Kimono 0.61% 0.54% 0.54% 0.59% 0.55% 0.72%
ParkScene 0.58% 0.55% 0.42% 0.57% 0.57% 0.55%
Cactus 0.24% 0.43% 0.15% 0.32% 0.21% 0.57%
BasketballDrive 0.14% 0.35% 0.39% 0.17% 0.48% 0.10%
BQTerrace 0.29% 0.39% 0.12% 0.01% 0.36% 0.38%
Avg. 0.37% 0.45% 0.32% 0.33% 0.43% 0.46%

3.4 Conclusion

In this chapter, the proposed comparison scheme for CBAC and CABAC shows that
the CBAC achieves more compelling compression performance with about 0.4% BD-
rate reduction in average in RA configuration. The reason that using CBAC can achieve
a better compression performance when encoding the same video sequences lies in the
computation complexity of CBAC tend to be greater than that in CABAC. Domain
conversion, data operation divided into integer and fraction part and comparison
between integer and fraction respectively increase the calculation cost. However, more
compelling coding efficiency can be obtained from these traits as the experiment result

shows.

42

Chapter 4 CBAC Performance Improvement

Through description in the above several chapters, it has been showed that the
computation complexity and sequential operation put a thread on the performance
improvement. In this chapter, we will propose three ideas to improve performance of
the CBAC including approximation error compensation, modification of probability
estimation model and introduction of fast rate estimation to replace the real CBAC in
the rate distortion optimization (RDO) process. More details for each improvement idea

will be described in the following sections.

4.1 Approximation Error Compensation

As the description before, in order to simplify the computation and implementation,
there are two approximation equations adopted in the domain converting process to
realize the free-multiplication operation. However, the approximated error is inevitable
once the approximation equations are used in the domain conversion process. Thus the
error compensation method in this subclause is introduced to minimize the

approximation error by domain conversion.

4.1.1 Error Compensation Table

According to the approximation principle of the Taylor’s Formula, the approximation
equations implemented into CBAC practically are represented as the following:
2" ~1+x (0<x<]) (4-1)

43

log, (14+x)~zx (0<x<C1) (4-2)

These approximation equations are used to combine operations of both real domain and
logarithmic domain, which is to replace multiplications with additions. The followings

are cases of using these approximation equations:

(1) When the symbol is MPS, the range updating is performed with the LgPmps.
While the probability update is based on the probability in the original domain,
which should be derived from the LgPmps. Thus the approximation (4-1) is

served as the bridge to draw the updating principle through LgPmps.

(2) When the symbol is LPS, the new range in logarithm should be derived from the
original domain, where both the old and current range can be obtained from the

logarithm value of each. Thus the approximation (4-1) is adopted.

(3) When the symbol is LPS, after the range updating and renormalization, there is a
crucial step of the range map to prepare the logarithm-based value of the current
range in order to make the parameters ready for the next iteration. Thus the
approximation (4-2) is used for the transition from the original to the logarithm

domain for the LPS range.

It can be see that the approximation equations defined in (4-1) and (4-2) are based on
the index and logarithm of 2, though the fact is that these equations are true only when
the base is e in the mathematical theory. Thus the approximated error induced in the
process of domain conversion results in considerable performance degradation if there

is no extra supplementary method to make up this. Therefore, the modification of the

44

approximation can be considered to minimize error in the conversion process. However,
the gain which can be obtained by compensation of the approximation error will be a
little bit marginal due to the incorrect probability estimation caused by the unstableness
of information source. The correction function Al and A2 can be defined as the

following:
A(x)=1+x -2 (0<x <1) (4-3)
A (1) =log,(1+x)—x, (0<<x, <] (4-4)

Here,the X, and X, are 8 bit precision and the correction function also based on the
8 bit precision as well. The implementation is realized by indexing the pre-defined table
with size of 64 where the index is 8-bit LgPmps. And the correction function table can
be varied as the bit precision (depth) is changed. The correction factor can be quantized
as the following:

index

) , index , — .
8, (index) = 2" (1 + H) VN index =0,1,2,...,63 (4-5)
5, (index) = 2" log, (1 + 'r's:x) _ g 00X e~ 0,1,2,..,63 (4-6)

Here, bitdepth denotes the bit precision and the index is the needed table size. Table 4-
1 shows the correction table based on the (4-5) and (4-6) and gives the difference with
error adjusting table in [25]. Generally, 6 bits is enough to correct the approximation

error caused by the above (4-1) and (4-2) two approximation equations.

Different from the fact that there is no exact derivation and experiment result in [25],

our method gives the derivation exactly from the approximation equations and

45

implement into AVS2.0 in detail. In addition, only one table in [25] is adopted for both

approximation equations, while our method give the exact correction table for both in

Table 4-1.
Table 4-1 The approximation error compensation table

Index &1 (index)(8-bit) error 62(index) (8-hit) error [25]
0 0 0 0 0 0
1 1.212342771 1 1.726160135 2 2
2 2.394329945 2 3.364894556 3 4
3 3.545630971 4 4.918832757 5 5
4 4.665911699 5 6.390487360 6 7
5 5.754834340 6 7.782260935 8 8
6 6.812057427 7 9.096452338 9 9
7 7.837235774 8 10.33526259 10 10
8 8.830020438 9 11.50080037 12 11
9 9.790058673 10 12.59508707 13 12
10 10.71699390 11 13.62006160 14 13
11 11.61046564 12 14.57758477 15 14
12 12.47010950 12 15.46944344 15 15
13 13.29555713 13 16.29735442 16 16
14 14.08643615 14 17.06296803 17 17
15 14.84237014 15 17.76787153 18 17
16 15.56297856 16 18.41359229 18 18
17 16.24787675 16 19.00160074 19 19
18 16.89667584 17 19.53331318 20 20
19 17.50898276 18 20.01009442 20 20
20 18.08440011 18 20.43326023 20 20
21 18.62252620 19 20.80407965 21 21
22 19.12295496 19 21.12377720 21 21
23 19.58527588 20 21.39353494 21 21
24 20.00907401 20 21.61449437 22 21
25 20.39392985 20 21.78775833 22 22
26 20.73941935 21 21.91439266 22 22
27 21.04511384 21 21.99542789 22 22
28 21.31057998 21 22.03186075 22 22
29 21.53537972 22 22.02465564 22 21
30 21.71907022 22 21.97474603 22 21
31 21.86120383 22 21.88303573 22 21
32 21.96132803 22 21.75040018 22 21
33 22.01898537 22 21.57768760 22 20
34 22.03371341 22 21.36572009 21 20

46

e Y|

35 22.00504469 22 21.11529474 21 21
36 21.93250664 22 20.82718458 21 20
37 21.81562156 22 20.50213958 21 20
38 21.65390654 22 20.14088754 20 20
39 21.44687341 21 19.74413496 20 19
40 21.19402870 21 19.31256784 19 19
41 20.89487354 21 18.84685252 19 19
42 20.54890365 21 18.34763637 18 19
43 20.15560926 20 17.81554852 18 18
44 19.71447502 20 17.25120055 17 17
45 19.22498000 19 16.65518714 17 17
46 18.68659759 19 16.02808666 16 16
47 18.09879544 18 15.37046179 15 15
48 17.46103539 17 14.68286005 15 15
49 16.77277345 17 13.96581438 14 14
50 16.03345968 16 13.21984363 13 13
51 15.24253817 15 12.44545304 12 12
52 14.39944694 14 11.64313475 12 11
53 13.50361791 14 10.81336821 11 11
54 12.55447680 13 9.956620637 10 10
55 11.55144307 12 9.073347407 9 9
56 10.49392988 10 8.163992476 8 8
57 9.381343979 9 7.228988742 7 7
58 8.213085668 8 6.268758416 6 6
59 6.988548714 7 5.283713367 5 5
60 5.707120282 6 4.274255459 4 4
61 4.368180866 4 3.240776873 3 3
62 2.971104211 3 2.183660416 2 2
63 1.515257245 2 1.103279814 1 0

In addition, the approximation error compensation tables can be implemented in the
encoder and similarly in the decoder part, the same compensation table is used to
decode the bits generated by the modified CBAC encoder. Also, make sure that the
engine should be make some definitions in the value domain limitation of engine
parameters thus the encoder and decoder will be performed without overload or

deadlock since this correction table can make LgPmps overload the minimum value.

47

For example, when after correcting, LgPmps may equal to 0, thus the deadlock will be

encountered. Therefore, the specific definition should be included in code.

4.1.2 Experiment Result

Through the proposed approximation error compensation table, as experiment result in
Table 4-2 shows, there will be about 0.2% in the Luma component and a more
promising result in the Chroma components (about 0.3%) in average in five 1080p

video sequences under Random Access (RA) configuration.

Table 4- 2 The coding efficiency using approximation error correction tables

Image seq. Y BD-rate U BD-rate V BD-rate
Kimono -0.17% -0.54% -0.21%
ParkScene -0.29% 0.08% -0.45%
Cactus -0.26% -0.23% -0.47%
BasketballDrive | 0.06% -0.45% -0.15%
BQTerrace -0.30% -0.48% -0.29%
Avg. -0.19% -0.33% -0.31%

4.2 Probability Estimation Model Optimization
4.2.1 Probability Estimation

The probability model updating is the crucial feature in the efficiency improvement in
the arithmetic entropy coder in the video coding standard due to offering the probability
of each symbol to adapt the internal state of the coder to the underlying source statistics
[29]. Such adaptation enhances the compression efficiency of various entropy coding
schemes such as M coder, PIPE. One of the most frequently used formulas is as the

equation (4-7) shows:

48

ps (i) =0 y(i)+(1-a)-p; () (4-7)

Here, i is valued as “0” or “1” which denotes that current bin is most probability symbol
(MPS) or the least probability symbol (LPS), respectively. In addition, y(i) is 0 if the
current symbol is MPS and it is assigned as 1 if otherwise. The § denotes the
probability state. Theis the scaling factor which adjusts the speed of the adaptation as
it indicates that how many the in-prior encoded bins are needed to estimate the
distribution of probability for the coming bins. From this recursive equation, we can
get the clue that the probability updates based on@that is derived from the number of
consecutive bins N, , which is defined a reciprocal number of scaling factor 0.
(a<=1/N,;). The larger N, is, the speed of the adaptation is slower due to the
smaller a, while the estimation model is more accurate. Otherwise, there will be fast
transition along with a less compelling accuracy. Therefore, the choice of the referred
symbols N determines trade-off between the model sensitivity and accuracy. About the
referred bins N, , one method is always using N,,, binsall over the engine performing
statically, while another one adopts an adaptive scaling factor cw, thus the referred bins

can be expressed as 2®, discretely and adaptively.

Many research works focus on how to optimize the binary arithmetic coding. In [30],
the proposed “virtual sliding window” method provided a more outstanding
compression rate compared with look-up table index based entropy coder. Currently,
the virtual sliding window technique is widely explored in HEVC. An integrated

window sizes technique is introduced in [31] ~ [33], which gives a higher precision

49

estimation model with around 0.8% performance improvement in HEVC. In [34], a
counter-based window sizes scheme is proposed and brings about 0.9% BD-rate saving.
Therefore for probability estimation, the smaller window size of each probability model
in the beginning of the sequence can improve the R-D performance considerably and
the changeable window size tends to be more effective. The entropy coder CBAC used
in AVS2 made the similar affords to design an adaptive probability estimation model

to improve R-D performance, although it causes computation complexity increase.

Generally, according to how to choose window size and the probability smoothing trend,
two probability distribution functions are employed including exponent mesh and
uniform mesh [32][33]. The exponent mesh explains that the probability transition is
based on the map function p; = 0.5(1-a)’, where § is the quantized state to realize the
probability change within the certain domain, e.g. from 0.01875 to 0.5. Using this
model, the practical implementation can be performed based the finite state machine
(FSM) indexed by, thus the speculative calculation can be eliminated. However, note
that the probability distribution with an exponent mesh illustrates that the probability is
more dense near 0 and sparse close to 0.5. Therefore, when the probability is distributed
near 0.5, there tend to be a considerable error in the evaluation. Another map function,
mesh function, adopts a uniform model where the probability is scaled into certain
integer section thus it can be presented as P; =P, / 2 The parameter k denotes the
scaled range with length of 2“and P, is the integer within this range. Here§is a token

for the virtual sliding window operation as there is no exactly state will be used for the

50

transition while the speculative computation is performed with shift or/and addition

operation.

With the consideration of computation complexity and hardware-friendly in logic, the
look-up table and scaling strategies are served for the practical implementation scheme
of probability transition without multiplication. In table-based method, the probability
updating is performed based on a pre-defined Finite State Machine (FSM), i.e.
nextState[], where each state implies the real probability. The states jumping rules is
based on the Mesh function. Benefit from the Uniform Mesh map function, another
method is aimed to free multiplication with the addition and shift operation. Thus the
scaled P, expressed as integer ranged from 1 to 2X makes the arithmetic operations
easily. The transition rules can be performed as (P, <~ P, £{A,(P,_, > cw)}) with LPS

and MPS, respectively. Here, A is the increment of the Uniform Mesh.

According to the required variablesa, p, and ¢ in equation (4-7), the supported
theories and implementation approaches employed in each video standard or relative

technique to realize probability estimation are summarized in Table 4-3.

Table 4- 3 The model variables for the probability estimation

variable models formula note
. static 1/N,;, [19]
adaptive 1/ 2% [25]
exponent mesh | P, =0.5x(1-a)’ [33]
Ps
uniformmesh | p, =P, /2" [33]
table-based nextState[5 —1] [19]
)
scale-based P ={A. (R > cw)} [25]

51

Practically, the tradeoff of the computation complexity, memory requirements and the
estimation accuracy is the key problem that the implementation of probability
estimation model should consider in practice. Therefore, the implementation schedule
of each standard explores the method balanced all the variables and achieve the most

significant performance enhancement.

4.2.2 Probability Estimation Model in CBAC

The probability estimation in AVS2.0 is performed with logarithm addition and shift
operation as the CBAC algorithm employs the logarithm domain—based arithmetic
coder. The Uniform Mesh and speculation computation are used for the probability up-
date with multiplication free logic. The scaling factor for CBAC is defined as
(o «1/2%) with adaptive parameter cw chosen one of among 3, 4 and 5 according to
the engine execution counter cycno for each context. Specifically, at the beginning
several iterations, a smaller scaling factor is assigned and it will fixed at 5 after 2
iterations. In addition, the implementation of the probability estimation procedure
adopts the Uniform Mesh where the scaled probability is represented as the
corresponding LgPmps with k-bit resolution. Here, LgPmps denotes the scaled absolute
value of log2(Pmps) with Pmps valued from (0.5, 1). Hence, the factor k defined in
Uniform Mesh function indicts the resolution (bit-depth) of LgPmps, theoretically. The

scaled MPS probability LgPmps is described as equation (4-8):

LgPmps =2""7"x|log, D,y | (4-8)

52

where bit depth bitDepth is assigned 10-bit and Pmps valued from (0.5, 1). Then we
can achieve two boundary values, i.e., (0, 1024), for the LgPmps calculation in the
arithmetic coding process. Thus the probability transition can be mapped into a scaled
integer range with integer operations. Specifically, the estimation updating model

employed in AVS2.0 can be fulfilled in the equation (5):

LgPmps — (LgPmps >>cw) if mps (4_9)
LgPmps+ A if Ips

LgPmps ={
where cw is the sliding window factor as described before, A is the increment of the

LgPmps once encoding one bin based on the Uniform Mesh for case that the symbol is

LPS case. It is also relative to the cw and the bit depth of the LgPmps.

Probability estimation is a crucial step in arithmetic coding of CBAC as illustrated in
Fig.1-3. It has much influence on the final coding performance. In CBAC, context
variables are included 10-bit LgPmps, 1-bit valMps, and 2-bit cycno. Once the
arithmetic coding for a regular bin is finished, the context variables will be updated
including LgPmps speculation, valMps conversion (if necessary), and cycno marking.
Even through this adaptation increase the computation complexity, the coding

performance of CBAC tends to be competitive compared with CABAC.

4.2.3 The Optimization of Probability Estimation Model in CBAC

In this section, based on the mechanism in CBAC, we propose an optimized probability

estimation model with well-regulated scheme to improve coding efficiency.

53

Context buffer update
(LgPmps, valMps, cycno) R i
Binarizer stk;:zg : :
bin — bin Regular F
Prok_)ab|l|ty »| Arithmetic [|
SES Estimator Coding .
% bit
‘\ Regular/bypass i = stream
> I switch Bypass P
7/ 1 1
- » Arithmetic [» !
Coding P

Figure 4-1 The flowchart of CBAC encoder

Referring to the analysis of Uniform Mesh in above section, it can be concluded that
the scaled probability LgPmps is valued within a scaled domain as (0, 2°"™¢P'") jn theory.
Thus the probability estimation can be performed by addition or subtraction, and shift
within integer data domain. Considering that the estimation error of probability of MPS
near to 0.5 tends to be more considerable than that close to 1 where the difference
between two symbols is marginal, we deign a feasible data domain, called (Thrigpmps,
InitLgemps), for probability estimator of the CBAC. Thrigemps denotes the low boundary
that the scaled probability LgPmps can reach. Initigemps is the initial value assigned to
each context model at the beginning of new slice.

For the initial value, it is assigned as in CBAC as follow equation (4-10),

lgtmge =2 7 —T (4-10)
where t isvalued as O or 1. For the threshold value Thrigemps, it is represented by (4-
11):

Thr =2""""1log, (1 Py, o) | (4-11)

LgPmps
where P, s is the statistical result of minimum LPS probability which can be obtained

through the similar method used for the CABAC in [5]. In theory, it is a statistical result.

54

Based on the provided scheme, the scaled probability LgPmps can be transited within
the feasible domain with the uniform increment each iteration in the LPS case. However,
note that the adaptive scaling factor cw is introduced in CBAC where the sliding

window size will be changed along with context variable cycno marking, thus the

uniform increment will also adaptively change and the adaptive uniform increment A

is defined as equation (4-12):

A — 2bitDepth > ’ 10g2 (1 _ 2ch) ’ (4_12)

bitDepth,cw
Therefore, the proposed probability estimation model can be modified with the
following equation (4-13):

max((LgPmps — LgPmps >> cw), Thr, if mps

o) (4-13)

LgPmps = _ ;
LgPmps >10242(2°"*"™ _ | gPmps) : (LgPmps + A) if Ips

In implementation, parameters adjustments including cw, bitDepth, Thrigemps, and
InitLgpmps are necessary in order to find out the best scheme. Then the overall schedule

for the probability estimation can be illustrated as Fig.4-2.

55

(- New Slice)

v
Initialization
LgPmps = 20tDePth _
cycno=0

4

Y

Yes No
MPS Case ?

A 4

LgPmps « LgPmps + Acym

?

LgPmps <Thrigpmps

LgPmps < LgPmps -
LgPmps >> cwr

LgPMPS < Thrigemps LgPmps < 2200 2

LngpS - 2(bi1Depth+1) _
LgPmps

%

context memory:
LgPmps «— LgPmps
cycno++

Y

A

A 4

End

Figure 4- 2 The proposed probability estimation scheme for each context model.

4.2.4 Experiment Result

In this section, the coding efficiency enhancement result will be shown. However, for
the adaptive probability estimation method, it is easy to implement with the
considerable performance enhancement. To verify the coding efficiency of proposed
optimized probability estimation model, experiments are conducted on RD 10.1. The
bit depth bitDepth is assigned as 9 bits, pmin,pls is about 0.0382, T issetas1,and the
final sliding factor cw is set as 5. Note that cw is determined by the cycno marking and
we assign the value of cw along with different cycno and syntax element type. Until

cycno increases up to 3, cw is assigned 5 constantly for each context model for all syntax

56

elements. Table 4-4 and Table 4-5 give the BD-rate reduction detail in the A, B class
video sequences under the Random Access (RA) configurations with common test

condition [28] of AVS2.0.

Table 4- 4 The BD-rate of proposed probability estimation with RDOQ-off

Size Sequence Y BD-rate | UBD-rate | V BD-rate Avg.
A Class Traffic -0.20% -0.24% -0.71% -0.27%
Pku-girls -0.10% -0.94% -0.73% -0.28%
PeopleOnStreet -0.21% -0.88% -1.43% -0.45%
B Class ParkScene -0.05% -0.43% -0.63% -0.17%
beach -0.07% -8.48% -9.65% -2.32%
taishan -0.13% -0.25% -0.62% -0.21%
kimono -0.10% -0.21% -0.47% -0.16%
cactus -0.28% -0.43% -0.70% -0.35%
BasketballDrive -0.29% -0.67% -0.54% -0.37%
Avg. -0.16% -1.35% -1.76% -0.52%

Table 4-5 The BD-rate of proposed probability estimation with RDOQ on.

Size Sequence Y BD-rate | UBD-rate | V BD-rate Avg.
A Class Traffic -0.23% -0.39% -0.76% -0.32%
Pku-girls -0.16% -0.44% -0.42% -0.22%
PeopleOnStreet -0.23% -0.73% -0.89% -0.37%
B Class ParkScene -0.09% -0.50% -0.15% -0.15%
beach -0.14% -7.37% -6.00% -1.78%
taishan -0.15% -0.53% -0.45% -0.23%
kimono -0.19% -0.00% -0.32% -0.19%
cactus -0.24% -0.53% -0.18% -0.27%
BasketballDrive -0.13% -0.47% -0.62% -0.24%
Avg. -0.17% -1.22% -1.09% -0.42%

57

4.3 Rate Estimation

4.3.1 Rate Estimation Model

In AVS2.0, it is crucial to find out the efficient rate distortion optimization (RDO) mode
decision for enhancing the coding efficiency. This mode decision is aimed to selects an
optimal mode among various available candidates including supported size of coding
unit, the prediction unit and the transform unit. However, the rate distortion cost in
RD10.1, reference s/w of AVS2.0 is obtained from the rates coming from the real
CBAC instead of using rate estimation table which is used in HM, reference s/w of [35].
In addition, based on the previous several research[36][37][38], we proposed the fast
rate estimation model for AVS2.0 to replace the real CBAC since the process of CBAC
tend to be complicated because of the serial nature and strong data dependence. In this
section, we will describe the proposed rate estimation (RE) model for the rate
estimation in the RDO mode decision process implemented with RE table and Fig.4-3
illustrates the rate estimation idea in the AVS2.0 where we use the pre-defined RE table

to replace the real CBAC engine to calculate the rate distortion cost.

Image SE seq.

Sequence Prediction RDO Binarization [20%%, cBAC |Ritsteam,
R
_//i) CBAC i rate
. |
i | RE table f¢--4------------- state

Figure 4- 3 The block diagram of proposed rate estimation
Current rate estimation is built based on the fact that there is a relationship between the

58

probability and range as Fig. 4-4 shows. The statistics tell us that the probability of each

new range can be described as (4-14):

kO

L) (4-14)
r

p(r) =

Here, r denotes for the new obtained range and ko is the constant. Thus, according the
range r varies from 256 to 510 in theory, the constant ko can be derived and it is
presented with log.e. Therefore, the rate estimation model dedicated with estimated bits
can be further built.

p (Probability)

\
Pass|— — — %

Pso-——rHTHTI——"""—"———— --

r (Range)
256 510

Figure 4- 4 Probability distribution of the CABAC range
Based on this probability distribution function, the expected output bit length is
represented with (4-15) if the input bin is the least probability symbol (LPS). Otherwise,

(4-16) is adopted.

= x log,e
l o (s)= > log, — —2 4-15
Z "R x (4-15)
Rl X log, e
lyes () = Y log, 9 (4-16)

X=256 X—R(s) X

Here R(s) denotes the value of range indexed by context state s. Therefore, the expected

bit length for both MPS and LPS case defined in the above equations can be basic model

59

for the distinguished arithmetic coding engine.

In addition, the rate model for CBAC which uses logarithm adder and shift will be
deduced as described in the following. In this model, LgPmps denotes the MPS
probability in logarithm domain with 10-bit precision. Therefore, the corresponding

probability Pmps in original can be derived from (4-17).

0g Ppyps =—LgPmps / 2%

p -9 LgPmps/1024 (4'17)
mps

In the principle of arithmetic coding on logarithm, all the related parameters are derived
from probability of MPS in logarithm domain, which is LgPmps. Therefore, the
expected bit length of a bin can be achieved as (4-18) if input bin is MPS, on the contrary,

(4-19) is derived.

e (LGPIIDS) = 3 log, X0 = S 1og, X Ko
mps (LQFPMPS) = 00, ——= 09 -
P x=256 ? Ri X x=256 ? X- pmps X
510 k
:_Iogz Prps * z ?0 (4'18)
x=256
_ LgPmps
1024
510 X k 510 X k
l,,s (LQPmMps) = log, — 2= log .20
e X:ZZSG ? Ri X X:ZZSG ’ X plps X
510
:_Iogz plps : Z ?O (4'19)
x=256
_ LgPmps

=—log,(1-2 102)

From (4-18) and (4-19), the estimated bit length is achieved indexing by the LgPmps.

However, the bit length tend to be changed with the bit depth of LgPmps. We also

60

designed experiments that verify the effects of bit depth of LgPmps (fraction part of bit

length) in the rate estimation RE table.

4.3.2 Experiment Result

To verify the coding efficiency of RD10.1 encoder with proposed rate estimation model,
we use the AVS2.0 common test condition [28] for five 1080p video sequences
including Kimono, ParkScene, Cactus, BasketballDrive, and BQTerrace in Random

Access (RA), All Intra (Al), and Low Delay P (LDP) configurations.

Table 4-7 shows the coding performance after using rate estimation table with 2-bit
fraction part and 8-bit fraction part. Note that the same rate estimation table with 8-bit
fraction part is used for rate distortion optimization quantization (RDOQ). Fig.4-5
illustrates the coding performance in BD-rate (%) varying according to the change of
fraction part from 2-bit to 8-bit. We can get the conclusion that the coding efficiency
tend to be almost constant when the fraction part is larger than 2-bit. There are about
0.1% BD-rate reduction in RA, a marginal (0.02%) increase under Al and a slight
performance degradation with 0.18% in LDP configuration. This trend keeps the similar
between 2-bit and 8-bit in AVS2.0. Thus it is important to know that the rate estimation
table should be at least 2-bit fraction part to implement the correct rate estimation model
in the RDO process. In addition, Table 4-8 gives the encoding time saving when the
rate estimation is implemented into AVS2.0 for the RD cost calculation in the RDO
process. There is about 1.24% encoding time reduction compared with the original
AVS2.0 reference software.

61

Table 4- 6 The BD-rate of using rate estimation (2-bit and 8-bit fraction part)

RE table (8-bit)

RE table (2-bit)

1080p image
seqence RA Al LDP RA Al LDP
Kimono 0.03% 0.00% 0.10% 0.10% 0.03% 0.13%
ParkScene 0.03% -0.04% 0.01% 0.12% -0.02% 0.14%
Cactus -0.06% | -0.02% 0.37% -0.08% | -0.04% 0.09%
BasketballDrive -0.14% 0.13% 0.23% -0.15% 0.09% 0.05%
BQTerrace -0.38% 0.02% 0.22% -0.27% 0.03% 0.46%
Average -0.10% 0.02% 0.18% -0.06% 0.02% 0.17%

Table 4- 7 The time saving when the rate estimation table is used in AVS2.0

Test seq. QP Anchor time Rate est. Time Time Saving Avg.

27 4989.17 4967.22 -0.44%

-1.02%
Kimono 32 4730.05 4653.46 -1.62%
38 4607.79 4562.96 -0.97%
45 4100.52 4056.9 -1.06%

27 3594.39 3560.48 -0.94% -1.16%
ParkScene 32 3233.44 3198.90 -1.07%
38 2982.04 2948.08 -1.14%
45 2817.84 2776.41 -1.47%

27 3203.02 3155.65 -1.48% -1.68%
Cactus 32 2959.27 2909.86 -1.67%
38 2897.11 2876.14 -0.72%
45 2579.71 2506.22 -2.85%
97 10375.7 10265.3 -1.06%
_ 32 7762.71 7822.48 -0.77%

BasketballDrive -1.10%

38 8873.24 8957.54 -0.95% '

45 7960.32 8090.07 -1.63%

Average -1.24%

62

—]

2.50%

* —e—CBAC
2.00%

1.50% \
1.00% \

0.50%

0.00% % —

-0.50%

BD-rate(%)

-1.00%

Fraction part length

Figure 4-5 The BD-rate changes with different fraction part lengths

4.4 Conclusion

In this section, ideas for improving performance in terms of the engine optimization
and throughput improvement were described in detail. From the experimental results,
we can obtain three conclusions: One is approximation error modification is aimed to
match the arithmetic coding principle without the approximation operation. There is
0.2% BD-rate improvement in the Luma component at the sake of addition of a 2-D

buffer to store the adjusting factor and increase of a little of computation.

Another work is about the probability estimation. Since the performance analysis shows
that the bit resolution of LgPmps tend to affects the coding efficiency, the proposed
probability estimation model using 9-bit resolution with matched parameters achieve a

better performance with about 0.3% BD-rate saving in average.

Lastly, for rate estimation, we can see that there is at least 2 bits fraction part for rate

estimation RE table when implementing the rate estimation in RDO process.

63

Chapter 5 Implementation of Binary Arithmetic
Decoder in CBAC

Because of serial data dependency of the process of updating range and context
probabilities in a CBAC algorithm, it is still challengeable to implement decoder of
CBAC with high throughput.

There are numerous previous work [39] [40] which have been devoted to improve the
throughput for CABAC encoder in HEVC. [39] shows various methods to improve the
throughput including grouping bypass bin, reducing the context data dependence, and
sharing context modeling, etc. Several hardware-orientated tools such pre-
renormalization, hybrid path coverage, bypass bin splitting, were developed for the
binary arithmetic encoding for HEVC in [40]. In addition, the recent publication [41]
researched on the architecture of CBAC encoder in AVSL1 targeting to the real-time
HDTV applications. However, plenty of works are CABAC encoder/decoder in HEVC,
although there are several literatures about AVS, most of them are for CAVLD of AVS1.
Few work is about CBAC architecture design, especially CBAC decoder.

Generally, the overall CBAC decoder includes several steps: binary arithmetic decoder
(BAD), context updating and selection and debinarization. In this chapter, we design
Binary Arithmetic Decoder, with throughput of one-bin per cycle which is a part of
CBAC Decoder and a main bottleneck of accomplishing high throughput by strong data
dependency. Specifically, BAD includes range update, offset update and bit read when

one bin is decoded. The most important work of this chapter is designing a reasonable

64

critical path of BAD.

5.1 Architecture of BAD

The difficulty of implementation of CBAC decoder with high throughput lies in the

high serial data dependencies from several update loops: range update, offset update,

and context update. For the introduction of the operation of logarithm domain to free

multiplication, a variable of range is represented as 2 terms, which are Rangel for

integer part and RangeF for fractional part of range. The representation of Offset is the

same as that of range. We design the conceptive structure including the main loops

needed in the decoder part. And the general CBAC decoder implementation structure

can be described as Fig.5-1. There are several loops which are performed with strong

data dependency in CBAC Decoder and each loops are marked with different colors.

\

Offset Update Module
7777777777777777777 offsetl S
offsetF
o ' offsetl h
Context | SMPS| vipsips | isMPs T, o N offset | M || preerr | Bl Read
Update ‘ Decision Update Scaling H
I N D NP I T (N N A S S y
3 i Y /|
! rangelvps P St #scaling | Bitstream
Peantext h N 117 I A R Buffer
D rangelvps rangel,ps
b [Range rangeFmps MPS LPS rangeFips RangeF
Context corftext , split Range Range scaling
Selection D Pl rangeFips | Update Update
rangel;ps o
P rangel T RenormD
Context Update | | rangeF N !
Module i i ;
Tt Range Update Module . Bits Read Module
Figure 5-1 the General BAD Structure in AVS2.0

This overall structure can be divided into four sub-structures including range update

module, offset update module, bits read module and context update module when

implemented.

65

5.1.1 Top Architecture of BAD

For BAD structure design, there are three loops we should consider: range update, offset
update and bits read. One-bin per cycle scheme requires all the loops to be performed
in the one clock. Then signals for the interface between each module are need to be
matched when one bin is performed. Each module will be given details of the design

through the block diagram and Verilog code logic.

In this top architecture, range update module is firstly performed based on the algorithm
design in CBAC, followed by the offset update module using the output signals of range
update module including the fraction part of MPS symbol o_rangeFMps, integer part
of LPS symbol o_rangelLps, and the LPS symbol isLps. The bits read module reads
bits from bit-stream and uses the signals generated by offset update module indicts how
many bits that the bits read module should obtain from the bit-stream buffer. Though
this procedure, one bin is decoded and the parameters including range and offset are
updated and prepared for the next bin. The overall structure can be described as Fig.5-

2 where the interface signals are given the detailed illustration.

Initialization ReadBits3[31.0]

Context variables ReadBits2[7:0]

clk . .
Engine variables

ReadBits1

| |

isLps 0_numOfReadBits1

Range Update 0_rangeFMps[7:0] Offset Update 0o_numOfReadBits2[3:0] Bits Read
0_rangelLPs[4:0] 0_numOfReadBits3[4:0]
rangel
readEnable
Bits Stream
o_offsetl[4:0] Buffer readAddr[15:0]
o_offsetF[7:0] readData[63:0]

Figure 5- 2 The overall structure for the BAD with one-bin scheme

66

5.1.2 Range Update Module

Firstly, the range update procedure is described in this section. Range Update for MPS
and LPS case is the similar as that in encoder part with integer and fraction part. In
order to make the update scheme clear, the integer part of range rangel and fraction part
rangeF are divided into respective sub-module. The flow charts of updating rangel and
rangeF are shown as in Fig. 5-3 and Fig. 5-4, respectively. For the integer part, if it is
LPS symbol, rangel will be changed as the rangeF which decides the increment of
rangel as rangeF should be scaled until it is not smaller than 256. However, after

finishing all the scaling, the rangel is assigned as 0 again in LPS case.

@ Yes

No

rangel = rangelLps

rangeF < 256 ?
A 4

rangel = rangelMps
rangel++
A 4
rangel ==
\ 4 A\ 4
Update rangel

Figure 5-3 Flow chart of rangel update

67

M Yes

No

rangeF = rangeFLps

rangeF < 256 ?
A 4

rangeF = rangeFMps

rangeF <<=1

A

rangeF &= OxFF

| Update rangeF

Figure 5-4 Flow chart of rangeF update

For the fraction part of range rangeF is performed with the similar stage as above offsetl
update after re-modifying the original code in RD10.1. Fig.5-4 shows the process of
updating rangeF where the similar scaling and shift operations are performed but the
difference is that the rangeF is scaled using the 8-bit of low significant bit (LSB) in
LPS case. Based on the rangeF and rangel update scheme in C code, then the range
update procedure can be described as the following Fig.5-5 where two LPS scaling
modules are included into the range update module, which describes two cases whether
the integer parts are equal or not. Once the process of updating rangel and rangeF are
finished, updated value of each variable is stored to register (F/F), which is for next
process.

68

clk

Offsetl
OffsetF

IgPmps >>2

valMps

valid

FIF

I

——

——

reg_rangeF

LPS 8
Scalingl

Offsetl
OffsetF

E— isLps
LPS/MPS decision l
e

rangeFMps

0 rangeFLps

rangelM

ps

LPS
Scaling2

)

IgPmps >>2
{1'b0,reg_rangeF} —¥ 9
{1'b0,lgPmps >> 2}

reg_rangeF —
IgPmps >>2 =

rangeFMps

» 0_isLPS

reg_rangeF<
IgPmps >> 2

S

0 1 rangelLps

rangelLpsl,

» t_rangeF

rangelLps2

1

range IMps|

5

0_rangeFMps

{4'b0, isBypass}

rangel

reg_rangel

t_rangel

valMps —

{~valMps}—|

valid

isLps
0

1

o_rangelLps

— 0_decodedBin

— o_valid

Figure 5-5 Detailed Structure of Module for Range Update

5.1.3 Offset Update Module

In this section, the offset update module is introduced with the design detail. Range

Update plays the vital role in the sub-range division process. According to the

speculation of range and offset in the decoder part, the offset update is performed with

the intermediate result of the process of updating range such as rangelLps and

rangeFMps. By comparing rangeFMps with offset, we can decide whether decoded bin

is MPS or not. After the MPS/LPS decision is made, offset update is performed. Since

there is no offset update in MPS case, thus the offset update is performed in the LPS

case only. The flow chart in Fig.5-6 illustrates of the process of updating offsetl where

offsetl keeps the same without updating when it is MPS case.

69

angeFMps <=
offsetF ?

| offsetl++ |
v A
| offse’I =0 | offsetl =0

offsetF < 256 ?

offsetl++

Y \ 4
| Update offsetl |

Figure 5- 6 offsetl update block diagram
Then we will analysis the offsetF update in the following section. In the offset update
module, it is updated the value of offset in case of LPS only. There are offsetF scaling
and rangeF scaling for the bit reads and range updating gives the hint how many bits
should be read to decide the offsetF. The flow chart for the offsetF update can be

described as Fig.5-7.

70

i_rangeFMps (rangeUpdate output)
i_rangel Mps (rangeUpdate output)
i_offsetl (register)
i_offsetF (register)

Yes

/isl\/lps\

No

Yes

A 4

rangeFMps <= offsetF 7

No

offsetF = offsetF —
rangeFMps;

bit = get_bit(dep);
offsetF = (offsetF<<1) | bit;

offsetF = 256+ offsetF — rangFMps;

rangeFLps < 256 ¢

bit = get_bit(dep);
offsetF = (offsetF << 1)| bit;

) 4

offsetF < 256 ?

bit = get_bit(dep);
offsetF = (offsetF << 1)| bit;

A 4

offsetF &= OxFF;

PE—

A
| Update offsetF |

Figure 5- 7 flow chart of updating offsetF

Finally, through the algorithm analysis, the offset update module can be described as

Fig.5-8. The input signals includes rangellLps, rangeFMps and isLps, which are

generated after finishing range update module, and reads some other signals relative to

bit read module that will be described in bit read module.

71

e
413840 0

7
19S)J0 O

ms_%m&,,oe:clo

<

e840 Bal
0
4 . ——— CSIgpeEer
418540 U
B s —— gsigpeal|
i Heso — (g~0) sdjabues
4 [lesyo {i B
0 Buij[eas ma_\,_u_wmcm‘_ |
Jesyo s | 0 0 419540 _Un BT
[1esyo bBai -
419540 n . sd\gaBuel 1
N [0:8]esy0 sn 95Zp.0T
5150 Beyi”s {Tsngpeai

Nm_m%&u_o%c'o

[0:€]sdT196uRI 1

TSHEPEBOLNU 0

¢ sdn4abuel > f1esyo bal

‘[0:2]pesyo Bar}

+

[0:T€lesngpes) |
[0:]zsngpeai
TSHgpes) |

[0:p]sdq1e6ues ™
[0:2]sdn48Buer 1

sdsi
pifeA

Figure 5-8 Offset Update logic diagram block
72

 RELT

.'f_-l-

':.a
1
=

;,H_

5.1.4 Bits Read Module

The bit read module defines the bits read operation in BAD. As shown in Fig 5-7, the bit read and offset update is performed with the jointly procedure. Part
of the input signals of offset update come from the output variables including o_readBits1, o_readBits2 and o_readBits3, which indicts different bit channel.

initialReadEnable i_numOfReadBits1 i_numOfReadBits2 i_numOfReadBits3 isSLPS

| X
CurrBits Register | CurrBits[63:0] \Ov N
(64bits F/F) NextBits1/63: L) NextBits3[63:0
[63-0]_|4< [| NextBits2lea:0] [[Concatenat .
urrBits[62:1],'b0} TS 1 9 ¥ Concatepate »
readData Préload Register <«<1 i o
B4 64bits FIF) PreloadBits[63:0] |_,\'
. readEnable 0
Bit f . .
Stream CurrBitCount[5:0 +—| o] T [S,A ‘ CurrBitCount Register
Buffer readAddr BT 'IWts_l 'I?SJ [5:0] ’|L (64bits F/F) (0~63)
ItS I
- Address Counter T [ritail Valus = 63
If 1, Counter++ nextOngBits = CurrBits[63] nextEightBits=NextBits1[63:56] next32Bits=NextBits2[63:32]
1 8 32
0_readBitsl 0_readBits2 0_readBits3

Figure 5-9 Bits Read Logic Block Diagram

73

5.1.5 Context Modeling

In this section, the context update is described although context update module is not
included Binary Arithmetic Coding in CBAC. It is because it is one of bottle-neck of
implementing design with high throughput by context data dependency, which means
consecutive bins with same context index should be decoded in a sequence. The
variables for context update in CBAC are LgPmps, which is a variable for context
probability, cycno, which is a variable for sliding window parameter, and valMps, which
is a flag indicating whether current decoded bin is MPS or not. In the CBAC decoder,
all the context variables are assigned with the same value — LgPmps is 1023, cycno
equals to 0 and valMps initialized as 0 at the beginning of the new slice. Specifically,
the process of updating context variables is designed as the following Fig.5-12. Once
the context updating is finished, the context model for the current bin is updated with

the new variable for the next access within current slice.

74

< Context Update >

LgPmps +=95 LgPmps += 46

»

<&
<

A

cycno = (cycno<=2)?(cycno+1):3;
cw=(cycno<=1)?3:(cycno==2)?4:5;

A 4

LgPmps = LgPmps - (LgPmps>>cw) -
LgPmps = 2047 - LgPmps (LgPmps >>(cw+2))
valMPS = lvalMPS

Figure 5- 10 The process of Context Updating in the CBAC decoder in AVS2.0
For the hardware design, signals for interface should be defined clearly. For the cycno
update, and cycno is related to the sliding window factor cw, which is relative the sliding
window size in the probability update process. The valMps is changed only when
LgPmps is larger than 1024, which means probability is out of the defined bit precision
(10 bits) and valMps should be reversed (0 —> 1 or 1 —> 0). According to this analysis,
the block diagram for context update can be described with the following architecture

in Fig. 5-11.

75

clk FIF
cycno[1:0]
cycno[1:0]
—> IgPmps[9:2]
IgPmps[9:2]
— valMps
valMps L, N
cycno[llzpb]lji_la_. 1) reg_cycno[1 : 0]
2'd3—
ol
IgPmps[9:0] —»
IgPmps[9:4] jz\ isMPS
IgPmps[9:6]
IgPmps[9:0]
IgPmps[9:5] % . ® mps_lgPmps
IgPmps[9:7] 2 1
IgPmps[9:0] —,
IgPmps[9:3] 240
IgPmps[9:5] zd1 t_IgPmps[10] == 1'b12 reg_lgPmps[9:0]
\l N
IgPTlg?;g%:O] :EB—'Z ” 11'd20484(> 1)
. Ips_lgPmps
IgPmps[9:0] :EB—'T‘B 10 3 o)
11'd46)
t_Ingps[lO:OﬂﬂF o
IgPmps[9:0] — 2do
11d197 @—’ 2d1 isMPS
~valMps =4 19 reg_valMps
valMps —¥ 0(N)
Figure 5- 11 Detailed Structure of Module for Context Update
5.2 Complexity of BAD

This design is synthesized using the TSMC 65 nm LP process. From the synthesis result,

we can see that the critical path of this design is related to paths to update offsetF in

case of LPS.

At synthesis level, it achieves a maximum clock rate of 526 MHz. So we can expect
that this design has an operating frequency of more than 400 MHz in the level of chip
in consideration of overhead by place and routing with the margin of 20%, which is a
kind of estimated figure by experiential knowledge and depends on competence level

76

—]

of engineer, which deal with CAD tools for place and routing. And the total gate count

is about 13.3K, which is including BAD only.

There is no issued research results about the one-bin per cycle design for AVS2.0, most
of researches are based on the first generation AVS1.0, HEVC or H.264/AVC. Although
[44] has been designed for CBAC in AVSL, it is also available to compare with
proposed BAD design. Since the different synthesis processors are used, after
normalizing the frequencies [45][46] collected by our design and [44], the comparison

detail can be shown in Table 5-1.

Table 5-1 Summary of the implementation result

[3] Ours
Standard AVS1.0 AVS2.0
Process technology 0.18um CMOS | TSMC 65nm LP
Max. frequency (Synthesized) 150 MHz 526 MHz
Total gate count 215k -
BAD only 6.3k 6.7k
(excluding bitstream Control)
Throughput 1 bin/cycle 1 bin/cycle

5.3 Conclusion

There is no significant changes in CBAC decoder algorithm from AVS1.0 to AVS2.0.
We propose an architecture for Binary Arithmetic Decoder in CBAC, which is crucial
part of implementing whole of CBAC Decoder with high throughput. Although we
focus on implementing BAD with throughput of one bin per cycle, it is possible to
extend this design to the architecture for multi-bin decoding in considering the fact that

there is no offset update in MPS case. It means we can improve throughput of this

77

design if we can decode multiple MPS Bins at a time without increasing delay of critical

paths.

In the current stage, this one-bin scheme obtains the basic BAD engine and it will be a
premising exploration for the multi-bin design in order to improve the throughput for
the real-time applications or surveillance camera. In addition, implementation of the
context update and debinarization are not achieved in this stage of this research topic
for lack of time. In the near future, the context update and de-binarization will be given
much consideration based on the BAD design in this thesis. In addition, based on this

design, we can explore the multi-bin scheme in future as well.

78

Chapter 6 Conclusion and Further Work

6.1 Conclusion

In this dissertation, the author performed three aspects works on the entropy coding
CBAC of AVS2.0 including CBAC performance analysis, Arithmetic Coder engine

optimizations and the CBAC decoder architecture implementation.

In the performance analysis chapter, we concluded that CBAC achieves a better
performance under the proposed comparison scheme even though CABAC transplanted
in RD10.1 with the adaptive initial context models at the beginning of each new slice.
Since the adaptive probability estimation and adaptive sliding window size adjusting
methods are introduced into CBAC to map the source information for the given video
sequence, the performance is proved that CBAC has the better compression
performance compared with CABAC. The CBAC optimization is another topic in this

thesis work.

Based on the each parameters used in CBAC, the relative exploration is performed,
especially in the approximation error optimization and probability estimation re-
scalability. Though verifying the best bit depth of the scaled probability LgPmps, the
various bit resolutions are tested and then get the conclusion that 9-bit resolution with
the relative parameters setting can achieve a significant efficiency enhancement.
Actually, CBAC adopts various variables both in engine parameters and context

variables, only these variables are trained very well via numerous adjusting, the CBAC

79

can achieve the considerable algorithm simplification and performance improvement.

Otherwise, it is difficult to get more progress.

For the CBAC decoder implementation, the author explores the hardware performance
though proposed one-bin per cycle architecture. Firstly, modify the C code in RD code
into hardware design language Verilog code and design the one-bin scheme including
range update, offset update, bits read, and context update and debinarization logics.
Then match and verify the Verilog code and C code though comparing the simulation
result. Finally, analyze the hardware architecture performance. For this one-bin scheme
design, the maximum frequency is up to 526 MHz in theory and the total gate count is

about 13.3K based on the technique TSMC 65 process.

6.2 Future Works

For the future works, there are two aspects which are challengeable to achieve more
progress in the coding efficiency. Firstly, simplifying the CBAC encoder/decoder logic,
especially in the update loops with the serial data domain conversion. It can be referred
as the algorithm optimization based on the software RD code of AVS2.0 since CBAC
logic still accounts for the considerable computation complexity. Thus exploring a more
simplified scheme without much performance degradation is one of the further effort
needed to spare to. Another is the implementation for the multi-bin schedule which is
aimed to improve the throughput, especially for the ultra-high definition video or the
real-time applications. As the growing requirements on the video information, such as

TV programs, on-line movie, surveillance camera, etc., in daily life, the high throughput

80

architecture tend to be more compelling and only the efficient multiple bins architecture
can make it come true. Therefore, multi-bin architecture for CBAC decoder will be

proposed and designed in the future.

81

Reference

[1]

[2]
[3]

[4]

[5]

[6]

[7]

8]

[9]

B CCITT S, Recommendation H. 261-Video Codec for Audio visual Services at
px64 Kbit/s. The International Telegraph and Telephone Consultative Committee,
1990.

ITU-T. H.263. Video Codec for Low Bit Rate Communication. 1996.

Le Gall D. MPEG: A Video Compression Standard for Multimedia Applications.
Communications of the ACM, 1991, 34(4): 46-58.

Draft 1. recommendation and final draft international standard of joint video

specification (ITU-T Rec. H. 264| ISO/IEC 14496-10 AVC).

Information Technology — High Efficiency Media Coding — Part2: Video, Chinese
GB/T200602, 2006.

B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, and T. Wiegand, “High efficiency
video coding (HEVC) text specification draft 10,” Joint Collaborative Team on
Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,

document JCTVC-L1003, Geneva, Switzerland, Jan. 2013.
G. J. Sullivan, J.-R. Ohm, W. J. Han and T. Wiegand, “Overview of the High

Efficiency Video Coding (HEVC) Standard”, IEEE Transactions on Circuits and

Systems for Video Technology, vol. 22, pp. 1649-1668, Dec. 2012.

Information Technology — High Efficiency Media Coding — Part2: Video, Chinese

GB/T201503, 2015.
Gao W, Ma S. An Overview of AVS2 Standard, Advanced Video Coding Systems.

Springer International Publishing, 2014: 35-49.

82

[101R 4, HINR, TR, SRR, U2, HIRMT, ARG, “HeBE S Ml A T
FAR” , AVS_M3171, JLFH, 201349 H.

[11]# 8, 4 XH, EF, J.Chen, S.Lee, Y.Piao, C.Kim, “—Fhi[a U %
A", AVS_M3271, I, 2013 4 12 H.

[12]1. Kim, S. Lee, Y. Piao and C. Kim, "Directional multi-hypothesis prediction
(DMH) for AVS2”, 45th AVS meeting, AVS_M3094, Taicang, Jun. 2013.

[13] SR, 5 M, 2HRE, kil HAR, “Wrdt s R B, AVS_M3049,
7#PH, 2013 4 3 H.

[14]Y. Piao, S. Lee, A. Saxena, C. Kim, “Secondary transform for intra coding”, 47th
AVS meeting, AVS_M3233, Shenzhen, Dec. 2013.

[15]J. Wang, X. Wang, T. Ji and D. He, "Two-level transform coefficient coding," 43rd
AVS meeting, AVS_M3035, Beijing, Dec.2012.

[16]Jie Chen, Sunil Lee, Elena Alshina, Chanyul Kim, Chih-Ming Fu, Yu-Wen Huang,
Shawmin Lei, “Sample Adaptive Offset for AVS2”, AVS M3197, 45th AVS
meeting, Shenyang, Sep. 2013.

[17]5kHnie, mIRR, Ett, S, 853, BRI, HEHHE DR, “AVS2
HIE NI IESE A7 . AVS_M3292, dtni, 201444 H.

[18]L. Zhang, et al. "Context-based entropy coding in AVS video coding standard."
Signal Processing: Image Communication 24.4 (2009): 263-276.A. Rosenfeld and
A. Kak. Digital Image Processing (2nd Edition, Vol. 2 ed.),Academic Press,
Orlando (1982)

[19]M. Detlev, H. Schwarz, and T. Wiegand. "Context-based adaptive binary

83

arithmetic coding in the H. 264/AVC video compression standard.” Circuits and

Systems for Video Technology, IEEE Transactions on 13.7 (2003): 620-636.
[20]E. Alshina, E. Alshin, (2011) Multi-parameter probability up-date for CABAC,

Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F254,
Torino, July 2011

[21]J. Stegemann, H. Kirchhoffer, D. Marpe, T. Wiegand, (2011) Non-CEL:
counterbased probability model update with adapted arithmetic coding engine,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G547,
Geneva, Nov. 2011

[22]Hankerson D C, Harris G A, Johnson Jr P D. “Introduction to information theory
and data compression.” CRC press, 2003.

[23]Said A. “Introduction to arithmetic coding-theory and practice”. Hewlett Packard
Laboratories Report, 2004.

[24]Gao W, Ma S W, “Advanced Video Coding Systems”. Springer, 2014.

[25] Yu W, Yang P, He Y. Arithmetic Coding on Logarithm Domain.

[26]Sole J, Joshi R, Nguyen N, et al. Transform coefficient coding in HEVC. Circuits
and Systems for Video Technology, IEEE Transactions on, 2012, 22(12): 1765-

1777.

[27]1H. Jung, S. Choi, and S—I. Chae. "Coding efficiency of the context-based arithmetic
coding engine of AVS 2.0 in the HEVC encoder." Consumer Electronics (ICCE),
2015 IEEE International Conference on. IEEE, 2015.

[28]AVS-P2 common test condition, AVS-N2020, 2014.

[29]Hankerson D C, Harris G A, Johnson Jr P D. “Introduction to information theory

and data compression.” CRC press, 2003.

84

[30]Belyaev E, Gilmutdinov M, Turlikov A (2006) Binary arithmetic coding system
with adaptive probability estimation by “virtual sliding window” in IEEE tenth

international symposium on consumer electronics (ISCE *06), pp 1-5, 2006.

[31] Alshin A, Alshina E, Park J H. “High precision probability estimation for CABAC”
in Visual Communications and Image Processing (VCIP), 2013. IEEE, 2013: 1-6.

[32] Alshin A, Alshina E, Park. | "CEI (subset B): Multiparameter probability up-date
for CABAC," Document of Joint Collaborative Team on Video Coding,
JCTVC-0764, November 2011.

[33]Alshina E, Alshin A (2011) Multi-parameter probability up-date for CABAC, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F254, Torino,

July 2011

[34] Stegemann J, Kirchhoffer H,Marpe D,Wiegand T (2011) Non-CEL: counter-based
probability model update with adapted arithmetic coding engine, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G547,
Geneva, Nov. 2011

[35]Bossen, F.: ‘CEl: table-based bit estimation for CABAC’. JCTVC-G763, Geneva,
November 2011

[36]Hahm, J., and Kyung, C.-M.: ‘Efficient CABAC rate estimation for H.264/AVC
mode decision’, IEEE Trans. Circuits Syst. Video Technol., 2010, 20, (2), pp. 310—
316

[37]Won, K., Yang, J., and Jeon, B.: ‘Fast CABAC rate estimation for H.264/AVC
mode decision’, Electron. Lett., 2012, 48, (19), pp. 1201-1203

[38]Choi S, Chae S I. Comparison of CABAC rate estimation models for HEVC rate

85

distortion optimization. Electronics Letters, 2014, 50(6): 441-442.
[39]V. Sze and M. Budagavi, “High throughput CABAC entropy coding in HEVC,”

IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1778-1791, Dec.
2012.

[40]Zhou J, Zhou D, Fei W, et al. “A high-performance CABAC encoder architecture
for HEVC and H. 264/AVC”, Image Processing (ICIP), 2013 20th IEEE
International Conference on. IEEE, 2013: 1568-1572.

[41] LiY, Zhang S, Jia H, et al. “A high-throughput low-latency arithmetic encoder
design for HDTV™, Circuits and Systems (ISCAS), 2013 IEEE International
Symposium on. IEEE, 2013: 998-1001.

[42]Chen Y H, Sze V. A Deeply Pipelined CABAC Decoder for HEVC Supporting
Level 6.2 High-tier Applications. 2014.

[43]Yi Y, Park I C. High-speed h. 264/AVC CABAC decoding. Circuits and Systems
for Video Technology, IEEE Transactions on, 2007, 17(4): 490-494.

[44]Zheng J, Gao W, Wu D, et al. An efficient VLSI architecture for CBAC of AVS
HDTYV decoder. Signal Processing: Image Communication, 2009, 24(4): 324-332.

[45]Dennard R H, Rideout V L, Bassous E, et al. Design of ion-implanted MOSFET's
with very small physical dimensions. Solid-State Circuits, IEEE Journal of, 1974,
9(5): 256-268.

[46]Bohr M. A 30 year retrospective on Dennard's MOSFET scaling paper. Solid-State

Circuits Society Newsletter, IEEE, 2007, 12(1): 11-13.

86

Appendix

A.l. Co-simulation Environment

In this section, the Verilog codes for each module will be shown in detail.

A.1.1 Range Update Module (dRangeUpdate.v)

“timescale 1ns/100ps
module dRangeUpdate (
input clk,

input rst_n,

/I Signals from Context Modeling

input i_reset,
input i_valid,
input i_valMPS,
input [7:0] i_lgPmps,

/1 Signals from Offset Update
input [7:0] i_offsetF,
input [4:0] i_offsetl,

/1 Signals to Context Modeling
output o_valid,

output 0_decodedBin,

/I Signals for Updating Offset

output 0_isLPS,
output [7:0] 0_rangeFMps,
output [4:0] 0_rangelLps,

/I Signals for Test ,

output [7:0] t_rangeF,

output [4:0] t_rangel
);
T T
Il range Update Stage
T T T T

87

wire isBypass

wire valMPS

wire [7:0] IgPmps

reg isLPS

wire s_flag

reg [7:0] reg_rangeF
reg [4:0] reg_rangel
wire [7:0] updated_rangeF
wire [4:0] updated_rangel
wire [4:0] rangelMps
wire [4:0] rangelLps
wire [4:0] rangellLpsl
wire [4:0] rangellLps2
wire [7:0] rangeFMps
wire [7:0] rangeFLps

wire [7:0] rangeFLpsl
wire [7:0] rangeFLps2

T L L
/I Input

T L L L |
assign isBypass
assign valMPS =i valMPS ;
assign IlgPmps =i _lgPmps;

T T T

/I Output
T L L |
assign o_valid =i valid;

assign o_decodedBin

assign o_isLPS = isLPS :

assign o_rangeFMps

assign o_rangelLps
500 ;

assign t_rangeF
assign t_rangel

= updated_rangeF ;
= updated_rangel ;

=(i_IlgPmps==0)?1bl:1b0;

= (isLPS == 1'b1) ? ~valMPS

:valMPS ;

= (isLPS==1h1) ? rangeFMps : 8'h0 ;
= (isBypass == 1'b0 && iSLPS ==1'b1) ? rangelLps:

88

T L |

/I MPS/LPS Decision
T |
always@(i_offsetl,i_offsetF,rangelMps,rangeFMps) begin

if (rangelMps > i offsetl || (i_offsetl == rangelMps && i_offsetF >=
rangeFMps)) begin
isLPS =11;
end else begin
isLPS =100 ;

end
end

T T

II's flag
T |
assign s_flag = (reg_rangeF < IgPmps) ? 1'b1:1'b0;

T |
/I Range MPS
T |
assign rangeFMps =reg_rangeF - IgPmps ;

assign rangelMps =reg_rangel + {4'b0,s_flag} + {4'b0,isBypass} ;

T L T

/l Range LPS

T L L L |

assign rangeFLps = (s_flag==1'b1) ? rangeFLps2 : rangeFLpsl
assign rangelLps = (s_flag==1'b1) ? rangelLps2 : rangelLpsl ;

dLPSScalingl A_LPSScalingl1(

.i_rangeF (reg_rangeF),
.i_lgPmps (1lgPmps),
.rangeFLps1 (‘rangeFLps1),
.rangelLpsl (rangellLpsl)

)i

dLPSScaling2 A_LPSScaling2(
.i_rangeF (reg_rangeF),
.i_lgPmps (IgPmps),
.rangeFLps2 (‘rangeFLps2),
.rangelLps2 (rangelLps2)

);

T nnnnn

89

/I rangeF Update

T L

assign updated_rangeF = (isBypass == 1'h0 && isLPS ==1'b1) ? rangeFLps :
rangeFMps ;

always@ (posedge clk,negedge rst_n) begin
if (Irst_n) begin
reg_rangeF <=8hFF;
end else begin
if (i_reset==1'b1) begin

reg_rangeF <=8hFF;
end else if (i_valid == 1'b1) begin
reg_rangeF <= updated_rangeF ;
end
end
end

T L L |

/I rangel Update
T L L T

assign updated_rangel = (isLPS ==1'b1)?50 : rangelMps ;

always@ (posedge clk,negedge rst_n) begin
if (Irst_n) begin
reg_rangel <=5P0;
end else begin
if (i_reset==1'b1) begin

reg_rangel <=5P0;
end else if (i_valid == 1'b1) begin
reg_rangel <= updated_rangel ;
end
end
end
endmodule

In the range update module, there are two scaling operations are introduced in order to

describe the operations in each case in LPS.

“timescale 1ns/100ps

module dLPSScalingl (

input [7:0] i_rangeF,
input [7:0] i_lgPmps,
90

output
output

reg [7:0]
reg [4:0]

rangeFLps1,
rangelLpsl

always@(i_IgPmps,i_rangeF,i_rangeF) begin
case(i_IgPmps)

8'b00000000 :
8'b00000001 :
8'b00000010 :
8'b00000011 :
8'b00000100 :
8'b00000101 :
8'b00000110 :
8'b00000111 :
8'b00001000 :
8'b00001001 :
8'b00001010 :
8'b00001011 :
8'b00001100 :
8'b00001101 :
8'b00001110 :
8'b00001111 :
8'b00010000 :
8'b00010001 :
8'b00010010 :
8'b00010011 :
8'b00010100 :
8'b00010101 :
8'b00010110 :
8'b00010111 :
8'b00011000 :
8'b00011001 :
8'000011010 :
8'000011011 :
8'000011100 :
8'000011101 :
8'000011110 :
8'b00011111 :
8'000100000 :
8'000100001 :
8'000100010 :
8'000100011 :
8'000100100 :
8'000100101 :

rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl

=i_rangeF ;

=800 ;
={i_IgPmps[0],7'b0} ;
={i_IgPmps[0],7'b0} ;
{i_IgPmps[1:0],6'00} ;
{i_IgPmps[1:0],6'00} ;
={i_lgPmps[1:0],6'b0} ;
={i_lgPmps[1:0],6'b0} ;
={i_lgPmps[2:0],5'b0} ;
={i_lgPmps[2:0],5'b0} ;
={i_lgPmps[2:0],5'b0} ;
={i_lgPmps[2:0],5'b0} ;
={i_lgPmps[2:0],5'b0} ;
{i_IgPmps[2:0],5'00} ;
{i_IgPmps[2:0],5'00} ;
={i_lgPmps[2:0],5'b0} ;
={i_lgPmps[3:0],4'b0} ;
={i_lgPmps[3:0],4'b0} ;
={i_lgPmps[3:0],4'b0} ;
={i_lgPmps[3:0],4'b0} ;
={i_lgPmps[3:0],4'b0} ;
={i_lgPmps[3:0],4'b0} ;
={i_lgPmps[3:0],4'b0} ;
={i_lgPmps[3:0],4'b0} ;
{i_IgPmps[3:0],4'b0} ;
{i_IgPmps[3:0],4'b0} ;
={i_lgPmps[3:0],4'b0} ;
={i_lgPmps[3:0],4'b0} ;
={i_lgPmps[3:0],4'b0} ;
={i_lgPmps[3:0],4'b0} ;
={i_lgPmps[3:0],4'b0} ;
={i_lgPmps[3:0],4'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
= {i_lgPmps[4:0],3'b0} ;
{i_IlgPmps[4:0],3'b0} ;
{i_IgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;

91

8'b00100110 :
8'b00100111 :
8'b00101000 :
8'b00101001 :
8'b00101010 :
8'b00101011 :
8'b00101100 :
8'b00101101 :
8'b00101110 :
8'b00101111 :
8'b00110000 :
8'b00110001 :
8'b00110010 :
8'b00110011 :
8'b00110100 :
8'b00110101 :
8'b00110110 :
8'b00110111 :
8'b00111000 :
8'b00111001 :
8'b00111010 :
8'b00111011 :
8'b00111100 :
8'b00111101 :
8'b00111110 :
8'b00111111 :
8'b01000000 :
8'b01000001 :
8'b01000010 :
8'b01000011 :
8'b01000100 :
8'b01000101 :
8'001000110 :
8'001000111 :
8'001001000 :
8'001001001 :
8'001001010 :
8'001001011 :
8'001001100 :
8'001001101 :
8'001001110 :
8'001001111 :
8'001010000 :
8'001010001 :

rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl

={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
{i_IgPmps[4:0],3'b0} ;
{i_IgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
{i_IgPmps[4:0],3'b0} ;
{i_IgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[4:0],3'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
{i_IgPmps[5:0],2'00} ;
{i_IgPmps[5:0],2'00} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
{i_IlgPmps[5:0],2'00} ;
{i_IgPmps[5:0],2'00} ;
={i_lgPmps[5:0],2'b0} ;

92

8'b01010010 :
8'b01010011 :
8'b01010100 :
8'b01010101 :
8'b01010110 :
8'b01010111 :
8'b01011000 :
8'b01011001 :
8'b01011010 :
8'b01011011 :
8'b01011100 :
8'b01011101 :
8'b01011110 :
8'b01011111 :
8'b01100000 :
8'b01100001 :
8'b01100010 :
8'b01100011 :
8'b01100100 :
8'b01100101 :
8'b01100110 :
8'b01100111 :
8'b01101000 :
8'b01101001 :
8'b01101010 :
8'b01101011 :
8'h01101100 :
8'b01101101 :
8'b01101110 :
8'b01101111 :
8'b01110000 :
8'b01110001 :
8'001110010 :
8'001110011 :
8'001110100 :
8'001110101 :
8'001110110 :
8'001110111 :
8'001111000 :
8'001111001 :
8'001111010 :
8'001111011 :
8'001111100 :
8'001111101 :

rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl
rangeFLpsl

={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
{i_IgPmps[5:0],2'00} ;
{i_IgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
{i_IgPmps[5:0],2'00} ;
{i_IgPmps[5:0],2'00} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
{i_IgPmps[5:0],2'00} ;
{i_IgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;
{i_IlgPmps[5:0],2'00} ;
{i_IgPmps[5:0],2'00} ;
={i_lgPmps[5:0],2'b0} ;

93

8'h01111110 : rangeFLpsl
8'h01111111 : rangeFLpsl
default rangeFLpsl
endcase

end

always@(i_lgPmps) begin
case(i_IgPmps[7:1])

7'b0000000 rangellLpsl
7'b0000001 rangellLpsl
7'00000010 rangellLpsl
7'b0000011 rangellLpsl
7'00000100 rangellLpsl
7'b0000101 rangellLpsl
7'00000110 rangellLpsl
7'b0000111 rangellLpsl
7'00001000 rangellLpsl
7'00001001 rangellLpsl
7'00001010 rangellLpsl
7'00001011 rangellLpsl
7'00001100 rangellLpsl
7'00001101 rangellLpsl
7'00001110 rangellLpsl
7'b0001111 rangellLpsl
7'0010000 rangellLps1
7'00010001 rangellLpsl
7'00010010 rangellLpsl
7'00010011 rangellLpsl
7'00010100 rangellLpsl
7'00010101 rangellLps1
7'00010110 rangellLpsl
7'00010111 rangellLpsl
7'00011000 rangellLpsl
7'00011001 rangellLpsl
7'00011010 rangellLpsl
7'00011011 rangellLpsl
7'00011100 rangellLpsl
7'00011101 rangellLpsl
7'00011110 rangellLpsl
7'b0011111 rangellLpsl
7'00100000 rangelLpsl
7'00100001 rangellLpsl
7'00100010 rangellLpsl
7'00100011 rangellLpsl

={i_lgPmps[5:0],2'b0} ;
={i_lgPmps[5:0],2'b0} ;

={i_lgPmps[6:0],1'b0} ;

5'd8 ;
5d7;
5'd6 ;
5'd6 ;
5d5;
5d5;
5d5;
5d5;
5'd4 ;
5'd4 ;
5'd4 ;
5'd4 ;
5'd4 ;
5'd4 ;
5'd4 ;
5'd4 ;
5'd3;
5'd3;
5'd3;
5'd3;
5'd3;
5'd3;
5'd3;
5'd3;
5'd3;
5'd3;
5'd3;
5'd3;
5'd3;
5'd3;
5'd3;
5'd3;
5'd2 ;
5'd2 ;
5'd2 ;
5'd2 ;

94

7'00100100 rangelLpsl = 54d2;
7'00100101 rangelLpsl = 54d2;
7'00100110 rangelLpsl = 54d2;
7'00100111 rangelLpsl = 54d2;
7'00101000 rangelLpsl = 54d2;
7'00101001 rangelLpsl = 54d2;
7'00101010 rangelLpsl = 54d2;
7'00101011 rangelLpsl = 54d2;
7'00101100 rangelLpsl = 54d2;
7'00101101 rangelLpsl = 54d2;
7'00101110 rangelLpsl = 54d2;
7'b0101111 rangelLpsl = 54d2;
7'00110000 rangelLpsl = 54d2;
7'00110001 rangelLpsl = 54d2;
7'00110010 rangelLpsl = 54d2;
7'00110011 rangelLpsl = 54d2;
7'00110100 rangelLpsl = 54d2;
7'00110101 rangelLpsl = 54d2;
7'00110110 rangelLpsl = 54d2;
7'b0110111 rangelLpsl = 54d2;
7'00111000 rangelLpsl = 54d2;
7'00111001 rangelLpsl = 54d2;
7'00111010 rangelLpsl = 54d2;
7'00111011 rangelLpsl = 54d2;
7'00111100 rangelLpsl = 54d2;
7'b0111101 rangelLpsl = 54d2;
7'00111110 rangelLpsl = 54d2;
700111111 : rangelLpsl = 5'd2;
default rangelLpsl = 5'dl;
endcase
end
endmodule
“timescale 1ns/100ps
module dLPSScaling2 (
input [7:0] i_rangeF,
input [7:0] i_lgPmps,
output reg [7:0] rangeFLps2,
output reg [4:0] rangelLps2

95

wire[8:0]

wire [7:0]

assign temp
assign sel

always@(sel,temp) begin

case(sel)

8'b00000000 : rangeFLps2
8'b00000001 : rangeFLps2
8'b00000010 : rangeFLps2
8'h00000011 : rangeFLps2
8'h00000100 : rangeFLps2
8'h00000101 : rangeFLps2
8'b00000110 : rangeFLps2
8'b00000111 : rangeFLps2
8'h00001000 : rangeFLps2
8'h00001001 : rangeFLps2
8'h00001010 : rangeFLps2
8'h00001011 : rangeFLps2
8'h00001100 : rangeFLps2
8'h00001101 : rangeFLps2
8'h00001110 : rangeFLps2
8'h00001111 : rangeFLps2
8'h00010000 : rangeFLps2
8'h00010001 : rangeFLps2
8'h00010010 : rangeFLps2
8'h00010011 : rangeFLps2
8'h00010100 : rangeFLps2
8'h00010101 : rangeFLps2
8'h00010110 : rangeFLps2
8'h00010111 : rangeFLps2
8'b00011000 : rangeFLps2
8'b00011001 : rangeFLps2
8'b00011010 : rangeFLps2
8'b00011011 : rangeFLps2
8'b00011100 : rangeFLps2
8'b00011101 : rangeFLps2
8'b00011110 : rangeFLps2
8'b00011111 : rangeFLps2
8'b00100000 : rangeFLps2
8'b00100001 : rangeFLps2
8'b00100010 : rangeFLps2
8'b00100011 : rangeFLps2

temp ;

sel ;

={1'n0,i_rangeF} + {1'b0,i_lgPmps} ;
=temp[8:1] ;

=800 ;

= {temp[0],7'b0} ;
{temp[1:0],6'00} ;
{temp[1:0],6'00} ;
= {temp[2:0],5'b0} ;
= {temp[2:0],5'b0} ;
= {temp[2:0],5'b0} ;
= {temp[2:0],5'b0} ;
= {temp[3:0],4'b0} ;
= {temp[3:0],4'b0} ;
= {temp[3:0],4'b0} ;
{temp[3:0],4'00} ;
{temp[3:0],4'00} ;
= {temp[3:0],4'b0} ;
= {temp[3:0],4'b0} ;
= {temp[3:0],4'b0} ;
= {temp[4:0],3'b0} ;
= {temp[4:0],3'b0} ;
= {temp[4:0],3'b0} ;
= {temp[4:0],3'b0} ;
= {temp[4:0],3'b0} ;
= {temp[4:0],3'b0} ;
{temp[4:0],3'b0} ;
{temp[4:0],3'b0} ;
= {temp[4:0],3'b0} ;
= {temp[4:0],3'b0} ;
= {temp[4:0],3'b0} ;
= {temp[4:0],3'b0} ;
= {temp[4:0],3'b0} ;
= {temp[4:0],3'b0} ;
= {temp[4:0],3'b0} ;
= {temp[4:0],3'b0} ;
= {temp[5:0],2'b0} ;
{temp[5:0],2'b0} ;
{temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;

96

8'b00100100 :
8'b00100101 :
8'b00100110 :
8'b00100111 :
8'b00101000 :
8'b00101001 :
8'b00101010 :
8'b00101011 :
8'b00101100 :
8'b00101101 :
8'b00101110 :
8'b00101111 :
8'b00110000 :
8'b00110001 :
8'b00110010 :
8'b00110011 :
8'b00110100 :
8'b00110101 :
8'b00110110 :
8'b00110111 :
8'b00111000 :
8'b00111001 :
8'b00111010 :
8'b00111011 :
8'b00111100 :
8'b00111101 :
8'b00111110 :
8'b00111111 :
8'b01000000 :
8'b01000001 :
8'b01000010 :
8'b01000011 :
8'001000100 :
8'001000101 :
8'001000110 :
8'001000111 :
8'001001000 :
8'001001001 :
8'001001010 :
8'001001011 :
8'001001100 :
8'001001101 :
8'001001110 :
8'001001111 :

rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2

= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
{temp[5:0],2'b0} ;
{temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
{temp[5:0],2'b0} ;
{temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[5:0],2'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
{temp[6:0],1'b0} ;
{temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
{temp[6:0],1'b0} ;
{temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;

97

8'b01010000 :
8'b01010001 :
8'b01010010 :
8'b01010011 :
8'b01010100 :
8'b01010101 :
8'b01010110 :
8'b01010111 :
8'b01011000 :
8'b01011001 :
8'b01011010 :
8'b01011011 :
8'h01011100 :
8'b01011101 :
8'b01011110 :
8'b01011111 :
8'b01100000 :
8'b01100001 :
8'b01100010 :
8'b01100011 :
8'b01100100 :
8'b01100101 :
8'b01100110 :
8'b01100111 :
8'b01101000 :
8'b01101001 :
8'b01101010 :
8'b01101011 :
8'b01101100 :
8'b01101101 :
8'b01101110 :
8'b01101111 :
8'001110000 :
8'001110001 :
8'001110010 :
8'001110011 :
8'001110100 :
8'001110101 :
8'001110110 :
8'001110111 :
8'001111000 :
8'001111001 :
8'001111010 :
8'001111011 :

rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2
rangeFLps2

= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
{temp[6:0],1'b0} ;
{temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
{temp[6:0],1'b0} ;
{temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
{temp[6:0],1'b0} ;
{temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
{temp[6:0],1'b0} ;
{temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;

98

8'h01111100 :
8'h01111101 :
8'h01111110 :
8'h01111111 :
default rang
endcase

end

always@(sel) begin
case(sel)
8'b00000000 :
8'b00000001 :
8'b00000010 :
8'b00000011 :
8'b00000100 :
8'b00000101 :
8'b00000110 :
8'b00000111 :
8'b00001000 :
8'h00001001 :
8'h00001010 :
8'h00001011 :
8'h00001100 :
8'h00001101 :
8'h00001110 :
8'h00001111 :
8'h00010000 :
8'h00010001 :
8'h00010010 :
8'h00010011 :
8'h00010100 :
8'h00010101 :
8'h00010110 :
8'h00010111 :
8'h00011000 :
8'h00011001 :
8'h00011010 :
8'h00011011 :
8'h00011100 :
8'h00011101 :
8'h00011110 :
8'h00011111 :
8'h00100000 :
8'h00100001 :

= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;
= {temp[6:0],1'b0} ;

rangeFLps2

rangeFLps2

rangeFLps2

rangeFLps2

eFLps2 =temp[7:0];
rangellLps2 5'd8 ;
rangellLps2 5d7 ;
rangellLps2 5'd6 ;
rangellLps2 5'd6 ;
rangellLps2 5d5;
rangellLps2 5d5;
rangellLps2 5d5;
rangellLps2 5d5;
rangellLps2 5'd4 ;
rangellLps2 5'd4 ;
rangellLps2 5'd4 ;
rangellLps2 5'd4 ;
rangellLps2 5'd4 ;
rangellLps2 5'd4 ;
rangellLps2 5'd4 ;
rangellLps2 5'd4 ;
rangellLps2 5d3;
rangellLps2 5d3;
rangellLps2 5d3;
rangellLps2 5d3;
rangellLps?2 5d3;
rangellLps2 5d3;
rangelLps2 5'd3;
rangelLps2 5'd3;
rangelLps2 5'd3;
rangelLps2 5'd3;
rangelLps2 5'd3;
rangelLps2 5'd3;
rangelLps2 5'd3;
rangelLps2 5'd3;
rangellLps2 5'd3;
rangelLps2 5'd3;
rangellLps2 5'd2;
rangellLps2 5'd2;

99

8'b00100010 :
8'b00100011 :
8'b00100100 :
8'b00100101 :
8'b00100110 :
8'b00100111 :
8'b00101000 :
8'b00101001 :
8'b00101010 :
8'b00101011 :
8'b00101100 :
8'b00101101 :
8'b00101110 :
8'b00101111 :
8'b00110000 :
8'b00110001 :
8'b00110010 :
8'b00110011 :
8'b00110100 :
8'b00110101 :
8'b00110110 :
8'b00110111 :
8'b00111000 :
8'b00111001 :
8'b00111010 :
8'b00111011 :
8'b00111100 :
8'b00111101 :
8'b00111110 :
8'b00111111 :
8'b01000000 :
8'b01000001 :
8'001000010 :
8'001000011 :
8'001000100 :
8'001000101 :
8'001000110 :
8'001000111 :
8'001001000 :
8'001001001 :
8'001001010 :
8'001001011 :
8'001001100 :
8'001001101 :

rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps?2
rangelLps?2

5'd2;
5'd2;
5'd2;
5'd2;
5'd2;
5'd2;
5'd2;
5'd2;
5'd2;
5'd2;
5'd2;
5d2;
5d2;
5'd2;
5d2;
5'd2;
5'd2;
5'd2;
5'd2;
5'd2;
5'd2;
5'd2;
5'd2;
5'd2;
5'd2;
5'd2;
5'd2;
5'd2;
5'd2;
5'd2;
5d1;
5d1;
5'd1;
5'd1;
5'd1;
5'd1;
5'd1;
5'd1;
5'd1;
5'd1;
5'd1;
5'd1;
5d1;
5d1;

100

8'b01001110 :
8'b01001111 :
8'b01010000 :
8'b01010001 :
8'b01010010 :
8'b01010011 :
8'h01010100 :
8'b01010101 :
8'b01010110 :
8'b01010111 :
8'b01011000 :
8'b01011001 :
8'h01011010 :
8'b01011011 :
8'h01011100 :
8'b01011101 :
8'b01011110 :
8'b01011111 :
8'b01100000 :
8'b01100001 :
8'b01100010 :
8'b01100011 :
8'b01100100 :
8'b01100101 :
8'b01100110 :
8'b01100111 :
8'b01101000 :
8'b01101001 :
8'b01101010 :
8'b01101011 :
8'h01101100 :
8'b01101101 :
8'001101110 :
8'001101111 :
8'001110000 :
8'001110001 :
8'001110010 :
8'001110011 :
8'001110100 :
8'001110101 :
8'001110110 :
8'001110111 :
8'001111000 :
8'001111001 :

rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps2
rangelLps?2
rangelLps?2

5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;
5d1;

101

8'h01111010 : rangellLps2
8'h01111011 : rangellLps2
8'h01111100 : rangellLps2
8'h01111101 : rangellLps2
8'h01111110 : rangellLps2
8'h01111111 : rangellLps2
default : rangelLps2 =
endcase
end
endmodule

5'd0

5d1;
5d1;
5d1;
5d1;
5d1;
5d1;

A.1.2 Offset Update Module(dOffsetUpdate.v)

“timescale 1ns/100ps

module dOffsetUpdate (
input
input

/1 Signals from Context Modeling
input
input
input

/1 Signals for Updating Offset

input
input [7:0]
input [4:0]

/I Signals from ReadBit

input
input [7:0]
input [31:0]

/I Signals to ReadBit

output
output [3:0]
output [4:0]

clk,
rst_n,

i_reset,
i_init,
i_valid,

i_iSLPS,
i_rangeFMps,
i_rangelLps,

i_readBits1,
i_readBits2,
i_readBits3,

0_numOfReadBits1,
0_numOfReadBits2,
0_numOfReadBits3,

102

/I Signals to Range Update

output o_valid,
output [7:0] o_offsetF,
output [4:0] o_offsetl,
/I Signals for Test ,

output [7:0] t_offsetF,
output [4:0] t_offsetl

);

T T T
/I offset Update Stage
T T T T T

reg [7:0] reg_offsetF

reg [4:0] reg_offsetl

wire [7:0] updated_offsetF ;
wire [4:0] updated_offsetl ;
wire s_flag_offset ;
wire [8:0] un_offsetF ;
wire [9:0] us_offsetF ;
wire [8:0] u_offsetF ;
wire u_offsetl :

reg [8:0] s_offsetF ;
reg [7:0] n_offsetF

reg [4:0] n_offsetl ;

T T T

/I Output
T |
assign o_valid =i valid;

assign o_offsetF = reg_offsetF ;

assign o_offsetl = reg_offsetl ;

assign t_offsetF
assign t_offsetl

= updated_offsetF ;
= updated_offsetl ;

assign o_numOfReadBits1 =i_init|s_flag_offset ;
assign o_numOfReadBits2 = (i_init==1'b1) ? 4'd8 : i_rangelLps[3:0] ;

assign o_numOfReadBits3 = n_offsetl ;

T nnnnn

103

II's_flag

T |

assign s_flag_offset = (i_init == 1'b1 || reg_offsetF < i _rangeFMps) ? 1'bl :
1'b0 ;

T L |
/I OffsetF Update
T L |

assign un_offsetF ={1'b0,reg_offsetF} - {1'b0,i_rangeFMps} ;
/I non scaled offsetF
assign us_offsetF = 10'd256 + {1'b0,reg_offsetF[7:0],i_readBitsl} -
{2'b0,i_rangeFMps} ; /I scaled offsetF
assign u_offsetF = (s_flag_offset == 1'h1) ? us_offsetF[8:0] : un_offsetF ;

T |

/I Offsetl Update
T |

assign u_offsetl = (s_flag_offset==101)?1bl:1b0;

T L L |
/I rangeF Scaling (renormalization)
T L L
always@(i_rangelLps,u_offsetF,i_readBits2,i_init) begin
if (i_init==1'b1) begin
s_offsetF = {u_offsetF[0:0],i_readBits2[7:0]} ;
end else begin
case(i_rangelLps)
4'dl: s offsetF={u_offsetF[7:0],i_readBits2[7:7]} ;
4'd2: s offsetF={u_offsetF[6:0],i_readBits2[7:6]} ;
4'd3: s offsetF={u_offsetF[5:0],i_readBits2[7:5]} ;
4'd4: s offsetF= {u_offsetF[4:0],i_readBits2[7:4]} ;
4'd5: s offsetF={u_offsetF[3:0],i_readBits2[7:3]} ;
4'd6: s_offsetF= {u_offsetF[2:0],i_readBits2[7:2]} ;
4'd7: s_offsetF= {u_offsetF[1:0],i_readBits2[7:1]} ;
4'd8: s_offsetF= {u_offsetF[0:0],i_readBits2[7:0]} ;
default : s offsetF=u_offsetF;
endcase
end
end

T L L
/I offsetF Scaling (domain conversion)
T T L |
wire[40:0] e_offsetF ;

104

assign e_offsetF = {s_offsetF,i_readBits3} ;

always@(e_offsetF) begin
if (e_offsetF[40:40] == 1) begin
n_offsetF = e_offsetF[39:32]
n_offsetl = 5'd0 X
end else if (e_offsetF[40:39] == 1) begin
n_offsetF = e_offsetF[38:31]
n_offsetl = 5'd1 X
end else if (e_offsetF[40:38] == 1) begin
n_offsetF = e_offsetF[37:30]
n_offsetl = 5'd2 :
end else if (e_offsetF[40:37] == 1) begin
n_offsetF = e_offsetF[36:29]
n_offsetl = 5'd3 :
end else if (e_offsetF[40:36] == 1) begin
n_offsetF = e_offsetF[35:28]
n_offsetl = 5'd4 :
end else if (e_offsetF[40:35] == 1) begin
n_offsetF = e_offsetF[34:27]
n_offsetl = 5'd5 :
end else if (e_offsetF[40:34] == 1) begin
n_offsetF = e_offsetF[33:26]
n_offsetl = 5'd6 :
end else if (e_offsetF[40:33] == 1) begin
n_offsetF = e_offsetF[32:25]
n_offsetl = 5'd7 :
end else if (e_offsetF[40:32] == 1) begin
n_offsetF = e_offsetF[31:24]
n_offsetl = 5'd8 :
end else if (e_offsetF[40:31] == 1) begin
n_offsetF = e_offsetF[30:23]
n_offsetl = 5'd9 X
end else if (e_offsetF[40:30] == 1) begin
n_offsetF = e_offsetF[29:22]
n_offsetl = 5'd10 X
end else if (e_offsetF[40:29] == 1) begin
n_offsetF = e_offsetF[28:21]
n_offsetl = 5'd11 X
end else if (e_offsetF[40:28] == 1) begin
n_offsetF = e_offsetF[27:20]
n_offsetl = 5'd12 X
end else if (e_offsetF[40:27] == 1) begin

105

n_offsetF =e_offsetF[26:19] ;
n_offsetl = 5'd13 X

end else if (e_offsetF[40:26] == 1) begin
n_offsetF = e_offsetF[25:18] ;
n_offsetl = 5'd14 X

end else if (e_offsetF[40:25] == 1) begin
n_offsetF =e_offsetF[24:17] ;
n_offsetl = 5'd15 X

end else if (e_offsetF[40:24] == 1) begin
n_offsetF = e_offsetF[23:16] ;
n_offsetl = 5'd16 X

end else if (e_offsetF[40:23] == 1) begin
n_offsetF = e_offsetF[22:15] ;
n_offsetl = 5'd17 :

end else if (e_offsetF[40:22] == 1) begin
n_offsetF = e_offsetF[21:14] ;
n_offsetl = 5'd18 :

end else begin
n_offsetF = e_offsetF[20:13] ;
n_offsetl = 5'd19 :

end

end

T T T

/I offsetF Update
T
assign updated_offsetF = (i_isLPS) ? n_offsetF : req_offsetF ;

always@ (posedge clk,negedge rst_n) begin
if (Irst_n) begin
reg_offsetF <=8'd0;
end else begin
if (i_reset==1'b1) begin

reg_offsetF <=8'd0;
end else if (i_valid ==1'b1 || i_init == 1'b1) begin
reg_offsetF <= updated_offsetF ;
end
end
end

T L |

/I offsetl Update
T L T |

assign updated_offsetl = (1_isLPS) ? n_offsetl : reg_offsetl ;

106

,a-'g O

always@ (posedge clk,negedge rst_n) begin
if (Irst_n) begin
reg_offsetl <=5P0;
end else begin
if (i_reset==1'b1) begin

reg_offsetl <=5P0;
end else if (i_valid == 101 || i_init == 1'b1) begin
reg_offsetl <= updated_offsetl ;
end
end
end
endmodule

A.1.3 Bits Read Module (dReadBits.v)

“timescale 1ns/100ps

module dReadBits #(

parameter ADDR_WIDTH =16

X
input clk,
input rst_n,
input i_init,
input i_valid,
input i_iSLPS,

// form Bitstream Buffer

output renable,

output reg [ADDR_WIDTH-1:0] raddr,

input [63:0] rdata,

input i_numOfReadBits1,
input [3:0] i_numOfReadBits2,
input [4:0] i_numOfReadBits3,
output 0_readBits1,

output [7:0] 0_readBits2,

output [31:0] 0_readBits3

107

reg [5:0] currBitCount ;
wire [6:0] nextBitCountl ;
wire [6:0] nextBitCount2 ;
wire [6:0] nextBitCount3 ;
wire [6:0] nextBitCount4 ;
reg [63:0] currBitBuffer ;
reg [63:0] nextBitBufferl

reg [63:0] nextBitBuffer2

reg [63:0] nextBitBuffer3

wire [63:0] nextBitBuffer4 ;
reg [63:0] currPreLoadBuffer;
reg [63:0] nextPreLoadBuffer0
reg [63:0] nextPreLoadBufferl
reg [63:0] nextPreLoadBuffer2
reg [63:0] nextPreLoadBuffer3
wire [63:0] nextPreLoadBuffer4
reg init_1d

reg renable_1d

assign o_readBits1 = currBitBuffer[63]

assign o_readBits2 = nextBitBuffer1[63:56] ;
assign o_readBits3 = nextBitBuffer2[63:32] ;

always@ (currBitCount,currPreLoadBuffer,rdata) begin

case(currBitCount[5:0])
6'd63 : nextPreLoadBuffer0
{currPreLoadBuffer[63:63],rdata[63:01]} ;
6'd62 : nextPreLoadBuffer0
{currPreLoadBuffer[63:62],rdata[63:02]} ;
6'd6l : nextPreLoadBuffer0
{currPreLoadBuffer[63:61],rdata[63:03]} ;
6'd60 : nextPreLoadBufferQ
{currPreLoadBuffer[63:60],rdata[63:04]} ;
6'd59 : nextPreLoadBufferQ
{currPreLoadBuffer[63:59],rdata[63:05]} ;
6'd58 : nextPreLoadBufferQ
{currPreLoadBuffer[63:58],rdata[63:06]} ;
6'd57 : nextPreLoadBuffer0
{currPreLoadBuffer[63:57],rdata[63:07]} ;
6'd56 : nextPreLoadBuffer0Q

108

{currPreLoadBuffer[63:56],rdata[63:08]} ;
6'd55 : nextPreLoadBuffer0
{currPreLoadBuffer[63:55],rdata[63:09]} ;
6'd54 : nextPreLoadBuffer0
{currPreLoadBuffer[63:54],rdata[63:10]} ;
6'd53 : nextPreLoadBuffer0
{currPreLoadBuffer[63:53],rdata[63:11]} ;
6'd52 : nextPreLoadBuffer0
{currPreLoadBuffer[63:52],rdata[63:12]} ;
6'd51 : nextPreLoadBuffer0
{currPreLoadBuffer[63:51],rdata[63:13]} ;
6'd50 : nextPreLoadBuffer0
{currPreLoadBuffer[63:50],rdata[63:14]} ;
6'd49 : nextPreLoadBuffer0
{currPreLoadBuffer[63:49],rdata[63:15]} ;
6'd48 : nextPreLoadBuffer0
{currPreLoadBuffer[63:48],rdata[63:16]} ;
6'd47 . nextPreLoadBuffer0
{currPreLoadBuffer[63:47],rdata[63:17]} ;
6'd46 : nextPreLoadBuffer0
{currPreLoadBuffer[63:46],rdata[63:18]} ;
6'd4d5 : nextPreLoadBuffer0
{currPreLoadBuffer[63:45],rdata[63:19]} ;
6'd44 . nextPreLoadBuffer0
{currPreLoadBuffer[63:44],rdata[63:20]} ;
6'd43 : nextPreLoadBuffer0
{currPreLoadBuffer[63:43],rdata[63:21]} ;
6'd42 : nextPreLoadBuffer0
{currPreLoadBuffer[63:42],rdata[63:22]} ;
6'd4l : nextPreLoadBuffer0
{currPreLoadBuffer[63:41],rdata[63:23]} ;
6'd40 : nextPreLoadBuffer0
{currPreLoadBuffer[63:40],rdata[63:24]} ;
6'd39 : nextPreLoadBuffer0Q
{currPreLoadBuffer[63:39],rdata[63:25]} ;
6'd38 : nextPreLoadBuffer0
{currPreLoadBuffer[63:38],rdata[63:26]} ;
6'd37 : nextPreLoadBuffer0
{currPreLoadBuffer[63:37],rdata[63:27]} ;
6'd36 : nextPreLoadBufferQ
{currPreLoadBuffer[63:36],rdata[63:28]} ;
default : nextPreLoadBuffer0
endcase
end

currPreLoadBuffer ;

109

assign nextBitCountl = {1'b0,currBitCount} + {6'b0,i_numOfReadBits1} ;

always@(i_numOfReadBits1,currBitBuffer,nextPreLoadBufferQ) begin
if (i_numOfReadBitsl == 1'b1) begin

nextBitBufferl =
{currBitBuffer[62:0],nextPreLoadBuffer0[63]} ;
nextPreLoadBufferl = {nextPreLoadBuffer0[62:0],1'00} ;
end else begin
nextBitBufferl = currBitBuffer ;
nextPreLoadBufferl = nextPreLoadBuffer0 ;

end
end

assign nextBitCount2 = nextBitCountl + {3'b0,i_numOfReadBits2} ;

always@(i_numOfReadBits2,nextBitBufferl,nextPreLoadBufferl) begin
case(i_numOfReadBits2)
4'dl: nextBitBuffer2 =
{nextBitBuffer1[62:0],nextPreLoadBuffer1[63:63]} ;
4'd2: nextBitBuffer2 =
{nextBitBuffer1[61:0],nextPreLoadBuffer1[63:62]} ;
4'd3: nextBitBuffer2 =
{nextBitBuffer1[60:0],nextPreLoadBuffer1[63:61]} ;
4'd4: nextBitBuffer2 =
{nextBitBuffer1[59:0],nextPreLoadBuffer1[63:60]} ;
4'd5: nextBitBuffer2 =
{nextBitBuffer1[58:0],nextPreLoadBuffer1[63:59]} ;
4'd6: nextBitBuffer2 =
{nextBitBuffer1[57:0],nextPreLoadBuffer1[63:58]} ;
4'd7: nextBitBuffer2 =
{nextBitBuffer1[56:0],nextPreLoadBuffer1[63:57]} ;
4'd8: nextBitBuffer2 =
{nextBitBuffer1[55:0],nextPreLoadBuffer1[63:56]} ;
default nextBitBuffer2 = nextBitBufferl ;
endcase
end

always@(i_numOfReadBits2,nextPreLoadBufferl) begin
case(i_numOfReadBits2)

4'dl: nextPreLoadBuffer2 = {nextPreLoadBuffer1[62:0],1'00} ;
4'd2: nextPreLoadBuffer2 = {nextPreLoadBuffer1[61:0],2'b0} ;
4'd3: nextPreLoadBuffer2 = {nextPreLoadBuffer1[60:0],3'b0} ;
4'd4: nextPreLoadBuffer2 = {nextPreLoadBuffer1[59:0],4'b0} ;

110

4'd5: nextPreLoadBuffer2 = {nextPreLoadBuffer1[58:0],5'b0} ;
4'd6: nextPreLoadBuffer2 = {nextPreLoadBuffer1[57:0],6'v0} ;
4'd7: nextPreLoadBuffer2 = {nextPreLoadBuffer1[56:0],7'b0} ;
4'd8: nextPreLoadBuffer2 = {nextPreLoadBuffer1[55:0],8'b0} ;
default nextPreLoadBuffer2 = nextPreLoadBufferl ;
endcase

end

assign nextBitCount3 = nextBitCount2 + {2'00,i_numOfReadBits3} ;

always@(i_numOfReadBits3,nextBitBuffer2,nextPreLoadBuffer2) begin
case(i_numOfReadBits3)
5dl: nextBitBuffer3 =
{nextBitBuffer2[62:0],nextPreLoadBuffer2[63:63]} ;
5d2: nextBitBuffer3 =
{nextBitBuffer2[61:0],nextPreLoadBuffer2[63:62]} ;
5d3: nextBitBuffer3 =
{nextBitBuffer2[60:0],nextPreLoadBuffer2[63:61]} ;
5d4: nextBitBuffer3 =
{nextBitBuffer2[59:0],nextPreLoadBuffer2[63:60]} ;
5d5: nextBitBuffer3 =
{nextBitBuffer2[58:0],nextPreLoadBuffer2[63:59]} ;
5d6: nextBitBuffer3 =
{nextBitBuffer2[57:0],nextPreLoadBuffer2[63:58]} ;
5d7: nextBitBuffer3 =
{nextBitBuffer2[56:0],nextPreLoadBuffer2[63:57]} ;
5d8: nextBitBuffer3 =
{nextBitBuffer2[55:0],nextPreLoadBuffer2[63:56]} ;
5d9: nextBitBuffer3 =
{nextBitBuffer2[54:0],nextPreLoadBuffer2[63:55]} ;
5'd10 nextBitBuffer3 =
{nextBitBuffer2[53:0],nextPreLoadBuffer2[63:54]} ;
5'd11 nextBitBuffer3 =
{nextBitBuffer2[52:0],nextPreLoadBuffer2[63:53]} ;
5'd12 nextBitBuffer3 =
{nextBitBuffer2[51:0],nextPreLoadBuffer2[63:52]} ;
5'd13 nextBitBuffer3 =
{nextBitBuffer2[50:0],nextPreLoadBuffer2[63:51]} ;
5'd14 nextBitBuffer3 =
{nextBitBuffer2[49:0],nextPreLoadBuffer2[63:50]} ;
5'd15 nextBitBuffer3 =
{nextBitBuffer2[48:0],nextPreLoadBuffer2[63:49]} ;
5'd16 nextBitBuffer3 =
{nextBitBuffer2[47:0],nextPreLoadBuffer2[63:48]} ;

111

5d17 : nextBitBuffer3 =
{nextBitBuffer2[46:0],nextPreLoadBuffer2[63:47]} ;

5'd18 : nextBitBuffer3 =
{nextBitBuffer2[45:0],nextPreLoadBuffer2[63:46]} ;

5'd19 : nextBitBuffer3 =
{nextBitBuffer2[44:0],nextPreLoadBuffer2[63:45]} ;

default nextBitBuffer3 = nextBitBuffer2 ;

endcase

end

always@(i_numOfReadBits3,nextPreLoadBuffer2) begin

case(i_numOfReadBits3)

5'dl: nextPreLoadBuffer3 = {nextPreLoadBuffer2[62:0],01'n0} ;
5'd2: nextPreLoadBuffer3 = {nextPreLoadBuffer2[61:0],02'n0} ;
5'd3: nextPreLoadBuffer3 = {nextPreLoadBuffer2[60:0],03'n0} ;
5'd4: nextPreLoadBuffer3 = {nextPreLoadBuffer2[59:0],04'b0} ;
5d5: nextPreLoadBuffer3 = {nextPreLoadBuffer2[58:0],05'b0} ;
5'd6: nextPreLoadBuffer3 = {nextPreLoadBuffer2[57:0],06'n0} ;
5'd7: nextPreLoadBuffer3 = {nextPreLoadBuffer2[56:0],07'b0} ;
5'd8: nextPreLoadBuffer3 = {nextPreLoadBuffer2[55:0],08'b0} ;
5'd9: nextPreLoadBuffer3 = {nextPreLoadBuffer2[54:0],09'n0} ;

5'd10 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[53:0],10'b0} ;
5'dll : nextPreLoadBuffer3 = {nextPreLoadBuffer2[52:0],11'b0} ;
5'd12 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[51:0],12'b0} ;
5'd13 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[50:0],13'b0} ;
5'd14 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[49:0],14'b0} ;
5'dl5 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[48:0],15'b0} ;
5'd16 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[47:0],16'b0} ;
5'dl7 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[46:0],17'b0} ;
5'd18 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[45:0],18'h0} ;
5'd19 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[44:0],19'b0} ;
default nextPreLoadBuffer3 = nextPreLoadBuffer?2 ;
endcase
end
assign nextBitCount4 = ((i_isLPS == 1'b1) ? nextBitCount3
currBitCount X
assign nextBitBuffer4 = (i_isLPS == 1'b1) ? nextBitBuffer3
currBitBuffer X
assign nextPreLoadBuffer4 = (i_iSLPS == 1'b1) ? nextPreLoadBuffer3
currPreLoadBuffer ;

always@ (posedge clk,negedge rst_n) begin
if (Irst_n) begin

112

currBitCount <=6'd0;
end else begin
if (i_init==1'b1) begin
currBitCount <=6'd0 ;
end else if (i_valid == 1'b1) begin
currBitCount <= nextBitCount4[5:0] ;
end
end
end

always@ (posedge clk) begin
if (init_1d ==1'b1) begin
currBitBuffer <= currPreLoadBuffer ;
end else if (i_valid ==1'b1) begin
currBitBuffer <= nextBitBuffer4 ;
end
end

always@ (posedge clk) begin
if (init_1d ==1'b1) begin
currPreLoadBuffer<= rdata ;
end else if (renable == 1'b1) begin
case(nextBitCount4[5:0])

6'dol : currPreLoadBuffer<= {rdata[62:0],01'b0} ;
6'd02 : currPreLoadBuffer<= {rdata[61:0],02'b0} ;
6'd03 : currPreLoadBuffer<= {rdata[60:0],03'n0} ;
6'do4 : currPreLoadBuffer<= {rdata[59:0],04'b0} ;
6'd05 : currPreLoadBuffer<= {rdata[58:0],05'b0} ;
6'do6 : currPreLoadBuffer<= {rdata[57:0],06'n0} ;
6'd07 : currPreLoadBuffer<= {rdata[56:0],07'b0} ;
6'd08 : currPreLoadBuffer<= {rdata[55:0],08'b0} ;
6'd09 : currPreLoadBuffer<= {rdata[54:0],09'n0} ;
6'd10 : currPreLoadBuffer<= {rdata[53:0],10'00} ;
6'dll : currPreLoadBuffer<= {rdata[52:0],11'b0} ;
6'dl2 : currPreLoadBuffer<= {rdata[51:0],12'b0} ;
6'd13 : currPreLoadBuffer<= {rdata[50:0],13'v0} ;
6'dl4 : currPreLoadBuffer<= {rdata[49:0],14'b0} ;
6'dl5 : currPreLoadBuffer<= {rdata[48:0],15'b0} ;
6'd16 : currPreLoadBuffer<= {rdata[47:0],16'h0} ;
6'dl7 : currPreLoadBuffer<= {rdata[46:0],17'b0} ;
6'd18 : currPreLoadBuffer<= {rdata[45:0],18'h0} ;
6'd19 : currPreLoadBuffer<= {rdata[44:0],19'b0} ;
6'd20 : currPreLoadBuffer<= {rdata[43:0],20'b0} ;
6'd21 : currPreLoadBuffer<= {rdata[42:0],21'b0} ;

113

6'd22 : currPreLoadBuffer<= {rdata[41:0],22'b0} ;

6'd23 : currPreLoadBuffer<= {rdata[40:0],23'b0} ;
6'd24 : currPreLoadBuffer<= {rdata[39:0],24'b0} ;
6'd25 : currPreLoadBuffer<= {rdata[38:0],25'b0} ;
6'd26 : currPreLoadBuffer<= {rdata[37:0],26'b0} ;
6'd27 : currPreLoadBuffer<= {rdata[36:0],27'b0} ;
6'd28 : currPreLoadBuffer<= {rdata[35:0],28'b0} ;
6'd29 : currPreLoadBuffer<= {rdata[34:0],29'b0} ;
default : currPreLoadBuffer<=rdata ;

endcase

end else if (i_valid ==1'b1) begin
currPreLoadBuffer<= nextPreLoadBuffer4 ;
end
end

assign renable = nextBitCount4[6]&i_valid | i_init ;

always@ (posedge clk,negedge rst_n) begin
if (Irst_n) begin

init_1d <=1h0;
end else begin
init_1d <=i_init;
end
end

always@ (posedge clk,negedge rst_n) begin
if (Irst_n) begin

renable_1d <=1h0;
end else begin

renable_1d <= nextBitCount4[6]&i_valid ;
end

end

always@ (posedge clk,negedge rst_n) begin
if (Irst_n) begin
raddr <= {ADDR_WIDTH{1'b0}} ;
end else begin
if (renable == 1'b1) begin
raddr <=raddr+1;
end
end
end

endmodule

114

A.1.4 Binary Arithmetic Decoding Top Module (BADTop.v)

“timescale 1ns/100ps

module BADTop #(
parameter ADDR_WIDTH =16

X
input clk,
input rst_n,
/I Signals from Context Modeling
input i_reset,
input i_init_offset,
input i_init_readBits,
input i_valid,
input i_valMPS,
input [7:0] i_lgPmps,
// form Bitstream Buffer
output renable,
output [ADDR_WIDTH-1:0] raddr,
input [63:0] rdata,
/1 Signals to Context Modeling
output o_valid,
output 0_decodedBin,
// Signals for Test ,
output t_isLPS,
output [7:0] t_rangeF,
output [4:0] t_rangel,
output [7:0] t_offsetF,
output [4:0] t_offsetl

);
wire [7:0] offsetF ;
wire [4:0] offsetl ;
wire isLPS
wire [7:0] rangeFMps
wire [4:0] rangelLps
wire readBitsl ;

115

wire [7:0] readBits2 ;

wire [31:0] readBits3 ;
wire numOfReadBitsl ;
wire [3:0] numOfReadBits2 ;
wire [4:0] numOfReadBits3 ;

assignt_isLPS = isLPS ;

dRangeUpdate A_dRangeUpdate(

.clk (clk),
st n (rst_n),
Ji_reset (i_reset),
.i_valid (i_valid),
.i_valMPS (i_valMPS),
.i_lgPmps (i_lgPmps),
.i_offsetl (offsetl),
.i_offsetF (offsetF),
.0_valid (o_valid)
.0_decodedBin (0_decodedBin),
.0_isLPS (isLPS),
.0_rangeFMps (rangeFMps),
.0_rangelLps (rangelLps),
.t rangeF (t_rangeF),
.t rangel (t_rangel)

);

dOffsetUpdate A_dOffsetUpdate(
.clk (clk)
st n (rst_n),
.i_reset (i_reset),
d_init (i_init_offset),
.i_valid (i_valid),
A_ISLPS (isLPS | i_init_offset),
.i_rangeFMps (rangeFMps),
.i_rangelLps (rangelLps),
.i_readBitsl (readBitsl),
.i_readBits2 (readBits2),
.i_readBits3 (readBits3),
.0_numOfReadBits1 (numOfReadBitsl),
.0_numOfReadBits2 (numOfReadBits2),
.0_numOfReadBits3 (numOfReadBits3),
.0_valid (/*open*/),
.0_offsetF (offsetF),
.0_offsetl (offsetl),

116

.t offsetF
.t offsetl

);

.clk
st n
Jd_init
.i_valid
Ji_isLPS
.renable
.raddr
.rdata

.0_readBits1
.0_readBits2
.0_readBits3
);
endmodule

.i_numOfReadBits1
.i_numOfReadBits2
.i_numOfReadBits3

(t_offsetF

(t_offsetl

dReadBits #(ADDR_WIDTH) A_dReadBits(
(clk

(rst_n
(i_init_readBits

(i_valid | i_init_offset),
(isLPS |i_init_offset),

(renable

(raddr

(rdata

(numOfReadBits1
(numOfReadBits2
(numOfReadBits3

(readBitsl

(readBits2

(readBits3

A.1.5 Test Bench

“timescale 1ns/100ps
module tb () ;
reg clk
regrst_n;
initial begin
clk =0;
#10
end

always begin

end

rst_n =0;

rst_n =1;

#25clk <=~clk;

117

dTB_Single Bin A_dTB_Single_Bin (clk,rst_n) ;

endmodule

“timescale 1ns/100ps

module dTB_Single_Bin (
input clk, I/ Clock input
input rst_n I/ Reset async input active low

import "DPI-C" context task dMain_single_bin();
export "DPI-C" task dTh_single_bin_wait_clk;
export "DPI-C" task dTh_single_bin_wait_rstn;
export "DPI-C" task dTh_single_bin_input_write;
export "DPI-C" task dTh_single_bin_output_read;
export "DPI-C" task dTh_single_bin_init;

export "DPI-C" task dTh_single_bin_writeBitStream;

reg iReset :
reg init_offset ;
reg init_readBits ;
reg iValid :
wire oValid :
reg oClear :
reg output_valid;
reg [31:0] iBinCount
reg iValMPS :
reg [7:0] iLgPmps ;
reg [4:0] iOffsetl ;

reg [7:0] iOffsetF ;

reg [7:0] oRangeF ;
reg [4:0] oRangel ;
reg olsLPS X
reg oDecodedBin ;
reg [4:0] oOffsetl ;

reg [7:0] 0OffsetF ;

wire[7:0] reg_RangeF ;
wire[4:0] reg_Rangel ;
wire reg_IsLPS X
wire reg_DecodedBin ;

118

wire[7:0] reg_OffsetF ;

wire[4:0] reg_Offsetl ;
parameter ADDR_WIDTH =16;
reg wenable :
reg [ADDR_WIDTH-1:0] waddr ;
reg [63:0] wdata ;
wire renable :
wire[ADDR_WIDTH-1:0] raddr ;
wire[63:0] rdata ;
initial begin

iValid =100 ;

iReset =100 ;

init_offset =100 ;

init_readBits =100 ;
end
initial begin

repeat(30) @(posedge clk);
dMain_single_bin();
end

task dTh_single_bin_wait_clk (input int cycle);
repeat(cycle) @(posedge clk);
endtask

task dTh_single_bin_wait_rstn (output bit o_rst_n);
while(!rst_n) begin
@(posedge clk);
end
0_rst n=rst_n;
endtask

task dTb_single_bin_input_write (input int i_mode,input int i_binCount,input int

i_valMPS,input int i_lgPmps,input int i_offsetl,input int i_offsetF);

iValid <=1%1;
iBinCount <=i_hinCount;
iValMPS <=i valMPS;
iLgPmps <=i_lgPmps[9:2] ;
iOffsetl <=i_offsetl ;

iOffsetF <= |_offsetF ;

repeat(1) @(posedge clk);

119

iValid
endtask

<=1h0;

task dTb_single_bin_output_read (output int o_valid,output int o_rangeF,output int

0_rangel,output int
0_decodedBin);

o_offsetF,output

int o offsetl,output int o_isLPS,output int

o_valid <= output_valid ;
oClear <=1b1 :
0_rangeF <= oRangeF ;
0_rangel <= oRangel ;
o_offsetF <= 00OffsetF ;
o_offsetl <= 0Offsetl ;

0_isLPS <= 0lsLPS :

0_decodedBin
repeat(1) @(posedge clk);
oClear

endtask

<= oDecodedBin ;

<=1'00 ;

task dTh_single_bin_init(input int cycle);

repeat(1) @(posedge clk);

init_readBits <=1bh1;
repeat(2) @(posedge clk);
init_readBits <=1h0;
repeat(2) @(posedge clk);
init_offset <=1bh1;
repeat(1) @(posedge clk);
init_offset <=1h0;

repeat(cycle) @(posedge clk);

endtask

task dTh_single_bin_writeBitStream(input int i_data[8]) ;

wenable <=1b1;
wdata[63:56] <=i_data[0] ;
wdata[55:48] <=i_data[1] ;
wdata[47:40] <=i_data[2] ;
wdata[39:32] <=i_data[3] ;
wdata[31:24] <=i_data[4] ;
wdata[23:16] <=i_data[5] ;
wdata[15:08] <=i_data[6] ;
wdata[07:00] <=i_data[7];
repeat(1) @(posedge clk);

wenable <=10;

endtask

120

always@ (posedge clk,negedge rst_n) begin
if (Irst_n) begin

waddr <= {ADDR_WIDTH{1'b0}} ;
end else if (wenable == 1'b1) begin

waddr <=waddr + 1;
end

end

BADTop #(16) A_BADTop(

.clk (clk),
st n (rst_n),
Ji_reset (iReset),
Ji_init_offset (init_offset),
.i_init_readBits (init_readBits),
.i_valid (ivalid),
.i_valMPS (ivValMPS),
.i_lgPmps (iLgPmps),
.renable (renable),
.raddr (raddr),
.rdata (rdata),
.0_valid (oValid),
.0_decodedBin (reg_DecodedBin),
.t isLPS (reg_IsLPS),
.t rangeF (reg_RangeF),
.t rangel (reg_Rangel),
.t offsetF (reg_OffsetF),
.t offsetl (reg_Offsetl)

);

rf_memory #(64, ADDR_WIDTH) A_BitStreamBuffer(
.clk (clk),
.wenable ('wenable),
.waddr (‘waddr),
.wdata (wdata),
.renable (1bl),
.raddr (raddr),
.rdata (rdata)

);

always@ (posedge clk,negedge rst_n) begin
if (Irst_n) begin
output_valid <=100;
end else if (oValid == 1'b1) begin
output_valid <=1'hl;

121

end else if (oClear == 1'b1) begin
output_valid <=100;
end
end

always@ (posedge clk) begin
if (oValid == 1'b1) begin
oRangeF <=reg_RangeF ;
oRangel <=reg_Rangel ;
oOffsetF <= reg_OffsetF ;
oOffsetl <= reg_Offsetl ;
0lIsLPS <=reg_ISLPS ;
oDecodedBin <=reg_DecodedBin ;
end
end

endmodule

122

	Chapter 1 Introduction
	1.1 Research Background
	1.2 Key Techniques in AVS2.0
	1.3 Research Contents
	1.3.1 Performance Comparison of CBAC
	1.3.2 CBAC Performance Improvement
	1.3.3 Implementation of Binary Arithmetic Decoder in CBAC

	1.4 Organization

	Chapter 2 Entropy Coder CBAC in AVS2.0
	2.1 Introduction of Entropy Coding
	2.2 CBAC Overview
	2.2.1 Binarization and Generation of Bin String
	2.2.2 Context Modeling and Probability Estimation
	2.2.3 Binary Arithmetic Coding Engine

	2.3 Two-level Scan Coding CBAC in AVS2.0
	2.3.1 Scan order
	2.3.2 First level coding
	2.3.3 Second level coding

	2.4 Summary

	Chapter 3 Performance Comparison in CBAC
	3.1 Differences between CBAC and CABAC
	3.2 Comparison of Two BAC Engines
	3.2.1 Statistics and initialization of Context Models
	3.2.2 Adaptive Initialization Probability

	3.3 Experiment Result
	3.4 Conclusion

	Chapter 4 CBAC Performance Improvement
	4.1 Approximation Error Compensation
	4.1.1 Error Compensation Table
	4.1.2 Experiment Result

	4.2 Probability Estimation Model Optimization
	4.2.1 Probability Estimation
	4.2.2 Probability Estimation Model in CBAC
	4.2.3 The Optimization of Probability Estimation Model in CBAC
	4.2.4 Experiment Result

	4.3 Rate Estimation
	4.3.1 Rate Estimation Model
	4.3.2 Experiment Result

	4.4 Conclusion

	Chapter 5 Implementation of Binary Arithmetic Decoder in CBAC
	5.1 Architecture of BAD
	5.1.1 Top Architecture of BAD
	5.1.2 Range Update Module
	5.1.3 Offset Update Module
	5.1.4 Bits Read Module
	5.1.5 Context Modeling

	5.2 Complexity of BAD
	5.3 Conclusion

	Chapter 6 Conclusion and Further Work
	6.1 Conclusion
	6.2 Future Works

	Reference
	Appendix
	A.1. Co-simulation Environment
	A.1.1 Range Update Module (dRangeUpdate.v)
	A.1.2 Offset Update Module(dOffsetUpdate.v)
	A.1.3 Bits Read Module (dReadBits.v)
	A.1.4 Binary Arithmetic Decoding Top Module (BADTop.v)
	A.1.5 Test Bench

<startpage>15
Chapter 1 Introduction 1
 1.1 Research Background 1
 1.2 Key Techniques in AVS2.0 3
 1.3 Research Contents 9
 1.3.1 Performance Comparison of CBAC 9
 1.3.2 CBAC Performance Improvement 10
 1.3.3 Implementation of Binary Arithmetic Decoder in CBAC 12
 1.4 Organization 12
Chapter 2 Entropy Coder CBAC in AVS2.0 14
 2.1 Introduction of Entropy Coding 14
 2.2 CBAC Overview 16
 2.2.1 Binarization and Generation of Bin String 17
 2.2.2 Context Modeling and Probability Estimation 19
 2.2.3 Binary Arithmetic Coding Engine 22
 2.3 Two-level Scan Coding CBAC in AVS2.0 26
 2.3.1 Scan order 28
 2.3.2 First level coding 30
 2.3.3 Second level coding 31
 2.4 Summary 32
Chapter 3 Performance Comparison in CBAC 34
 3.1 Differences between CBAC and CABAC 34
 3.2 Comparison of Two BAC Engines 36
 3.2.1 Statistics and initialization of Context Models 37
 3.2.2 Adaptive Initialization Probability 40
 3.3 Experiment Result 41
 3.4 Conclusion 42
Chapter 4 CBAC Performance Improvement 43
 4.1 Approximation Error Compensation 43
 4.1.1 Error Compensation Table 43
 4.1.2 Experiment Result 48
 4.2 Probability Estimation Model Optimization 48
 4.2.1 Probability Estimation 48
 4.2.2 Probability Estimation Model in CBAC 52
 4.2.3 The Optimization of Probability Estimation Model in CBAC 53
 4.2.4 Experiment Result 56
 4.3 Rate Estimation 58
 4.3.1 Rate Estimation Model 58
 4.3.2 Experiment Result 61
 4.4 Conclusion 63
Chapter 5 Implementation of Binary Arithmetic Decoder in CBAC 64
 5.1 Architecture of BAD 65
 5.1.1 Top Architecture of BAD 66
 5.1.2 Range Update Module 67
 5.1.3 Offset Update Module 69
 5.1.4 Bits Read Module 73
 5.1.5 Context Modeling 74
 5.2 Complexity of BAD 76
 5.3 Conclusion 77
Chapter 6 Conclusion and Further Work 79
 6.1 Conclusion 79
 6.2 Future Works 80
Reference 82
Appendix 87
 A.1. Co-simulation Environment 87
 A.1.1 Range Update Module (dRangeUpdate.v) 87
 A.1.2 Offset Update Module(dOffsetUpdate.v) 102
 A.1.3 Bits Read Module (dReadBits.v) 107
 A.1.4 Binary Arithmetic Decoding Top Module (BADTop.v) 115
 A.1.5 Test Bench 117
</body>

