

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

THE OPTIMIZATION OF

CONTEXT-BASED BINARY

ARITHMETIC CODING IN AVS2.0

BY

CUI JING

FEBRUARY 2016

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

공학석사 학위논문

AVS2.의 Context-based Binary

Arithmetic Coding 최적화

The Optimization of Context-based Binary

Arithmetic Coding in AVS2.0

2016 년 2 월

서울대학교 대학원

전기 정보 공학부

최 정

The Optimization of Context-based

Binary Arithmetic Coding in AVS2.0

지도 교수 채 수 익

이 논문을 공학석사 학위논문으로 제출함

2016 년 2 월

서울대학교 대학원

전기 정보 공학부

최 정

최정의 공학석사 학위논문을 인준함

2016 년 2 월

위 원 장 최 기 영 (인)

부위원장 채 수 익 (인)

위 원 이 혁 재 (인)

초론

HEVC(High Efficiency Video Coding)는 지난 제너레이션 표준

H.264/AVC 보다 코딩 효율성을 향상시키기를 위해서 국제 표준

조직과(International Standard Organization) 국제 전기 통신

연합(International Telecommunication Union)에 의해 공동으로 개발된

것이다. 중국 작업 그룹인 AVS(Audio and Video coding standard)가 이미

비슷한 노력을 바쳤다. 그들이 많이 창의적인 코딩 도구를 운용한 첫

제너레이션 AVS1 의 압축 퍼포먼스를 높이도록 최신의 코딩 표준(AVS2

or AVS2.0)을 개발했다.

AVS2.0 중에 엔트로피 코딩 도구로 사용된 상황 기반 2 진법 계산

코딩(CBAC)은 전체적 코딩 표준 중에서 중요한 역하를 했다. HEVC 에서

채용된 상황 기반 조정의 2 진법 계산 코딩(CABAC)과 비슷하게 이 두

코딩은 다 승수 자유 방법을 채용해서 계산 코딩을 현실하게 된다. 그런데

각 코딩마다 각자의 특정한 알고리즘을 통해 곱셈 문제를 처리한 것이다.

본지는 AVS2.0 중의 CBAC 에 대한 더 깊이 이해와 더 좋은 퍼포먼스

개선의 목적으로 3 가지 측면의 일을 한다.

첫째, 우리가 한 비교 제도를 다자인을 해서 AVS2.0플랫폼 중의 CBAC와

CABAC 를 비교했다. 다른 실행 세부 사항을 고려하여 HEVC 중의

CABAC 알고리즘을 AVS2.0 에 이식한다.예를 들면, 상황 기반 초기치가

다르다. 실험 결과는 CBAC 가 더 좋은 코딩 퍼포먼스를 달성한다고

알려진다.

그 다음에 CBAC 알고리즘을 최적화시키기를 위해서 몇 가지 아이디어를

제안하게 됐다. 코딩 퍼포먼스 향상시키기의 목적으로 근사 오차

보상(approximation error compensation)과 확률 추정 최적화(probability

estimation)를 도입했다. 두 코딩은 다른 앵커보다 다 부호화효율 향상

결과를 얻게 됐다. 다른 한편으로는 코딩 시간을 줄이기를 위하여 레테

추정 모델(rate estimation model)도 제안하게 된다. 부호율-변형 최적화

과정(Rate-Distortion Optimization process)의 부호율-변형 대가

계산(Rate-distortion cost calculation)을 지지하도록 리얼 CBAC

알고리즘(real CBAC algorithm) 레테 추정(rate estimation)을 사용했다.

마지막으로 2 진법 계산 디코더(decoder) 실행 세부 사항을 서술했다.

AVS2.0 중의 상황 기반 2 진법 계산 디코딩(CBAD)이 너무 많이 데이터

종속성과 계산 부담을 도입하기 때문에 2 개 혹은 2 개 이상의 bin 평행

디코딩인 처리량(CBAD)을 디자인을 하기가 어렵다. 2 진법 계산 디코딩의

one-bin 제도도 여기서 디자인을 하게 됐다. 현재까지 AVS 의 CBAD

기존 디자인이 없다. 우리가 우리의 다자인을 관련된 HEVC 의 연구와

비교하여 설득력이 강한 결과를 얻었다.

주요어: 오디오 및 비디오 코딩 표준(AVS); AVS2.0;상황 기반 2 진법 계산

코딩(CBAC);상황 기반 조정의 2 진법 계산 코딩(CABAC);비교 제도; 근사

오차 보상; 확률 추정; 레테 추정;2 진법 계산 디코딩 건축

학번:2013-22510

i

Abstract

High Efficiency Video Coding (HEVC) was jointly developed by the International

Standard Organization (ISO) and International Telecommunication Union (ITU) to

improve the coding efficiency further compared with last generation standard

H.264/AVC. The similar efforts have been devoted by the Audio and Video coding

Standard (AVS) Workgroup of China. They developed the newest video coding

standard (AVS2 or AVS2.0) in order to enhance the compression performance of the

first generation AVS1 with many novel coding tools.

The Context-based Binary Arithmetic Coding (CBAC) as the entropy coding tool used

in the AVS2.0 plays a vital role in the overall coding standard. Similar with Context-

based Adaptive Binary Arithmetic Coding (CABAC) adopted by HEVC, both of them

employ the multiplier-free method to realize the arithmetic coding procedure. However,

each of them develops the respective specific algorithm to deal with multiplication

problem. In this work, there are three aspects work we have done in order to understand

CBAC in AVS2.0 better and try to explore more performance improvement.

Firstly, we design a comparison scheme to compare the CBAC and CABAC in the

AVS2.0 platform. The CABAC algorithm in HEVC was transplanted into AVS2.0 with

consideration about the different implementation detail. For example, the context

initialization. The experiment result shows that the CBAC achieves better coding

performance.

ii

Then several ideas to optimize the CBAC algorithm in AVS2.0 were proposed. For

coding performance improvement, the proposed approximation error compensation and

probability estimation optimization were introduced. Both of these two coding tools

obtain coding efficiency improvement compared with the anchor. In the other aspect,

the rate estimation model was proposed to reduce the coding time. Using rate estimation

instead of the real CBAC algorithm to support the Rate-distortion cost calculation in

Rate-Distortion Optimization (RDO) process, can significantly save the coding time

due to the computation complexity of CBAC in nature.

Lastly, the binary arithmetic decoder implementation detail was described. Since

Context-based Binary Arithmetic Decoding (CBAD) in AVS2.0 introduces too much

strong data dependence and computation burden, it is difficult to design a high

throughput CBAD with 2 bins or more decoded in parallel. Currently, one-bin scheme

of binary arithmetic decoder was designed in this work. Even through there is no

previous design for CBAD of AVS up to now, we compare our design with other

relative works for HEVC, and our design achieves a compelling experiment result.

Keywords: Audio and Video coding Standard (AVS), AVS2.0, Context-based Binary

Arithmetic Coding (CBAC), Context-based Adaptive Binary Arithmetic Coding

(CABAC), comparison scheme, approximation error compensation, probability

estimation, rate estimation, Binary Arithmetic Decoder (BAD) Architecture.

Student number: 2013-22510

iii

Contents

Abstract ... i

Contents .. iii

List of Tables ... vi

List of Figures ... vii

Chapter 1 Introduction .. 1

1.1 Research Background... 1

1.2 Key Techniques in AVS2.0 ... 3

1.3 Research Contents .. 9

1.3.1 Performance Comparison of CBAC .. 9

1.3.2 CBAC Performance Improvement .. 10

1.3.3 Implementation of Binary Arithmetic Decoder in CBAC 12

1.4 Organization ... 12

Chapter 2 Entropy Coder CBAC in AVS2.0 ... 14

2.1 Introduction of Entropy Coding ... 14

2.2 CBAC Overview .. 16

2.2.1 Binarization and Generation of Bin String .. 17

2.2.2 Context Modeling and Probability Estimation .. 19

2.2.3 Binary Arithmetic Coding Engine ... 22

2.3 Two-level Scan Coding CBAC in AVS2.0 ... 26

2.3.1 Scan order ... 28

iv

2.3.2 First level coding ... 30

2.3.3 Second level coding .. 31

2.4 Summary .. 32

Chapter 3 Performance Comparison in CBAC .. 34

3.1 Differences between CBAC and CABAC.. 34

3.2 Comparison of Two BAC Engines ... 36

3.2.1 Statistics and initialization of Context Models .. 37

3.2.2 Adaptive Initialization Probability .. 40

3.3 Experiment Result .. 41

3.4 Conclusion ... 42

Chapter 4 CBAC Performance Improvement .. 43

4.1 Approximation Error Compensation .. 43

4.1.1 Error Compensation Table .. 43

4.1.2 Experiment Result ... 48

4.2 Probability Estimation Model Optimization .. 48

4.2.1 Probability Estimation ... 48

4.2.2 Probability Estimation Model in CBAC ... 52

4.2.3 The Optimization of Probability Estimation Model in CBAC 53

4.2.4 Experiment Result ... 56

4.3 Rate Estimation .. 58

4.3.1 Rate Estimation Model .. 58

4.3.2 Experiment Result ... 61

v

4.4 Conclusion ... 63

Chapter 5 Implementation of Binary Arithmetic Decoder in CBAC 64

5.1 Architecture of BAD .. 65

5.1.1 Top Architecture of BAD .. 66

5.1.2 Range Update Module ... 67

5.1.3 Offset Update Module ... 69

5.1.4 Bits Read Module .. 73

5.1.5 Context Modeling.. 74

5.2 Complexity of BAD ... 76

5.3 Conclusion ... 77

Chapter 6 Conclusion and Further Work ... 79

6.1 Conclusion ... 79

6.2 Future Works .. 80

Reference .. 82

Appendix .. 87

A.1. Co-simulation Environment ... 87

A.1.1 Range Update Module (dRangeUpdate.v) ... 87

A.1.2 Offset Update Module(dOffsetUpdate.v) ... 102

A.1.3 Bits Read Module (dReadBits.v).. 107

A.1.4 Binary Arithmetic Decoding Top Module (BADTop.v) 115

A.1.5 Test Bench .. 117

vi

List of Tables

Table 1- 1 Key techniques used in AVS2.0 .. 4

Table 2- 1 The syntax elements for the first level coding ... 30

Table 2- 2 The syntax elements for the second level coding in one CG 32

Table 3- 1 The differences between two entropy coders .. 36

Table 3- 2 The context number of each syntax element in RD10.1 38

Table 3- 3 the performance comparison result of CABAC with CBAC 42

Table 4- 1 The approximation error compensation table .. 46

Table 4- 2 The coding efficiency using approximation error correction tables 48

Table 4- 3 The model variables for the probability estimation 51

Table 4- 4 The BD-rate of proposed probability estimation with RDOQ-off 57

Table 4- 5 The BD-rate of proposed probability estimation with RDOQ on. 57

Table 4- 6 The BD-rate of using rate estimation (2-bit and 8-bit fraction part).... 62

Table 4- 7 The time saving when the rate estimation table is used in AVS2.0 62

Table 5- 1 Summary of the implementation result ... 77

vii

List of Figures

Figure 1- 1 The typical video codec block diagram ... 1

Figure 1- 2 The development of video codec standard .. 3

Figure 1- 3 The coding block diagram of AVS2.0 ... 3

Figure 1- 4 The quad-tree partition structure in AVS2.0 5

Figure 1- 5 The prediction unit structure in AVS2.0 .. 6

Figure 1- 6 Intra prediction direction in AVS2.0 .. 6

Figure 1- 7 scheme for comparison between two entropy coders. 10

Figure 2- 1 The general block diagram of CBAC in AVS2.0 17

Figure 2- 3 Subdivision and decision procedure of BAC 22

Figure 2- 4 One binary arithmetic coder cycle .. 24

Figure 2- 5 The slice coding structure for the CBAC ... 28

Figure 2- 6 Sub-block scan: each sub-block is a Coding Group (CG) 29

Figure 2- 7 4*4 Coefficients scan within a CG ... 29

Figure 2- 8 Coding flow for the transform coefficients .. 31

Figure 3- 1 The Block Diagram for Evaluating CBAC and CABAC Engines 37

Figure 3- 2 the context initialization procedure in RD10.1 39

Figure 4- 1 The flowchart of CBAC encoder .. 54

Figure 4- 2 The proposed probability estimation scheme for each context model.56

Figure 4- 3 The block diagram of proposed rate estimation 58

viii

Figure 4- 4 Probability distribution of the CABAC range 59

Figure 4- 5 The BD-rate changes with different fraction part lengths 63

Figure 5- 1 the General BAD Structure in AVS2.0 ... 65

Figure 5- 2 The overall structure for the BAD with one-bin scheme 66

Figure 5- 3 Flow chart of rangeI update .. 67

Figure 5- 4 Flow chart of rangeF update ... 68

Figure 5- 5 Detailed Structure of Module for Range Update 69

Figure 5- 6 offsetI update block diagram .. 70

Figure 5- 7 flow chart of updating offsetF ... 71

Figure 5- 8 Offset Update logic diagram block .. 72

Figure 5- 9 Bits Read Logic Block Diagram .. 73

Figure 5- 10 The process of Context Updating in the CBAC decoder in AVS2.0 .. 75

Figure 5- 11 Detailed Structure of Module for Context Update 76

1

Chapter 1 Introduction

1.1 Research Background

Recent years, with the rapid development of the information technology, the

demand for the multi-media, such as video media, is getting greater and greater.

Mass data offered by the video carrier make the information storage and

transmission more difficult to handle and it is necessary to explore the effective and

efficient video compression technique, especially in the vast images data and real-

time transmission with high definition requirement. The video compression and

coding technique has been significantly enhanced since it merged in 1980s. The

main procedure of video codec includes prediction for video images to obtain the

residual data, transform and quantization for the residual data, entropy coding for

the data after quantization, as well as the bit-stream collection finally. However, a

reverse procedure is performed for the decoder part, and the reconstruction video

sequence is achieved through bit-stream as input. The typical video codec structure

can be described as Fig.1-1.

Image

Segmentation
Prediction Transform Quantization

Entropy

Coding
Video

image

bit-stream

Entropy

Coding
QuantizationTransformPrediction

Image

Segmentation
Recon.

image

Encoder

Decoder

Figure 1- 1 The typical video codec block diagram

2

Many efforts have been made by the video expects from the International Telecom

Union (ITU) , Video Coding Expert Group (VCEG), International Standard

Organization (ISO) and Moving Picture Expert Group (MPEG) in the past several

decades and consequently there are considerable development in the video

compression standards. H.261 is the first generation motion image compression

standard developed by the ITU[1] followed by the H.263 standard proposal[2] which

was developed for the low bit rate video coding at the Nov. 1995. H.263 was aimed

to the low bit rate compression for the high quality motion image and used to

support the application with bit rate less than 64kbits/s. In the following several

years, ITU proposed couple improved vision based on H.263. IMEG family [3]

including MPEG-1, MPEG-2, MPEG-4, MPEG-7, and MPEG-21 have been

developed by the ISO. Until at the beginning of the 21-st century, H.264/AVC [4]

introduced by the ITU and ISO brought about 50% performance improvement

compared with MPEG-2 and has been popular in the industrial application. At the

same time, another video standard, named AVS[5] developed by the Audio Video

coding Standard (AVS) Workgroup in China. The coding complexity was deduced

compared with the H.264/AVC with a comparable coding efficiency. Along with

the new high definition and ultra-high definition video requirements, High

Efficiency Video Coding (HEVC) [6] were proposed and finished the final draft in

2013 by the Joint Collaborative Team on Video Coding (JCT-VC) which is the

cooperative team including ITU VCEG and ISO MPEG. This standard has been

designed aim to save over 50% [7] bit rate to get the comparable quality, albeit at

3

higher computational costs. Correspondingly, AVS workgroup has spared more

efforts to make second generation video codec orientated to higher coding

efficiency referred as AVS2.0 [8]. Specifically, the video technique can be

represented as the Fig.1-2 according to the development in the past 30 years.

1990 2000 2010

Technology

background
MPEG1

H.261 H.263

MPEG 2 HEVC

AVS2

VP9H.264/AVC, AVS

Figure 1- 2 The development of video codec standard

1.2 Key Techniques in AVS2.0

Similar with other mainstream video coding standard, the overall coding framework

of AVS2.0 can be shown in Fig.1-3.

Current
Frame

DPB

Transform/
Quantization

Entropy
Coding

Reverse Trans./
Reverse Quan.

+
-

Inter Pred.

Intra Pred.

inter

intra

DBSAOALF +
+

Figure 1- 3 The coding block diagram of AVS2.0

4

However, the specific techniques introduced into AVS2.0 standard includes Intra

prediction, Inter prediction, Transform & Quantization, Entropy coder, Sample adaptive

offset, and Adaptive loop filter [9]. With the similar algorithm structure of HEVC,

AVS2.0 has the competitive coding efficiency but more simplified algorithms for each

mode to deal with video image. Although the coding procedure of AVS2.0 shares the

similar structure of HEVC, AVS2.0 pays more attention on some special application

scene, such as surveillance video, real-time video meeting, etc. Specifically, for each

part, including Intra prediction, Inter prediction, Transform/Quantization, Entropy

coding and Loop filter, technique baseline and performance improvement in BD-rate

saving (%) in AVS2.0 are presented in Table 1-1.

Table 1- 1 Key techniques used in AVS2.0

Type Technique baseline
Coding

gain

Image

structure

Hierarchical reference

frame

B picture used as

reference

Forward multiple

hypothesis

prediction picture

8% ~

13%

Block

structure

Quad-tree based

coding unit partitions

Non-square intra

prediction

Non-square inter

prediction

Non square

transform

15% ~

20%

Intra

prediction

33 directional

prediction modes

1/32 sub pixel

prediction

5% ~

10%

Inter

prediction

Forward multiple

hypothesis prediction,

special prediction

mode and motion

vector prediction

Progressive motion

vector coding

DCT like

interpolation filter

7% ~

12%

Transform

Multiple size and

highly normalized

integer transform

Secondary transform 3%

Entropy

coding
Two level scan coding 5%

Loop filter Deblock filter Sample adaptive offset Adaptive loop filter 8%

5

Then we will briefly introduce the key feature of each technique adopted in AVS2.0.

A. Block Structure

The block partition is more adaptive compared with AVS1.0 by using quad-tree

structure. The 64*64 is the largest coding unit (LCU) and then it is partitioned into

smaller coding unit (CU) until reaching the minimum coding unit limitation size

8*8. Through this partition mode, then coding tree (CTU) structure is obtained.

Fig.1-4 gives the quad-tree partition structure.

Figure 1- 4 The quad-tree partition structure in AVS2.0

Each CU then can be divided into some prediction unit (PU), PU is the basic unit

for intra and inter-picture prediction. For intra prediction, there are four type PUs

among which N*N PU is used for 8*8 CU only and 2N*0.5N/0.5N*2N are

introduced in CU size 32*32 and 16*16. Eight types PU are used in inter prediction,

including 2N*2N、N*N、N*2N、2N*N、2N*nU、2N*nD、nL*2N、nR*2N. The

maximum PU size is decided by the current CU and minimum PU is 4*4. The

transform unit (TU) is another coding block which is used for the transform and

quantization operations. TU is also decided by the current CU size without

consideration the PU size anyway, 64*64 and 4*4 are the maximum and minimum

TU size, respectively. Fig.1-5 is the prediction coding unit partition structure.

6

2Nx2N
PU_Skip/Direct

2Nx2N
PU_Intra

NxN 2Nx0.5N 0.5Nx2N

2Nx2N
PU_Inter

2NxN Nx2N NxN

2NxnU 2NxnD nLx2N nRx2N

Figure 1- 5 The prediction unit structure in AVS2.0

B. Intra Prediction

Intra prediction is employed to remove the spatial redundancy within picture. Multi-

direction intra-picture prediction is used in AVS2.0 and as described in A section,

except for four partitions, the Short Distance Intra Prediction (SDIP) [10] is used

for intra prediction on 32*32 and 16*16 CU. Fig.1-6 shows 33 modes including DC,

Plane, Bilinear and 30 Angle modes for luma component.

Figure 1- 6 Intra prediction direction in AVS2.0

186

30

22

20

16

1410

8

4

26

28

32

23

21

15

19

17

11 13

9

7

5

3

25

27

29

31

12

24

DC: 0
Plane: 1
Bilinear:2

zone1

zone2

zone3

7

C. Inter Prediction

Inter prediction is employed to remove the spatial redundancy between picture.

AVS2.0 uses 8 inter prediction modes as described in A section, and 3 frame types:

P frame, B frame, and F frame. F frame is developed based on the P frame with bi-

forward inter prediction. In inter prediction, there are specific techniques patented

by AVS2.0 developer group, including Dual Hypothesis Prediction (DHP) [11],

Directional Multi-Hypothesis Prediction (DMH) [12], Progressive Motion Vector

Resolution (PMVR) [13], etc.

D. Transform & Quantization

In AVS2.0, the two-level transform coding to deal with residual data. Firstly, using

Wavelet Transform and then DCT transform as the TU size is divided into 32*32.

In DCT transform, 4*4 ~ 32*32 TU size are supported and Non-Square Quad-tree

Transform (NSQT) is used to handle non-square TU. In order to reduce the

information redundancy, the residual data will be performed a second DCT

transform [14].

In addition, Rate Distortion Optimization Quantization (RDOQ) is another

technique adopted by the AVS2.0 in the rate distortion optimization process. RDOQ

makes the compromise between the computation complexity and the coding

efficiency. To reduce the complexity to decide mode, only is the mode within the

one coding unit decided, the RDOQ is used for the coefficients quantization in the

best mode in AVS2.0.

8

E. Entropy Coding

The entropy coding in AVS2.0 is only context-based binary arithmetic coding

(CBAC), which is different from AVS1.0 where CBAC and variable length coding

technique are performed as entropy coders. In CBAC, two-level transform

coefficient coding scheme acts as the well-designed entropy coding strategy. The

two-level scheme [15] employs the similar concept of sub-block based partition as

in HEVC and applies this scheme to the (Level, Run) coefficients pair of large

blocks. In this scheme, the sub-block size is set to a fixed value with 4×4 and named

as one coefficient group (CG) in the following text.

Entropy coding plays a vital role in the entire coding structure as the Fig.3 illustrates.

It locates in the last step of the encoder and the first step of decoder which

determines the bin-to-bit compression ratio which is relative the coding

performance. Entropy coding, especially CBAC is the study center in this research

topic, and more detail will be shown in the following several chapters.

F. Loop Filter

To reduce the visual flaw caused by the video coding algorithm, there are three

methods used in AVS2.0 including Deblocking Filter (DF), Sample Adaptive Offset

(SAO) [16], and Adaptive Loop Filter (ALF) [17] to address the visual problem for

the reconstructive picture.

Even through a significant compression efficiency has been achieved by AVS2.0

based on the above techniques compared with AVS1.0, the improvement in each

9

technique perspective can be explored to make it better enough to comparable with

other popular video coding standard, such H.264/AVC, HEVC etc. However, in

order to escape the copyright and patents own by other standards, the techniques

employed in AVS tend to be more complexity and simpler in the algorithm

implementation. Thus, the study on the AVS2.0 is full of challenge in the algorithm

design and schedule implementation practically.

1.3 Research Contents

In AVS2.0, context-based binary arithmetic coding (CBAC) [18] is the only entropy

coding method introduced into current standard. In this thesis, there are three topics

we focus on the entropy coder CBAC in AVS2.0. Firstly, we compare performance

between two entropy coder with different algorithm, which are CBAC and context-

based adaptive binary arithmetic coding (CABAC) that is used in H.264/AVC and

HEVC. Secondly, we propose some ideas about the CBAC performance

enhancement and then introduce the fast rate estimation model for the AVS2.0 in

the rate distortion optimization (RDO) mode decision process. Lastly, we

implemented Binary Arithmetic Decoder with throughput of one-bin per cycle,

which is main bottle-neck of implementation of CBAC Decoder with high

throughput. More detail will be shown in the following several subclasses.

1.3.1 Performance Comparison of CBAC

We propose a fair scheme to compare the CBAC with Context-based Adaptive

Binary Arithmetic Coding (CABAC) [19] in HEVC, as Fig.1-7 shows, we implant

10

CABAC logic that is designed for HEVC into RD10.1, which is one of latest

versions of reference software of AVS2.0. The coding efficiency of AVS2.0 using

two entropy coders can be evaluated by bitstream 0 and bitstream1, which are from

the result of encoding the given video sequence.

Intra/Inter

prediction

Transform/

Quantization

CBAC

CABAC

RD10.1
bitstream0

bitstream1

Image Seq.

Figure 1- 7 scheme for comparison between two entropy coders.

Through comparison of these two entropy coders, we can obtain the knowledge

about entropy coding compression performance. Our evaluation experiments show

that CBAC algorithm tend to be more efficient than CABAC with about 0.4% BD-

rate saving when we use the CABAC algorithm of HEVC directly to encode the

same video sequences.

1.3.2 CBAC Performance Improvement

With understand of the reason of coding efficiency improvement, we explore more

in CBAC algorithm in AVS2.0. Most of algorithms in Codec are usually used to

implement without using multiplier operation to reduce Complexity of Computation.

In the process of updating variables, which is used for Arithmetic Coding such as

range and context probability, multiplier operations are replaced with other

operations similarly. Look-up table is used in CABAC in HEVC for the purpose of

11

this. While the logarithm addition and shift operations is used in CBAC. But,

introduction of operation of logarithm domain necessarily accompany the process

to convert data between real domain and logarithmic domain, which requires

additional computational complexity. So CBAC uses two approximation equations

to minimize overhead by domain conversion. For that reason, it is likely to increase

coding performance if we can reduce approximation error at the sake of minimal

increase of computational complexity.

Therefore, we present compensation tables to minimize the error by approximation

equations within the CBAC engine by introducing adjusted factors when the

approximation equations are used in domain conversion.

Adaptive probability estimation [20] [21] is another topic in CBAC which is a

powerful optimization to indict how to map the symbol statistical behavior. Based

on the fact that probability estimation in CBAC is also performed in the logarithm

domain with probability in certain bits resolution, we explore the probability

estimation scheme with the perfect bit resolution and well-designed update process.

In addition, rate estimation is introduced into AVS2.0 in order to save the overall

encoding time. Different from AVS2.0 software reference, we use the proposed rate

estimation table to support the rate distortion cost in the Rate-Distortion

Optimization (RDO). Though the proposed rate estimation model, the encoding time

can be reduced about 1% without considerable performance degradation.

12

1.3.3 Implementation of Binary Arithmetic Decoder in CBAC

Through the above two chapters in the algorithm study, we understand the software

implementation detail better. Based on this understand, the hardware-oriented

architecture for binary arithmetic decoder is described in this chapter. Considering

the total CBAC decoder will cost more time to arrange reasonable context models,

only Binary Arithmetic Decoder (BAD) with one bin scheme is designed in this

chapter, but we give the proposed context update module architecture. For the BAD,

there are three important loops needed to update after one bin is decoded, which

includes range update loop, offset update loop and bits read. Correspondingly, we

design three modules to realize the update: range update module, offset update

module, bits read module. Since few previous work is focus on the CBAC decoder

in AVS2.0, we compare our work with the available CBAC decoder design in AVS1,

and the competitive result can be achieved based on our BAD architecture.

1.4 Organization

Chapter 2 describes the entropy coding CBAC in AVS2.0 and how it works the

arithmetic engine. Also, the two-level transform coefficients coding is given in

detail. In Chapter 3, the coding efficiency of CBAC and CABAC of HEVC are

compared based on the software platform of AVS2.0 RD10.1. We proposed a quite

fair comparison scheme with consideration of initial context variables, binarization,

adaptive probability estimation model, etc. In Chapter 4, we propose some idea to

improve coding efficiency in CBAC such as error compensation, new probability

estimation scheme and introduction of rate estimation table. Then, we describe how

13

to implement binary arithmetic decoder in CBAC in Chapter 5. In the last Chapter,

the research conclusion about this thesis and further research orientation are posted.

14

Chapter 2 Entropy Coder CBAC in AVS2.0

2.1 Introduction of Entropy Coding

Context-based Adaptive Binary Arithmetic Coding (CABAC) is a method of entropy

coding first introduced in H.264/AVC, and it is also adopted in the newest standard -

High Efficiency Video Coding (HEVC). Similar with the method used in above

standards, another kind of entropy coding approach – Context-based Binary Arithmetic

Coding (CBAC) is introduced in a Chinese video standard – Audio and Video coding

standard (simplified as AVS) by the Audio Video coding standard of Workgroup of

China. However, the strong data dependence and serious operations in nature make

entropy coding more complicate to parallelize and improve the throughput. Thus in the

design of standard of entropy coding for H.264/AVC, HEVC, and AVS, the balance of

coding efficiency and throughput should be considered.

Specifically, all the current entropy coding engines are based on the arithmetic coding

[22] [23]. Arithmetic coding is different from other coding methods because we know

the exact relationship between the coded symbols and the actual bits that are written to

a file. It codes one symbol once, and a real-valued number of bits is assigned to each

symbol. The code value v of a compressed data sequence is the real number with

fractional digits that equals to the sequence’s symbol. We can convert sequence. This

construction create a convenient mapping between infinite sequences of symbols from

a D-symbol alphabet and real numbers in the interval [0, 1), where any data sequence

can be represented by a real number, and vice-versa. This kind of code value

15

presentation can be used in any coding system, and it makes a universal method to

represent large amounts of information of a set of symbols used for coding, such as

binary, decimal, etc. By analyzing the distribution of the code value it produced, we can

evaluate the efficiency of any compression method. According to Shannon’s

information theory, we can know that, if a coding method is optimal, then the code

values cumulative distribution has to be a straight line from point (0, 0) to the point

(1,1). When it is applied into video coding, it is attached with context information of

each symbol. Therefore, entropy coding is the kind of lossless compression approach

which can use the statistical probabilities of source information, e.g. video or image

carriers, so that a string of bits can be used to represent the symbols is logarithmically

proportional to the corresponding probability of each symbol. When compressing a

string of symbols, the symbol which occurs in a large frequency can be represented by

few bits, while the other symbols with less frequent emergence, represented with a

longer bit string. According to the Shannon’s information theory, the probability of a

symbol represented in bit 0 or 1 is p, the optimal average code length for one symbol is

– 2log p .

In the general videoing coding standard, the classical codec framework is represented

as Fig.1. And the entropy coding is performed in the last step of the overall video coding

after the video signal has been parsed to series of syntax elements. Correspondingly, it

is in the first stage of the video decoding procedure in each standard.

16

2.2 CBAC Overview

The CABAC algorithm is firstly introduced within the joint H.264/AVC standard of

ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts

Group (MPEG). CABAC was used as one of two alternative methods of entropy coding

in H.264/AVC, and introduced as the only method in HEVC.

Similarly, the entropy coding in AVS 1.0 jizhun file includes two schemes, C2DLVC

and CBAC, which not only adopted 2-dimension (run, level) coding scheme used in

MPEG-2, but also absorbed the context-based adaptive binary arithmetic coding

strategy used in H.264/AVC. In C2DVLC, the VLC multiple tables achieved by training

in off-line. It is not able to capture the local statistical distributions in nature and a

symbol with a probability which is greater than 0.5 cannot be coded efficiently

considering the nature limit to 1 bit/symbol in VLC codes. However, the arithmetic

coding can challenge this restriction with a higher coding efficiency.

Therefore, in this section, the CBAC algorithms and separated key technique are

represented systemically from the AVS1.0 to AVS2.0. The general procedure for the

CBAC includes binarization, context derivation and selection, and arithmetic coding

engine. And these compounds illustrated in Fig.2-1. The binarization process is aimed

to translate the values of the non-binary syntax elements into binary and it is defined as

the bin string generation process. The context derivation and selection process is related

to the probability modeling process, in which the each bin can be mapped into a specific

context to estimate the probability of each regular bin. Finally, the binary arithmetic

coding process is adopted to compress the bins into bits according to the context

17

information and probability distribution. There are two kinds of the arithmetic coding

paths according to the probability value for each bin, including the regular path and

bypass path.

Binarizer

Probability

Estimation

 Context buffer

Regular

Arithmetic

Coding
LG_PMPS

(I,t)

cycno

Non-binary

Syntax

elements

Bypass

Arithmetic

Coding

{b0, b1,…, bi,…, bn}

bi

b
0
,

b
1
,
…

,
b

i,…
 ,

b
n

Syntax

elements

Binary valued

Syntax elements

bi

Regular/bypass

switch

(bi=Vmps
(i,t)

)?

(MPS : LPS)

bj

LG_PMPS = 1023

S
U

M

bitstream

S
e
le

ctio
n

 a
c
c
e
s
s

Figure 2- 1 The general block diagram of CBAC in AVS2.0

2.2.1 Binarization and Generation of Bin String

Binarization process is aimed to uniquely map process of all possible values of a syntax

element onto a set of bin string. For the non-binary valued symbols, e.g. Level and Run,

they should be performed the binarization process as the values of this kind of syntax

elements tend to be typically in a large range in a DCT block. When this value is coded

directly by the m-ary (m>2) arithmetic code, it will have a high computation complexity.

Moreover, the source with typically large alphabet size often suffers from “context

dilution” effect when the high-order conditional probabilities have to be estimated on a

relatively small set of coding samples. In addition, the context modeling for the sub

syntax element level provides more accurate probability estimation than that in the

18

syntax elements level, and the alphabet of the encoder is decreased.

There are several methods of binarization adopted in video coding standard. All of these

methods, including Unary, Truncated Unary, k-th order Exp-Golomb (EGk), and Fixed

length are introduced to reduce the alphabet size of syntax elements to encode.The

binarization methods for syntax elements which are applied into the CBAC of AVS2.0

represented as the following [24]:

(1) Unary coding is used to binarize the symbol into a bin string with length N+1,

including the first N bins with value 1 and the last bin is 0.

(2) Truncated Unary scheme is defined based on the largest possible value maxVal of

the syntax element. Before maxVal, the binarization value is the same as the Unary,

and when the value is equal to maxVal, all the bins in the bin string are set to 0

and the total bins are the same as that of the maxVal -1.

(3) Marking bit is defined as the bin value is the same as the value of the syntax

element.

(4) The k-th order Exp-Golomb coding with k ranged from 0, 1, 2, 3, has a general

construction, which consists of a prefix and suffix. For the given codeNum N and

the specific order k, the code word consists of l zeros followed by one 1 and suffix

of N-2k(2l-1), and the l is defined as following:

However, except for the above several schemes, for most syntax elements in CBAC,

the binarization process is defined based on the type of the syntax element.

19

2.2.2 Context Modeling and Probability Estimation

Context Modeling Process, shown in Fig.2-1, consists of three sub steps: context model

derivation, context model selection andcontext model access. The context modeling

process is referred as the probability selection process. In the regular binary arithmetic

coding process, where the probability model is decided by the fixed modelbased on the

type of the syntax elements and the bin position or the bin index in the binarized

representation of the syntax elements. Another kind of context (probability model) is

adaptively chosen from the two or more than two probability models according to the

side information, such as the special neighbors(Left, Above block), components (Luma,

Chroma), depth and size of the CTU, PU, TU as well as the position of within one TU.

The adaptive case is generally adopted into the observed bins with high frequency while

the fixed model is usually applied for the less frequently occurred bins. Thus the

modeling process can be benefited from the balance of the choice cost and context

learning complexity with the estimated accuracy.

Similar with probability models in CABAC adopted in H.264/AVC and HEVC, the

CBAC probability updating model is based on the adaptive probability model as well,

in which the parameters of the probability model make a promising contribution to the

map the statistical variations of the source bins which is performed bin-by-bin basis as

the sub symbol. This is the probability estimation process. The derivation of the CBAC

probability updating process is applied for the infinitely independent identical

distribution (IID) [25] of the binary source. If the probability of the symbol “1” is p,

and the probability of the symbol “0” is q. And the adjusting parameter N is defined to

20

adjust the updating speed. Then kp and kq are defined as the estimated probability of

the symbol “1” and “0” after the k-th iteration. And then we can achieve the probability

after (k+1)-th iteration as the following equation 2-1:

1

1

("0")
1

("1")
1

k
k

k
k

N p
p if occurs

N

N q
q if occurs

N

 (2-2)

According to the relationship between p and q, i.e. 1k kp q , the equation (2-2) can be

changed as the following equation (2-3):

1

1

("0")
1

1
("1")

1 1

k
k

k
k

N p
p if occurs

N

N p
p if occurs

N N

 (2-3)

According to the above equations, the expectation and variance of the 1kp are proved

to converge to a constant value which is dependent on N. Therefore, if we use the MPSp

and LPSp as the probabilities of the MPS and LPS symbol, thus the probability change

can be obtained based on the equation (2-2), as the following equation (2-4):

()

()

MPSnew MPSold

LPSnew LPSold

LPS

MPS

p p if occurs

p p if occurs

 (2-4)

Here
1

N

N

 . That is to say, the larger the N is, the α is smaller, the slower the

estimation converges, the variance is smaller, thus the probability estimation is more

accurate.

However, in H.264/AVC and HEVC, the probability estimation model is based on the

assumption that the estimated probabilities of each context model can be represented

by a sufficiently limited numbers of representative values. For the CABAC engine,

21

there are 64 limited representative probability values p, which is ranged from 0.01875

to 0.5, including. The estimation model can be derived from the recursive equation of

the LPS symbol as the following (2-5):

 δ δ 1α (δ 1 , 2 , 3 , . . . , 6 3)p p (2-5)

With 1/63

0

0.01875
α () 0.5

0.5
and p

The scaling factor α ≈ 0.95 and the probability state is set as 64, in which the

compromise of the speed and estimation accuracy. Each probability δp is addressed

according to the probability state.

As to the practical implementation procedure, In CABAC of H.264/AVC and HEVC,

the probability state updating process is based on the 64-state Finite State Machine

(FSM). In this process, the state transfer process is performed to index a pre-defined

state table, where the state is the index, and state is also the key variable for each context.

Similarly, In AVS1 and AVS2.0, the context modeling adopts the same probability

estimation model to model the information source and performing probability updating

process for each context. However, since CBAC and CABAC apply different schemes

to perform the entropy coding, the probability modeling process is experienced various

procedure, especially in the term of practical implementation. In AVS, the state of

probability estimation model is based on the logarithm value of probability, which is

scaled into 10-bit resolution domain (0 ~ 1024) in theory. Therefore, the probability

model is based on the probability and logarithm value of the probability of MPS symbol.

The scaled probability LgPmps can be described as equation (2-6):

22

Here, pmps is the MPS probability. Thus for each probability including MPS and LPS

are indicted in the scaled probability LgPmps when it implemented in CBAC. The

statistics of the coded syntax elements are utilized to update the probability models,

which is related to context models of regular bins. Therefore, more specific explanation

of the transition rules for updating the state indices will be shown in binary arithmetic

coding, and contexts design derivation sections.

2.2.3 Binary Arithmetic Coding Engine

The basic principle of arithmetic coding is introduced in [22], which is based on the

recursive interval subdivision of the interval width R. Each binary symbol of the

information source which is represented by a bin string, associated with a specific

context model, which keeps update during the coding process in order to adaptively

estimate the probability. Therefore, the variables for BAC is bin value, slice type, and

the context model for each bin. And BAC is a recursive process of the coding interval

(range, offset, low) subdivision, updating, and renormalization operations as Fig. 2-2.

Figure 2- 2 Subdivision and decision procedure of BAC

A given interval initially which can be represented as the lower bound L and range R is

C

23

subdivided into two sub-ranges according to an relative estimation of the probability

lpsp valued from 0 to 0.5, not including, of the Least Probability Symbol (LPS).Thus

another part can be described as mpsp and subrange
mpsR of Most Probability Symbol

(MPS). One of the sub-range can be denoted as the following equation:

Which is associated with the MPS symbol and corresponding interval of the range LPS

lps mpsR R R , which is related to the MPS with a probability 1mps lpsp p . According

to the binary value to be encoded, the relative LPS or MPS range will be chosen as the

new interval for the next iteration.

Based on the above description, the subdivision is performed via the multiplication, but

multiplication operation is proven with high computation complexity and calculation

cost both in software and hardware. The practical implementation method has been

focus on the multiplication-free operations, such as the look-up table approach which

is used in H.264/AVC and HEVC, where a well-developed table is pre-designed, the

sun-range can be obtained from the look-up table operation. Thus the multiplication

operation is eliminated. However, the CBAC in AVS2.0 is based on a novel algorithm

which is based on the domain conversion between logarithm and original domain. By

this method, the multiplication operation can be substituted by the logarithm adder

operation in logarithm domain. More detail about the two methods to reduce the

multiplication complexity will be represented in the following sections.

In CABAC, the BAC is performed on the look-up table to realize the range subdivision

24

and applies for the FSM to deal with the state transition for the context and probability

updating. However, the procedure in CBAC in AVS2.0 experience a various scheme.

The process is an iterative one which consists of consecutive MPS symbols and one

LPS symbol. 9-bit precision for range is kept during whole coding process. In the binary

arithmetic coder of CBAC, we substitute the multiplication in (2-7) with addition by

using logarithm domain instead of original domain. When a MPS happens, the renewal

of range is given as

where Lgx indicates the logarithm value of variable x and mpsLgR is the new range

after encoding one MPS. For the case of encountering one LPS, we denote the two MPS

range before and after encoding the LPS as R1 and R2 as shown in Fig. 2-3. Then, the

range after the whole coding cycle in original domain should be

 1 2lpsR R R (2-9)

range

1

R

2R

LPS

MPS

MPS

MPS

low_new

low

Figure 2- 3 One binary arithmetic coder cycle

And the new lower bound of current range equals to the addition of low and R2. Since

25

R1 and R2 are both calculated on the logarithm domain, we have to get the value of R1

and R2 from 1LgR and 2LgR , and then

and

Here, 1 2s s are the integer, and 1 2t t are the fraction part, which range from [0, 1). Δ1

and Δ2 are the approximation error adjust factor. From (2-10), (2-11), we can get the

following, ignoring the approximation error Δ1 and Δ2:

 1

32
s

l p sR t

 (2-12)

and

 2 1

2 1

1 2

3

1 2

()

(1)(1)

f s s

f s s

t t i
t

t t i

 (2-13)

After the new value of lpsR is obtained, the renewed lower bound is updated. Then

the renormalization process is carried out to guarantee that the most significant bit of

the updated range value is always ‘1’. Until now, one coding cycle is finished. After

one bin is encoded by arithmetic coder, the estimated probability of the chosen context

should also be updated. In order to prepare the relative parameters for the next iteration,

the range in original domain should be exchanged into logarithm domain. Considering

a fact that the approximation will stand when the variable x ranged into a small interval

(0, 1) as following:

 ln(1) (0 1)x x x (2-14)

26

The integer part of the logarithm-based updated range lpsR s1 is 0, and the fraction

part 3t can be simplified with the above equation. Thus the lpsR in logarithm

domain can be obtained and the range preparation for the next cycle is finished.

Actually, in CBAC, the probability of each context model is set to be 0.5 for both MPS

and LPS at the start of coding initially. With the coding of some bins, the adaptive

probability estimation of MPS on logarithm domain is performed. Based on the

context modeling section described in section 2.2.2, the practical probability

estimation is fulfilled using only additions/subtractions and shifts as in the following

formulas:

()

() ()

LgPmps LgPmps Lgf if lps

LgPmps LgPmps LgPmps cw if mps

 (2-15)

Where f is equal to (1-2-cw). Here, cw is the size of sliding widow to control the speed

of probability adaptation. The smaller cw is, the faster the probability adaptation will

be. In the practical implementation process, the cw is adaptive according the cycno

parameter, which is adopted to record the iteration of calling the CBAC engine.

2.3 Two-level Scan Coding CBAC in AVS2.0

Different from AVS1, AVS2.0 supports larger transform blocks (e.g., 16×16 and 32×32).

In the early stage of AVS2.0 standardization process, the CBAC design for AVS2.0 is

inherited from that in AVS1 by a straightforward extension. However, CBAC was

primarily designed for 8×8 transform blocks while the non-zero coefficients may be

sparser in larger transform blocks. Therefore, to further improve the coding efficiency

27

and throughput issue in hardware implementation, AVS2.0 CBAC employs a two-level

coefficient coding scheme [15].

Generally, the iteration of CBAC in AVS is slice, which means that all the binary

arithmetic coding engine relative parameters will be initialized after finishing one slice.

Only the syntax elements which are belong to the slice segment data, will be processed

by the CBAC encoded. The coding structure in the slice illustrated as Fig.2-4, including

slice header information, slice data information, the coding procedure in one LCU, and

the slice end information. The syntax elements that are coded with CBAC in AVS2.0

include three categories: (1) context-based syntax elements, (2) bypass mode-based

syntax elements, (3) stuffing bit-based syntax elements. For AVS, these context-based

syntax elements describe the properties of the coding tree unit (CTU/LCU), coding unit

(CU), prediction unit (PU), and transform unit (TU). For the CTU level, the related

syntax elements are used to represent the block partition information of the CTU, the

type including edge and band, and offsets for the sample adaptive offset (SAO), and

adaptive loop filtering in loop filtering in CTU. For a CU, the syntax elements are

related to describe whether the CU is intra prediction mode, or inter prediction mode,

the PU type definition of B and F frame. For a PU, it includes the syntax elements which

describe the intra prediction mode, and the motion data. For the TU level, the coding

tree pattern, and residual data including transform coefficient, level and run information.

28

×N

Slice header

information

Slice data

information

One LCU

Slice end

information

LCU partition structure

 +

 every CU

SAO parameter

information

+

+

 Prediction

 Residual data

ALF parameter

+

Figure 2- 4 The slice coding structure for the CBAC

However, entropy coding in AVS, which is the similar with CABAC in H.264/AVC and

HEVC, provides a high coding efficiency, while its strong data dependence caused by

the serious operations in its procedure put a big challenge on the throughput

improvement. The throughput of CBAC is determined by the binary symbol that it can

be performed per second. Moreover, the significant contribution is made by the syntax

elements of transform coefficient data, which includes the residual of the prediction

error.

The two-level scheme employs the similar concept of sub-block based partition as in

HEVC [26] and applies it to the (Level, Run) coding to address the spatiality of large

blocks. In this scheme, the sub-block size is set to a fixed value, i.e., 4×4. Such a sub-

block is named one coefficient group (CG) in the following text. The CG level coding

is firstly invoked, followed by the (Level, Run) coding within one CG which is similar

to CBAC in AVS1.

2.3.1 Scan order

In CBAC for AVS2.0, the coefficient coding for a transform block (TB) is decoupled

29

into two levels, i.e., CG level coding and coefficient level coding. In both levels, the

coding follows the reverse zig-zag scan order. Fig. 2-5 shows the zig-zag scan pattern

in a TB with a different size, which is split into sub-blocks and the scan order of CGs

is indicated by lines while the scan order within one CG is indicated as the line shows

in Fig.2-6. The CG-based coding methods have two main advantages:

 Allowing for modular processing, that is, for harmonized sub-block based

processing across all block sizes.

 With much lower implementation complexity compared to that of a scan for the

entire TB, both in software implementations and hardware.

8x8 block 16x16 block 32x32 block

Figure 2- 5 Sub-block scan: each sub-block is a Coding Group (CG)

16x16 block 16 coefficients in a CG

Figure 2- 6 4*4 Coefficients scan within a CG

30

2.3.2 First level coding

For the current coding block which is divided into multiple CGs as Fig.2-5 shows. The

first level coding is performed among these CGs. At inter CG level, the position of the

last CG is signaled, where the last CG is the CG that contains the last non-zero

coefficient in the transform block in the scan order. Different ways are used to signal

the position of the last CG which is dependent on the TB sizes. For an 8×8 block, a

syntax element LastCGPos is coded, which is the scan position of the last CG. For

larger TBs, such as 16×16 and 32×32 TBs, one flag LastCG0flag is firstly coded first

to indicate whether the last CG is at position (0, 0). In the case that lastCG0flag is equal

to one, two more syntax elements LastCGX and LastCGY are coded to signal the(x, y)

coordinates of the last CG position. Note that, (LastCGY- 1) is coded instead of

LastCGY when LastCGX is zero since lastCG0flag is equal to one.

The first level coding is performed by several syntax elements which indicate the

information about the current CG in the entire TB. Thus the syntax elements for this

level are explained by the last_cg_pos, last_cg0_flag, last_cg_x, last_cg_y,

last_cg_y_minus1 and nonzero_cg_flag and each description is presented in Table 2-1.

Table 2- 1 The syntax elements for the first level coding

Syntax elements Description

last_cg_pos denotes the position of the last CG block in the current TB

last_cg0_flag indicates whether the last CG position is 0 or not in the TB (larger

than 8x8)

last_cg_x denotes the x coordinate of the current CG in the current TB

last_cg_y denotes the y coordinate of the current CG in the current TB

last_cg_y_minus1 denote the y coordinate of the current CG in the current TB when

the x coordinate is zero.

nonzero_cg_flag signals whether the current CG includes non-zero coefficients

31

2.3.3 Second level coding

The second level coding indicates the coding of coefficients within one CG. Fig. 2-7

depicts the coding flow for one CG. Basically, it follows the principle of the CBAC

design in AVS1. However, when one CG contains non-zero coefficients (i.e., the

nonzero_cg_flag of the CG is equal to 1 or it is the last CG), the position of the last

non-zero coefficient in the scan order in the CG is coded instead of coding the end of

bit (EOB) flag after each (Level, Run) pair to signal a stop. Then, the (Level, Run) pairs

are coded sequentially in the reverse scan order until the coding of all pairs are finished.

Similar to the coding of (Level, Run) pairs in CBAC for AVS1, the Level is represented

by its magnitude absLevel and the sign information.

CGPos>=0？

end

start

Y

N

NonzeroCgFlag

 last_cg_x

 last_cg_y last_coeff_pos_x

last_coeff_pos_y,

CoeffPosInCG initialization

coeff_levvel_minus1_band、
coeff_level_minus1_pos_in_band

CoeffPosInCG>=0?

coeff_run

CoeffPosInCG -= coeff_run

(Non-zero position)

NonzeroCgFlag

Coefficients in CG

Coeffic ient in CG

Y

N

end

start

Y

N

Figure 2- 7 Coding flow for the transform coefficients

It is observed that depending on whether the CG is the last CG, the distribution of the

position of the last nonzero coefficient shows different exhibitions. As a result, two last

coefficient position coding schemes are utilized accordingly. For the last CG, the

position of the last non-zero coefficient in the CG is mostly random but has a general

32

tendency to be close to the top-left corner of the sub-block. The position is then directly

coded in its (x, y)-coordinates relative to the top-left position of one CG, namely,

LastPosX and LastPosY. For CGs which is not the last CG, the position of the last non-

zero coefficient, if present, tends to be close to the bottom-right corner of the sub-block

and is also highly correlated to the reverse scan order. It is therefore more efficient to

code its reverse scan position within the CG rather than the (x, y)-coordinates, i.e., the

position relative to the bottom-right position of one CG.The coding procedure in the

second level is based on the coefficients in each CG and the coding order is the reverse

order of the zig-zag scan. The syntax elements for this step can be defined as:

last_coeff_pos_x, last_coeff_pos_y, coeff_level_minus1_pos_in_band and coeff_run

and each description is presented in Table 2-2.

Table 2- 2 The syntax elements for the second level coding in one CG

Syntax elements Description

Last_coeff_pos_x Denote the x-coordinate of last non-zero coefficient in the

nonzero CG.

Last_coeff_pos_y Denote the y-coordinate of last non-zero coefficient in the

nonzero CG.

coeff_level_minus1 Denote the range of the coefficient level minus 1.

coeff_level_minus1_

pos_in_band

Denote the position of the coefficient level minus1 in the current

level band.

coeff_run denote the run value

coeff_sign Indicate the coefficient is positive or not.

2.4 Summary

In this section, the detail about the entropy coding in AVS2.0 was presented in the above

aspects.Then, the context-based binary arithmetic coding theory is analyzed, and the

binarization, context modeling & probability estimation, and the binary arithmetic

33

coding engine are all summarized in detail. It is the complicated computations and

strong data dependence that post more challenge on this topic about CBAC entropy

coding.

34

Chapter 3 Performance Comparison in CBAC

The Context-based Adaptive Binary Arithmetic Coding is the typical entropy coding

method used in current video coding standard, such as HEVC, H.264/AVC, AVS, etc.

In order to understand the coding performance of tools contributed by the CBAC better,

we proposed a comparison scheme to compare the entropy coder CBAC with CABAC

based on the software reference RD platform of AVS2.0. In this chapter, we give the

performance comparison though the proposed comparison scheme and to keep it fair,

the adaptive context initialization is introduced when we transplant CABAC into

reference s/w of AVS2.0 as CABAC used in reference s/w of HEVC adopts specific

initial context variables for each context model. It is different form CBAC in AVS2.0

because the context variables of all context models in CBAC are initialized with the

same value at the beginning of the new slice.

3.1 Differences between CBAC and CABAC

In H.264/AVC and HEVC, the CABAC is adopted as entropy coding technique, which

is based on the Look-up table (LUT) operation to free multiplication. On the other hand,

Logarithm Domain Addition (LDA) is used for CBAC in AVS2.0.

Generally, the Binary Arithmetic Coder (BAC) of current video standards mentioned

above is consisted of three steps: (1) Binarization, (2) Context Modeling (Probability

estimation and assignment), and (3) Arithmetic coding. The binarization is a procedure

to map syntax elements with non-binary value into binary value with some elementary

35

schemes which are suitable model-probability distribution. The context modeling is a

procedure to associate a probability model with different type of the syntax elements

adaptively. The whole process of Selection of the probability model according to the

syntax element type, bin index and the side information is referred as context modeling.

In this process, the probability model parameters is adaptive in order to estimate the

statistical feature of the source bins. Each binarized syntax element decided through

rate distortion optimization (RDO) mode decision process is processed in BAC engine

with matched context model for each bin the arithmetic coding will be finally performed

based on the probability update and range subdivision.

Specifically, the CABAC algorithm is based on the LUT for range division and context

update is realized through another two LUTs for MPS and LPS case. Each of LUT

includes 64 states transiting according to the probability estimation model. And each

context of syntax element includes 6-bit probability state indexing two context update

LUTs and 1-bit value of MPS bin. However, the CBAC algorithm in AVS2.0 performs

the entropy coding through the logarithm addition and shifting in order to eliminate the

multiplication. The context model introduces 10-bit probability-based variable of MPS

bin, 1-bit for the value of MPS bin and the 2-bit counter parameter marking sliding

window size for the probability estimation. Different form that in CABAC where the

sliding window size is fixed as about 19.69, the adaptive probability estimation model

is introduced through 2-bit counter parameter in CBAC. Therefore, the differences

between two entropy coders CBAC and CABAC can be summarized as the Table 3-1.

36

Table 3- 1 The differences between two entropy coders

 CBAC CABAC

Binarization Syntax elements - -

Context

Modeling

Sliding window parameter Adaptation (cycno, cwr) Fixed

Initial probability Fixed Adaptation

Bit depth of probability 10 bits 8 bits

Context model

variables

Probability(10-bit

scaled), valMps, cycno

Probability(LUTs),

valMps

BAC Method free multiplication Logarithm addition LUTs

3.2 Comparison of Two BAC Engines

In order to evaluate the coding efficiency of two BAC engines fairly, we design the

specific comparison schemes for each engine. Firstly, we should transplant the CABAC

engine into RD10.1, which is reference s/w of AVS2.0 and use it as the entropy coder

to encode and decode the video sequence. Based on the differences presented in above

Table 3-1, we can see that CABAC employs different method to realize the binary

arithmetic coding, especially in the context modeling and arithmetic engine part. To

compare fairly, then we need to consider how to make the two entropy coders in the

same scheme to realize each step in their multiplication-free operations. Fig.3-1 gives

the block diagram to compare two entropy coders CABAC and CBAB. However, in

order to measure the coding efficiency of these two entropy coders, the comparison

scheme [27] should be exactly matched the procedure in each standard. Thus, the

significant issue needed to address is how to design the adaptive initialization value of

probability for each context model of each syntax element in AVS2.0 when CABAC is

used as entropy coder. In addition, there are several optimization methods used in the

logarithm domain-based arithmetic CBAC. The adaptive probability estimation and

37

adaptive sliding window size are the techniques which can be used to improve the

compression performance of arithmetic coding. However, in this evaluating scheme,

what need to do is to keep the comparison fair and retain the original feature of each

entropy coder used in respective video standard as much as possible.

Image
Sequence

 reference code

Prediction RDO
In-loop
Filtering

CBAC Encoder

Binarization
Context

Modeling
CBAC

Engine

CBAC
Encoder

estimated ratesSEs

modes Bits
Sequenceorg

PSNRorg

 Test #1

Prediction RDO
In-loop
Filtering

CBAC Encoder

Binarization
Context

Modeling
CBAC

Engine

Rate Est.
Tables

for CBAC

estimated ratesSEs

modes Bits
Sequence#1

PSNR#1

 Test #2

Prediction RDO
In-loop
Filtering

CBAC Encoder

Binarization
Context

Modeling
CABAC
Engine

Rate Est.
Tables

for CABAC

estimated ratesSEs

modes Bits
Sequence#2

PSNR#2

8 bit depth

8 bit depth

Figure 3- 1 The Block Diagram for Evaluating CBAC and CABAC Engines

3.2.1 Statistics and initialization of Context Models

The context model initialization process for each entropy coder holds some difference

and we should reduce this distinction in proposed scheme. Specifically, the initial

probability value for each context model of each syntax element is distinct in CABAC.

It is one of conditions of CABAC which works for the only entropy coder in HEVC.

Thus at the beginning of each slice, the context variable of probability in each context

is assigned to the respective value. While the initialization of probability is performed

as the assigning the same value 0.5 to each context model in CBAC in AVS2.0. Thus

38

the context initialization for the CBAC is pretty easy to perform as all the context

models are set as the same initial value, including MPS symbol as 0, LgPmps rested as

1023, and the cycno parameter designed as the start iteration. However, according to

source information in the nature video, the adaptive context in the different area even

the same syntax elements tend to be set as the various initialized features. In addition,

the different syntax elements should be assigned to the adaptive initial value at the

beginning of the each slice. To achieve this goal, we should give the specific initial

value of each context. Table 3-2 gives the syntax elements accessed to CBAC entropy

coder. For some syntax elements, 2-D context buffer is used for the context updating to

make scalability possible in future.

Table 3- 2 The context number of each syntax element in RD10.1

Syntax Elements Ctx num. Syntax Elements Ctx num.

cuType_contexts 11+9 cbp_contexts [3][4]

pdir_contexts 18 map_contexts [8][17]

amp_contexts 2 last_contexts [8][17]

b8_type_contexts 9 split_contexts 8

pdir_dhp_contexts 3 tu_contexts 3

b8_type_dhp_contexts 1 lastCG_contexts 30

b_dir_skip_contexts 4 sigCG_contexts 3

p_skip_mode_contexts 4 lastPos_contexts 56+16

wpm_contexts 3 saomergeflag_context 3

mvd_contexts [3][10] saomode_context 1

pmv_idx_contexts [2][10] saooffset_context 2

ref_no_contexts 6 m_cALFLCU_Enable_SCModel [3][4]

delta_qp_contexts 4 brp_contexts 8

l_intra_mode_contexts 7 pdirMin_contexts 2

c_intra_mode_contexts 4

39

The context initialization process is performed based on the fact that all the contexts in

one slice will be initialized with the same variable. The initial procedure is described in

Fig. 3-2, in which biari_init_context_logac() function defines the initial context

variables including LgPmps, valMps and cycno.

void biari_init_context_logac (BiContextTypePtr ctx)
{
ctx->LG_PMPS = (QUARTER << LG_PMPS_SHIFTNO) - 1;
ctx->MPS = 0;
ctx->cycno = 0;

}

#define BIARI_CTX_INIT1_LOG(jj,ctx)\
 {\
 for (j=0; j<jj; j++)\
 {\
biari_init_context_logac(&(ctx[j]));\
 }\

 }

#define BIARI_CTX_INIT2_LOG(ii,jj,ctx)\
 {\
 for (i=0; i<ii; i++)\
 for (j=0; j<jj; j++)\
 {\
biari_init_context_logac(&(ctx[i][j]));\
 }\

 }

void init_contexts ()
{
 SyntaxInfoContexts* syn = img->currentSlice->syn_ctx;
 int i, j;
BIARI_CTX_INIT1_LOG(NUM_CuType_CTX, syn->cuType_contexts);
BIARI_CTX_INIT1_LOG(NUM_INTER_DIR_CTX, syn->pdir_contexts);

…
BIARI_CTX_INIT2_LOG(3, NUM_CBP_CTX, syn->cbp_contexts);
...

}

void picture_data (Picture *pic)
{
...
 start_slice ();

…
SliceHeader(slice_nr,slice_qp);
...
init_slice (img->current_mb_nr , pic);
...
 init_contexts();
...

}

Figure 3- 2 the context initialization procedure in RD10.1

40

3.2.2 Adaptive Initialization Probability

In HEVC, the adaptively initial probability operation is performed by setting each

context model of each syntax element an initial value and through several steps of

speculative computations to get the initial probability value. However, in order to give

the similar adaptation to CABAC which is implemented into our test model and then

compare the coding efficiency with model using CBAC. Since the residual data

accounts for the significant part (about 70%) [15] of total syntax elements, and we also

know the fact that when the LgPmps is closer to 1023, the better compression result is,

since the probability of a given symbol is about 0.5 when there is no previous symbol

for current symbol to refer to. Before exploring the exactly adaptive initial probability

by training numerous video sequences, the initial probability LgPmps for the residual

data is assigned as the same as the CBAC with the same value. While for the other

syntax elements, we assigned the initial value for LgPmps based on the following roles

(3-1),

where ctxN is the total number of context model for a given syntax element as shown

in Table 3-2 and inc denotes the increment for the adaptive initial probability for each

context. Note that when the probability value for the current context is greater than

1023, the symbol value will be given a conversion. Though this method, the initial value

of probability for each syntax element will distribute near 1023 in both sides.

41

3.3 Experiment Result

In this section, we will analyze the performance difference in the two entropy coders.

However, the performance of CABAC is measured based on above the specific

initialization for some contexts. Specifically, the initial probability for each context is

not identical, which is given the respective initial value for these syntax elements as

described in section 3.2. And then measure the coding efficiency of CABAC modified

with this initialization method. Although it is not the exact the adaptive initialization, it

also give the hint that the coding efficiency trend when the context models are

initialized with the distinct values.

Table 3-3 gives the coding performance result of CABAC compared with CBAC in

AVS2.0. The reference is common test condition in AVS2.0 [28] and for five 1080p

video sequences including Kimono, ParkScene, Cactus, BasketballDrive, and

BQTerrace in Random Access (RA) configuration. From the result of Table 3-3, using

CABAC achieves about 0.4% performance degradation compared with that of CBAC

in AVS2.0. Similarly, there are also some others’ work [20][21] have been proved that

it is a little bit disadvantage when CABAC algorithm is used as the entropy coder in

HEVC platform since the implementation detail in CABAC adopts the pre-designed

look-up table where many approximations are introduced to get the pre-defined tables.

While using CBAC where the logarithm domain addition/shift and domain conversion

are operated can be benefit from more accurate speculations. In addition, adaptive

sliding window size and adaptive probability estimation enhance the performance as

42

well. This work gives the conclusion that using CBAC achieves a better compression

performance.

Table 3- 3 the performance comparison result of CABAC with CBAC

sequence
RDOQ off RDOQ on

Y BD-rate U BD-rate V BD-rate Y BD-rate U BD-rate V BD-rate

Kimono 0.61% 0.54% 0.54% 0.59% 0.55% 0.72%

ParkScene 0.58% 0.55% 0.42% 0.57% 0.57% 0.55%

Cactus 0.24% 0.43% 0.15% 0.32% 0.21% 0.57%

BasketballDrive 0.14% 0.35% 0.39% 0.17% 0.48% 0.10%

BQTerrace 0.29% 0.39% 0.12% 0.01% 0.36% 0.38%

Avg. 0.37% 0.45% 0.32% 0.33% 0.43% 0.46%

3.4 Conclusion

In this chapter, the proposed comparison scheme for CBAC and CABAC shows that

the CBAC achieves more compelling compression performance with about 0.4% BD-

rate reduction in average in RA configuration. The reason that using CBAC can achieve

a better compression performance when encoding the same video sequences lies in the

computation complexity of CBAC tend to be greater than that in CABAC. Domain

conversion, data operation divided into integer and fraction part and comparison

between integer and fraction respectively increase the calculation cost. However, more

compelling coding efficiency can be obtained from these traits as the experiment result

shows.

43

Chapter 4 CBAC Performance Improvement

Through description in the above several chapters, it has been showed that the

computation complexity and sequential operation put a thread on the performance

improvement. In this chapter, we will propose three ideas to improve performance of

the CBAC including approximation error compensation, modification of probability

estimation model and introduction of fast rate estimation to replace the real CBAC in

the rate distortion optimization (RDO) process. More details for each improvement idea

will be described in the following sections.

4.1 Approximation Error Compensation

As the description before, in order to simplify the computation and implementation,

there are two approximation equations adopted in the domain converting process to

realize the free-multiplication operation. However, the approximated error is inevitable

once the approximation equations are used in the domain conversion process. Thus the

error compensation method in this subclause is introduced to minimize the

approximation error by domain conversion.

4.1.1 Error Compensation Table

According to the approximation principle of the Taylor’s Formula, the approximation

equations implemented into CBAC practically are represented as the following:

 2 1 (0 1)x x x (4-1)

44

These approximation equations are used to combine operations of both real domain and

logarithmic domain, which is to replace multiplications with additions. The followings

are cases of using these approximation equations:

(1) When the symbol is MPS, the range updating is performed with the LgPmps.

While the probability update is based on the probability in the original domain,

which should be derived from the LgPmps. Thus the approximation (4-1) is

served as the bridge to draw the updating principle through LgPmps.

(2) When the symbol is LPS, the new range in logarithm should be derived from the

original domain, where both the old and current range can be obtained from the

logarithm value of each. Thus the approximation (4-1) is adopted.

(3) When the symbol is LPS, after the range updating and renormalization, there is a

crucial step of the range map to prepare the logarithm-based value of the current

range in order to make the parameters ready for the next iteration. Thus the

approximation (4-2) is used for the transition from the original to the logarithm

domain for the LPS range.

It can be see that the approximation equations defined in (4-1) and (4-2) are based on

the index and logarithm of 2, though the fact is that these equations are true only when

the base is e in the mathematical theory. Thus the approximated error induced in the

process of domain conversion results in considerable performance degradation if there

is no extra supplementary method to make up this. Therefore, the modification of the

45

approximation can be considered to minimize error in the conversion process. However,

the gain which can be obtained by compensation of the approximation error will be a

little bit marginal due to the incorrect probability estimation caused by the unstableness

of information source. The correction function Δ1 and Δ2 can be defined as the

following:

Here, the 1x and 2x are 8 bit precision and the correction function also based on the

8 bit precision as well. The implementation is realized by indexing the pre-defined table

with size of 64 where the index is 8-bit LgPmps. And the correction function table can

be varied as the bit precision (depth) is changed. The correction factor can be quantized

as the following:

64

1
δ () 2 (1) 2 2 , 0,1, 2,..., 63

64

index

bitdepth bitdepthindex
index index (4-5)

depth

2 2
δ () 2 log (1) 2 , 0,1, 2,...,63

64 64

bit bitdepthindex index
index index (4-6)

Here, bitdepth denotes the bit precision and the index is the needed table size. Table 4-

1 shows the correction table based on the (4-5) and (4-6) and gives the difference with

error adjusting table in [25]. Generally, 6 bits is enough to correct the approximation

error caused by the above (4-1) and (4-2) two approximation equations.

Different from the fact that there is no exact derivation and experiment result in [25],

our method gives the derivation exactly from the approximation equations and

46

implement into AVS2.0 in detail. In addition, only one table in [25] is adopted for both

approximation equations, while our method give the exact correction table for both in

Table 4-1.

Table 4- 1 The approximation error compensation table

Index δ1(index)(8-bit) error δ2(index) (8-bit) error [25]

0 0 0 0 0 0

1 1.212342771 1 1.726160135 2 2

2 2.394329945 2 3.364894556 3 4

3 3.545630971 4 4.918832757 5 5

4 4.665911699 5 6.390487360 6 7

5 5.754834340 6 7.782260935 8 8

6 6.812057427 7 9.096452338 9 9

7 7.837235774 8 10.33526259 10 10

8 8.830020438 9 11.50080037 12 11

9 9.790058673 10 12.59508707 13 12

10 10.71699390 11 13.62006160 14 13

11 11.61046564 12 14.57758477 15 14

12 12.47010950 12 15.46944344 15 15

13 13.29555713 13 16.29735442 16 16

14 14.08643615 14 17.06296803 17 17

15 14.84237014 15 17.76787153 18 17

16 15.56297856 16 18.41359229 18 18

17 16.24787675 16 19.00160074 19 19

18 16.89667584 17 19.53331318 20 20

19 17.50898276 18 20.01009442 20 20

20 18.08440011 18 20.43326023 20 20

21 18.62252620 19 20.80407965 21 21

22 19.12295496 19 21.12377720 21 21

23 19.58527588 20 21.39353494 21 21

24 20.00907401 20 21.61449437 22 21

25 20.39392985 20 21.78775833 22 22

26 20.73941935 21 21.91439266 22 22

27 21.04511384 21 21.99542789 22 22

28 21.31057998 21 22.03186075 22 22

29 21.53537972 22 22.02465564 22 21

30 21.71907022 22 21.97474603 22 21

31 21.86120383 22 21.88303573 22 21

32 21.96132803 22 21.75040018 22 21

33 22.01898537 22 21.57768760 22 20

34 22.03371341 22 21.36572009 21 20

47

35 22.00504469 22 21.11529474 21 21

36 21.93250664 22 20.82718458 21 20

37 21.81562156 22 20.50213958 21 20

38 21.65390654 22 20.14088754 20 20

39 21.44687341 21 19.74413496 20 19

40 21.19402870 21 19.31256784 19 19

41 20.89487354 21 18.84685252 19 19

42 20.54890365 21 18.34763637 18 19

43 20.15560926 20 17.81554852 18 18

44 19.71447502 20 17.25120055 17 17

45 19.22498000 19 16.65518714 17 17

46 18.68659759 19 16.02808666 16 16

47 18.09879544 18 15.37046179 15 15

48 17.46103539 17 14.68286005 15 15

49 16.77277345 17 13.96581438 14 14

50 16.03345968 16 13.21984363 13 13

51 15.24253817 15 12.44545304 12 12

52 14.39944694 14 11.64313475 12 11

53 13.50361791 14 10.81336821 11 11

54 12.55447680 13 9.956620637 10 10

55 11.55144307 12 9.073347407 9 9

56 10.49392988 10 8.163992476 8 8

57 9.381343979 9 7.228988742 7 7

58 8.213085668 8 6.268758416 6 6

59 6.988548714 7 5.283713367 5 5

60 5.707120282 6 4.274255459 4 4

61 4.368180866 4 3.240776873 3 3

62 2.971104211 3 2.183660416 2 2

63 1.515257245 2 1.103279814 1 0

In addition, the approximation error compensation tables can be implemented in the

encoder and similarly in the decoder part, the same compensation table is used to

decode the bits generated by the modified CBAC encoder. Also, make sure that the

engine should be make some definitions in the value domain limitation of engine

parameters thus the encoder and decoder will be performed without overload or

deadlock since this correction table can make LgPmps overload the minimum value.

48

For example, when after correcting, LgPmps may equal to 0, thus the deadlock will be

encountered. Therefore, the specific definition should be included in code.

4.1.2 Experiment Result

Through the proposed approximation error compensation table, as experiment result in

Table 4-2 shows, there will be about 0.2% in the Luma component and a more

promising result in the Chroma components (about 0.3%) in average in five 1080p

video sequences under Random Access (RA) configuration.

Table 4- 2 The coding efficiency using approximation error correction tables

Image seq. Y BD-rate U BD-rate V BD-rate

Kimono -0.17% -0.54% -0.21%

ParkScene -0.29% 0.08% -0.45%

Cactus -0.26% -0.23% -0.47%

BasketballDrive 0.06% -0.45% -0.15%

BQTerrace -0.30% -0.48% -0.29%

Avg. -0.19% -0.33% -0.31%

4.2 Probability Estimation Model Optimization

4.2.1 Probability Estimation

The probability model updating is the crucial feature in the efficiency improvement in

the arithmetic entropy coder in the video coding standard due to offering the probability

of each symbol to adapt the internal state of the coder to the underlying source statistics

[29]. Such adaptation enhances the compression efficiency of various entropy coding

schemes such as M coder, PIPE. One of the most frequently used formulas is as the

equation (4-7) shows:

49

 δ δ 1() α () (1 α) () p i y i p i (4-7)

Here, i is valued as “0” or “1” which denotes that current bin is most probability symbol

(MPS) or the least probability symbol (LPS), respectively. In addition, y(i) is 0 if the

current symbol is MPS and it is assigned as 1 if otherwise. The δ denotes the

probability state. Theα is the scaling factor which adjusts the speed of the adaptation as

it indicates that how many the in-prior encoded bins are needed to estimate the

distribution of probability for the coming bins. From this recursive equation, we can

get the clue that the probability updates based on α that is derived from the number of

consecutive bins binN , which is defined a reciprocal number of scaling factor α .

(α 1/ binN). The larger binN is, the speed of the adaptation is slower due to the

smaller a, while the estimation model is more accurate. Otherwise, there will be fast

transition along with a less compelling accuracy. Therefore, the choice of the referred

symbols N determines trade-off between the model sensitivity and accuracy. About the

referred bins , one method is always using binN bins all over the engine performing

statically, while another one adopts an adaptive scaling factor cw, thus the referred bins

can be expressed as , discretely and adaptively.

Many research works focus on how to optimize the binary arithmetic coding. In [30],

the proposed “virtual sliding window” method provided a more outstanding

compression rate compared with look-up table index based entropy coder. Currently,

the virtual sliding window technique is widely explored in HEVC. An integrated

window sizes technique is introduced in [31] ~ [33], which gives a higher precision

binN

2cw

50

estimation model with around 0.8% performance improvement in HEVC. In [34], a

counter-based window sizes scheme is proposed and brings about 0.9% BD-rate saving.

Therefore for probability estimation, the smaller window size of each probability model

in the beginning of the sequence can improve the R-D performance considerably and

the changeable window size tends to be more effective. The entropy coder CBAC used

in AVS2 made the similar affords to design an adaptive probability estimation model

to improve R-D performance, although it causes computation complexity increase.

Generally, according to how to choose window size and the probability smoothing trend,

two probability distribution functions are employed including exponent mesh and

uniform mesh [32][33]. The exponent mesh explains that the probability transition is

based on the map function
δ

δ 0.5(1 α) p , where δ is the quantized state to realize the

probability change within the certain domain, e.g. from 0.01875 to 0.5. Using this

model, the practical implementation can be performed based the finite state machine

(FSM) indexed byδ , thus the speculative calculation can be eliminated. However, note

that the probability distribution with an exponent mesh illustrates that the probability is

more dense near 0 and sparse close to 0.5. Therefore, when the probability is distributed

near 0.5, there tend to be a considerable error in the evaluation. Another map function,

mesh function, adopts a uniform model where the probability is scaled into certain

integer section thus it can be presented as δ δ / 2 kp P . The parameter k denotes the

scaled range with length of 2k and δP is the integer within this range. Here δ is a token

for the virtual sliding window operation as there is no exactly state will be used for the

51

transition while the speculative computation is performed with shift or/and addition

operation.

With the consideration of computation complexity and hardware-friendly in logic, the

look-up table and scaling strategies are served for the practical implementation scheme

of probability transition without multiplication. In table-based method, the probability

updating is performed based on a pre-defined Finite State Machine (FSM), i.e.

[]nextState , where each state implies the real probability. The states jumping rules is

based on the Mesh function. Benefit from the Uniform Mesh map function, another

method is aimed to free multiplication with the addition and shift operation. Thus the

scaled δP expressed as integer ranged from 1 to 2k makes the arithmetic operations

easily. The transition rules can be performed as (δ δ 1 δ 1{Δ,()}P P P cw) with LPS

and MPS, respectively. Here, is the increment of the Uniform Mesh.

According to the required variables , and in equation (4-7), the supported

theories and implementation approaches employed in each video standard or relative

technique to realize probability estimation are summarized in Table 4-3.

Table 4- 3 The model variables for the probability estimation

variable models formula note

α
static 1/ binN [19]

adaptive 1/ 2cw [25]

δp

exponent mesh
δ

δ 0.5 (1 α)p [33]

uniform mesh
δ δ / 2kp P [33]

δ
table-based [δ 1]nextState [19]

scale-based δ 1 δ 1{Δ,()}P P cw [25]

 p

52

Practically, the tradeoff of the computation complexity, memory requirements and the

estimation accuracy is the key problem that the implementation of probability

estimation model should consider in practice. Therefore, the implementation schedule

of each standard explores the method balanced all the variables and achieve the most

significant performance enhancement.

4.2.2 Probability Estimation Model in CBAC

The probability estimation in AVS2.0 is performed with logarithm addition and shift

operation as the CBAC algorithm employs the logarithm domain–based arithmetic

coder. The Uniform Mesh and speculation computation are used for the probability up-

date with multiplication free logic. The scaling factor for CBAC is defined as

(α 1/ 2cw) with adaptive parameter cw chosen one of among 3, 4 and 5 according to

the engine execution counter cycno for each context. Specifically, at the beginning

several iterations, a smaller scaling factor is assigned and it will fixed at 5 after 2

iterations. In addition, the implementation of the probability estimation procedure

adopts the Uniform Mesh where the scaled probability is represented as the

corresponding LgPmps with k-bit resolution. Here, LgPmps denotes the scaled absolute

value of log2(Pmps) with Pmps valued from (0.5, 1). Hence, the factor k defined in

Uniform Mesh function indicts the resolution (bit-depth) of LgPmps, theoretically. The

scaled MPS probability LgPmps is described as equation (4-8):

53

where bit depth bitDepth is assigned 10-bit and Pmps valued from (0.5, 1). Then we

can achieve two boundary values, i.e., (0, 1024), for the LgPmps calculation in the

arithmetic coding process. Thus the probability transition can be mapped into a scaled

integer range with integer operations. Specifically, the estimation updating model

employed in AVS2.0 can be fulfilled in the equation (5):

 ()

Δ

LgPmps LgPmps cw if mps
LgPmps

LgPmps if lps
 (4-9)

where cw is the sliding window factor as described before, is the increment of the

LgPmps once encoding one bin based on the Uniform Mesh for case that the symbol is

LPS case. It is also relative to the cw and the bit depth of the LgPmps.

Probability estimation is a crucial step in arithmetic coding of CBAC as illustrated in

Fig.1-3. It has much influence on the final coding performance. In CBAC, context

variables are included 10-bit LgPmps, 1-bit valMps, and 2-bit cycno. Once the

arithmetic coding for a regular bin is finished, the context variables will be updated

including LgPmps speculation, valMps conversion (if necessary), and cycno marking.

Even through this adaptation increase the computation complexity, the coding

performance of CBAC tends to be competitive compared with CABAC.

4.2.3 The Optimization of Probability Estimation Model in CBAC

In this section, based on the mechanism in CBAC, we propose an optimized probability

estimation model with well-regulated scheme to improve coding efficiency.

54

Binarizer

Probability

Estimator

 Context buffer

(LgPmps, valMps, cycno)

Regular

Arithmetic

Coding

Bypass

Arithmetic

Coding

Regular/bypass

switch

S
U

M

bit

stream

SEs

bin

string bin bin

update

Figure 4- 1 The flowchart of CBAC encoder

Referring to the analysis of Uniform Mesh in above section, it can be concluded that

the scaled probability LgPmps is valued within a scaled domain as (0, 2bitDepth) in theory.

Thus the probability estimation can be performed by addition or subtraction, and shift

within integer data domain. Considering that the estimation error of probability of MPS

near to 0.5 tends to be more considerable than that close to 1 where the difference

between two symbols is marginal, we deign a feasible data domain, called (ThrLgPmps,

InitLgPmps), for probability estimator of the CBAC. ThrLgPmps denotes the low boundary

that the scaled probability LgPmps can reach. InitLgPmps is the initial value assigned to

each context model at the beginning of new slice.

For the initial value, it is assigned as in CBAC as follow equation (4-10),

where is valued as 0 or 1. For the threshold value ThrLgPmps, it is represented by (4-

11):

 2 min,
ˆ2 | log (1) |

bitDepth

LgPmps plps
Thr p (4-11)

where is the statistical result of minimum LPS probability which can be obtained

through the similar method used for the CABAC in [5]. In theory, it is a statistical result.

min,
ˆ

plsp

55

Based on the provided scheme, the scaled probability LgPmps can be transited within

the feasible domain with the uniform increment each iteration in the LPS case. However,

note that the adaptive scaling factor cw is introduced in CBAC where the sliding

window size will be changed along with context variable cycno marking, thus the

uniform increment will also adaptively change and the adaptive uniform increment

is defined as equation (4-12):

 , 2Δ 2 | log (1 2) |bitDepth cw

bitDepth cw

 (4-12)

Therefore, the proposed probability estimation model can be modified with the

following equation (4-13):

lg

1

max((),)

1024?(2) : (Δ)

pmps

bitDepth

LgPmps LgPmps cw Thr if mps
LgPmps

LgPmps LgPmps LgPmps if lps

 (4-13)

In implementation, parameters adjustments including cw, bitDepth, ThrLgPmps, and

InitLgPmps are necessary in order to find out the best scheme. Then the overall schedule

for the probability estimation can be illustrated as Fig.4-2.

56

New Slice

Initialization

LgPmps = 2bitDepth – τ

cycno = 0

MPS Case ?

LgPmps ≤ThrLgPmps ?

LgPmps ← ThrLgPmps
LgPmps ← LgPmps -

LgPmps >> cwr

LgPmps ← LgPmps +

LgPmps ≤ 2
bitDepth

 ?

LgPmps ← 2(bitDepth+1) -

LgPmps

context memory:

LgPmps ← LgPmps

cycno++

End

Yes No

No Yes

Yes No

Δcycno

Figure 4- 2 The proposed probability estimation scheme for each context model.

4.2.4 Experiment Result

In this section, the coding efficiency enhancement result will be shown. However, for

the adaptive probability estimation method, it is easy to implement with the

considerable performance enhancement. To verify the coding efficiency of proposed

optimized probability estimation model, experiments are conducted on RD 10.1. The

bit depth bitDepth is assigned as 9 bits, min,
ˆ

plsp is about 0.0382, τ is set as 1, and the

final sliding factor cw is set as 5. Note that cw is determined by the cycno marking and

we assign the value of cw along with different cycno and syntax element type. Until

cycno increases up to 3, cw is assigned 5 constantly for each context model for all syntax

57

elements. Table 4-4 and Table 4-5 give the BD-rate reduction detail in the A, B class

video sequences under the Random Access (RA) configurations with common test

condition [28] of AVS2.0.

Table 4- 4 The BD-rate of proposed probability estimation with RDOQ-off

Size Sequence Y BD-rate U BD-rate V BD-rate Avg.

A Class Traffic -0.20% -0.24% -0.71% -0.27%

Pku-girls -0.10% -0.94% -0.73% -0.28%

PeopleOnStreet -0.21% -0.88% -1.43% -0.45%

B Class ParkScene -0.05% -0.43% -0.63% -0.17%

beach -0.07% -8.48% -9.65% -2.32%

taishan -0.13% -0.25% -0.62% -0.21%

kimono -0.10% -0.21% -0.47% -0.16%

cactus -0.28% -0.43% -0.70% -0.35%

BasketballDrive -0.29% -0.67% -0.54% -0.37%

Avg. -0.16% -1.35% -1.76% -0.52%

Table 4- 5 The BD-rate of proposed probability estimation with RDOQ on.

Size Sequence Y BD-rate U BD-rate V BD-rate Avg.

A Class Traffic -0.23% -0.39% -0.76% -0.32%

Pku-girls -0.16% -0.44% -0.42% -0.22%

PeopleOnStreet -0.23% -0.73% -0.89% -0.37%

B Class ParkScene -0.09% -0.50% -0.15% -0.15%

beach -0.14% -7.37% -6.00% -1.78%

taishan -0.15% -0.53% -0.45% -0.23%

kimono -0.19% -0.00% -0.32% -0.19%

cactus -0.24% -0.53% -0.18% -0.27%

BasketballDrive -0.13% -0.47% -0.62% -0.24%

Avg. -0.17% -1.22% -1.09% -0.42%

58

4.3 Rate Estimation

4.3.1 Rate Estimation Model

In AVS2.0, it is crucial to find out the efficient rate distortion optimization (RDO) mode

decision for enhancing the coding efficiency. This mode decision is aimed to selects an

optimal mode among various available candidates including supported size of coding

unit, the prediction unit and the transform unit. However, the rate distortion cost in

RD10.1, reference s/w of AVS2.0 is obtained from the rates coming from the real

CBAC instead of using rate estimation table which is used in HM, reference s/w of [35].

In addition, based on the previous several research[36][37][38], we proposed the fast

rate estimation model for AVS2.0 to replace the real CBAC since the process of CBAC

tend to be complicated because of the serial nature and strong data dependence. In this

section, we will describe the proposed rate estimation (RE) model for the rate

estimation in the RDO mode decision process implemented with RE table and Fig.4-3

illustrates the rate estimation idea in the AVS2.0 where we use the pre-defined RE table

to replace the real CBAC engine to calculate the rate distortion cost.

Prediction RDO Binarization CBAC

CBAC

RE table

R

Image

Sequence
SE seq. Bin seq. bitstream

state

rate

Figure 4- 3 The block diagram of proposed rate estimation

Current rate estimation is built based on the fact that there is a relationship between the

59

probability and range as Fig. 4-4 shows. The statistics tell us that the probability of each

new range can be described as (4-14):

 0()
k

p r
r

 (4-14)

Here, r denotes for the new obtained range and k0 is the constant. Thus, according the

range r varies from 256 to 510 in theory, the constant k0 can be derived and it is

presented with log2e. Therefore, the rate estimation model dedicated with estimated bits

can be further built.

256 510
r (Range)

p (Probability)

p256

p510

...

Figure 4- 4 Probability distribution of the CABAC range

Based on this probability distribution function, the expected output bit length is

represented with (4-15) if the input bin is the least probability symbol (LPS). Otherwise,

(4-16) is adopted.

510

256

2
2

log

)(
log)(

x

LPS
x

e

sR

x
sl (4-15)

510

256

2
2

log

)(
log)(

x

MPS
x

e

sRx

x
sl (4-16)

Here R(s) denotes the value of range indexed by context state s. Therefore, the expected

bit length for both MPS and LPS case defined in the above equations can be basic model

60

for the distinguished arithmetic coding engine.

In addition, the rate model for CBAC which uses logarithm adder and shift will be

deduced as described in the following. In this model, LgPmps denotes the MPS

probability in logarithm domain with 10-bit precision. Therefore, the corresponding

probability Pmps in original can be derived from (4-17).

10

/1024

log / 2

2

mps

LgPmps
mps

p LgPmps

p

 (4-17)

In the principle of arithmetic coding on logarithm, all the related parameters are derived

from probability of MPS in logarithm domain, which is LgPmps. Therefore, the

expected bit length of a bin can be achieved as (4-18) if input bin is MPS, on the contrary,

(4-19) is derived.

5 1 0 5 1 0
0 0

2 2

256 256

510
0

2

256

() log log

log

1024

mps

i mpsx x

mps

x

k kx x
l LgPmps

R x x p x

k
p

x

LgPmps

 (4-18)

5 1 0 5 1 0
0 0

2 2

256 256

510
0

2

256

1024
2

() log log

log

log (1 2)

lps

i lpsx x

lps

x

LgPmps

k kx x
l LgPmps

R x x p x

k
p

x

 (4-19)

From (4-18) and (4-19), the estimated bit length is achieved indexing by the LgPmps.

However, the bit length tend to be changed with the bit depth of LgPmps. We also

61

designed experiments that verify the effects of bit depth of LgPmps (fraction part of bit

length) in the rate estimation RE table.

4.3.2 Experiment Result

To verify the coding efficiency of RD10.1 encoder with proposed rate estimation model,

we use the AVS2.0 common test condition [28] for five 1080p video sequences

including Kimono, ParkScene, Cactus, BasketballDrive, and BQTerrace in Random

Access (RA), All Intra (AI), and Low Delay P (LDP) configurations.

Table 4-7 shows the coding performance after using rate estimation table with 2-bit

fraction part and 8-bit fraction part. Note that the same rate estimation table with 8-bit

fraction part is used for rate distortion optimization quantization (RDOQ). Fig.4-5

illustrates the coding performance in BD-rate (%) varying according to the change of

fraction part from 2-bit to 8-bit. We can get the conclusion that the coding efficiency

tend to be almost constant when the fraction part is larger than 2-bit. There are about

0.1% BD-rate reduction in RA, a marginal (0.02%) increase under AI and a slight

performance degradation with 0.18% in LDP configuration. This trend keeps the similar

between 2-bit and 8-bit in AVS2.0. Thus it is important to know that the rate estimation

table should be at least 2-bit fraction part to implement the correct rate estimation model

in the RDO process. In addition, Table 4-8 gives the encoding time saving when the

rate estimation is implemented into AVS2.0 for the RD cost calculation in the RDO

process. There is about 1.24% encoding time reduction compared with the original

AVS2.0 reference software.

62

Table 4- 6 The BD-rate of using rate estimation (2-bit and 8-bit fraction part)

1080p image

seqence

RE table (8-bit) RE table (2-bit)

RA AI LDP RA AI LDP

Kimono 0.03% 0.00% 0.10% 0.10% 0.03% 0.13%

ParkScene 0.03% -0.04% 0.01% 0.12% -0.02% 0.14%

Cactus -0.06% -0.02% 0.37% -0.08% -0.04% 0.09%

BasketballDrive -0.14% 0.13% 0.23% -0.15% 0.09% 0.05%

BQTerrace -0.38% 0.02% 0.22% -0.27% 0.03% 0.46%

Average -0.10% 0.02% 0.18% -0.06% 0.02% 0.17%

Table 4- 7 The time saving when the rate estimation table is used in AVS2.0

Test seq. QP Anchor time Rate est. Time Time Saving Avg.

Kimono

27 4989.17 4967.22 -0.44%
-1.02%

32 4730.05 4653.46 -1.62%

 38 4607.79 4562.96 -0.97%

 45 4100.52 4056.9 -1.06%

 27 3594.39 3560.48 -0.94% -1.16%

ParkScene 32 3233.44 3198.90 -1.07%

 38 2982.04 2948.08 -1.14%

 45 2817.84 2776.41 -1.47%

 27 3203.02 3155.65 -1.48% -1.68%

Cactus 32 2959.27 2909.86 -1.67%

 38 2897.11 2876.14 -0.72%

 45 2579.71 2506.22 -2.85%

BasketballDrive

27 10375.7 10265.3 -1.06%

-1.10%
32 7762.71 7822.48 -0.77%

38 8873.24 8957.54 -0.95%

45 7960.32 8090.07 -1.63%

Average -1.24%

63

Figure 4- 5 The BD-rate changes with different fraction part lengths

4.4 Conclusion

In this section, ideas for improving performance in terms of the engine optimization

and throughput improvement were described in detail. From the experimental results,

we can obtain three conclusions. One is approximation error modification is aimed to

match the arithmetic coding principle without the approximation operation. There is

0.2% BD-rate improvement in the Luma component at the sake of addition of a 2-D

buffer to store the adjusting factor and increase of a little of computation.

Another work is about the probability estimation. Since the performance analysis shows

that the bit resolution of LgPmps tend to affects the coding efficiency, the proposed

probability estimation model using 9-bit resolution with matched parameters achieve a

better performance with about 0.3% BD-rate saving in average.

Lastly, for rate estimation, we can see that there is at least 2 bits fraction part for rate

estimation RE table when implementing the rate estimation in RDO process.

64

Chapter 5 Implementation of Binary Arithmetic

Decoder in CBAC

Because of serial data dependency of the process of updating range and context

probabilities in a CBAC algorithm, it is still challengeable to implement decoder of

CBAC with high throughput.

There are numerous previous work [39] [40] which have been devoted to improve the

throughput for CABAC encoder in HEVC. [39] shows various methods to improve the

throughput including grouping bypass bin, reducing the context data dependence, and

sharing context modeling, etc. Several hardware-orientated tools such pre-

renormalization, hybrid path coverage, bypass bin splitting, were developed for the

binary arithmetic encoding for HEVC in [40]. In addition, the recent publication [41]

researched on the architecture of CBAC encoder in AVS1 targeting to the real-time

HDTV applications. However, plenty of works are CABAC encoder/decoder in HEVC,

although there are several literatures about AVS, most of them are for CAVLD of AVS1.

Few work is about CBAC architecture design, especially CBAC decoder.

Generally, the overall CBAC decoder includes several steps: binary arithmetic decoder

(BAD), context updating and selection and debinarization. In this chapter, we design

Binary Arithmetic Decoder, with throughput of one-bin per cycle which is a part of

CBAC Decoder and a main bottleneck of accomplishing high throughput by strong data

dependency. Specifically, BAD includes range update, offset update and bit read when

one bin is decoded. The most important work of this chapter is designing a reasonable

65

critical path of BAD.

5.1 Architecture of BAD

The difficulty of implementation of CBAC decoder with high throughput lies in the

high serial data dependencies from several update loops: range update, offset update,

and context update. For the introduction of the operation of logarithm domain to free

multiplication, a variable of range is represented as 2 terms, which are RangeI for

integer part and RangeF for fractional part of range. The representation of Offset is the

same as that of range. We design the conceptive structure including the main loops

needed in the decoder part. And the general CBAC decoder implementation structure

can be described as Fig.5-1. There are several loops which are performed with strong

data dependency in CBAC Decoder and each loops are marked with different colors.

Range

Split

rangeIMPS

Y

Offset

Update

rangeFMPS

rangeILPS

rangeFLPS

rangeI
rangeF

isMPS
isMPS

rangeIMPS
rangeFMPS

MPS/LPS

Decision

N

LPS

Range

Update

MPS

Range

Update

RangeF

Scaling

rangeILPS
rangeFLPS

#scaling

offsetI
offsetF

offsetI
offsetF

OffsetF

Scaling

RenormD

Bitstream

Buffer

Bits Read

 Range Update Module

 Offset Update Module

 Bits Read Module

Context

Update

Context

Selection

isMPS

Pcontext

Pcontext

 Context Update

Module

Figure 5- 1 the General BAD Structure in AVS2.0

This overall structure can be divided into four sub-structures including range update

module, offset update module, bits read module and context update module when

implemented.

66

5.1.1 Top Architecture of BAD

For BAD structure design, there are three loops we should consider: range update, offset

update and bits read. One-bin per cycle scheme requires all the loops to be performed

in the one clock. Then signals for the interface between each module are need to be

matched when one bin is performed. Each module will be given details of the design

through the block diagram and Verilog code logic.

In this top architecture, range update module is firstly performed based on the algorithm

design in CBAC, followed by the offset update module using the output signals of range

update module including the fraction part of MPS symbol o_rangeFMps, integer part

of LPS symbol o_rangeILps, and the LPS symbol isLps. The bits read module reads

bits from bit-stream and uses the signals generated by offset update module indicts how

many bits that the bits read module should obtain from the bit-stream buffer. Though

this procedure, one bin is decoded and the parameters including range and offset are

updated and prepared for the next bin. The overall structure can be described as Fig.5-

2 where the interface signals are given the detailed illustration.

Range Update Offset Update Bits Read

isLps

o_rangeFMps[7:0]

o_rangeILPs[4:0]

F/F

F/F

rangeI

rangeF

o_offsetI[4:0]

o_offsetF[7:0]

Initialization

Context variables

Engine variables
clk

o_numOfReadBits1

o_numOfReadBits2[3:0]

o_numOfReadBits3[4:0]

Bits Stream

Buffer

readData[63:0]

readEnable

readAddr[15:0]

ReadBits1

ReadBits2[7:0]

ReadBits3[31:0]

Figure 5- 2 The overall structure for the BAD with one-bin scheme

67

5.1.2 Range Update Module

Firstly, the range update procedure is described in this section. Range Update for MPS

and LPS case is the similar as that in encoder part with integer and fraction part. In

order to make the update scheme clear, the integer part of range rangeI and fraction part

rangeF are divided into respective sub-module. The flow charts of updating rangeI and

rangeF are shown as in Fig. 5-3 and Fig. 5-4, respectively. For the integer part, if it is

LPS symbol, rangeI will be changed as the rangeF which decides the increment of

rangeI as rangeF should be scaled until it is not smaller than 256. However, after

finishing all the scaling, the rangeI is assigned as 0 again in LPS case.

rangeF < 256 ?

isMps

No

rangeI++

rangeI == 0

Yes

rangeI = rangeILps

rangeI = rangeIMps

Update rangeI

Figure 5- 3 Flow chart of rangeI update

68

rangeF < 256 ?

isMps

No

rangeF <<= 1

rangeF &= 0xFF

Yes

rangeF = rangeFLps

rangeF = rangeFMps

Update rangeF

Figure 5- 4 Flow chart of rangeF update

For the fraction part of range rangeF is performed with the similar stage as above offsetI

update after re-modifying the original code in RD10.1. Fig.5-4 shows the process of

updating rangeF where the similar scaling and shift operations are performed but the

difference is that the rangeF is scaled using the 8-bit of low significant bit (LSB) in

LPS case. Based on the rangeF and rangeI update scheme in C code, then the range

update procedure can be described as the following Fig.5-5 where two LPS scaling

modules are included into the range update module, which describes two cases whether

the integer parts are equal or not. Once the process of updating rangeI and rangeF are

finished, updated value of each variable is stored to register (F/F), which is for next

process.

69

-reg_rangeF

lgPmps >>2

OffsetI isLps

reg_rangeF<

lgPmps >> 2

0

0

1

1+{1'b0,reg_rangeF}

{1'b0,lgPmps >> 2}

lgPmps >>2
LPS

Scaling1

9 8

8

t_rangeF

8

0

1

s_flag

lgPmps >>2

rangeI

t_rangeI

LPS

Scaling2

0

1

rangeILps1

rangeILps2

LPS/MPS decision
OffsetF

rangeFMps

rangeFLps

rangeILps

rangeIMps

rangeFMps

rangeIMps

8

5

5

F/Fclk

OffsetI

OffsetF

o_rangeFMps

o_rangeILps

reg_rangeF

+
{4'b0, isBypass}

F/F+
reg_rangeI

o_isLPS

valMps

0

1
{~valMps}

valMps

isLps

o_decodedBin

valid

valid o_valid

Figure 5- 5 Detailed Structure of Module for Range Update

5.1.3 Offset Update Module

In this section, the offset update module is introduced with the design detail. Range

Update plays the vital role in the sub-range division process. According to the

speculation of range and offset in the decoder part, the offset update is performed with

the intermediate result of the process of updating range such as rangeILps and

rangeFMps. By comparing rangeFMps with offset, we can decide whether decoded bin

is MPS or not. After the MPS/LPS decision is made, offset update is performed. Since

there is no offset update in MPS case, thus the offset update is performed in the LPS

case only. The flow chart in Fig.5-6 illustrates of the process of updating offsetI where

offsetI keeps the same without updating when it is MPS case.

70

isMps

No

offsetI == 0

Yes

offsetI = 0

Update offsetI

offsetF < 256 ?

offsetI++

rangeFMps <=

offsetF ?

offsetI++

Figure 5- 6 offsetI update block diagram

Then we will analysis the offsetF update in the following section. In the offset update

module, it is updated the value of offset in case of LPS only. There are offsetF scaling

and rangeF scaling for the bit reads and range updating gives the hint how many bits

should be read to decide the offsetF. The flow chart for the offsetF update can be

described as Fig.5-7.

71

isMps
NoYes

offsetF &= 0xFF;

Update offsetF

rangeFLps < 256 ?

bit = get_bit(dep);

offsetF = (offsetF << 1)| bit;

rangeFMps <= offsetF ?

offsetF = offsetF –

rangeFMps;

Yes

bit = get_bit(dep);

offsetF = (offsetF<<1) | bit;

offsetF = 256+ offsetF – rangFMps;

No

offsetF < 256 ?

bit = get_bit(dep);

offsetF = (offsetF << 1)| bit;

i_rangeFMps (rangeUpdate output)

i_rangeIMps (rangeUpdate output)

i_offsetI (register)

i_offsetF (register)

Figure 5- 7 flow chart of updating offsetF

Finally, through the algorithm analysis, the offset update module can be described as

Fig.5-8. The input signals includes rangeILps, rangeFMps and isLps, which are

generated after finishing range update module, and reads some other signals relative to

bit read module that will be described in bit read module.

72

is
L

ps

i_
ra

ng
eF

M
ps

[7
:0

]

i_
ra

ng
eI

L
ps

[4
:0

]

va
li

d

i_
re

ad
B

it
s1

i_
re

ad
B

it
s2

[7
:0

]

i_
re

ad
B

it
s3

[3
1:

0]

re
g_

of
fs

et
F

 <
 r

an
ge

FM
ps

 ?

us
_o

ff
se

tF
[8

:0
]

un
_o

ff
se

tF

s_
fl

ag
_o

ff
se

t

u_
of

fs
et

F
1 0

-
re

g_
of

fs
et

F

 i_
ra

ng
eF

M
ps

+
10

'd
25

6

{r
eg

_o
ff

se
tF

[7
:0

],

i_
re

ad
B

it
s1

}

-
i_

ra
ng

eF
M

ps

R
an

ge
F

sc
al

lin
g

ra
ng

eI
L

ps
 (

0~
8)

i_
re

ad
B

it
s2

s_
of

fs
et

F

of
fs

et
F

sc
al

lin
g

i_
re

ad
B

it
s3

n_
of

fs
et

I

n_
of

fs
et

F

0 1

F
/F

re
g_

of
fs

et
I

1 0

F
/F

o_
of

fs
et

I

re
g_

of
fs

et
F

o_
of

fs
et

F

o_
nu

m
O

fR
ea

dB
it

s3

o_
nu

m
O

fR
ea

dB
it

s1

o_
nu

m
O

fR
ea

dB
it

s2
i_

ra
ng

eI
L

ps
[3

:0
]

Figure 5- 8 Offset Update logic diagram block

73

5.1.4 Bits Read Module

The bit read module defines the bits read operation in BAD. As shown in Fig 5-7, the bit read and offset update is performed with the jointly procedure. Part

of the input signals of offset update come from the output variables including o_readBits1, o_readBits2 and o_readBits3, which indicts different bit channel.

i_numOfReadBits2

1

nextEightBits=NextBits1[63:56]

8

isLPS

32

i_numOfReadBits3 i_numOfReadBits1

Bit

Stream

Buffer

readData

64

readEnable

1

readAddr

16

CurrBits Register

(64bits F/F)

nextOneBits = CurrBits[63]

<< 1 1

0

<<

CurrBits[63:0]

{CurrBits[62:1],1'b0}

NextBits1[63:0] NextBits2[63:0]

+

<<

+

next32Bits=NextBits2[63:32]

CurrBitCount Register

(64bits F/F) (0~63)
CurrBitCount[5:0]

+

7 bits 7 bits 7 bits
[5:0]

Address Counter

If 1, Counter++

1

0

1

0

Concatenate

Preload Register

(64bits F/F)

initialReadEnable

Initail Value = 63

NextBits3[63:0]

PreloadBits[63:0]

[5]

o_readBits1 o_readBits2 o_readBits3

Figure 5- 9 Bits Read Logic Block Diagram

74

5.1.5 Context Modeling

In this section, the context update is described although context update module is not

included Binary Arithmetic Coding in CBAC. It is because it is one of bottle-neck of

implementing design with high throughput by context data dependency, which means

consecutive bins with same context index should be decoded in a sequence. The

variables for context update in CBAC are LgPmps, which is a variable for context

probability, cycno, which is a variable for sliding window parameter, and valMps, which

is a flag indicating whether current decoded bin is MPS or not. In the CBAC decoder,

all the context variables are assigned with the same value – LgPmps is 1023, cycno

equals to 0 and valMps initialized as 0 at the beginning of the new slice. Specifically,

the process of updating context variables is designed as the following Fig.5-12. Once

the context updating is finished, the context model for the current bin is updated with

the new variable for the next access within current slice.

75

Mps?
No

Done

cw == 3

cw == 4

LgPmps += 95

Yes No

Yes No

LgPmps = LgPmps – (LgPmps>>cw) –

(LgPmps >>(cw+2))

Yes

LgPmps += 46

LgPmps > 1023
Yes

LgPmps = 2047 - LgPmps

valMPS = !valMPS

No

LgPmps += 197

Context Update

cycno = (cycno <= 2) ? (cycno + 1) : 3;

cw = (cycno <= 1) ? 3 : (cycno == 2) ? 4 : 5;

Figure 5- 10 The process of Context Updating in the CBAC decoder in AVS2.0

For the hardware design, signals for interface should be defined clearly. For the cycno

update, and cycno is related to the sliding window factor cw, which is relative the sliding

window size in the probability update process. The valMps is changed only when

LgPmps is larger than 1024, which means probability is out of the defined bit precision

(10 bits) and valMps should be reversed (0 –> 1 or 1 –> 0). According to this analysis,

the block diagram for context update can be described with the following architecture

in Fig. 5-11.

76

-lgPmps[9:0]

 lgPmps[9:4] isMPS
2'd2

+lgPmps[9:0]

11'd95

cycno[1:0]

lgPmps[9:2]

F/Fclk

reg_cycno[1：0]

-lgPmps[9:6]

-lgPmps[9:0]

lgPmps[9:5]

- lgPmps[9:7]

-lgPmps[9:0]

 lgPmps[9:3]

- lgPmps[9:5]

+lgPmps[9:0]

11'd46

+lgPmps[9:0]

11'd197

10

&0xFF

-11'd2048

t_lgPmps[10:0]

t_lgPmps[10] == 1'b1?

valMps

9
mps_lgPmps

lps_lgPmps

2'd3

2'd0

2'd1

2'd2

2'd3

2'd0

2'd1

1(Y)

0(N)

1(M)

0(L)

reg_lgPmps[9:0]

1(Y)

0(N)

~valMps

valMps

reg_valMps

isMPS

+1'b1
cycno[1:0]

cycno[1:0] < 2?

2'd3

1(Y)

0(N)

cycno[1:0]

lgPmps[9:2]

valMps

Figure 5- 11 Detailed Structure of Module for Context Update

5.2 Complexity of BAD

This design is synthesized using the TSMC 65 nm LP process. From the synthesis result,

we can see that the critical path of this design is related to paths to update offsetF in

case of LPS.

At synthesis level, it achieves a maximum clock rate of 526 MHz. So we can expect

that this design has an operating frequency of more than 400 MHz in the level of chip

in consideration of overhead by place and routing with the margin of 20%, which is a

kind of estimated figure by experiential knowledge and depends on competence level

77

of engineer, which deal with CAD tools for place and routing. And the total gate count

is about 13.3K, which is including BAD only.

There is no issued research results about the one-bin per cycle design for AVS2.0, most

of researches are based on the first generation AVS1.0, HEVC or H.264/AVC. Although

[44] has been designed for CBAC in AVS1, it is also available to compare with

proposed BAD design. Since the different synthesis processors are used, after

normalizing the frequencies [45][46] collected by our design and [44], the comparison

detail can be shown in Table 5-1.

Table 5- 1 Summary of the implementation result

 [3] Ours

Standard AVS1.0 AVS2.0

Process technology 0.18um CMOS TSMC 65nm LP

Max. frequency (Synthesized) 150 MHz 526 MHz

Total gate count 21.5 k -

BAD only

(excluding bitstream Control)

6.3k 6.7k

Throughput 1 bin/cycle 1 bin/cycle

5.3 Conclusion

There is no significant changes in CBAC decoder algorithm from AVS1.0 to AVS2.0.

We propose an architecture for Binary Arithmetic Decoder in CBAC, which is crucial

part of implementing whole of CBAC Decoder with high throughput. Although we

focus on implementing BAD with throughput of one bin per cycle, it is possible to

extend this design to the architecture for multi-bin decoding in considering the fact that

there is no offset update in MPS case. It means we can improve throughput of this

78

design if we can decode multiple MPS Bins at a time without increasing delay of critical

paths.

In the current stage, this one-bin scheme obtains the basic BAD engine and it will be a

premising exploration for the multi-bin design in order to improve the throughput for

the real-time applications or surveillance camera. In addition, implementation of the

context update and debinarization are not achieved in this stage of this research topic

for lack of time. In the near future, the context update and de-binarization will be given

much consideration based on the BAD design in this thesis. In addition, based on this

design, we can explore the multi-bin scheme in future as well.

79

Chapter 6 Conclusion and Further Work

6.1 Conclusion

In this dissertation, the author performed three aspects works on the entropy coding

CBAC of AVS2.0 including CBAC performance analysis, Arithmetic Coder engine

optimizations and the CBAC decoder architecture implementation.

In the performance analysis chapter, we concluded that CBAC achieves a better

performance under the proposed comparison scheme even though CABAC transplanted

in RD10.1 with the adaptive initial context models at the beginning of each new slice.

Since the adaptive probability estimation and adaptive sliding window size adjusting

methods are introduced into CBAC to map the source information for the given video

sequence, the performance is proved that CBAC has the better compression

performance compared with CABAC. The CBAC optimization is another topic in this

thesis work.

Based on the each parameters used in CBAC, the relative exploration is performed,

especially in the approximation error optimization and probability estimation re-

scalability. Though verifying the best bit depth of the scaled probability LgPmps, the

various bit resolutions are tested and then get the conclusion that 9-bit resolution with

the relative parameters setting can achieve a significant efficiency enhancement.

Actually, CBAC adopts various variables both in engine parameters and context

variables, only these variables are trained very well via numerous adjusting, the CBAC

80

can achieve the considerable algorithm simplification and performance improvement.

Otherwise, it is difficult to get more progress.

For the CBAC decoder implementation, the author explores the hardware performance

though proposed one-bin per cycle architecture. Firstly, modify the C code in RD code

into hardware design language Verilog code and design the one-bin scheme including

range update, offset update, bits read, and context update and debinarization logics.

Then match and verify the Verilog code and C code though comparing the simulation

result. Finally, analyze the hardware architecture performance. For this one-bin scheme

design, the maximum frequency is up to 526 MHz in theory and the total gate count is

about 13.3K based on the technique TSMC 65 process.

6.2 Future Works

For the future works, there are two aspects which are challengeable to achieve more

progress in the coding efficiency. Firstly, simplifying the CBAC encoder/decoder logic,

especially in the update loops with the serial data domain conversion. It can be referred

as the algorithm optimization based on the software RD code of AVS2.0 since CBAC

logic still accounts for the considerable computation complexity. Thus exploring a more

simplified scheme without much performance degradation is one of the further effort

needed to spare to. Another is the implementation for the multi-bin schedule which is

aimed to improve the throughput, especially for the ultra-high definition video or the

real-time applications. As the growing requirements on the video information, such as

TV programs, on-line movie, surveillance camera, etc., in daily life, the high throughput

81

architecture tend to be more compelling and only the efficient multiple bins architecture

can make it come true. Therefore, multi-bin architecture for CBAC decoder will be

proposed and designed in the future.

82

Reference

[1] B CCITT S, Recommendation H. 261-Video Codec for Audio visual Services at

px64 Kbit/s. The International Telegraph and Telephone Consultative Committee,

1990.

[2] ITU-T. H.263. Video Codec for Low Bit Rate Communication. 1996.

[3] Le Gall D. MPEG: A Video Compression Standard for Multimedia Applications.

Communications of the ACM, 1991, 34(4): 46-58.

[4] Draft I. recommendation and final draft international standard of joint video

specification (ITU-T Rec. H. 264| ISO/IEC 14496-10 AVC).

[5] Information Technology – High Efficiency Media Coding – Part2: Video, Chinese

GB/T200602, 2006.

[6] B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, and T. Wiegand, “High efficiency

video coding (HEVC) text specification draft 10,” Joint Collaborative Team on

Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,

document JCTVC-L1003, Geneva, Switzerland, Jan. 2013.

[7] G. J. Sullivan, J.-R. Ohm, W. J. Han and T. Wiegand, “Overview of the High

Efficiency Video Coding (HEVC) Standard”, IEEE Transactions on Circuits and

Systems for Video Technology, vol. 22, pp. 1649-1668, Dec. 2012.

[8] Information Technology – High Efficiency Media Coding – Part2: Video, Chinese

GB/T201503, 2015.

[9] Gao W, Ma S. An Overview of AVS2 Standard, Advanced Video Coding Systems.

Springer International Publishing, 2014: 35-49.

83

[10] 余全合, 曹潇然, 李蔚然, 荣耀程, 何芸, 郑萧桢, 郑建铧,“短距离帧内预测

技术”, AVS_M3171, 沈阳，2013 年 9 月.

[11] 凌勇，朱兴国，虞露， J. Chen，S. Lee, Y. Piao, C. Kim，“一种前向双假设

预测模式”，AVS_M3271，深圳，2013 年 12 月.

[12] I. Kim, S. Lee, Y. Piao and C. Kim, "Directional multi-hypothesis prediction

(DMH) for AVS2”, 45th AVS meeting, AVS_M3094, Taicang, Jun. 2013.

[13] 马俊铖，马思伟，安基程，张凯，雷少民，“渐进的运动矢量精度”，AVS_M3049，

洛阳，2013 年 3 月.

[14] Y. Piao, S. Lee, A. Saxena, C. Kim, “Secondary transform for intra coding”, 47th

AVS meeting, AVS_M3233, Shenzhen, Dec. 2013.

[15] J. Wang, X. Wang, T. Ji and D. He, "Two-level transform coefficient coding," 43rd

AVS meeting, AVS_M3035, Beijing, Dec.2012.

[16] Jie Chen, Sunil Lee, Elena Alshina, Chanyul Kim, Chih-Ming Fu, Yu-Wen Huang,

Shawmin Lei, “Sample Adaptive Offset for AVS2”, AVS_M3197, 45th AVS

meeting, Shenyang, Sep. 2013.

[17] 张新峰，司俊俊，王苫社，马思伟，蔡家扬，陈庆晔, 黄毓文,雷少民，“AVS2

自适应环路滤波器”，AVS_M3292，北京，2014 年 4 月.

[18] L. Zhang, et al. "Context-based entropy coding in AVS video coding standard."

Signal Processing: Image Communication 24.4 (2009): 263-276.A. Rosenfeld and

A. Kak. Digital Image Processing (2nd Edition, Vol. 2 ed.),Academic Press,

Orlando (1982)

[19] M. Detlev, H. Schwarz, and T. Wiegand. "Context-based adaptive binary

84

arithmetic coding in the H. 264/AVC video compression standard." Circuits and

Systems for Video Technology, IEEE Transactions on 13.7 (2003): 620-636.

[20] E. Alshina, E. Alshin, (2011) Multi-parameter probability up-date for CABAC,

Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F254,

Torino, July 2011

[21] J. Stegemann, H. Kirchhoffer, D. Marpe, T. Wiegand, (2011) Non-CE1:

counterbased probability model update with adapted arithmetic coding engine,

Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G547,

Geneva, Nov. 2011

[22] Hankerson D C, Harris G A, Johnson Jr P D. “Introduction to information theory

and data compression.” CRC press, 2003.

[23] Said A. “Introduction to arithmetic coding-theory and practice”. Hewlett Packard

Laboratories Report, 2004.

[24] Gao W, Ma S W, “Advanced Video Coding Systems”. Springer, 2014.

[25] Yu W, Yang P, He Y. Arithmetic Coding on Logarithm Domain.

[26] Sole J, Joshi R, Nguyen N, et al. Transform coefficient coding in HEVC. Circuits

and Systems for Video Technology, IEEE Transactions on, 2012, 22(12): 1765-

1777.

[27] H. Jung, S. Choi, and S–I. Chae. "Coding efficiency of the context-based arithmetic

coding engine of AVS 2.0 in the HEVC encoder." Consumer Electronics (ICCE),

2015 IEEE International Conference on. IEEE, 2015.

[28] AVS-P2 common test condition, AVS-N2020, 2014.

[29] Hankerson D C, Harris G A, Johnson Jr P D. “Introduction to information theory

and data compression.” CRC press, 2003.

85

[30] Belyaev E, Gilmutdinov M, Turlikov A (2006) Binary arithmetic coding system

with adaptive probability estimation by “virtual sliding window” in IEEE tenth

international symposium on consumer electronics (ISCE ’06), pp 1–5, 2006.

[31] Alshin A, Alshina E, Park J H. “High precision probability estimation for CABAC”

in Visual Communications and Image Processing (VCIP), 2013. IEEE, 2013: 1-6.

[32] Alshin A, Alshina E, Park. I "CEI (subset B): Multiparameter probability up-date

for CABAC," Document of Joint Collaborative Team on Video Coding,

JCTVCG0764, November 201l.

[33] Alshina E, Alshin A (2011) Multi-parameter probability up-date for CABAC, Joint

Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F254, Torino,

July 2011

[34] Stegemann J, Kirchhoffer H,Marpe D,Wiegand T (2011) Non-CE1: counter-based

probability model update with adapted arithmetic coding engine, Joint

Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G547,

Geneva, Nov. 2011

[35] Bossen, F.: ‘CE1: table-based bit estimation for CABAC’. JCTVC-G763, Geneva,

November 2011

[36] Hahm, J., and Kyung, C.-M.: ‘Efficient CABAC rate estimation for H.264/AVC

mode decision’, IEEE Trans. Circuits Syst. Video Technol., 2010, 20, (2), pp. 310–

316

[37] Won, K., Yang, J., and Jeon, B.: ‘Fast CABAC rate estimation for H.264/AVC

mode decision’, Electron. Lett., 2012, 48, (19), pp. 1201–1203

[38] Choi S, Chae S I. Comparison of CABAC rate estimation models for HEVC rate

86

distortion optimization. Electronics Letters, 2014, 50(6): 441-442.

[39] V. Sze and M. Budagavi, “High throughput CABAC entropy coding in HEVC,”

IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1778–1791, Dec.

2012.

[40] Zhou J, Zhou D, Fei W, et al. “A high-performance CABAC encoder architecture

for HEVC and H. 264/AVC”, Image Processing (ICIP), 2013 20th IEEE

International Conference on. IEEE, 2013: 1568-1572.

[41] Li Y, Zhang S, Jia H, et al. “A high-throughput low-latency arithmetic encoder

design for HDTV”, Circuits and Systems (ISCAS), 2013 IEEE International

Symposium on. IEEE, 2013: 998-1001.

[42] Chen Y H, Sze V. A Deeply Pipelined CABAC Decoder for HEVC Supporting

Level 6.2 High-tier Applications. 2014.

[43] Yi Y, Park I C. High-speed h. 264/AVC CABAC decoding. Circuits and Systems

for Video Technology, IEEE Transactions on, 2007, 17(4): 490-494.

[44] Zheng J, Gao W, Wu D, et al. An efficient VLSI architecture for CBAC of AVS

HDTV decoder. Signal Processing: Image Communication, 2009, 24(4): 324-332.

[45] Dennard R H, Rideout V L, Bassous E, et al. Design of ion-implanted MOSFET's

with very small physical dimensions. Solid-State Circuits, IEEE Journal of, 1974,

9(5): 256-268.

[46] Bohr M. A 30 year retrospective on Dennard's MOSFET scaling paper. Solid-State

Circuits Society Newsletter, IEEE, 2007, 12(1): 11-13.

87

Appendix

A.1. Co-simulation Environment

In this section, the Verilog codes for each module will be shown in detail.

A.1.1 Range Update Module (dRangeUpdate.v)

`timescale 1ns/100ps

module dRangeUpdate (

 input clk,

 input rst_n,

 // Signals from Context Modeling

 input i_reset,

 input i_valid,

 input i_valMPS,

 input [7:0] i_lgPmps,

 // Signals from Offset Update

 input [7:0] i_offsetF,

 input [4:0] i_offsetI,

 // Signals to Context Modeling

 output o_valid,

 output o_decodedBin,

 // Signals for Updating Offset

 output o_isLPS,

 output [7:0] o_rangeFMps,

 output [4:0] o_rangeILps,

 // Signals for Test ,

 output [7:0] t_rangeF,

 output [4:0] t_rangeI

);

//

// range Update Stage

//

88

 wire isBypass ;

 wire valMPS ;

 wire [7:0] lgPmps ;

 reg isLPS ;

 wire s_flag ;

 reg [7:0] reg_rangeF ;

 reg [4:0] reg_rangeI ;

 wire [7:0] updated_rangeF ;

 wire [4:0] updated_rangeI ;

 wire [4:0] rangeIMps ;

 wire [4:0] rangeILps ;

 wire [4:0] rangeILps1 ;

 wire [4:0] rangeILps2 ;

 wire [7:0] rangeFMps ;

 wire [7:0] rangeFLps ;

 wire [7:0] rangeFLps1 ;

 wire [7:0] rangeFLps2 ;

 //

 // Input

 //

 assign isBypass = (i_lgPmps == 0) ? 1'b1 : 1'b0 ;

 assign valMPS = i_valMPS ;

 assign lgPmps = i_lgPmps ;

 //

 // Output

 //

 assign o_valid = i_valid ;

 assign o_decodedBin = (isLPS == 1'b1) ? ~valMPS : valMPS ;

 assign o_isLPS = isLPS ;

 assign o_rangeFMps = (isLPS == 1'b1) ? rangeFMps : 8'b0 ;

 assign o_rangeILps = (isBypass == 1'b0 && isLPS == 1'b1) ? rangeILps :

5'b0 ;

 assign t_rangeF = updated_rangeF ;

 assign t_rangeI = updated_rangeI ;

89

 //

 // MPS/LPS Decision

 //

 always@(i_offsetI,i_offsetF,rangeIMps,rangeFMps) begin

 if (rangeIMps > i_offsetI || (i_offsetI == rangeIMps && i_offsetF >=

rangeFMps)) begin

 isLPS = 1'b1 ;

 end else begin

 isLPS = 1'b0 ;

 end

 end

 //

 // s_flag

 //

 assign s_flag = (reg_rangeF < lgPmps) ? 1'b1 : 1'b0 ;

 //

 // Range MPS

 //

 assign rangeFMps = reg_rangeF - lgPmps ;

 assign rangeIMps = reg_rangeI + {4'b0,s_flag} + {4'b0,isBypass} ;

 //

 // Range LPS

 //

 assign rangeFLps = (s_flag == 1'b1) ? rangeFLps2 : rangeFLps1 ;

 assign rangeILps = (s_flag == 1'b1) ? rangeILps2 : rangeILps1 ;

 dLPSScaling1 A_LPSScaling1(

 .i_rangeF (reg_rangeF),

 .i_lgPmps (lgPmps),

 .rangeFLps1 (rangeFLps1),

 .rangeILps1 (rangeILps1)

);

 dLPSScaling2 A_LPSScaling2(

 .i_rangeF (reg_rangeF),

 .i_lgPmps (lgPmps),

 .rangeFLps2 (rangeFLps2),

 .rangeILps2 (rangeILps2)

);

 //

90

 // rangeF Update

 //

 assign updated_rangeF = (isBypass == 1'b0 && isLPS == 1'b1) ? rangeFLps :

rangeFMps ;

 always@(posedge clk,negedge rst_n) begin

 if (!rst_n) begin

 reg_rangeF <= 8'hFF ;

 end else begin

 if (i_reset == 1'b1) begin

 reg_rangeF <= 8'hFF ;

 end else if (i_valid == 1'b1) begin

 reg_rangeF <= updated_rangeF ;

 end

 end

 end

 //

 // rangeI Update

 //

 assign updated_rangeI = (isLPS == 1'b1) ? 5'b0 : rangeIMps ;

 always@(posedge clk,negedge rst_n) begin

 if (!rst_n) begin

 reg_rangeI <= 5'b0 ;

 end else begin

 if (i_reset == 1'b1) begin

 reg_rangeI <= 5'b0 ;

 end else if (i_valid == 1'b1) begin

 reg_rangeI <= updated_rangeI ;

 end

 end

 end

endmodule

In the range update module, there are two scaling operations are introduced in order to

describe the operations in each case in LPS.

`timescale 1ns/100ps

module dLPSScaling1 (

 input [7:0] i_rangeF,

 input [7:0] i_lgPmps,

91

 output reg [7:0] rangeFLps1,

 output reg [4:0] rangeILps1

);

 always@(i_lgPmps,i_rangeF,i_rangeF) begin

 case(i_lgPmps)

 8'b00000000 : rangeFLps1 = i_rangeF ;

 8'b00000001 : rangeFLps1 = 8'b0 ;

 8'b00000010 : rangeFLps1 = {i_lgPmps[0],7'b0} ;

 8'b00000011 : rangeFLps1 = {i_lgPmps[0],7'b0} ;

 8'b00000100 : rangeFLps1 = {i_lgPmps[1:0],6'b0} ;

 8'b00000101 : rangeFLps1 = {i_lgPmps[1:0],6'b0} ;

 8'b00000110 : rangeFLps1 = {i_lgPmps[1:0],6'b0} ;

 8'b00000111 : rangeFLps1 = {i_lgPmps[1:0],6'b0} ;

 8'b00001000 : rangeFLps1 = {i_lgPmps[2:0],5'b0} ;

 8'b00001001 : rangeFLps1 = {i_lgPmps[2:0],5'b0} ;

 8'b00001010 : rangeFLps1 = {i_lgPmps[2:0],5'b0} ;

 8'b00001011 : rangeFLps1 = {i_lgPmps[2:0],5'b0} ;

 8'b00001100 : rangeFLps1 = {i_lgPmps[2:0],5'b0} ;

 8'b00001101 : rangeFLps1 = {i_lgPmps[2:0],5'b0} ;

 8'b00001110 : rangeFLps1 = {i_lgPmps[2:0],5'b0} ;

 8'b00001111 : rangeFLps1 = {i_lgPmps[2:0],5'b0} ;

 8'b00010000 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ;

 8'b00010001 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ;

 8'b00010010 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ;

 8'b00010011 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ;

 8'b00010100 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ;

 8'b00010101 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ;

 8'b00010110 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ;

 8'b00010111 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ;

 8'b00011000 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ;

 8'b00011001 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ;

 8'b00011010 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ;

 8'b00011011 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ;

 8'b00011100 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ;

 8'b00011101 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ;

 8'b00011110 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ;

 8'b00011111 : rangeFLps1 = {i_lgPmps[3:0],4'b0} ;

 8'b00100000 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00100001 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00100010 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00100011 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00100100 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00100101 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

92

 8'b00100110 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00100111 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00101000 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00101001 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00101010 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00101011 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00101100 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00101101 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00101110 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00101111 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00110000 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00110001 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00110010 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00110011 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00110100 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00110101 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00110110 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00110111 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00111000 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00111001 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00111010 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00111011 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00111100 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00111101 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00111110 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b00111111 : rangeFLps1 = {i_lgPmps[4:0],3'b0} ;

 8'b01000000 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01000001 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01000010 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01000011 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01000100 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01000101 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01000110 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01000111 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01001000 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01001001 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01001010 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01001011 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01001100 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01001101 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01001110 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01001111 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01010000 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01010001 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

93

 8'b01010010 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01010011 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01010100 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01010101 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01010110 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01010111 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01011000 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01011001 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01011010 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01011011 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01011100 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01011101 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01011110 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01011111 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01100000 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01100001 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01100010 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01100011 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01100100 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01100101 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01100110 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01100111 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01101000 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01101001 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01101010 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01101011 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01101100 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01101101 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01101110 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01101111 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01110000 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01110001 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01110010 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01110011 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01110100 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01110101 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01110110 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01110111 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01111000 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01111001 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01111010 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01111011 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01111100 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01111101 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

94

 8'b01111110 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 8'b01111111 : rangeFLps1 = {i_lgPmps[5:0],2'b0} ;

 default : rangeFLps1 = {i_lgPmps[6:0],1'b0} ;

 endcase

 end

 always@(i_lgPmps) begin

 case(i_lgPmps[7:1])

 7'b0000000 : rangeILps1 = 5'd8 ;

 7'b0000001 : rangeILps1 = 5'd7 ;

 7'b0000010 : rangeILps1 = 5'd6 ;

 7'b0000011 : rangeILps1 = 5'd6 ;

 7'b0000100 : rangeILps1 = 5'd5 ;

 7'b0000101 : rangeILps1 = 5'd5 ;

 7'b0000110 : rangeILps1 = 5'd5 ;

 7'b0000111 : rangeILps1 = 5'd5 ;

 7'b0001000 : rangeILps1 = 5'd4 ;

 7'b0001001 : rangeILps1 = 5'd4 ;

 7'b0001010 : rangeILps1 = 5'd4 ;

 7'b0001011 : rangeILps1 = 5'd4 ;

 7'b0001100 : rangeILps1 = 5'd4 ;

 7'b0001101 : rangeILps1 = 5'd4 ;

 7'b0001110 : rangeILps1 = 5'd4 ;

 7'b0001111 : rangeILps1 = 5'd4 ;

 7'b0010000 : rangeILps1 = 5'd3 ;

 7'b0010001 : rangeILps1 = 5'd3 ;

 7'b0010010 : rangeILps1 = 5'd3 ;

 7'b0010011 : rangeILps1 = 5'd3 ;

 7'b0010100 : rangeILps1 = 5'd3 ;

 7'b0010101 : rangeILps1 = 5'd3 ;

 7'b0010110 : rangeILps1 = 5'd3 ;

 7'b0010111 : rangeILps1 = 5'd3 ;

 7'b0011000 : rangeILps1 = 5'd3 ;

 7'b0011001 : rangeILps1 = 5'd3 ;

 7'b0011010 : rangeILps1 = 5'd3 ;

 7'b0011011 : rangeILps1 = 5'd3 ;

 7'b0011100 : rangeILps1 = 5'd3 ;

 7'b0011101 : rangeILps1 = 5'd3 ;

 7'b0011110 : rangeILps1 = 5'd3 ;

 7'b0011111 : rangeILps1 = 5'd3 ;

 7'b0100000 : rangeILps1 = 5'd2 ;

 7'b0100001 : rangeILps1 = 5'd2 ;

 7'b0100010 : rangeILps1 = 5'd2 ;

 7'b0100011 : rangeILps1 = 5'd2 ;

95

 7'b0100100 : rangeILps1 = 5'd2 ;

 7'b0100101 : rangeILps1 = 5'd2 ;

 7'b0100110 : rangeILps1 = 5'd2 ;

 7'b0100111 : rangeILps1 = 5'd2 ;

 7'b0101000 : rangeILps1 = 5'd2 ;

 7'b0101001 : rangeILps1 = 5'd2 ;

 7'b0101010 : rangeILps1 = 5'd2 ;

 7'b0101011 : rangeILps1 = 5'd2 ;

 7'b0101100 : rangeILps1 = 5'd2 ;

 7'b0101101 : rangeILps1 = 5'd2 ;

 7'b0101110 : rangeILps1 = 5'd2 ;

 7'b0101111 : rangeILps1 = 5'd2 ;

 7'b0110000 : rangeILps1 = 5'd2 ;

 7'b0110001 : rangeILps1 = 5'd2 ;

 7'b0110010 : rangeILps1 = 5'd2 ;

 7'b0110011 : rangeILps1 = 5'd2 ;

 7'b0110100 : rangeILps1 = 5'd2 ;

 7'b0110101 : rangeILps1 = 5'd2 ;

 7'b0110110 : rangeILps1 = 5'd2 ;

 7'b0110111 : rangeILps1 = 5'd2 ;

 7'b0111000 : rangeILps1 = 5'd2 ;

 7'b0111001 : rangeILps1 = 5'd2 ;

 7'b0111010 : rangeILps1 = 5'd2 ;

 7'b0111011 : rangeILps1 = 5'd2 ;

 7'b0111100 : rangeILps1 = 5'd2 ;

 7'b0111101 : rangeILps1 = 5'd2 ;

 7'b0111110 : rangeILps1 = 5'd2 ;

 7'b0111111 : rangeILps1 = 5'd2 ;

 default : rangeILps1 = 5'd1 ;

 endcase

 end

endmodule

`timescale 1ns/100ps

module dLPSScaling2 (

 input [7:0] i_rangeF,

 input [7:0] i_lgPmps,

 output reg [7:0] rangeFLps2,

 output reg [4:0] rangeILps2

);

96

 wire [8:0] temp ;

 wire [7:0] sel ;

 assign temp = {1'b0,i_rangeF} + {1'b0,i_lgPmps} ;

 assign sel = temp[8:1] ;

 always@(sel,temp) begin

 case(sel)

 8'b00000000 : rangeFLps2 = 8'b0 ;

 8'b00000001 : rangeFLps2 = {temp[0],7'b0} ;

 8'b00000010 : rangeFLps2 = {temp[1:0],6'b0} ;

 8'b00000011 : rangeFLps2 = {temp[1:0],6'b0} ;

 8'b00000100 : rangeFLps2 = {temp[2:0],5'b0} ;

 8'b00000101 : rangeFLps2 = {temp[2:0],5'b0} ;

 8'b00000110 : rangeFLps2 = {temp[2:0],5'b0} ;

 8'b00000111 : rangeFLps2 = {temp[2:0],5'b0} ;

 8'b00001000 : rangeFLps2 = {temp[3:0],4'b0} ;

 8'b00001001 : rangeFLps2 = {temp[3:0],4'b0} ;

 8'b00001010 : rangeFLps2 = {temp[3:0],4'b0} ;

 8'b00001011 : rangeFLps2 = {temp[3:0],4'b0} ;

 8'b00001100 : rangeFLps2 = {temp[3:0],4'b0} ;

 8'b00001101 : rangeFLps2 = {temp[3:0],4'b0} ;

 8'b00001110 : rangeFLps2 = {temp[3:0],4'b0} ;

 8'b00001111 : rangeFLps2 = {temp[3:0],4'b0} ;

 8'b00010000 : rangeFLps2 = {temp[4:0],3'b0} ;

 8'b00010001 : rangeFLps2 = {temp[4:0],3'b0} ;

 8'b00010010 : rangeFLps2 = {temp[4:0],3'b0} ;

 8'b00010011 : rangeFLps2 = {temp[4:0],3'b0} ;

 8'b00010100 : rangeFLps2 = {temp[4:0],3'b0} ;

 8'b00010101 : rangeFLps2 = {temp[4:0],3'b0} ;

 8'b00010110 : rangeFLps2 = {temp[4:0],3'b0} ;

 8'b00010111 : rangeFLps2 = {temp[4:0],3'b0} ;

 8'b00011000 : rangeFLps2 = {temp[4:0],3'b0} ;

 8'b00011001 : rangeFLps2 = {temp[4:0],3'b0} ;

 8'b00011010 : rangeFLps2 = {temp[4:0],3'b0} ;

 8'b00011011 : rangeFLps2 = {temp[4:0],3'b0} ;

 8'b00011100 : rangeFLps2 = {temp[4:0],3'b0} ;

 8'b00011101 : rangeFLps2 = {temp[4:0],3'b0} ;

 8'b00011110 : rangeFLps2 = {temp[4:0],3'b0} ;

 8'b00011111 : rangeFLps2 = {temp[4:0],3'b0} ;

 8'b00100000 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00100001 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00100010 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00100011 : rangeFLps2 = {temp[5:0],2'b0} ;

97

 8'b00100100 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00100101 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00100110 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00100111 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00101000 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00101001 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00101010 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00101011 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00101100 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00101101 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00101110 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00101111 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00110000 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00110001 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00110010 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00110011 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00110100 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00110101 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00110110 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00110111 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00111000 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00111001 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00111010 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00111011 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00111100 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00111101 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00111110 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b00111111 : rangeFLps2 = {temp[5:0],2'b0} ;

 8'b01000000 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01000001 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01000010 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01000011 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01000100 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01000101 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01000110 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01000111 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01001000 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01001001 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01001010 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01001011 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01001100 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01001101 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01001110 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01001111 : rangeFLps2 = {temp[6:0],1'b0} ;

98

 8'b01010000 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01010001 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01010010 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01010011 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01010100 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01010101 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01010110 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01010111 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01011000 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01011001 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01011010 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01011011 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01011100 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01011101 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01011110 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01011111 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01100000 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01100001 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01100010 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01100011 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01100100 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01100101 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01100110 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01100111 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01101000 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01101001 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01101010 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01101011 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01101100 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01101101 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01101110 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01101111 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01110000 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01110001 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01110010 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01110011 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01110100 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01110101 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01110110 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01110111 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01111000 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01111001 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01111010 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01111011 : rangeFLps2 = {temp[6:0],1'b0} ;

99

 8'b01111100 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01111101 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01111110 : rangeFLps2 = {temp[6:0],1'b0} ;

 8'b01111111 : rangeFLps2 = {temp[6:0],1'b0} ;

 default : rangeFLps2 = temp[7:0] ;

 endcase

 end

 always@(sel) begin

 case(sel)

 8'b00000000 : rangeILps2 = 5'd8 ;

 8'b00000001 : rangeILps2 = 5'd7 ;

 8'b00000010 : rangeILps2 = 5'd6 ;

 8'b00000011 : rangeILps2 = 5'd6 ;

 8'b00000100 : rangeILps2 = 5'd5 ;

 8'b00000101 : rangeILps2 = 5'd5 ;

 8'b00000110 : rangeILps2 = 5'd5 ;

 8'b00000111 : rangeILps2 = 5'd5 ;

 8'b00001000 : rangeILps2 = 5'd4 ;

 8'b00001001 : rangeILps2 = 5'd4 ;

 8'b00001010 : rangeILps2 = 5'd4 ;

 8'b00001011 : rangeILps2 = 5'd4 ;

 8'b00001100 : rangeILps2 = 5'd4 ;

 8'b00001101 : rangeILps2 = 5'd4 ;

 8'b00001110 : rangeILps2 = 5'd4 ;

 8'b00001111 : rangeILps2 = 5'd4 ;

 8'b00010000 : rangeILps2 = 5'd3 ;

 8'b00010001 : rangeILps2 = 5'd3 ;

 8'b00010010 : rangeILps2 = 5'd3 ;

 8'b00010011 : rangeILps2 = 5'd3 ;

 8'b00010100 : rangeILps2 = 5'd3 ;

 8'b00010101 : rangeILps2 = 5'd3 ;

 8'b00010110 : rangeILps2 = 5'd3 ;

 8'b00010111 : rangeILps2 = 5'd3 ;

 8'b00011000 : rangeILps2 = 5'd3 ;

 8'b00011001 : rangeILps2 = 5'd3 ;

 8'b00011010 : rangeILps2 = 5'd3 ;

 8'b00011011 : rangeILps2 = 5'd3 ;

 8'b00011100 : rangeILps2 = 5'd3 ;

 8'b00011101 : rangeILps2 = 5'd3 ;

 8'b00011110 : rangeILps2 = 5'd3 ;

 8'b00011111 : rangeILps2 = 5'd3 ;

 8'b00100000 : rangeILps2 = 5'd2 ;

 8'b00100001 : rangeILps2 = 5'd2 ;

100

 8'b00100010 : rangeILps2 = 5'd2 ;

 8'b00100011 : rangeILps2 = 5'd2 ;

 8'b00100100 : rangeILps2 = 5'd2 ;

 8'b00100101 : rangeILps2 = 5'd2 ;

 8'b00100110 : rangeILps2 = 5'd2 ;

 8'b00100111 : rangeILps2 = 5'd2 ;

 8'b00101000 : rangeILps2 = 5'd2 ;

 8'b00101001 : rangeILps2 = 5'd2 ;

 8'b00101010 : rangeILps2 = 5'd2 ;

 8'b00101011 : rangeILps2 = 5'd2 ;

 8'b00101100 : rangeILps2 = 5'd2 ;

 8'b00101101 : rangeILps2 = 5'd2 ;

 8'b00101110 : rangeILps2 = 5'd2 ;

 8'b00101111 : rangeILps2 = 5'd2 ;

 8'b00110000 : rangeILps2 = 5'd2 ;

 8'b00110001 : rangeILps2 = 5'd2 ;

 8'b00110010 : rangeILps2 = 5'd2 ;

 8'b00110011 : rangeILps2 = 5'd2 ;

 8'b00110100 : rangeILps2 = 5'd2 ;

 8'b00110101 : rangeILps2 = 5'd2 ;

 8'b00110110 : rangeILps2 = 5'd2 ;

 8'b00110111 : rangeILps2 = 5'd2 ;

 8'b00111000 : rangeILps2 = 5'd2 ;

 8'b00111001 : rangeILps2 = 5'd2 ;

 8'b00111010 : rangeILps2 = 5'd2 ;

 8'b00111011 : rangeILps2 = 5'd2 ;

 8'b00111100 : rangeILps2 = 5'd2 ;

 8'b00111101 : rangeILps2 = 5'd2 ;

 8'b00111110 : rangeILps2 = 5'd2 ;

 8'b00111111 : rangeILps2 = 5'd2 ;

 8'b01000000 : rangeILps2 = 5'd1 ;

 8'b01000001 : rangeILps2 = 5'd1 ;

 8'b01000010 : rangeILps2 = 5'd1 ;

 8'b01000011 : rangeILps2 = 5'd1 ;

 8'b01000100 : rangeILps2 = 5'd1 ;

 8'b01000101 : rangeILps2 = 5'd1 ;

 8'b01000110 : rangeILps2 = 5'd1 ;

 8'b01000111 : rangeILps2 = 5'd1 ;

 8'b01001000 : rangeILps2 = 5'd1 ;

 8'b01001001 : rangeILps2 = 5'd1 ;

 8'b01001010 : rangeILps2 = 5'd1 ;

 8'b01001011 : rangeILps2 = 5'd1 ;

 8'b01001100 : rangeILps2 = 5'd1 ;

 8'b01001101 : rangeILps2 = 5'd1 ;

101

 8'b01001110 : rangeILps2 = 5'd1 ;

 8'b01001111 : rangeILps2 = 5'd1 ;

 8'b01010000 : rangeILps2 = 5'd1 ;

 8'b01010001 : rangeILps2 = 5'd1 ;

 8'b01010010 : rangeILps2 = 5'd1 ;

 8'b01010011 : rangeILps2 = 5'd1 ;

 8'b01010100 : rangeILps2 = 5'd1 ;

 8'b01010101 : rangeILps2 = 5'd1 ;

 8'b01010110 : rangeILps2 = 5'd1 ;

 8'b01010111 : rangeILps2 = 5'd1 ;

 8'b01011000 : rangeILps2 = 5'd1 ;

 8'b01011001 : rangeILps2 = 5'd1 ;

 8'b01011010 : rangeILps2 = 5'd1 ;

 8'b01011011 : rangeILps2 = 5'd1 ;

 8'b01011100 : rangeILps2 = 5'd1 ;

 8'b01011101 : rangeILps2 = 5'd1 ;

 8'b01011110 : rangeILps2 = 5'd1 ;

 8'b01011111 : rangeILps2 = 5'd1 ;

 8'b01100000 : rangeILps2 = 5'd1 ;

 8'b01100001 : rangeILps2 = 5'd1 ;

 8'b01100010 : rangeILps2 = 5'd1 ;

 8'b01100011 : rangeILps2 = 5'd1 ;

 8'b01100100 : rangeILps2 = 5'd1 ;

 8'b01100101 : rangeILps2 = 5'd1 ;

 8'b01100110 : rangeILps2 = 5'd1 ;

 8'b01100111 : rangeILps2 = 5'd1 ;

 8'b01101000 : rangeILps2 = 5'd1 ;

 8'b01101001 : rangeILps2 = 5'd1 ;

 8'b01101010 : rangeILps2 = 5'd1 ;

 8'b01101011 : rangeILps2 = 5'd1 ;

 8'b01101100 : rangeILps2 = 5'd1 ;

 8'b01101101 : rangeILps2 = 5'd1 ;

 8'b01101110 : rangeILps2 = 5'd1 ;

 8'b01101111 : rangeILps2 = 5'd1 ;

 8'b01110000 : rangeILps2 = 5'd1 ;

 8'b01110001 : rangeILps2 = 5'd1 ;

 8'b01110010 : rangeILps2 = 5'd1 ;

 8'b01110011 : rangeILps2 = 5'd1 ;

 8'b01110100 : rangeILps2 = 5'd1 ;

 8'b01110101 : rangeILps2 = 5'd1 ;

 8'b01110110 : rangeILps2 = 5'd1 ;

 8'b01110111 : rangeILps2 = 5'd1 ;

 8'b01111000 : rangeILps2 = 5'd1 ;

 8'b01111001 : rangeILps2 = 5'd1 ;

102

 8'b01111010 : rangeILps2 = 5'd1 ;

 8'b01111011 : rangeILps2 = 5'd1 ;

 8'b01111100 : rangeILps2 = 5'd1 ;

 8'b01111101 : rangeILps2 = 5'd1 ;

 8'b01111110 : rangeILps2 = 5'd1 ;

 8'b01111111 : rangeILps2 = 5'd1 ;

 default : rangeILps2 = 5'd0 ;

 endcase

 end

endmodule

A.1.2 Offset Update Module(dOffsetUpdate.v)

`timescale 1ns/100ps

module dOffsetUpdate (

 input clk,

 input rst_n,

 // Signals from Context Modeling

 input i_reset,

 input i_init,

 input i_valid,

 // Signals for Updating Offset

 input i_isLPS,

 input [7:0] i_rangeFMps,

 input [4:0] i_rangeILps,

 // Signals from ReadBit

 input i_readBits1,

 input [7:0] i_readBits2,

 input [31:0] i_readBits3,

 // Signals to ReadBit

 output o_numOfReadBits1,

 output [3:0] o_numOfReadBits2,

 output [4:0] o_numOfReadBits3,

103

 // Signals to Range Update

 output o_valid,

 output [7:0] o_offsetF,

 output [4:0] o_offsetI,

 // Signals for Test ,

 output [7:0] t_offsetF,

 output [4:0] t_offsetI

);

//

// offset Update Stage

//

 reg [7:0] reg_offsetF ;

 reg [4:0] reg_offsetI ;

 wire [7:0] updated_offsetF ;

 wire [4:0] updated_offsetI ;

 wire s_flag_offset ;

 wire [8:0] un_offsetF ;

 wire [9:0] us_offsetF ;

 wire [8:0] u_offsetF ;

 wire u_offsetI ;

 reg [8:0] s_offsetF ;

 reg [7:0] n_offsetF ;

 reg [4:0] n_offsetI ;

 //

 // Output

 //

 assign o_valid = i_valid ;

 assign o_offsetF = reg_offsetF ;

 assign o_offsetI = reg_offsetI ;

 assign t_offsetF = updated_offsetF ;

 assign t_offsetI = updated_offsetI ;

 assign o_numOfReadBits1 = i_init | s_flag_offset ;

 assign o_numOfReadBits2 = (i_init == 1'b1) ? 4'd8 : i_rangeILps[3:0] ;

 assign o_numOfReadBits3 = n_offsetI ;

 //

104

 // s_flag

 //

 assign s_flag_offset = (i_init == 1'b1 || reg_offsetF < i_rangeFMps) ? 1'b1 :

1'b0 ;

 //

 // OffsetF Update

 //

 assign un_offsetF = {1'b0,reg_offsetF} - {1'b0,i_rangeFMps} ;

 // non scaled offsetF

 assign us_offsetF = 10'd256 + {1'b0,reg_offsetF[7:0],i_readBits1} -

{2'b0,i_rangeFMps} ; // scaled offsetF

 assign u_offsetF = (s_flag_offset == 1'b1) ? us_offsetF[8:0] : un_offsetF ;

 //

 // OffsetI Update

 //

 assign u_offsetI = (s_flag_offset == 1'b1) ? 1'b1 : 1'b0 ;

 //

 // rangeF Scaling (renormalization)

 //

 always@(i_rangeILps,u_offsetF,i_readBits2,i_init) begin

 if (i_init == 1'b1) begin

 s_offsetF = {u_offsetF[0:0],i_readBits2[7:0]} ;

 end else begin

 case(i_rangeILps)

 4'd1 : s_offsetF = {u_offsetF[7:0],i_readBits2[7:7]} ;

 4'd2 : s_offsetF = {u_offsetF[6:0],i_readBits2[7:6]} ;

 4'd3 : s_offsetF = {u_offsetF[5:0],i_readBits2[7:5]} ;

 4'd4 : s_offsetF = {u_offsetF[4:0],i_readBits2[7:4]} ;

 4'd5 : s_offsetF = {u_offsetF[3:0],i_readBits2[7:3]} ;

 4'd6 : s_offsetF = {u_offsetF[2:0],i_readBits2[7:2]} ;

 4'd7 : s_offsetF = {u_offsetF[1:0],i_readBits2[7:1]} ;

 4'd8 : s_offsetF = {u_offsetF[0:0],i_readBits2[7:0]} ;

 default : s_offsetF = u_offsetF ;

 endcase

 end

 end

 //

 // offsetF Scaling (domain conversion)

 //

 wire [40:0] e_offsetF ;

105

 assign e_offsetF = {s_offsetF,i_readBits3} ;

 always@(e_offsetF) begin

 if (e_offsetF[40:40] == 1) begin

 n_offsetF = e_offsetF[39:32] ;

 n_offsetI = 5'd0 ;

 end else if (e_offsetF[40:39] == 1) begin

 n_offsetF = e_offsetF[38:31] ;

 n_offsetI = 5'd1 ;

 end else if (e_offsetF[40:38] == 1) begin

 n_offsetF = e_offsetF[37:30] ;

 n_offsetI = 5'd2 ;

 end else if (e_offsetF[40:37] == 1) begin

 n_offsetF = e_offsetF[36:29] ;

 n_offsetI = 5'd3 ;

 end else if (e_offsetF[40:36] == 1) begin

 n_offsetF = e_offsetF[35:28] ;

 n_offsetI = 5'd4 ;

 end else if (e_offsetF[40:35] == 1) begin

 n_offsetF = e_offsetF[34:27] ;

 n_offsetI = 5'd5 ;

 end else if (e_offsetF[40:34] == 1) begin

 n_offsetF = e_offsetF[33:26] ;

 n_offsetI = 5'd6 ;

 end else if (e_offsetF[40:33] == 1) begin

 n_offsetF = e_offsetF[32:25] ;

 n_offsetI = 5'd7 ;

 end else if (e_offsetF[40:32] == 1) begin

 n_offsetF = e_offsetF[31:24] ;

 n_offsetI = 5'd8 ;

 end else if (e_offsetF[40:31] == 1) begin

 n_offsetF = e_offsetF[30:23] ;

 n_offsetI = 5'd9 ;

 end else if (e_offsetF[40:30] == 1) begin

 n_offsetF = e_offsetF[29:22] ;

 n_offsetI = 5'd10 ;

 end else if (e_offsetF[40:29] == 1) begin

 n_offsetF = e_offsetF[28:21] ;

 n_offsetI = 5'd11 ;

 end else if (e_offsetF[40:28] == 1) begin

 n_offsetF = e_offsetF[27:20] ;

 n_offsetI = 5'd12 ;

 end else if (e_offsetF[40:27] == 1) begin

106

 n_offsetF = e_offsetF[26:19] ;

 n_offsetI = 5'd13 ;

 end else if (e_offsetF[40:26] == 1) begin

 n_offsetF = e_offsetF[25:18] ;

 n_offsetI = 5'd14 ;

 end else if (e_offsetF[40:25] == 1) begin

 n_offsetF = e_offsetF[24:17] ;

 n_offsetI = 5'd15 ;

 end else if (e_offsetF[40:24] == 1) begin

 n_offsetF = e_offsetF[23:16] ;

 n_offsetI = 5'd16 ;

 end else if (e_offsetF[40:23] == 1) begin

 n_offsetF = e_offsetF[22:15] ;

 n_offsetI = 5'd17 ;

 end else if (e_offsetF[40:22] == 1) begin

 n_offsetF = e_offsetF[21:14] ;

 n_offsetI = 5'd18 ;

 end else begin

 n_offsetF = e_offsetF[20:13] ;

 n_offsetI = 5'd19 ;

 end

 end

 //

 // offsetF Update

 //

 assign updated_offsetF = (i_isLPS) ? n_offsetF : reg_offsetF ;

 always@(posedge clk,negedge rst_n) begin

 if (!rst_n) begin

 reg_offsetF <= 8'd0 ;

 end else begin

 if (i_reset == 1'b1) begin

 reg_offsetF <= 8'd0 ;

 end else if (i_valid == 1'b1 || i_init == 1'b1) begin

 reg_offsetF <= updated_offsetF ;

 end

 end

 end

 //

 // offsetI Update

 //

 assign updated_offsetI = (i_isLPS) ? n_offsetI : reg_offsetI ;

107

 always@(posedge clk,negedge rst_n) begin

 if (!rst_n) begin

 reg_offsetI <= 5'b0 ;

 end else begin

 if (i_reset == 1'b1) begin

 reg_offsetI <= 5'b0 ;

 end else if (i_valid == 1'b1 || i_init == 1'b1) begin

 reg_offsetI <= updated_offsetI ;

 end

 end

 end

endmodule

A.1.3 Bits Read Module (dReadBits.v)

`timescale 1ns/100ps

module dReadBits #(

 parameter ADDR_WIDTH = 16

)(

 input clk,

 input rst_n,

 input i_init,

 input i_valid,

 input i_isLPS,

 // form Bitstream Buffer

 output renable,

 output reg [ADDR_WIDTH-1:0] raddr,

 input [63:0] rdata,

 input i_numOfReadBits1,

 input [3:0] i_numOfReadBits2,

 input [4:0] i_numOfReadBits3,

 output o_readBits1,

 output [7:0] o_readBits2,

 output [31:0] o_readBits3

108

);

 reg [5:0] currBitCount ;

 wire [6:0] nextBitCount1 ;

 wire [6:0] nextBitCount2 ;

 wire [6:0] nextBitCount3 ;

 wire [6:0] nextBitCount4 ;

 reg [63:0] currBitBuffer ;

 reg [63:0] nextBitBuffer1 ;

 reg [63:0] nextBitBuffer2 ;

 reg [63:0] nextBitBuffer3 ;

 wire [63:0] nextBitBuffer4 ;

 reg [63:0] currPreLoadBuffer ;

 reg [63:0] nextPreLoadBuffer0 ;

 reg [63:0] nextPreLoadBuffer1 ;

 reg [63:0] nextPreLoadBuffer2 ;

 reg [63:0] nextPreLoadBuffer3 ;

 wire [63:0] nextPreLoadBuffer4 ;

 reg init_1d ;

 reg renable_1d ;

 assign o_readBits1 = currBitBuffer[63] ;

 assign o_readBits2 = nextBitBuffer1[63:56] ;

 assign o_readBits3 = nextBitBuffer2[63:32] ;

 always@(currBitCount,currPreLoadBuffer,rdata) begin

 case(currBitCount[5:0])

 6'd63 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:63],rdata[63:01]} ;

 6'd62 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:62],rdata[63:02]} ;

 6'd61 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:61],rdata[63:03]} ;

 6'd60 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:60],rdata[63:04]} ;

 6'd59 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:59],rdata[63:05]} ;

 6'd58 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:58],rdata[63:06]} ;

 6'd57 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:57],rdata[63:07]} ;

 6'd56 : nextPreLoadBuffer0 =

109

{currPreLoadBuffer[63:56],rdata[63:08]} ;

 6'd55 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:55],rdata[63:09]} ;

 6'd54 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:54],rdata[63:10]} ;

 6'd53 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:53],rdata[63:11]} ;

 6'd52 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:52],rdata[63:12]} ;

 6'd51 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:51],rdata[63:13]} ;

 6'd50 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:50],rdata[63:14]} ;

 6'd49 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:49],rdata[63:15]} ;

 6'd48 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:48],rdata[63:16]} ;

 6'd47 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:47],rdata[63:17]} ;

 6'd46 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:46],rdata[63:18]} ;

 6'd45 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:45],rdata[63:19]} ;

 6'd44 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:44],rdata[63:20]} ;

 6'd43 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:43],rdata[63:21]} ;

 6'd42 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:42],rdata[63:22]} ;

 6'd41 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:41],rdata[63:23]} ;

 6'd40 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:40],rdata[63:24]} ;

 6'd39 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:39],rdata[63:25]} ;

 6'd38 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:38],rdata[63:26]} ;

 6'd37 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:37],rdata[63:27]} ;

 6'd36 : nextPreLoadBuffer0 =

{currPreLoadBuffer[63:36],rdata[63:28]} ;

 default : nextPreLoadBuffer0 = currPreLoadBuffer ;

 endcase

 end

110

 assign nextBitCount1 = {1'b0,currBitCount} + {6'b0,i_numOfReadBits1} ;

 always@(i_numOfReadBits1,currBitBuffer,nextPreLoadBuffer0) begin

 if (i_numOfReadBits1 == 1'b1) begin

 nextBitBuffer1 =

{currBitBuffer[62:0],nextPreLoadBuffer0[63]} ;

 nextPreLoadBuffer1 = {nextPreLoadBuffer0[62:0],1'b0} ;

 end else begin

 nextBitBuffer1 = currBitBuffer ;

 nextPreLoadBuffer1 = nextPreLoadBuffer0 ;

 end

 end

 assign nextBitCount2 = nextBitCount1 + {3'b0,i_numOfReadBits2} ;

 always@(i_numOfReadBits2,nextBitBuffer1,nextPreLoadBuffer1) begin

 case(i_numOfReadBits2)

 4'd1 : nextBitBuffer2 =

{nextBitBuffer1[62:0],nextPreLoadBuffer1[63:63]} ;

 4'd2 : nextBitBuffer2 =

{nextBitBuffer1[61:0],nextPreLoadBuffer1[63:62]} ;

 4'd3 : nextBitBuffer2 =

{nextBitBuffer1[60:0],nextPreLoadBuffer1[63:61]} ;

 4'd4 : nextBitBuffer2 =

{nextBitBuffer1[59:0],nextPreLoadBuffer1[63:60]} ;

 4'd5 : nextBitBuffer2 =

{nextBitBuffer1[58:0],nextPreLoadBuffer1[63:59]} ;

 4'd6 : nextBitBuffer2 =

{nextBitBuffer1[57:0],nextPreLoadBuffer1[63:58]} ;

 4'd7 : nextBitBuffer2 =

{nextBitBuffer1[56:0],nextPreLoadBuffer1[63:57]} ;

 4'd8 : nextBitBuffer2 =

{nextBitBuffer1[55:0],nextPreLoadBuffer1[63:56]} ;

 default : nextBitBuffer2 = nextBitBuffer1 ;

 endcase

 end

 always@(i_numOfReadBits2,nextPreLoadBuffer1) begin

 case(i_numOfReadBits2)

 4'd1 : nextPreLoadBuffer2 = {nextPreLoadBuffer1[62:0],1'b0} ;

 4'd2 : nextPreLoadBuffer2 = {nextPreLoadBuffer1[61:0],2'b0} ;

 4'd3 : nextPreLoadBuffer2 = {nextPreLoadBuffer1[60:0],3'b0} ;

 4'd4 : nextPreLoadBuffer2 = {nextPreLoadBuffer1[59:0],4'b0} ;

111

 4'd5 : nextPreLoadBuffer2 = {nextPreLoadBuffer1[58:0],5'b0} ;

 4'd6 : nextPreLoadBuffer2 = {nextPreLoadBuffer1[57:0],6'b0} ;

 4'd7 : nextPreLoadBuffer2 = {nextPreLoadBuffer1[56:0],7'b0} ;

 4'd8 : nextPreLoadBuffer2 = {nextPreLoadBuffer1[55:0],8'b0} ;

 default : nextPreLoadBuffer2 = nextPreLoadBuffer1 ;

 endcase

 end

 assign nextBitCount3 = nextBitCount2 + {2'b0,i_numOfReadBits3} ;

 always@(i_numOfReadBits3,nextBitBuffer2,nextPreLoadBuffer2) begin

 case(i_numOfReadBits3)

 5'd1 : nextBitBuffer3 =

{nextBitBuffer2[62:0],nextPreLoadBuffer2[63:63]} ;

 5'd2 : nextBitBuffer3 =

{nextBitBuffer2[61:0],nextPreLoadBuffer2[63:62]} ;

 5'd3 : nextBitBuffer3 =

{nextBitBuffer2[60:0],nextPreLoadBuffer2[63:61]} ;

 5'd4 : nextBitBuffer3 =

{nextBitBuffer2[59:0],nextPreLoadBuffer2[63:60]} ;

 5'd5 : nextBitBuffer3 =

{nextBitBuffer2[58:0],nextPreLoadBuffer2[63:59]} ;

 5'd6 : nextBitBuffer3 =

{nextBitBuffer2[57:0],nextPreLoadBuffer2[63:58]} ;

 5'd7 : nextBitBuffer3 =

{nextBitBuffer2[56:0],nextPreLoadBuffer2[63:57]} ;

 5'd8 : nextBitBuffer3 =

{nextBitBuffer2[55:0],nextPreLoadBuffer2[63:56]} ;

 5'd9 : nextBitBuffer3 =

{nextBitBuffer2[54:0],nextPreLoadBuffer2[63:55]} ;

 5'd10 : nextBitBuffer3 =

{nextBitBuffer2[53:0],nextPreLoadBuffer2[63:54]} ;

 5'd11 : nextBitBuffer3 =

{nextBitBuffer2[52:0],nextPreLoadBuffer2[63:53]} ;

 5'd12 : nextBitBuffer3 =

{nextBitBuffer2[51:0],nextPreLoadBuffer2[63:52]} ;

 5'd13 : nextBitBuffer3 =

{nextBitBuffer2[50:0],nextPreLoadBuffer2[63:51]} ;

 5'd14 : nextBitBuffer3 =

{nextBitBuffer2[49:0],nextPreLoadBuffer2[63:50]} ;

 5'd15 : nextBitBuffer3 =

{nextBitBuffer2[48:0],nextPreLoadBuffer2[63:49]} ;

 5'd16 : nextBitBuffer3 =

{nextBitBuffer2[47:0],nextPreLoadBuffer2[63:48]} ;

112

 5'd17 : nextBitBuffer3 =

{nextBitBuffer2[46:0],nextPreLoadBuffer2[63:47]} ;

 5'd18 : nextBitBuffer3 =

{nextBitBuffer2[45:0],nextPreLoadBuffer2[63:46]} ;

 5'd19 : nextBitBuffer3 =

{nextBitBuffer2[44:0],nextPreLoadBuffer2[63:45]} ;

 default : nextBitBuffer3 = nextBitBuffer2 ;

 endcase

 end

 always@(i_numOfReadBits3,nextPreLoadBuffer2) begin

 case(i_numOfReadBits3)

 5'd1 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[62:0],01'b0} ;

 5'd2 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[61:0],02'b0} ;

 5'd3 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[60:0],03'b0} ;

 5'd4 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[59:0],04'b0} ;

 5'd5 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[58:0],05'b0} ;

 5'd6 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[57:0],06'b0} ;

 5'd7 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[56:0],07'b0} ;

 5'd8 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[55:0],08'b0} ;

 5'd9 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[54:0],09'b0} ;

 5'd10 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[53:0],10'b0} ;

 5'd11 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[52:0],11'b0} ;

 5'd12 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[51:0],12'b0} ;

 5'd13 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[50:0],13'b0} ;

 5'd14 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[49:0],14'b0} ;

 5'd15 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[48:0],15'b0} ;

 5'd16 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[47:0],16'b0} ;

 5'd17 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[46:0],17'b0} ;

 5'd18 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[45:0],18'b0} ;

 5'd19 : nextPreLoadBuffer3 = {nextPreLoadBuffer2[44:0],19'b0} ;

 default : nextPreLoadBuffer3 = nextPreLoadBuffer2 ;

 endcase

 end

 assign nextBitCount4 = (i_isLPS == 1'b1) ? nextBitCount3 :

currBitCount ;

 assign nextBitBuffer4 = (i_isLPS == 1'b1) ? nextBitBuffer3 :

currBitBuffer ;

 assign nextPreLoadBuffer4 = (i_isLPS == 1'b1) ? nextPreLoadBuffer3 :

currPreLoadBuffer ;

 always@(posedge clk,negedge rst_n) begin

 if (!rst_n) begin

113

 currBitCount <= 6'd0 ;

 end else begin

 if (i_init == 1'b1) begin

 currBitCount <= 6'd0 ;

 end else if (i_valid == 1'b1) begin

 currBitCount <= nextBitCount4[5:0] ;

 end

 end

 end

 always@(posedge clk) begin

 if (init_1d == 1'b1) begin

 currBitBuffer <= currPreLoadBuffer ;

 end else if (i_valid == 1'b1) begin

 currBitBuffer <= nextBitBuffer4 ;

 end

 end

 always@(posedge clk) begin

 if (init_1d == 1'b1) begin

 currPreLoadBuffer <= rdata ;

 end else if (renable == 1'b1) begin

 case(nextBitCount4[5:0])

 6'd01 : currPreLoadBuffer <= {rdata[62:0],01'b0} ;

 6'd02 : currPreLoadBuffer <= {rdata[61:0],02'b0} ;

 6'd03 : currPreLoadBuffer <= {rdata[60:0],03'b0} ;

 6'd04 : currPreLoadBuffer <= {rdata[59:0],04'b0} ;

 6'd05 : currPreLoadBuffer <= {rdata[58:0],05'b0} ;

 6'd06 : currPreLoadBuffer <= {rdata[57:0],06'b0} ;

 6'd07 : currPreLoadBuffer <= {rdata[56:0],07'b0} ;

 6'd08 : currPreLoadBuffer <= {rdata[55:0],08'b0} ;

 6'd09 : currPreLoadBuffer <= {rdata[54:0],09'b0} ;

 6'd10 : currPreLoadBuffer <= {rdata[53:0],10'b0} ;

 6'd11 : currPreLoadBuffer <= {rdata[52:0],11'b0} ;

 6'd12 : currPreLoadBuffer <= {rdata[51:0],12'b0} ;

 6'd13 : currPreLoadBuffer <= {rdata[50:0],13'b0} ;

 6'd14 : currPreLoadBuffer <= {rdata[49:0],14'b0} ;

 6'd15 : currPreLoadBuffer <= {rdata[48:0],15'b0} ;

 6'd16 : currPreLoadBuffer <= {rdata[47:0],16'b0} ;

 6'd17 : currPreLoadBuffer <= {rdata[46:0],17'b0} ;

 6'd18 : currPreLoadBuffer <= {rdata[45:0],18'b0} ;

 6'd19 : currPreLoadBuffer <= {rdata[44:0],19'b0} ;

 6'd20 : currPreLoadBuffer <= {rdata[43:0],20'b0} ;

 6'd21 : currPreLoadBuffer <= {rdata[42:0],21'b0} ;

114

 6'd22 : currPreLoadBuffer <= {rdata[41:0],22'b0} ;

 6'd23 : currPreLoadBuffer <= {rdata[40:0],23'b0} ;

 6'd24 : currPreLoadBuffer <= {rdata[39:0],24'b0} ;

 6'd25 : currPreLoadBuffer <= {rdata[38:0],25'b0} ;

 6'd26 : currPreLoadBuffer <= {rdata[37:0],26'b0} ;

 6'd27 : currPreLoadBuffer <= {rdata[36:0],27'b0} ;

 6'd28 : currPreLoadBuffer <= {rdata[35:0],28'b0} ;

 6'd29 : currPreLoadBuffer <= {rdata[34:0],29'b0} ;

 default : currPreLoadBuffer <= rdata ;

 endcase

 end else if (i_valid == 1'b1) begin

 currPreLoadBuffer <= nextPreLoadBuffer4 ;

 end

 end

 assign renable = nextBitCount4[6]&i_valid | i_init ;

 always@(posedge clk,negedge rst_n) begin

 if (!rst_n) begin

 init_1d <= 1'b0 ;

 end else begin

 init_1d <= i_init ;

 end

 end

 always@(posedge clk,negedge rst_n) begin

 if (!rst_n) begin

 renable_1d <= 1'b0 ;

 end else begin

 renable_1d <= nextBitCount4[6]&i_valid ;

 end

 end

 always@(posedge clk,negedge rst_n) begin

 if (!rst_n) begin

 raddr <= {ADDR_WIDTH{1'b0}} ;

 end else begin

 if (renable == 1'b1) begin

 raddr <= raddr + 1 ;

 end

 end

 end

endmodule

115

A.1.4 Binary Arithmetic Decoding Top Module (BADTop.v)

`timescale 1ns/100ps

module BADTop #(

 parameter ADDR_WIDTH = 16

)(

 input clk,

 input rst_n,

 // Signals from Context Modeling

 input i_reset,

 input i_init_offset,

 input i_init_readBits,

 input i_valid,

 input i_valMPS,

 input [7:0] i_lgPmps,

 // form Bitstream Buffer

 output renable,

 output [ADDR_WIDTH-1:0] raddr,

 input [63:0] rdata,

 // Signals to Context Modeling

 output o_valid,

 output o_decodedBin,

 // Signals for Test ,

 output t_isLPS,

 output [7:0] t_rangeF,

 output [4:0] t_rangeI,

 output [7:0] t_offsetF,

 output [4:0] t_offsetI

);

 wire [7:0] offsetF ;

 wire [4:0] offsetI ;

 wire isLPS ;

 wire [7:0] rangeFMps ;

 wire [4:0] rangeILps ;

 wire readBits1 ;

116

 wire [7:0] readBits2 ;

 wire [31:0] readBits3 ;

 wire numOfReadBits1 ;

 wire [3:0] numOfReadBits2 ;

 wire [4:0] numOfReadBits3 ;

 assign t_isLPS = isLPS ;

 dRangeUpdate A_dRangeUpdate(

 .clk (clk),

 .rst_n (rst_n),

 .i_reset (i_reset),

 .i_valid (i_valid),

 .i_valMPS (i_valMPS),

 .i_lgPmps (i_lgPmps),

 .i_offsetI (offsetI),

 .i_offsetF (offsetF),

 .o_valid (o_valid),

 .o_decodedBin (o_decodedBin),

 .o_isLPS (isLPS),

 .o_rangeFMps (rangeFMps),

 .o_rangeILps (rangeILps),

 .t_rangeF (t_rangeF),

 .t_rangeI (t_rangeI)

);

 dOffsetUpdate A_dOffsetUpdate(

 .clk (clk),

 .rst_n (rst_n),

 .i_reset (i_reset),

 .i_init (i_init_offset),

 .i_valid (i_valid),

 .i_isLPS (isLPS | i_init_offset),

 .i_rangeFMps (rangeFMps),

 .i_rangeILps (rangeILps),

 .i_readBits1 (readBits1),

 .i_readBits2 (readBits2),

 .i_readBits3 (readBits3),

 .o_numOfReadBits1 (numOfReadBits1),

 .o_numOfReadBits2 (numOfReadBits2),

 .o_numOfReadBits3 (numOfReadBits3),

 .o_valid (/*open*/),

 .o_offsetF (offsetF),

 .o_offsetI (offsetI),

117

 .t_offsetF (t_offsetF),

 .t_offsetI (t_offsetI)

);

 dReadBits #(ADDR_WIDTH) A_dReadBits(

 .clk (clk),

 .rst_n (rst_n),

 .i_init (i_init_readBits),

 .i_valid (i_valid | i_init_offset),

 .i_isLPS (isLPS | i_init_offset),

 .renable (renable),

 .raddr (raddr),

 .rdata (rdata),

 .i_numOfReadBits1 (numOfReadBits1),

 .i_numOfReadBits2 (numOfReadBits2),

 .i_numOfReadBits3 (numOfReadBits3),

 .o_readBits1 (readBits1),

 .o_readBits2 (readBits2),

 .o_readBits3 (readBits3)

);

endmodule

A.1.5 Test Bench

`timescale 1ns/100ps

module tb () ;

 reg clk ;

 reg rst_n ;

 initial begin

 clk = 0 ;

 rst_n = 0 ;

 #10

 rst_n = 1 ;

 end

 always begin

 #2.5 clk <= ~clk ;

 end

118

 dTB_Single_Bin A_dTB_Single_Bin (clk,rst_n) ;

endmodule

`timescale 1ns/100ps

module dTB_Single_Bin (

 input clk, // Clock input

 input rst_n // Reset async input active low

);

 import "DPI-C" context task dMain_single_bin();

 export "DPI-C" task dTb_single_bin_wait_clk;

 export "DPI-C" task dTb_single_bin_wait_rstn;

 export "DPI-C" task dTb_single_bin_input_write;

 export "DPI-C" task dTb_single_bin_output_read;

 export "DPI-C" task dTb_single_bin_init;

 export "DPI-C" task dTb_single_bin_writeBitStream;

 reg iReset ;

 reg init_offset ;

 reg init_readBits ;

 reg iValid ;

 wire oValid ;

 reg oClear ;

 reg output_valid;

 reg [31:0] iBinCount ;

 reg iValMPS ;

 reg [7:0] iLgPmps ;

 reg [4:0] iOffsetI ;

 reg [7:0] iOffsetF ;

 reg [7:0] oRangeF ;

 reg [4:0] oRangeI ;

 reg oIsLPS ;

 reg oDecodedBin ;

 reg [4:0] oOffsetI ;

 reg [7:0] oOffsetF ;

 wire [7:0] reg_RangeF ;

 wire [4:0] reg_RangeI ;

 wire reg_IsLPS ;

 wire reg_DecodedBin ;

119

 wire [7:0] reg_OffsetF ;

 wire [4:0] reg_OffsetI ;

 parameter ADDR_WIDTH = 16 ;

 reg wenable ;

 reg [ADDR_WIDTH-1:0] waddr ;

 reg [63:0] wdata ;

 wire renable ;

 wire [ADDR_WIDTH-1:0] raddr ;

 wire [63:0] rdata ;

 initial begin

 iValid = 1'b0 ;

 iReset = 1'b0 ;

 init_offset = 1'b0 ;

 init_readBits = 1'b0 ;

 end

 initial begin

 repeat(30) @(posedge clk);

 dMain_single_bin();

 end

 task dTb_single_bin_wait_clk (input int cycle);

 repeat(cycle) @(posedge clk);

 endtask

 task dTb_single_bin_wait_rstn (output bit o_rst_n);

 while(!rst_n) begin

 @(posedge clk);

 end

 o_rst_n = rst_n;

 endtask

 task dTb_single_bin_input_write (input int i_mode,input int i_binCount,input int

i_valMPS,input int i_lgPmps,input int i_offsetI,input int i_offsetF);

 iValid <= 1'b1 ;

 iBinCount <= i_binCount ;

 iValMPS <= i_valMPS ;

 iLgPmps <= i_lgPmps[9:2] ;

 iOffsetI <= i_offsetI ;

 iOffsetF <= i_offsetF ;

 repeat(1) @(posedge clk);

120

 iValid <= 1'b0 ;

 endtask

 task dTb_single_bin_output_read (output int o_valid,output int o_rangeF,output int

o_rangeI,output int o_offsetF,output int o_offsetI,output int o_isLPS,output int

o_decodedBin);

 o_valid <= output_valid ;

 oClear <= 1'b1 ;

 o_rangeF <= oRangeF ;

 o_rangeI <= oRangeI ;

 o_offsetF <= oOffsetF ;

 o_offsetI <= oOffsetI ;

 o_isLPS <= oIsLPS ;

 o_decodedBin <= oDecodedBin ;

 repeat(1) @(posedge clk);

 oClear <= 1'b0 ;

 endtask

 task dTb_single_bin_init(input int cycle);

 repeat(1) @(posedge clk);

 init_readBits <= 1'b1 ;

 repeat(2) @(posedge clk);

 init_readBits <= 1'b0 ;

 repeat(2) @(posedge clk);

 init_offset <= 1'b1 ;

 repeat(1) @(posedge clk);

 init_offset <= 1'b0 ;

 repeat(cycle) @(posedge clk);

 endtask

 task dTb_single_bin_writeBitStream(input int i_data[8]) ;

 wenable <= 1'b1 ;

 wdata[63:56] <= i_data[0] ;

 wdata[55:48] <= i_data[1] ;

 wdata[47:40] <= i_data[2] ;

 wdata[39:32] <= i_data[3] ;

 wdata[31:24] <= i_data[4] ;

 wdata[23:16] <= i_data[5] ;

 wdata[15:08] <= i_data[6] ;

 wdata[07:00] <= i_data[7] ;

 repeat(1) @(posedge clk);

 wenable <= 1'b0 ;

 endtask

121

 always@(posedge clk,negedge rst_n) begin

 if (!rst_n) begin

 waddr <= {ADDR_WIDTH{1'b0}} ;

 end else if (wenable == 1'b1) begin

 waddr <= waddr + 1 ;

 end

 end

 BADTop #(16) A_BADTop(

 .clk (clk),

 .rst_n (rst_n),

 .i_reset (iReset),

 .i_init_offset (init_offset),

 .i_init_readBits (init_readBits),

 .i_valid (iValid),

 .i_valMPS (iValMPS),

 .i_lgPmps (iLgPmps),

 .renable (renable),

 .raddr (raddr),

 .rdata (rdata),

 .o_valid (oValid),

 .o_decodedBin (reg_DecodedBin),

 .t_isLPS (reg_IsLPS),

 .t_rangeF (reg_RangeF),

 .t_rangeI (reg_RangeI),

 .t_offsetF (reg_OffsetF),

 .t_offsetI (reg_OffsetI)

);

 rf_memory #(64,ADDR_WIDTH) A_BitStreamBuffer(

 .clk (clk),

 .wenable (wenable),

 .waddr (waddr),

 .wdata (wdata),

 .renable (1'b1),

 .raddr (raddr),

 .rdata (rdata)

);

 always@(posedge clk,negedge rst_n) begin

 if (!rst_n) begin

 output_valid <= 1'b0 ;

 end else if (oValid == 1'b1) begin

 output_valid <= 1'b1 ;

122

 end else if (oClear == 1'b1) begin

 output_valid <= 1'b0 ;

 end

 end

 always@(posedge clk) begin

 if (oValid == 1'b1) begin

 oRangeF <= reg_RangeF ;

 oRangeI <= reg_RangeI ;

 oOffsetF <= reg_OffsetF ;

 oOffsetI <= reg_OffsetI ;

 oIsLPS <= reg_IsLPS ;

 oDecodedBin <= reg_DecodedBin ;

 end

 end

endmodule

	Chapter 1 Introduction
	1.1 Research Background
	1.2 Key Techniques in AVS2.0
	1.3 Research Contents
	1.3.1 Performance Comparison of CBAC
	1.3.2 CBAC Performance Improvement
	1.3.3 Implementation of Binary Arithmetic Decoder in CBAC

	1.4 Organization

	Chapter 2 Entropy Coder CBAC in AVS2.0
	2.1 Introduction of Entropy Coding
	2.2 CBAC Overview
	2.2.1 Binarization and Generation of Bin String
	2.2.2 Context Modeling and Probability Estimation
	2.2.3 Binary Arithmetic Coding Engine

	2.3 Two-level Scan Coding CBAC in AVS2.0
	2.3.1 Scan order
	2.3.2 First level coding
	2.3.3 Second level coding

	2.4 Summary

	Chapter 3 Performance Comparison in CBAC
	3.1 Differences between CBAC and CABAC
	3.2 Comparison of Two BAC Engines
	3.2.1 Statistics and initialization of Context Models
	3.2.2 Adaptive Initialization Probability

	3.3 Experiment Result
	3.4 Conclusion

	Chapter 4 CBAC Performance Improvement
	4.1 Approximation Error Compensation
	4.1.1 Error Compensation Table
	4.1.2 Experiment Result

	4.2 Probability Estimation Model Optimization
	4.2.1 Probability Estimation
	4.2.2 Probability Estimation Model in CBAC
	4.2.3 The Optimization of Probability Estimation Model in CBAC
	4.2.4 Experiment Result

	4.3 Rate Estimation
	4.3.1 Rate Estimation Model
	4.3.2 Experiment Result

	4.4 Conclusion

	Chapter 5 Implementation of Binary Arithmetic Decoder in CBAC
	5.1 Architecture of BAD
	5.1.1 Top Architecture of BAD
	5.1.2 Range Update Module
	5.1.3 Offset Update Module
	5.1.4 Bits Read Module
	5.1.5 Context Modeling

	5.2 Complexity of BAD
	5.3 Conclusion

	Chapter 6 Conclusion and Further Work
	6.1 Conclusion
	6.2 Future Works

	Reference
	Appendix
	A.1. Co-simulation Environment
	A.1.1 Range Update Module (dRangeUpdate.v)
	A.1.2 Offset Update Module(dOffsetUpdate.v)
	A.1.3 Bits Read Module (dReadBits.v)
	A.1.4 Binary Arithmetic Decoding Top Module (BADTop.v)
	A.1.5 Test Bench

<startpage>15
Chapter 1 Introduction 1
 1.1 Research Background 1
 1.2 Key Techniques in AVS2.0 3
 1.3 Research Contents 9
 1.3.1 Performance Comparison of CBAC 9
 1.3.2 CBAC Performance Improvement 10
 1.3.3 Implementation of Binary Arithmetic Decoder in CBAC 12
 1.4 Organization 12
Chapter 2 Entropy Coder CBAC in AVS2.0 14
 2.1 Introduction of Entropy Coding 14
 2.2 CBAC Overview 16
 2.2.1 Binarization and Generation of Bin String 17
 2.2.2 Context Modeling and Probability Estimation 19
 2.2.3 Binary Arithmetic Coding Engine 22
 2.3 Two-level Scan Coding CBAC in AVS2.0 26
 2.3.1 Scan order 28
 2.3.2 First level coding 30
 2.3.3 Second level coding 31
 2.4 Summary 32
Chapter 3 Performance Comparison in CBAC 34
 3.1 Differences between CBAC and CABAC 34
 3.2 Comparison of Two BAC Engines 36
 3.2.1 Statistics and initialization of Context Models 37
 3.2.2 Adaptive Initialization Probability 40
 3.3 Experiment Result 41
 3.4 Conclusion 42
Chapter 4 CBAC Performance Improvement 43
 4.1 Approximation Error Compensation 43
 4.1.1 Error Compensation Table 43
 4.1.2 Experiment Result 48
 4.2 Probability Estimation Model Optimization 48
 4.2.1 Probability Estimation 48
 4.2.2 Probability Estimation Model in CBAC 52
 4.2.3 The Optimization of Probability Estimation Model in CBAC 53
 4.2.4 Experiment Result 56
 4.3 Rate Estimation 58
 4.3.1 Rate Estimation Model 58
 4.3.2 Experiment Result 61
 4.4 Conclusion 63
Chapter 5 Implementation of Binary Arithmetic Decoder in CBAC 64
 5.1 Architecture of BAD 65
 5.1.1 Top Architecture of BAD 66
 5.1.2 Range Update Module 67
 5.1.3 Offset Update Module 69
 5.1.4 Bits Read Module 73
 5.1.5 Context Modeling 74
 5.2 Complexity of BAD 76
 5.3 Conclusion 77
Chapter 6 Conclusion and Further Work 79
 6.1 Conclusion 79
 6.2 Future Works 80
Reference 82
Appendix 87
 A.1. Co-simulation Environment 87
 A.1.1 Range Update Module (dRangeUpdate.v) 87
 A.1.2 Offset Update Module(dOffsetUpdate.v) 102
 A.1.3 Bits Read Module (dReadBits.v) 107
 A.1.4 Binary Arithmetic Decoding Top Module (BADTop.v) 115
 A.1.5 Test Bench 117
</body>

