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Abstract 
 

One of the factors influence the accuracy of seismic modeling is boundary 

condition. Several boundary conditions have been developed and have their 

own advantages and disadvantages. One possible method to perfectly remove 

edge reflections is to extend the dimension of a given model so that edge 

reflections cannot be recorded within the recording duration. To make the idea 

feasible without increasing computational costs, we propose acoustic and 

elastic modeling algorithms performed in the logarithmic grid set, where grid 

size increases logarithmically from the middle of model surface. This method 

has an advantage to reduce the number of grids by the property of logarithmic 

scale. For acoustic and elastic wave modeling in the logarithmic grid set, the 

wave equations are first converted from the uniform scale to the logarithm 

scale. Then we apply the conventional node-based finite-difference method 

for the acoustic case and the cell-based finite-difference method for elastic 

case. Numerical examples show that the new modeling algorithms yield 

solutions comparable to those of the conventional modeling algorithm, 

although they can suffer from numerical dispersion when the source is located 

in the coarse grids (far from the origin). Inversion results for the simple 

layered model and the modified version of the Marmousi-2 model show that 

the logarithmic inversion algorithms yield results comparable to those 

obtained by the conventional inversion achieving computational efficiency 

when the recording duration is not too long and the influence of numerical 

dispersion is almost negligible in the inversion. 
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1. Introduction 

Seismic modeling, which is a good tool to describe seismic wave 

propagation in subsurface media, is also used in seismic inversion and 

migration. Since seismic modeling is iteratively conducted in seismic 

inversion and migration, the accuracy and efficiency of seismic inversion and 

migration depend largely on those of seismic modeling.  

These days, seismic modeling has mainly been performed using the discrete 

methods such as finite-difference and finite-element methods, where 

boundary conditions are necessary to suppress the edge reflections arising 

from finite-sized models unlike real media. Several boundary conditions have 

been developed. Reynolds (1977), Clayton and Engquist (1978) and Higdon 

(1991) proposed applying one-way wave equations so that incoming waves 

are not generated and only outgoing waves can propagate through boundaries. 

In this case, however, since one-way wave equations render the modeling 

operator asymmetrical, modeling algorithms do not satisfy the reciprocity 

theorem unlike in the real earth. Cerjan (1985) defined damping areas 

surrounding a given model, where amplitudes of waves gradually decrease. 

The perfectly matched layer method (Collino and Tsogka, 2001) eliminates 

edge reflections in the similar way. These damping methods increase 

computational costs due to the additional damping areas. However, even 

though we apply the aforementioned boundary conditions, edge reflections are 

not perfectly removed. To perfectly remove edge reflections, we may want to 

extend the given model so that edge reflections cannot return to receivers 

within the recording duration. In that case, however, we need a lot of 
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computational efforts. To alleviate computational overburden, the variable 

grid sets are necessary.  

In seismic modeling using the finite-difference or finite-element methods, 

grid sizes are determined by the maximum frequency and the minimum 

velocity of given models to minimize numerical dispersions of waves for the 

entire model. In general, as waves propagate through subsurface media, high-

frequency components easily attenuate because of intrinsic absorption. In 

addition, velocities are usually higher in the deeper part than in the shallow 

part. As a result, grid sizes suitable for low velocity regions near source points 

may be redundant for regions far from source positions. Based on this feature, 

non-uniform grid sets have been proposed to reduce computational costs. 

Moczo (1989) introduced irregular grids whose size is horizontally constant 

but vertically varying for SH-waves in 2D heterogeneous media. Jastram and 

Tessmer (1994) used discontinuous grids where the horizontal spacing 

changes abruptly and vertical spacing becomes gradually coarser on a 

staggered grid set. 

In this study, we propose a new grid set called ‘logarithmic grid set’, where 

grid spacing increases logarithmically with distance from the middle of the 

surface of a given model and apply it in modeling and inversion algorithms. 

Using the logarithmic grid set, we can make edge reflections not recorded 

within the total recording time, which allows us to efficiently obtain edge-

reflection-free modeling results without any boundary conditions. In the 

following sections, we first introduce how the acoustic and elastic wave 

equations and the source positions in the uniform grid set can be transformed 
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into the logarithmic grid. Next, we verify the modeling operators composed in 

the logarithmic grid set by comparing them with those composed in the 

conventional grid set and then apply it to the acoustic and elastic waveform 

inversion. For waveform inversion, we apply the gradient method based on 

the adjoint state of modeling operator (e.g., Lailly, 1983; Tarantola, 1984; 

Pratt et al., 1998) and use the pseudo-Hessian matrix to scale the gradient 

(Shin et al., 2001). The modeling and inversion algorithms are applied to a 

simple layered model and the modified version of the Marmousi-2 model 

(Martin et al., 2006). 
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2. Modeling 

2.1. Acoustic wave equation on the logarithmic scale 

In the time domain, the 2D acoustic wave equation can be written as 

 ( ) ( )
2 2 2

0 02 2 2 2

1 p p p
x x z z f

c t x z
δ δ

∂ ∂ ∂
= + + − −

∂ ∂ ∂
 (1) 

where ( ),c x z  is subsurface velocity, ( ), ,p x z t  is pressure field, ( )f t  is 

source wavelet function. ( )0x xδ −  and ( )0z zδ −  are delta functions 

locating a source in ( )0 0,x z . Fourier-transforming eq. (1) gives the 2D 

acoustic wave equation in the frequency domain, as follows 

 �
� �

( ) ( ) �
2 2 2

0 02 2 2

p p
p x x z z f

c x z

ω
δ δ

∂ ∂
− = + + − −

∂ ∂
 , (2) 

where  

 � ( ) ( )1
, , , ,

2

i tp x z p x z t e dtωω
π

∞ −

−∞
= ∫  , (3) 

 � ( ) ( )1

2

i tf f t e dtωω
π

∞ −

−∞
= ∫ ， (4) 

and ω  is angular frequency, 

The acoustic wave equation (eq. 2) is converted to the logarithmic grid set 

by using the logarithmic functions shifted in order to pass the origin (Fig. 1) 

and making parameters. The origin corresponds to the middle of the model 

surface. 

 ( )
( )
( )

log 1 , 0

log 1 , 0

x x
X g x

x x

 + ≥
= = 

− − <
 , (5) 

 ( )( ) log 1Z h z z= = +  . (6) 
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(a) 

 

(b) 

Figure 1. the logarithmic functions shifted in order to pass the origin for (a) 

positive x and (b) negative x 
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These parameters change terms containing differential operators as 

 

1
, 0

, 0

X

X

p
x

p e X

px
e x

X

∂ ≥∂  ∂= 
∂∂  <

 ∂

ɶ

ɶ

ɶ
 , (7) 

 
1
Z

p p

Z e Z

∂ ∂
=

∂ ∂

ɶ ɶ
 , (8) 

 

2

2 2 2 2

2 2
2 2

2

1 1
, 0

, 0

X X

X X

p p
x

p e X e X

x p p
e e x

X X

 ∂ ∂
− ≥∂  ∂ ∂= 

∂ ∂ ∂ + < ∂ ∂

ɶ ɶ

ɶ

ɶ ɶ

 , (9) 

 
2 2

2 2 2 2

1 1
Z Z

p p p

z e Z e Z

∂ ∂ ∂
= −

∂ ∂ ∂

ɶ ɶ ɶ
 . (10) 

The source can be located in the logarithmic grids by the intrinsic property 

of delta function as, 

 ( )( ) ( )
( )

( )

( )
0

0

0

01

1

00

, 0

'
, 0

X

X

X X
x

X X e
g X

X Xg X
x

e

δ
δ

δ
δ

−

−

−

 −
≥− 

= = 
− <

 , (11) 

 ( )( ) ( )
( )

( )
0

0 01

1

0'
Z

Z Z Z Z
h Z

eh Z

δ δ
δ −

−

− −
= =  . (12) 

Applying equations (9) ~ (12) to equations (2) gives the 2D acoustic wave 

equation for positive x in the logarithm-scaled coordinate, as follows 

�
� � � � ( ) ( )

�
0 0

2 2 2
0 0

2 2 2 2 2

1 1
X ZX Z

X X Z Zp p p p
p f

c e X X e Z Z e e

δ δω     − −∂ ∂ ∂ ∂
− = − + − +   

∂ ∂ ∂ ∂   
. (13) 

In the same way, the wave equation for negative x in the logarithm-scaled 

coordinate can be obtained as follows 
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�
� � � � ( ) ( )

�
0 0

2 2 2
0 02

2 2 2 2

1X

X ZZ

X X Z Zp p p p
p e f

c X X e Z Z e e

δ δω
−

    − −∂ ∂ ∂ ∂
− = + + − +   

∂ ∂ ∂ ∂   
. (14) 

 

2.2. Finite-difference method 

For acoustic modeling, we discretize the modified acoustic wave equations, 

i.e., equations (13) and (14) by numerical methods, such as finite-difference 

and finite-element method. Among them, since finite-difference approach is 

simply and readily implemented, Kelly et al. (1976) adopted it to make 

synthetic seismograms in the time domain. In the frequency domain, finite-

difference method allows us to effectively obtain solutions to the wave 

equation for additional source positions (Pratt, 1990). By second-order finite-

difference method, the finite-difference acoustic wave equation in the 

logarithmic grid set for positive x is 

 

�
� � �

( )

� �

� � �

( )

� �

( ) ( )
�

0 0

2
1, , 1, 1, 1,

, 22 2

,

, 1 , , 1 , 1 , 1

22

0 0

1

2

1

2

i j i j i j i j i j

i j i X

i j

i j i j i j i j i j

j Z

i X j Z

p p p p p
p

c e XX

p p p p p

e ZZ

X X Z Z
f

e e

ω

δ δ

+ − + −

∆

+ − + −

∆

∆ ∆

 − + −
 − − −
 ∆∆ 

 − + −
 − −
 ∆∆ 
− −

=

,  (15) 

where i and j are grid number of X and Z direction and ,X Z∆ ∆ is grid size. In 

this case, the range of grid number of s direction is 0
2

nX
i≤ ≤ , when the 

number of grid in x direction is 1nX + . In the same way, for negative x in the 

logarithm-scaled coordinate, the acoustic wave equation can be discretized by 
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�
� � �

( )

� �

� � �

( )

� �

( ) ( )
�

0 0

2
1, , 1, 1, 1,2

, 22

,

, 1 , , 1 , 1 , 1

22

0 0

2

1

2

i j i j i j i j i ji X

i j

i j

i j i j i j i j i j

j Z

i X j Z

p p p p p
p e

c XX

p p p p p

e ZZ

X X Z Z
f

e e

ω

δ δ

+ − + −∆

+ − + −

∆

− ∆ ∆

 − + −
 − − +
 ∆∆ 

 − + −
 − −
 ∆∆ 
− −

=

 . (16) 

In this case, the range of grid number of s direction is 0
2

nX
i− ≤ < , when 

the number of grid in x direction is 1nX + . Equations (15) and (16) can be 

written in a matrix form as 

 =Su f , (17) 

where S is the complex impedance matrix, and f is the source vectors, 

respectively. 

 

2.3. Elastic wave equation on the logarithmic scale 

In the frequency domain, the 2D elastic wave equation can be written as 

 
( )2

0 0

2

( ) ( ) x

u v v u
u

x x z z x z

x x z z f

ω ρ λ µ λ µ

δ δ

 ∂ ∂ ∂ ∂ ∂ ∂   − = + + + +   ∂ ∂ ∂ ∂ ∂ ∂    
+ − −

 , (18) 

 
( )2

0 0

2

( ) ( ) z

v u u v
v

z z x x z x

x x z z f

ω ρ λ µ λ µ

δ δ

 ∂ ∂ ∂ ∂ ∂ ∂   − = + + + +   ∂ ∂ ∂ ∂ ∂ ∂    
+ − −

 . (19) 

where ( ), ,u x z ω  and ( ), ,v x z ω  are the Fourier-transformed horizontal and 

vertical displacements, respectively, ( ),x zρ  is the density, ( ),x zλ and 

( ),x zµ are the Lamé constants for isotropic media, and xf  and zf  are the 

horizontal and vertical forces, respectively. 



 

 9

According to equations (5) and (6), the differential operators in equations 

(18) and (19) can be expressed on the logarithmic scale as 

 

2 2

2 2

1 1
, 0

, 0

X X

X X

u u u
k k x

e X X e Xu
k

x x u u u
e k e k x

X X X

 ∂ ∂ ∂   − ≥    ∂ ∂ ∂∂ ∂       =  ∂ ∂ ∂ ∂ ∂      + <    ∂ ∂ ∂   

 ,  (20) 

 
2 2

1 1
Z Z

u u u u
k k k

z z e Z Z e Z

∂ ∂ ∂ ∂ ∂     = −     ∂ ∂ ∂ ∂ ∂       
, (21) 

 

1
, 0

, 0

X Z

X

Z

u u
k x

e X Zu
k

x z e u u
k x

e X Z

+

 ∂ ∂  ≥  ∂ ∂∂ ∂    =  ∂ ∂ ∂ ∂    <  ∂ ∂ 
 

, (22) 

 

1
, 0

, 0

X Z

X

Z

u u
k x

e Z Xu
k

z x e u u
k x

e Z X

+

 ∂ ∂  ≥  ∂ ∂∂ ∂    =  ∂ ∂ ∂ ∂    <  ∂ ∂ 
 

, (23) 

where k means Lamé constants λ , µ  or 2λ µ+ .  

Substituting equations (11), (12) and (20) ~ (23) into equations (18) and 

(19) gives the 2D elastic wave equations for the positive x axis in the 

logarithm-scaled coordinate, as follows 

 

( ) ( )

( ) ( )
0 0

2

2

0 0

2

1
2 2

1

1

X

X Z

xX ZZ

u u
u

e X X X

v v

e X Z Z X

X X Z Zu u
f

e Z Z Z e e

ω ρ λ µ λ µ

λ µ

δ δ
µ µ

+

 ∂ ∂ ∂ − = + − +  ∂ ∂ ∂  

 ∂ ∂ ∂ ∂   + +    ∂ ∂ ∂ ∂    
− − ∂ ∂ ∂ + − +  ∂ ∂ ∂  

, (24) 
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( ) ( )

( ) ( )
0 0

2

2

0 0

2

1
2 2

1

1

Z

X Z

zX ZX

v v
v
e Z Z Z

u u

e Z X X Z

X X Z Zv v
f

e X X X e e

ω ρ λ µ λ µ

λ µ

δ δ
µ µ

+

 ∂ ∂ ∂ − = + − +  ∂ ∂ ∂  

 ∂ ∂ ∂ ∂   + +    ∂ ∂ ∂ ∂    
− − ∂ ∂ ∂ + − +  ∂ ∂ ∂  

. (25) 

In the same way, the wave equations for negative x in the logarithm-scaled 

coordinate can be obtained as follows 

 

( ) ( )

( ) ( )
0 0

2 2

0 0

2

2 2

1

X

X

Z

xX ZZ

u u
u e

X X X

e v v

e X Z Z X

X X Z Zu u
f

e Z Z Z e e

ω ρ λ µ λ µ

λ µ

δ δ
µ µ −

 ∂ ∂ ∂ − = + + +  ∂ ∂ ∂  

 ∂ ∂ ∂ ∂   + +    ∂ ∂ ∂ ∂    
− − ∂ ∂ ∂ + − +  ∂ ∂ ∂  

, (26) 

 

( ) ( )

( ) ( )
0 0

2

2

0 02

1
2 2

Z

X

Z

X

zX Z

v v
v
e Z Z Z

e u u

e Z X X Z

X X Z Zv v
e f

X X X e e

ω ρ λ µ λ µ

λ µ

δ δ
µ µ −

 ∂ ∂ ∂ − = + − +  ∂ ∂ ∂  

 ∂ ∂ ∂ ∂   + +    ∂ ∂ ∂ ∂    
− − ∂ ∂ ∂ + + +  ∂ ∂ ∂  

. (27) 

 

2.4. Cell-based finite-difference method 

For elastic modeling, we also use the finite-difference method that only 

uses displacements rather than the staggered grid methods. In order to 

properly describe the stress-free boundary conditions at the free surface, we 

employ the cell-based finite-difference method (Min et al., 2004), where 

material properties are defined within the area rather than at the nodes. In Min 

et al.’s methods, finite differences of the first-order partial derivative of 
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displacement such as k u X∂ ∂ are not introduced, since conventional elastic 

wave equations don’t contain them. So, I suggest new finite differences for 

finite differences of the first-order partial derivative of displacement by 

averaging them of each cell adjacent to one grid, as follows 

 1 2 3 4

1 2 3 4

1

4

u u u u u
k k k k k
X X X X X

 ∂ ∂ ∂ ∂ ∂       ≈ + + +        ∂ ∂ ∂ ∂ ∂        
, (28) 

 1 2 3 4

1 2 3 4

1

4

u u u u u
k k k k k
Z Z Z Z Z

 ∂ ∂ ∂ ∂ ∂       ≈ + + +        ∂ ∂ ∂ ∂ ∂        
, (29) 

where a subscript figure means location of cells adjacent to any grid (Fig. 2). 

 

 

Figure 2. Grid sets used to obtain the finite-difference solutions for the (i, j)th 

nodal point inside the main body. Lamé constants (represented as k) and first-

order partial derivative of displacement are defined within the cells. 
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Figure 3. The geometry of the semi-infinite homogeneous model for Lamb’s 

problem. 

 

In order to investigate the accuracy of the elastic modeling algorithm on the 

logarithmic grid set, we need to compare numerical solutions with analytic 

solutions for Lamb’s problem, for which we assume the semi-infinite 

homogeneous model shown in Figure 3. We compute analytic solutions 

referring to Ewing et al. (1957). We first compute analytic solutions in the 

frequency-wavenumber domain, and then take their inverse Fourier transform 

to obtain the time-space domain solutions. Solutions in the logarithmic grid 

set are obtained through interpolation. Figure 4 shows analytic solutions and 

numerical solutions obtained in the logarithmic grid set. From Figure 4, we 

see that numerical solutions agree well with analytic solutions. 
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Figure 4. Horizontal (left) and vertical displacements (right) of analytic (solid line) and numerical solutions obtained in the logarithmic grid 

set (dashed line) at distances of 50, 200 and 400 m from the source point. 
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2.5. Example of modeling in the logarithmic grid set 

The modeling algorithms composed on the logarithmic scale are 

demonstrated for the modified version of the Marmousi-2 model. The model 

on the uniform scale is shown in Figure 2a, and Figure 2b shows the model on 

the logarithmic scale. The modified version of the Marmousi-2 model is 

obtained removing the water layer and the parts of the left- and right-hand 

sides. The dimension of the modified version is 9 km in width and 3.02 km in 

depth. Poisson’s ratio and density are fixed at 0.25 and 2 g/cm
3
, respectively. 

We first verify the modeling results obtained in the logarithmic grid set by 

comparing them with those obtained in the conventional grid set. In the 

logarithmic grid set, because of the nature of the logarithmic scale, the same-

sized model can be simulated with fewer grid points than in the conventional 

grid set. Therefore, it is easy to extend the given model so that edge 

reflections cannot be recorded at receivers within the recording duration. For 

the conventional grid set, the PML boundary condition is applied to remove 

edge reflections, whereas in the logarithmic grid set, we do not use any 

boundary conditions but extend the model for boundary areas. In both the 

conventional and logarithmic grid sets, we use 50 additional grids for 

boundary areas. Grid size is 10 m for acoustic wave modeling and 5 m for 

elastic wave modeling. When grid space is 10 m, the total number of grids is 

1001 in width and 353 in depth in the conventional grid set, whereas the 

number of grids is 441 in width and 190 in depth in the logarithmic grid set. 

In elastic case, the total number of grids is 1901 by 657 in the conventional 

grid set, whereas the number of grids is 783 by 330 in the logarithmic grid set. 



 

 15 

For source wavelet, the first derivative of the Gauss function whose maximum 

frequency is 10 Hz is used and the maximum recording time is 4 s. Figure 2 

shows seismogram of pressure in the conventional and logarithmic grid sets. 

In Figure 3, we compare single traces obtained in both grid sets with each 

other. In Figures 4 and 5, we display elastic modeling results. These results 

demonstrate that the modeling results obtained in the logarithmic grid set are 

compatible with those obtained in the conventional grid set and the 

interpolation is properly applied. 

 

 

(a) 

 

(b) 

Figure 5. P-wave velocity models for the modified version of Marmousi-2 

model on the (a) conventional uniform and (b) logarithmic scales.
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(a)           (b)           (c) 

Figure 6. Synthetic seismograms of pressure obtained in the conventional grid set (a), converted through interpolation from the conventional 

to the logarithmic grid set (b) and obtained in the logarithmic grid set (c).
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Figure 7. Comparison of traces extracted at distances of 3.15 km and 5.85 km 

of the seismograms for pressure (Figure 6) obtained in the conventional (solid 

line) and logarithmic (dashed line) grid sets.
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Figure 8. Synthetic seismograms of horizontal displacements obtained in the conventional grid set, converted through interpolation from the 

conventional to the logarithmic grid set and obtained in the logarithmic grid set. 
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Figure 9. Synthetic seismograms of vertical displacements obtained in the conventional grid set, converted through interpolation from the 

conventional to the logarithmic grid set and obtained in the logarithmic grid set. 
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Figure 10. Comparison of traces extracted at distances of 3.15 km, 4.5 km and 5.85 km of the seismograms for horizontal (upper) and vertical 

(lower) displacements (Figure 8 and 9) obtained in the conventional (solid line) and logarithmic (dashed line) grid sets. 
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3. Waveform inversion 

3.1. Gradient method 

For acoustic and elastic waveform inversion, we build the objective 

function based on the l2-norm of residuals between model responses and 

observed data and minimize the objective function using the gradient method. 

For simplicity, if we consider the monochromatic data recorded for one shot, 

the objective function can be expressed as 

 ( ) ( )T *1
E

2
= − −u d u d  (30) 

where u and d are the model responses and observed data, respectively, and 

the superscripts T and * indicate the transpose and the complex conjugate, 

respectively. The gradient direction can be obtained by taking partial 

derivatives of eq. (30) with respect to the parameters. The gradient with 

respect to the kth parameter can be written by 

 ( )
T

*E
Re

k km m

  ∂ ∂ 
= −  

∂ ∂   

u
u d   (31) 

The partial derivative wavefield can be computed from the matrix equation 

(eq. 17) for forward modeling. Taking equation (17) with respect to the kth 

model parameter yields   

 ( )k

v

k km m

∂ ∂
= − =

∂ ∂
u S

S u f  (32) 

 1 ( )k

v

km

−∂
=

∂
u

S f  (33) 

where 
( )k

vf  
is virtual source of kth parameter. Substituting eq. (33) into eq. 
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(31) gives 

 ( ) ( ){ }TT *( ) 1E
Re k

v

km

−∂
 = − ∂
f S u d  (34) 

For the entire model parameter the gradient can be rewritten by 

 ( ) ( ) ( ){ }TT *1E
Re v

−∂
= −

∂
F S u d

m
 (35) 

where m is the model parameter vector, and vF  is the virtual source matrix. 

 

3.2. Verification of virtual source 

In the inversion process, the gradient directions are computed by the cross-

correlation of partial derivative wavefield and residuals. Because it needs 

many computational efforts to directly calculate the partial derivative 

wavefield, Pratt et al. (1998) introduced the concept of virtual source. To 

examine whether the virtual source is applied properly to obtain the partial 

derivative wavefield or not, we compare the partial derivative fields computed 

by different ways: 

 1 ( )k

v

km

−∂
=

∂
u

S f  , (36) 

 
( ) ( )k k

k

m m m

m m

+ ∆ −∂
=

∂ ∆

u uu
 , (37) 

which will be referred to as analytic and numerical methods, respectively. 

The partial derivative wavefields for acoustic wave are generated in the 

homogeneous and isotropic media whose size is 2 km by 2 km and velocity is 

1.5 km/s. For elastic case, we use the model applied for Lamb’s problem (Fig. 

3). Fig.11 shows where the perturbated grid and the source are. To verify of 
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the virtual source, acoustic wave velocity (c) and Lamé constant (λ, µ) is 

purtubated in acoustic and elastic cases, respectively. The comparison of 

analytic and numerical methods is conducted twice, since the left- and right-

side of the model use different logarithmic functions (Eq. 5). Figures 12 ~ 17 

depict seismograms of the partial derivative wavefields by analytic and 

numerical methods. For the quantitative comparison, we extract the traces 

from the receiver located in the middle of the model surface (fig. 18~20). 

These results demonstrate that virtual source is calculated correctly and can be 

applied to inversion algorithm. 

  

(a)         (b) 

Figure 11. arrangement of the source and perturbation grid for verfication of 

virtual source in the (a) left- and (b) right-side of the homogeneous and 

isotropic model  
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Figure 12. seismograms of partial derivative wavefields for c obtained by 

numercal and analytic methods for the left-side of the model 

 

Figure 13. seismograms of partial derivative wavefields for c obtained by 

numercal and analytic methods for the right-side of the model 
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Figure 14. seismograms of partial derivative wavefields for λ obtained by 

numercal and analytic methods for the right-side of the model: 

horizontal(upper) and vertical(lower) displacements 
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Figure 15. seismograms of partial derivative wavefields for λ obtained by 

numercal and analytic methods for the left-side of the model: 

horizontal(upper) and vertical(lower) displacements 
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Figure 16. seismograms of partial derivative wavefields for µ obtained by 

numercal and analytic methods for the left-side of the model: 

horizontal(upper) and vertical(lower) displacements 
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Figure 17. seismograms of partial derivative wavefields for µ obtained by 

numercal and analytic methods for the right-side of the model: 

horizontal(upper) and vertical(lower) displacements 
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Figure 18. partial derivative wavefields of c recorded at the middle of the 

model for the left- and right-side of the model 

 

 

Figure 19. partial derivative wavefields of λ recorded at the middle of the 

model for the left- and right-side of the model: horizontal(upper) and 

vertical(lower) displacements 
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Figure 20. partial derivative wavefields of µ recorded at the middle of the 

model for the left- and right-side of the model: horizontal(upper) and 

vertical(lower) displacements  
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3.3. Scaling and optimization 

Newton method is more accurate than gradient method because it retains 

terms of the misfit function expanded by a Taylor series up to quadratic order. 

In full Newton or Gauss-Newton method, the gradient direction is 

preconditioned or filtered by the inverse of full or approximate Hessian matrix. 

Full Hessian (H ) and approximate Hessian ( aH ) can be expressed by, 

{ }

( ) ( ) ( )

*

* * *

1 2

Re

Re

t

t t t

npm m m

=

      ∂ ∂ ∂ + − − −        ∂ ∂ ∂        

H J J

J u d J u d J u d⋯

, (38) 

 { }*Re t

a =H J J  , (39) 

where J is the jacobian matrix. The second term of the full Hessian is often 

difficult to compute. Moreover, the first term of the full Hessian, approximate 

Hessian huge computing time and memory in order to calculate jacobian 

matrix. Shin et al. (2001) introduce pseudo Hessian matrix that estimate 

diagonal of the approximate Hessian matrix using virtual sources instead of 

jacobian matrix. In this thesis, the pseudo Hessian matrix is applied for 

preconditioning of the gradient direction. Since the pseudo Hessian matrix is 

either ill-conditioned or actually singular, a damping term is employed to 

regularize it and stabilize for non-linear problem (Levenberg, 1944; 

Marquardt, 1963). The regularized gradient at each frequency can be 

represented by 

 ( ) ( ){ } ( ) ( ) ( )
1

TT * T *1E diagf v v v

s s

β
−

−   
∇ = + −  

   
∑ ∑F F I F S u d , (40) 
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where 
s

∑  indicates the summation of all the shots, β is the damping term and 

I is the identity matrix. The gradient vector at each frequency is normalized 

with its largest absolute value and summed over all frequencies and this 

resultant gradient is normalized once again (Ha et al., 2009), as follows 

 ( ){ }E NRM NRM E f

f

∇ = ∇∑  , (41) 

where 
f

∑  indicates the summation of all the frequency and NRM indicates 

the normalization operator. 

We also apply the modified version (Ha et al., 2009) of the conjugate 

gradient method (Fletcher and Reeves, 1964). The conjugate gradient 

direction g is obtained by 

 (1) (1)E= −∇g  (42) 

 

T
( ) ( )

( ) ( ) ( 1)

T
( 1) ( 1)

E E
E NRM

E E

n n

n n n

n n

−

− −

 ∇ ∇   = −∇ +  
 ∇ ∇ 

g g  (43) 

where the superscript (n) is the iteration number and NRM is normalizing 

operator. The normalized conjugate gradient direction obtained in the previous 

iteration is used to compute the conjugate gradient direction at the present 

iteration. Consequently, the model parameter vector is updated by 

 ( 1) ( ) ( )n n nα+ = +m m g  (44) 

where α is the step length. 

 

3.4. Example of inversion in the logarithmic grid set 

We perform acoustic waveform inversion in the logarithmic grid set. We 
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first use the simple model shown in Figure 21a, where the high-velocity layer 

exists in the middle of the model. The dimension of the model is 4 km by 2 

km. We apply the inversion algorithms in the conventional and logarithmic 

grid sets to the same synthetic data generated in the conventional grid set with 

PML boundary condition. The maximum recording time is 3 s. We assume 

that 399 shot gathers are acquired with the interval of 10 m for field data. For 

the inversion in the logarithmic grid set, the field data should be transformed 

to the logarithmic grid set through interpolation. For initial guesses, the 

linearly increasing velocity model is used for the conventional method, 

whereas the exponentially increasing velocity model is employed for the 

logarithmic inversion. 

Figures 21b and 21c show the models inverted at the 200th iteration in the 

conventional and logarithmic grid sets. For comparison, the model inverted in 

the logarithmic grid set is converted to the conventional grid set through 

interpolation (Figure 21d). In Figure 21, we observe that for the shallow parts 

the logarithmic inversion yields better results than the conventional inversion, 

and vice versa. Although we use the same modeling algorithm to generate 

both field and modeled data in the conventional inversion, the logarithmic 

inversion recovers the second and third layers better than the conventional 

method. That is, some oscillating high-frequency phenomena are observed in 

the second layer obtained in the conventional grid set, but it is not in the 

logarithmic grid set. However, the resolution of the logarithmic inversion is 

not as good as that of the conventional inversion for deeper part, which may 

be because of the logarithmically increasing grid interval in the logarithmic 
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grid set. In Figure 22, we display depth profiles extracted in the middle of the 

inverted velocity models of Figures 21b and 21d as well as the true velocity 

model. Figure 22 shows that both the conventional and logarithmic inversion 

algorithms give reliable solutions.
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(a)                (b) 

    

(c)                (d) 

Figure 21. (a) True simple layered velocity model and inversion results obtained at the 200th iteration by using the (b) conventional and (c) 

logarithmic grid sets. For comparison, the logarithmic inversion result (c) is converted to the conventional grid set in (d).



 

 36 

 

Figure 22. Depth profiles at the center of the true velocity model (solid line) 

and the inverted velocity models generated in the conventional (dotted line) 

and logarithmic (dashed line) grid sets. 
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We proceed to perform the inversion for the synthetic data generated in the 

conventional grid set for the modified version of the Marmousi-2 model 

(Figure 5a) for both acoustic and elastic cases. We apply both the 

conventional and logarithmic inversion algorithms to the same synthetic data 

generated in the conventional grid set with PML boundary condition. 

For acoustic waveform inversion, the maximum recording time is 4 s. We 

assume that 899 shot gathers are acquired with the interval of 10 m for field 

data. For the inversion in the logarithmic grid set, the field data should be 

transformed to the logarithmic grid set through interpolation. Figures 23a and 

23b show models inverted at the 200th iteration using the conventional and 

logarithmic grid sets, respectively. For comparison, we also convert the model 

inverted in the logarithmic grid set to the conventional grid set through 

interpolation. Figure 24 shows depth profiles extracted from the inverted 

velocity models of Figures 23a and 23c as well as the true velocity model. In 

Figure 24, it is observed that velocities inverted by using the conventional and 

logarithmic grid sets are compatible with the true velocities. 
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(a) 

 

(b) 

 

(c) 

Figure 23. Inversion results obtained at the 200th iteration by using the (a) 

conventional and (b) logarithmic grid sets. For comparison, the logarithmic 

inversion result (b) is converted to the conventional grid set in (c). 
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(a) 

 

(b) 

Figure 24. Depth profiles at distances of (a) 4.5 km and (b) 6 km of the true 

velocity model (solid line) and the inverted velocity models generated in the 

conventional (dotted line) and logarithmic (dashed line) grid sets. 
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We compare the computing time required to perform acoustic waveform 

inversion in the conventional and logarithmic grid sets. Table 1 shows CPU 

times to iterate inversion process 200 times for the simple layered model and 

the Marmousi-2 model using 20 Intel Xeon E5640 2.66 GHz CPUs on the 

Linux-cluster machine. This indicates that it is more efficient to use the 

logarithmic grid, because we can reduce the number of grids. 

However, when the recording time increases, the boundary area of the 

model should also increase. For too long recording time, the logarithmic 

inversion becomes less efficient than the conventional inversion. We may 

conclude that the efficiency of the waveform inversion in the logarithmic grid 

set is dependent on the recording time. 

For the elastic waveform inversion, the maximum recording time is 5 s and 

we use 898 shot gathers for field data. In the elastic case, the frequency 

marching method is also employed over 5 stages: 0.2 ~ 2 Hz, 0.2 ~ 4 Hz, 0.2 

~ 6 Hz, 0.2 ~8 Hz, 0.2 ~ 10 Hz. For each frequency group, the inversion 

process is repeated for 30 iterations. Figure 25a shows the inverted model for 

P-wave velocity in the logarithmic set. Through interpolation, the inverted 

model on the logarithm scale is converted to the conventional grid set (Figure 

25b). Figure 26 shows depth profiles extracted from the true and inverted P-

wave velocity models for quantitative comparison. Figures 25b and 26 

indicate that inversion results obtained by the new elastic waveform inversion 

method are comparable to true values. 
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Table 1. CPU times required to perform the acoustic inversion for the simple 

layered model and the Marmousi-2 model for 200th iteration 

 

 

 

(a) 

 

(b) 

Figure 25．(a) P-wave velocity models inverted at the 200th iteration in the 

logarithmic grid set for the modified version of the Marmousi-2 model and (b) 

its interpolated version to the conventional grid set. 

Model 
Conventional grid 

set 

Logarithmic grid 

set 

Ratio 

(C/L) 

Simple layered 

model 
18330.65815 6323.366236 2.9 

Marmousi-2 model 112242.7616 22074.23556 5.1 
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(a) 

 

(b) 

Figure 26．Depth profiles at distances of (a) 4.5 km and (b) 6 km of the true 

velocity model (solid line) and the inverted velocity models. 
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4. Conclusions 

We developed new acoustic and elastic wave modeling and waveform 

inversion algorithms, which are performed in the logarithmic grid set. In the 

logarithmic grid set, since the grid interval increases logarithmically with 

distance, we require fewer grid points than in the conventional uniform grid 

set. Based on this feature, we can extend the given model without increasing 

computational efforts compared to the conventional method, so that edge 

reflections cannot be recorded at receivers within the recording duration. 

Since the number of additional grids used to extend the given model can be 

determined considering the recording duration, the efficiency of the new 

modeling and inversion algorithms is mainly dependent on the recording 

duration.  

In order to apply the new modeling and inversion algorithms in the 

logarithmic grid set, interpolation is needed. Field data acquired in the 

conventional uniform grid should be converted to the logarithmic grid set, and 

inversion results on the logarithmic scale need to be converted to the 

conventional uniform grid set. The new modeling algorithm yielded numerical 

solutions compatible with analytic solutions. However, we need to know that 

when the source is applied near the boundary of the given model where the 

grid interval is large, the seismograms can suffer from numerical dispersion. 

We examined if the numerical dispersion is serious in waveform inversion or 

not. Inversion results for the simple layered model showed that the 

logarithmic waveform inversion yields better results for the shallow part than 

the conventional waveform inversion, whereas for the deeper part the 
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resolution of the logarithmic waveform inversion is not as good as the 

conventional waveform inversion. By comparing the inversion results 

obtained by the logarithmic waveform inversion with those of the 

conventional method for the modified version of the Marmousi-2 model, we 

showed that the new logarithmic waveform inversion can be applied to the 

complicated model with computation efficiency. From all the inversion results, 

we noted that numerical dispersion does not seriously influence inversion 

results. The frequency marching method may contribute to reducing the 

influences of numerical dispersion in high frequencies. Although we only test 

the new modeling and inversion algorithms to 2D problems, their efficiency 

will be greater in 3D problems. We also feel that the new modeling and 

inversion methods may contribute to improving the efficiency of data 

acquisition.  
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초    록 
 

로그 격자군을 이용한 주파수 영역
에서의 음향파 및 탄성파 모델링 

과 파형 역산 
 

최 승 우 

에너지시스템공학부 

서울대학교 대학원 
 

경계조건은 탄성파 모델링의 정확성에 영향을 주는 요인 중 하나

이다. 지금까지 개발된 여러 종류의 경계조건들은 각자의 장점과 단

점을 가지고 있다. 모델의 크기를 확장시킴으로써 모델의 경계에서 

발생되는 반사파가 수진기에 기록되지 않게 하는 방법을 통해 이러

한 반사파를 완벽하게 없앨 수 있다. 모델의 크기를 키우면서 계산 

비용을 증가시키지 않게 하기 위해서, 로그 격자군에서의 음향파 및 

탄성파의 모델링 알고리듬을 제안하고자 한다. 로그 격자군이란 모

델 표면의 중앙으로부터 격자의 크기가 대수적으로 증가하는 격자

군을 의미한다. 이 방법은 로그 스케일의 성질에 의해 격자의 개수

를 줄일 수 있는 장점이 있다. 음향파 및 탄성파 모델링을 로그 격

자군에서 수행하기 위하여, 우선 균등한 스케일에서의 파동 방정식

을 로그 스케일로 변환시켜야 한다. 그 다음, 음향파 모델링의 경우

에는 일반적인 유한 차분법을, 탄성파 모델링의 경우에는 셀 기반의 

유한 차분법을 적용시킨다. 수치 예제들은 새로운 모델링 알고리듬

이 송신원이 큰 격자에 위치한 경우 분산에 의한 영향을 보여주지

만, 일반적으로 사용되는 모델링의 결과와 비슷한 결과를 제시하는 

것을 보여준다. 단순한 층 구조와 마무시-2 모델에서의 역산 결과들

은 로그 격자군에서의 역산 알고리듬 역시 일반 격자와 비슷한 결
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과를 내는 것을 보여준다. 뿐만 아니라, 분산에 의한 효과는 거의 

무시할 만 하며, 기록 시간이 길지 않을 경우 계산량이 줄어드는 효

과가 있다. 

 

주요어 : 음향파, 탄성파, 모델링, 파형 역산, 로그 격자군 
학  번 : 2011-21113 
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