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Abstract

Room temperature Hydrogen
Storage in a Metal-Organic
Framework-Based Hybrid Material

Gueye, Magatte Niang
Department of Material Science and Engineering

The Graduate School
Seoul National University

In addressing the global demand for clean and renewable energy,
hydrogen stands as a promising candidate for many fuel cell
applications. In order to use it at an industrial scale, researchers must
develop practical and efficient storage systems that fulfill the targets
stated by the US Department of Energy.

Among the storage systems that have emerged in the past decades,
porous materials have attracted researchers’ interest due to their light
weight, fast sorption kinetics, total reversibility and mass production
capacity. They however store only a small amount of hydrogen at room
temperature. In order to overcome that drawback related to the storage
capacity, researchers have been synthesizing hybrid materials as they
could show enhanced characteristics which would lead to an enhanced

storage.



A et

SECRIL WATIONAL LININVERSTY



Moreover, the electronic state of the doping metal has not been studied
either in spite of the relative importance of the metal form or the oxide
form in hydrogenation processes. Previous works did not outline which
state of the metal was expected to play a role in the enhancement
process, or actually did.

This work then aims to give the first evidence of the feasibility of MDC
hybridization by platinum particles, which will be wanted to be in a
metal form. A special care will be given to the synthesis method as
MDC’s synthesis requires harsh thermal treatment that might be
disadvantageous to the Pt particles.

The obtained results showing an increased storage capacity of the
hybrid material compared to the pristine one, together with fast kinetics
and total reversibility, will be presented in this work. Before that, the
different hydrogen storage systems will be briefly reviewed in a first
step, the state of the arts of storage enhancement by metal doping will
be presented in a second step and a deeper explanation of the purpose
of this work as well as the experimental methods explanation will be

given afterwards.

Keywords: hydrogen storage, spillover, metal-organic frameworks-
derived carbons, hybrid materials.
Student Number: 2013-23811
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List of abbreviations

AC: Activated carbon

BDC: Terephtalic acid

BET: Brunauer-Emmett-Teller

CGH;: Compressed gaseous hydrogen

CNT: Carbon nanotubes

GO: graphene oxide

LH,: Liquid hydrogen

MDC: Metal-organic framework-derived carbon

MOF: Metal-organic framework

MWCNT / MWNT: multiwalled carbon nanotubes

Pt@rGO: Platinum-doped reduced graphene oxide

Pt-MDC: Platinum particles incorporated into MDC’s framework
Pt-MOF: Platinum particles incorporated into MOF’s framework

Pt@rGO-MDC: Platinum-doped reduced graphene oxide flakes
incorporated into MDC

Pt@rGO-MOF: Platinum-doped reduced graphene oxide flakes
incorporated into MOF

PXRD: Powder X-Ray diffraction
rGO: Reduced graphene oxide
rGO-MDC: reduced graphene oxide flakes incorporated into MDC

rGO-MOF: reduced graphene oxide flakes incorporated into MOF
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Figure 17: “Top: Structure of a chemisorbed H atom on graphene.
Bottom: The diagram shows the dispersion-corrected DFT interaction
energy of a single H atom with a graphitic surface, as a function of the

C—H bond length. The interaction is characterized by the strong

chemisorption and weak physisorption minima™ [62]..........c.cccvevueenee. 37
Figure 18: Hydride and non-hydride forming elements [6] ................. 42
Figure 19: Graphene oXide .........ccoceevverienerneniieneniinieiceecree e 44
Figure 20: Experimental SCheme ........cc.ccocevvveviiinenieninnenieneeeicneenne 46

Figure 21:Samples synthesized all along the procedure to Pt@rGO-
MDC: a)GO dispersion (left) and Pt@rGO dispersion (right), b)MOF,
c)MDC, d)Pt@rGO-MOF, ¢)Pt@rGO-MDC, H)rGO-MOF, g)rGO-

MDC, h)Pt-MOF, D)PE-MDC .o eseeeseeeeseveressesese s ereeserens 53

Figure 22: Schematic representation of rtGO-MOF (left) and Pt@rGO-

MOF (right) synthesis SOIULIONS ......coeeerreirrerirerieieriecienieeresereseeereens 60

Figure 23: SEM micrographs with global view of synthesized

framework: a)MOF, b)MDC, ¢)Pt@rGO-MOF, d)Pt@rGO-MDC,

e)rGO-MOF, H)rGO-MDC, g)Pt-MOF, h)Pt-MDC ........ccccocevvirenrenene 61
Figure 24: XRD pattern of GO and Pt@rGO ........ccccoeveveneicnvcnnnncnn 63
Figure 25: XRD pattern of MOF & Pt@rGO-MOF ..........cccccovenunnncnn 65
Figure 26: XRD pattern of MDC and Pt@rGO-MDC ........................ 66
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1.2.3. Solid state hydrogen storage

Regarding the extreme pressures and temperatures used for CGH, and
LH; respectively, more practical alternatives for on-board applications
have been investigated. Due to its high gravimetric storage and rapid
refueling time, CGH; remains the state of the arts, but using a host
material as a hydrogen carrier has emerged as a promising mean. Solid
state hydrogen storage refers to two kinds of materials: those which
trap molecular hydrogen in their pores via physisorption, the heat of
enthalpy is typically around 4~7 kJ/mol; and those which dissociate
hydrogen and bind strongly with each atom via chemisorption with a

heat of adsorption greater than 20 kJ/mol.
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1.3. Tailoring hydrogen uptake in physisorptive materials

1.3.1. Introduction

As stated previously, the adsorption in high SSA materials leans on the
SSA, the pores volume and the adsorption enthalpy. Despite the high
SSA and micropores volumes reported for some materials ( such as
MOFs whose SSA can hypothetically reach 14600 m?¥g [26]), the
stored amount does not seem to exceed 1 wt. % H,. New strategies are
then needed and these are mostly focused on tailoring the heat of
adsorption. Theoretical studies on optimum conditions for hydrogen
storage have shown that the heat of adsorption should be drastically
increased up to 15.1 KJ/mol [36] in order for the adsorbent to accuse an
acceptable storage capacity at room temperature and under a delivery
pressure of around 1.5 bar.

Strategies to increase the heat of enthalpy, and by the same way the
stored hydrogen, mostly depend on the adsorbent itself. MOFs for
example were the most studied in that way because their tunable SSA,
porosity, ligands functionalities and metal building unit leave rooms for
so many applications (e.g. ligands functionalization, other metal

incorporation) [32].

21 2
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surface or recombine with another atom on the surface. This can
explain the diffusion process in spillover.

Hydrogen atoms moving freely on a graphitic surface (getting trapped
in a physisorbed state, then diffusing in the gas phase, then getting
trapped again, and so on) are however limited and more stable
chemisorption wells can thus be occupied.

The equilibrium conditions _relative concentration of hydrogen atoms
in the physisorbed state, the chemisorbed state and the gas phase are
still not well known and might depend on the temperature, the pressure,
the defects on the support and its purity (presence of oxides).

This model gives an insight of a possible mechanism, based on the
review of publications dealing with spillover. Even if it does not fully
describe the mechanism, it however is in accordance with the majority
of the reports so far and even gives reasons for their discrepancies.
Other model [50] also tried to explain the mechamism of hydrogen
spillover in hydrogen storage, but this was more based on the only

works of that research group and then fails to describe other studies.

1.4. Scope, purpose and value of this study

1.4.1. Limitations of previous works
Compared to compressed gaseous hydrogen and liquid hydrogen, solid

state hydrogen storage is safer and more compact, making it more

38 1]
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2.1.7. Synthesis of Pt- doped reduced graphene oxide in a
metal organic framework (Pt@rGO-MOF)

10 ml of the Pt@rGO suspension was added to a vial of the transparent
mixture of IRMOF-1 precursors (80 ml DEF, the amount of precursors
being unchanged) and stirred for 30 min before being transferred to the
furnace, all other following steps being the same as in a mere IRMOF-1
synthesis.

The product of this synthesis step is designated as Pt@rGO-MOF

(Figure 21).

2.1.8. Synthesis of Pt- doped reduced graphene oxide in a

metal organic framework-derived carbon (Pt@rGO-MDC)
The as synthesized Pt@rGO-MOF was carbonized following the same

procedure as in the case of MDC-1, and resulted in a product which

will be termed as Pt@rGO-MDC (Figure 21).

2.1.9. Synthesis of rGO-MOF and rGO-MDC

In order to separate the roles played by the reduced graphene oxide and
the Pt catalysts in the storage of hydrogen, the uptake of GO-MDC was
also investigated. Therefore, GO-MOF was synthesized following the
same procedure as in Pt@rGO-MOF, but the 10ml suspension of

Pt@rGO was replaced by a 10ml suspension of GO (10mg) in DEF.

51 ]
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2.2. Analysis

2.2.1. Powder X-Ray diffraction (PXRD) pattern

PXRD profiles were obtained to (1) record a crystallographic change
between the pristine materials and the hybrid ones and (2) give an
approximation of the mean particle size of the Pt particles dispersed in
the composites.

PXRD was carried out using a D8 Advance (Bruker) diffractometer.
The diffractograms were recorded in a reflection mode using a Cu Ka

radiation (A=1.54184 A) with a Ni filter.

2.2.2. Scanning Electron Microscopy (SEM) &

SEM and TEM measurements were performed to investigate the
structural detail of the samples. The samples shape, size and structure
were studied using a normal SEM equipment (JEOL-5600). The
powdery samples were deposited on a carbon tape, which was itself
stuck onto a SEM sample holder. Prior to the measurement, the non-
platinum containing samples were decorated with platinum by

sputtering.

2.2.3. Transmission Electron Microscopy (TEM)
The Pt particles size and distribution were obtained with an advanced
Field Electron Microscope featuring (JEOL 2100 F). That dispositive

provided also diffraction patterns and energy dispersive spectroscopy
54 K] e
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