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Abstract 

Effect of Surface Characteristics of 
Reduced Graphene Oxide  

on the Performance of Pseudocapacitor 
 

Chang, Mi Se 

Department of Material Science and Engineering 

The Graduate School 

Seoul National University 
 

It is well known that reduced graphene oxide (rGO) has been intensely 

researched for applications in supercapacitors and rGO/metal oxide composite have 

also been spotlighted for its pseudocapacitive effects. Though metal oxides have high 

specific capacitance and electrochemical stability, they also show poor rate capability 

and low accessible surface areas. In order to overcome these problems, many 

fabrication methods of the composite has been suggested, such as, microwave assisted 

reflux methods by Rao et al., and electrochemical deposition method by Cao et al., 

which showed high specific capacitance values. However, other than just fabricating a 

composite and showing that it has a high value as listed above, no research has been 

done on verifying which kind of rGO plays the ideal role as a substrate for metal oxide 

composites in terms of rGO’s surface characteristics, chemical properties, and 
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preparation methods.  

 Therefore, it came to our interest, that in order to fabricate rGO/metal oxide 

supercapacitor with high electrochemical performance, not only do we need to research 

on the composite fabrication methods, but also need to provide a guideline of how to 

prepare rGO substrate of different size, and functional groups. In this research, we 

analyzed the electrochemical characteristics of the different rGO/Co3O4 composites 

prepared by controlling rGO’s surface characteristics and its relationship between the 

performance of the pseudocapacitor, providing a guideline for the ideal fabrication of 

rGO/metal oxide composite for psuedocapacitor. This way, further researches using 

rGO as electrode material for pseudocapacitors can, from now on, take our research 

into account for improved electrochemical performances. 

keywords: reduced graphene oxide, oxygen functional groups, metal oxide, 

electrochemical performance, pseudocapacitor. 
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1. Introduction 

1.1 Introduction to rGO/Co3O4 pseudocapacitor 

 

1.1.1 rGO as electrode material for supercapacitor and its 

EDLC behavior 

 

Reduced graphene oxide (rGO), a 3-D stacked layers of oxygenated 

graphene, has been researched in many areas such as catalysts [1], hydrogen storage 

[2], organic solar cells [3], supercapacitors [4] and etc. As seen in Figure 1 [5], It has 

been statistically analyzed that graphene-based products will increase dramatically in 

less than 10 years, especially in the area of capacitors. Therefore, many researches 

have been done on using rGO as a substrate material for supercapacitor and are still in 

progress. 
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Figure 1: Global Market for Graphene-based Products, 2009-2020 ($ Millions) 
 

rGO has many advantages such as having wide potential window, large 

surface area, good flexibility, and good chemical & thermal stability [6]. Because of its 

large surface area, it is suitable to be used as a porous substrate for supercapacitor as 

porosity and surface area is an important factor when discussing the electrochemical 

performance of supercapacitors [7].  As shown in Figure 2a [8], rGO usually shows 

an electric double layer capacitance behavior (EDLC) because it interacts with 

electrolyte ions through electrostatic reactions where the ions solely adsorb onto the 

surface of the rGO substrate without chemical reaction [9].  Thus, providing a cyclic 

voltammetry graph of a symmetrical and rectangular shape as seen in Figure 2b [8].  
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Figure 2: a) Behavior of EDLC b) cyclic voltammetry of EDLC 
 

However, because rGO has poor electrical conductivity, rGO alone as a 

supercapacitor material lacks the electrochemical performance of the device [10].  

Therefore, many researches have been done in incorporating peudocapacitive materials 

such as metal oxides in order to create synergistic effects and improve the 

electrochemical performance [11]. 

 

1.1.2 Metal oxide (MO) as electrode material for 

pseudocapacitor and its pseudocapacitive behavior 

 

By introducing the loading of metal oxides (MO) onto the surface of rGO, 
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synergistic effects of porosity of rGO and well defined redox mechanism of MO have 

been known to improve the electrochemical performance of the pseudocapacitor [4].  

Since metal oxides have very high theoretical specific capacitance with well-defined 

redox mechanism, it contributes greatly to the pseudocapacitive behavior of the 

pseudocapacitor [9].  As seen in Figure 3a [12], when compared to rGO, MO interact 

with electrolyte ions through electrochemical reaction where redox reactions happen 

between MO and the ions. Meaning, there must be a change in the oxidation state of 

the metal oxide as it reacts with the charged electrolyte ions. Thus, giving 

pseudocapacitive peaks in cyclic voltammetry as seen in Figure 3b [12]. 

 

Figure 3: a) Behavior of pseudocapacitor b) cyclic voltammetry of pseudocapacitor 
 

Many metal oxides have been researched on as candidates for electrode 

materials. Among them, ruthenium oxide (RuO2) and iridium oxide (IrO2) show very 

high electrochemical performance, however these noble metal oxides are very 
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expensive, thus giving us restraints to using them commercially [4]. Therefore, 

alternate cheap metal oxides have been researched on such as manganese oxide (MnO2) 

[13], ferric oxide (Fe2O3) [14], nickel oxide (NiO) [15], and cobalt oxide (Co3O4) [16].  

We have decided to use Co3O4 as our metal oxide material because of its 

advantages such as having low cost, high redox reactivity, high theoretical specific 

capacitance (~3560 F/g), and high reversibility [4]. By incorporating Co3O4 into rGO 

substrate, we were able to fabricate rGO/MO pseudocapacitor 

 

1.1.3 Important factors for performance of pseudocapacitor 

It is important to consider different parameters that affect the electrochemical 

performance of pseudocapacitors. In order to achieve high electrochemical 

performance, the pseudocapacitor must show high specific capacitance. Specific 

capacitance can be calculated using the following equation [17]:  

					   =	
∫  ( )  

  ∆ 
=	  

    

 
      (1) 

Where Csp, I, m, ν, and ΔV are specific capacitance, current at charge-discharge, mass 

of 2 electrodes, scan rate, and potential window respectively. And   ,   , d, A are 

relative permittivity, permittivity of vacuum, effective thickness of the supercapacitor, 

and specific surface are of the electrode respectively. The parameters ∫  , ν, and ΔV 
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may be obtained from cyclic voltammetry graphs such as the one shown in Figure 3b.  

In order to increase the specific capacitance values, the parameters   , d, 

and A are important to consider. These parameters solely consider the nature of the 

supercapacitor itself. In order to increase   , the resistance between the electrode 

material and the electrolyte should be small. In order to control d, the porosity of the 

electrode material should be controlled. In order to increase the specific surface area, 

the electrode material must be very porous [4].  Thus, combining all these factors, we 

generally want high accumulation of electrolyte ions at the surface of the electrode in 

order to increase the electrical current value, I.  

 

1.1.4 State-of-the-art (SOA) of rGO/Co3O4 pseudocapacitors 

Currently, many researches have been done on using rGO and Co3O4 

electrode materials for pseudocapacitors. Though all of these researches indicate that 

they have similarly used rGO as the porous substrate material and Co3O4 as the metal 

oxide material in the pseudocapacitor, they each show very different morphologies of 

the Co3O4 nanoparticles and very different specific capacitance values as shown in 

Table 1:  
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Table 1: SOA of rGO/Co3O4 pseudocapacitors

 
 
 
These researches use similar methods; either hydrothermal or chemical synthesis. 

However they show very different electrochemical performance. An effort they have 

tried to improve the electrochemical performance is by varying the ratio of rGO:Co3O4, 

which is a very common way to improve the performance. An example can be seen in 

Figure 4a, where we can see that the specific capacitance value increases with the ratio 

of rGO:Co3O4 [17].  

 



- 16 - 

 

 

 

Figure 4: a) Cyclic voltammetry of rGO/Co3O4 pseudocapacitor with varying ratio b) 

Specific capacitances of rGO/Co3O4 pseudocapacitor 
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1.1.5 Limitation of the state-of-the-art of rGO/Co3O4 

pseudocapacitors 

As mentioned in the previous section, the researches of the SOA all similarly 

use rGO and Co3O4 as the electrode material for pseudocapacitor with similar methods. 

However, they all show very different morphologies and electrochemical performance. 

These researches only show how to synthesize rGO/MO composite through simple 

methods just to prove that the pseudocapacitor has a very high specific capacitance and 

no other research is done on the surface characteristics of the rGO substrate itself. 

There must be an influence from the graphite precursor itself which gives different 

graphene oxides with different surface properties and we believe that these properties 

such as the oxygen functional groups affect the growth of metal oxides on the surface 

of the rGO substrate.  

Therefore, no research was done on verifying which kind of rGO plays the 

ideal role as a substrate material for the growth of metal oxides in terms of rGO’s 

surface characteristics, chemical properties, and its preparation methods from the 

graphite precursors. We, therefore, suggest that there must be a difference in 

electrochemical performance depending on the morphologies of how the metal oxides 

grew on the surface of the rGO substrate, which we believe is affected by the amount 

of oxygen functional groups attached.  
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1.2 The growth of metal oxide on the oxygen functionalized 

rGO substrate 

 

1.2.1 Interaction of rGO and metal oxides 

 

Figure 5: Reaction scheme of reaction between MO and GO 
 

Metal oxides have interfacial interactions with GO by two different types of 

mechanisms. The first mechanism is the reactive chemisorption on functional groups 

that bridge the metal centers at the oxygen defect sites. The second mechanism is the 

Van der Waals interactions between the pristine region of graphene and metal oxides. 

The reaction scheme can be briefly seen in Figure 5 [4]:  

Where the metal oxides first adsorb onto the surface of rGO, then nucleates throughout 
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the surface, and finally undergoes spread growth to give a rGO/MO composite. 

Therefore the content of oxygen functional groups attached on the surface of rGO is an 

important factor to consider. 

 

1.2.2 Growth of metal oxides and its interaction with the 

functional groups of the rGO 

By looking at the SOA of rGO/Co3O4 pseudocapacitors, it has come to our 

attention that there must be an influence of the growth of metal oxides from the surface 

characteristics of rGO. From looking at the following SOA and Figure 6 [18]:  

 

 

Figure 6: SOA suggesting the difference in growth of MO depending on functional 
groups attached on GO 
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We can see that the growth of metal oxides depend on the amount of functional groups 

attached on the surface of rGO. The graphene sheet with small amount of functional 

groups show that the metal oxides agglomerate and grow into each other into a big 

chunk of metal oxide while graphene oxide sheet with large amount of functional 

groups show that the metal oxides are pinned in between the functional groups and 

prevent the metal oxides from growing into each other and maintain its crystalline 

shape as small clusters. From this, we can assume that there must be a difference in the 

electrochemical performance depending on the available redox reaction sites on the 

surface of rGO.  

 

1.2.3 Controlling the functional groups of rGO through 

oxidation 

Based on J. Kang’s research, the amount of functionalized groups attached 

on the surface of rGO can be controlled by controlling the oxidation time in the 

modified Hummer’s method. As shown in Figure 7 [19]:  
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Figure 7: Steps of oxidation of GO 
 

While previous researches focused on step 1, Kang suggested that we must also 

investigate step 2 and prove that by controlling this step, we may be able to control the 

amount of functional groups attached on the surface of rGO. Thus, as-proven, by 

increasing the oxidation time of step 2, we were able to increase the oxygen functional 

groups and therefore expect the following visualized scheme of the varying GOs in 

Figure 8: 
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Figure 8: Expectation of the growth of MO on the varied functionalized GO surfaces 
 

1.2.4 Graphite precursors 

We will also need to consider the two most commonly used graphite precursors 

known as small/crumpled graphite (400 mesh) of size ~2μm and large/planar graphite 

(30mesh) of size ~500μm, which the size difference can be seen in the optical 

microscopy image in Figure 9a and 9b. After we have distinguished which precursor is 

a better substrate for growing metal oxides, we will use that graphite precursor to vary 

the oxidation time and functional groups and continue with the remaining research.  
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Figure 9: Optical microscopy images of a) small/crumpled GO and b) large/planar GO 
 

1.3 The goal of this research  

Again, re-iterating the limitation of the previous researches on the rGO/Co3O4 

pseudocapacitors, the researches typically fabricate a composite and show that it has a 

high value. No research was done on verifying which kind of rGO plays the ideal role 

as a substrate for the growth of metal oxides in terms of rGO’s surface characteristics, 

chemical properties, and its preparation methods. 

Therefore, we decided to provide a guideline of how to prepare rGO substrate 
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of different chemical properties and functional groups and its effect of the growth of 

metal oxides and analyze its relationship between the performance of the 

pseudocapacitor. 
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2. Experimental 

2.1 Preparation of varied surface properties of rGO 

 

2.1.1 Materials 

 

Small/crumpled graphite precursor (GO (C)), large/planar graphite 

precursor (GO (P)) purchased from Sigma-Aldrich Korea. KMnO4 ( ≥ 99.0%), 

(CH3COO)2Co·6H2O were purchased from Sigma-Aldrich Korea, H2SO4 (≥98.0%), 

H2O2, ammonia hydroxide were purchased from Daejung Chemical. 

 

2.1.2 Oxidation of GO(C) and GO(P) 

Modified Hummer’s method was used for the oxidation of GO. 2.4g of 

graphite flake was pre-oxidized with 2.0g of potassium persulfate and 2.0g of 

pentoxide solution in 10ml of concentrated sulfuric acid at 80 oC for 3days. The 

expanded graphite was then poured into D.I. water and vacuum filtered and washed 

again with D.I. water and vacuum dried at room temperature overnight. Step 1: 

Expanded graphite was then oxidized with 12g KMnO4 in 92 ml of concentrated 

sulfuric acid at 35 oC for 2.5h. Then the mixture was cooled to 0 oC and 1.0L of D.I. 

water was poured into the mixture within 30 minutes. Step 2: then 10ml H2O2 solution 
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was put to terminate the oxidation. The obtained GO precipitate was then centrifuged 

at 10,000 rpm for 15 min and mixed with 1M HCl solution and centrifuged for 3 more 

times in order to remove the oxidation impurities. Finally, GO was neutralized with D.I. 

water by centrifugation at 13,000 rpm for 40 min until the PH value became over 5.0 

[20,21] 

2.1.3 Oxidation of GO(P) at 0h, 4h, 8h, 16h oxidation time 

 

For this part, we incorporated J.H. Kang’s oxidation method by increasing the 

oxidation time of step 2 and left the other parts the same as above. For 0h sample, 10ml 

H2O2 solution was poured after 30 min as indicated above. For 4h, 10ml H2O2 solution 

was poured after 4 hours. For 8h, 10ml H2O2 solution was poured after 8 hours. For 

16h, 10ml H2O2 solution was poured after 16 hours.  

A total of 5 different kinds of GO samples were prepared: crumpled GO 

(oxidation time 0h) will be noted as GO (C), planar GO (oxidation time 0h, 4h, 8h, 16h) 

will be noted as GO (P-0), GO (P-4), GO (P-8), GO (P-16). 

 

2.2 Preparation of rGO/Co3O4 pseudocapacitor 

 

2.2.1 Preparation of rGO/Co3O4 composites 
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The composite was prepared by the method suggested by others [18,22]. 

70mg of GO in 70ml D.I. water is dispersed in sonic bath for 2 hours. GO suspension 

magnetically stirred and 140mg of (CH3COO)2Co·6H2O added to the suspension when 

temperature reaches 50 oC. Mixture then magnetically stirred at 50 oC for 1 hour. 

Mixture then autoclaved at 180 oC for 12 hours. When mixture has cooled down to 

room temperature, it was vacuum filtered and washed with D.I. water and ethanol for 

at least three times each. Obtained sample vacuum dried at room temperature overnight. 

Finally, the dried sample was calcined at 250 oC for 2hrs at 5 oC/min.  

 

2.2.2 Preparation of rGO/Co3O4 electrodes 

 

The obtained rGO/Co3O4 sample was mixed with 15 wt% SuperP as 

conductive material and 5 wt% PTFE as binder material. The obtained flake-like 

composite was deposited onto 1cm x 10cm large nickel foam by pressure. Full cell was 

made throughout the whole research. Therefore two electrodes with the composite 

were made. 6M KOH was used as the electrolyte.  
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2.3 Characterization of rGO/Co3O4 pseudocapacitor 

2.3.1 Electrochemical measurement for electrochemical 

performance of pseudocapacitor 

 

Three electrode system was constructed using Hg/HgO as the reference 

electrode, Pt as the counter electrode, and the nickel foam and active material as the 

working electrode. 5M KOH was used as the electrolyte. A battery cycler (WBCS3000, 

WonATech) was used for cyclic voltammetry and galvanostatic charge/discharge at a 

fixed potential window of 0.543V at a scan rate of 1, 5 mV/s and 1, 2, 5 Ag-1 for the as-

made pseudocapacitors. 

2.3.2 Physicochemical analysis of pseudocapacitor 

 

The content of carbon and oxygenated carbon within the GO were investigated by 

the X-ray photoelectron spectroscopy (XPS; Sigma Probe, Thermo Scientific). The 

surface characterization of rGO was carried out by powder X-ray diffraction (PXRD; 

D8 Advance, Bruker) using Ni-filtered Cu Kα radiation (λ = 0.154184 nm). The 

morphologies of rGO/Co3O4 composite was characterized by scanning electron 

microscopy (SEM; JSM-6700F, JEOL), and analytical transmission electron 

microscopy (Analytical TEM; Tecnai F20, FEI).  
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3. Results and Discussion 

3.1 Electrochemical and physicochemical analysis of 

rGO/Co3O4(C) and rGO/Co3O4 (P) 

 

3.1.1 Electrochemical performance and structural analysis 

of rGO and Co3O4 

 

The cyclic voltammetry (CV) analysis was used for the measurement of solely 

rGO supercapacitor. As seen in Figure 10:  

 

Figure 10: Cyclic voltammetry of rGO  
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Figure 11: XRD of rGO 
 

 

We can see that the rGO supercapacitor shows an EDLC behavior as discussed in the 

introduction section. It has an almost symmetrical rectangular shape with no particular 

pseudocapacitive peaks suggesting that only electrostatic reactions has happened 

between the rGO electrodes and the 6M KOH electrolyte ions. And it can be seen from 

the XRD in Figure 11, confirming that the sample made show its characteristic rGO 

peak around  θ = 25 o.  

 We also fabricated a pseudocapacitor with Co3O4 nanoparticles only and the 

CV curve as seen in Figure 12: 
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Figure 12: Cyclic voltammetry of Co3O4 
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Figure 13: XRD of Co3O4 
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Compared to the rGO supercapacitor, which showed an EDLC behavior, the Co3O4 

pseudocapacitor show a sharp pseudocapacitive peak at a potential around 0.43V, 

suggesting that there is definitely an electrochemical reaction happenening between the 

metal oxides and the electrolyte ions. It can also be seen from Figure 13 that the 

following sample is well fabricated with indicative Co3O4 peaks at θ = 18.9 o, 30.9 o, 

36.7 o, 45.3 o, 59.2 o, 65.0 o.  

 

 

3.1.2 Electrochemical performance of rGO/Co3O4(C) and 

rGO/Co3O4(P) 

 

Figure 14 shows the CV curve of rGO/Co3O4(C) and rGO/Co3O4(P) composite 

measured and the specific capacitance values were calculated using equation (1).  
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Figure 14: Cyclic voltammetry of rGO/Co3O4(P), rGO/Co3O4(C), Co3O4, and rGO at 5 
mV/s 
 

 
 
Table 2: Calculated pecific capacitance values of rGO, Co3O4, rGO/Co3O4(C), 
rGO/Co3O4(P) at 1 A/g 

 

 

Samples Specific capacitance (F/g) 

rGO 154.8 

Co3O4 176.6 

rGO/Co3O4 (C) 178.5 

rGO/Co3O4 (P) 207.2 
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As seen in Figure 14, we can see that more pseudocapacitive peak is shown in the 

rGO/Co3O4(P) while the peaks are merely shown in rGO/Co3O4(C). Table 2 shows the 

calculated specific capacitance of rGO supercapacitor, Co3O4, rGO/Co3O4(C), and 

rGO/Co3O4(P) pseudocapacitors at 1 Ag-1. From this table, we can see that the 

rGO/Co3O4(P) pseudocapacitor show highest specific capacitance compared to the 

rGO/Co3O4(C), suggesting that rGO(P) is a more suitable substrate for growing well 

dispersed Co3O4 nanoparticles.  

 

Before going into details of analyzing why the samples show different electrochemical 

performances, an XRD analysis of the composites confirm that the Co3O4 nanoparticles 

were well fabricated in the rGO composites as shown in Figure 15. 
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Figure 15: XRD of Co3O4, rGO/Co3O4(P), rGO/Co3O4(C) 
 

 

3.1.3 Physicochemical analysis of GO(C) and GO(P) 

The XPS data in Figure 16a and b show the deconvoluted C1s peak of GO(C) 

and GO(P). From this figure, we can see that the C-C and C-OH peaks are very similar 

to each other suggesting that both GO(C) and GO(P) have similar amount of functional 

groups.  
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Figure 16: Deconvoluted C1s peak of XPS data of a) GO(P) and b) GO(C) 
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The percentages of oxygenated carbon was calculated from the XPS data of GO(P) and 

GO(C) and is summarized in Table 3: 

 

Table 3: Amount of oxygenated carbon calculated from the XPS data of GO(P) and 

GO(C)  

Samples C=C (%) C-O (%) O-C=O (%) 

GO(P) 64.4 28.3 7.3 

GO(C) 67.1 25.9 7.0 

 

From Table 3, we can see that GO(C) and GO(P) have very similar amount of 

functional groups, therefore we want to emphasize that the amount of functional 

groups is not a controlling parameter of this part of the research. The growth of metal 

oxides was not affected by the number of functional groups.  

 We also took SEM and TEM images in order to analyze the morphologies of 

how the Co3O4 nanoparticles were grown on the surface of rGO(P) and rGO(C). As 

seen in Figure 17a and b, we can clearly see the difference between the two composites. 

For rGO/Co3O4(P), the Co3O4 nanoparticles are well dispersed between the sheets and 

the MO particles are well packed amongst each other while for rGO/Co3O4(C), the 

growth of MO particles itself cannot be clearly seen. Rather, the particles are only 

grown on some parts or not grown at all. From this we can conclude that rGO(P) is a 

more suitable substrate for growing metal oxide nanoparticles.  
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Figure 17: SEM images of a) rGO/Co3O4(P) and b) rGO/Co3O4(C) 
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3.2 Electrochemical and physicochemical analysis of 

rGO/Co3O4(P-0), rGO/Co3O4(P-4), rGO/Co3O4(P-8), 

rGO/Co3O4(P-16) 

3.2.1 Physicochemical analysis of GO(P-0), GO(P-4), GO(P-

8), GO(P-16) and rGO/Co3O4(P-0), rGO/Co3O4(P-4), 

rGO/Co3O4(P-8), rGO/Co3O4(P-16) 

 

The XPS data in Figure 18 show the deconvoluted C1s peak of GO treated at 

4 different oxidation times – 0h, 4h, 8h, 16h. From this figure, we can see that the C-C 

and C-OH peaks differ between GO treated at 0h and 16h. It can be seen that the area 

of the C-O peaks increase as the oxidation time increases indicating an increase in 

oxygen functional groups. This was thus shown in a bar graph shown in Figure 20. 

From this Figure, we can see that as the C-O bond increases, the C-C bond decreases 

with, which is again shown in Table 4.  
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Figure 18: Deconvoluted C1s peak of XPS data of (a) GO(P-0) and (b) GO(P-4) (c) 

GO(P-8) (d) GO(P-16).  

 

 

Table 4: Percentages of oxygenated carbon calculated from the XPS data of GO(P-0), 

GO(P-4), GO(P-8), GO(P-16) 

Samples C=C (%) C-O (%) O-C=O (%) 

GO(P-0) 64.4 28.3 7.3 

GO(P-4) 56.9 34.2 8.9 

GO(P-8) 55.8 34.8 9.4 

GO(P-16) 53.7 35.7 10.6 

 



- 41 - 

 

From Table 4, it can be seen that the percentage of oxygenated carbon increases with 

oxidation time of GO. This is because the contact time between MnO4
- and GO 

increases with the oxidation time. The more GO is exposed to MnO4
-, the more 

functional groups are attached to the surface of GO.  

 Now that we have confirmed that the functional groups of GO increase with 

the oxidation time, we utilized the four different types of GO into fabricating 

rGO/Co3O4 – 0h, 4h, 8h, 16h. We first were able to confirm from the XRD that all four 

composites were well fabricated with Co3O4 well incorporated into the composite as 

shown in Figure 19 with the indicative Co3O4 peaks.  
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Figure 19: XRD of Co3O4, rGO/Co3O4(P-0), rGO/Co3O4(P-4), rGO/Co3O4(P-8), 

rGO/Co3O4(P-16) 

 
 

After confirming that the composites were all well fabricated with indicative Co3O4 

nanoparticles, we took SEM and TEM images of the four different types of composites 

in order to analyze the morphology of the composites. As seen in Figure 20a, b, c, d, 

we can see that for rGO/Co3O4(P-0) and rGO/Co3O4(P-4), the Co3O4 nanoparticles are 

only grown on some parts of the GO surface. Some parts don’t have any Co3O4 

nanoparticles grown at all. For rGO/Co3O4(P-8) and rGO/Co3O4(P-16), we can see that 

the Co3O4 particles are actually very well dispersed onto the surface of GO.  
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Figure 20: SEM images of (a) rGO/Co3O4(P-0) (b) rGO/Co3O4(P-4) (c) rGO/Co3O4(P-

8) (d) rGO/Co3O4(P-16). 

 

In order to look into the morphology into more detail in regarding the sizes of the 

Co3O4 nanoparticles, we took TEM images of the four composites. As shown in Figure 

21a, b, c, d, we can see that for rGO/Co3O4(P-0) and rGO/Co3O4(P-4), the Co3O4 

nanoparticles are grown into each other into very biz sized nanoparticles while for 

rGO/Co3O4(P-8) and rGO/Co3O4(P-16), the Co3O4 nanoparticles are well dispersed 

onto the sheets of graphene oxide showing that the MO particles are well pinned 

between the functional groups and therefore not growing into each other.  
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Figure 21: TEM images of (a) rGO/Co3O4(P-0) (b) rGO/Co3O4(P-4) (c) rGO/Co3O4(P-

8) (d) rGO/Co3O4(P-16). 

 

The particle sizes were approximated from the TEM images and were put into Table 5: 
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Table 5: Particle sizes and surface coverage of Co3O4 grown on rGO/Co3O4(P-0), 

rGO/Co3O4(P-4), rGO/Co3O4(P-8), rGO/Co3O4(P-16)  

Samples 
rGO/Co3O4 

(P-0) 

rGO/Co3O4 (P-

4) 

rGO/Co3O4 (P-

8) 

rGO/Co3O4 (P-

16) 

Size (nm) 54.3±18.4 26.3±6.3 9.4±1.9 5.9±1.5 

Surface 

coverage 

(%) 

17.6 30.3 66.2 73.4 

 

 

From Table 5, we can see that the Co3O4 particle size decreases while surface coverage 

increases with the increasing oxidation time and thus with the increasing functional 

groups because of the reasons explained above. The smaller sizes of Co3O4 particles 

help them to be more dispersed well on the rGO’s surface, thus, providing more 

available redox reaction sites for the pseudocapacitor..  

EDS measurements were also taken along with the TEM images in order to 

confirm that the Co3O4 nanoparticles were well grown on the surfaces of rGO, which is 

shown in Figure 22. rGO/Co3O4(P-16) sample was taken into account owing to its 

abundancy of Co3O4 nanoparticles dispersed onto the surface of rGO.  As seen in 

Figure 22, according to the elemental analysis, cobalt particles can be much more 

distinctly seen than the carbon detected, indicating that the Co3O4 nanoparticles are 

well grown and dispersed throughout the surface of rGO.  
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Figure 22: EDS measurements of rGO/Co3O4(P-16) 

 

 

3.2.2 Electrochemical analysis of rGO/Co3O4(P-0), 

rGO/Co3O4(P-4), rGO/Co3O4(P-8), rGO/Co3O4(P-16) 

 

CV measurement was done on the four different composites as shown in 
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Figure 23. All 4 curves show strong redox peaks indicating faradaic reaction between 

the Co3O4 nanoparticles and the KOH electrolyte ions. Such redox peaks result from 

the conversion of cobalt oxidation states shown in the following electrochemical 

reactions: 

 

Co3O4 + OH- + H2O ↔ 3CoOOH + e- 

CoOOH + OH- ↔ CoO2 + H2O + e- 

 

where two redox couples, Co3O4/CoOOH and CoOOH/CoO2 are involved. As the area 

under the curve increase with the oxidation time, the corresponding peaks increase also. 

This is because, as discussed just before, rGO/Co3O4(P-16) has much more Co3O4 

nanoparticles to faradaically react with the electrolyte ions increasing the accumulation 

of charges at the certain voltage. This, thus, confirms that our expectation was correct 

about the availability of redox reaction sites and its relation to the behavior of a 

pseudocapacitor. Equation 1 was again used to calculate the specific capacitances of 

the four composites, which are shown in Table 6.  
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Figure 23: Cyclic voltammograms of rGO/Co3O4(P-0), rGO/Co3O4(P-4), 
rGO/Co3O4(P-8), rGO/Co3O4(P-16) at 5 mV/s 

 

 

Table 6: Calculated specific capacitance values of rGO/Co3O4(P-0), rGO/Co3O4(P-4), 
rGO/Co3O4(P-8), rGO/Co3O4(P-16) at 1 Ag-1 

 

  

Samples Specific capacitance (F/g) 

rGO/Co3O4(P-0) 207.2 

rGO/Co3O4(P-4) 244.9 

rGO/Co3O4(P-8) 320.5 

rGO/Co3O4(P-16) 411.5 
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As shown in Table 6, we can see that the specific capacitance increases with the 

oxidation time and thus with the functional groups attached on GO due to the reasons 

that were stated above.  

 

3.3 Correlation graphs 

From the final results, we were able to come up with two correlation graphs. The first, 

shown in Figure 24a, relate the specific capacitance values between rGO, Co3O4, 

rGO/Co3O4(C), and rGO/Co3O4(P). From this graph, we can conclude that the specific 

capacitance is low for the rGO and Co3O4 pseudocapacitors alone while it increases a 

little for the rGO/Co3O4(C). However, the rGO/Co3O4(P) has the highest specific 

capacitance because it is a more suitable substrate for growing MO particles. 

From Figure 25b, we were able to conclude that the specific capacitance value 

increases with the oxidation time and thus with the functional groups attached on the 

surface of GO because of the availability of redox reaction sites in the one with many 

functional groups.  
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Figure 24: Correlation graphs of (a) specific capacitance vs. samples rGO/Co3O4(P-0), 

rGO/Co3O4(P-4), rGO/Co3O4(P-8), rGO/Co3O4(P-16) at 1 A/g. (b) specific capacitance 

vs. oxygen functional groups for rGO/Co3O4(P-0), rGO/Co3O4(P-4), rGO/Co3O4(P-8), 

rGO/Co3O4(P-16) at 1 A/g. 
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4. Conclusion 

From this research, we were able to re-visit the oxidation of GO by 

controlling the oxidation time of GO and investigate its effect in the growth of metal 

oxides and prove that there is a difference in electrochemical performance for 

differently oxidized GO with different amount of functional groups attached.  

We can first conclude, that rGO and Co3O4 pseudocapacitor alone shows poor 

electrochemical performance. And though they had similar amount of functional 

groups, rGO/Co3O4(P) showed better electrochemical performance. Co3O4 particles 

were well dispersed onto the surface of planar rGO, confirming that rGO(P) is more 

suitable for growing metal oxide nanoparticles. 

Secondly, we were able to conclude that rGO/Co3O4 composite fabricated 

from GO treated for 16h showed the highest electrochemical performance. The more 

oxygen functional groups, the more nucleation sites for metal oxides to grow in smaller 

sizes and disperse well, thus, leading to higher specific capacitance value. 
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국문 초록 

이 논문은 환원된 그래핀 옥사이드의 표면특성이 유사커패시터의 

성능에 미치는 영향에 대해 연구한 것이다. 환원된 그래핀 

옥사이드의 여러 가지 뛰어난 성능으로 인해 이를 적용하려는 다양한 

연구가 진행되고 있다. 그 중에서도 금속산화물을 환원된 그래핀 

옥사이드의 표면에 성장시켜 유사커패시터의 전극 물질로 사용하는 

연구가 진행되고 있다. 금속산화물을 다기공성의 환원된 그래핀 

옥사이드에 성장시킬 경우, pseudocapacitive한 특성과 specific 

capacitance가 향상되는데, 이는 금속산화물의 잘 알려진 redox 

mechanism과 환원된 그래핀 옥사이드의 높은 전기전도도 덕분이다. 

그러나 기존의 연구들은 금속산화물의 성장이 환원된 그래핀 

옥사이드의 표면 특성의 개질에 따라 어떠한 차이를 보이는지에 대한 

답을 제시하지 않고 성능을 높이는 데에 집중하였다. 따라서 본 

연구에서는 그래핀 옥사이드의 표면에 존재 하는 작용기의 양을 

조절하여 금속산화물의 성장에 어떠한 영향을 끼치는지 확인하였다.  

그래핀 옥사이드에 존재하는 작용기의 양은 산화시간을 조절하여 

변화시켰고, 이를 XPS를 통해 확인하였다. 이에 따라 성장한 
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금속산화물의 크기와 분산도는 SEM과 TEM 측정을 통해 

확인하였으며, 제작한 환원된 그래핀 옥사이드/금속산화물 복합체의 

specific capacitance는 cyclic voltammetry를 통해 측정하였다. 그 

결과 그래핀 옥사이드에 존재하는 작용기의 양이 증가할수록 

금속산화물의 크기는 감소하며 분산도는 증가하였고 이에 따라 

specific capacitance도 증가하였다. 

본 연구는 그래핀 옥사이드의 표면 특성에 따른 금속산화물의 성장 

및 분산도를 다양한 분석방법을 통해 다각도로 분석하고, 

유사커패시터로서의 전기화학적 성능을 확인하였고, 앞으로 그래핀을 

이용한 유사커패시터의 제작에 가이드라인이 될 것이라고 생각한다. 

 

 

 

 

주요어 : 환원된 그래핀 옥사이드, 산화작용기, 금속산화물, 전기화학, 

유사캐패시터. 

학 번 : 2012-23927 
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