저작자표시-동일조건변경허락 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.
- 이차적 저작물을 작성할 수 있습니다.
- 이 저작물을 영리 목적으로 이용할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

동일조건변경허락. 귀하가 이 저작물을 개작, 변형 또는 가공했을 경우에는, 이 저작물과 동일한 이용허락조건하에서만 배포할 수 있습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer ☑️
Underwater sound damper modeling using encapsulated bubbles
Underwater sound damper modeling using encapsulated bubbles

지도교수 성 우 제

이 논문을 공학석사 학위논문으로 제출함
2013년 2월

서울대학교 대학원
산업·조선 공학부
조세현

조세현의 공학석사 학위논문을 인준함
2012년 12월

위원 장
부위원장
위원
초 록

해상 말뚝 항타 시공에 따른 소음 피해 현상이 대두됨에 따라 이를 예방하기 위한 수중소음 저감 대책에 대한 관심이 커지고 있다. 기존에 사용되던 수중소음 저감 장치로는 해상 말뚝 주위에 코퍼댐을 설치하거나 압축 공기를 쏴주는 방법 등이 있으나 경제적 비효율성과 목표 주파수 설정의 어려움 등의 한계를 갖고 있다. 이에 비해 공기 방울의 표면을 고무와 같은 특수한 장치로 처리한 Encapsulated bubble은 기존 소음 저감 장치의 단점을 해결할 수 있어 향후 항타 시공 소음 저감 장치로써 각광받고 있다.

본 논문에서는 encapsulated bubble을 사용한 소음 저감 장치를 다중 산란 모델과 encapsulated bubble의 산란 함수를 이용하여 모의하였다. 이를 통해 불규칙한 bubble 경계층에서 특정 주파수 대역의 음파가 전달되지 못하는 음향 감쇠 현상이 encapsulated bubble 경계층에서는 어떻게 변화하는지 살펴보았으며, 소음 저감 장치의 조건(bubble 경계층의 두께, 공극률, 반지름)을 변화시켰을 때 소음 저감 정도의 변화를 확인하였다.

주요어 : Encapsulated bubble, 수중소음 저감, 해상 말뚝 항타
학번 : 2011-21192
목 차

초 록 ... i

표 목차 .. iv

그림 목차 ... v

1. 서론 ... 1
 1.1 연구 배경 및 현황 .. 1
 1.2 음향 집속 현상 ... 5
 1.3 논문 구성 .. 8

2. 다중 산란 모델 .. 9
 2.1. 자기 완성 방정식 .. 9
 2.2. 계산 알고리즘 ... 11

3. 산란 함수 계산 ... 13
 3.1. 단일 공기 방울의 산란 함수 ... 13
 3.2. Church model for encapsulated bubble 17

4. 수치 계산 결과 ... 24
 4.1. 계산 조건 ... 24
 4.2. Encapsulated bubble의 음향 집속 현상 27
 4.3. 소음 저감 효과 비교 .. 30
표 목차

표 1. 변수 변화에 따른 계산 조건 분류 ... 30
표 2. 계산 결과 ... 36
그림 목차

그림 1. 해상 말뚝 항타 시공 .. 1
그림 2. 소음 저감 장치(coffer dam) .. 3
그림 3. 소음 저감 장치(air curtain) ... 3
그림 4. 해상 말뚝 항타 스펙트럼 .. 3
그림 5. 소음 저감 장치(Encapsulated bubble) 4
그림 6. 공기 방울 산란체 생성 ... 6
그림 7. ka에 따른 Intensity ... 7
그림 8. 임의의 점에서의 음압(입사파+산란파) 10
그림 9. 단극자로 가정한 산란체 ... 11
그림 10. Encapsulated bubble 개요도 ... 17
그림 11. 주파수에 따른 Encapsulated bubble 감쇠 계수 22
그림 12. Encapsulated bubble 산란체 생성 24
그림 13. Encapsulated bubble 경계층 모식도 25
그림 14. 공기 방울 경계층의 noise reduction level
(두께 10cm, 공극률 0.01, 반지름 10cm) .. 28
그림 15. E_bubble 경계층의 noise reduction level
(두께 10cm, 공극률 0.01, 반지름 10cm)_Case3 28
그림 16. 거리에 따른 음향 파워 .. 29
그림 17. E_bubble 경계층의 noise reduction level
(두께 10cm, 공극률 0.01, 반지름 5cm)_Case1 ...31

그림 18. E_bubble 경계층의 noise reduction level
(두께 20cm, 공극률 0.01, 반지름 5cm)_Case2 ...31

그림 19. E_bubble 경계층의 noise reduction level
(두께 20cm, 공극률 0.01, 반지름 10cm)_Case4 ...32

그림 20. E_bubble 경계층의 noise reduction level
(두께 10cm, 공극률 0.005, 반지름 5cm)_Case5 ...32

그림 21. E_bubble 경계층의 noise reduction level
(두께 20cm, 공극률 0.005, 반지름 5cm)_Case6 ...33

그림 22. 해상 말뚝 항타 소음 발생 특성 ..42

그림 23. 해상 말뚝 항타 FEM 모델링 결과 예시 ...43
1. 서론

1.1. 연구 배경 및 현황

해상 풍력 발전 단지 조성이나 항만 신축, 보수 공사 등과 같은 건설 시공에 따른 해상 말뚝 항타 시공이 늘어남에 따라 이와 관련한 소음 피해 현상도 함께 대두되고 있다. 항타 시공시에 발생하는 소음이 해양 포유류나 어류 등의 수서생물의 먹이 활동이나 기타 생리에 해로운 영향을 미칠 수 있다는 사실이 부각되면서 일부 국가에서는 항타 시공이 일어난 지점에서 기준 거리만큼 떨어진 곳에서의 소음이 기준치를 넘어가지 않도록 제한하는 법규를 제정하였다.[1] 이 같은 규제가 점차적으로 늘어나는 상황에 따라 항타 시공으로 인해 발행하는 소음이 기준치에 부합할 수 있도록 하는 효과적인 수중소음 저감 장치에 대한 관심 역시 증가하고 있다.

그림 1. 해상 말뚝 항타 시공
항타 소음을 줄이는 방법은 크게 두 가지로 나눌 수 있다. 하나는 소음 발생 메커니즘의 음원 준위를 낮추는 방법이고 또다른 하나는 음원으로부터 소음이 전달되는 경로를 수정하여 관심영역에서 측정되는 소음을 줄이는 방법이다. 소음 발생 메커니즘의 음원 준위를 낮추기 위해 미국 워싱턴주 운수부 (Washington State Department of Transportation)가 말뚝 캡 (pile cap)의 소재를 변경해가면서 소음 저감 정도를 측정한 바 있다. [2] 비록 변경된 말뚝 캡이 항타 소음을 줄이는 역할을 하긴 하지만 이는 말뚝에 가해지는 에너지 또한 감소시켜 효율적인 소음을 감소 방안이라 할 수 없다. 따라서 항타 소음 저감 방안으로는 음원으로부터 소음이 전달되는 경로를 수정하는 방법이 주로 쓰인다. 이 방법을 이용한 기존 수중소음 저감 장치로는 해상 말뚝 주위에 코퍼댐을 설치 (그림 2)하거나 압축 공기를 해상 말뚝 주위에 쏴주는 방법 (그림 3) 등이 있다. 해상 말뚝 주위에 코퍼댐을 설치하는 방법은 매우 효과적인 소음 저감 방법이긴 하지만 설치가 용이하지 않고 경제적으로 비효율적이라는 단점이 있다. 또한 압축 공기를 쏴주는 방법 역시 항타 작업시마다 압축 공기를 쏴줘야 한다는 점에서 경제적 효율성을 장담할 수 없고, 공기 방울의 크기가 제한된다는 점에서 저주파 대역을 저감할 수 없다는 한계를 갖고 있으며 이는 항타 시공 소음에서 저주파 대역이 주요 소음원 (그림 4)인 것을 감안할 때 치명적인 단점으로 작용한다.
그림 2. 소음 저감 장치(cofferdam)

그림 3. 소음 저감 장치(air curtain)

그림 4. 해상 말뚝 항타 스펙트럼[3]
이 같은 상황에서 공기 방울의 표면을 고무와 같은 특수한 장치로 처리한 encapsulated bubble(이하 E_bubble)은 기존 소음 저감 장치의 단점을 해결할 수 있어 향후 항해 시공 소음 저감 장치로서 각광받고 있다. 풍량, 해류 등의 영향으로 수 cm의 크기를 유지하기 힘든 일반 공기 방울[4]에 비해 E_bubble은 큰 크기를 유지하기 용이해 저주파 대역의 소음을 저감할 수 있으며, 일단 한번 제작되면 설치와 해체가 간편하여 경제적으로도 우수한 소음 저감 장치로 평가받아 이와 관련한 실험적, 이론적 연구가 최근 들어 이루어지고 있다.[1][5]

그림 5.
소음 저감 장치(Encapsulated bubble)

본 논문에서는 차세대 수중소음 저감 장치로 E_bubble이 널리 이용될 것이라 보고, 이를 사용한 소음 저감 장치를 다중 산란 모델과 E_bubble의 산란 함수를 이용하여 모의하였다. 또한 소음 저감 장치의 조건(E_bubble 경계층의 두께, 공극률, E_bubble 반지름)을 변
화시켰을 때 소음 저감 정도의 변화를 계산하여 이 모의범의 타당성 을 확인하였다.

1.2. 음향 집속 현상(Acoustic localization)

Ye는 무한 매질에서 불규칙한 산란체 배열(공기 방울 경계층)이 존재할 때 특정 주파수 대역의 음파가 전달되지 못하는 음향 집속 현상을 공기 산란체에 대한 Foldy의 다중 산란 방정식[6]과 자기 완성 방정식(Self-consistent equation)을 이용하여 모의한 바 있다[7][8]. 식에 대한 자세한 설명은 2장에서 하도록 한다. 이 같은 현상을 확인하기 위해 그림 6과 같이 음원 주위에 반지름 2cm인 공기 방울 300개를 공극률 0.01이 되도록 배열한 후 ka의 변화에 따른 인텐서티(Intensity) 변화를 계산하였다.(그림 7)
그림 7에서 빨간색 실선은 전체 인텐서티(Total intensity, $I_T = \langle |p|^2 \rangle$)를 나타내고 파란색 점선은 간섭 인텐서티(Coherent intensity, $I_C = |\langle p \rangle|^2$)를 나타낸다. 전체 인텐서티에서 간섭 인텐서티를 뺀 값이 비간섭 인텐서티(Incoherent intensity)이며 이 값이 클수록 에너지의 분산 현상이 많이 일어난다고 할 수 있다. 인텐서티 곡선을 통해 ka가 약 0.017인 부근에서 강한 음향 응집이 발생하는 것을 확인할 수 있고 이보다는 약하지만 ka가 0.1인 곳까지 음향 응집이 일어나는 것을 알 수 있다.
본 논문에서는 E_bubble을 이용한 수중소음 저감 장치의 모의법을 이와 유사한 방법을 이용하여 제안하였다. 이를 이용하여 음향흡수 현상이 E_bubble 경계층에서도 나타나는 것을 확인하였으며, 일반 공기 방음과 비교하여 어떻게 변화하는지 확인하였다.
1.3. 논문 구성

본 논문의 구성은 다음과 같다.

1장에서 본 연구의 배경 및 현황, 음향 집속 현상과 논문의 구성에 대해 설명하였다. 2장에서는 다중 산란 방정식을 이용하여 산란체 배열이 존재할 때 음장을 계산하는 법을 기술하였으며, 3장에서는 2장에서 설명한 다중 산란 모델을 E_bubble로 확장하기 위해 E_bubble의 산란 함수를 구하는 법을 설명하였다. 4장은 수치 계산 결과로 재안된 모의법을 통해 음향 집속 현상이 E_bubble 경계층에서는 어떻게 변화하는지 살펴보았으며, 소음 저감 장치의 조건 변경에 따른 소음 저감 정도의 변화를 확인하였다. 마지막으로 5장에서는 논문 요약과 함께 추후 기대되는 효과를 기술하였다.
2. 다중 산란 모델

2.1. 자기 완성 방정식

균일한 무한 매질에서 \(N \)개의 산란체가 존재할 때, 산란체 사이 공간의 음압 \(p \)는 다음의 지배 방정식을 만족한다.

\[
\nabla^2 p(\vec{r}) + k^2 p(\vec{r}) = 0
\]

\(k = 2\pi/\lambda \)이며 산란체를 둘러싸고 있는 매질의 파수이다.

필드 \(\vec{r} \) 지점에서의 음압은 점 음원으로부터 입사하는 파 \(p_0(\vec{r}) = e^{ikr}/r \)와 \(N \)개의 산란체들로부터 입사하는 파 \(p_s(\vec{r}; i) \)로 구성된다고 할 수 있다.(그림 8)

\[
p(\vec{r}) = p_0(\vec{r}) + \sum_{i=1}^{N} p_s(\vec{r}; i)
\]

그런데 \(p_s(\vec{r}; i) \)는 점 음원과 \(i \)번째 산란체를 제외한 \(N-1 \)개의 산란체로부터 \(i \)번째 산란체로 입사하는 파가 산란되어 입사한다.

\[
p_s(\vec{r}; i) = f_i \left(p_0(\vec{r}_i) + \sum_{j=1, j \neq i}^{N} p_s(\vec{r}_i; j) \right) e^{ik|\vec{r} - \vec{r}_i|} / |\vec{r} - \vec{r}_i|
\]

\(f_i \)는 \(i \)번째 산란체의 산란 함수(Scattering function)로 산란되는 에너지가 재분배되는 현상을 설명한다. 이에 대해서는 다음 장에서 보
다 자세히 알아보도록 한다.

식 (3)의 산란파가 다른 \(i\)번째 산란체가 아닌 다른 산란체로 입사한다고 하면 다음의 자기 완성 방정식을 세울 수 있다.

\[
p_s(\vec{r}_i;i) = f\left(p_0(\vec{r}_i) + \sum_{j=1, j \neq i}^{N} p_s(\vec{r}_i;j) \right) \frac{e^{ik|\vec{r}_i - \vec{r}_j|}}{|\vec{r}_i - \vec{r}_j|},
\]

\[
(i, j = 1, 2, ..., N, \text{ but } i \neq l)
\]

식 (4)를 이용해 계산한 산란파와 점 음원으로부터 입사하는 파를 합하여 식 (2)처럼 필드 \(\vec{r}\) 지점에서의 음압을 계산할 수 있다. 다음 절에서는 식 (4)의 자기 완성 방정식을 풀기 위한 알고리즘을 설명 하도록 한다.

그림 8. 임의의 점에서의 음압(입사파+산란파)
2.2. 계산 알고리즘

그림 9와 같이 \(i \)번째 산란체에서 파가 산란되어 나가는 현상을 \(i \)
번째 산란체에 위치한 단극자(monopole)가 진동한다고 생각하면 식 (4)를 다음과 같이 정리할 수 있다.

\[
p_s(r_i; i) = f_i\left(p_0(r_i) + \sum_{j=1, j \neq i}^{N} p_s(r_i; j)\right)e^{ik|\vec{r}_i - \vec{r}|} = A_i e^{ik|\vec{r}_i - \vec{r}|}
\]

(5)

그림 9. 단극자로 가정한 산란체

계수 \(A_i \)는 다음과 같이 정리된다.

\[
A_i = f_i\left(p_0(r_i) + \sum_{j=1, j \neq i}^{N} p_s(r_i; j)\right) = f_i\left(p_0(r_i) + \sum_{j=1, j \neq i}^{N} A_j G(\vec{r}_i, \vec{r}_j)\right)
\]

(6)

\(G(\vec{r}, \vec{r}_i) \)는 무한영역 Green 함수로 \(G(\vec{r}, \vec{r}_i) = \frac{e^{ik|\vec{r} - \vec{r}_i|}}{|\vec{r} - \vec{r}_i|} \)이다.
12개의 산란체가 모두 동일하다면 산란 함수 \(f_i \)가 모두 동일할 것이고 식 (6)은 다음과 같이 정리된다.

\[
\sum_{j=1, j
eq i}^{N} f A_j G(\overrightarrow{r_i}, \overrightarrow{r_j}) - A_i = -fp_0(\overrightarrow{r_i})
\] \((7) \)

식 (7)을 계수 \(A_i \)로 묶고 선형 행렬 방정식으로 표현하면 다음과 같다.

\[
M_{ij}A_j = \delta_i
\]

\[
M_{ij} = \begin{cases}
 f G(\overrightarrow{r_i}, \overrightarrow{r_j}) & (i \neq j) \\
 -1 & (i = j)
\end{cases}
\]

\[
\delta_i = -fp_0(\overrightarrow{r_i}) = -f G(\overrightarrow{r_0}, \overrightarrow{r_j})
\] \((8) \)

산란 함수와 Green 함수로부터 계산된 행렬 \(M_{ij} \)의 역행렬을 식 (8)의 양변에 곱하여 계수 \(A_i \)를 구할 수 있으며 식 (5)와 (2)를 사용해 필드 \(\mathbf{r} \) 지점에서의 음압을 계산할 수 있다.
3. 산란 함수 계산

앞선 장에서 살펴본 다중 산란 모델을 이용하여 E_bubble이 배열된 필드에서의 음압을 구하기 위해서는 산란 함수에 대한 이해가 필요하다. 본 장에서는 일반 공기 방울의 산란 함수를 계산하는 법을 설명한 후, 이 산란 함수와 산란 함수의 변수가 E_bubble에서 어떻게 변하는지 살펴보기 위해 Church의 모델을 소개하도록 한다.

3.1. 단일 공기 방울의 산란 함수

등방성 단일 공기 방울의 산란 함수는 여러 문헌을 통해 다루어진 바 있으며 다음과 같은 식으로 나타난다.[9][10]

\[f = \frac{\alpha}{\omega_0^2/\omega^2 - 1 - i(\delta/\omega)} \]

(9)

\(\omega_0\)는 공진 주파수(resonant frequency), \(\delta\)는 감쇠 계수(damping constant)이다.
공기 방울의 크기가 파장의 길이보다 상당히 작다고 가정하면 음 압 \(p \)는 공기 방울의 표면에서 일정하다고 할 수 있고 이를 다음과 같이 둔다.

\[
p = p_0 e^{-iat}
\]
(10)

한편 공기 방울이 단열 팽창할 때 압력과 부피의 관계는 다음과 같다.

\[
\frac{p}{P} = -\gamma \frac{dV}{V}
\]
(11)

\(\gamma \)는 비열 계수 이고 공기의 경우 1.4이며 \(P \)는 평균 압력이다.

공기 중에서 \(\gamma P = \rho_a c_a^2 \)의 관계가 있으므로 다음의 방정식이 성립한다.

\[
- \frac{\partial p}{\partial t} = i\omega p = \frac{3\rho_a c_a^2}{4\pi a^3} \frac{\partial V}{\partial t} = \frac{3\rho_a c_a^2}{a} v_r
\]
(12)

공기 방울에서 산란되는 파를 공기 방울의 중심으로부터 방사하는 진행파와 같은 꼴로 놓는다.

\[
p_s = \frac{A}{r} e^{ikr - iwt}
\]
(13)

\(\omega = kc_w \)이고 \(\rho_w, c_w, \rho_a, c_a \)는 각각 공기와 물의 밀도와 음속이다.
공기 방울 표면을 기준으로 안쪽과 바깥쪽의 압력은 같아야하고 이를 식 (12)와 결합하여 정리하면 다음과 같다.

\[p_0 = p + p_s, \ at \ r = a \] \hspace{1cm} (14)

\[p = -i \left(\frac{3 \rho_a c_a^2}{\omega} \right) v_r, \ at \ r = a \] \hspace{1cm} (15)

\(ka \)가 작다는 가정 하에 \(e^{ika} \approx 1 \)로 놓고 식 (14)와 (15)식을 정리하면 다음과 같다.

\[p_0 - \frac{A}{r} = \frac{3 \rho_a c_a^2}{\rho_u \omega^2 a^3} A - i \frac{3 \rho_a c_a^2}{\rho_u \omega^2 c_w} A \] \hspace{1cm} (16)

식 (16)을 \(A \)에 대해 정리하여 식 (13)에 대입하면 다음과 같다.

\[p_s = \frac{a p_0}{(\omega / \omega_0)^2 - 1 - i(B/\omega)} \frac{e^{ikr - i\omega t}}{r}, \]

\[\omega_0^2 = 3 \rho_a c_a^2 / a^2 \rho_u, \ B = 3 \rho_a c_a^2 / a \rho_u c_w \] \hspace{1cm} (17)

여기서 \(f \)를 다음과 같이 정의할 수 있으며 이는 식 (9)와 \(\delta / \omega \) 항목을 제외하고 일치한다.

\[f = \frac{a}{\omega^2 - 1 - i(B/\omega)} \] \hspace{1cm} (18)
한편 B는 구 표면의 방사 저항을 의미하는데 실제 환경에서는 점성 등의 다른 요인으로 인해 손실이 발생하고 또 공기 방울이 완벽한 단열 팽창하지 않으므로 보다 큰 값을 사용해야 하고 따라서 B/ω를 감쇠 계수 δ/ω로 바꾸어 사용한다.
3.2. Church model for encapsulated bubble

Gr. 10 and the encapsulated bubble are surrounded by a shell. Church derived an analytical solution for the bubble model. In this section, we will discuss how the scattering function changes as the gas in the bubble is replaced by E_bubble.

\begin{equation}
\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} \right) = - \frac{\partial p}{\partial r} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 T_{rr} \right) - \frac{T_{\theta \theta} + T_{\phi \phi}}{r}
\end{equation}

(19)
뉴턴 유체와 단성 고체에서 $T_{rr} = -(T_{\theta\theta} + T_{\phi\phi})$의 관계가 있는 것을 이용하여 식 (19)를 r에서 무한 영역까지 적분하여 정리하면 다음과 같다.

\[
\rho_s R_1 \dot{U}_1 \left[1 + \left(\frac{\rho_L - \rho_s}{\rho_s}\right) \frac{R_1}{R_2}\right] + \rho_s U_1^2 \left[\frac{3}{2} + \left(\frac{\rho_L - \rho_s}{\rho_s}\right) \left(\frac{4R_1^3 - R_1^3}{2R_2^3}\right) \frac{R_1}{R_2}\right]
= P_s(R_1, t) - P_s(R_2, t) + P_L(R_2, t) - P_\infty(t) + T_{S,rr}(R_2, t) - T_{S,rr}(R_1, t) - T_{L,rr}(R_2, t)
+ 3 \int_{R_1}^{R_2} \frac{T_{S,rr}}{r} \, dr + 3 \int_{R_2}^{\infty} \frac{T_{L,rr}}{r} \, dr
\] (20)

한편 두 경계층에서의 경계 조건(boundary condition)은 다음과 같다.

\[
P_G(R_1, t) = P_s(R_1, t) - T_{S,rr}(R_1, t) + \frac{2\sigma_1}{R_1}, \quad r = R_1
\] (21)

\[
P_s(R_2, t) - T_{S,rr}(R_2, t) = P_L(R_2, t) - T_{L,rr}(R_2, t) + \frac{2\sigma_2}{R_2}, \quad r = R_2
\] (22)

식 (20)-(22)를 정리하면 다음과 같은 확장된 Rayleigh–Plesset 방정식(generalized Rayleigh–Plesset equation)을 구할 수 있다.

\[
R_1 \dot{U}_1 \left[1 + \left(\frac{\rho_L - \rho_s}{\rho_s}\right) \frac{R_1}{R_2}\right] + U_1^2 \left[\frac{3}{2} + \left(\frac{\rho_L - \rho_s}{\rho_s}\right) \left(\frac{4R_1^3 - R_1^3}{2R_2^3}\right) \frac{R_1}{R_2}\right]
= \frac{1}{\rho_s} \left(P_G(R_1, t) - P_\infty(t) - \frac{2\sigma_1}{R_1} - \frac{2\sigma_2}{R_2} + 3 \int_{R_1}^{R_2} \frac{T_{S,rr}}{r} \, dr + 3 \int_{R_2}^{\infty} \frac{T_{L,rr}}{r} \, dr\right)
\] (23)
몇 가지 가정들을 통해 식 (23)은 다음과 같이 변형된다.[10]

\[R_1 \ddot{U}_1 \left[1 + \left(\frac{\rho_L - \rho_S}{\rho} \right) \frac{R_1}{R_2} \right] + U_1^2 \left[\frac{3}{2} + \left(\frac{\rho_L - \rho_S}{\rho} \right) \left(\frac{4R_2^3 - R_1^3}{2R_2^3} \right) \frac{R_1}{R_2} \right] = \frac{1}{\rho_S} \left[P_{G, eq} \left(\frac{R_{01}}{R_1} \right)^{3\kappa} - P_\infty (t) \right] - \frac{2\sigma_1}{R_1} - \frac{2\sigma_2}{R_2} \\
- 4 \frac{U_1}{R_1} \left(\frac{V_S \mu_S + R_1^3 \mu_L}{R_2^3} \right) - 4 \frac{V_S G_S}{R_2^3} \left(1 - \frac{R_{e1}}{R_1} \right) \right] \] (24)

\[V_S = R_0^3 - R_{01}^3, \]

\[R_{e1} = R_{01}(1 + Z) = R_{01} \left[1 + \left(2\frac{\sigma_1}{R_{01}} + 2\frac{\sigma_2}{R_{02}} \right) \left(\frac{R_{02}^3}{V_S} \right) (4G_S)^{-1} \right] \]이다.

식 (24)에 진동 진폭 \(R_{01} x(t) \)가 작다고 가정한 해인 식 (25)를 대입하여 정리한 결과는 식 (26)과 같다.

\[R_1 = R_{01}(1 + x), \quad U_1 = R_{01} \dot{x}, \quad \ddot{U}_1 = R_{01} \dddot{x}, \quad R_1^{-1} = R_{01}^{-1}(1 - x + x^2), \]

\[R_1^{-3\kappa} = R_{01}^{-3\kappa} \left(1 - 3\kappa x + \frac{3\kappa(3\kappa + 1)}{2} x^2 \right), \quad R_2 = R_{02}(1 + y), \]

\[y = \frac{R_{03}^3}{R_{02}^3} \left(1 - \frac{R_{03}^3}{R_{02}^3} \right) x^2 + x, \quad y^2 = \frac{R_{01}^6}{R_{02}^6} - x^2, \quad P_\infty(t) = P_0 - P_A \sin \omega t \] (25)

\[\dddot{x} \left[1 + (1 + \alpha_a) x \right] + \frac{3}{2} \left(1 + \frac{\alpha_a}{3} \right) \dot{x} + (\delta_d - \delta_{da} x) \dot{x} + \omega_0 x - \omega_{0a} x^2 \]

\[= P_A \left(\rho_S R_{01}^2 \alpha \right) \sin \omega t \] (26)
선형 항목:

\[
\alpha = \left[1 + \left(\frac{\rho_L - \rho_S}{\rho_S} \right) \frac{R_{01}}{R_{02}} \right],
\]

\[
\delta_d = 4 \left(\frac{V_S \mu_S + R_{01}^3 \mu_L}{R_{02}^3} \right) \left(\rho_S R_{01}^2 \alpha \right)^{-1},
\]

\[
\omega_0^2 = \left(\rho_S R_{01}^2 \alpha \right)^{-1} \left\{ 3\kappa P_0 - \frac{2\sigma_1}{R_{01}} - \frac{2\sigma_2 R_{01}^3}{R_{02}^4} + 4 \frac{V_S G_S}{R_{02}^3} \left[1 + \left(1 + \frac{3R_{01}^3}{R_{02}^3} \right) \right] \right\}
\] (27)

비선형 항목:

\[
\alpha_n = \left(\frac{\rho_L - \rho_S}{\rho_S} \right) \frac{V_S R_{01}^4}{\alpha R_{02}^4},
\]

\[
\delta_{dn} = \delta_d \left(1 + \frac{3R_{01}^3}{R_{02}^3} \right) - \frac{12R_{01}^3 \mu_L}{\rho_S R_{02}^3 \alpha},
\]

\[
\omega_0^2 = \left(\rho_S R_{01}^2 \alpha \right)^{-1} \left\{ \frac{3\kappa (3\kappa + 1)}{2} P_0 - \frac{2\sigma_1}{R_{01}} - \frac{2\sigma_2 R_{01}^3}{R_{02}^7} \left(R_{01}^3 - V_S \right) \right. \\
+ \left. 4 \frac{V_S G_S}{R_{02}^3} \left[\left(1 + \frac{3R_{01}^3}{R_{02}^3} \right) + \left(1 + \frac{9R_{01}^6}{R_{02}^6} \right) \right] \right\}
\] (28)

한편 식 (23)의 확장된 Rayleigh–Plesset 방정식과 공극(cavity)이 존재할 때의 저배방정식을 이용하여 혼합 매질에서의 음속을 식 (29)와 같이 구할 수 있다. 이를 일반 공기 방울이 섞여있는 매질에서의 음속 식[12]인 식 (30)과 비교하면 \(E_{bubble} \)의 산란 함수가 식 (31)과 같이 나타날 수 있다.
\[
\frac{c^2}{c_m^2} = 1 + \frac{4\pi c^2 \rho_L}{\alpha \rho_S} \int_0^{\omega_0} \frac{R_0 n(R_0) dR_0}{\omega_0^2 - \omega^2 + j\omega \delta_d} \tag{29}
\]

\[
\frac{c^2}{c_m^2} = 1 + \frac{4\pi c^2}{\alpha \rho_S} \int_0^{\omega_0} \frac{R n(R) dR}{\omega_0^2 - \omega^2 + j\omega \delta_d} \tag{30}
\]

\(n(R) dR\)은 \(R\)과 \(R + dR\) 사이에 존재하는 단위체적공기 방울수이다.

\[
f_e = \frac{R_0}{\omega_0^2/\omega^2 - 1 - i(\delta_d/\omega)} \frac{\rho_L}{\alpha \rho_S} \tag{31}
\]

식 (31)에 식 (27)로 나타나는 변수들을 사용하여 \(E_{\text{bubble}}\)의 산란함수를 얻을 수 있다. 그런데 식 (27)에서 구한 감쇠계수는 점성에 의한 감쇠만이 고려된 것으로 실제환경에서는 음파가 방사하면서 생성되는 음향감쇠(acoustic damping)와 방울의 수축팽창에 따라 열이 발생하면서 생성되는 열감쇠(thermal damping)를 추가로 고려해야 한다. 이에 따른 감쇠계수의 식은 다음과 같다.

\[
\delta_d = 4 \left[\frac{V_s \mu_s + R_{01}^3 \mu_L}{R_{02}^3} \right] \left(\rho_s R_{01}^2 \alpha \right)^{-1}
\]

\[+ 4\mu_{th} \left(\rho_s R_{01}^2 \alpha \right)^{-1} + \omega \left(\frac{\omega R_{01}}{c} \right) \left[1 + \left(\frac{\omega R_{01}}{c} \right)^2 \right]^{-1} \tag{32}
\]

반지름의 크기가 10cm이고 깅질(Shell)의 두께가 1mm인 E_bubble의 감쇠 계수를 그래프로 그리면 그림 11과 같다. 그림 11에 통해 이 크기의 E_bubble에서는 일반적으로 음향 감쇠가 전체 감쇠 계수에 지배적인 영향을 미치지만 저주파 영역에서는 열 감쇠의 영향이 점차적으로 커지는 것을 확인할 수 있다.

그림 11. 주파수에 따른 Encapsulated bubble 감쇠계수

식 (27)의 공진 주파수를 살펴보면 일반 공기 방울의 공진 주파수 식인 Minnaert 식[14](ω₀ = \frac{1}{R} \sqrt{\frac{3\kappa P}{\rho_L}})과 비교할 때 E_bubble 깅질의 강성률(rigidity)이 공진 주파수에 영향을 준다는 것을 알 수 있다. 강성률이 작을 때는 E_bubble의 공진 주파수가 일반 공기 방울
과 유사해지지만 강성률이 커지면서 점차적으로 방울의 크기보다는
강성률이 공진 주파수에 지배적으로 영향을 미친다. 또한 일반 공기
방울은 공진 주파수가 음파의 주파수에 대해 영향을 받지 않았지만
E_bubble의 경우 음파의 주파수가 변화하면 공진 주파수 역시 함께
변화함을 알 수 있다.
4. 수치 계산 결과

4.1. 계산 조건

해상 말뚝 항타 시공이 서해에서 이루어지는 상황을 가정하여 천해(shallow water) 영역에 설치된 수중소음 저감 장치를 모의하였다.(그림 12) 해상 말뚝 주위를 E_bubble이 원통형으로 둘러싸도록 하였으며 원통의 길이는 15m, 원통의 반지름은 1.2m이다. 음원은 원통의 중앙 위치에 오도록 하였다.

그림 12. Encapsulated bubble 산란체 생성
E_bubble의 껍질은 고무로 이루어졌다고 생각하고 강성률 18Mpa, 점도(viscosity) 2Pa·s, 밀도 1300kg/m^3로 설정하였으며, 표면장력(surface tension)은 공기 방울과 껍질 표면에서 40 \times 10^{-3} N/m, 껍질과 물 표면에서 5 \times 10^{-3} N/m의 값을 사용하였다. 껍질의 두께는 1mm로 설정하였다.

한편 원통의 반지름을 \(R \), 길이를 \(L \), 유효두께(저감 장치 경계층)를 \(h \)라 하면(그림 13) 공극률은 식 (33)과 같이 결정되며 이 식을 통해 저감 장치 경계층의 유효두께와 공극률을 정하면 경계층 안에 들어있는 E_bubble의 개수가 정해지는 것을 알 수 있다.

\[
\beta = \frac{N \cdot \frac{4}{3} \pi a^3}{\frac{\pi (R + h)^2 - \pi R^2}{L}}
\]
(33)

\(N \)과 \(a \)는 각각 E_bubble의 개수와 반지름이다.

그림 13. Encapsulated bubble 경계층 모식도
본 논문에서는 저감 장치 경계층의 두께와 공극률 변화에 따른 소음 저감 장치의 효과를 분석하고자 한다. 이와 함께 두 변수는 일정하게 두고 E_bubble의 반지름을 변화시킬 때의 소음 저감 장치의 효과 분석도 수행하였다. 한편 원통 경계층안의 E_bubble들의 위치는 앞서 말한 조건들을 만족하는 임의의 위치에 생성되도록 하였다. 그리고 풍랑, 해류 등의 영향으로 E_bubble들의 위치가 변화하는 것을 고려하여 계산 조건 한 경우 당 200번의 계산을 수행한 후 그 값을 평균하였다.
4.2. Encapsulated bubble의 음향 집속 현상

일반 공기 방울의 음향 집속 현상을 확인하기 위해 경계층의 유 효두께 10cm, 공극률 0.01, 공기 방울 반지름 10cm로 두고 왕통 반 지름 R의 30배 지점에서 ka에 대한 Noise reduction level 변화를 그래프로 나타내면 그림 14와 같다. 강한 음향 응집이 발생하는 지 점은 ka가 약 0.017인 부근인데 이는 서론에서 살펴본 값과 동일하 다. Minnaert 식과 비교하면 공기 방울의 반지를 크기에 상관없이 ka는 일정해야 함을 알 수 있다. 한편 이와 동일한 조건에서 산란 함수만 E_{bubble}의 것을 사용하여 계산한 그래프는 그림 15이다. 그 림 14와 그림 15 두 그래프의 비교를 통해서 일반 공기 방울이 E_{bubble}로 변화함에 따라 음향 집속 현상이 변화함을 알 수 있다. 그림 14에 비해 그림 15의 그래프의 비간섭 인텐서티 값이 큰 것을 확인할 수 있는데 E_{bubble}을 사용했을 때 에너지의 분산 현상이 보다 많이 일어날음을 확인할 수 있다. 또한 같은 반지를 크기임에도 불구하고 공진 주파수의 위치가 확연히 달라진 것을 알 수 있는데 이는 E_{bubble}의 경우 껍질의 강성률이 공진 주파수를 결정하는데 지배적인 영향을 주기 때문이다(식 (28) 참고).
그림 14. 공기 방울 경계층의 noise reduction level
(두께 10cm, 공극률 0.01, 반지름 10cm)

그림 15. E_bubble 경계층의 noise reduction level
(두께 10cm, 공극률 0.01, 반지름 10cm)_Case3
한편 그림 16은 몇 가지 ka에 대하여 거리에 따른 음향 파워 (acoustic power)의 변화를 그래프로 나타낸 것이다. 이를 통해 음파가 E_bubble 통과할 때 음향 응집이 발생하는 ka 부근에서 에너지가 전달되지 않음을 확인하였다.

그림 16. 거리에 따른 음향 파워
4.3. 소음 저감 효과 비교

다른 변수들은 모두 일정하게 두고 한 가지 변수만 변화시켜가면서 그린 ka에 따른 Noise reduction level 그래프의 비교 분석을 통해 그 변수에 따른 소음 저감 효과를 살펴볼 수 있다. 표 1은 변수들을 변화시켜가며 계산한 6가지 상황에 변수를 매겨 정리한 것이다.

<table>
<thead>
<tr>
<th></th>
<th>경계층 유효두께</th>
<th>공극률</th>
<th>E_bubble 반지름</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case1</td>
<td>0.1cm</td>
<td>0.01</td>
<td>0.05cm</td>
</tr>
<tr>
<td>Case2</td>
<td>0.2cm</td>
<td>0.01</td>
<td>0.05cm</td>
</tr>
<tr>
<td>Case3</td>
<td>0.1cm</td>
<td>0.01</td>
<td>0.1cm</td>
</tr>
<tr>
<td>Case4</td>
<td>0.2cm</td>
<td>0.01</td>
<td>0.1cm</td>
</tr>
<tr>
<td>Case5</td>
<td>0.1cm</td>
<td>0.005</td>
<td>0.05cm</td>
</tr>
<tr>
<td>Case6</td>
<td>0.2cm</td>
<td>0.005</td>
<td>0.05cm</td>
</tr>
</tbody>
</table>

표 1. 변수 변화에 따른 계산 조건 분류

각각의 계산 조건들에 대한 Noise reduction level 그래프를 그림 17부터 그림 21까지 나타내었다(Case 3는 그림 15와 같으므로 제외). 모든 그래프는 원통 반지름 R의 30배 지점에서의 음압으로 계산하였다.
그림 17. E_bubble 경계층의 noise reduction level
(두께 10cm, 공극률 0.01, 반지름 5cm)_Case1

그림 18. E_bubble 경계층의 noise reduction level
(두께 20cm, 공극률 0.01, 반지름 5cm)_Case2
그림 19. E_bubble 경계층의 noise reduction level
(두께 20cm, 공극률 0.01, 반지름 10cm)_Case4

그림 20. E_bubble 경계층의 noise reduction level
(두께 10cm, 공극률 0.005, 반지름 5cm)_Case5
그림 21. E_bubble 경계층의 noise reduction level
(두께 20cm, 공극률 0.005, 반지름 5cm)_Case6
4.3.1. 경계층 유효두께

경계층 유효두께에 따른 소음 저감 효과는 각각 Case1과 Case2, Case3과 Case4, Case5와 Case6을 비교해서 분석할 수 있다.

① Case1 & Case2

경계층 유효두께가 증가함에 따라 noise reduction level이 약 2dB 증가하였다. 가장 강한 음향 응집은 ka가 Case1의 경우 0.0489, Case2의 경우 0.0514 일 때 발생하였다.

② Case3 & Case4

경계층 유효두께가 증가함에 따라 noise reduction level이 약 5dB 증가하였다. 가장 강한 음향 응집은 ka가 Case3의 경우 0.0355, Case4의 경우 0.0367 일 때 발생하였다.

③ Case5 & Case6

경계층 유효두께가 증가함에 따라 noise reduction level이 약 5dB 증가하였다. 가장 강한 음향 응집은 ka가 Case5의 경우 0.0472, Case6의 경우 0.0488 일 때 발생하였다.

이상의 분석을 통해 경계층 유효두께가 증가함에 따라 소음 저감이 더욱 잘 이루어졌음을 확인하였으며, 세 가지 비교 경우 모두 경계층 유효두께가 증가하면 음향 응집이 일어나는 주파수 대역이 확장
되는 것을 알 수 있었다. 한편 반지름이 5, 10cm인 E_bubble의 경우 각각 ka가 0.0333, 0.0445일 때 공진 주파수를 가져야 하지만 가장 큰 음향 응집이 일어나는 ka의 값은 이보다 컸으며, 경계층 유효 두께가 두꺼울수록 그 차이가 크게 나타났다. 이를 통해 E_bubble 여러 개가 모여 하나의 집단으로 작용하면서 그 집단의 공진 주파수가 증가한다는 것을 확인하였다.

4.3.2. 공극률

공극률에 따른 소음 저감 효과는 각각 Case1과 Case5, Case2와 Case6을 비교해서 분석할 수 있다. 공극률이 증가함에 따라 Case1와 Case5 비교에서는 noisereduction level이 약 6dB 증가하였으며 Case2와 Case6 비교에서는 약 3dB 증가하였다. 다른 조건이 동일할 때 공극률이 증가하면 소음 저감이 더욱 잘 이루어짐을 확인했으며, 음향 응집이 일어나는 주파수 대역이 확장되는 것을 알 수 있었다. 경계층 유효두께에 따른 영향을 분석할 때와 마찬가지로 가장 큰 음향 응집이 일어나는 ka의 값이 이론상의 값보다 컸으며, 공극률이 컷짐에 따라 집단으로 작용하는 E_bubble의 개수도 많아져 그 차이도 더욱 컷짐을 확인할 수 있었다.
4.3.3. Encapsulated bubble 반지름

E_bubble 반지름에 따른 소음 저감 효과는 각각 Case1과 Case3, Case2와 Case4를 비교해서 분석할 수 있다. E_bubble 반지름 증가에 따라 Case1와 Case3 비교에서는 noise reduction level이 약 9dB 감소하였으며 Case2와 Case4 비교에서는 약 6dB 감소하였다. 다른 조건이 동일한 상황에서 반지름이 증가하면 공간을 차지하고 있는 E_bubble의 개수가 줄어들고 이에 따라 소음 저감 효과가 줄어들음을 확인하였다. 또한 반지름이 증가하면서 가장 큰 음향 응집이 일어나는 ka의 값이 감소하였는데 이 현상을 식 (27)로부터 E_bubble의 공진 주파수를 계산하여 이해할 수 있다.

<table>
<thead>
<tr>
<th>Case</th>
<th>Noise reduction level(dB)</th>
<th>최대 음향 응집이 일어나는 ka</th>
<th>계산에 사용된 E_bubble 개수</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case1</td>
<td>58</td>
<td>0.0489</td>
<td>226</td>
</tr>
<tr>
<td>Case2</td>
<td>60</td>
<td>0.0514</td>
<td>469</td>
</tr>
<tr>
<td>Case3</td>
<td>49</td>
<td>0.0355</td>
<td>29</td>
</tr>
<tr>
<td>Case4</td>
<td>54</td>
<td>0.0367</td>
<td>59</td>
</tr>
<tr>
<td>Case5</td>
<td>52</td>
<td>0.0472</td>
<td>113</td>
</tr>
<tr>
<td>Case6</td>
<td>57</td>
<td>0.0488</td>
<td>235</td>
</tr>
</tbody>
</table>

표 2. 계산 결과
5. 결 론

본 논문은 E_bubble을 이용한 수중소음 저감 장치의 모의법을 제안하고 여러 조건(E_bubble 경계층의 두께, 공극률, E_bubble 반지름)에 따른 수중소음 저감 장치의 효과에 대해 분석하였다.

다중 산란 모델에 Church에 의해 유도된 산란 함수를 적용하여 E_bubble이 배열된 수중소음 저감 장치를 모의하였으며 이를 이용한 계산을 통해 일반 공기 방울과 비교하여 음향 집속 현상이 E_bubble에서 변화하는 양상을 살펴보았다. 유도된 식과 계산 결과를 통해 E_bubble의 공진 주파수에 지배적인 영향을 미치는 것이 접점의 강성률임을 알 수 있었고, E_bubble이 모여서 작용하는 집단의 공진 주파수가 E_bubble 하나의 공진 주파수보다 커지는 현상을 확인하였다. 또한 집단으로 함께 작용하는 E_bubble의 개수가 많을 수록 공진 주파수가 커지는 현상이 심화되며, 음향 집속 현상이 일어나는 주파수 대역 역시 늘어남을 확인하였다. 이와 함께 E_bubble 경계층의 두께가 커질수록, 공극률이 커질수록, E_bubble의 반지름이 작아질수록 noise reduction level이 증가하는 것을 확인하였다.

본 연구에서 점 음원으로 사용된 소음원은 항타 시공 소음의 특성이 반영된 소음원으로, 다중 산란 모델에서 사용된 무한 영역 매질에서의 Green 함수를 도파관(waveguide)에서의 Green 함수로 변경하여 연구가 진행된다면 보다 정밀한 E_bubble을 사용한 수중소음 저감 장치를 모의할 수 있을 것으로 기대된다.
향후 해상 말뚝 항타 시공에 있어 E_bubble을 이용한 최적의 소음 저감 장치의 사양을 고안하는데 있어 본 연구의 내용이 널리 활용될 것이라 생각된다.
참 고 문 헌

부록 A. 해상 말뚝 항타 소음 발생 원인 및 특성

해상 말뚝 항타 시공시, 해머를 통해 말뚝에 가해진 압력은 말뚝의 변형을 일으키며 변형되는 정도는 말뚝 자체의 푸아송비(Poisson’s ratio)에 의해 결정된다. 이러한 변형은 말뚝의 직경 방향을 따라서 종파(longitudinal stress wave)의 형태로 전달되며 푸아송비에 의한 반경방향 변형이 말뚝을 둘러싸고 있는 매질의 입자에 영향을 미쳐 주변 매질에서 음파가 발생하게 된다. 상대적으로 말뚝을 따라 이동하는 파의 속도(약 5000m/s)가 수중에서의 음속(약 1500m/s)보다 빠르기 때문에 마치 충격파(Shock wave)와 같은 형태인 3차원 마하콘(Mach cone)의 모양으로 음파가 발생하여 전파되기 시작한다.(그림 21)

그림 22. 해상 말뚝 항타 소음 발생 특성
말뚝을 따라 전파된 longitudinal stress wave는 말뚝의 끝에서 반사되어 다시 위로 진행하는 longitudinal stress wave를 발생시키며, 이 역시 앞서 설명한 것과 같이 마하콘의 모양을 형상한다. 이러한 물리적 현상을 알아보기 위한 FEM(Finite element method) 모델링 결과는 그림 23과 같다.

그림 23. 해상 말뚝 항타 FEM 모델링 결과 예시
부록 B. 열 감쇠 계수

Devin의 표기법에 따라 열 감쇠 계수\[15\]을 구하면 다음과 같다. 열 역학 제1법칙 식은 식 (B.1)과 같고 여기에 ∆t를 나누어 식 (B.2)를 얻는다.

\[\Delta U = \Delta q + \Delta W \] (B.1)
\[\frac{dU}{dt} = \frac{dq}{dt} + \frac{dW}{dt} \] (B.2)

\(U\)는 에너지, \(q\)는 더해진 열(added heat), \(W\)는 일이다.

한편 식 (B.2)의 각 항들은 다음과 같은 관계를 가진다.

\[dU/dt = \rho c_v (d\theta_1/dt) \] (B.3)
\(c_v\)는 정적 비열, \(\theta\)는 온도 변화이다.

\[\partial q/\partial t = \nabla^2 \theta_1 = (K_1/R) \left[\theta^2 (R\theta_1)/\theta R^2 \right] \] (B.4)
\(K\)는 열전도도(thermal conductivity)이다.

\[dW/dt = - (P_2'/v')(\partial v'/\partial t) \] (B.5)

식 (B.5)의 우변항은 다음과 같이 정리된다.

\[P_2' v' = m' G(T_0 + \theta_1) \] (B.6)
\[P_2' (\partial v'/\partial t) = (m' G/R) \left[\partial (R\theta_1)/\partial t \right] - v' (\partial P_2'/\partial t) \] (B.7)
여기서 m'은 기체의 질량, G는 기체 상수, c_p는 정합 비열이다.

식 (B.2)에 식 (B.3)–(B.5), (B.8)을 대입하여 공기 방울의 온도장을 기술하는 선형 미분 방정식(The linear differential equation describing the temperature field within the gas bubble)인 식 (B.9)를 얻는다.

\[
\frac{d(R\theta_1)}{dt} = D_1 \left[\frac{d^2(R\theta_1)}{dR^2} \right] + j(\omega R/c_{p,1})P' \exp(j\omega t) \quad \text{(B.9)}
\]

여기서 D는 열확산도(thermal diffusivity)이며 $D_1 = K_1/c_{p,1}$이다.

온도 변화는 R과 t의 함수이고 해를 다음과 같이 가정한다.

\[
\theta_1 = y(R)\exp(j\omega t) \quad \text{(B.10)}
\]

식 (B.9)에 식 (B.10)을 대입하여 정리하면 다음과 같다.

\[
j\omega(Ry) = D_1 \left[\frac{d^2(Ry)}{dR^2} \right] + j\omega RP'/c_{p,1} \quad \text{(B.11)}
\]

식 (B.11)의 해는 다음과 같다.

\[
R_y = \frac{R_0P'}{\rho_1c_{p,1}} \left[R/R_0 - \sinh(\psi_1R)/\sinh(\psi_1R_0) \right] \text{, } \psi_1 = (\omega/D_1)^{1/2} \quad \text{(B.12)}
\]
한편 공기 방울 막의 부피는 다음과 같은 식으로 나타난다.

\[v_0 = 4\pi R^2 dR \] \hspace{1cm} (B.13)

또한 이상 기체 방정식을 따라 서로 다른 두 상태에 있는 기체의 압력, 부피, 온도의 관계식을 다음과 같이 적을 수 있다.

\[P'_{2}v = P_{0}v_{0}T / T_{0} \] \hspace{1cm} (B.14)

식 (B.14)를 미분하여 식(B.15)을 얻는다.

\[dv = (v_{0}/T_{0})dT - (v_{0}/P_{0})dP'_{2} = 4\pi \exp(j\omega t) \left[R^2y/T_{0} - R^2P'/P_{0} \right] dR \] \hspace{1cm} (B.15)

식 (B.15)에 식 (B.12)의 결과를 대입한 뒤 적분하면 다음의 결과를 얻는다.

\[
v = 4\pi e^{j\omega t} \int_{0}^{R_{0}} \left\{ \frac{R_{0}P'_{2}}{\rho_{1c_{p,1}}T_{0}} \left[\frac{R^{2}}{R_{0}} - R \frac{\sinh(\psi_{1}R)}{\sinh(\psi_{1}R_{0})} \right] - \frac{P'_{2}R^{2}}{P_{0}} \right\} dR
\]

\[= - \frac{V_{0}P'_{2}e^{j\omega t}}{\gamma P_{0}} \left[1 + \frac{3(\gamma - 1)}{\psi_{1}^{2}R_{0}^{2}} \left([\psi_{1}R_{0}\cosh(\psi_{1}R_{0})] - 1 \right) \right] \] \hspace{1cm} (B.16)

\[(\because T_{0} = P_{0}/\rho_{1}(c_{p,1} - c_{v,1})) \]

한편 공기 방울 시스템의 운동 방정식은 다음과 같다.

\[m\ddot{v} + b\dot{v} + kv = -P\exp(j\omega t) \] \hspace{1cm} (B.17)
식 (B.17)에 식 (B.16)의 식을 대입하고 정리하면 다음과 같이 정리할 수 있다.

\[-m\omega^2 + k + j \omega b_{th}\]

(B.18)

\[
\frac{\gamma P_0}{V_0} \left\{ 1 + \frac{3(\gamma - 1)}{2\phi_1 R_0} \left[\frac{\sinh(2\phi_1 R_0) - \sin(2\phi_1 R_0)}{\cosh(2\phi_1 R_0) - \cos(2\phi_1 R_0)} - j \left[\frac{\sinh(2\phi_1 R_0) + \sin(2\phi_1 R_0) - 1}{\cosh(2\phi_1 R_0) - \cos(2\phi_1 R_0) - \phi_1 R_0} \right] \right] \right\}
\]

여기서

\[
\psi_1 = (1 + j)\phi_1 = 2j\phi_1 = j\omega/D_1,
\]

\[
\psi_1 = (1 + j)\phi_1 = (1 + j)(\omega/2D_1)^{1/2},
\]

\[
\phi_1 = (\omega/2D_1)^{1/2} \text{ 이다.}
\]

계수 \(\beta_{th}\)를 정의하여 식 (B.18)을 정리하면 다음과 같다.

\[
\beta_{th} = \frac{b_{th}}{2m} = \frac{\gamma P_0}{2m\omega V_0}
\]

(B.19)

\[
\times \text{Im} \left\{ 1 + \frac{3(\gamma - 1)}{2\phi_1 R_0} \left[\frac{\sinh(2\phi_1 R_0) - \sin(2\phi_1 R_0)}{\cosh(2\phi_1 R_0) - \cos(2\phi_1 R_0)} - j \left[\frac{\sinh(2\phi_1 R_0) + \sin(2\phi_1 R_0) - 1}{\cosh(2\phi_1 R_0) - \cos(2\phi_1 R_0) - \phi_1 R_0} \right] \right] \right\}
\]

한편 Commander가 제안한 열 감쇠 계수의 식[16]은 다음의 관계가 있다.

\[
\phi = \frac{3\chi}{1 - 3(\gamma - 1)\chi \{(j/\chi)^{1/2} \coth(j/\chi)^{1/2} - 1\}}, \ \chi = D/(\omega R^2) \quad \text{(B.20)}
\]

\[
\beta_{th} = \frac{P_0}{2\rho \omega R_0^2} \text{Im}\phi
\]

(B.21)

\[
\frac{\partial \tau^*}{\partial t^*} + \frac{\gamma - 1}{\gamma} \frac{\chi}{p^* R_*^2} \left(\frac{\partial \tau^*}{\partial y} - \frac{\partial \tau^*}{\partial y} \right)_{y=1} + D_* \frac{\partial \tau^*}{\partial y} - D_* p^* = \frac{\chi D_*}{R_*^2} \nabla^2 \tau^* \tag{B.22}
\]

\[
p^* = \frac{3}{R_*} \left(\gamma - 1 \right) \frac{\chi}{R_*} \frac{\partial \tau^*}{\partial y} \bigg|_{y=1} - \gamma p_* U_* \tag{B.23}
\]

\[
\frac{\partial \tau}{\partial t} - p = \chi \nabla^2 \tau \tag{B.24}
\]

\[
p^* = 3(\gamma - 1) \chi \frac{\partial \tau}{\partial y} \bigg|_{y=1} - 3\gamma R^* \tag{B.25}
\]

따라서 선형화된 방정식을 통해 얻은 해는 \((kR)^2 \ll 1\)인 조건에서만 유효하다. [13]을 통해 제안된 식은 보다 일반적인 상황에서 사용가능하며, 실제로 열 감쇠 계수를 구할 때 계산에 사용할 공기 방울의 크기나 주파수 대역에서 간략화한 방정식의 해를 사용해도 되는지 검증한 후에 계산이 이루어지도록 해야 한다.
Abstract

Underwater sound damper modeling using encapsulated bubbles

Sehyun, Cho

Naval Architecture and Ocean Engineering
The Graduate School
Seoul National University

It is more interest to underwater noise reduction measures as the noise damage phenomena according to offshore pile driving are increasing. Traditional underwater sound dampers are cofferdam, air curtain, etc, but they have limitations such as economic inefficiency and difficulty of broadband noise reduction. In contrast, encapsulated bubble, which its surface is treated as an elastic shell, can solve the drawbacks of the existing sound dampers, and has been in the spotlight as the noise reduction
In this paper, we simulated the underwater sound damper using encapsulated bubbles. The multiple scattering formulation is applied with the scattering function of the encapsulated bubble. We observed the characteristics of the acoustic localization for air bubble and encapsulated bubble. Finally, we calculated the noise reduction by varying the conditions of layer thickness, void fraction, and bubble radius.

Keyword : Encapsulated bubble, Underwater sound damper, Offshore pile driving
Student number : 2011-21192