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Abstract

One of the factors influence the accuracy of seismic modeling is boundary
condition. Several boundary conditions have been developed and have their
own advantages and disadvantages. One possible method to perfectly remove
edge reflections is to extend the dimension of a given model so that edge
reflections cannot be recorded within the recording duration. To make the idea
feasible without increasing computational costs, we propose acoustic and
elastic modeling algorithms performed in the logarithmic grid set, where grid
size increases logarithmically from the middle of model surface. This method
has an advantage to reduce the number of grids by the property of logarithmic
scale. For acoustic and elastic wave modeling in the logarithmic grid set, the
wave equations are first converted from the uniform scale to the logarithm
scale. Then we apply the conventional node-based finite-difference method
for the acoustic case and the cell-based finite-difference method for elastic
case. Numerical examples show that the new modeling algorithms yield
solutions comparable to those of the conventional modeling algorithm,
although they can suffer from numerical dispersion when the source is located
in the coarse grids (far from the origin). Inversion results for the simple
layered model and the modified version of the Marmousi-2 model show that
the logarithmic inversion algorithms yield results comparable to those
obtained by the conventional inversion achieving computational efficiency
when the recording duration is not too long and the influence of numerical

dispersion is almost negligible in the inversion.
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1. Introduction

Seismic modeling, which is a good tool to describe seismic wave
propagation in subsurface media, is also used in seismic inversion and
migration. Since seismic modeling is iteratively conducted in seismic
inversion and migration, the accuracy and efficiency of seismic inversion and
migration depend largely on those of seismic modeling.

These days, seismic modeling has mainly been performed using the discrete
methods such as finite-difference and finite-element methods, where
boundary conditions are necessary to suppress the edge reflections arising
from finite-sized models unlike real media. Several boundary conditions have
been developed. Reynolds (1977), Clayton and Engquist (1978) and Higdon
(1991) proposed applying one-way wave equations so that incoming waves
are not generated and only outgoing waves can propagate through boundaries.
In this case, however, since one-way wave equations render the modeling
operator asymmetrical, modeling algorithms do not satisfy the reciprocity
theorem unlike in the real earth. Cerjan (1985) defined damping areas
surrounding a given model, where amplitudes of waves gradually decrease.
The perfectly matched layer method (Collino and Tsogka, 2001) eliminates
edge reflections in the similar way. These damping methods increase
computational costs due to the additional damping arecas. However, even
though we apply the aforementioned boundary conditions, edge reflections are
not perfectly removed. To perfectly remove edge reflections, we may want to
extend the given model so that edge reflections cannot return to receivers

within the recording duration. In that case, however, we need a lot of
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computational efforts. To alleviate computational overburden, the variable
grid sets are necessary.

In seismic modeling using the finite-difference or finite-element methods,
grid sizes are determined by the maximum frequency and the minimum
velocity of given models to minimize numerical dispersions of waves for the
entire model. In general, as waves propagate through subsurface media, high-
frequency components easily attenuate because of intrinsic absorption. In
addition, velocities are usually higher in the deeper part than in the shallow
part. As a result, grid sizes suitable for low velocity regions near source points
may be redundant for regions far from source positions. Based on this feature,
non-uniform grid sets have been proposed to reduce computational costs.
Moczo (1989) introduced irregular grids whose size is horizontally constant
but vertically varying for SH-waves in 2D heterogeneous media. Jastram and
Tessmer (1994) used discontinuous grids where the horizontal spacing
changes abruptly and vertical spacing becomes gradually coarser on a
staggered grid set.

In this study, we propose a new grid set called ‘logarithmic grid set’, where
grid spacing increases logarithmically with distance from the middle of the
surface of a given model and apply it in modeling and inversion algorithms.
Using the logarithmic grid set, we can make edge reflections not recorded
within the total recording time, which allows us to efficiently obtain edge-
reflection-free modeling results without any boundary conditions. In the
following sections, we first introduce how the acoustic and elastic wave

equations and the source positions in the uniform grid set can be transformed



into the logarithmic grid. Next, we verify the modeling operators composed in
the logarithmic grid set by comparing them with those composed in the
conventional grid set and then apply it to the acoustic and elastic waveform
inversion. For waveform inversion, we apply the gradient method based on
the adjoint state of modeling operator (e.g., Lailly, 1983; Tarantola, 1984;
Pratt et al., 1998) and use the pseudo-Hessian matrix to scale the gradient
(Shin et al., 2001). The modeling and inversion algorithms are applied to a
simple layered model and the modified version of the Marmousi-2 model

(Martin et al., 2006).



2. Modeling

2.1. Acoustic wave equation on the logarithmic scale

In the time domain, the 2D acoustic wave equation can be written as

10°p o°p &p
c_28t2 = Y + P +5(x—x0)5(z—zo)f )

where ¢(x,z) is subsurface velocity, p(x,z,t) is pressure field, f(¢) is
source wavelet function. &§(x—x,) and &(z-z,) are delta functions
locating a source in (xo,zo). Fourier-transforming eq. (1) gives the 2D
acoustic wave equation in the frequency domain, as follows

0T 0 ;

—Czpzax2 Jraz2 +5(x—x0)5(z—zo)f , 2)

where
;?(X,Z,a)) = ﬁjip(x’z’t)e_iwdl , (3)
7(60):%]“; f(t)e™dr (4)

and o is angular frequency,
The acoustic wave equation (eq. 2) is converted to the logarithmic grid set
by using the logarithmic functions shifted in order to pass the origin (Fig. 1)

and making parameters. The origin corresponds to the middle of the model

surface.
~ | log(1+x), x>0
X_g(x)_{—log(l—x), x<0 '’ )
Z=h(z)=10g(l+z) . (6)

4 A = TH



X X=log(1+x)

(a)

X=—log(1—x)

(b)
Figure 1. the logarithmic functions shifted in order to pass the origin for (a)

positive x and (b) negative x
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These parameters change terms containing differential operators as

Lo

- ——, x20
a_p: et oX %
ox x Op ’
et —, x<0
oX
op 1 op
R 8
oz e" oz ®)
L@p 1 p o,
6213: X ox? M ox’ Bl )
o ezx—azﬁ+e”{@ x<0
ox? ox’
o’ p 1 &°p 1 op
= —_—— . (10)

orr o7t & oz
The source can be located in the logarithmic grids by the intrinsic property

of delta function as,

5(X-X,) S0

Loon S(X-Xx) |7 e ot
(g (X))—m— 5(X-x,) . ; (11)
5(}171(2)) 5(2_20)25(2_20) ) (12)

- ‘h_l '(Z0 )‘ e’

Applying equations (9) ~ (12) to equations (2) gives the 2D acoustic wave

equation for positive x in the logarithm-scaled coordinate, as follows

2Z
e

2 20 6p 25 op) S(X-X,)6(Z2-2))~
@ 5oL 612?_5_1? L L 512?_6_17 L9l - ) 9 _ O)f.(13)
c e oxX:- oX oZ oz e’ e’

In the same way, the wave equation for negative x in the logarithm-scaled

coordinate can be obtained as follows

T O +11 =
6 A -II-.I—']l (=



o ~ 2 op 1 (&*p op) S(X-X,)6(Z2-2,))~
_O p= | CLL P PP, ( — ) 9 Z O)f. (14)
oX° oX oZ° 0oZ e " e

2Z
C e

2.2. Finite-difference method

For acoustic modeling, we discretize the modified acoustic wave equations,
1.e., equations (13) and (14) by numerical methods, such as finite-difference
and finite-element method. Among them, since finite-difference approach is
simply and readily implemented, Kelly et al. (1976) adopted it to make
synthetic seismograms in the time domain. In the frequency domain, finite-
difference method allows us to effectively obtain solutions to the wave
equation for additional source positions (Pratt, 1990). By second-order finite-
difference method, the finite-difference acoustic wave equation in the

logarithmic grid set for positive x is

10 l~7 B 1 Pin; —Pi; TPy P, TPy
2 [2¥) eZiAX (AX)Z ZAX

i,j

1 ;[,/41 _;7;,,' +;[,j—1 ;7;,/41 _;[,j—l
S — , 15
| B = "
S(X-X,)6(Z2-2,)~
= s o™

where 7 and j are grid number of X and Z direction and AX, AZ is grid size. In

. . T ._nX
this case, the range of grid number of s direction is 0<i ST, when the

number of grid in x direction is nX +1. In the same way, for negative x in the

logarithm-scaled coordinate, the acoustic wave equation can be discretized by



2

@~ x| Py T Piy tPi; Py " Piay
2 Pij—¢ p +
(AX) 2AX

ij

1 ;7;,/41 _;7[,,' +l~7[,j—1 ;7;,/41 _;7[,/'—1
! . 16
e2jAZ L (AZ)Z 2AZ J ( )
S(X-X,)6(Z2-2,)~
= o X /™7 f

. . . nX
In this case, the range of grid number of s direction is 5 <i<0, when

the number of grid in x direction is nX +1. Equations (15) and (16) can be
written in a matrix form as

Su=f, (17)
where S is the complex impedance matrix, and f is the source vectors,

respectively.

2.3. Elastic wave equation on the logarithmic scale

In the frequency domain, the 2D elastic wave equation can be written as

—’ pu =§[(/1+ Zﬂ)a—u+ﬂ,@:|+ 0 [,u(@Jra—uﬂ
X >

o oz] a| \ax e (18)
+0(x—x,)0(z—-z,)f.
—a)z,ov:i[(}w2,u)ﬁ+/”ta—u}ri ﬂ(a_qu@)
oz oz o] ox|"\oz ax)| . (19)

+0(x—x,)0(z—z,))f.
where u(x,z,®) and v(x,z,w) are the Fourier-transformed horizontal and
vertical displacements, respectively, p(x,z) is the density, A(x,z)and

(x,z) are the Lamé constants for isotropic media, and f, and f. are the

horizontal and vertical forces, respectively.
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According to equations (5) and (6), the differential operators in equations

(18) and (19) can be expressed on the logarithmic scale as

1 Ou(,6 ou 1 ou

—— | k— |- k— |, x>0
a( 6uj_ E 6X( an e”( axj *
ox\ Ox ZXau( 6uj+e”[k6uj’ <0

e —| k—
oX\ oX oX

) A 5) H0)
oz\ Oz e 0Z\ o7 e oz

XlJrZa_u( 8_14}’ XZO

6(,{611)_ e oX\ oz

ox\oz) | e ou( ou ’
——|k—] x<0
e 0X\ o7
_X1+Z@(k8_uj’ x>0

a(kauj_ e oz X

oz\ ox) exéu( éuj ’
prare vl
e” 0Z\ o0X

where k means Lamé constants A, g4 or A+2u.

b

(20)

ey

(22)

(23)

Substituting equations (11), (12) and (20) ~ (23) into equations (18) and

(19) gives the 2D elastic wave equations for the positive x axis in the

logarithm-scaled coordinate, as follows

) 1| 0 ou Ou
e pu=——| LA+ 2u) P (2
@ pu e”[a)({( " ”)ax} (A+ ”)ax}

e “lex\ ez) oz H oxX
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In the same way, the wave equations for negative x in the logarithm-scaled

coordinate can be obtained as follows

ou
—o’pu=e*| —q(A+2 —u}+ A+2u)—
o=t E e 2l a2 2
e[ o (, ov) o ov
+ A || p— , (26
e’ {GX( azj az[”a)(j} (26)
1 |o/( ou ou| 6(X-X,)6(Z2-2,)
| = |—u—+
e {82('”8 j 'UBZ} e e’ S

e

+£ i(la_”}i( a_“j 27)
7 \oz\"ox ) ax\ Moz '
R ETRARNRAN (LS
oxX\" oxX oX e &% :

2.4. Cell-based finite-difference method

For elastic modeling, we also use the finite-difference method that only
uses displacements rather than the staggered grid methods. In order to
properly describe the stress-free boundary conditions at the free surface, we
employ the cell-based finite-difference method (Min et al., 2004), where
material properties are defined within the area rather than at the nodes. In Min

et al.’s methods, finite differences of the first-order partial derivative of

10 "':l"*-_s _'q.;_':_ T



displacement such as & du/0X are not introduced, since conventional elastic

wave equations don’t contain them. So, | suggest new finite differences for
finite differences of the first-order partial derivative of displacement by

averaging them of each cell adjacent to one grid, as follows

g [a—”j +k, [a—”J +k3(a—”j +k4(a—”j .28
ax 4 '\ax ), “lax ), Plax ), “lax ),

ka—uzl k, (a—uj +k, (a—uJ +k, (a—u) +k, [a—uj , (29)
oz 4 o0z ), oz ), oz ), oz ),

where a subscript figure means location of cells adjacent to any grid (Fig. 2).

cu cu cu cu
ol g () o5 1)
oX ), \oZ ), oX ), \ ez ),

i.j

o Cut
k4,[—] }[_j
oX ), \oZ),

Rk
lax ), ez ),

Figure 2. Grid sets used to obtain the finite-difference solutions for the (7, j)th
nodal point inside the main body. Lamé constants (represented as k) and first-

order partial derivative of displacement are defined within the cells.
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400m

200m
50m
je———>
{3 v \V, \V4
V, = 2000 m/s
V,= 1160 m/s
p =2.0g/cm?

Figure 3. The geometry of the semi-infinite homogeneous model for Lamb’s

problem.

In order to investigate the accuracy of the elastic modeling algorithm on the
logarithmic grid set, we need to compare numerical solutions with analytic
solutions for Lamb’s problem, for which we assume the semi-infinite
homogeneous model shown in Figure 3. We compute analytic solutions
referring to Ewing et al. (1957). We first compute analytic solutions in the
frequency-wavenumber domain, and then take their inverse Fourier transform
to obtain the time-space domain solutions. Solutions in the logarithmic grid
set are obtained through interpolation. Figure 4 shows analytic solutions and
numerical solutions obtained in the logarithmic grid set. From Figure 4, we

see that numerical solutions agree well with analytic solutions.
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Figure 4. Horizontal (left) and vertical displacements (right) of analytic (solid line) and numerical solutions obtained in the logarithmic grid

set (dashed line) at distances of 50, 200 and 400 m from the source point.
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2.5. Example of modeling in the logarithmic grid set

The modeling algorithms composed on the logarithmic scale are
demonstrated for the modified version of the Marmousi-2 model. The model
on the uniform scale is shown in Figure 2a, and Figure 2b shows the model on
the logarithmic scale. The modified version of the Marmousi-2 model is
obtained removing the water layer and the parts of the left- and right-hand
sides. The dimension of the modified version is 9 km in width and 3.02 km in
depth. Poisson’s ratio and density are fixed at 0.25 and 2 g/cm’, respectively.

We first verify the modeling results obtained in the logarithmic grid set by
comparing them with those obtained in the conventional grid set. In the
logarithmic grid set, because of the nature of the logarithmic scale, the same-
sized model can be simulated with fewer grid points than in the conventional
grid set. Therefore, it is easy to extend the given model so that edge
reflections cannot be recorded at receivers within the recording duration. For
the conventional grid set, the PML boundary condition is applied to remove
edge reflections, whereas in the logarithmic grid set, we do not use any
boundary conditions but extend the model for boundary areas. In both the
conventional and logarithmic grid sets, we use 50 additional grids for
boundary areas. Grid size is 10 m for acoustic wave modeling and 5 m for
elastic wave modeling. When grid space is 10 m, the total number of grids is
1001 in width and 353 in depth in the conventional grid set, whereas the
number of grids is 441 in width and 190 in depth in the logarithmic grid set.
In elastic case, the total number of grids is 1901 by 657 in the conventional

grid set, whereas the number of grids is 783 by 330 in the logarithmic grid set.
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14 ":l"'-"i -';".-'l L}



For source wavelet, the first derivative of the Gauss function whose maximum
frequency is 10 Hz is used and the maximum recording time is 4 s. Figure 2
shows seismogram of pressure in the conventional and logarithmic grid sets.
In Figure 3, we compare single traces obtained in both grid sets with each
other. In Figures 4 and 5, we display elastic modeling results. These results
demonstrate that the modeling results obtained in the logarithmic grid set are
compatible with those obtained in the conventional grid set and the

interpolation is properly applied.
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Figure 5. P-wave velocity models for the modified version of Marmousi-2

model on the (a) conventional uniform and (b) logarithmic scales.
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Figure 6. Synthetic seismograms of pressure obtained in the conventional grid set (a), converted through interpolation from the conventional

to the logarithmic grid set (b) and obtained in the logarithmic grid set (c).
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Figure 7. Comparison of traces extracted at distances of 3.15 km and 5.85 km
of the seismograms for pressure (Figure 6) obtained in the conventional (solid

line) and logarithmic (dashed line) grid sets.
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Figure 8. Synthetic seismograms of horizontal displacements obtained in the conventional grid set, converted through interpolation from the
conventional to the logarithmic grid set and obtained in the logarithmic grid set.
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Figure 9. Synthetic seismograms of vertical displacements obtained in the conventional grid set, converted through interpolation from the

conventional to the logarithmic grid set and obtained in the logarithmic grid set.
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3. Waveform inversion

3.1. Gradient method

For acoustic and elastic waveform inversion, we build the objective
function based on the l,-norm of residuals between model responses and
observed data and minimize the objective function using the gradient method.
For simplicity, if we consider the monochromatic data recorded for one shot,
the objective function can be expressed as

E:%(u— ) (u—d) (30)

where u and d are the model responses and observed data, respectively, and
the superscripts T and * indicate the transpose and the complex conjugate,
respectively. The gradient direction can be obtained by taking partial
derivatives of eq. (30) with respect to the parameters. The gradient with

respect to the kth parameter can be written by

T
E _Rel| ™| (u-ay 31)
om, om,
The partial derivative wavefield can be computed from the matrix equation
(eq. 17) for forward modeling. Taking equation (17) with respect to the kth

model parameter yields

Ou oS

L (32)
om,  Om, '
a%“ =s'f® (33)
k

(*)
where f, is virtual source of kth parameter. Substituting eq. (33) into eq.
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(31) gives

oF =Re{[f§“T(S’1 )T(u—d)*} (34)

om,

For the entire model parameter the gradient can be rewritten by

a_E:Re{(F ) (s )T(u—d)*} (35)

om

where m is the model parameter vector, and F, is the virtual source matrix.

3.2. Verification of virtual source

In the inversion process, the gradient directions are computed by the cross-
correlation of partial derivative wavefield and residuals. Because it needs
many computational efforts to directly calculate the partial derivative
wavefield, Pratt et al. (1998) introduced the concept of virtual source. To
examine whether the virtual source is applied properly to obtain the partial
derivative wavefield or not, we compare the partial derivative fields computed
by different ways:

ou

om,

N (U (36)

Ou :u(mk+Am)—u(mk) (37)
om, Am ’

which will be referred to as analytic and numerical methods, respectively.

The partial derivative wavefields for acoustic wave are generated in the
homogeneous and isotropic media whose size is 2 km by 2 km and velocity is
1.5 km/s. For elastic case, we use the model applied for Lamb’s problem (Fig.
3). Fig.11 shows where the perturbated grid and the source are. To verify of

2 A =



the virtual source, acoustic wave velocity (c¢) and Lamé constant (4, u) is
purtubated in acoustic and elastic cases, respectively. The comparison of
analytic and numerical methods is conducted twice, since the left- and right-
side of the model use different logarithmic functions (Eq. 5). Figures 12 ~ 17
depict seismograms of the partial derivative wavefields by analytic and
numerical methods. For the quantitative comparison, we extract the traces
from the receiver located in the middle of the model surface (fig. 18~20).
These results demonstrate that virtual source is calculated correctly and can be

applied to inversion algorithm.

10 orids . 10 grids

. 3 O O oy
< | Source The center  The center Source | _
3 of surtace of surface =]
= g
o -
(=N
w2

v v

Perturbation grid Perturbation grid

(a) (b)
Figure 11. arrangement of the source and perturbation grid for verfication of
virtual source in the (a) left- and (b) right-side of the homogeneous and

isotropic model
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Figure 12. seismograms of partial derivative wavefields for ¢ obtained by

numercal and analytic methods for the left-side of the model
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Figure 13. seismograms of partial derivative wavefields for ¢ obtained by

numercal and analytic methods for the right-side of the model
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Figure 14. seismograms of partial derivative wavefields for 1 obtained by
numercal and analytic methods for the right-side of the model:

horizontal(upper) and vertical(lower) displacements
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Figure 15. seismograms of partial derivative wavefields for 1 obtained by
numercal and analytic methods for the left-side of the model:

horizontal(upper) and vertical(lower) displacements
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Figure 16. seismograms of partial derivative wavefields for u obtained by
numercal and analytic methods for the left-side of the model:

horizontal(upper) and vertical(lower) displacements
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3.3. Scaling and optimization

Newton method is more accurate than gradient method because it retains
terms of the misfit function expanded by a Taylor series up to quadratic order.
In full Newton or Gauss-Newton method, the gradient direction is
preconditioned or filtered by the inverse of full or approximate Hessian matrix.

Full Hessian (H ) and approximate Hessian (H ) can be expressed by,

H:quf}

+Re{[aimlJ‘J(u—d)* La’in‘J(u_d)* [%J’}(u—d)*}}’ (38)

H,=Re{JJ"} | (39)

where J is the jacobian matrix. The second term of the full Hessian is often
difficult to compute. Moreover, the first term of the full Hessian, approximate
Hessian huge computing time and memory in order to calculate jacobian
matrix. Shin et al. (2001) introduce pseudo Hessian matrix that estimate
diagonal of the approximate Hessian matrix using virtual sources instead of
jacobian matrix. In this thesis, the pseudo Hessian matrix is applied for
preconditioning of the gradient direction. Since the pseudo Hessian matrix is
either ill-conditioned or actually singular, a damping term is employed to
regularize it and stabilize for non-linear problem (Levenberg, 1944;
Marquardt, 1963). The regularized gradient at each frequency can be
represented by

VE, = {gdiag{(Fv )" (F, )*} + ﬂIT {Z(Fv ) (s7) (u- d)*} . (40)

s
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where > indicates the summation of all the shots, S is the damping term and

I is the identity matrix. The gradient vector at each frequency is normalized
with its largest absolute value and summed over all frequencies and this

resultant gradient is normalized once again (Ha et al., 2009), as follows

VE=NRMY {NRM(VE, )} , (41)
S

where . indicates the summation of all the frequency and NRM indicates
I

the normalization operator.
We also apply the modified version (Ha et al., 2009) of the conjugate
gradient method (Fletcher and Reeves, 1964). The conjugate gradient

direction g is obtained by

g" =-VE" (42)
VE® ] VE®
g =-VE® + [EE(”” %T o M[g""] (43)

where the superscript (n) is the iteration number and NRM is normalizing
operator. The normalized conjugate gradient direction obtained in the previous
iteration is used to compute the conjugate gradient direction at the present

iteration. Consequently, the model parameter vector is updated by
m" =m" +ag” (44)

where a is the step length.

3.4. Example of inversion in the logarithmic grid set

We perform acoustic waveform inversion in the logarithmic grid set. We
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first use the simple model shown in Figure 21a, where the high-velocity layer
exists in the middle of the model. The dimension of the model is 4 km by 2
km. We apply the inversion algorithms in the conventional and logarithmic
grid sets to the same synthetic data generated in the conventional grid set with
PML boundary condition. The maximum recording time is 3 s. We assume
that 399 shot gathers are acquired with the interval of 10 m for field data. For
the inversion in the logarithmic grid set, the field data should be transformed
to the logarithmic grid set through interpolation. For initial guesses, the
linearly increasing velocity model is used for the conventional method,
whereas the exponentially increasing velocity model is employed for the
logarithmic inversion.

Figures 21b and 21c show the models inverted at the 200th iteration in the
conventional and logarithmic grid sets. For comparison, the model inverted in
the logarithmic grid set is converted to the conventional grid set through
interpolation (Figure 21d). In Figure 21, we observe that for the shallow parts
the logarithmic inversion yields better results than the conventional inversion,
and vice versa. Although we use the same modeling algorithm to generate
both field and modeled data in the conventional inversion, the logarithmic
inversion recovers the second and third layers better than the conventional
method. That is, some oscillating high-frequency phenomena are observed in
the second layer obtained in the conventional grid set, but it is not in the
logarithmic grid set. However, the resolution of the logarithmic inversion is
not as good as that of the conventional inversion for deeper part, which may

be because of the logarithmically increasing grid interval in the logarithmic
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grid set. In Figure 22, we display depth profiles extracted in the middle of the
inverted velocity models of Figures 21b and 21d as well as the true velocity
model. Figure 22 shows that both the conventional and logarithmic inversion

algorithms give reliable solutions.

34 e



Distance (km) Distance (km)

2.0 4.0 2.0 4.0
0 . ) 0 . )

Depth (km)
»
s
(s:uny) Doy
Depth (km)
»
s
(s:uny) Qoofe y

Ls Ls
(a) (b)
Distance (km) Distance (km)
2.0 4.0 2.0 4.0
D L | D L ]
453 45
z 375 « g 35 -
= 30 = = 30 7
=
g g = £
o 225 a 225 %
15 Ls

(c) (d)

Figure 21. (a) True simple layered velocity model and inversion results obtained at the 200th iteration by using the (b) conventional and (¢)
logarithmic grid sets. For comparison, the logarithmic inversion result (c) is converted to the conventional grid set in (d).
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Figure 22. Depth profiles at the center of the true velocity model (solid line)
and the inverted velocity models generated in the conventional (dotted line)

and logarithmic (dashed line) grid sets.
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We proceed to perform the inversion for the synthetic data generated in the
conventional grid set for the modified version of the Marmousi-2 model
(Figure 5a) for both acoustic and elastic cases. We apply both the
conventional and logarithmic inversion algorithms to the same synthetic data
generated in the conventional grid set with PML boundary condition.

For acoustic waveform inversion, the maximum recording time is 4 s. We
assume that 899 shot gathers are acquired with the interval of 10 m for field
data. For the inversion in the logarithmic grid set, the field data should be
transformed to the logarithmic grid set through interpolation. Figures 23a and
23b show models inverted at the 200th iteration using the conventional and
logarithmic grid sets, respectively. For comparison, we also convert the model
inverted in the logarithmic grid set to the conventional grid set through
interpolation. Figure 24 shows depth profiles extracted from the inverted
velocity models of Figures 23a and 23c as well as the true velocity model. In
Figure 24, it is observed that velocities inverted by using the conventional and

logarithmic grid sets are compatible with the true velocities.
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Figure 23. Inversion results obtained at the 200th iteration by using the (a)

conventional and (b) logarithmic grid sets. For comparison, the logarithmic

inversion result (b) is converted to the conventional grid set in (c).
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We compare the computing time required to perform acoustic waveform
inversion in the conventional and logarithmic grid sets. Table 1 shows CPU
times to iterate inversion process 200 times for the simple layered model and
the Marmousi-2 model using 20 Intel Xeon E5640 2.66 GHz CPUs on the
Linux-cluster machine. This indicates that it is more efficient to use the
logarithmic grid, because we can reduce the number of grids.

However, when the recording time increases, the boundary area of the
model should also increase. For too long recording time, the logarithmic
inversion becomes less efficient than the conventional inversion. We may
conclude that the efficiency of the waveform inversion in the logarithmic grid
set is dependent on the recording time.

For the elastic waveform inversion, the maximum recording time is 5 s and
we use 898 shot gathers for field data. In the elastic case, the frequency
marching method is also employed over 5 stages: 0.2 ~2 Hz, 0.2 ~4 Hz, 0.2
~ 6 Hz, 0.2 ~8 Hz, 0.2 ~ 10 Hz. For each frequency group, the inversion
process is repeated for 30 iterations. Figure 25a shows the inverted model for
P-wave velocity in the logarithmic set. Through interpolation, the inverted
model on the logarithm scale is converted to the conventional grid set (Figure
25b). Figure 26 shows depth profiles extracted from the true and inverted P-
wave velocity models for quantitative comparison. Figures 25b and 26
indicate that inversion results obtained by the new elastic waveform inversion

method are comparable to true values.
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Table 1. CPU times required to perform the acoustic inversion for the simple

layered model and the Marmousi-2 model for 200th iteration

Conventional grid Logarithmic grid Ratio
Model set set (C/L)
Simple layered 18330.65815 6323.366236 2.9
model
Marmousi-2 model 112242.7616 22074.23556 5.1
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Figure 25. (a) P-wave velocity models inverted at the 200th iteration in the

logarithmic grid set for the modified version of the Marmousi-2 model and (b)

its interpolated version to the conventional grid set.
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Figure 26. Depth profiles at distances of (a) 4.5 km and (b) 6 km of the true

velocity model (solid line) and the inverted velocity models.
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4. Conclusions

We developed new acoustic and elastic wave modeling and waveform
inversion algorithms, which are performed in the logarithmic grid set. In the
logarithmic grid set, since the grid interval increases logarithmically with
distance, we require fewer grid points than in the conventional uniform grid
set. Based on this feature, we can extend the given model without increasing
computational efforts compared to the conventional method, so that edge
reflections cannot be recorded at receivers within the recording duration.
Since the number of additional grids used to extend the given model can be
determined considering the recording duration, the efficiency of the new
modeling and inversion algorithms is mainly dependent on the recording
duration.

In order to apply the new modeling and inversion algorithms in the
logarithmic grid set, interpolation is needed. Field data acquired in the
conventional uniform grid should be converted to the logarithmic grid set, and
inversion results on the logarithmic scale need to be converted to the
conventional uniform grid set. The new modeling algorithm yielded numerical
solutions compatible with analytic solutions. However, we need to know that
when the source is applied near the boundary of the given model where the
grid interval is large, the seismograms can suffer from numerical dispersion.
We examined if the numerical dispersion is serious in waveform inversion or
not. Inversion results for the simple layered model showed that the
logarithmic waveform inversion yields better results for the shallow part than

the conventional waveform inversion, whereas for the deeper part the
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resolution of the logarithmic waveform inversion is not as good as the
conventional waveform inversion. By comparing the inversion results
obtained by the logarithmic waveform inversion with those of the
conventional method for the modified version of the Marmousi-2 model, we
showed that the new logarithmic waveform inversion can be applied to the
complicated model with computation efficiency. From all the inversion results,
we noted that numerical dispersion does not seriously influence inversion
results. The frequency marching method may contribute to reducing the
influences of numerical dispersion in high frequencies. Although we only test
the new modeling and inversion algorithms to 2D problems, their efficiency
will be greater in 3D problems. We also feel that the new modeling and
inversion methods may contribute to improving the efficiency of data

acquisition.
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